高中数学第三章不等式3.4基本不等式:√ab≤(a+b)2(二)学案新人教A版必修5

合集下载

高中数学 第三章 不等式 3.4 基本不等式:ab≤a+b2课时作业(含解析)新人教A版必修5-新人

高中数学 第三章 不等式 3.4 基本不等式:ab≤a+b2课时作业(含解析)新人教A版必修5-新人

课时作业24 基本不等式:ab ≤a +b 2时间:45分钟——基础巩固类——一、选择题1.下列不等式中正确的是( D )A .a +4a≥4 B .a 2+b 2≥4ab C.ab ≥a +b 2D .x 2+3x 2≥2 3 解析:a <0,则a +4a≥4不成立,故A 错;a =1,b =1,a 2+b 2<4ab ,故B 错;a =4,b =16,则ab <a +b 2,故C 错;由基本不等式可知D 项正确. 2.若lg x +lg y =2,则1x +1y的最小值为( D ) A .10 B.110C .5 D.15解析:∵lg x +lg y =2,∴xy =100.且x >0,y >0.1x +1y ≥21xy =15. 3.已知f (x )=x +1x-2(x <0),则f (x )有( C ) A .最大值为0 B .最小值为0C .最大值为-4D .最小值为-4解析:∵x <0,∴-x >0.∴x +1x -2=-[(-x )+1(-x )]-2≤-2·(-x )·1(-x )-2=-4,等号成立的条件是-x =1-x ,即x =-1.4.已知m =a +1a -2(a >2),n =22-b 2(b ≠0),则m 、n 的大小关系是( A ) A .m >n B .m <nC .m =nD .不确定解析:∵a >2,∴a -2>0,又∵m =a +1a -2=(a -2)+1a -2+2≥2(a -2)·1a -2+2=4, 当且仅当a -2=1a -2,即a =3时取等号. ∴m ≥4.∵b ≠0,∴b 2>0,∵2-b 2<2,∴22-b 2<4,即n <4,∴m >n .5.某公司租地建仓库,每月土地费用与仓库到车站距离成反比,而每月货物的运输费用与仓库到车站距离成正比.如果在距离车站10 km 处建仓库,则土地费用和运输费用分别为2万元和8万元,那么要使两项费用之和最小,仓库应建在离车站( A )A .5 km 处B .4 km 处C .3 km 处D .2 km 处 解析:设仓库建在离车站x km 处,则土地费用y 1=k 1x(k 1≠0),运输费用y 2=k 2x (k 2≠0),把x =10,y 1=2代入得k 1=20,把x =10,y 2=8代入得k 2=45,故总费用y =20x +45x ≥220x ·45x =8,当且仅当20x =45x ,即x =5时等号成立. 6.已知x >1,y >1且xy =16,则log 2x ·log 2y ( D )A .有最大值2B .等于4C .有最小值3D .有最大值4解析:因为x >1,y >1,所以log 2x >0,log 2y >0.所以log 2x ·log 2y ≤⎝ ⎛⎭⎪⎫log 2x +log 2y 22=⎣⎡⎦⎤log 2(xy )22=4,当且仅当x =y =4时取等号.故选D.二、填空题7.已知x 、y 都是正数,(1)如果xy =15,则x +y 的最小值是215;(2)如果x +y =15,则xy 的最大值是2254. 解析:(1)x +y ≥2xy =215,即x +y 的最小值是215;当且仅当x =y =15时取最小值.(2)xy ≤⎝ ⎛⎭⎪⎫x +y 22=⎝⎛⎭⎫1522=2254, 即xy 的最大值是2254. 当且仅当x =y =152时xy 取最大值. 8.若对任意x >0,x x 2+3x +1≤a 恒成立,则a 的取值X 围是⎣⎡⎭⎫15,+∞. 解析:因为x >0,所以x +1x≥2. 当且仅当x =1时取等号,所以有xx 2+3x +1=1x +1x+3≤12+3=15即x x 2+3x +1的最大值为15,故a ≥15. 9.若a >0,b >0,a +b =2,则下列不等式①ab ≤1;②a +b ≤2;③a 2+b 2≥2;④1a +1b≥2,对满足条件的a ,b 恒成立的是①③④.(填序号) 解析:因为ab ≤⎝ ⎛⎭⎪⎫a +b 22=1,所以①正确;因为(a +b )2=a +b +2ab =2+2ab ≤2+a +b =4,故②不正确;a 2+b 2≥(a +b )22=2,所以③正确;1a +1b =a +b ab =2ab ≥2,所以④正确.三、解答题10.(1)已知0<x <12,求y =12x (1-2x )的最大值. (2)已知x <3,求f (x )=4x -3+x 的最大值. (3)已知x ,y ∈R +,且x +y =4,求1x +3y的最小值; 解:(1)∵0<x <12,∴1-2x >0. y =14·2x ·(1-2x )≤14⎝ ⎛⎭⎪⎫2x +1-2x 22 =14×14=116. ∴当且仅当2x =1-2x ,即x =14时,y 最大值=116. (2)∵x <3,∴x -3<0,∴f (x )=4x -3+x =4x -3+(x -3)+3 =-⎣⎢⎡⎦⎥⎤43-x +(3-x )+3 ≤-243-x ·(3-x )+3=-1, 当且仅当43-x=3-x ,即x =1时取等号, ∴f (x )的最大值为-1.(3)法一:∵x ,y ∈R +,∴(x +y )⎝⎛⎭⎫1x +3y=4+⎝⎛⎭⎫y x +3x y ≥4+2 3.当且仅当y x =3x y ,即x =2(3-1), y =2(3-3)时取“=”号.又x +y =4,∴1x +3y ≥1+32, 故1x +3y 的最小值为1+32. 法二:∵x ,y ∈R +,且x +y =4, ∴1x +3y =x +y 4x +3(x +y )4y=1+⎝⎛⎭⎫y 4x +3x 4y ≥1+2y 4x ·3x 4y=1+32. 当且仅当y 4x =3x 4y, 即x =2(3-1),y =2(3-3)时取“=”号.∴1x +3y 的最小值为1+32. 11.设a ,b ,c ∈R +.求证:(1)ab (a +b )+bc (b +c )+ca (c +a )≥6abc ;(2)(a +b +c )⎝⎛⎭⎫1a +1b +c ≥4. 证明:(1)∵a ,b ,c ∈R +,∴左边=a 2b +ab 2+b 2c +bc 2+c 2a +ca 2=(a 2b +bc 2)+(b 2c +ca 2)+(c 2a +ab 2)≥2a 2b 2c 2+2a 2b 2c 2+2a 2b 2c 2=6abc =右边,当且仅当a =b =c 时,等号成立.(2)∵a ,b ,c ∈R +,∴左边=[a +(b +c )]⎝ ⎛⎭⎪⎫1a +1b +c≥2a (b +c )·21a (b +c )=4=右边, 当且仅当a =b +c 时,等号成立.——能力提升类——12.若f (x )=⎝⎛⎭⎫12x ,a ,b 均为正数,P =f ⎝⎛⎭⎫a +b 2,G =f (ab ),H =f ⎝⎛⎭⎫2ab a +b ,则( A ) A .P ≤G ≤H B .P ≤H ≤GC .G ≤H ≤PD .H ≤G ≤P解析:因为a ,b 均为正数,所以a +b 2≥ab =ab ab ≥ab a +b 2=2ab a +b,当且仅当a =b 时等号成立.又因为f (x )=⎝⎛⎭⎫12x 为减函数,所以f ⎝ ⎛⎭⎪⎫a +b 2≤f (ab )≤f ⎝ ⎛⎭⎪⎫2ab a +b ,所以P ≤G ≤H . 13.已知a >0,b >0,2a +1b =16,若不等式2a +b ≥9m 恒成立,则m 的最大值为( C ) A .8 B .7C .6D .5解析:由已知,可得6⎝⎛⎭⎫2a +1b =1,所以2a +b =6⎝⎛⎭⎫2a +1b ·(2a +b )=6⎝⎛⎭⎫5+2a b +2b a ≥6×(5+4)=54,当且仅当2a b =2b a时等号成立,所以9m ≤54,即m ≤6,故选C.14.设a ,b >0,a +b =5,则a +1+b +3的最大值为3 2. 解析:令t =a +1+b +3,则t 2=a +1+b +3+2(a +1)(b +3)=9+2(a +1)(b +3)≤9+a +1+b +3=13+a +b =13+5=18,当且仅当a +1=b +3时取等号,此时a =72,b =32.∴t max =18=3 2. 15.如图,如在公园建一块面积为144平方米的矩形草地,一边靠墙,另外三边用铁丝网围住,现有44米铁丝网可供使用(铁丝网可以剩余),若利用x 米墙,(1)求x 的取值X 围;(2)求最少需要多少米铁丝网(精确到0.1米).解:(1)由于矩形草地的面积是144平方米,一边长是x 米,则另一边长为144x米, 则矩形草地所需铁丝网长度为y =x +2×144x. 令y =x +2×144x≤44(x >0), 解得8≤x ≤36,则x 的取值X 围是[8,36].(2)由基本不等式,得y =x +288x≥24 2. 当且仅当x =288x,即x ≈17.0时,等号成立, 则y 最小值=242≈34.0,即最少需要34.0米铁丝网.。

高中数学 第三章 不等式 3.4 基本不等式:ab≤a+b2学案(含解析)新人教A版必修5-新人教A

高中数学 第三章 不等式 3.4 基本不等式:ab≤a+b2学案(含解析)新人教A版必修5-新人教A

3.4 基本不等式:ab≤a+b 2[目标] 1.了解基本不等式的代数式和几何背景;2.会用基本不等式进行代数式大小的比较及证明不等式;3.会用基本不等式求最值和解决简单的实际问题.[重点] 基本不等式的简单应用.[难点] 基本不等式的理解与应用.知识点一 两个不等式[填一填]1.重要不等式:对于任意实数a ,b ,有a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 2.基本不等式:如果a ,b ∈R +,那么ab ≤a +b2,当且仅当a =b 时,等号成立.其中a +b2为a ,b 的算术平均数,ab 为a ,b 的几何平均数.所以两个正数的算术平均数不小于它们的几何平均数.[答一答]1.不等式a 2+b 2≥2ab 和基本不等式ab ≤a +b2成立的条件有什么不同?提示:不等式a 2+b 2≥2ab对任意实数a ,b 都成立;ab ≤a +b2中要求a ,b 都是正实数.知识点二 基本不等式与最值[填一填]已知x ,y 都是正数,(1)若x +y =s (和为定值),则当x =y 时,积xy 取得最大值.(2)若xy =p (积为定值),则当x =y 时,和x +y 取得最小值.[答一答]2.利用基本不等式求最值时,我们应注意哪些问题?提示:(1)在利用基本不等式具体求最值时,必须满足三个条件:①各项均为正数;②含变数的各项的和(或积)必须是常数;③当含变数的各项均相等时取得最值.三个条件可简记为:一正、二定、三相等.这三个条件极易遗漏而导致解题失误,应引起足够的重视.(2)记忆口诀:和定积最大,积定和最小.3.在多次使用基本不等式求最值时,我们应注意什么问题?提示:在连续多次应用基本不等式时,我们要注意各次应用时不等式取等号的条件是否一致,若不能同时取等号,则需换用其他方法求出最值.4.两个正数的积为定值,它们的和一定有最小值吗?提示:不一定.应用基本不等式求最值时还要求等号能取到.如sin x 与4sin x ,x ∈(0,π2),两个都是正数,乘积为定值.但是由0<sin x <1,且sin x +4sin x 在(0,1)上为减函数,所以sin x +4sin x >1+41=5,等号不成立,取不到最小值.类型一 利用基本不等式证明不等式[例1] (1)已知a ,b ,c 为不全相等的正实数,求证:a +b +c >ab +bc +ca . (2)已知a ,b ,c 为正实数,且a +b +c =1, 求证:⎝⎛⎭⎫1a -1⎝⎛⎭⎫1b -1⎝⎛⎭⎫1c -1≥8.[分析] (1)左边是和式,右边是带根号的积式之和,所以用基本不等式,将和变积,并证得不等式.(2)不等式右边数字为8,使我们联想到左边因式分别使用基本不等式,可得三个“2”连乘,又1a -1=1-a a =b +c a ≥2bc a,可由此变形入手.[证明] (1)∵a >0,b >0,c >0,∴a +b ≥2ab >0,b +c ≥2bc >0,c +a ≥2ca >0. ∴2(a +b +c )≥2(ab +bc +ca ),即a +b +c ≥ab +bc +ca .由于a ,b ,c 为不全相等的正实数,故等号不成立. ∴a +b +c >ab +bc +ca .(2)∵a ,b ,c 为正实数,且a +b +c =1, ∴1a -1=1-a a =b +c a ≥2bc a , 同理1b -1≥2ac b ,1c -1≥2ab c.由上述三个不等式两边均为正,分别相乘,得⎝⎛⎭⎫1a -1⎝⎛⎭⎫1b -1⎝⎛⎭⎫1c -1 ≥2bc a ·2ac b ·2ab c=8.当且仅当a =b =c =13时,等号成立.1.利用基本不等式证明不等式,关键是所证不等式中必须有“和”式或“积”式,通过将“和”式转化为“积”式或将“积”式转化为“和”式,从而达到放缩的效果.2.注意多次运用基本不等式时等号能否取到.3.解题时要注意技巧,当不能直接利用不等式时,可将原不等式进行组合、构造,以满足能使用基本不等式的形式.[变式训练1] 已知a >0,b >0,c >0,且a +b +c =1. 求证:1a +1b +1c≥9.证明:因为a >0,b >0,c >0,且a +b +c =1, 所以1a +1b +1c =a +b +c a +a +b +c b +a +b +c c=3+b a +c a +a b +c b +a c +b c=3+⎝⎛⎭⎫b a +a b +⎝⎛⎭⎫c a +a c +⎝⎛⎭⎫c b +b c ≥3+2+2+2=9,当且仅当a =b =c =13时,取等号. 类型二 利用基本不等式求最值[例2] (1)若x >0,求f (x )=4x +9x 的最小值;(2)设0<x <32,求函数y =4x (3-2x )的最大值;(3)已知x >2,求x +4x -2的最小值;(4)已知x >0,y >0,且1x +9y=1,求x +y 的最小值.[分析] 利用基本不等式求最值,当积或和不是定值时,通过变形使其和或积为定值,再利用基本不等式求解.[解] (1)∵x >0,∴由基本不等式得 f (x )=4x +9x≥24x ·9x=236=12, 当且仅当4x =9x,即x =32时,f (x )=4x +9x 取最小值12.(2)∵0<x <32,∴3-2x >0,∴y =4x (3-2x )=2[2x (3-2x )] ≤2⎣⎢⎡⎦⎥⎤2x +(3-2x )22=92. 当且仅当2x =3-2x ,即x =34时取“=”.∴y 的最大值为92.(3)∵x >2,∴x -2>0,∴x +4x -2=(x -2)+4x -2+2≥2(x -2)·4x -2+2=6.当且仅当x -2=4x -2,即x =4时,x +4x -2取最小值6.(4)∵x >0,y >0,1x +9y =1,∴x +y =(x +y )⎝⎛⎭⎫1x +9y =10+y x +9x y ≥10+29=16.当且仅当y x =9x y 且1x +9y =1时等号成立.即x =4,y =12时等号成立.∴当x =4,y =12时,x +y 有最小值16.求最值问题第一步就是“找”定值,观察、分析、构造定值是问题的突破口.找到定值后还要看“=”是否成立,不管题目是否要求写出符号成立的条件,都要验证“=”是否成立.[变式训练2] (1)已知lg a +lg b =2,求a +b 的最小值; (2)已知x >0,y >0,且2x +3y =6,求xy 的最大值. 解:(1)由lg a +lg b =2可得lg ab =2, 即ab =100,且a >0,b >0,因此由基本不等式可得a +b ≥2ab =2100=20, 当且仅当a =b =10时,a +b 取到最小值20.(2)∵x >0,y >0,2x +3y =6, ∴xy =16(2x ·3y )≤16·⎝ ⎛⎭⎪⎫2x +3y 22=16·⎝⎛⎭⎫622=32, 当且仅当2x =3y ,且2x +3y =6时等号成立, 即x =32,y =1时,xy 取到最大值32.类型三 基本不等式的实际应用[例3] 特殊运货卡车以每小时x 千米的速度匀速行驶130千米,按规定限制50≤x ≤100(单位:千米/时).假设汽油的价格是每升6元,而送货卡车每小时耗油⎝⎛⎭⎫2+x2360升,司机的工资是每小时140元.(1)求这次行车总费用y 关于x 的表达式.(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值. [解] (1)设所用时间为t =130x(小时),y =130x ×6×⎝⎛⎭⎫2+x 2360+140×130x,x ∈[50,100].所以,这次行车总费用y 关于x 的表达式是y =130×152x +13x 6,x ∈[50,100].(2)y =130×152x +13x 6≥525703,当且仅当130×152x =13x6,即x =4570∈[50,100]时,等号成立.故当x =4570千米/时,这次行车的总费用最低,最低费用的值为525703元.解实际问题时,首先审清题意,然后将实际问题转化为数学问题,再利用数学知识(函数及不等式性质等)解决问题.用基本不等式解决此类问题时,应按如下步骤进行:(1)先理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数. (2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题. (3)在定义域内,求出函数的最大值或最小值. (4)正确写出答案.[变式训练3] 要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是160(单位:元).解析:设该长方体容器的长为x m ,则宽为4x m .又设该容器的总造价为y 元,则y =20×4+2⎝⎛⎭⎫x +4x ×10,即y =80+20⎝⎛⎭⎫x +4x (x >0).因为x +4x≥2x ·4x=4⎝⎛⎭⎫当且仅当x =4x ,即x =2时取“=”,所以y min =80+20×4=160(元).1.给出下列条件:①ab >0;②ab <0;③a >0,b >0;④a <0,b <0,其中能使b a +ab ≥2成立的条件有( C )A .1个B .2个C .3个D .4个解析:当b a ,a b 均为正数时,b a +ab ≥2,故只须a 、b 同号即可.所以①、③、④均可以.2.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( D ) A .a 2+b 2>2ab B .a +b ≥2ab C .1a +1b >2abD .b a +ab≥2解析:∵a ,b ∈R ,且ab >0, ∴b a >0,ab>0,∴b a +a b ≥2b a ×a b=2. 当且仅当b a =ab,即a =b 时取等号.3.设a ,b 为实数,且a +b =3,则2a +2b 的最小值为( B ) A .6 B .4 2 C .2 2 D .8解析:2a +2b ≥22a +b =223=4 2.4.已知0<x <1,则当x =12时,x (3-3x )取最大值为34.解析:3x (1-x )≤3(x +1-x 2)2=34,当且仅当x =1-x 即x =12时等号成立.5.已知a >0,b >0,c >0,求证: (1)b +c a +c +a b +a +b c ≥6;(2)b +c a ·c +a b ·a +b c≥8.证明:(1)b +c a +a +c b +a +b c =b a +c a +c b +a b +a c +b c =(b a +a b )+(c a +a c )+(c b +b c )≥2+2+2=6(当且仅当a =b =c 时取“=”).(2)b +c a ·c +a b ·a +b c ≥2bc a ·2ac b ·2abc=8abc abc=8(当且仅当a =b =c 时取“=”).——本课须掌握的两大问题1.基本不等式成立的条件:a >0且b >0;其中等号成立的条件:当且仅当a =b 时取等号,即若a ≠b 时,则ab ≠a +b 2,即只能有ab <a +b2. 2.利用基本不等式求最值,必须按照“一正,二定,三相等”的原则,即(1)一正:符合基本不等式a +b2≥ab 成立的前提条件,a >0,b >0;(2)二定:化不等式的一边为定值;(3)三相等:必须存在取“=”号的条件,即“=”号成立. 以上三点缺一不可.若是求和式的最小值,通常化(或利用)积为定值;若是求积的最大值,通常化(或利用)和为定值,其解答技巧是恰当变形,合理拆分项或配凑因式.。

人教A版高中数学必修5《三章 不等式 3.4 基本不等式:√ab≤(a+b)%2》优质课教案_12

人教A版高中数学必修5《三章 不等式  3.4 基本不等式:√ab≤(a+b)%2》优质课教案_12

基本不等式教材分析“”的证明学生比较容易理解,学生难理解的是“当且仅当a=b时取‘=’号”的真正数学内涵,教学重点是对基本不等式推导过程的理解及其应用,难点是利用定理求函数的最值问题,进而解决一些实际问题.教学目标1. 学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等。

并能从几何意义的角度去解释,形成数形结合的完美统一.2. 理解两个正数的算术平均数不小于它们的几何平均数定理的证明,及其几何意义,会用这两个重要不等式解决简单的实际应用题.3. 通过定理的证明培养学生的逻辑推理能力,通过定理的应用揭示数学的应用价值.任务分析1.通过从不同角度探索不等式2b a ab +≤ 的证明过程,使学生理解基本不等式及其等号成立的条件; 2.掌握基本不等式解决最值问题,并理解运用基本不等式2b a ab +≤的三个限制条件(一正二定三相等)在解决最值中的作用。

教学设计一、问题情境教师出示问题,引导学生分析、思考:问题1:你能在这个图案中找出一些相等关系或不等关系吗?分析:将图中的“风车”抽象成如图,在正方形ABCD 中有4个全等的直角三角形。

设直角三角形的两条直角边长为b a ,2a b +≤教师引导学生从面积的关系去找相等关系或不等关系。

我们考虑4个直角三角形的面积的和是ab S 21=,正方形的面积为222b a S +=。

由图可知12S S >,即ab b a 222>+.当直角三角形变为等腰直角三角形,即a=b 时,正方形EFGH 缩为一个点,这时有222a b ab +=。

问题2:你能用代数的方法给出它们的证明吗?1. 通过比较与ab 2的大小,引入重要不等式.∵222)(2b a ab b a -=-+, ∴当b a ≠时,0)(2>-b a ; 当b a =时,0)(2=-b a . 即0)(2≥-b a ,从而有ab b a 222≥+. 二、建立模型定理1 如果R b a ∈,,那么ab b a 222≥+(当且仅当b a =时,取“=”号).思考:小组讨论,能否利用几何方法证明基本不等式内容?【板书】两个不等式(重要不等式)若R b a ∈,,则ab b a 222≥+(当且仅当b a =时,等号成立)(基本不等式)若+∈R b a ,,则2b a ab +≤(当且仅当b a =时,等号成立)基本不等式的两个变形 1. ab b a 2≥+ 2. 22⎪⎭⎫ ⎝⎛+≤b a ab 三、解释应用[例 题]例1.(1)的最小值求已知xx x 1,0+> (2)的最大值求已知ab b a b a ,2,0,0=+>>例2.(1)用篱笆围一个面积为100平方米的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短, 最短的篱笆是多少?(2)一段长为36米的篱笆围成一个矩形菜园,问这个矩形的长、宽为多少时,菜园的面积最大,最大面积是多少?通过两个例题,我们可以得出对于+∈R b a ,,(1)若p ab =(定值),则当且仅当b a =时,b a +有最小值p 2;(2)若s b a =+(定值),则当且仅当b a =时,ab 有最大值42s . 四、巩固练习1.___________,120的值为此时的最小值为时,当x xx x +>2.的最小值是则且、若实数y x y x y x 33,5,+=+______ A.10 B.36 C.64 D.318五.思考下列函数中最小值为2的是( )A.B. C. )0(,55≠+=x x x y )101(,lg 1lg <<+=x x x y xx y -+=33D. 六.归纳总结1.重要不等式”号时,取“当且仅当那么如果==≥+∈b a ab b a R b a 2,,222.基本不等式 )(2,0,0”号时,取“当且仅当那么如果==≥+>>b a ab b a b a 注意:基本不等式成立的因素:(1)看是否均为正数(2)积是定值或和是定值(3)看等号是否能取到 )20(,sin 1sin π<<+=x x x y。

2018版高中数学 第三章 不等式 3.4 基本不等式:√ab≤(a+b)2(二)学案 新人教A版必

2018版高中数学 第三章 不等式 3.4 基本不等式:√ab≤(a+b)2(二)学案 新人教A版必

3.4 基本不等式:√ab≤(a+b)2(二)[学习目标] 1.熟练掌握基本不等式及其变形的应用.2.会用基本不等式解决简单的最大(小)值问题.3.能够运用基本不等式解决生活中的应用问题.知识点一基本不等式求最值1.理论依据:(1)设x,y为正实数,若x+y=s(和s为定值),则当x=y时,积xy有最大值,且这个值为s2 4 .(2)设x,y为正实数,若xy=p(积p为定值),则当x=y时,和x+y有最小值,且这个值为2p.2.基本不等式求最值的条件:(1)x,y必须是正数;(2)求积xy的最大值时,应看和x+y是否为定值;求和x+y的最小值时,应看积xy是否为定值.(3)等号成立的条件是否满足.3.利用基本不等式求最值需注意的问题:(1)各数(或式)均为正.(2)和或积为定值.(3)判断等号能否成立,“一正、二定、三相等”这三个条件缺一不可.(4)当多次使用基本不等式时,一定要注意每次是否能保证等号成立,并且要注意取等号的条件的一致性.知识点二基本不等式在实际中的应用基本不等式在实际中的应用是指利用基本不等式解决生产、科研和日常生活中的问题.解答不等式的应用题一般可分为四步:(1)阅读并理解材料;(2)建立数学模型;(3)讨论不等关系;(4)作出结论.题型一利用基本不等式求最值例1 (1)已知x ≥52,则f (x )=x 2-4x +52x -4有( )A .最大值54B .最小值54C .最大值1D .最小值1(2)已知t >0,则函数y =t 2-4t +1t的最小值为____.(3)已知x ,y ∈R +,且满足x 3+y4=1,则xy 的最大值为____.答案 (1)D (2)-2 (3)3解析 (1)f (x )=x 2-4x +52x -4=(x -2)2+12(x -2)=12⎣⎢⎡⎦⎥⎤(x -2)+1x -2≥1.当且仅当x -2=1x -2,即x =3时,等号成立. (2)y =t 2+1-4t t =t +1t-4≥2-4=-2,当且仅当t =1t,即t =1或t =-1(舍)时,等号成立,∴y 的最小值为-2.(3)xy =12·⎝ ⎛⎭⎪⎫x 3·y 4≤12·⎝ ⎛⎭⎪⎪⎫x 3+y 422=12·⎝ ⎛⎭⎪⎫122=3, 当且仅当x 3=y 4=12,即x =32,y =2时,等号成立,∴xy 的最大值为3.反思与感悟 在利用基本不等式求最值时要注意三点:一是各项均为正;二是寻求定值,求和式最小值时应使积为定值,求积式最大值时应使和为定值(恰当变形,合理拆分项或配凑因式是常用的解题技巧);三是考虑等号成立的条件. 跟踪训练1 (1)设a >b >0,则a 2+1ab +1a (a -b )的最小值是( )A .1B .2C .3D .4(2)已知x ,y 为正数,且2x +y =1,则1x +1y的最小值为________.答案 (1)D (2)3+2 2 解析 (1)a 2+1ab+1a (a -b )=a 2-ab +ab +1ab +1a (a -b )=a (a -b )+1a (a -b )+ab +1ab≥2+2=4.当且仅当a (a -b )=1且ab =1, 即a =2,b =22时取“=”. (2)由2x +y =1,得1x +1y =2x +y x +2x +yy=3+y x+2xy ≥3+2 y x ·2xy=3+22, 当且仅当y x =2xy,即x =2-22,y =2-1时,等号成立.题型二 基本不等式的综合应用例2 (1)已知x >1,y >1,且14ln x ,14,ln y 成等比数列,则xy ( )A .有最大值eB .有最大值 eC .有最小值eD .有最小值 e 答案 C解析 由题意得⎝ ⎛⎭⎪⎫142=14ln x ln y ,∴ln x ln y =14,∵x >1,y >1,∴ln x ln y >0, 又ln(xy )=ln x ln y ≥2ln x ln y =1, ∴xy ≥e ,即xy 有最小值为e. (2)若对任意x >0,xx 2+3x +1≤a 恒成立,求a 的取值范围.解 设f (x )=x x 2+3x +1=1x +1x +3,∵x >0,∴x +1x≥2,∴f (x )≤15,即f (x )max =15,∴a ≥15.反思与感悟将不等式恒成立问题转化为求函数最值问题的处理方法,其一般类型有: (1)f (x )>a 恒成立⇔a <f (x )min . (2)f (x )<a 恒成立⇔a >f (x )max .跟踪训练2 (1)设a >0,b >0,若3是3a 与3b的等比中项,则1a +1b的最小值为( )A .2B .4C .1 D.12(2)函数y =kx +2k -1的图象恒过定点A ,若点A 又在直线mx +ny +1=0上,则mn 的最大值为________. 答案 (1)B (2)18解析 (1)由题意得,3a·3b=(3)2,即a +b =1, ∴1a +1b =⎝ ⎛⎭⎪⎫1a +1b (a +b )=2+b a +a b≥2+2b a ·ab =4, 当且仅当b a =a b ,即a =b =12时,等号成立.(2)y =k (x +2)-1必经过(-2,-1),即点A (-2,-1), 代入得-2m -n +1=0, ∴2m +n =1,∴mn =12(2mn )≤12·⎝ ⎛⎭⎪⎫2m +n 22=18,当且仅当2m =n =12时,等号成立.题型三 基本不等式的实际应用例3 要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18 000 cm 2,四周空白的宽度为10 cm ,两栏之间的中缝空白的宽度为5 cm ,请确定广告的高与宽的尺寸(单位:cm),使矩形广告面积最小,并求出最小值. 解 设矩形栏目的高为a cm ,宽为b cm ,ab =9 000.① 广告的高为a +20,宽为2b +25,其中a >0,b >0. 广告的面积S =(a +20)(2b +25)=2ab +40b +25a +500 =18 500+25a +40b ≥18 500+225a ×40b =18 500+2 1 000ab =24 500.当且仅当25a =40b 时,等号成立,此时b =58a ,代入①式得a =120,从而b =75,即当a =120,b =75时,S 取得最小值24 500,故广告的高为140 cm ,宽为175 cm 时,可使广告的面积最小,最小值为24 500 cm 2. 反思与感悟 利用基本不等式解决实际问题的步骤(1)先理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数. (2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题. (3)在定义域内,应用基本不等式求出函数的最大值或最小值. (4)正确写出答案.跟踪训练3 一批货物随17列货车从A 市以v 千米/时匀速直达B 市,已知两地铁路线长400千米,为了安全,两列货车的间距不得小于⎝ ⎛⎭⎪⎫v 202千米,那么这批货物全部运到B 市,最快需要________小时. 答案 8解析 设这批货物从A 市全部运到B 市的时间为t ,则t =400+16⎝ ⎛⎭⎪⎫v 202v=400v +16v 400≥2 400v ×16v400=8(小时), 当且仅当400v =16v400,即v =100时,等号成立,此时t =8小时.1.下列函数中,最小值为4的函数是( ) A .y =x +4xB .y =sin x +4sin x (0<x <π)C .y =e x+4e -xD .y =log 3x +log x 81 答案 C解析 A 中x =-1时,y =-5<4,B 中y =4时,sin x =2,D 中x 与1的关系不确定,选C.2.函数y =x 2-x +1x -1(x >1)在x =t 处取得最小值,则t 等于( )A .1+ 2B .2C .3D .4 答案 B 解析 y =x (x -1)+1x -1=x +1x -1=x -1+1x -1+1≥2+1=3, 当且仅当x -1=1x -1,即x =2时,等号成立. 3.将一根铁丝切割成三段做一个面积为 2 m 2、形状为直角三角形的框架,在下列四种长度的铁丝中,选用最合理(够用且浪费最少)的是( ) A .6.5 m B .6.8 m C .7 m D .7.2 m 答案 C解析 设两直角边分别为a ,b ,直角三角形的框架的周长为l ,则12ab =2,∴ab =4,l =a+b +a 2+b 2≥2ab +2ab =4+22≈6.828(m).∵要求够用且浪费最少,故选C. 4.函数f (x )=x (4-2x )的最大值为________. 答案 2解析 ①当x ∈(0,2)时,x ,4-2x >0, f (x )=x (4-2x )≤12⎣⎢⎡⎦⎥⎤2x +(4-2x )22=2,当且仅当2x =4-2x ,即x =1时,等号成立. ②当x ≤0或x ≥2时,f (x )≤0,故f (x )max =2.5.当x <54时,函数y =4x -2+14x -5的最大值为________.答案 1解析 ∵x <54,∴4x -5<0,∴y =4x -5+14x -5+3=-⎣⎢⎡⎦⎥⎤(5-4x )+15-4x +3 ≤-2(5-4x )·15-4x+3=1当且仅当5-4x =15-4x,即x =1时,等号成立.1.用基本不等式求最值(1)利用基本不等式求最值要把握下列三个条件:①“一正”——各项为正数;②“二定”——“和”或“积”为定值;③“三相等”——等号一定能取到.这三个条件缺一不可.(2)利用基本不等式求最值的关键是获得定值条件,解题时应对照已知和欲求的式子运用适当的“拆项、添项、配凑、变形”等方法创建应用基本不等式的条件.(3)在求最值的一些问题中,有时看起来可以运用基本不等式求最值,但由于其中的等号取不到,所以运用基本不等式得到的结果往往是错误的,这时通常可以借助函数y =x +px(p >0)的单调性求得函数的最值. 2.求解应用题的方法与步骤:(1)审题;(2)建模(列式);(3)解模;(4)作答.。

高中数学第三章不等式3.4基本不等式学案新人教A版必修

高中数学第三章不等式3.4基本不等式学案新人教A版必修

3.4基本不等式: ab≤a +b2(1)基本不等式的形式是什么?需具备哪些条件?(2)在利用基本不等式求最值时,应注意哪些方面?(3)一般按照怎样的思路来求解实际问题中的最值问题? [新知初探]1.重要不等式当a ,b 是任意实数时,有a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 2.基本不等式(1)有关概念:当a ,b 均为正数时,把a +b2叫做正数a ,b 的算术平均数,把ab 叫做正数a ,b 的几何平均数.(2)不等式:当a ,b 是任意正实数时,a ,b 的几何平均数不大于它们的算术平均数,即ab ≤a +b2,当且仅当a =b 时,等号成立.(3)变形:ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22,a +b ≥2ab (其中a >0,b >0,当且仅当a =b 时等号成立).[点睛]基本不等式成立的条件:a >0且b >0;其中等号成立的条件:当且仅当a =b 时取等号,即若a ≠b 时,则ab ≠a +b2,即只能有ab <a +b2.预习课本P97~100,思考并完成以下问[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)对任意a ,b ∈R ,a 2+b 2≥2ab ,a +b ≥2ab 均成立() (2)若a ≠0,则a +4a≥2a ·4a=4() (3)若a >0,b >0,则ab ≤⎝⎛⎭⎪⎫a +b 22()解析:(1)错误.任意a ,b ∈R ,有a 2+b 2≥2ab 成立,当a ,b 都为正数时,不等式a +b ≥2ab 成立.(2)错误.只有当a >0时,根据基本不等式,才有不等式a +4a≥2a ·4a=4成立. (3)正确.因为ab ≤a +b2,所以ab ≤⎝⎛⎭⎪⎫a +b 22.答案:(1)×(2)×(3)√2.若a >b >0,则下列不等式成立的是() A .a >b >a +b2>abB .a >a +b2>ab >b C .a >a +b2>b >abD .a >ab >a +b2>b 解析:选B a =a +a 2>a +b2>ab >b ·b =b ,因此B 项正确.3.若x >0,则x +9x+2有()A .最小值6B .最小值8C .最大值8D .最大值3解析:选B 由x +9x+2≥2x ·9x +2=8(当且仅当x =9x,即x =3时,取等号),故选B.4.利用基本不等式求最值,下列运用正确的是() A .y =|x |2+4|x |≥2|x |2·4|x |=4|x |≥0B .y =sin x +4sin x≥2sin x ·4sin x=4(x 为锐角)C .已知ab ≠0,a b +b a ≥2a b ·b a=2 D .y =3x+43x ≥23x·43x =4解析:选D 在A 中,4|x |不是常数,故A 选项错误;在B 中,sin x =4sin x 时无解,y 取不到最小值4,故B 选项错误;在C 中,a b ,ba未必为正,故C 选项错误;在D 中,3x ,43x 均为正,且3x=43x 时,y 取最小值4,故D 选项正确.利用基本不等式比较大小[典例](1)已知m =a +1a -2(a >2),n =-b 2(b ≠0),则m ,n 之间的大小关系是() A .m >n B .m <n C .m =nD .不确定(2)若a >b >1,P =lg a ·lg b ,Q =12(lg a +lg b ),R =lg a +b2,则P ,Q ,R 的大小关系是________.[解析](1)因为a >2,所以a -2>0,又因为m =a +1a -2=(a -2)+1a -2+2,所以m ≥2a -2·1a -2+2=4,由b ≠0,得b 2≠0,所以2-b 2<2,n =-b 2<4,综上可知m >n .(2)因为a >b >1,所以lg a >lg b >0, 所以Q =12(lg a +lg b )>lg a ·lg b =P ;Q =12(lg a +lg b )=lg a +lg b =lg ab <lg a +b 2=R . 所以P <Q <R . [答案](1)A(2)P <Q <R利用基本不等式比较实数大小的注意事项(1)利用基本不等式比较大小,常常要注意观察其形式(和与积),同时要注意结合函数的性质(单调性).(2)利用基本不等式时,一定要注意条件是否满足a >0,b >0.[活学活用]已知a ,b ,c 都是非负实数,试比较a 2+b 2+b 2+c 2+c 2+a 2与2(a +b +c )的大小.解:因为a 2+b 2≥2ab ,所以2(a 2+b 2)≥(a +b )2, 所以 a 2+b 2≥22(a +b ), 同理 b 2+c 2≥22(b +c ), c 2+a 2≥22(c +a ), 所以 a 2+b 2+b 2+c 2+c 2+a 2≥22[(a +b )+(b +c )+(c +a )], 即a 2+b 2+b 2+c 2+c 2+a 2≥2(a +b +c ),当且仅当a =b =c 时,等号成立.利用基本不等式证明不等式[典例]已知a ,b ,c 均为正实数, 求证:b c a a +a c b 2b +a 2b -3c3c ≥3.[证明]∵a ,b ,c 均为正实数,∴2b a +a2b ≥2(当且仅当a =2b 时等号成立), 3ca +a3c≥2(当且仅当a =3c 时等号成立), 3c 2b +2b3c≥2(当且仅当2b =3c 时等号成立), 将上述三式相加得⎝ ⎛⎭⎪⎫2b a +a 2b +⎝ ⎛⎭⎪⎫3c a +a 3c +⎝ ⎛⎭⎪⎫3c 2b +2b 3c ≥6(当且仅当a =2b =3c 时等号成立),∴⎝ ⎛⎭⎪⎫2b a +a 2b -1+⎝ ⎛⎭⎪⎫3c a +a 3c -1+⎝ ⎛⎭⎪⎫3c 2b +2b 3c -1≥3(当且仅当a =2b =3c 时等号成立),即2b +3c -a a +a +3c -2b 2b +a +2b -3c3c≥3(当且仅当a =2b =3c 时等号成立).利用基本不等式证明不等式的策略与注意事项(1)策略:从已证不等式和问题的已知条件出发,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后转化为所求问题,其特征是以“已知”看“可知”,逐步推向“未知”.(2)注意事项:①多次使用基本不等式时,要注意等号能否成立;②累加法是不等式证明中的一种常用方法,证明不等式时注意使用;③对不能直接使用基本不等式的证明可重新组合,形成基本不等式模型再使用. 已知a ,b ,c 为正实数, 且a +b +c =1,求证:⎝ ⎛⎭⎪⎫1a-1⎝ ⎛⎭⎪⎫1b-1⎝ ⎛⎭⎪⎫1c-1≥8.证明:因为a ,b ,c 为正实数,且a +b +c =1, 所以1a -1=1-a a =b +c a ≥2bca.同理,1b -1≥2ac b ,1c -1≥2ab c.上述三个不等式两边均为正,相乘得⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1≥2bc a ·2ac b ·2ab c =8,当且仅当a =b =c =13时,取等号.利用基本不等式求最值[典例](1)已知lg a +lg b =2,求a +b 的最小值. (2)已知x >0,y >0,且2x +3y =6,求xy 的最大值. (3)已知x >0,y >0,1x +9y=1,求x +y 的最小值.[解](1)由lg a +lg b =2可得lg ab =2, 即ab =100,且a >0,b >0,因此由基本不等式可得a +b ≥2ab =2100 =20, 当且仅当a =b =10时,a +b 取到最小值20. (2)∵x >0,y >0,2x +3y =6, ∴xy =16(2x ·3y )≤16·⎝ ⎛⎭⎪⎫2x +3y 22=16·⎝ ⎛⎭⎪⎫622=32, 当且仅当2x =3y ,即x =32,y =1时,xy 取到最大值32.(3)∵1x +9y=1,∴x +y =(x +y )·⎝ ⎛⎭⎪⎫1x +9y=1+9x y +y x +9=y x +9xy+10,又∵x >0,y >0,∴y x+9xy+10≥2y x ·9xy+10=16, 当且仅当y x =9xy,即y =3x 时,等号成立. 由⎩⎪⎨⎪⎧y =3x ,1x +9y=1,得⎩⎪⎨⎪⎧x =4,y =12,即当x =4,y =12时,x +y 取得最小值16.(1)应用基本不等式需注意三个条件:即一正、二定、三相等.在具体的题目中,“正数”条件往往易从题设中获得解决,“相等”条件也易验证确定,而要获得“定值”条件却常常被设计为一个难点,它需要一定的灵活性和变形技巧.因此,“定值”条件决定着基本不等式应用的可行性,这是解题成败的关键.(2)常用构造定值条件的技巧变换:①加项变换;②拆项变换;③统一变元;④平方后利用基本不等式. (3)对于条件最值要注意“1”的代换技巧的运用. [活学活用]1.已知a >0,b >0,2a +1b =16,若不等式2a +b ≥9m 恒成立,则m 的最大值为()A .8B .7C .6D .5解析:选C 由已知,可得6⎝ ⎛⎭⎪⎫2a +1b =1,∴2a +b =6⎝ ⎛⎭⎪⎫2a +1b ·(2a +b )=6⎝⎛⎭⎪⎫5+2a b +2b a ≥6×(5+4)=54,当且仅当2a b =2ba时等号成立,∴9m ≤54,即m ≤6,故选C.2.设a >b >0,则a 2+1ab+1a a -b的最小值是()A .1B .2C .3D .4解析:选D 因为a >b >0,所以a -b >0,所以a2+1ab +1 a a-b=a(a-b)+1a a-b +ab+1ab≥2a a-b·1a a-b+2ab·1ab=4,当且仅当a(a-b)=1a a-b且ab=1ab,即a=2,b=22时等号成立.利用基本不等式解应用题[典例]不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,求:(1)仓库面积S的最大允许值是多少?(2)为使S达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?[解](1)设铁栅长为x米,一堵砖墙长为y米,而顶部面积为S=xy,依题意得,40x +2×45y+20xy=3 200,由基本不等式得3 200≥240x×90y+20xy=120xy+20xy,=120S+20S.所以S+6S-160≤0,即(S-10)(S+16)≤0,故S≤10,从而S≤100,所以S的最大允许值是100平方米,(2)取得最大值的条件是40x=90y且xy=100,求得x=15,即铁栅的长是15米.求实际问题中最值的解题4步骤(1)先读懂题意,设出变量,理清思路,列出函数关系式.(2)把实际问题抽象成函数的最大值或最小值问题.(3)在定义域内,求函数的最大值或最小值时,一般先考虑基本不等式,当基本不等式求最值的条件不具备时,再考虑函数的单调性.(4)正确写出答案. 某购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N *),求当每台机器运转多少年时,年平均利润最大,最大值是多少.解:每台机器运转x 年的年平均利润为y x=18-⎝ ⎛⎭⎪⎫x +25x ,而x >0,故y x≤18-225=8,当且仅当x =5时等号成立,此时年平均利润最大,最大值为8万元. 故当每台机器运转5年时,年平均利润最大,最大值为8万元.层级一学业水平达标1.下列结论正确的是()A .当x >0且x ≠1时,lg x +1lg x ≥2B .当x >0时,x +1x≥2C .当x ≥2时,x +1x的最小值为2D .当0<x ≤2时,x -1x无最大值解析:选BA 中,当0<x <1时,lg x <0,lg x +1lg x ≥2不成立;由基本不等式知B 正确;C 中,由对勾函数的单调性,知x +1x 的最小值为52;D 中,由函数f (x )=x -1x 在区间(0,2]上单调递增,知x -1x 的最大值为32,故选B.2.下列各式中,对任何实数x 都成立的一个式子是() A .lg(x 2+1)≥lg(2x ) B .x 2+1>2x C.1x 2+1≤1 D .x +1x≥2解析:选C 对于A ,当x ≤0时,无意义,故A 不恒成立;对于B ,当x =1时,x 2+1=2x ,故B 不成立;对于D ,当x <0时,不成立.对于C ,x 2+1≥1,∴1x 2+1≤1成立.故选C.3.设a ,b 为正数,且a +b ≤4,则下列各式中正确的一个是() A.1a +1b <1B.1a +1b ≥1C.1a +1b<2D.1a +1b≥2解析:选B 因为ab ≤⎝⎛⎭⎪⎫a +b 22≤⎝ ⎛⎭⎪⎫422=4,所以1a +1b ≥21ab≥214=1. 4.四个不相等的正数a ,b ,c ,d 成等差数列,则() A.a +d2>bc B.a +d2<bc C.a +d 2=bcD.a +d2≤bc解析:选A 因为a ,b ,c ,d 成等差数列,则a +d =b +c ,又因为a ,b ,c ,d 均大于0且不相等,所以b +c >2bc ,故a +d2>bc .5.若x >0,y >0,且2x +8y=1,则xy 有()A .最大值64B .最小值164C .最小值12D .最小值64解析:选D 由题意xy =⎝⎛⎭⎪⎫2x +8yxy =2y +8x ≥22y ·8x =8xy ,∴xy ≥8,即xy 有最小值64,等号成立的条件是x =4,y =16.6.若a >0,b >0,且1a +1b=ab ,则a 3+b 3的最小值为________.解析:∵a >0,b >0,∴ab =1a +1b ≥21ab,即ab ≥2,当且仅当a =b =2时取等号,∴a 3+b 3≥2ab3≥223=42,当且仅当a =b =2时取等号,则a 3+b 3的最小值为4 2.答案:4 27.已知正数x ,y 满足x 2+2xy -3=0,则2x +y 的最小值是________. 解析:由题意得,y =3-x22x,∴2x +y =2x +3-x 22x =3x 2+32x =32⎝ ⎛⎭⎪⎫x +1x ≥3,当且仅当x =y =1时,等号成立. 答案:38.若对任意x >0,xx 2+3x +1≤a 恒成立,则a 的取值范围是________.解析:因为x >0,所以x +1x≥2.当且仅当x =1时取等号, 所以有x x 2+3x +1=1x +1x+3≤12+3=15,即x x 2+3x +1的最大值为15,故a ≥15.答案:⎣⎢⎡⎭⎪⎫15,+∞9.(1)已知x <3,求f (x )=4x -3+x 的最大值; (2)已知x ,y 是正实数,且x +y =4,求1x +3y的最小值.解:(1)∵x <3, ∴x -3<0, ∴f (x )=4x -3+x =4x -3+(x -3)+3 =-⎣⎢⎡⎦⎥⎤43-x +3-x +3≤-243-x·3-x+3=-1,当且仅当43-x =3-x ,即x =1时取等号, ∴f (x )的最大值为-1. (2)∵x ,y 是正实数,∴(x +y )⎝ ⎛⎭⎪⎫1x +3y =4+⎝ ⎛⎭⎪⎫y x+3x y ≥4+2 3.当且仅当y x =3xy, 即x =2(3-1),y =2(3-3)时取“=”号. 又x +y =4, ∴1x +3y ≥1+32, 故1x +3y 的最小值为1+32. 10.设a ,b ,c 都是正数,试证明不等式:b +c a +c +a b +a +bc≥6.证明:因为a >0,b >0,c >0, 所以b a +a b ≥2,c a +a c ≥2,b c +c b≥2,所以⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫b c +c b ≥6,当且仅当b a =a b ,c a =a c ,c b =bc, 即a =b =c 时,等号成立. 所以b +c a +c +a b +a +bc≥6. 层级二应试能力达标1.a ,b ∈R ,则a 2+b 2与2|ab |的大小关系是() A .a 2+b 2≥2|ab | B .a 2+b 2=2|ab | C .a 2+b 2≤2|ab |D .a 2+b 2>2|ab |解析:选A ∵a 2+b 2-2|ab |=(|a |-|b |)2≥0,∴a 2+b 2≥2|ab |(当且仅当|a |=|b |时,等号成立).2.已知实数a ,b ,c 满足条件a >b >c 且a +b +c =0,abc >0,则1a +1b +1c的值()A .一定是正数B .一定是负数C .可能是0D .正负不确定解析:选B 因为a >b >c 且a +b +c =0,abc >0,所以a >0,b <0,c <0,且a =-(b +c ),所以1a +1b +1c =-1b +c +1b +1c ,因为b <0,c <0,所以b +c ≤-2bc , 所以-1b +c ≤12bc ,又1b +1c ≤-21bc,所以-1b +c +1b +1c ≤12bc-21bc =-32bc<0,故选B. 3.已知x >0,y >0,x ,a ,b ,y 成等差数列,x ,c ,d ,y 成等比数列,则a +b2cd的最小值为()A .0B .1C .2D .4解析:选D 由题意,知⎩⎪⎨⎪⎧a +b =x +y ,cd =xy ,所以a +b2cd=x +y 2xy=x 2+y 2+2xy xy=x 2+y 2xy+2≥2+2=4,当且仅当x =y 时,等号成立. 4.若实数x ,y 满足xy >0,则xx +y +2yx +2y的最大值为()A .2- 2B .2+ 2C .4+2 2D .4-2 2解析:选Dxx +y +2y x +2y =11+y x +2·y x1+2·yx,设t =y x>0,∴原式=11+t +2t 2t +1=1t +1+2t +1-12t +1=1+tt +12t +1=1+12t +1 t+3. ∵2t +1t≥22,∴最大值为1+122+3=4-2 2.5.若两个正实数x ,y 满足1x +4y =1,且不等式x +y 4<m 2-3m 有解,则实数m 的取值范围是________.解析:因为不等式x +y 4<m 2-3m 有解,所以⎝ ⎛⎭⎪⎫x +y 4min <m 2-3m ,因为x >0,y >0,且1x +4y =1,所以x +y 4=⎝ ⎛⎭⎪⎫x +y 4⎝ ⎛⎭⎪⎫1x +4y =4x y +y4x+2≥24x y ·y 4x +2=4,当且仅当4x y =y4x,即x =2,y =8时,等号是成立的,所以⎝ ⎛⎭⎪⎫x +y 4min =4,所以m 2-3m >4,即(m +1)(m -4)>0,解得m <-1或m >4.答案:(-∞,-1)∪(4,+∞)6.若正数a ,b 满足a +b =1,则13a +2+13b +2的最小值为________.解析:由a +b =1,知13a +2+13b +2=3b +2+3a +23a +23b +2=79ab +10,又ab ≤⎝ ⎛⎭⎪⎫a +b 22=14(当且仅当a =b =12时等号成立),∴9ab +10≤494,∴79ab +10≥47. 答案:477.某家拟在2016年举行某产品的促销活动,经调查,该产品的年销售量(即该产品的年产量)x (单位:万件)与年促销费用m (m ≥0)(单位:万元)满足x =3-km +1(k 为常数),如果不举行促销活动,该产品的年销售量是1万件.已知2016年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金,不包括促销费用).(1)将2016年该产品的利润y (单位:万元)表示为年促销费用m 的函数; (2)该家2016年的促销费用为多少万元时,家的利润最大?解:(1)由题意,可知当m =0时,x =1,∴1=3-k ,解得k =2,∴x =3-2m +1, 又每件产品的销售价格为1.5×8+16xx元,∴y =x ⎝ ⎛⎭⎪⎫1.5×8+16x x-(8+16x +m )=4+8x -m=4+8⎝⎛⎭⎪⎫3-2m +1-m =-⎣⎢⎡⎦⎥⎤16m +1+m +1+29(m ≥0).(2)∵m ≥0,16m +1+(m +1)≥216=8,当且仅当16m +1=m +1,即m =3时等号成立, ∴y ≤-8+29=21,∴y max =21.故该家2016年的促销费用为3万元时,家的利润最大,最大利润为21万元.8.已知k >16,若对任意正数x ,y ,不等式⎝ ⎛⎭⎪⎫3k -12x +ky ≥2xy 恒成立,求实数k 的最小值.解:∵x >0,y >0,∴不等式⎝ ⎛⎭⎪⎫3k -12x +ky ≥2xy 恒成立等价于⎝ ⎛⎭⎪⎫3k -12xy +k yx≥2恒成立. 又k >16,∴⎝ ⎛⎭⎪⎫3k -12x y+k y x≥2k ⎝⎛⎭⎪⎫3k -12,∴2k ⎝⎛⎭⎪⎫3k -12≥2,解得k ≤-13(舍去)或k ≥12,∴k min =12.。

2018版高中数学 第三章 不等式 3.4 基本不等式:√ab≤(a+b)2(一)学案 新人教A版必

2018版高中数学 第三章 不等式 3.4 基本不等式:√ab≤(a+b)2(一)学案 新人教A版必

3.4 基本不等式:√ab ≤(a+b )2(一)[学习目标] 1.理解基本不等式的内容及证明.2.能熟练运用基本不等式来比较两个实数的大小.3.能初步运用基本不等式证明简单的不等式.知识点一 重要不等式及证明如果a ,b ∈R ,那么a 2+b 2≥2ab (当且仅当a =b 时取“=”).请证明此结论. 证明 ∵a 2+b 2-2ab =(a -b )2≥0,∴a 2+b 2≥2ab ,当且仅当a =b 时取“=”.知识点二 基本不等式1.内容: ab ≤a +b 2,其中a >0,b >0,当且仅当a =b 时,等号成立.2.证明:∵a +b -2ab =(a )2+(b )2-2a ·b=(a -b )2≥0.∴a +b ≥2ab . ∴ab ≤a +b 2,当且仅当a =b 时,等号成立.3.两种理解:(1)算术平均数与几何平均数:设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为正数的算术平均数不小于它们的几何平均数.(2)几何意义:如图所示,以长度为a +b 的线段AB 为直径作圆,在直径AB 上取一点C ,使AC =a ,CB =b ,过点C 作垂直于直径AB 的弦DD ′,连接AD ,DB ,易证Rt △ACD ∽ Rt △DCB ,则CD 2=CA ·CB ,即CD =ab .这个圆的半径为a +b2,显然它大于或等于CD ,即a +b2≥ab ,当且仅当点C 与圆心O 重合,即a =b 时,等号成立.知识点三 基本不等式的常用推论(1)ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22(a ,b ∈R ); (2)b a +a b ≥2(a ,b 同号);(3)当ab >0时,b a +a b ≥2;当ab <0时,b a +a b≤-2;(4)a 2+b 2+c 2≥ab +bc +ca (a ,b ,c ∈R ).题型一 利用基本不等式比较大小例1 设0<a <b ,则下列不等式中正确的是( )A .a <b <ab <a +b 2B .a <ab <a +b 2<bC .a <ab <b <a +b 2 D.ab <a <a +b 2<b答案 B 解析 方法一 ∵0<a <b ,∴a <a +b 2<b ,排除A ,C 两项.又ab -a =a (b -a )>0,即ab >a ,排除D 项,故选B. 方法二 取a =2,b =8,则ab =4,a +b 2=5,所以a <ab <a +b 2<b .反思与感悟 若给定的代数式中既有“和式”又有“积式”,这便是应用基本不等式的题眼,可考虑是否利用基本不等式解决;在应用基本不等式时一定要注意是否满足条件,即a >0,b >0,同时注意能否取等号.跟踪训练1 若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( )A .a 2+b 2>2abB .a +b ≥2abC.1a +1b >2abD.b a +a b≥2 答案 D解析 对于A ,应该为a 2+b 2≥2ab ,漏等号,故A 错误;对于B ,当a <0,b <0时,ab >0,但a +b <2ab ,故B 不成立;对于C ,当a <0,b <0时,ab >0,故C 不成立;对于D ,∵ab >0,则b a >0且a b >0,∴b a +a b≥2b a ·a b =2.当且仅当b a =a b ,即a =b 时,取“=”,故D 正确.题型二 用基本不等式证明不等式例2 已知a ,b ,c 为正数,且a +b +c =1,证明:1a +1b +1c≥9. 证明 1a +1b +1c =a +b +c a +a +b +c b +a +b +c c=3+(b a +a b )+(c a +a c )+(c b +b c)≥3+2+2+2=9.当且仅当a =b =c =13时,等号成立. 反思与感悟 在利用基本不等式证明的过程中,常需要把数、式合理地拆成两项或多项或恒等地变形配凑成适当的数、式,以便于利用基本不等式.跟踪训练2 已知a ,b ,c 为正数,且a +b +c =1,证明:(1-a )(1-b )(1-c )≥8abc .证明 (1-a )(1-b )(1-c )=(b +c )(a +c )(a +b )≥2bc ·2ac ·2ab =8abc .当且仅当b =c =a =13时,等号成立.1.若0<a <1,0<b <1,且a ≠b ,则a +b ,2ab ,2ab ,a 2+b 2中最大的一个是( )A .a 2+b 2B .2abC .2abD .a +b答案 D解析 ∵0<a <1,0<b <1,a ≠b ,∴a +b >2ab ,a 2+b 2>2ab .∴四个数中最大的应从a +b ,a 2+b 2中选择.而a 2+b 2-(a +b )=a (a -1)+b (b -1).又∵0<a <1,0<b <1,∴a (a -1)<0,b (b -1)<0,∴a 2+b 2-(a +b )<0,即a 2+b 2<a +b ,∴a +b 最大.故选D.2.设a ,b 是实数,且a +b =3,则2a +2b的最小值是( )A .6B .4 2C .2 6D .8答案 B解析 ∵a +b =3,∴2a +2b ≥22a ·2b =22a +b =28=4 2. 3.不等式a 2+4≥4a 中,等号成立的条件为________.答案 a =2解析 令a 2+4=4a ,则a 2-4a +4=0,∴a =2.4.若a >b >1,P =lg a ·lg b ,Q =12(lg a +lg b ),R =lg a +b 2,则它们的大小关系是________.答案 R >Q >P解析 ∵a >b >1,∴lg a >lg b >0,∴Q >P ,又Q =12(lg a +lg b )=12lg ab =lg ab <lg a +b 2=R , ∴R >Q >P .1.两个不等式a 2+b 2≥2ab 与a +b 2≥ab 前者a ,b ∈R ,后者a ,b ∈R +;另外它们都是带有等号的不等式,对于“当且仅当…时,取‘=’”这句话的含义要有正确的理解.一方面:当a =b 时,a +b 2=ab ;另一方面:当a +b 2=ab 时,也有a =b .2.在应用基本不等式比较大小或证明不等式时,要熟练运用基本不等式的几类变形,同时注意等号成立的条件.。

人教A版高中数学必修5《三章 不等式 3.4 基本不等式:√ab≤(a+b)%2》优质课教案_15

人教A版高中数学必修5《三章 不等式  3.4 基本不等式:√ab≤(a+b)%2》优质课教案_15

《基本不等式:2a b +≤》第1课时教学设计教学分析 本节课选自《普通高中课程标准实验教科书数学5必修本(A 版)》的第三章3.4“基2a b +”(第1课时)。

不等关系是普遍存在的,而基本不等式是其中的一个重要且应用广泛的不等关系。

运用基本不等式可以证明不等式,也可以求解一些最值问题。

第1课时的教学主要是通过几何中的不等关系导出基本不等式,然后从代数角度对其进行证明,并运用基本不等式证明其它的一些较简单的不等式。

通过此前的学习,学生已体会到现实世界和日常生活中的不等关系是普遍存在的,并能理解不等式的基本性质。

在此基础上,我们要让学生通过几何图形中比较直观的不等关系抽象出基本不等式,并探讨该不等式的证明。

由于学生尚未形成不等式证明的一般思路,因此在证明基本不等式以及用基本不等式证明其它不等式的时候都存在一些困难。

实际上,不等式的证明就是用一个已知的不等关系去得到一个新的不等关系。

关键在于,我们如何运用不等式的性质将要证的不等关系转化为已知的不等关系。

1、教学目标1.1 使学生了解基本不等式的几何背景,通过对赵爽“弦图”和国际数学家大会的介绍,激 发学生的民族自豪感以及学习数学的兴趣;能够从代数角度证明基本不等式。

1.2 能够运用类比的方法,从几何中的不等关系得出与基本不等式相近的几个不等式,并探讨其代数证明。

1.3 初步了解证明不等式的常用方法,并运用这些方法结合基本不等式证明一些简单的不等式;在此过程中,使学生分析问题的能力和逻辑思维能力得到进一步的提高。

2、教学重、难点重点:了解基本不等式的几何背景,理解基本不等式的内容并作简单应用。

难点:基本不等式的证明。

教学设计一、介绍背景,创设情景(开头语)通过前面几节课的学习,我们已经理解了不等式的概念及性质,并掌握了一元二次不等式和二元一次不等式组这两类特殊的不等关系。

今天这节课,我们将学习一个新的不等关系。

请大家一起看下面的一段资料。

(幻灯片展示,同时教师朗读如下内容)国际数学家大会由国际数学联盟(IMU )主办,每四年举行一次,该会设立菲尔茨奖,用以奖励取得杰出成就的40岁以下的数学家。

高中数学 第三章 不等式 3.4 基本不等式(第1课时)教案 新人教A版必修5

高中数学 第三章 不等式 3.4 基本不等式(第1课时)教案 新人教A版必修5

3.4 基本不等式(第1课时)一、教学目标:1.通过探究“数学家大会的会标”及感受会标的变形,引导学生从几何图形中获得两个基本不等式,了解基本不等式的几何背景培养学生观察问题、分析问题和解决问题的能力;培养学生形成数形结合的思想意识;2.进一步让学生探究不等式的代数证明,加深对基本不等式的理解和认识,提高学生逻辑推理的能力和严谨的思维方式。

3.通过例题让学生学会用基本不等式求最大值和最小值。

二、教学重点:对基本不等式的理解和运用教学难点:理解基本不等式和灵活应用基本不等式十本节课难点三、学情及导入分析:对于高一的学生,不等式并不陌生,前面学习了不等式及不等式的性质,能够进行简单的数与式的比较,本节所学内容就用到了不等式的性质,所以学生可以在巩固不等式性质的前提下学习基本不等式,接受上是容易的,争取让学生真正意义上理解基本不等式。

教具准备多媒体课件、投影胶片、投影仪等四、教学过程:通过情境引发联想,学生深切感受到我国数学科学的悠久历史和深厚的文化底蕴,以及我国的数学成就对世界数学文明的影响和发展做出的卓越贡合作探究探究一:观察上面的会标。

会标是根据中国古代数学家赵爽的弦图设计的,该图给出了迄今为止对勾股定理最早、最简洁的证明,体现了以形证数、数形结合的思想。

将代数与几何紧密的结合在了一起。

师:从图形上你能观察到了什么? 生:边、角、三角形、正方形 师:我们根据弦图可知勾股定理,那么我们对三角形、正方形可以研究哪些数量关系呢?生:正方形和三角形的面积、周长,根据给的边可以求。

师:那么面积之间又有怎样的关系呢?生:大正方形面积22a b +,四个直角三角形面积2ab ,并且22a b +>2ab 。

师:仅此而已吗?你还能发现怎样的关系?生:还会相等。

a b =时会相等。

(教BCD∆,小于或等于圆的半径,课堂小结1、本节课你学到了什么?2、你还有哪些疑问?不等式对高中的学生来说不陌生,但基本不等式则是一个新的知识点出现在高中数学教材中,让学生又学会一种求函数最值得方法,所以学生只有真正理解了才会用起来得心应手。

人教A版高中数学必修5《三章不等式3.4基本不等式:√ab≤(a+b)%2》优质课教案0

人教A版高中数学必修5《三章不等式3.4基本不等式:√ab≤(a+b)%2》优质课教案0

3.4基本不等式(第一课时)一、教学目标1•通过两个探究实例,引导学生从几何图形中获得两个基本不等式,了解基本不等式的几何背景,体会数形结合的思想;2•进一步提炼、完善基本不等式,并从代数角度给出不等式的证明,组织学生分析证明方法,加深对基本不等式的认识,提高逻辑推理论证能力;3•结合课本的探究图形,引导学生进一步探究基本不等式的几何解释,强化数形结合的思想;4•借助例1尝试用基本不等式解决简单的最值问题,通过例2及其变式引导学生领会运用基本不等式.,ab乞旦b的三个限制条件(一正二定三相等)在解决最值中的作用,提升解2决问题的能力,体会方法与策略.二、教学重点和难点重点:应用数形结合的思想理解基本不等式,并从不同角度探索不等式的证2明过程;难点:在几何背景下抽象出基本不等式,并理解基本不等式.三、教学过程:1.动手操作,几何引入如图是2002年在北京召开的第24届国际数学家大会会标,会标是根据我国古代数学家赵爽的“弦图”设计的,该图给出了迄今为止对勾股定理最早、最简洁的证明,体现了以形证数、形数统一、代数和几何是紧密结合、互不可分的.探究一:在这张“弦图”中能找出一些相等关系和不等关系吗?在正方形ABCD中有4个全等的直角三角形.设直角三角形两条直角边长为a,b ,那么正方形的边长为a2b2.于是,4个直角三角形的面积之和S_, =2ab ,正方形的面积S2=a2b2.由图可知S2,S1,即a2b22ab .2•代数证明,得出结论根据上述两个几何背景,初步形成不等式结论:若a,b R,则a2b22ab . 若a,b R ,则..ab乞空.2学生探讨等号取到情况,教师演示几何画板,通过展示图形动画,使学生直观感受不等关系中的相等条件,从而进一步完善不等式结论:(1 )若a,b・R ■,则a2・b2_2ab ; (2)若a,b • R ■,贝U ab 昇 -2请同学们用代数方法给出这两个不等式的证明.证法一(作差法):a2b2-2ab =(a -b)2_0a2b2_2ab,当a = b时取等号.(在该过程中,可发现a,b的取值可以是全体实数)证法二(分析法):由于a,bER,,于是要证明乞卫_ ab ,2只要证明a b _2. ab ,即证、一a • ... b —2 . ab 亠0 ,即C.a「b)2_0,该式显然成立,所以心ab,当a=b时取等号.2得出结论,展示课题内容基本不等式:若a,b・R •,则...ab空心(当且仅当a=b时,等号成立)2若a,b・R,则a2・b2_2ab (当且仅当a =b时,等号成立)深化认识:称..ab为a,b的几何平均数;称-_b为a,b的算术平均数2(在运用基本不等式解题的基础上,并通过例 2及其变式引导学生领会运用基本不等式基本不等式 ab 乞旦-又可叙述为:2两个正数的几何平均数不大于它们的算术平均数3 •几何证明,相见益彰探究三:如图,AB 是圆0的直径,点 C 是AB 上一点, AC =a , BC =b .过点C 作垂直于AB 的弦DE ,连接AD,BD .根据射影定理可得:CD =£AC BC =. <;ab 于是有 ab当且仅当点C 与圆心0重合时,即a=b 时等号成立.故而再次证明:当a Ob .0时,.ab 岂电卫(当且仅当a =b 时,等号成立)2(进一步加强数形结合的意识,提升思维的灵活性)练一练 (小试牛刀) 1、判断下列推理是否正确:(1) 若a^R,则由 a+^KZja 丄=2得 a V a(2) 若0x1,则由.x(1_x) J) =2得1x(1 -x)的最大值是—4 •应用举例,巩固提高例1. ( 1)用篱笆围一个面积为 100平方米的矩形菜园,问这个矩形的长、宽各为多少时, 所用篱笆最短,最短的篱笆是多少?(2)一段长为36米的篱笆围成一个矩形菜园,问这个矩形的长、宽为多少时,菜 园的面积最大,最大面积是多少?(通过例1的讲解,总结归纳利用基本不等式求最值问题的特征,实现积与和的转化) 由于Rt COD 中直角边CD :::斜边OD ,A、叽宁的三个限制条件(一正二定三相等)在解决最值问题中的作用,提升解决问题的 能力,体会方法与策略.课堂小测试:1.已知m 八打E R, nm = 100?则/??2 +/72的最小 值是( 丄A. 200B. 10()C. 50 2-设兀,y 满足x+y=40 £1兀, 则▽的最大值是( \A- 20 B. 40 C- 10013.若xy>0,则对子+£说法止确的是()-1/ -X A.有最人值一2 B.育最小值2一C.无最大值和最小值D.无法确矩”斗•己知宜角三角形斜边长等丁 6cm,则面积最大 值为 …5•归纳小结,反思提高若a,b ・R •,则,a^l - b (当且仅当a =b 时,等号成立)2(1 )基本不等式的几何解释(数形结合思想);(2)运用基本不等式解决简单最值问题的基本方法.6.布置作业,课后延拓(1 )基本作业:课本 P100习题A 组1、2题 (2)拓展作业:请同学们课外到阅览室或网上查找不等式 的其他几何解释,整理并相互交流.D.2Q y 都是正整数,D. 400 基本不等式:若a,b ・R ,则a 2 b 2 _2ab (当且仅当a =b 时,等号成立)a b ” a 2 b 2。

高中数学《3.4基本不等式 (三)》教案 新人教A版必修5

高中数学《3.4基本不等式  (三)》教案 新人教A版必修5

word1 / 1 某某省长乐第一中学高中数学必修五《3.4基本不等式 (三)》教案教学要求:2a b +≤;会应用此不等式求某些函数的最值;能够解决一些简单的实际问题教学重点2a b +≤的应用教学难点2a b +≤求最大值、最小值。

教学过程:一、复习准备:1. 讨论:重要不等式?基本不等式?2. 提问:ab ba ab b a ≥+≥+2222和成立的条件?二、讲授新课:1. 教学:最大值、最小值。

① 出示例1:(1)用篱笆围成一个面积为100m 2的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短。

最短的篱笆是多少?(2)段长为36 m 的篱笆围成一个一边靠墙的矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少? 分析:根据题意:→如何设长、宽? 应用什么知识? 怎样应用?→学生讲述解答过程。

→ 小结:解决应用问题,首先读懂题意,思考用什么方法去解决。

②练习:用绳子围成一块矩形场地,若绳长为20米,则围成最大矩形的面积是;若要围出一块100米2的场地,则绳子最短为。

③出示例2:某工厂要建造一个长方体无盖贮水池,其容积为4800m 3,深为3m ,如果池底每1m 2的造价为150元,池壁每1m 2的造价为120元,问怎样设计水池能使总造价最低,最低总造价是多少元?分析:→如何由实际问题向数学问题转化,即建立函数关系式?→如何求函数的最值,用到了什么定理?→师生共同解答。

→小结:应注意数学语言的应用即函数解析式的建立和注意不等式性质的适用条件。

④练习:建造一个容积为18立方米,深为2米的长方体有盖水池。

如果池底和池壁每平方米的造价分别是200元和150元,那么如何建造,池的造价最低,为多少?2. 小结:用均值不等式解决此类问题时,应按如下步骤进行:(1)先理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数;(2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题;(3)在定义域内,求出函数的最大值或最小值;(4)正确写出答案.三、巩固练习:1. 练习:教材114页练习的第1题.习题[A]组的第2题.2. 已知x ≠0,当x 取什么值时,x 2+281x 的值最小?最小值是多少? 3.已知矩形的周长为36,矩形绕它的一条边旋转成一个圆柱,矩形的长.宽各为多少时,旋转形成的圆柱的侧面积最大?3. 作业:教材114页习题[A]组的第4题。

高中数学 第3章 不等式 3.4 基本不等式 ab ≤a+b2学案 新人教A版必修5-新人教A版高二

高中数学 第3章 不等式 3.4 基本不等式 ab ≤a+b2学案 新人教A版必修5-新人教A版高二

3.4 基本不等式:ab ≤a +b2学 习 目 标核 心 素 养1.了解基本不等式的证明过程.2.能利用基本不等式证明简单的不等式及比较代数式的大小.(重点、难点)3.熟练掌握利用基本不等式求函数的最值问题.(重点)1.通过利用基本不等式比较大小和证明不等式的学习,培养逻辑推理素养.2.借助利用基本不等式求最值和基本不等式的实际应用,培养数学建模及数学运算素养.1.重要不等式如果a ,b ∈R ,那么a 2+b 2≥2ab (当且仅当a =b 时取“=”).思考:如果a >0,b >0,用a ,b 分别代替不等式a 2+b 2≥2ab 中的a ,b ,可得到怎样的不等式?[提示] a +b ≥2ab . 2.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a ,b 均为正实数; (2)等号成立的条件:当且仅当a =b 时取等号. 思考:不等式a 2+b 2≥2ab 与ab ≤a +b2成立的条件相同吗?如果不同各是什么?[提示] 不同,a 2+b 2≥2ab 成立的条件是a ,b ∈R ;ab ≤a +b2成立的条件是a ,b 均为正实数.3.算术平均数与几何平均数(1)设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ;(2)基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数.思考:a +b2≥ab 与⎝ ⎛⎭⎪⎫a +b 22≥ab 是等价的吗?[提示] 不等价,前者条件是a >0,b >0,后者是a ,b ∈R . 4.用基本不等式求最值的结论(1)设x ,y 为正实数,若x +y =s (和s 为定值),则当x =y =s 2时,积xy 有最大值为s 24.(2)设x ,y 为正实数,若xy =p (积p 为定值),则当x =y =p 时,和x +y 有最小值为2p .5.基本不等式求最值的条件 (1)x ,y 必须是正数.(2)求积xy 的最大值时,应看和x +y 是否为定值;求和x +y 的最小值时,应看积xy 是否为定值.(3)等号成立的条件是否满足.思考:利用基本不等式求最值时应注意哪几个条件?若求和(积)的最值时,一般要确定哪个量为定值?[提示] 三个条件是:一正,二定,三相等.求和的最小值,要确定积为定值;求积的最大值,要确定和为定值.1.不等式(x -2y )+1x -2y≥2成立的前提条件为( ) A .x ≥2y B .x >2y C .x ≤2yD .x <2yB [因为不等式成立的前提条件是各项均为正,所以x -2y >0,即x >2y ,故选B.] 2.设x ,y 满足x +y =40,且x ,y 都是正数,则xy 的最大值为 . 400 [因为x ,y 都是正数,且x +y =40,所以xy ≤⎝ ⎛⎭⎪⎫x +y 22=400,当且仅当x =y =20时取等号.]3.函数f (x )=x +1x(x >0)的最小值为 .2 [由基本不等式可得x +1x≥2x ·1x =2,当且仅当x =1x,即x =1时等号成立.] 4.给出下列说法: ①若x ∈(0,π),则sin x +1sin x≥2; ②若a ,b ∈(0,+∞),则lg a +lg b ≥2lg a ·lg b ;③若x ∈R 且x ≠0,则⎪⎪⎪⎪⎪⎪x +4x ≥4.其中正确说法的序号是 .①③ [①因为x ∈(0,π),所以sin x ∈(0,1], 所以①成立;②只有在lg a >0,lg b >0, 即a >1,b >1时才成立;③⎪⎪⎪⎪⎪⎪x +4x =|x |+⎪⎪⎪⎪⎪⎪4x ≥ 2|x |·⎪⎪⎪⎪⎪⎪4x=4成立.]利用基本不等式比较大小【例1】 已知0<a <1,0<b <1,则a +b ,2ab ,a 2+b 2,2ab 中哪一个最大? [解] 法一:因为a >0,b >0,所以a +b ≥2ab ,a 2+b 2≥2ab , 所以四个数中最大的数应为a +b 或a 2+b 2. 又因为0<a <1,0<b <1,所以a 2+b 2-(a +b )=a 2-a +b 2-b =a (a -1)+b (b -1)<0, 所以a 2+b 2<a +b , 所以a +b 最大. 法二:令a =b =12,则a +b =1,2ab =1,a 2+b 2=12,2ab =2×12×12=12,再令a =12,b =18,a +b =12+18=58,2ab =212×18=12, 所以a +b 最大.(1)在使用基本不等式ab ≤a +b2(a ≥0,b ≥0)时,要注意不等式的双向性.①从左到右:常使用基本不等式的变形公式ab ≤⎝ ⎛⎭⎪⎫a +b 22;②从右到左:常使用a +b ≥2ab .(2)运用基本不等式比较大小应注意等号成立的条件.(3)特殊值法是解决不等式的一个有效方法, 但要使特殊值具有一般性.[跟进训练] 1.(1)已知m =a +1a -2(a >2),n =22-b 2(b ≠0),则m ,n 之间的大小关系是 . (2)若a >b >1,P =lg a ·lg b ,Q =12(lg a +lg b ),R =lg a +b2,则P ,Q ,R 的大小关系是 .(1)m >n (2)P <Q <R [(1)因为a >2,所以a -2>0,又因为m =a +1a -2=(a -2)+1a -2+2,所以m ≥2(a -2)·1a -2+2=4,由b ≠0,得b 2≠0,所以2-b 2<2,n =22-b 2<4,综上可知m >n .(2)因为a >b >1,所以lg a >lg b >0, 所以Q =12(lg a +lg b )>lg a ·lg b =P ;Q =12(lg a +lg b )=lg a +lg b =lg ab <lg a +b 2=R . 所以P <Q <R .]利用基本不等式证明不等式【例2】 已知a ,b ,c 为不全相等的正实数. 求证:a +b +c >ab +bc +ca .思路探究:构造基本不等式的条件→运用基本不等式证明→判断等号成立的条件→得出结论[解] ∵a >0,b >0,c >0, ∴a +b ≥2ab >0,b +c ≥2bc >0, c +a ≥2ca >0,∴2(a +b +c )≥2(ab +bc +ca ), 即a +b +c ≥ab +bc +ca .由于a ,b ,c 为不全相等的正实数,故等号不成立. ∴a +b +c >ab +bc +ca .1.所证不等式一端出现“和式”,而另一端出现“积式”,这便是应用基本不等式的“题眼”,可尝试用基本不等式证明.2.利用基本不等式证明不等式的注意点(1)多次使用基本不等式时,要注意等号能否成立;(2)累加法是不等式证明中的一种常用方法,证明不等式时注意使用;(3)对不能直接使用基本不等式的证明可重新组合,形成基本不等式模型,再使用.[跟进训练]2.已知a ,b ,c 为正实数,且a +b +c =1.求证:⎝ ⎛⎭⎪⎫1a-1⎝ ⎛⎭⎪⎫1b-1⎝ ⎛⎭⎪⎫1c-1≥8.[证明] 因为a ,b ,c 为正实数, 且a +b +c =1,所以1a -1=1-a a =b +c a ≥2bc a.同理,1b -1≥2ac b ,1c -1≥2ab c.上述三个不等式两边均为正,相乘得⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1≥2bc a ·2ac b ·2ab c =8,当且仅当a =b =c =13时,取等号.基本不等式的实际应用【例3】 如图,动物园要围成相同面积的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.(1)现有可围36 m 长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?(2)要使每间虎笼面积为24 m 2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋网总长最小?思路探究:(1)已知a +b 为定值,如何求ab 的最大值?(2)已知ab 为定值,如何求a +b 的最小值?[解](1)设每间虎笼长x m ,宽y m ,则由条件知:4x +6y =36,即2x +3y =18. 设每间虎笼面积为S ,则S =xy .法一:由于2x +3y ≥22x ·3y =26xy , ∴26xy ≤18,得xy ≤272,即S ≤272,当且仅当2x =3y 时,等号成立.由⎩⎪⎨⎪⎧2x +3y =18,2x =3y ,解得⎩⎪⎨⎪⎧x =4.5,y =3. 故每间虎笼长4.5 m ,宽3 m 时,可使面积最大. 法二:由2x +3y =18,得x =9-32y .∵x >0,∴9-32y >0,∴0<y <6,S =xy =⎝⎛⎭⎪⎫9-32y y =32(6-y )·y .∵0<y <6,∴6-y >0,∴S ≤32·⎣⎢⎡⎦⎥⎤(6-y )+y 22=272.当且仅当6-y =y ,即y =3时,等号成立,此时x =4.5.故每间虎笼长4.5 m ,宽3 m 时,可使面积最大.(2)由条件知S =xy =24.设钢筋网总长为l ,则l =4x +6y .法一:∵2x +3y ≥22x ·3y =26xy =24, ∴l =4x +6y =2(2x +3y )≥48. 当且仅当2x =3y 时,等号成立.由⎩⎪⎨⎪⎧2x =3y xy =24,解得⎩⎪⎨⎪⎧x =6,y =4. 故每间虎笼长6 m ,宽4 m 时,可使钢筋网总长最小. 法二:由xy =24,得x =24y.∴l =4x +6y =96y+6y =6⎝ ⎛⎭⎪⎫16y +y ≥6×216y·y =48.当且仅当16y=y ,即y =4时,等号成立,此时x =6.故每间虎笼长6 m ,宽4 m 时,可使钢筋网总长最小.某工厂拟建一座平面图为矩形且面积为400平方米的三级污水处理池,平面图如图所示.池外圈建造单价为每米200元,中间两条隔墙建造单价为每米250元,池底建造单价为每平方米80元(池壁的厚度忽略不计,且池无盖).试设计污水池的长和宽,使总造价最低,并求出最低造价.[解] 设污水池的长为x 米,则宽为400x 米,总造价y =(2x +2·400x )·200+2×250·400x+80×400=400⎝⎛⎭⎪⎫x +900x +32 000≥400×2x ·900x+32 000=56 000(元),当且仅当x =900x,即x =30时取等号.故污水池的长为30米、宽为403米时,最低造价为56 000元.求实际问题中最值的解题4步骤(1)先读懂题意,设出变量,理清思路,列出函数关系式; (2)把实际问题抽象成函数的最大值或最小值问题;(3)在定义域内,求函数的最大值或最小值时,一般先考虑基本不等式,当基本不等式求最值的条件不具备时,再考虑函数的单调性; (4)正确写出答案.利用基本不等式求最值 [探究问题]1.由x 2+y 2≥2xy 知xy ≤x 2+y 22,当且仅当x =y 时“=”成立,能说xy 的最大值是x 2+y 22吗?能说x 2+y 2的最小值为2xy 吗?[提示] 最值是一个定值(常数),而x 2+y 2或2xy 都随x ,y 的变化而变化,不是定值,故上述说法均错误.要利用基本不等式a +b2≥ab (a ,b ∈R +)求最值,必须保证一端是定值,方可使用.2.小明同学初学利用基本不等式求最值时,是这样进行的: “因为y =x +1x≥2x ·1x =2,当且仅当x =1x,即x 2=1时“=”号成立,所以y =x +1x的最小值为2.”你认为他的求解正确吗?为什么?[提示] 不正确.因为利用基本不等式求最值,必须满足x 与1x都是正数,而本题x 可能为正,也可能为负.所以不能盲目“套用”基本不等式求解.正确解法应为:当x >0时,y =x +1x≥2x ×1x =2,当且仅当x =1x ,即x =1时取“=”,y =x +1x的最小值是2;当x <0时,y =-⎝⎛⎭⎪⎫-x -1x ≤-2(-x )·⎝ ⎛⎭⎪⎫-1x=-2,当且仅当x =1x,即x =-1时,取“=”,y=x +1x的最大值是-2.3.已知x ≥3,求y =x 2+4x 的最小值,下列求解可以吗?为什么?“解:∵y =x 2+4x =x +4x≥2x ·4x=4,∴当x ≥3时,y =x 2+4x的最小值为4.”[提示] 不可以,因为在利用基本不等求解最值时,虽然将所求代数式进行变形,使其符合基本不等式的结构特征,但是必须符合“正”、“定”、“等”的条件,缺一不可.本解法忽略了等号成立的条件,即“=”号不成立.本问题可采用y =x +4x的单调性求解.【例4】 (1)已知x <54,求y =4x -2+14x -5的最大值;(2)已知0<x <12,求y =12x (1-2x )的最大值;(3)已知x >0,求f (x )=2xx 2+1的最大值; (4)已知x >0,y >0,且1x +9y=1,求x +y 的最小值.思路探究:变形所求代数式的结构形式,使用符合基本不等式的结构特征. (1)4x -2+14x -5=4x -5+14x -5+3. (2)12x (1-2x )=14·2x ·(1-2x ). (3)2x x 2+1=2x +1x. (4)x +y =(x +y )·1=(x +y )⎝ ⎛⎭⎪⎫1x +9y .[解] (1)∵x <54,∴5-4x >0,∴y =4x -2+14x -5=-(5-4x +15-4x )+3≤-2+3=1,当且仅当5-4x =15-4x ,即x =1时,上式等号成立,故当x =1时,y max =1.(2)∵0<x <12,∴1-2x >0,∴y =14×2x (1-2x )≤14×⎝ ⎛⎭⎪⎫2x +1-2x 22=14×14=116,∴当且仅当2x =1-2x ⎝ ⎛⎭⎪⎫0<x <12,即x =14时,y max =116. (3)f (x )=2x x 2+1=2x +1x. ∵x >0,∴x +1x≥2x ·1x=2, ∴f (x )≤22=1,当且仅当x =1x ,即x =1时等号成立.(4)∵x >0,y >0,1x +9y=1,∴x +y =⎝ ⎛⎭⎪⎫1x +9y (x +y )=y x +9x y+10≥6+10=16,当且仅当y x=9x y,又1x +9y=1,即x =4,y =12时,上式取等号. 故当x =4,y =12时,(x +y )min =16.1.(变条件)在例题(1)中条件改为x >54,求函数f (x )=4x -2+14x -5的值域.[解] ∵x >54,∴4x -5>0,∴f (x )=4x -5+14x -5+3≥2+3=5.当且仅当4x -5=14x -5.即x =32时,等号成立.f (x )的值域为[5,+∞).2.(变条件)在例题(1)中去掉条件x <54,求f (x )=4x -2+14x -5的最值如何求解?[解] 由f (x )=4x -2+14x -5=4x -5+14x -5+3 ①当x >54时,4x -5>0∴f (x )=4x -5+14x -5+3≥2+3=5当且仅当4x -5=14x -5时等号成立即x =32时f (x )min =5.②当x <54时,4x -5<0.f (x )=4x -2+14x -5=-(5-4x +15-4x)+3≤-2+3=1 当且仅当5-4x =15-4x,即x =1时等号成立.故当x =1时,f (x )max =1.利用基本不等式求条件最值的常用方法(1)“1”的代换:利用已知的条件或将已知条件变形得到含“1”的式子,将“1”代入后再利用基本不等式求最值.(2)构造法:①构造不等式:利用ab ≤⎝ ⎛⎭⎪⎫a +b 22, 将式子转化为含ab 或a +b 的一元二次不等式,将ab ,(a +b )作为整体解出范围;②构造定值:结合已知条件对要求的代数式变形,构造出和或积的定值,再利用基本不等式求最值.(3)函数法:若利用基本不等式时等号取不到,则无法利用基本不等式求最值,则可将要求的式子看成一个函数,利用函数的单调性求最值.易错警示:利用基本不等式求函数最值,一定要判断等号何时成立.1.两个不等式a 2+b 2≥2ab 与a +b2≥ab 都是带有等号的不等式,对于“当且仅当…时,取等号”这句话的含义要有正确的理解.一方面:当a =b 时,a +b2=ab ;另一方面:当a +b2=ab 时,也有a =b .2.在利用基本不等式证明的过程中,常需要把数、式合理地拆成两项或多项或把恒等式变形配凑成适当的数、式,以便于利用基本不等式.3.用基本不等式求最值(1)利用基本不等式,通过恒等变形,以及配凑,使得“和”或“积”为定值,从而求得函数最大值或最小值.这种方法在应用的过程中要把握下列三个条件:①“一正”——各项为正数;②“二定”——“和”或“积”为定值;③“三相等”——等号一定能取到.这三个条件缺一不可.(2)利用基本不等式求最值的关键是获得定值条件,解题时应对照已知和欲求的式子运用适当的“拆项、添项、配凑、变形”等方法创建应用基本不等式的条件.(3)在求最值的一些问题中,有时看起来可以运用基本不等式求最值,但由于其中的等号取不到,所以运用基本不等式得到的结果往往是错误的,这时通常可以借助函数y =x +px(p >0)的单调性求得函数的最值.1.判断正误(1)对任意a ,b ∈R ,a 2+b 2≥2ab ,a +b ≥2ab 均成立. ( ) (2)对任意的a ,b ∈R ,若a 与b 的和为定值,则ab 有最大值. ( ) (3)若xy =4,则x +y 的最小值为4. ( ) (4)函数f (x )=x 2+2x 2+1的最小值为22-1. ( )[答案] (1)× (2)× (3)× (4)√2.若0<x <1,则x (3-2x )的取值范围是 .⎝⎛⎦⎥⎤0,324 [由0<x <1知3-2x >0,故x (3-2x )=12·2x (3-2x )≤12·2x +(3-2x )2=324,当且仅当x =34时,上式等号成立.所以0<x (3-2x )≤324.]3.建造一个容积为8 m 3,深为2 m 的长方体无盖水池,如果池底和池壁的造价分别为120元/m 2,80元/m 2,那么水池的最低总造价为 元.1 760 [设池底一边长为x m ,总造价为y 元.则y =4×120+2⎝ ⎛⎭⎪⎫2x +2×4x ×80=320⎝ ⎛⎭⎪⎫x +4x +480(x >0).因为x +4x≥2x ·4x=4, 当且仅当x =4x即x =2时取等号,所以y min =480+320×4=1 760(元).] 4.设a ,b ,c 都是正数,试证明不等式:b +c a +c +a b +a +bc≥6. [证明] 因为a >0,b >0,c >0, 所以b a +ab ≥2,c a +a c ≥2,b c +c b≥2,所以⎝⎛⎭⎪⎫b a +a b +⎝⎛⎭⎪⎫c a +a c +⎝⎛bc+⎭⎪⎫c b ≥6, 当且仅当b a =a b ,c a =a c ,c b =bc, 即a =b =c 时,等号成立. 所以b +c a +c +a b +a +bc≥6.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.4 基本不等式:√ab≤(a+b)2(二)[学习目标] 1.熟练掌握基本不等式及其变形的应用.2.会用基本不等式解决简单的最大(小)值问题.3.能够运用基本不等式解决生活中的应用问题.知识点一基本不等式求最值1.理论依据:(1)设x,y为正实数,若x+y=s(和s为定值),则当x=y时,积xy有最大值,且这个值为s2 4 .(2)设x,y为正实数,若xy=p(积p为定值),则当x=y时,和x+y有最小值,且这个值为2p.2.基本不等式求最值的条件:(1)x,y必须是正数;(2)求积xy的最大值时,应看和x+y是否为定值;求和x+y的最小值时,应看积xy是否为定值.(3)等号成立的条件是否满足.3.利用基本不等式求最值需注意的问题:(1)各数(或式)均为正.(2)和或积为定值.(3)判断等号能否成立,“一正、二定、三相等”这三个条件缺一不可.(4)当多次使用基本不等式时,一定要注意每次是否能保证等号成立,并且要注意取等号的条件的一致性.知识点二基本不等式在实际中的应用基本不等式在实际中的应用是指利用基本不等式解决生产、科研和日常生活中的问题.解答不等式的应用题一般可分为四步:(1)阅读并理解材料;(2)建立数学模型;(3)讨论不等关系;(4)作出结论.题型一 利用基本不等式求最值例1 (1)已知x ≥52,则f (x )=x 2-4x +52x -4有( )A .最大值54B .最小值54C .最大值1D .最小值1(2)已知t >0,则函数y =t 2-4t +1t的最小值为____.(3)已知x ,y ∈R +,且满足x 3+y4=1,则xy 的最大值为____.答案 (1)D (2)-2 (3)3解析 (1)f (x )=x 2-4x +52x -4=(x -2)2+12(x -2)=12⎣⎢⎡⎦⎥⎤(x -2)+1x -2≥1.当且仅当x -2=1x -2,即x =3时,等号成立. (2)y =t 2+1-4t t =t +1t-4≥2-4=-2,当且仅当t =1t,即t =1或t =-1(舍)时,等号成立,∴y 的最小值为-2.(3)xy =12·⎝ ⎛⎭⎪⎫x 3·y 4≤12·⎝ ⎛⎭⎪⎪⎫x 3+y 422=12·⎝ ⎛⎭⎪⎫122=3, 当且仅当x 3=y 4=12,即x =32,y =2时,等号成立,∴xy 的最大值为3.反思与感悟 在利用基本不等式求最值时要注意三点:一是各项均为正;二是寻求定值,求和式最小值时应使积为定值,求积式最大值时应使和为定值(恰当变形,合理拆分项或配凑因式是常用的解题技巧);三是考虑等号成立的条件.跟踪训练1 (1)设a >b >0,则a 2+1ab +1a (a -b )的最小值是( )A .1B .2C .3D .4(2)已知x ,y 为正数,且2x +y =1,则1x +1y的最小值为________.答案 (1)D (2)3+2 2 解析 (1)a 2+1ab+1a (a -b )=a 2-ab +ab +1ab +1a (a -b )=a (a -b )+1a (a -b )+ab +1ab≥2+2=4.当且仅当a (a -b )=1且ab =1, 即a =2,b =22时取“=”. (2)由2x +y =1,得1x +1y =2x +y x +2x +yy=3+y x+2xy ≥3+2 y x ·2xy=3+22, 当且仅当y x =2xy,即x =2-22,y =2-1时,等号成立.题型二 基本不等式的综合应用例2 (1)已知x >1,y >1,且14ln x ,14,ln y 成等比数列,则xy ( )A .有最大值eB .有最大值 eC .有最小值eD .有最小值 e 答案 C解析 由题意得⎝ ⎛⎭⎪⎫142=14ln x ln y ,∴ln x ln y =14,∵x >1,y >1,∴ln x ln y >0, 又ln(xy )=ln x ln y ≥2ln x ln y =1, ∴xy ≥e ,即xy 有最小值为e. (2)若对任意x >0,xx 2+3x +1≤a 恒成立,求a 的取值范围.解 设f (x )=x x 2+3x +1=1x +1x +3,∵x >0,∴x +1x≥2, ∴f (x )≤15,即f (x )max =15,∴a ≥15.反思与感悟将不等式恒成立问题转化为求函数最值问题的处理方法,其一般类型有: (1)f (x )>a 恒成立⇔a <f (x )min . (2)f (x )<a 恒成立⇔a >f (x )max .跟踪训练2 (1)设a >0,b >0,若3是3a 与3b的等比中项,则1a +1b的最小值为( )A .2B .4C .1 D.12(2)函数y =kx +2k -1的图象恒过定点A ,若点A 又在直线mx +ny +1=0上,则mn 的最大值为________. 答案 (1)B (2)18解析 (1)由题意得,3a·3b=(3)2,即a +b =1, ∴1a +1b =⎝ ⎛⎭⎪⎫1a +1b (a +b )=2+b a +a b≥2+2b a ·ab =4, 当且仅当b a =a b ,即a =b =12时,等号成立.(2)y =k (x +2)-1必经过(-2,-1),即点A (-2,-1), 代入得-2m -n +1=0, ∴2m +n =1,∴mn =12(2mn )≤12·⎝ ⎛⎭⎪⎫2m +n 22=18,当且仅当2m =n =12时,等号成立.题型三 基本不等式的实际应用例3 要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18 000 cm 2,四周空白的宽度为10 cm ,两栏之间的中缝空白的宽度为5 cm ,请确定广告的高与宽的尺寸(单位:cm),使矩形广告面积最小,并求出最小值. 解 设矩形栏目的高为a cm ,宽为b cm ,ab =9 000.① 广告的高为a +20,宽为2b +25,其中a >0,b >0. 广告的面积S =(a +20)(2b +25)=2ab +40b +25a +500 =18 500+25a +40b ≥18 500+225a ×40b =18 500+2 1 000ab =24 500.当且仅当25a =40b 时,等号成立,此时b =58a ,代入①式得a =120,从而b =75,即当a =120,b =75时,S 取得最小值24 500,故广告的高为140 cm ,宽为175 cm 时,可使广告的面积最小,最小值为24 500 cm 2. 反思与感悟 利用基本不等式解决实际问题的步骤(1)先理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数. (2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题. (3)在定义域内,应用基本不等式求出函数的最大值或最小值. (4)正确写出答案.跟踪训练3 一批货物随17列货车从A 市以v 千米/时匀速直达B 市,已知两地铁路线长400千米,为了安全,两列货车的间距不得小于⎝ ⎛⎭⎪⎫v 202千米,那么这批货物全部运到B 市,最快需要________小时. 答案 8解析 设这批货物从A 市全部运到B 市的时间为t ,则t =400+16⎝ ⎛⎭⎪⎫v 202v=400v +16v 400≥2 400v ×16v400=8(小时), 当且仅当400v =16v400,即v =100时,等号成立,此时t =8小时.1.下列函数中,最小值为4的函数是( ) A .y =x +4xB .y =sin x +4sin x (0<x <π)C .y =e x+4e -xD .y =log 3x +log x 81 答案 C解析 A 中x =-1时,y =-5<4,B 中y =4时,sin x =2,D 中x 与1的关系不确定,选C.2.函数y =x 2-x +1x -1(x >1)在x =t 处取得最小值,则t 等于( )A .1+ 2B .2C .3D .4 答案 B 解析 y =x (x -1)+1x -1=x +1x -1=x -1+1x -1+1≥2+1=3, 当且仅当x -1=1x -1,即x =2时,等号成立. 3.将一根铁丝切割成三段做一个面积为 2 m 2、形状为直角三角形的框架,在下列四种长度的铁丝中,选用最合理(够用且浪费最少)的是( ) A .6.5 m B .6.8 m C .7 m D .7.2 m答案 C解析 设两直角边分别为a ,b ,直角三角形的框架的周长为l ,则12ab =2,∴ab =4,l =a+b +a 2+b 2≥2ab +2ab =4+22≈6.828(m).∵要求够用且浪费最少,故选C. 4.函数f (x )=x (4-2x )的最大值为________. 答案 2解析 ①当x ∈(0,2)时,x ,4-2x >0, f (x )=x (4-2x )≤12⎣⎢⎡⎦⎥⎤2x +(4-2x )22=2, 当且仅当2x =4-2x ,即x =1时,等号成立. ②当x ≤0或x ≥2时,f (x )≤0,故f (x )max =2.5.当x <54时,函数y =4x -2+14x -5的最大值为________.答案 1解析 ∵x <54,∴4x -5<0,∴y =4x -5+14x -5+3=-⎣⎢⎡⎦⎥⎤(5-4x )+15-4x +3 ≤-2(5-4x )·15-4x+3=1当且仅当5-4x =15-4x,即x =1时,等号成立.1.用基本不等式求最值(1)利用基本不等式求最值要把握下列三个条件:①“一正”——各项为正数;②“二定”——“和”或“积”为定值;③“三相等”——等号一定能取到.这三个条件缺一不可.(2)利用基本不等式求最值的关键是获得定值条件,解题时应对照已知和欲求的式子运用适当的“拆项、添项、配凑、变形”等方法创建应用基本不等式的条件.(3)在求最值的一些问题中,有时看起来可以运用基本不等式求最值,但由于其中的等号取不到,所以运用基本不等式得到的结果往往是错误的,这时通常可以借助函数y =x +px(p >0)的单调性求得函数的最值. 2.求解应用题的方法与步骤:(1)审题;(2)建模(列式);(3)解模;(4)作答.。

相关文档
最新文档