SARS的数学模型与分析
关于SARS传播和影响的数学模型
关于SARS传播和影响问题的模型摘要本文首先采用Logistic模型、人工神经网络两个方法对SARS疫情公布的数据进行分析挖掘后,建立了不同的传染病模型来对疫情的变化趋势给出预测,从而为预防控制提供了可靠、足够的信息。
然后又考虑到证券市场被视为国民经济的晴雨表,因此在收集医药类、交通运输类等行业的股票价格的基础上,分别使用“事件分析法”、Markov 链建立数学模型对SARS给股市的影响进行分析预测。
在对早期模型进行合理性与实用性评价的基础上,对它的参数确定方法进行改进,消除了对港粤地区经验性数据的依赖,建立的二阶Logistic回归模型能就本地已知数据预测疫情发展趋势,给出预测值并拟合出疫情走势图。
并且该模型的决定系数R2高达99.02%,这表明预测值与实际值无显著性差异,拟合效果很好。
由疫情走势图可推算出发病高峰为4月29日及持续时间,且能体现出预防措施对疫情走势有明显的影响,也即随着预防指数K(t)的增大,累计发病人数N(t)趋于稳定。
因此该模型可为疾病的预防和控制提供有效的信息。
又考虑到本问题是一个动态预测问题,故建立了误差逆传播神经网络模型(BP,Back-Propagation)。
经过理论分析和多次实验确定其为三层结构的BP网络模型,节点数分别为(5,6,5),激励函数为双曲正切函数。
该模型能够根据前五天的累计患者数预测出未来五天的累计患者数。
首先,将已知65个数据分为13组,分别作为网络的输入、输出端输入网络,进行学习。
然后,用训练过的网络预测未知数据,正确率达99.9%以上。
最后,考虑到网络初值对模型灵敏度的影响,提出了初始化的合理建议,并将其与早期模型进行了比较。
在分析SARS对证券市场的影响时,由于这是一个突发事件,缺乏历史数据,所以SARS对股市产生的影响很难用传统的计量模型进行分析,因而采用“事件分析法”对其进行研究:利用一个相对短时期的股票价格的变化情况来分析和衡量该事件的影响程度。
SARS传播的数学模型 数学建模全国赛优秀论文设计
SARS传播的数学模型(轩辕杰整理)摘要本文分析了题目所提供的早期SARS传播模型的合理性与实用性,认为该模型可以预测疫情发展的大致趋势,但是存在一定的不足.第一,混淆了累计患病人数与累计确诊人数的概念;第二,借助其他地区数据进行预测,后期预测结果不够准确;第三,模型的参数L、K的设定缺乏依据,具有一定的主观性.针对早期模型的不足,在系统分析了SARS的传播机理后,把SARS的传播过程划分为:征兆期,爆发期,高峰期和衰退期4个阶段.将每个阶段影响SARS 传播的因素参数化,在传染病SIR模型的基础上,改进得到SARS传播模型.采用离散化的方法对本模型求数值解得到:SARS疫情的预测持续时间为106天,预测SARS患者累计2514人,与实际情况比较吻合.应用SARS传播模型,对隔离时间及隔离措施强度的效果进行分析,得出结论:“早发现,早隔离”能有效减少累计患病人数;“严格隔离”能有效缩短疫情持续时间.在建立模型的过程中发现,需要认清SARS传播机理,获得真实有效的数据.而题目所提供的累计确诊人数并不等于同期累计患病人数,这给模型的建立带来不小的困难.本文分析了海外来京旅游人数受SARS的影响,建立时间序列半参数回归模型进行了预测,估算出SARS会对入境旅游业造成23.22亿元人民币损失,并预计海外旅游人数在10月以前能恢复正常.最后给当地报刊写了一篇短文,介绍了建立传染病数学模型的重要性.1.问题的重述SARS (严重急性呼吸道综合症,俗称:非典型肺炎)的爆发和蔓延使我们认识到,定量地研究传染病的传播规律,为预测和控制传染病蔓延创造条件,具有很高的重要性.现需要做以下工作:(1) 对题目提供的一个早期模型,评价其合理性和实用性.(2) 建立自己的模型,说明优于早期模型的原因;说明怎样才能建立一个真正能够预测以及能为预防和控制提供可靠、足够信息的模型,并指出这样做的困难;评价卫生部门采取的措施,如:提前和延后5天采取严格的隔离措施,估计对疫情传播的影响.(3) 根据题目提供的数据建立相应的数学模型,预测SARS 对社会经济的影响.(4) 给当地报刊写一篇通俗短文,说明建立传染病数学模型的重要性.2.早期模型的分析与评价题目要求建立SARS 的传播模型,整个工作的关键是建立真正能够预测以及能为预防和控制提供可靠、足够的信息的模型.如何结合可靠、足够这两个要求评价一个模型的合理性和实用性,首先需要明确:合理性定义 要求模型的建立有根据,预测结果切合实际.实用性定义 要求模型能全面模拟真实情况,以量化指标指导实际.所以合理的模型能为预防和控制提供可靠的信息;实用的模型能为预防和控制提供足够的信息.2.1早期模型简述早期模型是一个SARS 疫情分析及疫情走势预测的模型, 该模型假定初始时刻的病例数为0N ,平均每病人每天可传染K 个人(K 一般为小数),K 代表某种社会环境下一个病人传染他人的平均概率,与全社会的警觉程度、政府和公众采取的各种措施有关.整个模型的K 值从开始到高峰期间保持不变,高峰期后 10天的围K 值逐步被调整到比较小的值,然后又保持不变.平均每个病人可以直接感染他人的时间为L 天.整个模型的L 一直被定为20.则在L 天之,病例数目的增长随时间t (单位天)的关系是:t k N t N )1()(0+⋅=考虑传染期限L 的作用后,变化将显著偏离指数律,增长速度会放慢.采用半模拟循环计算的办法,把到达L 天的病例从可以引发直接传染的基数中去掉.2.2早期模型合理性评价根据早期模型对疫情的分析与预测,其先将的病例起点定在3月1日,经过大约59天在4月29日左右达到高峰,然后通过拟合起点和4月20日以后的数据定出高峰期以前的K =0.13913.高峰期后的K 值按香港情况变化,即10天围K 值逐步被调整到0.0273.L 恒为20.由此画出3月1日至5月7日疫情发展趋势拟合图像以及5月7日以后的疫情发展趋势预测图像,如图1.图1 早期模型计算值与实际值对比图从图1可以看出,从 4月20日至5月7日模型计算值与同期实际值的拟合程度比较好,但5月7日后模型计算值(即预测值)随着日期的增长逐渐偏离实际值.为了进一步验证上述分析,对模型计算值曲线和实际值进行残差分析,记iy 表示第i 天实际累计病例,i yˆ表示第i 天计算累计病例.计算 n i y ye e i i ii ,,2,1,ˆ*Λ=-==σσ 其中,用σˆ作为σ的估计: 2)ˆ(ˆ1--⋅=∑=n yy y n i i i i σ做出标准化残差*i e 的分布图,如图2:图2 早期模型的标准化残差分布图可以很明显地看出,在后期,残差图上出现明显的单减规律性,预测值高于实际值,说明预测值确实逐渐偏离实际值.通过以上分析得合理性评价:○1从预测准确度上有失合理性,虽然早期模型在拟合前期疫情时拟合程度较好,但对后期情况的预测出现较大偏差.○2尽管预测准确程度不高,但是该模型确实预测出了整个疫情的发展趋势.从这一点上看,该模型还是切合实际的.○3该模型选用公布数据直接拟合,从而预测后期疫情发展趋势,这有悖于模型本身的含义.因为模型中的)N实际代表的是t时刻全社会的累计SARS患者,(t而公布数据仅为同期的累计确诊SARS患者,显然前者是大于或等于后者的.如果把公布数据当成实际数据处理,这必然导致模型解出现偏差,且解的实际意义不明确.对于这一点,我们将在建立自己的模型时重点关注!2.3早期模型实用性评价模型的实用性关注的是模型能否真实全面的模拟真实情况,从而用模型指导实际.这里主要抓住早期模型的参数设置情况进行实用性评价:○1该模型简单地以高峰期作为分析的临界点,这似乎对SARS发展的阶段没有了解透彻.同时,模型没有提出高峰期的确定方法,整个模型的建立必须有实际高峰期附近数据的支撑.如果仅有疫情爆发初期的数据,该模型就无法预测出疫情中后期发展的趋势,模型的实际应用围受到限制.○2参数K代表某种社会环境下一个病人每天传染他人的人数,与全社会的警觉程度、政府和公众采取的各种措施有关.在初期,该模型将K固定在一个比较高的定值,在疫情高峰期过后,在10天逐步调整K值到比较小,然后保持不变.但模型并没有给出K值的具体算法,只是不断地进行人工调整,具有一定的主观性.同时沿用了香港疫情分析中的数据来预测的情况,可见该模型未对的实际情况进行充分的考虑.○3参数L代表平均每个病人在被发现前后可以造成直接传染的期限,在此期限后失去传染作用,可能的原因是被严格隔离、病愈不再传染和死去等等.该模型把L的值固定为20,而实际的L应该随疫情发展趋势变化而变化,固定L势必使模型只能片面模拟真实情况.综上,早期模型的一部分分析脱离了实际,而且在整个模型的建立和求解中人工干预过多,实际应用围受到了限制,实用性不强.3. SARS传播过程的分析由于早期模型缺少对SARS传播过程的系统分析,所以,要建立真正能预测病情发展的模型,应该首先对整个传播过程有一个全面而详尽的分析.SARS的传播大致经历了4个过程,相关描述可按照Kink于1986年提出的危机“四阶段说”.第一阶段是征兆期.在SARS传播初期,由于SARS感染者需要经历一定时间才表现出临床症状,所以在病毒实际上已经广泛传播的情况下,政府和公众并未引起注意.在这个时期,携带病毒的传播源没受到控制,平均传播期长,但整个社会的发病率还较低.第二阶段是迅速爆发期和蔓延期.当公众发现感染者不断增加时,恐慌情绪增加,政府随即采取多种措施,但由于对病毒传播的特点不清楚,并未收到预期效果.在这个时期,传播源的平均传播期依然较长,整个社会的发病率突然猛增.第三个阶段是高峰期.当高强度的措施实施后,病毒扩散速度实际已经被控制,发病人数保持稳定,处在一个高平台阶段.在这个时期,有效隔离措施的产生,大大缩短了平均传染期,但由于病患基数较大,社会发病率依然很高.第四个阶段是衰退期和有效控制期.在高平台现象一段时间以后,控制措施的作用开始显现,患病人数开始下降,进入控制时期.在这个时期,平均感染期最短,社会发病率低.疫情进入了4个阶段的最后时期.有了以上的分析,建立的模型就应该体现4个不同时期下疫情的发展过程,并能够在此基础上准确预测疫情变化情况,提出切实可行的控制措施.考虑在经典传染病SIR 模型基础上,通过机理分析,加入合理的实际因素,建立适合SARS 的分段微分方程模型,称为SARS 传播的SIR 改进模型.4. SARS 传播的SIR 改进模型4.1模型的假设1.SARS 的持续期不太长,可以忽略在SARS 持续期的城市人口的自然出生率和自然死亡率.2.被SARS 感染后经治疗康复的人群在SARS 流行期不会被再次感染.3.病人被严格隔离、治愈或者死亡后,不再有感染作用.4.不考虑人口的流动,仅仅在一个城市围研究SARS 疫情的发展过程.4.2模型的符号定义)(t S :易感类人群占城市人口总数的比例.)(t I :传染类人群占城市人口总数的比例.)(t R :排除类人群占城市人口总数的比例.)(t ω:SARS 患者的就诊率患者总数时刻全社会患者数时刻被隔离的SARS SARS t t = λ:单位时间一个传染者与他人的接触率.L :平均传染期.4.3传播机理分析针对早期模型的不足,需要在模型的合理性和实用性方面进行改进.考虑在经典传染病模型SIR 的基础上,通过机理分析,用实际因素来描述SARS 的传播过程.为了简化模型,这里不考虑人口的流动带来的影响,仅仅在一个封闭城市中研究SARS 的传播机理.那么,整个社会人群可以分为3类:S 类:称为易感类,该类成员没有染上传染病,但缺乏免疫能力,可以被染上传染病.I 类:称为传染类,该类成员已经染上传染病,而且可以传染给S 类成员. R 类:称为排除类或恢复类,R 类成员或者是I 类成员被严格隔离、治愈,或者死亡等.I 类成员转化为R 类后,立刻失去传染能力.S(t)、I(t)、R(t)分别表示t 时刻上述3类成员占城市人口总数的比例. 对于传播过程有3条基本假设:1A :人口总数为常数N ,N 足够大,可以把变量S(t)、I(t)、R(t)视为连续变量,还可进一步假定为连续可微变量.2A :人群中3类成员均匀分布,传播方式为接触性传播.单位时间一个传染者与他人的接触率为λ,则一个传播者在单位时间与S 类成员的接触率为)(t S λ,因此,单位时间I 类成员与S 类成员的接触总数为)()(t I t S N ⋅⋅λ,这就是单位时间I 类成员增加的数量,称为发病率,它是S(t)和I(t)的双线性函数.3A :传播者的被控制数正比于传染者的数量)(t NI ,比例系数为v ,v 称为被控制率,则平均传染期为v L /1=.v /λσ=为一个传染者在其传播期与其他成员的接触总数,称为接触数.那么SARS 的传播流程如图3:)()()(t NR t NI t NS vNS NSI 排除类传染类易感类控制传染−−−→−−−−→−⋅⋅λ图3 SARS 传播流程图在这个模型中,排除类)(t NR 就是已确诊SARS 患者累计数,而)](1[t S N -⋅是全社会累计SARS 患者数,包括已确诊的和未被发现的两部分.4.4模型的建立有了以上的机理分析,建立起针对SARS 的改进SIR 模型:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≥>>=++=-=-=00,01(2) (1)000R I S S R I vI dt dR vI SI dt dI SI dt dS λλ该模型中参数λ和v 在疫情发展的各个阶段受实际因素影响,会有比较明显的变化,现分析如下:○1参数λ表示单位时间一个传染者与他人的接触率,其与全社会的警觉程度和政府、公众采取的各种措施有关,例如,佩戴口罩,减少停留在公共场所的时间,喷洒消毒药剂,提高隔离强度等都能有效地降低接触率λ的值.一般认为,λ的数值随着SARS 发展的4个阶段不断变化.在SARS 初期,由于潜伏期的存在和社会对SARS 病毒传播的速度认识不足,政府和公众并未引起重视,故λ维持在一个较高的数值;进入爆发期后,公众发现感染者不断增加,恐慌情绪增加,随即采取多种措施,使λ得到一定的控制,但效果不明显,此处假设λ呈线性形式缓慢衰减;在高峰期,当高强度的控制措施实施后,病毒传播的有效接触率明显减少,可以认为λ按天数呈指数形式衰减;此后进入衰减期,λ就维持在一个较低值附近.○2参数v 表示传播者的被控制率.v L /1=称为平均传染期,表示一个传播者在被隔离或者死亡之前具有传播能力的平均时间.一般认为,SARS 患者经过传染期L 过后,将隔离治疗或者死亡,从I 类成员变为R 类,失去传播能力.L 与政府采取的措施密切相关,例如,尽量早地发现病患,对疑似病例提前进行隔离,“早发现,早隔离” ;提供更广围的医疗手段,使更多的人接受有效的治疗等,都可以有效地降低平均传染期L 的长度.因此这里将L 直接抽象为每一时期SARS 患者的就诊率)(t ω的函数.平均传染期L 应随)(t ω的变化而变化.但是在初期,由于政府对SARS 的认识不足,并没有采取有效控制措施, L 的变化很小可以近似看作定值,这里我们取SARS 病毒最长潜伏期(约19天)为这个定值;在爆发期,有效控制措施的逐步加强,使SARS 患者的就诊率)(t ω逐渐增加,而平均传染期L 会逐渐减小并趋于一个定值,这里我们将SARS 病毒平均潜伏期(约7天)定为L 的最小值;在此后的高峰期以及衰减期,由于控制措施都保持在一定水平,L 的值会维持在7天左右.4.5针对疫情求解模型首先采用数学推导的方法,确定参数λ和v ,并证明模型有唯一解.○1确定λ和v 的关系 令v λσ=,方程组中)1()2(÷得:SdS dI σ11+-= 在病情刚开始时,011S dS dI σ+-=,由于)(t S 是单调减少的,且)(t I 最终趋近于0,则当1≤S σ时,)(t I 单调减少趋近于0;当1>S σ时,)(t I 先单调增加达到最大值,然后单调减少趋近于0.容易知道,当1>S σ时,才满足SARS 的传播规律,所以参数λ和v 的取值必须满足这个条件.○2证明模型有唯一解 在初值条件下解微分方程组:⎪⎩⎪⎨⎧=+++-=111000R S I S dS dI σ 得到关系式:)ln(11)(00S S S R t I σ+--= 令∞−→−t ,由○1得 )ln(11000S S S R ∞∞+--=σ 因为0>∞S ,所以令)ln(11)(00S x x R x f σ+--= 则 -∞=−→−)(lim 0x f x ,01)(0000>=--=I S R S f当σ10≤S 时,由于0)(=x f 在),0(0S 围有根,因而在)1,0(σ有根. 当σ10>S 时,因为xx x f σσ-=1)(' 当σ1>x 时,0)('<x f ,所以0)()1(00>=>I S f f σ,因而0)(=x f 在)1,0(σ也有根. 注意到当σ10<<x 时,0)('>x f ,故0)(=x f 在)1,0(σ有唯一根. 所以,∞S 在)1,0(σ有唯一解. ○3划分SARS 传播的4个阶段 由于SARS 的传播经历了4个阶段,所以,要以具体的指标划分这4个阶段.因为在4个阶段中,日发病率)()()(t I t S N t ⋅⋅=λμ是一个区分每个阶段特点的关键特征,所以以日发病率作为划分的指标.从第一个患者出现日开始: 征兆期:日发病率在10(人/天)以下.疫情期的前40天.爆发期:从日发病率10(人/天)到日发病率最大,即0=dtd μ时.疫情期的第40天到第74天. 高峰期:从日发病率最大到患者数量最大,即0=dtdI 时.疫情期的第74天到第79天.衰退期:患者数量最大点以后.疫情期第79天以后.○4确定λ和v 根据最终SARS 患者总数2521人以及人口总数(约14000000人),得19998.01400000025211≈=-=∞S ,所以11>=λσv . 因为平均传染期vL 1=,而L 是SARS 患者就诊率)(t ω的函数,且]19,7[∈L ,所以,这里设计L 函数为:)(17t e L ω-=)(t ω由政府的控制措施决定,它的变化反映了政府控制措施的力度.根据实际情况,推导出:⎪⎪⎩⎪⎪⎨⎧≥<≤+-<≤=74 t174t 40 )178.340(log 40t 0 0)(10t t ω 而接触率λ与全社会的警觉程度和公众采取的各种措施有关,根据实际情况确定为:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤-<≤-<≤=79t 0672.079t 74 33ln 116.074t 40 3400126.040t 0 126.0t t λ确定出所有的参数后,做出各时期累计全社会SARS 患者数和各时期累计确诊SARS 患者数预测图(图4)以及市预测确诊SARS 患者累计和实际确诊SARS 患者累计对比图(图5).同时得到:SARS 疫情的预测持续时间为106天,预测SARS 患者累计2514人.(计算程序见附件1:SIR 模型程序)图4 市预测非典病人累计总数和预测非典病人确诊病例累计对比图图5 市预测确诊病例累计和实际确诊病例累计对比图5.改进SIR模型的分析与评价5.1合理性评价从图5可以看出,本模型对数据的拟合程度非常高,完全克服了早期模型对后期数据预测不准的缺陷.做出标准化残差分析图,如图6:图6 改进SIR模型的标准化残差分布图(实际值-预测值)可以看出,残差分布比较均匀,残差平方和为2.0361,低于初期模型的5.510.通过以上分析得出结论:改进SIR模型不仅在预测前期病情的时候非常准确,而且在预测后期病情的时候也没有出现明显偏差,预测值与实际值非常吻合.该模型能对整个病情的发展做出准确预测,这是该模型优于早期模型的方面之一.5.2实用性评价对比早期模型实用性方面的不足,对改进SIR模型分析如下:○1早期模型在没有对SARS的传播过程进行系统分析的情况下就简单地以高峰期作为分析的临界点,同时,模型并没有提出高峰期的确定方法,模型的实际应用围受到限制.而改进SIR模型在分析SARS传播过程的前提下,依据日发病率把整个传播过程细分为征兆期,爆发期,高峰期和衰退期4个阶段,并且考虑了每个阶段影响SARS传播的实际因素,能够更好地反映实际因素对SARS传播的影响.○2早期模型预测的仅仅是已确诊累计SARS患者数,不包括未被发现的患者人数,这样的做法不能对防治工作提供真正有用的数据.而改进SIR模型不仅能准确预测已确诊累计病例,而且能够预测未被发现的患者人数,可以对防治工作提供更有用的数据.○3早期模型用参数K代表一个病人每天传染他人的人数.模型没有给出K值的具体算法,只是不断地进行人工调整,同时沿用了香港疫情分析中的数据来预测的情况,未对的实际情况进行充分的考虑.而改进SIR模型用参数λ表示单位时间一个传染者与他人的接触率,并且考虑了4个阶段λ的变化情况,给出了λ的函数表达式.○4早期模型用参数L代表平均每个病人在被发现前后可以造成直接传染的期限,并且把L的值固定在20天,就造成了后期预测值明显偏离实际值的结果.而改进SIR模型中建立了L的分段函数表达式,根据各个阶段的具体影响因素控制L的大小.这样,在后期的预测上,也与实际值相当吻合.综上,改进SIR模型弥补了早期模型的不足,实际应用围得到扩大,实用性强.5.3建立可靠、优良模型的困难要建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,存在着许多的困难,还有许多努力的方向.○1缺乏详尽的,反映SARS疫情的实际统计数据,以及数据基础上的模型参数的具体取值.本文的模型计算与分析研究,主要依据关于市的SARS疫情通告的数据.这些数据不包括未被发现的患者人数的统计,数据的形式不能满足模型求解的要求.○2需要与流行病学家密切合作,更加合理地设计模型结构与调整参数,以及估计并设定比较符合实际的参数取值,从而完善模型以及模拟结果.○3需要研究SARS在不同自然条件和社会条件下的差异性,总结SARS传播与控制的典型地域性模式.6.分析具体措施对SARS传播的影响在SARS传播的实际过程中,有关部门采取了一些控制疫情的措施,在所有措施中,隔离开始的时间和隔离的强度是两个比较关键的因素,究竟这些因素对疫情传播能造成怎样的影响,现分析如下.改变隔离开始的时间通过对L调整实现,减小L的数值就提前了隔离时间;而改变隔离的强度通过对λ调整实现,减小λ的数值就提高了隔离的强度.以的隔离强度为100%,分别在100%和80%强度下用改进SIR模型预测不同控制措施下累计病例总数(人)和疫情持续总时间(天).结果如表1:分析表1,得出结论:○1在相同隔离强度下,发现隔离开始的时间越早,累计病例总数就越小.○2在相同隔离开始时间下,隔离强度越大,疫情持续的时间就越短.○3综上,累计病例总数的大小主要由隔离开始时间的早晚决定;疫情持续时间的长短主要由隔离强度的大小决定.所以,有关部门采取的措施确实对疫情的控制起到了很大的作用:“早发现,早隔离”能有效减少累计病例总数;“严格隔离”能有效缩短疫情持续时间.7.SARS 对旅游业的影响SARS 的流行会对国民经济带来一定的影响.现在题目提供了市接待海外旅游人数的数据,要求根据这些数据,预测SARS 对市的旅游业所产生的影响.7.1预测正常情况下2003年的旅游人数旅游业随着社会经济的发展,会有一个逐年提高的趋势.如果没有SARS 的流行,那么,海外旅游人数会以一定的规律保持增长的趋势.现在需要预测正常情况下2003年的旅游人数,采用季节性时间序列的半参数回归模型进行预测.一般的半参数回归模型是指:(3) ) (T g Y '∈++=β 其中1),(R R T X P ⨯∈ 为随机向量或设计点列,T 的支撑集为有界闭集,β为1P ⨯的未知参数向量, )( g ⋅是定义于一有界闭集上的未知函数, E 为随机误差,22)E(0, )E(σ=∈=∈(未知),且∈与T X ,相互独立.对季节性时间序列资料),,2,1;,,2,1(l j n i X ij ΛΛ==,其中n 为年份长度,l 为季节长度.根据时间序列资料的加法原理有如下半参数回归模型(4) )(j ij j g bi X ε++= 其中b 为模型参数, 主要反应时间序列在年度上的增长趋势.)(j g 为未知函数,主要反应时间序列在季节上的效应,22)(,0)(σεε==ij ij E E 且ij ε相互独立.显然模型中不应包含常数项,因为常数项可包含在季节效应中.在对旅游人数的估计时,因为采用了1997~2002年的数据进行参数估计,所以年份长度6=n ,而季节上的效应实际上就是每个月的效应,季节长度12=l .参数估计如下:○1把b 看为已知时)(j g 的最小二乘估计为使∑--iij j g bi X 2))((最小的解,即(5) 21)(ˆ+⋅-=n b X j gj 其中,∑=iij j n X X /,即为所有数据在季节点j 上的均数.显然)(ˆj g也是)(j g 的一个临近估计.○2将(5)代入(4)后b 的最小二乘估计为使∑∑+---ijj ij n bX bi X 2))21((最小的解.作变换21~,~+-=-=n i i X X X j ij ij 则(6)~~~ˆ2∑∑⋅⋅=iij ij il X i b在小样本条件下,误差的总体方差2σ估计为(7) )~ˆ~(11ˆ2112i b X l nl n i lj ij ---=∑∑==σ将海外旅游人数1997~2002年的数据代入式(5)、(6)、(7),得到:⎪⎩⎪⎨⎧==0044.0ˆ8245.1ˆ2σb)4642.12,1642,18,5808.21,7475.20,0808.21 ,0808.16,3975.16,9975.17,2142.17,5142.12,2808.13,5642.4()(ˆ=j g根据这些参数,预测正常情况下2003年的旅游人数(计算程序见附件2:时间序列程序),结果如表2(单位:万人): 月份1 2 3 4 5 6 7 8 9 10 11 12 人数15.4 17.1 25.3 30.0 30.8 29.2 28.9 33.9 33.6 34.4 31.0 25.31997-2003年旅游人数的变化如图7所示:图7 1997-2003年旅游人数的变化7.2季节性时间序列半参数模型的检验我们利用时间序列模型对1997~2002年的旅游人数进行拟合,再与实际值对照,画出残差图(图8):。
sars数学建模获奖论文_11
sars数学建模获奖论文二.数学模型的分析与建立 2.1 分析与假设将人群分为四类:健康者(易受感染者):用 S 表示健康者在人群中的比例。
潜伏期者(已感染,尚未发病):用 E 表示他们在人群众的比率。
发病期者(已发病者):用 I 表示病人在人群中的比例。
退出者(死亡者):用 R 表示退出者在人群中的比例。
2.2 模型的建立 1 .参数设定 1每个病人平均每天有效接触(足以使被接触者感染)的人数。
q 退出率,为 SARS 患者的日死亡率和日治愈率之和。
l (流入)流出人口占本地总人口的比率。
1处于潜伏期的病人的日发病率。
P流入人口中带菌者所占的比例。
2 .控前方程的建立根据我们的分析和各变量的分析,结合实际的疫情的传播规律,我们可以建立如下的方程组:ISdtdS1(1)LE LP E ISdtdE 1 1(2)1/ 3qI EdtdI1(3)qIdtdR(4) 0 0 00, , , E R I S (初值)3 .参数的确定 1) 1根据医学资料和有关数据推导而得。
2) q 由该城市的医疗水平和已知的统计数据分析,求其统计平均值。
3) l 由城市的出入人口流动情况(主要由经济发达程度和交通状况决定)。
可查有关资料。
4) 1根据医学研究和调查的有关结果和该城市的疫情发展状况可得。
5) P由流入该城市人群的地区分布情况和各其他地区的疫情决定。
II 控后模型的建立 1 .参数设定 2 不可控人群(在后面的分析中可得到)在发病后到被隔离前平均每天接触的人的数目。
q 退出率,为 SARS 患者的日死亡率和日治愈率之和。
接触病源的人的发病率。
每天由可控人群和不可控人群转化为病人的日转化率。
2 .控后方程的建立根据上面我们的各种假设和各变量和参数的实际意义,我们可以建立如下控制后的疾病模型的方程组:(5)qI GdtdI(6) qIdtdR(7) SdtdS 2 GGGSdtdG 2GSdtd2 (9) 0 0 0 0 0, , , , E R I S (初值)在得到这个模型后,我们对模型和数据进行了进一步的分析,发现这个模型中存在以下的问题...3/ 3。
SARS传播的数学模型_数学建模全国赛论文1
SARS传播的数学模型_数学建模全国赛论文SARS 传播的数学模型摘要本文分析了题目所提供的早期 SARS 传播模型的合理性与实用性,认为该模型可以预测疫情发展的大致趋势,但是存在一定的不足.第一,混淆了累计患病人数与累计确诊人数的概念;第二,借助其他地区数据进行预测,后期预测结果不够准确;第三,模型的参数 L、K 的设定缺乏依据,具有一定的主观性. 针对早期模型的不足,在系统分析了 SARS 的传播机理后,把 SARS 的传播过程划分为:征兆期,爆发期,高峰期和衰退期 4 个阶段.将每个阶段影响SARS传播的因素参数化,在传染病 SIR 模型的基础上,改进得到SARS 传播模型.采用离散化的方法对本模型求数值解得到:北京 SARS 疫情的预测持续时间为 106 天,预测 SARS 患者累计2514 人,与实际情况比较吻合. 应用 SARS 传播模型,对隔离时间及隔离措施强度的效果进行分析,得出结论:早发现,早隔离能有效减少累计患病人数;严格隔离能有效缩短疫情持续时间. 在建立模型的过程中发现,需要认清 SARS 传播机理,获得真实有效的数据.而题目所提供的累计确诊人数并不等于同期累计患病人数,这给模型的建立带来不小的困难. 本文分析了海外来京旅游人数受 SARS 的影响,建立时间序列半参数回归模型进行了预测,估算出 SARS 会对北京入境旅游业造成 23.22 亿元人民币损失,并预计北京海外旅游人数在 10 月以前能恢复正常. 最后给当地1/ 2报刊写了一篇短文,介绍了建立传染病数学模型的重要性. 1.问题的重述 SARS(严重急性呼吸道综合症,俗称:非典型肺炎)的爆发和蔓延使我们认识到,定量地研究传染病的传播规律,为预测和控制传染病蔓延创造条件,具有很高的重要性.现需要做以下工作:(1)对题目提供的一个早期模型,评价其合理性和实用性. (2)建立自己的模型,说明优于早期模型的原因;说明怎样才能建立一个真正能够预测以及能为预防和控制提供可靠、足够信息的模型,并指出这样做的困难;评价卫生部门采取的措施,如:提前和延后 5 天采取严格的隔离措施,估计对疫情传播的影响. (3)根据题目提供的数据建立相应的数学模型,预测 SARS 对社会经济的影响. (4)给当地报刊写一篇通俗短文,说明建立传染病数学模型的重要性. 2.早期模型的分析与评价题目要求建立 SARS 的传播模型,整个工作的关键是建立真正能够预测以及能为预防和控制提供可靠、足够的信息的模型.如何结合可靠、足够这两个要求评价一个模型的合理性和实用性,首先需要明确:合理性定义要求模型的建立有根据,预测结果切合实际. 实用性定义要求模型能全面模拟真实情况,以量化指标指导实际. 所以合理的模型能为预防和控制提供可靠的信息;实用的模型能为预防和控制提供足...。
SARS传播数学模型
SARS 的传播问题模型一 SI 模型模型假设1、在疾病传播期内,所考察地区的总人数N 不变,人群分为易感染者和已感染者两类,以下简称健康者和病人,两类人在总人数N 中占的比例分别记作()s t ,()i t ;2、每个病人每天有效接触的平均人数是常数λ,称为日常接触率。
当病人与健康者有效接触时,使健康者感染变为病人。
模型构成根据假设,每个病人每天可使()s t λ个健康人变为病人,因为病人人数为()Ni t ,所以每天共有()()Ns t i t λ个健康人被感染,于是Nsi λ就是病人人数Ni 的增加率,即有diNNsi dt λ= (1)又因为()()1s t i t += (2)再记初始时刻(t=0)病人的比例为0i,则()()01,0dii i i dt i λ=-= (3)对方程(5)的解有()01111ti t i λ-=⎛⎫+- ⎪ ⎪⎝⎭(4)由(5),(6)式可知,第一, 当12i =时,didt 达到最大值m di dt ⎛⎫ ⎪⎝⎭,这时刻: 101ln 1m t i λ-⎛⎫=- ⎪⎪⎝⎭ (5)这时病人增加的最快,预示着传染病高潮的到来,提前5天采取严格的隔离措施可以推迟传染病高潮的到来,为医疗卫生部门迎接高潮做好充分的准备。
推迟5天则会使感染者更多;第二, 当t →∞时1i →,所有人终将被感染,全变为病人,显然,这与实际不符,故必须对上模型做出修正。
模型二 SIS 模型模型假设1、在疾病传播期内,所考察地区的总人数N 不变,人群分为易感染者和已感染者两类,以下简称健康者和病人,两类人在总人数N 中占的比例分别记作()s t ,()i t ;2、 每个病人每天有效接触的平均人数是常数λ,称为日常接触率。
当病人与健康者有效接触时,使健康者感染变为病人;3、每天被治愈的病人人数占病人总人数的比例为常数μ,称为日治愈率。
病人治愈后成为仍可被感染的健康人,显然,1μ是该传染病的平均传染期。
sars的传播2003数学建模题目
sars的传播2003数学建模题目在2003年,严重急性呼吸综合征(Severe Acute Respiratory Syndrome,简称SARS)的爆发引起了全球范围内的恐慌。
为了更好地了解SARS的传播特点和控制措施,我们可以应用数学建模的方法来分析SARS的传播规律,并提出相关的应对策略。
1. SARS的传播模型为了探究SARS的传播规律,我们可以采用传染病的基本传播模型——SIR模型。
SIR模型将人群分为三类:易感者(Susceptible)、感染者(Infected)和康复者(Recovered)。
根据该模型,我们可以列出如下的微分方程:dS/dt = - βSIdI/dt = βSI - γIdR/dt = γI其中,S,I和R分别表示易感者、感染者和康复者的数量;β表示传染率;γ表示康复率。
2. 参数估计与模型拟合要对SARS的传播模型进行参数估计和模型拟合,我们需要收集大量的疫情数据。
通过对实际数据进行统计学分析,我们可以获得β和γ的估计值,并将其代入SIR模型方程中进行模型拟合。
通过与实际数据的对比,我们可以评估模型的拟合效果以及参数的准确性。
3. 传播速率和传播方式SARS的传播速率直接影响到其传播范围和传播强度。
在SARS爆发期间,我们可以通过统计病例的增长速率来估计SARS的传播速率。
此外,研究发现,SARS主要通过空气飞沫传播,在密闭环境中飞沫的传播距离较远,因此需要采取相应的防控措施,如戴口罩、保持良好的通风等。
4. 人群的易感性和免疫力SARS的传播过程中,人群的易感性和免疫力起着重要的作用。
通过研究易感者和感染者的流行病学数据,我们可以了解人群的易感性和免疫力对于传播过程的影响。
同时,针对易感者的接种疫苗和提高人群的免疫力也是有效控制SARS传播的策略之一。
5. 社会干预措施的效果评估为了控制SARS的传播,社会干预措施起到了至关重要的作用。
例如,早期的病例隔离、密切接触者的追踪和隔离、社交距离的维持等都可以有效降低SARS的传播风险。
SARS模型
一、问题的重述SARS 作为21世纪第一个在世界范围内传播的传染病,它的爆发和蔓延给我国的经济发展和人民生活带来很大影响,同时也给人们许多重要的经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。
现在的问题是针对SARS 的传播建立数学模型,要求如下:(1)对题目中所提供的一个早期的模型,评价其合理性和实用性。
(2)建立自己的模型,并比较它与题目提供模型的优劣;对建立一个真正能够预测且能为预防和控制提供可靠、足够的信息的模型,提出建议,并指出难点所在;另外对卫生部门所采取的措施做出评论,如:提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。
问题二要求建立SARS 传播模型。
一个健康人被传染过程为:健康人→潜伏类人→病人→退出者(包括死亡者和治愈者)通过分析各类人之间的转化关系,建立微分方程模型。
在SARS 传播过程中,政府的干预起较大作用,以政府采取措施控制疫情的时刻0t 作为分割点,分别考虑0t 前后两阶段,称之为控制前阶段和控制后阶段。
疫情发展规律主要由日接触率()t λ制约,在不同的阶段()t λ的影响因素不同。
控制前,因按自然传播规律传播,故()t λ可视为常量;同时,在疫情初期,人们的防范意识比较弱,再加上非典自身的传播特点,在许多地区出现一个病人传染很多人的现象,即“超级传染事件”(SSE 事件)[1];随着人们防范意识的增强, SSE 事件发生的概率减小,因此SSE 事件在非典的发展早期起着重要作用。
而SSE 事件作为超级传染事件,特性在于在较短的时间内,即可使传染者数目增幅较大。
因此可将SSE 事件对疫情的影响看作一个脉冲的瞬时行为,使用脉冲微分方程描述。
控制后,)(t λ受人们防范意识的影响,而引起人们防范意识变化的原因主要有两方面,一方面来自因对疫情的恐慌而迫使人们自身加强防范意识,用警惕指标()t h 来刻划,另一方面由于政府政策,法律法规的颁布等而加强的防范意识,用政府措施力度()t g 来刻划。
SARS_数学建模
2)当感染者有效接触健康者时,使健康者被感染;
3)整个“非典”发病期间政府不采取任何预防措施和隔离治疗措施;
4)忽略“非典病人的个体差异”,假设传染期为常数;
2早期模型建立:
假定初始时刻的病例数为N0,平均每位病人每天可传染K个人(K一般为小数),平均每个病人可以直接感染他人的时间为L天。则在L天之内,病例数目的增长随时间t(单位天)的关系是:
(3)收集SARS对经济某个方面影响的数据,建立相应的数学模型并进行预测。附件3提供的数据供参考。
(4)给当地报刊写一篇通俗短文,说明建立传染病数学模型的重要性。
第一问
早起模型的评析
一、早期模型的重述
1模型的假设:
根据附件一中的模型,我们可以得出此模型具有如下假设
1)不考虑“非典”的潜伏期,感染非典后立即具有传染性;
df2
Sig.
常数
b1
Logistic
.926
792.908
1
63
.000
.001
.865
自变量为时间。
可得拟合的函数关系式为
,y=N*i
通过取一系列t来估计出相应的k值,结果如下
时间
20
30
40
50
60
k值大小
0.1919
0.1763
0.1685
0.1638
SARS的预测控制模型
SARS的预测控制模型SARS(严重急性呼吸综合征)是2002年至2003年期间爆发的一种可怕传染病,给全球健康安全带来了巨大威胁。
在SARS爆发后不久,科学家们就开始研究和开发预测控制模型,以便更好地理解疾病的传播方式,预测疫情的发展趋势并制定相应的预防措施。
本文将探讨SARS的预测控制模型,并介绍其中一些重要的方法和技术。
一、传染病的数学模型传染病的数学模型是一种抽象的方式,用来定量描述和预测疾病的传播过程。
通常,传染病的传播可以分为多个阶段,如潜伏期、感染期等。
数学模型可以根据不同的传播机制来描述这些阶段并计算其动态变化。
二、基本的SARS传播模型基本的SARS传播模型通常基于传统的流行病学模型,其中考虑了人群的易感人数、感染人数和康复人数等因素。
这些模型通常使用微分方程来描述各个人群的数量变化,并根据已知的参数进行数值计算和预测。
此外,还可以结合统计学方法对疫情数据进行分析和建模。
三、网络传播模型针对SARS的网络传播模型是基于人与人之间的接触关系构建的。
这种模型通常将人群构建为一个网络图,图中的节点表示个体,边表示人与人之间的直接接触。
通过该模型可以定量计算每个个体之间的传播概率,并据此预测疫情的扩散路径和规模。
四、随机传播模型随机传播模型是为了更好地描述传染病在人群中随机传播的特性而提出的一种模型。
这种模型通常基于随机过程理论,通过引入概率参数来描述个体之间的传播事件。
在SARS研究中,随机传播模型被广泛应用于疫情的预测和分析。
五、人工智能在SARS预测控制模型中的应用近年来,人工智能技术在SARS预测控制模型中的应用发挥了重要作用。
通过使用机器学习算法,可以从大量的疫情数据中提取有价值的信息,并进行精确的预测和决策。
例如,可以使用支持向量机(SVM)等算法,通过对已有数据进行训练,预测未来一段时间内SARS疫情的发展趋势以及采取相应的控制措施。
六、早期预警系统为了尽早预测和控制SARS疫情,科学家们还提出了早期预警系统。
SARS传播的数学模型
SARS传播的数学模型SARS传播的数学模型摘要SARS(严重急性呼吸道综合症,,俗称⾮典型肺炎)是21世纪第⼀个在世界范围内传播的传染病。
SARS的爆发和蔓延给我国的经济发展和⼈民⽣活带来了很⼤影响。
为了能定量的研究传染病的传播的规律,⼈们建⽴了各类模型来预测、控制疾病的发⽣发展。
本题中给出了⼀个早期指数模型,它在短期内有⼀定的合理性与实⽤性,认为该模型可以预测疫情发展的⼤致趋势,但是却存在着⽤短期参数描述长期过程偏离实际的缺陷。
基于此,我们考虑应该引进新的参数,建⽴更优的模型。
由于SARS是新发传染病,⼈们对其的有效防治⼿段还是以预防为主的隔离和检疫,所以我们引进⼀个预防效果指数k,来反映防控措施对SARS传播的影响;⼜由于SARS发病传染迅猛,为了描述这个特征,我们⼜引⼊了参数r,⽤来表⽰发病率。
在假设所研究地区⼈⼝为理想状态下的⼈群、对该病普遍易感等前提下,我们应⽤Logistic回归结合地区SARS发病的疫情资料,⽤Matlab软件模拟,得到了⼀个更为优化的Logistic SARS模型,它给出了SARS流⾏趋势以及控制措施有效性的定量评估。
由于参数k的引进,更符合实际情况也符合医学解释,并且能够预测SARS⾼峰期的到来时间,可能累计最⼤发病数,在测控和拟合世界上优于早期模型。
同时,我们也通过Matlab语⾔对北京疫情的计算和实际数据进⾏了拟合,进⽽验证了这个模型的可靠性。
应⽤SARS传播模型,对隔离时间及隔离措施强度的效果进⾏分析,得出结论:“早发现,早隔离”能有效地减少累计患病⼈数;“严格隔离能有效缩短疫情持续时间。
本⽂亦分析了海外旅游⼈数受SARS的影响情况,并⽤Matlab语⾔对2003年以前的每个⽉份旅游⼈数与⽉份进⾏数据拟合,进⽽估算出正常情况下2003年的旅游⼈数。
在SARS的影响下,求出每个⽉份⼈数的减少率,拟合出⽉份与减少率的曲线图,从图中可以看出旅游⼈数在9⽉份开始恢复。
sars传播模型
12-541
假设: 1.统计数据是可靠的 2.病人处于潜伏期时不传染他人 3.采取的所有控制措施对于阻止病毒的传播都是有 效的 4.不考虑地区的流入流出人口
,
即
病毒的基本传播率。② 是反,Kf未反馈系数 定义输入信号为当前SARS的在社会上的传播状况,输出信号 为一段时间后(1 day)SARS的传播状况
SARS传播情况也可以近似的看成一个负反馈系统,将 当前的SARS感染情况视为输入信号,一段时间后(1 day) 的感染情况作为输出信号。 初始时,感染人数较少,SARS不受重视,病毒得以在 人群中快速传播。一段时候后,感染人数上升到一定数 量,卫生部门开始采取措施,公众也认识到了病毒的危 险性,此时传播速度受到抑制。
SARS传播的数学模型
SARS传播的数学模型摘要通过对题目附件1的SARS模型进行分析和评价,加深了对SARS的认识和了解。
根据传染病的传播特点,建立了关于SARS病人率和疑似病人率两个常微分方程模型。
以所给数据为基本依据,用Matlab软件进行数值计算,与图形模拟方法求得模型中的有关参数。
当λ1 =1.5 和λ2 =1时,理论图形与实际图形有良好的吻合,分别得到了SARS 病人率和疑似病人率比较符合实际数据的变化图,能正确地预测它们的发展趋势。
他们对于模型中的参数有非常强的灵感性,λ1的值作微小的改变对于整个疫情的发展有很大的影响,所以政府采取对SARS疫情的有关措施是完全正确的。
本文重点分析了关于SARS病人率的模型一,根据求得的参数,利用相轨线理论对结果加以分析并对整个疫情作出预测,并推论出SARS病人率关于t的表达式i(t),然后提出了对传染病的控制方案,同时列举了具体方法,并论证了方法的合理性和可行性,用其它地区的数据对模型进行检验,说明模型的参数有区域性。
关键词:SARS 微分方程曲线拟合数学模型相轨线一、问题的提出SARS俗称非典型肺炎,是21世纪第一个在世界范围内传播的传染病。
我国作为发展中大国深受其害:SARS的爆发和蔓延给我国的经济发展和人民生活带来了很大影响。
在党和政府的统一领导下,全国人民与SARS顽强抗争,取得了可喜的阶段性胜利,并从中得到了许多重要的经验和教训,认识到在没有找出真正病因和有效治愈方法前,政府采取的强制性政策对抑制SARS自然发展最有效办法。
而本题的目的就是要建立一个适当的模型对SARS传播规律进行定量地分析、研究,为预测和控制SARS蔓延提供可靠、足够的信息,无论对现在还是将来都有其重要的现实意义。
二、模型的假设1.地总人数N可视为常数,即流入人口等于流出人口。
2.据人口所处的健康状态,将人群分为:健康者,SARS病人,退出者(被治愈者、免疫者和死亡者)。
3.在政府的强制措施下,人口基本不流动,故无病源的流入和流出,避免了交叉感染,降低了感染基数。
数学建模sars的传播题目
数学建模sars的传播题目
题目:基于数学建模的SARS病毒传播模型分析
问题描述:
SARS(严重急性呼吸综合征)是一种严重的传染性疾病,其
传播过程受到各种因素的影响。
我们希望建立一个数学模型来分析SARS的传播,并预测其传播趋势。
具体问题如下:
1. 如何建立一个能够描述SARS传播过程的数学模型?
2. 在考虑不同因素的影响下,如何确定传染性疾病的传播速率和传播范围?
3. 如何定量分析不同因素对SARS传播速度和传播范围的影响?例如,人口密度、人口流动性、潜伏期、接触率等等。
4. 如何利用已知的疫情数据,来验证和调整数学模型的参数?
5. 如何利用建立的数学模型来预测疫情的发展趋势和未来传播可能出现的风险地区?
6. 如何制定合理的干预措施,以控制SARS的传播,并最大程度地减少疫情对社会和经济造成的影响?
这些问题涉及到传染病传播规律的研究,需要结合统计分析和数学建模的方法,通过模拟和预测来指导实际应对措施的制定。
通过对SARS传播过程的深入研究,我们可以提高对疫情的认识,加强对传染病的防控措施,保护公共卫生安全。
SARS传播的数学模型
如果不存在自愈
此模型的缺陷
模型中各变量的取值只能根据已有的数据拟合,模型 的精确度严重的依赖于所给的数据的准确度,不具有 预测性 对于不同的地区需要重新确定各变量的取值,计算量 大,缺乏一般的原则和算法
基于Small-World-Network的 模拟模型
基于Small-World-Network的模拟模型
节点总数为100000的时候的图像
对Q、L的讨论
2。固定L=10,运用MATLAB做患病人数 关于模拟天数和Q的取值的三维图像。
观察:随着Q的增大,图像峰值的大小变 化以及到达峰值的速度变化。
将整个模型节点数控制在2000时候的图像
节点总数为100000的时候的图像
对参数J的讨论
取定Q=0。1,L=10,V=0,改变J的 值。
负反馈模型
什么叫负反馈?
将放大器的输出信号(电压或电流),按一定路径回送 到放大器输入端的过程称为反馈。施加反馈的放大器称 为反馈放大器。它是由一个基本放大器和反馈网络构成 的闭合环路。如图:
什么叫负反馈?
给出反馈系数Kf 以及闭环增益Af 的定义,当反 馈系数Kf<0时,系统是负反馈的,反之,系统 是正反馈的。 负反馈具有自我调节作用,正是我们需要的
模型的建立
算法的设计 结果的分析
模型的建立
用Small-World-Network模型 模拟现代社会网络(N,K,P) 模型中每个节点的状态(S,E, Im,Ii,R)
符号说明
N--区域人口总数; S--易感染类人群 E--潜伏类人群 Iu--患病未被发现类人群 Ii--患病已被发现类人群 R--免疫类人群 H--潜伏期天数; L--传染期天数; P--SWN模型中每条边“断键重连”的选中概率 J-- SWN模型中每条边再次“断键重连”的选中概 率 Q--S类成员被感染的概率
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SARS的数学模型与分析张小五牛双建王冬梅指导教师:平顶山工学院数学建模辅导小组摘要:本文研究了SARS疫情的预测问题。
目的是建立数学模型反映SARS疫情的传播规律,在此情况上预测了SARS疫情的发展趋势和对经济的影响。
本文首先就附件1的数学模型进行合理性和实用性的评价,并指出了它的不足之处。
从这个模型我们受到启发,联想到人口预报的初步模型。
按照人口模型建立的发展过程,我们相应地建立了逐步完善的SARS模型:指数模型,Logistic模型,SIR 模型。
主要采用数据拟合的方法来确定模型中的参数。
对指数模型我们只作了一些定性的分析,重点讨论了Logistic模型,SIR模型。
Logistic模型我们从累计确诊病人数的变化和病人增长率的变化来进行研究,对每个参数的实际意义我们都作了详细的分析。
最后简要讨论了提前或延迟5天进行隔离对病情的影响。
模型(二)中我们先将函数反映到图形上,并结合图表对香港、北京两地的SARS疫情发展进行直观比较,得到了一些合理且有实用参考价值的数据。
同时我们在建模过程中也遇到了一系列困难,对图表的分析能力不够,缺乏详细的流行病学方面的知识,很多参数的确定没经验概念,只能通过定性分析,简单假设,已知数据的拟合得到。
对问题3,SARS对旅游业的影响,我们把原来离散的时间(天)看成连续变量,从众多影响因素中提炼出对旅游业影响最大的两个因素,建立常微分方程模型。
最后简要写了一篇给当地报社的短文,意在阐述建立传染病模型的重要性。
关键词:SARS 指数模型Logistic模型SIR模型曲线拟合一、评价早期模型的合理性和实用性附件一提供的模型中参数K和L具有比较明显的实际意义, 在参数的范围控制上比较合理。
在程序设计过程中,K值的确定考虑到与医疗机构隔离病人的时机和隔离的严格程度有关,采用不同阶段不同取值的方法,很好地描述了这一现象。
其次该模型在已有数据的基础上拟合程度比较好,合理地反映了这一阶段香港疫情的实际情况。
可以根据它的拟合曲线来预测近期内的病情走势,为政府和医疗机构提供一定的信息依据,使得他们能够对病人进行及时的管理和治疗,从而降低病毒在社会上的蔓延程度。
另外该模型具有广泛的适用性。
它对不同地区的数据进行了仔细的对照分析,得出不同的统计结果,做到了具体问题具体分析的原则,使得我们可以对不同地区进行病情分析和预测。
当然,该模型也有一些不足之处。
例如文中所述,到达高峰期后,在10天的范围内逐步调整值到比较小,这个时间就缺乏理论依据,减小了可信度。
但由于SARS传播系统是一个非线性的动态反馈复杂系统,做一些简化的假设和近似是必要的,因而该模型有一定的实用性,不能完全否定。
下面我们建立自己的模型。
二、新模型的建立1).附件2的数据处理观察分析“已确诊病例累积”一栏的数据,6月6日:2522,6月7日:2523,6月8日:2522,这说明6月7日有误诊一例,实际确诊病例累计应为2522。
再看6月11日:2523,6月12日:2523,6月13日:2522,说明6月11日有误诊一例,6月11日、12日的实际确诊病例应为2522。
同样分析其他数据,我们可知5月31日到6月23日的实际确诊累计病例都为2521为此我们以下计算模拟都采用附件2经过处理后的数据。
2).总体假设:1.SARS所有可能的传播途径视为与病源的直接接触。
2.根据SARS的疾病传播期内,所考察的地区总人口视为常数。
3).根据SARS的特点建立如下3个逐步完善的模型。
模型1——指数模型1.符号说明: N :累计确诊病例数K: 平均每个病人每天可传染的人数,即病例的相对增加率。
t :时间0N :表示t =0时刻患病人数2.模型的假设:K 是常数 3. 模型的建立设t ∆天内病例增加N ∆,则每天的病例增加数: tN∆∆ 则 K=N 1tN∆∆ …………………………………… (1) 由(1)得到 ⎪⎩⎪⎨⎧==0)0(N N KNdtdN解得 N(t)=N 0e Kt ……………………………………(2) 将t 以天为单位离散化,(2)式表明N 以e K 为公比的等比数列增长,又K 远远小于1,因此e K ≈1+K .则可将(2)式写成N(t) ≈ N 0(1+K)t .因此附件1所给出模型的数学表达只不过是该指数增长模型的近似表示。
4.模型的分析取4月20日以前的数据进行拟合,确定参数N 0、K ,代入(2),做出N(t)=N 0e Kt 的图像。
考虑到我们建模的重点,在此我们不进行具体拟合,作图。
但该模型的意义是明确的。
若在同一图中描出4月20日以前公布的累计确诊病例数,两者进行比较,这样可看出4月20日以前的数据是否有瞒报,缓报,漏报;若该模型在传染病初期就被建立,从函数的曲线上便可知呈现疫情爆发的大致时间,可及时控制疫情。
也就是说该模型能为预防和控制提供可靠信息。
当然一个正常的社会,决不会听任疫情按自然状态一直发展,当累计病例数到一定程度后,社会成员及各组织因此而感到威胁,社会也受到较大伤害,进而采取一系列措施,使K下降,而这个威胁和伤害程度取决于N,因此相对增加率K随着N的增加而减小,这是定性分析,我们也可做定量分析,在(1)式中逐个代入用公布的数据N,逐个算出K,并把K随N变化作在图中,见图1,很直观地看到了K随N 的增大而减小。
图1模型2——Logistic 1. 符号说明:()t N :表示t 时刻已经被传染病人数 ()t S :表示t 时刻未被传染病人数N:表示总人数0N :表示t =0时刻患病人数 0K :表示传染强度K :相对平均每个病人每天可传染的人数,即病例的增加率。
t :时间 2. 模型假设:1).每个病人单位时间内传染的人数与这时未被传染的人数成正比,即K =0K ()t S .2).一个人得病后经久不愈并在传染期内不会死亡. 3.模型的建立:所以由假设得:()()()()()()⎪⎪⎩⎪⎪⎨⎧==+=000NN Nt N t S t N t S K dt t dN ……………………………()3 4.模型的求解:由()3式求得 :()t N =NtK N N N0110-⎪⎪⎭⎫ ⎝⎛-+………………………()4由(4)式可得:()2002000111⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=--Nt K NtK N N N N N K dt t dN ……………………………()5 令:()022=dtt N d 得: 极大点为NK N N t 0011ln ⎪⎪⎭⎫⎝⎛-=………………………………()6从表达式中看出,卫生部所采取的措施如隔离措施的严格程度对疫情的发展有较大影响。
若提前5天采取隔离措施,也即传染病控制程度高,控制效果较明显;延后5天则病人总数将增加许多。
5.模型的分析:取6月1日以前的数据进行拟合,得出0K ,0N 代入(4)、(5)式,做出NtK N N Nt N 011)(0-⎪⎪⎭⎫ ⎝⎛-+=的图像和()2002000111⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=--Nt K NtK N N N N N K dt t dN的图像考虑到我们建模的重点,在此我们进行具体拟合。
若在同一图中描出6月1日以前公布的累计确诊病例数,两者进行比较,这样可看出6月1日以前的数据是否有瞒报,缓报,漏报;若该模型在传染病传播过程中被建立,从函数的曲线上便可知呈现疫情增加的大致时间,可及时了解疫情。
也就是说该模型能为了解疫情提供可靠信息并能对疫情采取一定的措施。
当然一个正常的社会,决不会听任疫情按自然状态以后,社会成员及各组织因此而感到威胁,社会也受到较大伤害,进而采取一系列措施,使K 下降,而这个威胁和伤害程度取决于N,因此相对增加率K 随着N 的增加而减小,0K 也随着S(t)的减小而减小。
6.模型的评价:传染强度0K 或总人数N 增加时,1t 都将变小,即传染病高峰来得快。
这与实际情况吻合。
同时,我们通过统计数据得出0K ,即可预报传染病高峰1t 到来的时间,这对于防治SARS 传染是有帮助的。
但是,当1t ∞→时,N(t)N →,即最后人人都要得病。
这显然是不可能的。
造成这原因是假设2)式中假设了人得病后经久不愈。
模型3 SIR 模型考虑得SARS 病后有的会死亡,另外不是每个人被传染后都被会传染别人,因为其中一部分被隔离,同时考虑人得了SARS 病后由于医治和人自身的抵抗力会痊愈我们建立模型3 1.模型的符号说明 x :表示为传染率。
y:表示为排除率。
K :表示相对平均每个病人每天可传染的人数,即病例的增加率。
t :时间I(t):表示t 时刻能够把SARS 病传染给别人的那些传染者的人数.S(t): 表示t 时刻并非传染者但能够得SARS 病而成为传染者的人数。
R(t):表示t 时刻患病死去的人,病愈后具有长期免疫力的人,以及在病愈并出现长期免疫力以前被隔离起来的人数的总和。
2.模型的假设1) 患过传染病而完全病愈的任何人具有长期免疫力,不会反复受传染。
2) 传染的潜伏期很短,可以忽略不计。
3) 在所考虑的时期内人口总数保持在固定水平N ,既不考虑出生及其他原因引起的死亡,以及迁入迁出等情况。
4) 易受感染者人数S(t)的变化率正比I(t)的人数与s(t)的人数的乘积。
5) I(t)向S(t)转变的速率与I (t )成正比。
3. 模型的建立⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=-=I yI dtdR y xsI dtdIxsI dt ds…………………………………………(7) 4. 模型的求解 (7)式的三个方程相加得0)]()()([=++t R t I t S dtd则)()()(t R t I t S ++=常数=N (人口总数)()t R = )()(t I t S N --由此可知,只要知道了S(t)和I(t),即可求R(t).而(7)式的前两个方程与R(t)无关。
因此 得xsy xsI yI xsI ds dI +-=--=1 ()C s xys s I ++-=ln (8)t=0t 时I(0t )= 0I S ()0t =0s 记xy =ρ有I(s)=-s+000lns sI s ρ++ ……………………… (9) 又得 )(s R N y yI dt dR--== 因为ρss y x yI xsI dtdR dt dSdR ds -=-=-== ρdR s ds -= ρRe S R S -=0)(有)(0ρReS R N y dtdR---= (10)方程(10)虽是可分离变量的,但是不能用显式求解。
如果SARS 传染的不严重,则ρR是小量,取泰勒级数+⎪⎪⎭⎫⎝⎛+-=-2211ρρρRR eR………的前三项, 取近似值得 ]})(211[{20ρρR R s R N y dt dR +---==⎥⎦⎤⎢⎣⎡-⎪⎪⎭⎫⎝⎛-+-2000)(21ρρR s R s s N y其解为)],21tanh(1[)(002ϕααρρ-+-=yt s s t R其中,210020])(2)1[(ρραs N s s -+-= ,),1(1tanh 01-=-ραϕs因此αρα21(sec 22022h s y dt dR =)ϕ-yt5. 模型分析与评价本模型应该说是一个比较理想的模型,考虑到一个参量R(t),这相对来说已经符合了现实的实际。