简述因数个数定理和因数和定理(1)
小学奥数 质数 合数 倍数 因数 完整版带答案
因、倍、质、合【知识点总结】1.质数、合数⑴除了2其余的质数都是奇数;⑵除了2和5,其余的质数个位数字只能是1,3,7或9;⑶如何判断一个数是否是质数?⑷常用的100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,共计25个。
2.数字拆分—分解质因式相关名词:质因数、互质数、分解质因数例如:三个连续自然数的乘积是210,求这三个数。
210=2⨯3⨯5⨯7可知这三个数是5、6和7。
分解质因数往往是解数论题目的突破口,因为这样可以帮助我们分析数字的特征。
3、约数个数定理唯一分解定理:任何一个大于1的自然数n都可以写成质数的连乘积例如:12=2⨯2⨯3=22⨯3约数个数定理:约数个数:(2+1)⨯(1+1)=6所有约数的和:(20+21+22)⨯(30+31)例题讲解板块一:质数的快速判断1、两个质数之和为39,求这两个质数的乘积是多少?【巩固】(1)如果a、b均为质数,且3a+7b=41,则a+b=______。
(2)三个不同的质数的和是18,这三个质数的乘积的最大值是()板块二:分解质因数1、牛小顿去看电影,他买的票的排数与座位数的积是391,而且排数比座位数大6,牛小顿买的电影票是几排几座?【巩固】(1)、三个连续的自然数相乘的结果是 1716,那么这三个自然数的和是多少?(2)、把462名学生分成人数相等的若干组参加课外活动小组,每组人数在12到20人之间,求每组人数及分成的组数。
2、【外冲】有n个自然数相加:1+2+…+n=aaa,那么a=______。
【巩固】将一个三位数的个位与百位数字对调位置,得到一个新的三位数,已知这两个三位数乘积为55872,则这两个三位数和为______。
板块三、因数三大定律因数个数定律:(指数+1)再连乘因数和定律:每个质因子所有可能相加再连乘因数积定律:自身的n次方(n=因数个数÷2)1、数160的约数个数是多少?巩固:(1)分别求出72和150的因数个数。
小学奥数数论与材料阅读
一、数论基础知识一、因数与倍数1、因数与倍数(1)定义:定义1:若整数a能够被b整除,a叫做b的倍数,b就叫做a的因数。
定义2:如果非零自然数a、b、c之间存在a×b=c,或者c÷a=b,那么称a、b是c的因数,c是a、b的倍数。
注意:倍数与因数是相互依存关系,缺一不可。
(a、b是因数,c是倍数)一个数的因数个数是有限的,最小的因数是1,最大的因数是它本身。
一个数的倍数个数是无限的,最小的倍数是它本身,没有最大的倍数。
(2)一个数的因数的特点:①最小的因数是1,第二小的因数一定是质数;②最大的因数是它本身,第二大的因数是:原数÷第二小的因数(3)完全平方数的因数特征:①完全平方数的因数个数是奇数个,有奇数个因数的数是完全平方数。
②完全平方数的质因数出现次数都是偶数次;③1000以内的完全平方数的个数是31个,2000以内的完全平方数的个数是44个,3000以内的完全平方数的个数是54个。
(312=961,442=1936,542=2916)2、数的整除(数的倍数)(1)定义:定义1:一般地,三个整数a、b、c,且b≠0,如有a÷b=c,则我们就说,a能被b整除,或b能整除a,或a能整除以b。
定义2:如果一个整数a,除以一个整数b(b≠0),得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。
(a≥b)(2)整除的性质:如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。
如果a能被b整除,c是整数,那么a×c也能被b整除。
如果a能被b整除,b又能被c整除,那么a也能被c整除。
如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。
(3)一些常见数的整除特征(倍数特征):①末位判别法2、5的倍数特征:末位上的数字是2、5的倍数。
4、25的倍数特征:末两位上的数字是4、25的倍数。
8、125的倍数特征:末三位上的数字是8、125的倍数。
三年级第三课教案:掌握数学术语“因数”与“积”
三年级第三课教案:掌握数学术语“因数”与“积”在数学学习的过程中,掌握数学术语是非常重要的,因为只有通过掌握数学术语,才能更好地理解数学知识和运用数学方法。
在三年级的数学学习中,老师通常会引导孩子们掌握数学中的基本概念和术语,其中包括“因数”与“积”这两个词语的理解和应用。
这篇文章将从什么是因数与积、如何求因数和积、以及因数和积的应用三个方面来进行探讨。
一、什么是因数与积1.因数在数学中,我们通常将一个数能够整除另一个数的数称为这个数的因数。
比如说,2和3都是6的因数,因为6能够被2和3整除。
而我们常说的倍数,就是某个数(除0以外)的整倍数,也就是一串有序的数,每个数都是这个数的整数倍。
例如,6的倍数是6、12、18、24……等等。
2.积积是个非常基本的概念,在数学运算中也十分常见。
积是指两个或多个数相乘所得的结果。
由于乘法有交换律,两个数的积不会因其顺序的变化而发生改变。
比如说,2×3=6,3×2也等于6,6就是2和3的积。
同样的道理,6的2倍、3倍都是6的积。
二、如何求因数和积1.求因数要求一个数的因数,可以将这个数分解成若干个质因数的乘积,再列举所有的因数。
质因数是指能够整除所求数和大于1的质数,例如2、3、5、7……等等。
将质数及其指数全部写在一起,依次添加或减去每个指数,得到所有因数。
例如,对于数字36来说,可以将其分解成2×2×3×3的乘积,它的因数包括1、2、3、4、6、9、12、18和36。
2.求积求积很简单,只需要将相乘的数写在一起,乘起来即可。
并且,由于乘法有交换律,乘积的值与顺序无关。
例如,2×3=6,6就是2和3的积。
同样地,6的2倍为12,12也是2和3的积。
三、因数和积的应用1.因数的应用在实际生活中,找出一个数的因数其实很常见。
比如说,假设需要知道某个数字的因数是多少,我们可以用因数分解方法来进行计算。
因数分解也是解决数论问题的一种重要方法。
5.3求因数的个数和因数和公式
03 求因数的个数和因数和公式学习目标:1、理解因数的意义,通过多种形式的训练,熟练掌握找全一个数的因数。
2、通过探究求一个数因数的个数的方法,总结出求一个数的因数的个数的公式。
3、能熟练掌握因数和公式,灵活运用因数和公式解决简单是实际问题。
4、逐步培养学生从具体到一般抽象归纳的思想方法,激发学生探究数学知识的兴趣。
教学重点:通过探究求一个数因数的个数的方法,总结出求一个数的因数的个数的公式。
教学难点:能熟练的运用求因数的个数公式以及因数和公式,解决相关的实际问题。
教学过程:一、情景体验师:什么叫做因数,什么叫做倍数,如何分解质因数,同学们都还记得吗?生:一个整数被另一个整数整除,后者即是前者的因数,这个整数就是另一个整数的倍数。
师:对,比如a÷b=c,就是说a是b的c倍数,而b、c就是a的因数。
如何求一个数所有因数的个数呢?对一些数来说,因数很少,所以很容易就能一一列举出来,数一数有多少,但是有些数的因数比较多,一一列举的话比较麻烦,并且也不一定能够全部都找出来,在这种情况下,我们又该怎么办呢?今天我们就来学习一种方法,先通过分解质因数,再通过计算求出因数的个数。
现在请大家分别求出8和12的因数的个数,我们先将这两个数分解质因数,可得:8=2×2×2=23 12=2×2×3=22×31师:通过一一列举我们可以知道8的因数有1、2、4、8共四个,而12的因数有1、2、3、4、6、12共六个,可以发现3+1=4(个),(2+1)×(1+1)=6(个),我们不妨再来探究一下72和243的因数的个数。
(学生自主探究,汇报情况)生:72有1、2、3、4、6、8、9、12、18、24、36、72共12因数,243有1、3、9、27、81、243共6个因数,而72=23×32,243=35,可以发现(3+1)×(2+1)=12(个),5+1=6(个)。
《高等代数》第一章主要内容
§1.4 整数的一些整除性质
• • 整除概念:设a,b是两个整数.如果存在一个整数d,使得b=ad,那么就说a整除b (或者说b被a整除)用符号a∣b来表示a整除b.这时a叫作b的一个因数,而b叫 作a的一个倍数. 整除的基本性质:⑴ a∣b,b ∣ c=>a ∣ c. ⑵ a∣b, a ∣ c =>a ∣ (a+b). ⑶ a∣b,而c∈Z =>a ∣ bc. 由⑵与⑶得⑷ a∣bi,而ci ∈Z ,i=1,2, …,t => a ∣ (b1c1+ …+btct). ⑸每一个整数都可以被1和-1整除. ⑹每一个整数a都可以 被它自己和它的相反数-a整除. ⑺ a∣b且b ∣ a =>b=a 或 b=-a. 定理1.4.1(带余除法)设a,b是整数且a≠0,那么存在一对整数q和r,使得 b=aq+r 且0≦r ﹤∣a∣. 满足以上条件的整数q和r是唯一确定的. 最大公因数概念:设a,b是两个整数. 满足下列条件的整数d叫作a与b的一个最大 公因数: (ⅰ)d∣a,d∣b; (ⅱ)如果c∈Z 且c∣a,c∣b,那么c∣d . 一般地, 设a1,a2, …,an是n个整数.满足下列条件的整数d叫作a1,a2, …,an 的一个最大公 因数(ⅰ)d ∣ai, i=1,2, …,n ;(ⅱ) 如果c∈Z 且c∣ ai, i=1,2, …,n,那么 c∣d. 定理1.4.2 任意n(n≧2)个整数a1,a2, …,an 都有最大公因数.如果d是 a1,a2, …,an 的一个最大公因数,那么-d也是一个最大公因数; a1,a2, …,an 的 两个最大公因数至多相差一个符号. 定理1.4.3 设d是整数a1,a2, …,an 的一个最大公因数,那么存在整数t1,t2, …,tn, 使得 t1a1+t2a2+…+tnan=d. 定理1.4.4 n个整数a1,a2, …,an 互素的充要的条件是存在整数t1,t2, …,tn,使 得 t1a1+t2a2+…+tnan=1. 定理1.4.5 一个素数如果整除两个整数a与b的乘积,那么它至少整除a与b中的 一个
数论的方法技巧
数论的方法技巧数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。
数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。
因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。
任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。
”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。
小学数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。
主要的结论有:1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得a=bq+r(0≤r<b),且q,r是唯一的。
特别地,如果r=0,那么a=bq。
这时,a被b整除,记作b|a,也称b是a的约数,a是b的倍数。
2.若a|c,b|c,且a,b互质,则ab|c。
3.唯一分解定理:每一个大于1的自然数n都可以写成质数的连乘积,即其中p1<p2<…<p k为质数,a1,a2,…,a k为自然数,并且这种表示是唯一的。
(1)式称为n的质因数分解或标准分解。
4.约数个数定理:设n的标准分解式为(1),则它的正约数个数为:d(n)=(a1+1)(a2+1)…(a k+1)。
5.整数集的离散性:n与n+1之间不再有其他整数。
因此,不等式x<y与x ≤y-1是等价的。
下面,我们将按解数论题的方法技巧来分类讲解。
一、利用整数的各种表示法对于某些研究整数本身的特性的问题,若能合理地选择整数的表示形式,则常常有助于问题的解决。
这些常用的形式有:1.十进制表示形式:n=a n10n+a n-110n-1+…+a0;2.带余形式:a=bq+r;4.2的乘方与奇数之积式:n=2mt,其中t为奇数。
例1 红、黄、白和蓝色卡片各1张,每张上写有1个数字,小明将这4张卡片如下图放置,使它们构成1个四位数,并计算这个四位数与它的各位数字之和的10倍的差。
XX五年级数学下册第三单元知识点总结(新人教版)
XX五年级数学下册第三单元知识点总结(新人教版)第一篇:XX五年级数学下册第三单元知识点总结(新人教版) XX五年级数学下册第三单元知识点总结(新人教版)课件 第三单元长方体和正方体1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。
两个面相交的边叫做棱。
三条棱相交的点叫做顶点。
相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
长方体特点:(1)有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。
(2)一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。
2、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。
正方体特点:(1)正方体有12条棱,它们的长度都相等。
(2)正方体有6个面,每个面都是正方形,每个面的面积都相等。
(3)正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。
相同点不同点面棱长方体都有6个面,12条棱,8个顶点。
6个面都是长方形。
(有可能有两个相对的面是正方形)。
相对的棱的长度都相等正方体6个面都是正方形。
12条棱都相等。
3、长方体、正方体有关棱长计算公式:长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4L=(a+b+h)×4长=棱长总和÷4-宽-高a=L÷4-b-h宽=棱长总和÷4-长-高b=L÷4-a-h高=棱长总和÷4-长-宽h=L÷4-a-b正方体的棱长总和=棱长×12L=a×12正方体的棱长=棱长总和÷12a=L÷124、长方体或正方体6个面和总面积叫做它的表面积。
长方体的表面积=(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)无底(或无盖)长方体表面积=长×宽+(长×高+宽×高)×2S=2(ab+ah+bh)-abS=2(ah+bh)+ab无底又无盖长方体表面积=(长×高+宽×高)×2S=2(ah+bh)贴墙纸正方体的表面积=棱长×棱长×6S=a×a×6用字母表示:S=6a2生活实际:油箱、罐头盒等都是6个面游泳池、鱼缸等都只有5个面水管、烟囱等都只有4个面。
奥数质数合数分解质因素讲义及答案
奥数质数合数分解质因素讲义及答案数的整除(2)质数、合数、分解质因数教室姓名学号【知识要点】1、质数与合数自然数按其因数的个数可以分成三类:(1)单位1:只含有1这一个因数的自然数。
(2)质数(也称为素数):只含有1与它本身这两个因数的自然数。
(质数有无穷多个,不存在最大的质数,但有最小的质数2,而且2是质数中唯一的偶数。
)(3)合数:含有三个或三个以上因数的自然数。
(4)分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
(5)因数个数定理:例如:1980=22×32×5×11所以:(T表示因数个数)T(1980)=(1+2)×(1+2)×(1+1)×(1+1)=36 (6)因数和的定理:例如:1980=22×32×5×11所以:S(1980)=(02+12+22)×(03+13+23)×(05+15)×(011+111)=7×13×6×12=6552【典型例题】例1、两个质数的和是49,这两个质数的积是多少?解:因为两个质数的和49是奇数,所以必有一个质数是偶数,另一个质数是奇数,而偶数中只有2是质数,于是另一个质数是49-2=47,从而得到它们的积是2×47=94。
例2、有三张卡片,上面分别写着2、3、4三个数字,从中任意抽出一张、两张、三张,按任意顺序排列起来,可以得到不同的一位数、两位数、三位数,写出其中的质数。
解:由于2+3+4=9是3的倍数,所以任意排出的三位数都不是质数。
任意取两张卡片排出的两位数,末尾数字不能是2和4,只能排3.所以用2、3、4三个数字排出两位质数有23和43.取一张卡片排出的质数有2和3.所以最后排出的质数有2、3、23、43这四个。
例3、360这个数的因数有多少个?这些因数的和是多少?解:360=2×2×2×3×3×5=23×32×5,所以360有(3+1)×(2+1)×(1+1)=24个因数。
数论部分定义定理
定义 4 设 x 是一个实数,我们称 x 的整数部分为小于或等于 x 的最大整数,记 成[x].这时,我们有
定理 10(欧几里得除法) 设 a,b 是两个整数,其中 b .则对任意的整数 c, 存在惟一的整数 q,r 使得
1.2 整数的表示
定理 1 设 b 是大于 1 正整数.则每个正整数 n 可惟一地表示成
被
是 a 被 b 除的最小正余数.
引理 2 设 a,b 是两个正整数,则
和
定理 10 设 a,b 是两个正整数,则正整数 b 互素.
除的最小正余数是
,其中 r
的最大公因数是
.
和
互素的充要条件是 a 和
1.4 整除的进一步性质及最小公倍数
定理 1 设 a,b,c 是三个整数,且 b 0,c 0,如果(a,c)=1,则
有惟一解
.
定义 2 设 m 是一个正整数,a 是一个整数.如果存在整数 a’使得
aa’ 1(modm)
成立,则 a 叫做模 m 可逆元.
定理 3 设 m 是一个正整数,a 是满足(a,m)|b 的整数.则一次同余式
的全部解为
t=0,1,…,(a,m)-1.
定理 4 设 m 是一个正整数.则整数 a 是模 m 简化剩余的充要条件是整数 a 是模 m 逆元.
(i)d|a,d|b; (ii)若 e|a,e|b,则 e|d. 定理 8 设 a,b 是任意两个不全为零的整数, (i)若 m 是任一正整数,则(am,bm)=(a,b)m;
(ii)若非零整数 d 满足 d|a,d|b,则
.特别地,
定理 9 设
是 n 个整 a,b 是两个正整数.则
定理 1 设
是三个整数.若 c|b,b|a,则 c|a.
2024年中考数学知识点总结(2篇)
2024年中考数学知识点总结一、数的运算1. 自然数、整数、有理数、实数和复数的概念及表示方法2. 整数的加减乘除运算,以及乘方运算3. 有理数的加减乘除运算,以及乘方运算4. 实数的加减乘除运算,以及乘方运算5. 分数的加减乘除运算6. 科学计数法及其运算7. 百分数及其运算二、数的性质1. 绝对值的概念及性质2. 有理数大小的比较3. 数的相反数和倒数的概念及性质三、代数式与方程式1. 代数式的概念及基本性质2. 同类项与合并同类项3. 多项式的加减运算与乘法公式4. 分式的基本概念及简化5. 一次方程与一元一次方程组6. 二次根式的概念与四则运算7. 定比分点的概念与性质四、函数与图像1. 函数的概念及图像的性质2. 一次函数的性质及图像3. 探究一次函数的变化规律4. 二次函数的性质及图像5. 探索二次函数的变化规律6. 指数函数、对数函数、幂函数、反比例函数的性质及图像五、约束关系与不等式1. 约束条件的概念及表示2. 简单约束条件下的最值问题3. 一次不等式的性质及解法4. 一元一次不等式组的性质及解法5. 一次不等式组的应用6. 二次不等式的性质及解法7. 二次不等式组的应用六、空间与图形1. 空间图形的投影和视图2. 立体图形的表面积和体积3. 平面图形的性质及计算4. 圆的性质及计算七、数据与统计1. 数据的收集、整理、分析和表示2. 平均数、中位数、众数的概念及计算3. 概率的概念及计算4. 报表的制作和解读以上是2024中考数学知识点的总结,希望对你的学习有所帮助。
2024年中考数学知识点总结(2)中考数学知识点1.数轴(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.数轴的三要素:原点,单位长度,正方向。
(2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)(3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。
部编人教版小学阶段各年级数学公式定理定义大全
部编人教版小学阶段各年级数学公式定理定义大全部编人教版小学数学公式定理定义大全第一部分:概念1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
O除以任何不是O的数都得O。
7、简便乘法:被乘数、乘数末尾有O的乘法,可以先把O 前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
8、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
9、什么叫方程?含有未知数的等式叫方程。
10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。
假分数大于或等于1。
18、带分数:把假分数写成整数和真分数的形式,叫做带分数。
19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
学生版第七讲因数与倍数(公因数和公倍数(二)
第七讲因数与倍数(公因数和公倍数(二)【知识概述】这一讲我们主要介绍最小公倍数与最大公约数之间的关系。
定理一:两个自然数分别除以它们的最大公因数,所得的商互质,即:如果(a,b)=d,那么(a÷d,b÷d)=1。
定理二:两个数的最小公倍数与最大公因数之积等于这两个数的乘积。
即[a,b]×(a,b)=a×b。
定理三:两个数的公因数一定是这两个数的最大公因数的因数。
例题精学例1252,其中一个数是28,另一个数是多少【思路点拨】设一个数为A显然,7和a互质,否则4就不是最大公因数,那么252=4×7×a,a=9,A=4×9=36。
另外,我们可以根据定理:[a,b]×(a,b)=a×b。
求得4×252÷28=36。
1.某数与24的最大公因数是4,最小公倍数是168,这个数是多少2.甲数和乙数的最大公因数是6,最小公倍数是90,且小数不能整除大数,求这两个数。
3.四个连续奇数的最小公倍数为6435,这四个奇数中最大的一个为多少例2 两个自然数的和是50,它们的最大公因数是5,求这两个数的差。
【思路点拨】若(A,B)=d,可以假设A=ad,B=bd,那么a和b互质,即(a,b)=1。
在本题中,由于已知两数的最大公因数为5,故可设一个数为5a,另一个数为5b,(a,b)=1。
又因为这两个数的和为50,这样可以得到5a+5b=50,5(a+b)=50,a+b=10。
根据a与b互质,我们不难得到a=1,b=9或a=3,b=7。
这样可以求出这两个数是5×3=15和5×7=35或5×1=5或5×9=45。
它们的差也就好求了。
1.两个自然数的和是56,它们的最大公因数是7,求这两个数。
2.已知两个自然数的积是5766,它们的最大公因数是31,求这两个数。
3.两个数的和是70,它们的最大公因数是7,求这两个数的差是多少。
约数因数合数 -回复
约数因数合数-回复约数、因数和合数是数论中的基本概念。
约数是指能够整除一个数的所有正整数,而因数是指一个数可以被整除的所有正整数。
合数则是大于1的正整数,其中除了1和该数本身外,还有其他的因数。
首先,让我们来讨论约数。
对于一个正整数n来说,如果一个数x能够整除n,即n能够被x整除,那么x就称为n的约数。
例如,对于数12来说,它的约数包括1、2、3、4、6和12。
这是因为12可以被这些数整除:12/1=12,12/2=6,12/3=4,12/4=3,12/6=2以及12/12=1。
每个正整数都至少有两个约数:1和它本身。
这是因为任何数除以1都等于它本身,并且任何数除以它本身都等于1。
但是,并不是每个正整数都有其他的约数。
比如,质数就只有两个约数,即1和自身。
而合数则可能有多个约数。
接下来,让我们来讨论因数。
对于一个正整数n来说,如果一个数x可以整除n,即n能够被x整除,那么x就称为n的因数。
因数是约数的一个更一般的概念。
通常来说,如果x是n的约数,那么x也一定是n的因数,反之亦然。
但是并不是所有的因数都是约数。
比如,对于正整数15来说,它有4个因数:1、3、5和15。
但其中只有1和15是它的约数。
最后,让我们来讨论合数。
合数是大于1的正整数,其中除了1和该数本身外,还有其他的因数。
合数和质数是互补的概念。
质数是只有两个约数的正整数,而合数则是有多于两个的约数的正整数。
比如,正整数6可以被1、2、3和6整除,因此它是一个合数。
相比之下,正整数5只能被1和5整除,因此它是一个质数。
现在我们可以总结一些关于约数、因数和合数的重要性质。
首先,每个正整数都至少有两个约数:1和它本身。
其次,任何数除以1都等于它本身,并且任何数除以它本身都等于1。
其次,每个正整数的因数都是它的约数,但不是所有的因数都是约数。
最后,合数是有多于两个约数的正整数,而质数是只有两个约数的正整数。
在数论中,约数、因数和合数是基础概念,它们有广泛的应用。
小学奥数全部知识点+练习题
一、计算~(一)分数裂项-知识点:1、裂差公式: 111)1(1+-=+n n n n)11(1)(1kn n k k n n +-=+))2)(1(1)1(1(21)2)(1(1++-+⨯=++n n n n n n n例5:1009932114321132112111++⋅⋅⋅++++⋅⋅⋅++++++++++例6:222222228715437325213⨯++⨯+⨯+⨯例7:10199507535323112222⨯++⨯+⨯+⨯例:8:“!”表示一种运算符号,它的含义是2!=2×1;3!=3×2×1; ,计算!!!!10099544332++++练习:1、 20481102411618141211---⋅⋅⋅-----2、 313615176413900114009144736543++++++3、 )511411311211()411311211111(+++⨯+++)411311211()511411*********(++⨯++++-4、13211101901721561421301++++++ 5、 8645594537452045845145+++++6、1098298728762765265425432⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯7、比较分数大小:(1)分数3091031244094171575,,,,中,哪一个最大?(2)从小到大排列下列分数,排在第三个的是哪一个? 45223017181110965125157,,,,,,;(3)若A=222201420132014201311201420131+⨯-=-+B ,,比较A 与B 的大小。
(4)比较201320092011201220112014201320092012201220112013--与一、计算~(二)常用计算公式知识点:1、等差数列:项数=(末项-首项)÷公差+1 末项=首项+(项数+1)×公差 求和=(首项+末项)×项数÷2当等差数列为奇数项时,可以用中间项定理:和=中间项×末项(1)2)12(531n n =-++++ (2)2123321n n =++++++++ 2、平方和公式: )12)(1(613212222++=++++n n n n 3、立方和公式:222333)1(41)21(21+=++=+++n n n n 4、平方公式(1)平方差公式 ))((22b a b a b a -+=-(2)完全平方和(差)公式2222)(b ab a b a +±=±二、习题:1、 22222212979899100-++-+-2、 1234567×1234567-1234566×1234568=3、 =++++22222001211104、22222221614135421+++++++5、201632120163213333++++++++6、3333333315131197531+++++++7、123891098321)9931()10042(222222+++++++++++++++-+++8、150953972991⨯+⨯+⨯+⨯9、1281136411132191617815413211++++++一、计算~(三)小数和分数的互化1、纯循环化成分数:循环节有几位小数,则分母有几个9,分子就是循环节。
学而思大纲
3
逻辑综合
解题能力展示(迎春杯)中作为必考内容,经常 以三档题的前两题或压轴题出现。分值较大,区
分位度值高原。理、整除特征、整除性质。整除是数论问
4 整除问题 题的核心,也是约倍质合、余数的基础。整除性
质是近年升学考试中热点。 一元方程、二元方程组、不定方程解应用题。小
5
列方程解 升初最重要的方法和知识点。对于方程的掌握程 应用题 度,甚至直接决定了在小升初数学考试中的走势
数的整除的综合应用 因数与倍数(一) 数字谜综合(一)
解分数系数方程 分数应用题、工程问题
8
染色与覆 盖
通过棋盘染色、斑马染色、轮换染色解决覆盖问 题。染色与覆盖是经典的组合问题。难度较大、 同时充满趣味和挑战。
经典组合专题、秋季不涉
与数论相关的游戏与对策问题。常作为华杯赛的 及(秋季学习以数论、行
2 乘法原理 类计数的乘法原理,是寒假系统学习排列组合的
重要基础。
综合应用
单次相遇问题,学会用线段图、路程和分析行程 火车过桥问题
3 相遇问题 问题,是今后学习各类行程问题的重要组成部分 环形跑道问题
。
流水行船问题
单次追及问题,学会用线段图、路程差分析行程 火车过桥问题
4 追及问题 问题,简单的相遇与追及综合,是今后学习各类 环形跑道问题
6
有趣的推 理
进一步学习等量代换推理、图文算式推理、以及 逻辑推理三个方面的推理知识。因为推理问题对 于培养学生的代数思想起到了很重要的作用。
几何专题是贯穿从小学到高中整个学科学习阶段
为秋季的“合理安排”奠定 基础!
7
图形的等 积变换
必考的四大重要专题之一,也是难点之一,所以 在对“几何割补法”(分割与拼补)的接触与掌握, 不仅可以开发孩子的思维,对于今后的学习也大
初一数学知识点归纳与学习方法
初一数学知识点归纳与学习方法数学是一切科学得力的助手和工具,二初一的数学知识是奠定中学数学学习的基础,大家要认真学好数学哦,小编在这里整理了相关资料,希望能帮助到您。
初一数学知识点归纳1.数轴(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.数轴的三要素:原点,单位长度,正方向.(2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)(3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大.2.相反数(1)相反数的概念:只有符号不同的两个数叫做互为相反数.(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正.(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号.3.绝对值(1)概念:数轴上某个数与原点的距离叫做这个数的绝对值.①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.(2)如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.即|a|={a(a>0)0(a=0)﹣a(a<0)4.有理数大小比较(1)有理数的大小比较比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小.(2)有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.【规律方法】有理数大小比较的三种方法1.法则比较:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.2.数轴比较:在数轴上右边的点表示的数大于左边的点表示的数.3.作差比较:若a﹣b>0,则a>b;若a﹣b<0,则a若a﹣b=0,则a=b.5.有理数的减法(1)有理数减法法则:减去一个数,等于加上这个数的相反数. 即:a﹣b=a+(﹣b)(2)方法指引:①在进行减法运算时,首先弄清减数的符号;②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号); 二是减数的性质符号(减数变相反数);【注意】:在有理数减法运算时,被减数与减数的位置不能随意交换;因为减法没有交换律.减法法则不能与加法法则类比,0加任何数都不变,0减任何数应依法则进行计算.6.有理数的乘法(1)有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.(2)任何数同零相乘,都得0.(3)多个有理数相乘的法则:①几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.②几个数相乘,有一个因数为0,积就为0.(4)方法指引:①运用乘法法则,先确定符号,再把绝对值相乘.②多个因数相乘,看0因数和积的符号当先,这样做使运算既准确又简单.7.有理数的混合运算(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.【规律方法】有理数混合运算的四种运算技巧1.转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算.2.凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解.3.分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算.4.巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.8.科学记数法—表示较大的数(1)科学记数法:把一个大于10的数记成a×10n的形式,其中a 是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.【科学记数法形式:a×10n,其中1≤a<10,n为正整数.】(2)规律方法总结:①科学记数法中a的要求和10的指数n的表示规律为关键,由于10的指数比原来的整数位数少1;按此规律,先数一下原数的整数位数,即可求出10的指数n.②记数法要求是大于10的数可用科学记数法表示,实质上绝对值大于10的负数同样可用此法表示,只是前面多一个负号.9.代数式求值(1)代数式的:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值.(2)代数式的求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.10.规律型:图形的变化类图形的变化类的规律题首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.11.等式的性质(1)等式的性质性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.(2)利用等式的性质解方程利用等式的性质对方程进行变形,使方程的形式向x=a的形式转化.应用时要注意把握两关:①怎样变形;②依据哪一条,变形时只有做到步步有据,才能保证是正确的.12.一元一次方程的解定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.把方程的解代入原方程,等式左右两边相等.13.解一元一次方程(1)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.(2)解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.(3)在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c.使方程逐渐转化为ax=b的最简形式体现化归思想.将ax=b系数化为1时,要准确计算,一弄清求x时,方程两边除以的是a还是b,尤其a为分数时;二要准确判断符号,a、b 同号x为正,a、b异号x为负.14.一元一次方程的应用(一)、一元一次方程解应用题的类型有:(1)探索规律型问题;(2)数字问题;(3)销售问题(利润=售价﹣进价,利润率=利润进价×100%);(4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);(5)行程问题(路程=速度×时间);(6)等值变换问题;(7)和,差,倍,分问题;(8)分配问题;(9)比赛积分问题;(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).(二)、利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.列一元一次方程解应用题的五个步骤1.审:仔细审题,确定已知量和未知量,找出它们之间的等量关系.2.设:设未知数(x),根据实际情况,可设直接未知数(问什么设什么),也可设间接未知数.3.列:根据等量关系列出方程.4.解:解方程,求得未知数的值.5.答:检验未知数的值是否正确,是否符合题意,完整地写出答句.15.专题:正方体相对两个面上的文字(1)对于此类问题一般方法是用纸按图的样子折叠后可以解决,或是在对展开图理解的基础上直接想象.(2)从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.(3)正方体的展开图有11种情况,分析平面展开图的各种情况后再认真确定哪两个面的对面.16.直线、射线、线段(1)直线、射线、线段的表示方法①直线:用一个小写字母表示,如:直线l,或用两个大写字母(直线上的)表示,如直线AB.②射线:是直线的一部分,用一个小写字母表示,如:射线l;用两个大写字母表示,端点在前,如:射线OA.注意:用两个字母表示时,端点的字母放在前边.③线段:线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段AB(或线段BA).(2)点与直线的位置关系:①点经过直线,说明点在直线上;②点不经过直线,说明点在直线外.17.两点间的距离(1)两点间的距离连接两点间的线段的长度叫两点间的距离.(2)平面上任意两点间都有一定距离,它指的是连接这两点的线段的长度,学习此概念时,注意强调最后的两个字“长度”,也就是说,它是一个量,有大小,区别于线段,线段是图形.线段的长度才是两点的距离.可以说画线段,但不能说画距离.18.角的概念(1)角的定义:有公共端点是两条射线组成的图形叫做角,其中这个公共端点是角的顶点,这两条射线是角的两条边.(2)角的表示方法:角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示.(3)平角、周角:角也可以看作是由一条射线绕它的端点旋转而形成的图形,当始边与终边成一条直线时形成平角,当始边与终边旋转重合时,形成周角.(4)角的度量:度、分、秒是常用的角的度量单位.1度=60分,即1°=60′,1分=60秒,即1′=60″.19.角平分线的定义(1)角平分线的定义从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.①∠AOB是∠AOC和∠BOC的和,记作:∠AOB=∠AOC+∠BOC.∠AOC是∠AOB和∠BOC的差,记作:∠AOC=∠AOB﹣∠BOC.②若射线OC是∠AOB的三等分线,则∠AOB=3∠BOC或∠BOC=13∠AOB.(2)度、分、秒的加减运算.在进行度分秒的加减时,要将度与度,分与分,秒与秒相加减,分秒相加,逢60要进位,相减时,要借1化60.(3)度、分、秒的乘除运算.①乘法:度、分、秒分别相乘,结果逢60要进位.②除法:度、分、秒分别去除,把每一次的余数化作下一级单位进一步去除.初一数学应该如何学1、知识内容不同(1)初中知识系统化,知识前后衔接度高,强调初一要打好基础和连续学习的重要性。
因数和合数
例3:一个数是40的因数,同时又是5的 倍数,这个数可能是多少? 40以内5的倍数有:5、10、15、20、 25、30、35、40.
这些数中40的因数有5、10、20、40
所以这个数可能是5、10、20、40. 完成13页第4题
例4:一个四位数3A4B是2、3、5的 倍数,这样的四位数有哪几个?
完成13页的第5题
例6:有一列数1、1、2、3、5、8、 13、21、、、、,从第三个数开始, 每个数都是前两个数的和。在2008 个数中,有多少个偶数?
2008÷3=669… …1
所以有669个偶数 完成13页的第6题
通过这节课的学 习,你有哪些收获?
一个数同时是2、5的倍数,B肯定 等于0.又是3的倍数,3+A+4+B必须能 被3整除。 3+A+4+0=7+A,所以A可能 为 2、 5、 8。 因此这个数为3240、3540、3840
完成13页第3题
例5:从写有7、1、4、6、0的五张 卡片中取出四张,组成若干个是3的 倍3;6=18 7、1、4、6组成的四位数有24个。 (2)7+1+4+0=12 7、1、4、0组成的四位数有18个 所以一共有24+18=42(个)
第3讲
因数和倍数
知识点:
1、因数、倍数 2、质数(素数):一个数只有1和它本身两个因 数。 3、合数:一个数除了1和它本身还有别的因数。 4、偶数、奇数:一个数是2的倍数为偶数,不是2 的倍数为奇数
5,奇数,偶数的性质:
1个奇数+1个奇数=偶数
1个偶数+1个偶数=偶数
1个奇数+1个偶数=奇数 1个奇数×1个奇数=奇数 1个偶数×1个偶数=偶数 1个奇数×1个偶数=偶数
因数和整数的关系公式
因数和整数的关系公式1. 因数是什么:一个数如果可以被整数整除,那么这个整数就是这个数的因数。
2. 整数是什么:整数是包括正整数、负整数和零的全部整数。
3. 因数和整数之间的关系:因数是整数的一部分,因为一个整数可以被它的因数整除。
而一个数的因数也一定是整数。
因此,整数和因数之间存在着密切的关系。
4. 因数和整数的关系公式:一个数n的因数有1、2、3、……,n-1、n。
因此,n的因数个数为n个。
根据数学原理,一个数的因数个数等于它的质因数分解式中指数的加1的积。
即如果n的质因数分解式为p1^k1 × p2^k2 × … × pn^kn,则n的因数个数为(k1+1) × (k2+1) × … × (kn+1) 个。
5. 例如,如果一个数n的质因数分解式为2^3 × 3^2 × 5,则n的因数个数为(3+1) × (2+1) × (1+1) = 4 × 3 × 2 = 24个。
因此,如果知道一个数的质因数分解式,就可以很容易地计算出这个数的因数个数。
6. 另外,如果两个数a、b的最大公约数为d,则ab的最小公倍数为a×b/d。
因为a×b/d是a和b的公共因数中最小的一个,且它是a和b的所有公共因数的倍数,所以ab/d就是a和b的最小公倍数。
7. 如果a和b互质(最大公约数为1),则它们的最小公倍数为ab。
因为此时a和b没有除1以外的公共因数,所以它们的最小公倍数就是它们的乘积。
8. 最后,如果一个数n的各个因数之和为S,则有S = (1 + p1 + p1^2 + … + p1^k1)× (1 + p2 + p2^2 + … + p2^k2) × … × (1 + pn + pn^2 + … + pn^kn)。
这个公式的证明可以通过枚举n的各个因数以及它们的指数来得到。
因数 系数问题回答
因数系数因数和系数是数学中很基础的概念,它们经常出现在代数表达式和方程中。
因数是指一个数可以被整除的数,系数则是表示在代数表达式中的数字系数。
下面我将详细讲解因数和系数的相关知识。
一、因数在数学中,一个自然数m是另一个自然数n的因数,当且仅当n可以被m整除。
因此,如果n可以被m整除,我们也称m是n的约数。
例如,16是8的因数,因为8可以被16整除。
当然,因子也可以是负数或分数。
例如,-2是4的因数,因为-2乘上2会等于4。
同样,1/3也是3的一个因数,因为3乘上1/3等于1。
在这里,我们可以总结出以下结论:1. 一个数的因数包括正整数、负整数以及分数。
2. 0的因数可以是任何数,但是0不是任何数的因数,因为没有数可以被0整除。
二、系数系数是在代数表达式中表示数字系数的数。
例如,在代数表达式2x + 3y中,2和3都是系数,分别是x和y的系数。
如果我们将代数表达式转化成一次方程式,例如2x + 3y = 7,我们可以看到系数是表达式左边的数字2和3。
系数也可以是分数或负数。
例如,在代数表达式-2x + 1/2y = 10中,-2和1/2都是系数。
同样,系数可以表示变量之间的关系。
例如在函数y = kx+b中,k就是x和y之间的系数,表示x每增加1,y增加k。
三、关于因数和系数的注意事项1、在将方程转化成标准形式(例如ax + by = c)时,需要确保a和b都不是负数。
2、一个数的因数是包括它本身的,因为任何数可以被它自己整除。
3、当一个数的因数中没有大于1且小于它本身的因数时,那么这个数就是一个质数。
例如,2、3、5、7、11等都是质数。
总结:本文主要介绍了因数和系数的概念及其应用知识。
通过对因数的深入了解,我们可以更好地理解质数和素数等相关知识;对系数的深入了解,我们可以更好地理解代数表达式和方程的概念。
通过对这些基本概念的掌握,相信同学们能够更好地学习和掌握数学知识。