组合数学试题集
数学组合数学测试题
数学组合数学测试题第一题:排列组合在一个班级中,有10个男生和12个女生。
从这些学生中挑选一位班长和一位副班长,问有多少种不同的选法?解析:选班长有10种选择,选副班长有9种选择(因为副班长不能是已经当选的班长)。
所以总共的选法为10 × 9 = 90种。
第二题:组合问题从5个数中挑选3个不同的数,问有多少种不同的选法?解析:C(5,3) = 10。
即从5个数中选择3个数的组合数为10。
第三题:全排列问题有4个不同的字母A、B、C、D,从中选出3个字母排成一排,问有多少种不同的排列方式?解析:全排列意味着每个字母都可以排在第一位、第二位或第三位,所以总共有4 × 3 × 2 = 24种不同的排列方式。
第四题:组合数的性质用组合数C(n, k)表示从n个元素中选择k个元素的组合数。
给出以下等式的性质:a) C(n, k) = C(n, n-k)b) C(n, 0) = 1c) C(n, 1) = nd) C(n, k) + C(n, k+1) = C(n+1, k+1)证明:a) C(n, k) = n! / (k!(n-k)!) = n! / ((n-k)!k!) = C(n, n-k)b) C(n, 0) = n! / (0!(n-0)!) = n! / (1 * n!) = 1c) C(n, 1) = n! / (1!(n-1)!) = nd) C(n, k) + C(n, k+1) = n! / (k!(n-k)!) + n! / ((k+1)!(n-(k+1))!)= [n! * (n-(k+1))] / ((k+1)! * (n-k)!) + [n! * k] / ((k+1)! * (n-k)!)= [n!(n-k-1) + n!k] / ((k+1)! * (n-k)!)= [(n!n - n!k - n!) + n!k] / ((k+1)! * (n-k)!)= (n!n - n!) / ((k+1)! * (n-k)!)= (n+1)! / ((k+1)! * (n-(k+1))!)= C(n+1, k+1)第五题:二项式定理给出二项式定理的表达式和证明:二项式定理表达式:(a + b)^n = C(n, 0)a^n b^0 + C(n, 1)a^(n-1) b^1 + C(n, 2)a^(n-2) b^2 + ... + C(n, n) a^0 b^n证明:对于一个展开的项C(n, k)a^(n-k)b^k,可以考虑从n个位置中选择k个位置来放置a,剩余的n-k个位置就自动放置了b。
组合数学试题集
组合数学试题集一.简单题目可以根据需要改成选择题或者填空题1.在1到9999之间,有多少个每位上数字全不相同而且由奇数构成的整数?(参见课本21页)解:该题相当于从“1,3,5,7,9”五个数字中分别选出1,2,3,4作排列的方案数; (1)选1个,即构成1位数,共有15P 个;(2)选2个,即构成两位数,共有25P 个;(3)选3个,即构成3位数,共有35P 个;(4)选4个,即构成4位数,共有45P 个;由加法法则可知,所求的整数共有:12345555205P P P P +++=个。
2.一教室有两排,每排8个座位,今有14名学生,问按下列不同的方式入座,各有多少种做法?(参见课本21页)(1)规定某5人总坐在前排,某4人总坐在后排,但每人具体座位不指定;(2)要求前排至少坐5人,后排至少坐4人。
解:(1)因为就坐是有次序的,所有是排列问题。
5人坐前排,其坐法数为(8,5)P ,4人坐后排,其坐法数为(8,4)P , 剩下的5个人在其余座位的就坐方式有(7,5)P 种,根据乘法原理,就座方式总共有:(8,5)(8,4)(7,5)28449792000P P P =(种)(2)因前排至少需坐6人,最多坐8人,后排也是如此。
可分成三种情况分别讨论:① 前排恰好坐6人,入座方式有(14,6)(8,6)(8,8)C P P ;② 前排恰好坐7人,入座方式有(14,7)(8,7)(8,7)C P P ;③ 前排恰好坐8人,入座方式有(14,8)(8,8)(8,6)C P P ;各类入座方式互相不同,由加法法则,总的入座方式总数为:(14,6)(8,6)(8,8)(14,7)(8,7)(8,7)(14,8)(8,8)(8,6)10461394944000C P P C P P C P P ++= 3.一位学者要在一周内安排50个小时的工作时间,而且每天至少工作5小时,问共有多少种安排方案?(参见课本21页)解:用i x 表示第i 天的工作时间,1,2,,7i =,则问题转化为求不定方程123456750x x x x x x x ++++++=的整数解的组数,且5i x ≥,于是又可以转化为求不定方程123456715y y y y y y y ++++++=的整数解的组数。
组合数学考试试题
第一部分:填空题。
题目1:求n 元布尔函数f (x1,x2,…,xn )的数目,其中布尔函数是指含有与(∧)、或(∨)、非(-)等基本布尔运算的函数。
解答:设有n 个布尔变元x 1,x 2,…,x n ,其中x i ∈{0,1},i =1,2,…,n ,根据乘法原理(x 1,x 2,…,x n )共有2n 种不同指派,对每个指派,布尔函数取值为{0,1},故不同的布尔函数的数目为:22n。
(考试中会给定n 的具体数值,带入公式直接计算即可。
)题目2:n 对夫妻围一圆桌而坐,求每对夫妻相邻而坐的方案数。
解答:夫妻相邻而坐,可以将一对夫妻看成一个整体,其圆排列数为(n -1)!,由于每对夫妻可以交换位置,故所求方案数为(n -1)!×2n。
题目3:求多重集合M = {∞·a 1, ∞·a 2, …, ∞·a n }的r 排列数。
解答:在构造的M 的一个r 排列时,第一项有n 种选择,第二项有n 种选择,……, 第r 项有n 种选择,故M 的r 排列数为n r 。
(一般地,n 元多重集合表示为:M = {k 1·a 1, k 2·a 2, …, k n ·a n }其中:a i (i = 1, 2, …, n )表示元素的种类,k i (i = 1, 2, …, n )表示元素a i 的个数。
)题目4:求多重集合M = { k 1·a 1, k 2·a 2, …, k n ·a n }的全排列数。
解答:先把M 中的所有的k 1 + k 2 + … + k n 个元素看成是互不相同的,则它的全排列数为(k 1 + k 2 + … + k n )!。
但是这里k i !个a i 是相同的,所以k i !个a i 的位置相同并且同其他元素排列也相同的排列是同一个,故M 的全排列数为:!!!)!(2121n n k k k k k k +++。
高中数学_排列组合100题(附解答)
高中数学_排列组合100题一、填充题1. (1)设{}3,8A =﹐{}8,36B x =+﹐若A B =﹐则x =____________﹒(2)设{}2|320A x x x =-+=﹐{}1,B a =﹐若A B =﹐则a =____________﹒2. (1)822x x ⎛⎫- ⎪⎝⎭展开式中10x 项的系数为____________﹒ (2)52123x x ⎛⎫- ⎪⎝⎭展开式中3x 项的系数为____________﹒ (3)53212x x ⎛⎫+ ⎪⎝⎭展开式中常数项为____________﹒ 3. (1)()82x y z +-展开式中332x y z 项的系数为____________﹒(2)()532x y z -+展开式中﹐2.3x y 项的系数为____________﹒4. 四对夫妇围一圆桌而坐﹐夫妇相对而坐的方法有___________种﹒5. {}{}1,21,2,3,4,5,A ⊂⊂且A 有4个元素﹐则这种集合A 有____________个﹒6. 从2000到3000的所有自然数中﹐为3的倍数或5的倍数者共有____________个﹒7. 从1至10的十个正整数中任取3个相异数﹐其中均不相邻的整数取法有____________种﹒8. 某女生有上衣5件﹑裙子4件﹑外套2件﹐请问她外出时共有____________种上衣﹑裙子﹑外套的搭配法﹒(注意:外套可穿也可不穿﹒) 9. 已知数列n a 定义为1132n n a a a n +=⎧⎨=+⎩﹐n 为正整数﹐求100a =____________﹒ 10. 设A ﹑B ﹑T 均为集合﹐{},,,A a b c d =﹐{},,,,=B c d e f g ﹐则满足T A ⊂或T B ⊂的集合T 共有____________个﹒11. 李先生与其太太有一天邀请邻家四对夫妇围坐一圆桌聊天﹐试求下列各情形之排列数:(1)男女间隔而坐且夫妇相邻____________﹒(2)每对夫妇相对而坐____________﹒12. 体育课后﹐阿珍将4个相同排球﹐5个相同篮球装入三个不同的箱子﹐每箱至少有1颗球﹐则方法有____________种﹒13. 如图﹐由A 沿棱到G 取快捷方式(最短路径)﹐则有____________种不同走法﹒14. 0﹑1﹑1﹑2﹑2﹑2﹑2七个数字全取排成七位数﹐有____________种方法﹒1013⎛⎫16. 有一数列n a 满足11a =且1213n n a a +=+﹐n 为正整数﹐求()13n n a ∞=-=∑____________﹒ 17. 设{}2,4,1A a =+﹐{}24,2,23B a a a =----﹐已知A B ⋂{}2,5=﹐则()()A B A B ⋃-⋂=____________﹒18. 把1~4四个自然数排成一行﹐若要求除最左边的位置外﹐每个位置的数字比其左边的所有数字都大或都小﹐则共有____________种排法﹒(例如:2314及3421均为符合要求的排列) 19. 从1到1000的自然数中﹐(1)是5的倍数或7的倍数者共有____________个﹒(2)不是5的倍数也不是7的倍数者共有____________个﹒(3)是5的倍数但不是7的倍数者共有____________个﹒20. 如图﹐从A 走到B 走快捷方式﹐可以有____________种走法﹒21. 1到1000的正整数中﹐不能被2﹑3﹑4﹑5﹑6之一整除者有____________个﹒22. 将100元钞票换成50元﹑10元﹑5元﹑1元的硬币﹐则(1)50元硬币至少要1个的换法有____________种﹒(2)不含1元硬币的换法有____________种﹒23. 求()21x -除1001x +的余式为____________﹒24. 在()8x y z ++的展开式中﹐同类项系数合并整理后﹐(1)共有____________个不同类项﹒(2)其中323x y z 的系数为____________﹒25. 小明与小美玩猜数字游戏﹐小明写一个五位数﹐由小美来猜;小美第一次猜75168﹐小明说五个数字都对﹐但只有万位数字对﹐其他数字所在的位数全不对﹐则小美最多再猜____________次才能猜对﹒26. 若{}|,,110000S x x x x =≤≤為正整數為正整數﹐{}|12,,110000T x x k k x ==≤≤為正整數﹐则()n S T -=____________﹒27. 小于10000之自然数中﹐6的倍数所成集合为A ﹐9的倍数所成集合为B ﹐12的倍数所成集合为C ﹐则(1)()n A B ⋂=____________﹒ (2)()n A B C ⋂⋂=____________﹒ (3)()n A B C ⎡⋂⋃⎤=⎣⎦____________﹒(4)()n A B C ⎡⋂⋃⎤=⎣⎦____________﹒28. 1到300的自然数中﹐是2或3的倍数但非5的倍数有____________个﹒29. ()10222x x -+除以()31x -所得的余式为____________﹒ 30.如圖﹐以五色塗入各區﹐每區一色且相鄰區不得同色﹐則有____________種不同的塗法﹒(圖固定不得旋轉)(1)由A 取捷徑到B 的走法有____________種﹒(2)由A 走到B ﹐走向可以↑﹑→或↓﹐但不可以←﹐且不可重複走﹐則走法有____________種﹒32. 求()()23311x x ++++……()2031x ++展开式中12x 项系数为____________﹒ 33. ()1001k k x =-∑展开式中5x 的系数为____________﹒34. 展开()200.990.abcd =……﹐则a b c ++=____________﹒35. 建中高二教室楼梯一层有11个阶梯﹐学生上楼时若限定每步只可跨一阶或二阶﹐则上楼的走法有____________种﹒36. 利用二项式定理求12323n n n n n C C C nC +++⋅⋅⋅⋅⋅⋅+和为____________﹒37. 四对夫妇Aa ﹑Bb ﹑Cc ﹑Dd 围一圆桌而坐﹐若Aa 要相对且Bb 要相邻的坐法有____________种﹒38. 许多白色及黑色的磁砖﹐白色的磁砖为正方形﹐边长为1单位;黑色为长方形﹐其长为2单位﹐宽为1单位﹔则贴满一个长7单位﹐宽1单位的长方形墙壁﹐共有____________种方法﹒39.如圖,有三組平行線,每組各有三條直線,則(1)可決定____________個三角形.(2)可決定____________個梯形.(一組對邊平行,另一組對邊不平行).40. 小功家住在一栋7楼的电梯公寓﹐今天小功回家时有5人同时和小功一起进入1楼电梯欲往上﹐假设每人按下自己想要到的楼层(可相同或不同)﹐请问电梯有____________种停靠方式﹒(假设这期间电梯只会由下而上依次停靠这6人所按的楼层)41. 设202020201232023......20,S C C C C =+⋅+⋅++⋅则S 为____________位数﹒(设log20.3010=)42. 4面不同色的旗子﹐若任取一面或数面悬挂在旗杆上来表示讯号﹐如果考虑上下的次序﹐则可作成____________种不同的讯号﹒43.如圖的棋盤式街道﹐甲走捷徑從A 至B ﹐則 (1)走法有____________種﹒(2)若不得經過C 且不經過D 的走法有____________種﹒44.圖中的每一格皆是正方形﹐邊長均為1個單位﹐試問由圖中線段(1)共可決定____________個矩形﹒(2)可決定____________個正方形﹒45. 有红﹑白﹑黄三种大小一样的正立方体积木各20个﹐从中取出7个积木﹐相同颜色堆在一起﹐一一重迭堆高﹐共有____________种堆法﹒47. A ﹑B ﹑C ﹑D ﹑E 五对夫妇围成一圆桌而坐(座位无编号)﹐A 夫妇相对且B 夫妇相邻的情形有____________种﹒48. 如图﹐取快捷方式而走﹐由A 不经P ﹑Q 至B 有____________种方法﹒49. 将pallmall 的字母全取排成一列﹐相同字母不相邻的排法有____________种﹒50. 二个中国人﹑二个日本人﹑二个美国人排成一列﹐同国籍不相邻有____________种排法﹒二、计算题1. 设数列n a 满足14a =且132k n a a +=+﹐n 为自然数﹐试求(1)2a ﹐3a ﹐4a ﹐5a ﹒(2)推测n a 之值(以n 表示)﹒(3)401k k a =∑﹒2. 某校从8名教师中选派4名教师分别去4个城市研习﹐每地一人﹒其中甲和乙不能同时被选派﹐甲和丙只能同时被选派或同时不被选派﹐问共有几种选派方法?3. 试求()632x y -的展开式﹒4. 试求()421x -的展开式﹒6. 下列各图形﹐自A 到A 的一笔划﹐方法各有多少种﹖ (1) (2) (3)7. 如图﹐至少包含A 或B 两点之一的矩形共有几个?8. 设()n x y +展开式中依x 降序排列的第6项为112﹐第7项为7﹐第8项为14﹐试求x ﹑y 及n 之值﹒(但x ﹑y 都是正数)9. 红﹑白﹑绿﹑黑四色大小相同的球各4颗共16颗球﹐任取四颗﹐则(1)四球恰为红﹑白二色的情形有几种?(2)四球恰具两种颜色的情形有几种?10. 一楼梯共10级﹐某人上楼每步可走一级或两级﹐要8步走完这10级楼梯﹐共有多少种走法?11. 设{}1,2,3,4,5,6,7,8,9,10U =为一基集(宇集)﹐则{}1,2,4,5,8A =﹐{}1,2,5,7,9B =﹐求(1)A B ⋃(2)A B ⋂ (3)A B - (4)B A - (5)'A (6)'B (7)()'⋃A B (8)''⋂A B (9)()'A B ⋂ (10)''A B ⋃﹒12. 若()1922381211x x a x a x x -+=+++⋅⋅⋅⋅⋅⋅+﹐求1a 和2a 的值﹒13. 某一场舞会将4位男生与4位女生配成4对﹐每一对皆含一位男生与一位女生﹐试问总共有几种配对法﹖(1)43C ﹒ (2)44P ﹒ (3)44﹒ (4)44H ﹒ (5)4﹒14. 如图﹐A A →一笔划的方法数有几种﹖ (1)(2)16. 求()70.998之近似值﹒(至小数点后第6位)17. 设()1012220211x x ax bx cx +-=+++⋅⋅⋅⋅⋅⋅+﹐求a ﹑b ﹑c 之值﹒18. (1)试证明下列等式成立:()1012121.12311n n n n n n C C C C n n ++++⋅⋅⋅⋅⋅⋅+=-++ (2)设n 为自然数﹐且满足12031,2311n n n nn C C C C n n +++⋅⋅⋅⋅⋅⋅+=++则n 之值为何?19. 王老师改段考考卷﹐她希望成绩是0﹑4﹑5﹑6﹑7﹑8﹑9所组成的2位数﹐则(1)不小于60分的数有几个﹖(2)有几个3的倍数﹖(3)改完考卷后发现由小到大排列的第12个数正是全班的平均成绩﹐请问班上的平均成绩是几分﹖20. 某日有七堂课﹐其中有两堂是数学﹐有两堂是国文﹐另外是英文﹑生物﹑体育各一堂﹒若数学要连两堂上课﹐国文也要连两堂上课﹐但同科目的课程不跨上﹑下午(即第四五节课不算连堂)﹐若第四﹑五堂课也不排体育﹐则该日之课程有几种可能的排法﹖21. ()10122320211,x x ax bx cx x +-=++++⋅⋅⋅⋅⋅⋅+求a ﹑b ﹑c ﹒22. 已知{}{}{}0,,1,2,1,1,2=∅A ﹐下列何者为真﹖(A)∅∈A (B)∅⊂A (C)0A ∈ (D)0A ⊂ (E){}1,2A ∈ (F){}1,2A ⊂ (G){}∅⊂A ﹒23.設有A ﹑B ﹑C ﹑D ﹑E 五個市鎮﹐其通道如圖所示﹐今某人自A 地到E 地﹐同一市鎮不得經過兩次或兩次以上﹐且不必走過每一市鎮﹐求有幾種不同路線可走﹖24. 设数列n a 的首项15a =且满足递归关系式()123n n a a n +=+-﹐n 为正整数﹐试求(1)2a ﹐3a ﹐4a ﹐5a ﹒(2)一般项n a (以n 表示)﹒(3)20a ﹒25. 方程式10x y z ++=有多少组非负整数解?26. 用0﹑1﹑2﹑3﹑4﹑5作成大于230的三位数奇数﹐数字可重复使用(1)可作成多少个﹖ (2)其总和若干﹖27. 求5678192023451617C C C C C C ++++++的值﹒28. 妈妈桌球俱乐部拟购买8把桌球拍以供忘记携带球拍的会员使用﹐若球拍分为刀板﹐直拍与大陆拍3类﹐试问俱乐部有多少种不同的购买方式?29. 设直线方程式0ax by +=中的,a b 是取自集合{}3,2,1,0,2,4,6---中两个不同的元素﹐且该直线的斜率为正值﹐试问共可表出几条相异的直线﹖30. 下列各图﹐由A 到B 的一笔划﹐方法各有多少种﹖31. 以五种不同的颜色﹐涂入下列各图(图形不能转动)﹐同色不相邻﹐颜色可重复使用﹐则涂法各有多少种﹖ (1) (2)32. 平面上有n 个圆﹐其中任三个圆均不共点﹐此n 个圆最多可将平面分割成n a 个区域﹐则(1)求1a ﹐2a ﹐3a ﹐4a ﹒(2)写出n a 的递归关系式﹒(3)求第n 项n a (以n 表示)﹒33. 于下列各图中﹐以五色涂入各区﹐每区一色但相邻不得同色﹐则各有几种不同的涂法﹖(各图固定﹐不得旋转) (1) (2) (3)34. 车商将3辆不同的休旅车及3辆不同的跑车排成一列展示﹒求下列各种排列方法:(1)休旅车及跑车相间排列﹒ (2)休旅车及跑车各自排在一起﹒35. 从6本不同的英文书与5本不同的中文书中﹐选取2本英文书与3本中文书排在书架上﹐共有几种排法?36. 将9本不同的书依下列情形分配﹐方法各有几种?(1)分给甲﹐乙﹐丙3人﹐每人各得3本﹒(2)分装入3个相同的袋子﹐每袋装3本﹒(3)分装入3个相同的袋子﹐其中一袋装5本﹐另两袋各装2本﹒37. 学校举办象棋及围棋比赛﹐已知某班级有42位同学参赛﹐其中有34位同学参加围棋比赛﹐而两种棋赛都参加的同学有15人﹒试问此班有多少位同学参加象棋比赛?38. 求()321x x ++的展开式中2x 的系数﹒39. 求()322x x -+的展开式中4x 的系数﹒41. 自甲地到乙地有电车路线1条﹐公交车路线3条﹐自乙地到丙地有电车路线2条﹐公交车路线2条﹒今小明自甲地经乙地再到丙地﹐若甲地到乙地与乙地到丙地两次选择的路线中﹐电车与公交车路线各选一次﹐则有几种不同的路线安排?42. 某班举行数学测验﹐测验题分A﹐B﹐C三题﹒结果答对A题者有15人﹐答对B题者有19人﹐答对C题者有20人﹐其中A﹐B两题都答对者有10人﹐B﹐C两题都答对者有12人﹐C﹐A两题都答对者有8人﹐三题都答对者有3人﹒试问A﹐B﹐C三题中至少答对一题者有多少人?43. 在1到600的正整数中﹐是4﹐5和6中某一个数的倍数者共有几个?44.用黑白兩種顏色的正方形地磚依照如右的規律拼圖形:a是第n圖需用到的白色地磚塊數﹒設n(1)寫下數列n a的遞迴關係式﹒a﹒(2)求一般項n(3)拼第95圖需用到幾塊白色地磚﹒45. 欲将8位转学生分发到甲﹐乙﹐丙﹐丁四班﹒(1)若平均每班安排2人﹐共有几种分法?(2)若甲乙两班各安排3人﹐丙丁两班各安排1人﹐共有几种分法?46. 求满足12320003000n n n n n C C C C <++++<的正整数n ﹒47. (1)方程式9x y z ++=有多少组非负整数解﹖(2)方程式9x y z ++=有多少组正整数解﹖48. 旅行社安排两天一夜的渡假行程﹐其中往返渡假地点的交通工具有飞机﹑火车及汽车3种选择﹐而住宿有套房与小木屋2种选择﹒试问全部渡假行程﹐交通工具与住宿共有几种安排法﹖49. 老师想从10位干部中选出3人分别担任班会主席﹑司仪及纪录﹒试问有几种选法﹖50. 如果某人周末时﹐都从上网﹑打牌﹑游泳﹑慢跑与打篮球等5种活动选一种作休闲﹐那么这个月4个周末共有多少种不同的休闲安排呢﹖一、填充题 (65格 每格0分 共0分)1. (1)1-;(2)22. (1)112;(2)0;(3)403. (1)4480;(2)90-4. 485. 36. 4687. 568. 609. 9903 10. 44 11.(1)48;(2)384 12. 228 13. 6 14. 90 15. 12- 16. 6 17. {}4,4- 18. 8 19. (1)314;(2)686;(3)172 20. 35 21. 266 22. (1)37;(2)18 23. 10098x - 24. (1)45;(2)560 25. 9 26. 84 27. (1)555;(2)277;(3)1111;(4)1111 28. 160 29. 2102011x x -+ 30. 780 31. (1)26;(2)120 32. 20349 33. 462- 34. 16 35. 144 36. 12n n -⋅ 37. 192 38. 2139. (1)27;(2)81 40. 63 41. 8 42. 64 43. (1)56;(2)20 44. (1)369;(2)76 45. 129 46. 3756 47. 8640 48. 80 49. 54 50. 240二、计算题 (75小题 每小题0分 共0分)1. (1)2112a =﹐37a =﹐4172a =﹐510a =;(2)3522n +;(3)1330 2. 600 3. 见解析 4. 见解析 5. 18 6. (1)48;(2)48;(3)96 7. 150 8. 4x =﹐12y =﹐8n = 9. (1)3;(2)18 10. 28 11. 见解析 12. 1219,190a a =-= 13. (2) 14. (1)32;(2)64 15. 27 16. 0.986084 17. 101,4949,a b ==1c =- 18. (1)见解析;(2)4 19. (1)28;(2)14;(3)5720. 52 21. 101,4949,a b ==156550c = 22. (A)(B)(C)(E)(F)(G) 23. 76 24. (1)24a =﹐35a =﹐48a =﹐513a =;(2)248n n -+;(3)328 25. 66 26. (1)63;(2)25299 27. 5980 28. 45 29. 13 30. (1)72;(2)864 31. (1)420;(2)3660 32. (1)12a =﹐24a =﹐38a =﹐414a =;(2)12n n a a n +=+⨯;(3)22n n -+ 33. (1)260;(2)3380;(3)43940 34. (1)72;(2)72 35. 1800036. (1)1680;(2)280;(3)378 37. 23 38. 6 39. 9 40. 20 41. 8 42. 27 43. 280 44.(1)15,2n n a a n -=+≥;(2)53n +;(3)478 45. (1)2520;(2)1120 46. 11 47. (1)55;(2)28 48. 18 49. 720 50. 625一、填充题 (65格 每格0分 共0分)1. (1)3631x x +=⇒=-﹒(2)()()2320120x x x x -+=⇒--=1,2x ⇒=﹐∴2a =﹒2. (1)设第1r +项为10x 项﹐则()()882816222rr r r r r r C x C x x x ---⎛⎫-=- ⎪⎝⎭ 163102r r ⇒-=⇒=﹐∴10x 项之系数为()2822112C -=﹒(2)设第1r +项为3x 项﹐则()55255102112233r rr r r r r r C x C x x x ----⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭ 710333r r ⇒-=⇒=(不合)﹐∴3x 项之系数为0﹒ (3)设第1r +项为常数项﹐则()5535515322122rr r r r r r C x C x x x ----⎛⎫= ⎪⎝⎭3. (1)()()()()332238!22144803!3!2!x y z -⇒⨯⨯-=﹒ (2)()()()()2303223235!321031902!3!x y z x y x y -=⨯-=-﹐∴系数为90-﹒ 4. 所求为1161412148⨯⨯⨯⨯⨯⨯⨯=﹒[另解]34!2484⨯=﹒ 5. {}1,2,3,4﹐{}1,2,3,5﹐{}1,2,4,5﹐共3个﹒6. 2000~3000中3的倍数有3000200033433⎡⎤⎡⎤-=⎢⎥⎢⎥⎣⎦⎣⎦个﹐ 2000~3000中5的倍数有30002000120155⎡⎤⎡⎤-+=⎢⎥⎢⎥⎣⎦⎣⎦个﹐ 2000~3000中15的倍数有30002000671515⎡⎤⎡⎤-=⎢⎥⎢⎥⎣⎦⎣⎦个﹐ ∴所求为33420167468+-=﹒ 7. 83563!P =﹒ 8. ()542160⨯⨯+=﹒9. ∵12n n a a n +=+﹐∴2121a a =+⨯3222a a =+⨯()1)21n n a a n -+=+⨯-()()21121213232n n n a a n n n -⋅=+⎡++⋅⋅⋅⋅⋅⋅+-⎤=+⨯=-+⎣⎦﹐ ∴210010010039903a =-+=﹒10. ∵T A T B ⊂⋃⊂﹐∴T 的个数为4522221632444+-=+-=﹒ 11. (1)5!2485⨯=﹒ (2)A a B b C c D d E e1181614121384⨯⨯⨯⨯⨯⨯⨯⨯⨯=﹒[另解]55!1238452⨯⨯=﹒ 12. 全部-(恰有一空箱)-(恰有二空箱)()67564545323228C C C C =⨯-⨯--=﹒13. 3216⨯⨯=﹒14. 任意排0-在首位7!6!5675610515904!2!4!2!22⨯⨯⨯=-=-=-=﹒ 15. 展开后各实数项和为24681086421010101010024681111122222C C C C C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭100101012C ⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭512110242=-=-﹒ [另解]原式()()10cos 60sin 60i =⎡-︒+-︒⎤⎣⎦()()cos 600sin 600i =-︒+-︒122=-+﹐ ∴实数项和为12-﹒ 16. ∵1213n n a a +=+⋅⋅⋅⋅⋅⋅ ∴1213n n a a -=+⋅⋅⋅⋅⋅⋅ -()1123n n n n a a a a +-⇒-=- 而11a =﹐2125133a a =+=﹐2123a a -=﹐ 表示数列1n n a a +-为首项23﹐公比23的等比数列﹐ ()()()121321n n n a a a a a a a a -=+-+-+⋅⋅⋅⋅⋅⋅+-111221332211213223313n n n ---⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎛⎫⎣⎦=+=+-=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦-﹐ ∴()111223262313n n n n a -∞∞==⎛⎫-=== ⎪⎝⎭-∑∑﹒17. ∵{}2,5A B ⋂=﹐∴154a a +=⇒=﹐∴{}2,4,5A =﹐{}4,2,5B =-﹐{}4,2,4,5A B ⋃=-﹐2134 32412314 34212341 4321共8种﹒19. 设1到1000的自然数所成的集合为基集U ﹐1到1000的自然數中﹐5的倍數者所成的集合為A ﹐ 而7的倍數者所成的集合為B ﹐ 則A B ⋂表示35的倍數者所成的集合﹐(1)即求()()()()n A B n A n B n A B ⋃=+-⋂100010001000200142283145735⎡⎤⎡⎤⎡⎤=+-=+-=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦﹒(2)即求()()()()1000314686⎡⎤'''⋂=⋃=-⋃=-=⎢⎥⎣⎦n A B n A B n U n A B ﹒ (3)即求()()()20028172n A B n A n A B -=-⋂=-=﹒20. 7!354!3!=﹒ 21. 若一整数不能被2整除﹐则必不能被4﹑6整除﹐故本题即求1到1000正整数中﹐不能被2﹑3﹑5之一整除者的个数﹒设1到1000之正整数中﹐可被2﹑3﹑5整除者之集合分别为A ﹑B ﹑C ﹐则()10005002n A ⎡⎤==⎢⎥⎣⎦﹐()10003333n B ⎡⎤==⎢⎥⎣⎦﹐()10002005n C ⎡⎤==⎢⎥⎣⎦﹐ ()10001666n A B ⎡⎤⋂==⎢⎥⎣⎦﹐()100010010n A C ⎡⎤⋂==⎢⎥⎣⎦﹐()10006615n B C ⎡⎤⋂==⎢⎥⎣⎦﹐ ()10003330n A B C ⎡⎤⋂⋂==⎢⎥⎣⎦﹐ ()()()()()()()()n A B C n A n B n C n A B n A C n B C n A B C ⋃⋃=++-⋂-⋂-⋂+⋂⋂ 5003332001661006633734=++---+=﹐故所求为()()'''10001000734266n A B C n A B C ⋂⋂=-⋃⋃=-=(个)﹒22. (1)①一个50⇒设10元x 个﹐5元y 个﹐1元z 个﹐则10550x y z ++=﹐x 0 1 2 3 4 5y 0~10 0~8 0~6 0~4 0~2 0z 50~0 40~0 30~0 20~0 10~0 0∴所求为36137+=种﹒(2)设50元x 个﹐10元y 个﹐5元z 个﹐则50105100x y z ++= 10220x y z ⇒++=﹐共116118++=种﹒23. ()()()1002100100100121111111x x C x C x +=⎡+-⎤+=+-+-+⎣⎦……()10010010011C x +-+﹐∴1001x +除以()21x -的余式为()11001110098x x +-+=-﹒24. (1)3101088245H C C ===﹒ (2)8!560.3!2!3!= 25. 先考虑5不在千位﹐1不在百位﹐6不在十位﹐8不在个位的方法﹐ 14!43!62!41!10!9⨯-⨯+⨯-⨯+⨯=﹐∴最多再猜9次﹒26. {}{}2222,1100001,2,3,,100,=≤≤=正整數S x x ∴()100n S =﹐{}|12,,110000T x x k k x ==≤≤為正整數﹐ 令()222212232336x k k ==⨯⨯=⨯⨯=﹐ 则()()(){}22261,62,,616,⋂=⨯⨯⨯S T ∴()16n S T ⋂=﹐故()1001684n S T -=-=﹒27. (1)所求为999955518⎡⎤=⎢⎥⎣⎦﹒ (2)所求为999927736⎡⎤=⎢⎥⎣⎦﹒ (3)()()()()n A B C n A B n C n A B C ⎡⋂⋃⎤=⋂+-⎡⋂⋂⎤⎣⎦⎣⎦5558332771111=+-=﹒(4)()()()n A B C n A B A C ⎡⋂⋃⎤=⎡⋂⋃⋂⎤⎣⎦⎣⎦()()()()n A B n A C n A B A C =⋂+⋂-⎡⋂⋂⋂⎤⎣⎦ ()555833n A B C =+-⋂⋂5558332771111=+-=﹒28.()()()()()()236151030n n n n n n +---+15010050203010160=+---+=﹒29. ()()1010222211x x x ⎡⎤-+=-+⎣⎦ ()()10922101010911C x C x ⎡⎤⎡⎤=-+-+⎣⎦⎣⎦……()()22210101021011C x C x C ⎡⎤+-+-+⎣⎦ 故余式为()()210102210110211102011C x C x x x x -+=-++=-+﹒ 30.①B ﹑D 同﹐54143240,A B D C E⨯⨯⨯⨯= ②B ﹑D 異﹐ 54333540,A B D C E⨯⨯⨯⨯=由①②可得﹐共有240540780+=种﹒31.(1)走捷徑等於是走向只許向右與向上兩種﹒如圖﹐ 由A 開始朝任何方向走都有1種走法﹐走至交叉 點P 後﹐將會合箭頭的方法數全部加起來﹐即為走到該點的走法數(累加法)﹒如圖﹐走法有26種﹒(2)走向可以↑﹑→或↓﹐但不可以←又不可重複走﹒如圖﹐由P 出發﹐依所規定的走法﹐走到隔鄰的鉛垂路線上立即停止﹐再決定走向﹒如此相鄰的兩鉛垂路線間的走法數相乘﹐即為所求的走法數﹒∴走法有120種﹒32. ()()23311x x ++++……()()()()()()203321332033311111111x x x x x x x ⎡⎤++-+-+⎢⎥⎣⎦++==+-﹐ 所求即分子()2131x +展开式中15x 项系数 ∴所求为21521201918172034954321C ⨯⨯⨯⨯==⨯⨯⨯⨯﹒ 33. ()()()()1001201111k k x x x x =-=-+-+-+∑……()101x +- ()()()11111111111x x x x⎡⎤----⎣⎦==--﹐ 展开式中5x 系数即为()1111x --展开式中6x 系数﹐∴所求为()61161462C --=-﹒()()()2320202012310.010.010.01C C C =+-+-+-+……()2020200.01C +-10.20.0190.00114=-+-+……0.81786≈﹐ ∴81716a b c ++=++=﹒35. 设一步一阶走x 次﹐一步二阶走y 次﹐则211x y +=﹐6!7!8!9!10!15!3!4!5!3!7!2!9!⇒+++++144=﹒ 36. 令12323n n n n n S C C C nC =+++⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅ 则()0111n n n n S nC n C C -=+-+⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅+()0122n n n nn S n C C C n ⇒=++⋅⋅⋅⋅⋅⋅+=⋅﹐∴12n S n -=⋅﹒ 37.()1142!4!192.⨯⨯⨯⨯=選位A aBb38. 设白色x 块﹐黑色y 块﹐则27x y +=﹐⇒6!5!4!116104215!2!3!3!+++=+++=﹒ 39. (1)33311127C C C =﹒ (2)33333333321121121181C C C C C C C C C ++=﹒40. 62163-=41. 20202020123202320S C C C C =+++⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅ 20202001192019S C C C =++⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅()202020200120220202S C C C +⇒=++⋅⋅⋅⋅⋅⋅+=⨯﹐∴20102S =⨯﹐∵20log 220log 2200.3010 6.02==⨯=﹐∴202为7位数﹐∴S 为8位数﹒ 42. ①选一面4⇒﹐ ②选二面4312⇒⨯=﹐ ③选三面43224⇒⨯⨯=﹐ ④选四面⇒432124⨯⨯⨯=﹐由①②③④可得﹐共可作成412242464+++=种﹒ 43. (1)8!565!3!=﹒ (2)所求=全部()n C D -⋃()()()56A C B A D B A C D B =-⎡→→+→→-→→→⎤⎣⎦3!5!4!4!3!4!5612!3!2!3!2!2!2!2!2!⎛⎫=-⨯+⨯-⨯⨯ ⎪⎝⎭()5630241820=-+-=﹒44. (1)含中空:3342111172,C C C C ⨯⨯⨯= 左 上 右 下不含中空:37934792334342222222222222223C C C C C C C C C C C C C C +++----左 上 右 下 左上 右上 左下 右下 631081263691836297=+++----= ∴所求为72297369.+=(2)含中空:边长为31⇒﹐边长为44⇒﹐边长为56⇒﹐边长为63⇒﹐∴共14个﹐ 不含中空:()()()()625128176352418523122362,⨯+⨯+⨯+⨯+⨯+⨯+⨯+--⨯+⨯--=左 上 右 下 左上 右上 左下 右下 ∴所求为146276+=个﹒ 45. ①只用一色:3种﹐②只用二色:()()()()()()6,1,5,2,4,3,3,42,5,1,6∴()322!636,C ⋅⨯=上下色交換③用三色:红+白+黄=7 1 1 1 剩4∴36443!690,⨯=⨯=H C 紅白黃排列∴共33690129++=种﹒46. 444333222111234234234234146410H H H H H H H H H H H H ⨯⨯⨯-⨯⨯⨯+⨯⨯⨯-⨯⨯⨯+⨯700049006604103756=-⨯+⨯-⨯+=﹒ 47. 6A a Bb →→→坐法其他人坐法1162!6!8640⨯⨯⨯⨯=﹒48. ()A B A P B A Q B A P Q B →-→→+→→-→→→ 10!4!6!5!5!4!5!16!4!2!2!4!2!3!2!3!2!2!2!3!2!⎛⎫⇒-⨯+⨯-⨯⨯ ⎪⎝⎭()210901006080=-+-=﹒ 49. aa 不相邻且llll 不相邻﹐可先排pmaa ﹐再安插llll ﹐ ①aa 排在一起时:aa 排法有3!6=种﹐再安插4个l :p m a a △△△△△方法有434C =种﹒↑ l②aa 不排在一起时:p m △△△排法有322!6C ⨯=种﹐ 再安排4个l :p a m a △△△△△方法有545C =种﹒ 由①②可知﹐排法有646554⨯+⨯=种﹒ [另解]llll 不相邻llll -不相邻且aa 相邻54444!3!606542!4!4!P P =⨯-⨯=-=﹒ 50. 6!35!2!34!2!2!13!2!2!2!240-⨯⨯+⨯⨯⨯-⨯⨯⨯⨯=﹒二、计算题 (75小题 每小题0分 共0分)1. ∵132n n a a +=+﹐∴132n n a a +-=﹐ 表示n a 为首项4﹐公差32的等差数列﹐(1)2133114222a a =+=+=﹐ 3231137222a a =+=+=﹐ 4333177222a a =+=+=﹐ 54317310222a a =+=+=﹒ (2)()()1335141222n a a n d n n =+-=+-⨯=+﹒ (3)()401240134024401213302k k a a a a =⎡⎤⨯+-⨯⎢⎥⎣⎦=++⋅⋅⋅⋅⋅⋅+==∑﹒ 2. 从8名教师中选出4名教师去4个城市研习的方式可分为甲去和甲不去两种情形: (1)若是甲去研习﹐则丙也会去﹐而乙不去﹐因此需从剩下的5名教师中选出2人去参加研习﹐故选法有52C 种﹒ (2)若是甲不去研习﹐则丙也不会去﹐而乙可去也可不去﹐因此需从剩下的6名教师中选出4名教师去参加研习﹐故选法有64C 种﹒综合这两种情形﹐从8名教师中选派4名教师的选法共有562425C C +=种﹒而选出4名教师后﹐分别安排到4个城市去研习﹐则安排的方式有4!种﹐ 因此总共有254!600⨯=种选派方法﹒3. ()()()()()()()()()()6651423324666660123432332323232x y C x C x y C x y C x y C x y -=+-+-+-+- ()()()566656322C x y C y +-+-6542332456729291648604320216057664.x x y x y x y x y xy y =-+-+-+4. ()()()()()()()()()44312213444444012342122121211x C x C x C x C x C -=+-+-+-+-43216322481x x x x =-+-+﹒5. SENSE 的5个字母中取3种字母﹐其中任取3个字母可能取出「三个字母皆不相同」或「两个字母同另一不同」两种情形:(1)选出三个字母皆不相同的选法有331C =种﹐排列的方法有3!种﹐ 因此排法有333!6C ⨯=种﹒(2)选出两个字母同另一不同的选法有2211C C ⨯种﹐排列的方法有3!2!1!种﹐ 因此排法有22113!122!1!C C ⨯⨯=种﹒ 综合这两种情形﹐共有18种排法﹒6. (1)先走任一瓣都可以﹐故将3瓣视为3条路任意排列﹐方法3!种﹐又每一瓣走法有2种(两个方向)﹐故所求为323!⨯48=种﹒(2)323!48⨯=﹒ (3)423!96⨯=﹒7. ()()()()n A B n A n B n A B ⋃=+-⋂253343422332111111111111C C C C C C C C C C C C =⨯⨯⨯+⨯⨯⨯-⨯⨯⨯909636150.=+-=8. 555112n n C x y -=⋅⋅⋅⋅⋅⋅ 6667n n C x y -=⋅⋅⋅⋅⋅⋅77714n n C x y -=⋅⋅⋅⋅⋅⋅6165xn y⇒⋅=⋅⋅⋅⋅⋅⋅- 7286xn y⇒⋅=⋅⋅⋅⋅⋅⋅- ()()66167528n n -⇒=-﹐∴8n =﹐ 代入⇒8x y =﹐由⇒()877184C y y =8812y ⎛⎫⇒= ⎪⎝⎭﹐即得12y =±﹐4x =±﹐∴14,,82x y n ===(取正值)﹒9. (1)红+白=41 1 剩223223H C ⇒==﹒[另解] 红 白1322313.⇒共種 (2)利用第(1)题的结果42318C ⇒⨯=﹒10. 用8步走完10级楼梯﹐假设一级走了x 步﹐两级走了y 步﹐ 可列得8210x y x y +=⎧⎨+=⎩解得6x =﹐2y =﹐因此用这样的走法共有8!286!2!=(种)﹒ 11.(1){}1,2,4,5,7,8,9A B ⋃=﹒ (2){}1,2,5A B ⋂=﹒ (3){}4,8A B -=﹒(4){}7,9B A -=﹒(5){}3,6,7,9,10'=-=A U A ﹒ (6){}3,4,6,8,10'=-=B U B ﹒(7)(){}3,6,10'⋃=A B ﹒(8){}3,6,10''⋂=A B ﹒ (9)(){}3,4,6,7,8,9,10'⋂=A B ﹒(10){}3,4,6,7,8,9,10''⋃=A B ﹒12. ()()()()191919182219192011111x x x x C x C x x ⎡⎤-+=-+=-+-+⋅⋅⋅⋅⋅⋅⎣⎦﹐∴()1919101119,a C C =-=-1919192021190.a C C C =+=13. 可看作第一位男生有4位女生舞伴可选择﹐第二位男生有3位女生舞伴可选择﹐以此类推得舞会配对方法数共有44432124P =⨯⨯⨯=种﹒故选(2)﹒ 14. (1)5232=﹒(2)①先往右42232⨯=﹐ ②先往左42232⨯=﹐ 共有323264+=﹒ 15.如图﹐共有27种方法﹒16. ()()()()()77237777712370.99810.00210.0020.0020.0020.002C C C C =-=-⨯+⨯-⨯+⋅⋅⋅⋅⋅⋅-⨯10.0140.0000840.0000002800.9860837200.986084.≈-+-=≈ 17. ()()1011012211x x x x ⎡⎤+-=+-⎣⎦()()()()()21011011009910121012101212101111x C x x C x x C x =+-+++-⋅⋅⋅⋅⋅⋅+-()10111c =-=-﹐∵()1011x +展开式中才有x 项﹐∴1011101,a C == ∵()1011x +及()100101211C x x -+展开式中均有2x 项﹐∴101101214949.b C C =-=18. (1)∵()()()()()()111!!11!1!1!1!1n n kk n C n C k n k k k n n k k n +++===+-+⋅+⋅-++﹐ ∴左式()()1111121011121.111nn n n n n k n k C C C C k n n +++++==⨯=++⋅⋅⋅⋅⋅⋅+=-+++∑ (2)承(1)知﹐()1113121213111n n n n ++-=⇒-=++﹐得4n =﹒ 19. (1)□□:4728⨯=﹒ ↓ 6﹑7﹑8﹑9(2)45﹑48﹑54﹑57﹑60﹑66﹑69﹑75﹑78﹑84﹑87﹑90﹑96﹑99﹐共14个﹒ (3)4□7⇒个﹐ 5□7⇒个﹐∴1459a =﹐1358a =﹐1257a =﹐∴平均为57分﹒ 20.上午 下午 1 2 3 4 5 6 7數 數 國 國 ╳ 體 體 2228⇒⨯⨯= 數 數 體 ╳ 國 國 體 2228⇒⨯⨯=數 數 體 ╳ ╳ 國 國 2124⇒⨯⨯= 體 數 數 ╳ 國 國 體 2228⇒⨯⨯= 體 數 數 ╳ ╳ 國 國 2124⇒⨯⨯=體 體數數國國 體 23212⇒⨯⨯=體體 數 數 ╳國國 2228⇒⨯⨯=∴共有8848412852++++++=種﹒21. ()()()()1011012211x xx x+-=++-()()()()()()21011011009910121012101212101111x C x x C x x C x =+++-++-+⋅⋅⋅⋅⋅⋅+-()()()1011002411011x x x x f x =+-++⋅﹐其中()f x 为一多项式﹐∴x 项的系数1011101,a C == 2x 项的系数10121014949,b C =-=3x 项的系数10110031101156550.c C C =-⨯=23.∴共有441212218396676+++++++++=种走法﹒ 24. (1)∵()123n n a a n +=+-且15a =﹐ ∴()21213514a a =+⨯-=-=﹐ ()32223415a a =+⨯-=+=﹐ ()43233538a a =+⨯-=+=﹐ ()542438513a a =+⨯-=+=﹒ (2)∵()123n n a a n +=+-﹐ ∴()21213a a =+⨯- ()32223a a =+⨯-()()121223)213n n n n a a n a a n ---=+⎡⨯--⎤⎣⎦+=+⎡⨯--⎤⎣⎦()()()2112121315233482n n n a a n n n n n -⋅=+⨯⎡++⋅⋅⋅⋅⋅⋅+-⎤--=+⨯-+=-+⎣⎦﹒(3)20a =2204208328-⨯+=﹒25. x ﹐y ﹐z 的非负整数解共有331011212101010266H C C C +-====(组)﹒26. (1)3﹑4﹑5 1﹑3﹑5 →有363⨯⨯个 2 4﹑5 1﹑3﹑5 →有123⨯⨯个 2 3 1﹑3﹑5 →有113⨯⨯个∴共有()()36323363⨯⨯+⨯+=个大于230的三位数奇数﹒(2)①个位数字为1者有()()()36121121⨯+⨯+⨯=个﹐为3﹑5者也各有21个﹐ 故个位数字的和为()21135189⨯++=﹒②十位数字为1﹑2者各有339⨯=个﹐为3者有()33312⨯+=个﹐为4﹑5者各有 ()331312⨯+⨯=个﹐故十位数字和为()()()9121231245171⨯++⨯+⨯+=﹒③百位数字为3﹑4﹑5者各有6318⨯=个﹐为2者有()()23139⨯+⨯=个﹐故百位数字和为()()1834592234⨯++⨯⨯=﹒由①②③可知﹐总和为()()1891711023410025299+⨯+⨯=﹒27. 由于515C =且565622125C C C C =-=-﹐于是利用帕斯卡尔定理111n n n m m m C C C ---=+﹐得原式()66781920234516175C C C C C C =++++++-778192034516175C C C C C =+++++-8819204516175C C C C =++++-21175C =- 5980=﹒28. 设桌球俱乐部拟购买刀板﹐直拍与大陆拍各1x ﹐2x ﹐3x 把﹐ 根据题意得1238x x x ++=﹒其非负整数解有33811010888245H C C C +-====(组)﹐故共有45种不同的购买方式﹒29. 直线0ax by +=是恒过原点﹐且斜率为a b -的直线﹒因为斜率ab-为正值﹐所以,a b 必须异号﹐且,a b 皆不等于0﹒我们以a 的正负情形讨论如下﹕(1)当0a >时﹐a 有3种选法﹐而此时0b <亦有3种选法﹐ 因此有339⨯=种选法﹒(2)当0a <时﹐a 有3种选法﹐而此时0b >亦有3种选法﹐ 因此有339⨯=种选法﹒ 但是①当()()()(),2,1,4,2,6,3a b =---时﹐均表示同一条直线20x y -=﹒ ②当()()()(),3,6,2,4,1,2a b =---时﹐均表示同一条直线20x y -+=﹒ ③当()(),2,2a b =-﹐()2,2-时﹐均表示同一条直线0x y -=﹒ 因此需扣除重复计算的2215++=条直线﹒ 故共可表出99513+-=条相异的直线﹒ 30.(1)從A 走到P 後 ﹐方法有2種﹐完成A 到P 的各路線﹐方法有3!種﹐ 完成P 到B 的各路線﹐方法有3!種﹐ ∴共有()223!3!23!⨯⨯=⨯72=種﹒(2)A 到P 後 ﹐方法2種﹐P 到Q 後 ﹐方法2種﹐∴共有()32223!3!3!23!⨯⨯⨯⨯=⨯864=種﹒ABA Q P B31. (1)B ﹑D 同色﹐A BD C E →→→ 5433180⨯⨯⨯=﹐ B ﹑D 异色﹐A B D C E →→→→54322240⨯⨯⨯⨯=﹐ ∴共有180240420+=种涂法﹒(2)B ﹑D ﹑F 同色﹐A BDF C E G →→→→ 54333540⨯⨯⨯⨯=﹐ B ﹑D ﹑F 异色﹐A B D F C E G →→→→→→ 5432222960⨯⨯⨯⨯⨯⨯=﹐ B ﹑D 同色﹐F 异色﹐A BD F C E G →→→→→ 543322720⨯⨯⨯⨯⨯=﹐同理B ﹑F 同色﹐D 异色;D ﹑F 同色﹐B 异色涂法也各有720种﹐ ∴共有54096072033660++⨯=种﹒ 32.(1)12a = 24a = 38a = 414a =1n = 2n = 3n = 4n =(2)12a =﹐212a a =+﹐3222a a =+⨯﹐4323a a =+⨯﹐∴12n n a a n +=+⨯﹒ (3)∵12n n a a n +=+⨯且12a =﹐ ∴2121a a =+⨯ 3222a a =+⨯()1222n n a a n --=+⨯- ()1)21n n a a n -+=+⨯-()()21121212222n n n a a n n n -⨯=+⨯⎡++⋅⋅⋅⋅⋅⋅+-⎤=+⨯=-+⎣⎦∴22n a n n =-+﹒ 33. (1)①A ﹑C 同色﹐541480,A B C D ⨯⨯⨯=②A ﹑C 异色﹐5433180,A B C D ⨯⨯⨯=由①②可得﹐共有80180260+=种﹒(2)由(1)可知[]541433⨯⨯⨯+⨯﹐推得[]25414333380⨯⨯⨯+⨯=﹒ (3)[]354143343940⨯⨯⨯+⨯=﹒34.(1)休旅車及跑車相間排列的情形﹐可分為兩種情形﹐如圖所示:3輛休旅車排成一列共有3!6=種方法﹐同樣地﹐3輛跑車排成一列共有3!6=種方法﹐ 因此根據乘法原理﹐共有26672⋅⋅=種排法﹒ (2)因為休旅車及跑車要各自排在一起﹐如圖所示:所以可以將3輛休旅車看成「1」輛﹐3輛跑車看成「1」輛﹐變成2輛的排列問題﹐有2!2=種方法﹒又3輛休旅車之間有3!6=種排列方法﹐3輛跑車之間有3!6=種排列方法﹒故共有2!3!3!26672⋅⋅=⋅⋅=種排法﹒35. 选出2本英文书3本中文书的方法有6523150C C ⋅=(种)﹐将此5本书作直线排列﹐有5!种排法﹐故所求排法为65235!18000C C ⋅⋅=(种)﹒36.(1)從9本中取出3本給甲﹐取法有93C 種;再從其餘的6本取出3本給乙﹐取法有63C 種;剩下的3本給丙﹐即33C 種﹒因此﹐全部分配方式共有9633331680C C C ⋅⋅=(種)﹒(2)先假設袋子上依序標示有甲﹐乙﹐ 丙的記號﹐則有963333C C C ⋅⋅種分 法﹐但事實上袋子是相同的﹐因此每3!種只能算1種﹐如圖所示﹒故分配方式共有96333316802803!6C C C ⋅⋅==(種)﹒ (3)仿上述作法﹐先假設袋子依序有甲﹐乙﹐丙的記號﹐甲得5本﹐乙丙各得2本的分法有942522C C C ⋅⋅種﹒因袋子是無記號的﹐所以如圖的2!種其實是同1種﹒故分配方式共有9425223782!C C C ⋅⋅=(種)﹒37.設集合A 表示參加象棋比賽的同學﹐ 集合B 表示參加圍棋比賽的同學﹐ 集合A B ⋃表示參加棋藝活動的同學﹐集合A B ⋂表示參加兩種棋藝活動的同學﹒由題意知()34n B =﹐()42n A B ⋃=﹐()15n A B ⋂=﹒ 利用()()()()n A B n A n B n A B ⋃=+-⋂﹐得()423415n A =+-﹐即()23n A =﹒ 故這個班級中共有23位同學參加象棋比賽﹒。
数学竞赛组合试题及答案
数学竞赛组合试题及答案试题一:排列组合问题题目:某班级有30名学生,需要选出5名代表参加校际数学竞赛。
如果不考虑性别和成绩,仅考虑组合方式,问有多少种不同的选法?答案:这是一个组合问题,可以用组合公式C(n, k) = n! / (k! *(n-k)!)来计算,其中n为总人数,k为选出的人数。
将数值代入公式,得到C(30, 5) = 30! / (5! * 25!) = 142506。
试题二:概率问题题目:一个袋子里有10个红球和20个蓝球,随机抽取3个球,求至少有1个红球的概率。
答案:首先计算没有红球的概率,即抽到3个蓝球的概率。
用组合公式计算,P(3蓝) = C(20, 3) / (C(30, 3)) = (20! / (3! * 17!)) / (30! / (3! * 27!))。
然后,用1减去这个概率得到至少有1个红球的概率,P(至少1红) = 1 - P(3蓝)。
试题三:几何问题题目:在一个半径为10的圆内,随机选择两个点,连接这两点形成弦。
求这条弦的长度小于8的概率。
答案:首先,弦的长度小于8意味着弦所对的圆心角小于某个特定角度。
通过几何关系和圆的性质,可以计算出这个特定角度。
然后,利用面积比来计算概率。
圆的面积为πr²,而弦所对的扇形面积可以通过角度来计算。
最后,将扇形面积除以圆的面积得到概率。
试题四:数列问题题目:给定一个等差数列,其首项为3,公差为2,求前10项的和。
答案:等差数列的前n项和公式为S_n = n/2 * (2a + (n-1)d),其中a为首项,d为公差,n为项数。
将数值代入公式,得到S_10 = 10/2* (2*3 + (10-1)*2) = 10 * 13 = 130。
试题五:逻辑推理问题题目:有5个盒子,每个盒子里都有不同数量的球,分别是1个,2个,3个,4个和5个。
现在有5个人,每个人随机选择一个盒子,每个人只能拿一个盒子。
问至少有一个人拿到的盒子里球的数量与他选择的顺序号相同的概率。
组合数学考试题目及答案
组合数学考试题目及答案**组合数学考试题目及答案**一、单项选择题(每题3分,共30分)1. 从10个不同的元素中取出3个元素的组合数为()。
A. 120B. 210C. 100D. 150答案:B2. 以下哪个不是排列数的性质?()。
A. \( P(n, n) = n! \)B. \( P(n, 0) = 1 \)C. \( P(n, k) = \frac{n!}{(n-k)!} \)D. \( P(n, k) = \frac{n!}{k!} \)答案:D3. 从5个不同的元素中取出2个元素的排列数为()。
A. 10B. 20C. 15D. 25答案:B4. 组合数 \( C(n, k) \) 和排列数 \( P(n, k) \) 之间的关系是()。
A. \( C(n, k) = \frac{P(n, k)}{k!} \)B. \( P(n, k) = \frac{C(n, k)}{k!} \)C. \( C(n, k) = k \times P(n, k) \)D. \( P(n, k) = k \times C(n, k) \)答案:A5. 以下哪个是组合数的性质?()。
A. \( C(n, k) = C(n, n-k) \)B. \( C(n, k) = C(n-1, k-1) \)C. \( C(n, k) = C(n, k+1) \)D. \( C(n, k) = C(n+1, k+1) \)答案:A6. 从8个不同的元素中取出3个元素的组合数为()。
A. 56B. 54C. 48D. 35答案:A7. 以下哪个是排列数的递推关系?()。
A. \( P(n, k) = P(n-1, k) + P(n-1, k-1) \)B. \( P(n, k) = P(n-1, k) - P(n-1, k-1) \)C. \( P(n, k) = P(n-1, k) \times P(n, 1) \)D. \( P(n, k) = P(n-1, k-1) \times P(n, 1) \)答案:D8. 从7个不同的元素中取出4个元素的排列数为()。
组合数学试题及答案
组合数学试题及答案一、选择题(每题3分,共30分)1. 在组合数学中,从n个不同元素中取出m个元素的组合数表示为:A. C(n, m)B. P(n, m)C. A(n, m)D. nCm答案:A2. 如果一个集合有10个元素,从中任取3个元素的组合数为:A. 120B. 210C. 1001D. 1000答案:B3. 组合数学中的排列数与组合数的关系是:A. P(n, m) = C(n, m) * m!B. C(n, m) = P(n, m) / m!C. P(n, m) = C(n, m) + m!D. P(n, m) = C(n, m) * n!答案:B4. 以下哪个公式用于计算组合数?A. C(n, m) = n! / (m! * (n-m)!)B. P(n, m) = n! / (n-m)!C. A(n, m) = n! / (m! * (n-m)!)D. B(n, m) = n! / (m! * (n-m)!)答案:A5. 如果一个集合有8个元素,从中任取2个元素的排列数为:A. 28B. 56C. 8!D. 7!答案:B6. 组合数学中,排列数P(n, m)的定义是:A. 从n个元素中取出m个元素的所有可能的排列方式的数量B. 从n个元素中取出m个元素的所有可能的组合方式的数量C. 从n个元素中取出m个元素的所有可能的排列方式的数量,不考虑顺序D. 从n个元素中取出m个元素的所有可能的组合方式的数量,考虑顺序答案:A7. 以下哪个公式用于计算排列数?A. P(n, m) = n! / (n-m)!B. C(n, m) = n! / (m! * (n-m)!)C. A(n, m) = n! / (m! * (n-m)!)D. B(n, m) = n! / (m! * (n-m)!)答案:A8. 如果一个集合有15个元素,从中任取5个元素的组合数为:A. 3003B. 3000C. 1365D. 15504答案:D9. 组合数学中的二项式系数表示为:A. C(n, m)B. P(n, m)C. A(n, m)D. B(n, m)答案:A10. 以下哪个公式用于计算二项式系数?A. C(n, m) = n! / (m! * (n-m)!)B. P(n, m) = n! / (n-m)!C. A(n, m) = n! / (m! * (n-m)!)D. B(n, m) = n! / (m! * (n-m)!)答案:A二、填空题(每题2分,共20分)1. 从5个不同元素中取出3个元素的组合数为 ________。
小学四年级数学组合练习题
小学四年级数学组合练习题1. 一个小朋友有5个不同颜色的画笔(红、蓝、黄、绿、紫),他要选择其中两支画笔进行涂色。
问他一共有几种不同的涂色组合?2. 一朵花有3片花瓣,其中两片为红色,一片为黄色。
小明想把其中一片红色的花瓣送给同桌。
问他一共有几种不同的选择方式?3. 小雨有6本不同的故事书,他每次想选择其中两本来阅读。
问他一共有几种不同的阅读组合?4. 小杰有7个不同颜色的球,他想选其中三个球放在储物箱里。
问他一共有几种不同的放置方式?5. 小红有4个不同颜色的橡皮擦,她想选择其中两个橡皮擦放在铅笔盒里。
问她一共有几种不同的放置方式?解答如下:1. 对于每支画笔,小朋友有两种选择:选或不选。
由于有5支画笔,每支都有两种选择,所以一共有2×2×2×2×2=2^5=32种不同的涂色组合。
2. 小明有两种选择:选择黄色花瓣或红色花瓣。
因此,他有2种不同的选择方式。
3. 小雨有6本书可供选择,他每次选择两本阅读,因此他的选择方式可以用C(6,2)表示。
C(6,2)表示从6本书中选择2本的组合数,计算方法为:C(6,2) = 6! / (2! × (6-2)!) = 6 × 5 / (2 × 1) = 15。
所以小雨一共有15种不同的阅读组合。
4. 小杰有7个球,他每次从中选择3个放入储物箱中。
我们可以使用C(7,3)来表示他的选择方式。
计算方法为:C(7,3) = 7! / (3! × (7-3)!) = 7 × 6 × 5 / (3 × 2 × 1) = 35。
所以小杰一共有35种不同的放置方式。
5. 小红有4个橡皮擦,她每次从中选择2个放入铅笔盒中。
我们可以使用C(4,2)来表示她的选择方式。
计算方法为:C(4,2) = 4! / (2! × (4-2)!) = 4 × 3 / (2 × 1) = 6。
组合数学练习题及解析
组合数学练习题及解析组合数学是数学中的一个分支,主要研究离散对象之间的组合关系。
它在计算机科学、统计学、运筹学等领域中具有广泛的应用。
本文将提供一些组合数学的练习题,并附上详细的解析,以帮助读者更好地理解和掌握这一领域的知识。
一、排列组合1. 从10个人中选出3个人组成一个小组,问有多少种不同的选择方式?解析:这是一个从10个元素中选取3个元素的组合问题。
根据组合的公式,可以得到答案为C(10, 3) = 10! / (3! * (10-3)!) = 120种选择方式。
2. 有10个小球,5个红色,5个蓝色,从中选取3个小球组成一个集合,问有多少种不同的集合?解析:这是一个从10个元素中选取3个元素并忽略其顺序的组合问题。
根据组合的公式,可以得到答案为C(10, 3) = 10! / (3! * (10-3)!)= 120种不同的集合。
3. 从字母A、B、C、D、E中任选3个字母组成一个字符串,问有多少种不同的字符串?解析:这是一个从5个元素中选取3个元素并考虑其顺序的排列问题。
根据排列的公式,可以得到答案为P(5, 3) = 5! / (5-3)! = 5*4*3 = 60种不同的字符串。
二、组合数学问题1. 假设有8本不同的书放在一排,问有多少种不同的放置方式?解析:这是一个考虑顺序的排列问题。
根据排列的公式,可以得到答案为P(8, 8) = 8! = 40320种不同的放置方式。
2. 有5个不同的水果,需要选择2个水果放入一个篮子中,问有多少种不同的放置方式?解析:这是一个从5个元素中选取2个元素并考虑其顺序的排列问题。
根据排列的公式,可以得到答案为P(5, 2) = 5! / (5-2)! = 5*4 = 20种不同的放置方式。
3. 一家公司有10个员工,其中3个员工必须参加一个会议,问有多少种不同的选取方式?解析:这是一个从10个元素中选取3个元素的组合问题。
根据组合的公式,可以得到答案为C(10, 3) = 10! / (3! * (10-3)!) = 120种不同的选取方式。
数学组合的练习题
数学组合的练习题一、选择题1. 下列哪个选项是数学组合中的基本原理?()A. 加法原理B. 乘法原理C. 除法原理D. 减法原理2. 从4个男生和3个女生中选出3人参加比赛,不同的选法有()种。
A. 10B. 20C. 30D. 403. 从数字1、2、3、4、5中任选3个数字组成三位数,不同的三位数有()个。
A. 10B. 15C. 20D. 25二、填空题1. 从5个不同的小球中取出3个,组成一个三角形,可以组成的不同三角形个数是______。
2. 一个班级有6名男生和4名女生,从中选出4人担任班干部,不同的选法共有______种。
3. 从数字0、1、2、3、4、5中任选3个数字组成一个三位数,这个三位数能被3整除的个数是______。
三、解答题1. 有红、黄、蓝三种颜色的球,每种颜色有5个。
现从中取出5个球,要求至少包含两种颜色,问有多少种不同的取法?2. 一个密码锁由4个数字组成,每个数字可以是0到9中的任意一个。
求:(1)密码锁的总个数;(2)密码锁中不含数字0和1的个数;(3)密码锁中包含数字0和1的个数。
3. 从数字1、2、3、4、5、6、7、8、9中任选5个数字,组成一个五位数。
求:(1)能被5整除的五位数个数;(2)能被4整除的五位数个数;(3)既能被5整除又能被4整除的五位数个数。
四、应用题1. 某学校举行运动会,共有8个班级参加。
每个班级需派出3名男生和2名女生参加比赛。
问共有多少种不同的参赛组合?2. 某商场举行抽奖活动,奖品分为一、二、三等奖,其中一等奖1个,二等奖2个,三等奖3个。
现有10名顾客参加抽奖,求不同的中奖组合总数。
3. 一个班级有40名学生,其中有10名篮球运动员、15名足球运动员和15名乒乓球运动员。
现从中选出10名学生参加校运动会,要求至少包含2名篮球运动员、3名足球运动员和3名乒乓球运动员。
问共有多少种不同的选法?五、判断题1. 从7个不同的元素中取出5个元素进行排列,其排列数为7的阶乘除以2的阶乘。
(完整版)组合数学试题集
组合数学试题集一.简单题目可以根据需要改成选择题或者填空题1.在1到9999之间,有多少个每位上数字全不相同而且由奇数构成的整数?(参见课本21页) 解:该题相当于从“1, 3, 5, 7, 9”五个数字中分别选出1, 2, 3, 4作排列的方案数;....... 一—1 »(1)选1个,即构成1位数,共有P5个;....................... 一一2 .(2)选2个,即构成两位数,共有是个;—3 .(3)选3个,即构成3位数,共有P5个;(4)选4个,即构成4位数,共有P54个;_1 _2 _3 _4 __ ___由加法法则可知,所求的整数共有:尾是P5尾205个。
2.一教室有两排,每排8个座位,今有14名学生,问按下列不同的方式入座,各有多少种做法?(参见课本21页)(1)规定某5人总坐在前排,某4人总坐在后排,但每人具体座位不指定;(2)要求前排至少坐5人,后排至少坐4人。
解:(1)因为就坐是有次序的,所有是排列问题。
5人坐前排,其坐法数为P(8,5) , 4人坐后排,其坐法数为P(8,4),剩下的5个人在其余座位的就坐方式有P(7,5)种,根据乘法原理,就座方式总共有:P(8,5) gP(8,4) gP(7,5) 28 449 792 000 (种)(2)因前排至少需坐6人,最多坐8人,后排也是如此。
可分成三种情况分别讨论:①前排恰好坐6人,入座方式有C(14,6)P(8,6) P(8,8);②前排恰好坐7人,入座方式有C(14,7)P(8,7) P(8,7);③前排恰好坐8人,入座方式有C(14,8)P(8,8)P(8,6);各类入座方式互相不同,由加法法则,总的入座方式总数为:C(14,6) P(8,6) P(8,8) C(14,7) P(8,7) P(8,7) C(14,8) P(8,8) P(8,6) 10 461394 944 0003. 一位学者要在一周内安排 50个小时的工作时间,而且每天至少工作5小时, 问共有多少种安排方案?(参见课本 21页)解:用为表示第i 天的工作时间,i 1,2,L ,7 ,则问题转化为求不定方程x 1 x 2 x 3x 4 x 5x 6x 750的整数解的组数,且X i 5,于是又可以转化为求 不定方程y 1y 2 y 3 y 4 y 5y 6 y 7 15的整数解的组数。
组合问题练习题
组合问题练习题组合问题是离散数学中的一个重要概念,它在组合数学、图论、概率论等领域都有广泛的应用。
组合问题的解决往往需要一定的技巧和数学思维,下面是一些组合问题的练习题,帮助读者提升解决这类问题的能力。
1. 餐厅菜单上有10道菜,你要从中选择3道菜作为晚餐的主菜,请问你有多少种选择的可能性?2. 一副扑克牌有52张牌,你要从中选择5张牌作为手牌,请问你有多少种选择的可能性?3. 一家公司有8名员工,其中3名员工将被选为董事会成员,另外2名员工将被选为监事会成员,请问公司有多少种不同的人员组合方案?4. 一个有序序列中,有8个不同的元素。
从中选择4个元素组成一个子序列,请问有多少种不同的子序列组合方案?5. 在一个班级中,有8名男生和6名女生。
从中选择4名学生组成一个考试小组,请问有多少种不同的小组组合方案?以上是一些组合问题的练习题。
解决这些问题需要运用组合数学中的相关知识,例如排列组合、二项式系数等。
通过练习这些问题,读者可以熟悉组合问题的解决方法,并提升自己解决组合问题的能力。
组合问题的解决思路可以通过数学公式或者直接计数的方法来实现。
在计算组合问题的解的时候,常常需要注意是否需要考虑元素的顺序以及重复的情况。
组合问题在实际生活中有广泛的应用。
例如在排列座位、选择队伍、分配任务等场景中,经常需要考虑组合问题。
解决组合问题可以帮助我们更加合理地组织资源、安排任务,并且能够提高效率。
通过解决上述练习题,可以加深对组合问题的理解,并且提高解决组合问题的能力。
希望读者能够善于运用组合数学的知识,解决生活和工作中的实际问题,提升自己的数学思维能力。
组合问题是离散数学中的一个重要概念,它在组合数学、图论、概率论等领域都有广泛的应用。
组合数学试卷汇总(共12套,其中8套有答案)
电子科大2001组合数学(有答案)华师大组合数学及其参考答案某校组合数学期末试卷和参考答案试卷编号:5079 座位号 浙江广播电视大学2006年春季学期开放教育本科期末考试《组合数学》试题2006年7月一、填空题(每小题3分,共15分)1.每位上的数字互异且非零的两位数共有____________个。
2.现在有10双不同的鞋。
为了保证能够有一双鞋被选出,至少要从这20只鞋中取出____________只鞋。
3.712345()x x x x x ++++展开式中231345x x x x 的系数为____________。
4.序列 1, c, c 2, …, c n , …的生成函数是_____________________________________。
5.数值函数f 和g 的卷积f *g 的通项f *g (r) = 。
二、选择题(每小题3分,共15分)1.在100和999之间有 ( ) 个每位上的数字均不同的奇数。
(A) 280(B) 320 (C) 360 (D) 720.2.以下公式正确的是 ( )。
(A)1122n n n n ⎛⎫⎛⎫ ⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ (B)0max 2i n n n n i ≤≤⎛⎫⎧⎫⎛⎫⎪=⎨⎬ ⎪⎪ ⎪⎝⎭⎩⎭⎝⎭(C) 0max 2i nn n n i ≤≤⎛⎫⎧⎫⎛⎫ ⎪=⎨⎬⎡⎤ ⎪ ⎪⎝⎭⎩⎭ ⎪⎢⎥⎣⎦⎝⎭(D)11222n n n n n n ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪<> ⎪ ⎪ ⎪-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 3.在一个圆盘的四周画上四种不同的图案,共有 ( ) 种画法。
(A) 24 (B) 12 (C) 6 (D) 3.4、=⎪⎭⎫ ⎝⎛-∑=nk kk n 0)1( ( )。
(A) 2n (B) 0 (C) n2n -1 (D) 1. 5.设S={1,2,3,4,5,6,7},按字典序5-组合12367的下一个组合是 ( ). (A) 12567 (B) 12376 (C) 12467 (D) 12456.三、解答题(每小题10分,共60分)1.平面上给出25个点,其中没有任何3个点共线。
组合数练习题 (典型)
1. 在∠MON的边OM上有5个异于O点的点,ON上有4个异于O点的点,以这10个点(含O)为顶点,可以得到多少个三角形?以O为顶点的三角形有5×4=20个,以OM上的点为边的三角形有4×(4×5)/2=40个,以ON上的点为边的三角形有5×(4×3)/2=30个,所以共有90个。
2. 在正方体中,各棱、各面和体对角线中,共有多少对异面直线?一个正方体的棱、面对角线和体对角线共28条,底面、侧面和对角面共12个面的每一个面中,任两条直线都不构成异面直线,8个顶点中过每个顶点的3条面对角线不能构成异面直线,故共有C(28,2)-12C(6,2)-8C(3,2)=174对异面直线。
3. 10名学生平均分成2组,每组选出正副组长各一人,有多少种方法?10名学生平均分成2组,共有C(10,5) = 252 种方法;每组选出正副组长各一人,共有5×4×5×4 = 400 种方法;所以,一共有252×400 = 100800 种方法。
4.2、一生产过程有4道工序,每道工序需要安排一人照看,现从甲乙丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲乙两工人中安排1人,第四道工序只能从甲丙两工人中安排1人,则不同的安排方案有( ) A.24种 B.36种 C.48种 D.72种对第一个车间分两种情况就行了:1、第一个车间是甲,则第四个一定是丙,2-3有4×3种………2、第一个是乙,第四个就有两种选择,有2×4×3种……故总的就是4×3+2×4×3=365. (2008•海南)甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面.不同的安排方法共有()A.20种B.30种C.40种D.60种考点:排列、组合的实际应用.专题:分类讨论.分析:根据题意,分析可得,甲可以被分配在星期一、二、三;据此分3种情况讨论,计算可得其情况数目,进而由加法原理,计算可得答案.解答:解:根据题意,要求甲安排在另外两位前面,则甲有3种分配方法,即甲在星期一、二、三;分3种情况讨论可得,甲在星期一有A42=12种安排方法,甲在星期二有A32=6种安排方法,甲在星期三有A22=2种安排方法,总共有12+6+2=20种;故选A.6.(2008•重庆)某人有3种颜色的灯泡(每种颜色的灯泡足够多),要在如图所示的6个点A、B、C、A1、B1、C1上各安装一个灯泡,要求同一条线段两端的灯泡不同色,则不同的安装方法共有12种(用数字作答).考点:排列、组合及简单计数问题.专题:计算题;压轴题.分析:本题需要用分步计数原理,先安排底面三个顶点,再安排上底面的三个顶点.由分步计数原理可知所有的安排方法.本题也可以先安排上底面的三个顶点.解答:解:先安排底面三个顶点共有A33种不同的安排方法,再安排上底面的三个顶点共有C21种不同的安排方法.由分步计数原理可知,共有A33•C21=12种不同的安排方法.故答案为:12.7. 某人有4种颜色的灯泡(每种颜色的灯泡足够多),要在如图所示的6个点A、B、C、A1、B1、C1上各装一个灯泡,要求同一条线段两端的灯泡不同色,则每种颜色的灯泡都至少用一个的安装方法共有()种.A.264 B.168 C.240 D.216考点:排列、组合的实际应用.专题:概率与统计.分析:由题意知分3步进行,为A、B、C三点选三种颜色灯泡共有A43种选法;在A1、B1、C1中选一个装第4种颜色的灯泡,有3种情况;为剩下的两个灯选颜色,假设剩下的为B1、C1,若B1与A同色,则C1只能选B点颜色;若B1与C同色,则C1有A、B处两种颜色可选.故为B1、C1选灯泡共有3种选法,即剩下的两个灯有3种情况,根据计数原理得到结果.解答:解:每种颜色的灯泡都至少用一个,即用了四种颜色的灯进行安装,分3步进行,第一步,A、B、C三点选三种颜色灯泡共有A43种选法;第二步,在A1、B1、C1中选一个装第4种颜色的灯泡,有3种情况;第三步,为剩下的两个灯选颜色,假设剩下的为B1、C1,若B1与A同色,则C1只能选B点颜色;。
高中数学排列组合题目专项训练卷
高中数学排列组合题目专项训练卷一、选择题1、从 5 名男生和 4 名女生中选出 4 人参加辩论比赛,如果男生中的甲和女生中的乙必须在内,有()种选法。
A 35B 21C 120D 60【解析】除甲、乙之外,从剩下 7 人中选 2 人,有 C(7, 2) = 21 种选法。
答案:B2、用 0 到 9 这 10 个数字,可以组成没有重复数字的三位数的个数为()A 648B 720C 810D 900【解析】百位不能为 0,有 9 种选择;十位有 9 种选择;个位有 8 种选择。
所以共有 9×9×8 = 648 个。
答案:A3、 5 个人排成一排,其中甲不在排头且乙不在排尾的排法有()A 120 种B 78 种C 72 种D 36 种【解析】5 个人全排列有 A(5, 5) = 120 种排法。
甲在排头有 A(4, 4) = 24 种排法,乙在排尾有 A(4, 4) = 24 种排法,甲在排头且乙在排尾有 A(3, 3) = 6 种排法。
所以甲不在排头且乙不在排尾的排法有 120 24 24 + 6 = 78 种。
答案:B4、从 6 名志愿者中选出 4 人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者不能从事翻译工作,则选派方案共有()A 280 种B 240 种C 180 种D 96 种【解析】从除甲、乙外的 4 人中选 1 人从事翻译工作,有 4 种选法;然后从剩下 5 人中选 3 人安排其余 3 项工作,有 A(5, 3) = 60 种安排方法。
所以共有 4×60 = 240 种选派方案。
答案:B5、某班新年联欢会原定的 5 个节目已排成节目单,开演前又增加了两个新节目。
如果将这两个节目插入原节目单中,那么不同插法的种数为()A 42B 30C 20D 12【解析】分两步,第一步先插入第一个节目,有 6 个位置可选;第二步插入第二个节目,有 7 个位置可选。
小学组合数学试卷及答案
一、选择题(每题2分,共20分)1. 下列哪个选项不是组合数学中的概念?A. 排列B. 组合C. 集合D. 树2. 从5个不同的水果中取出3个,有多少种不同的组合方式?A. 10种B. 15种C. 20种D. 25种3. 下列哪个公式表示从n个不同元素中取出m个元素的组合数?A. C(n, m) = n! / [m! (n-m)!]B. P(n, m) = n! / [m! (n-m)!]C. nCm = n! / [m! (n-m)!]D. nPm = n! / [m! (n-m)!]4. 一个班级有10名学生,要从中选出3名学生参加比赛,有多少种不同的选法?A. 120种B. 720种C. 120种D. 720种5. 从0到9这10个数字中,任取4个数字组成一个四位数,共有多少种不同的组合?A. 10种B. 90种C. 100种D. 256种6. 在一个3x3的拉丁方格中,填入1到9这9个数字,使得每行、每列、每条对角线上都不重复,有多少种不同的填法?A. 9种B. 36种C. 72种D. 81种7. 下列哪个选项不是二项式定理的应用?A. 展开二项式 (a+b)^nB. 计算组合数C. 解决排列问题D. 解决概率问题8. 下列哪个选项不是图论中的概念?A. 节点B. 边C. 集合D. 路径9. 从6个不同的球中取出3个,有多少种不同的组合方式,不考虑顺序?A. 15种B. 20种C. 30种D. 60种10. 一个班级有8名学生,要从中选出4名学生参加比赛,有多少种不同的选法?A. 70种B. 56种C. 28种D. 14种二、填空题(每题2分,共20分)11. 从5个不同的水果中取出2个,有______种不同的组合方式。
12. 组合数 C(n, m) 表示从n个不同元素中取出m个元素的______。
13. 在一个3x3的拉丁方格中,填入1到9这9个数字,每行、每列、每条对角线上都不重复的填法共有______种。
《组合数学》测试题含答案
测 试 题——组合数学一、选择题1. 把101本书分给10名学生,则下列说法正确的是()A.有一名学生分得11本书B.至少有一名学生分得11本书C.至多有一名学生分得11本书D.有一名学生分得至少11本书 2. 8人排队上车,其中A ,B 两人之间恰好有4人,则不同的排列方法是()A.!63⨯B.!64⨯C. !66⨯D. !68⨯3. 10名嘉宾和4名领导站成一排参加剪彩,其中领导不能相邻,则站位方法总数为()A.()4,11!10P ⨯B. ()4,9!10P ⨯C. ()4,10!10P ⨯D. !3!14-4. 把10个人分成两组,每组5人,共有多少种方法()A.⎪⎪⎭⎫ ⎝⎛510B.⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛510510C.⎪⎪⎭⎫ ⎝⎛49D.⎪⎪⎭⎫ ⎝⎛⨯⎪⎪⎭⎫ ⎝⎛4949 5. 设x,y 均为正整数且20≤+y x ,则这样的有序数对()y x ,共有()个6. 仅由数字1,2,3组成的七位数中,相邻数字均不相同的七位数的个数是()7. 百位数字不是1且各位数字互异的三位数的个数为()8. 设n 为正整数,则∑=⎪⎪⎭⎫ ⎝⎛nk k n 02等于() A.n 2 B. 12-n C. n n 2⋅ D. 12-⋅n n9. 设n 为正整数,则()k k n k k n 310⎪⎪⎭⎫ ⎝⎛-∑=的值是()A.n 2B. n 2-C. ()n 2-10. 设n 为正整数,则当2≥n 时,∑=⎪⎪⎭⎫⎝⎛-n k k k 22=() A.⎪⎪⎭⎫ ⎝⎛3n B. ⎪⎪⎭⎫ ⎝⎛+21n C. ⎪⎪⎭⎫ ⎝⎛+31n D. 22+⎪⎪⎭⎫ ⎝⎛n11. ()632132x x x +-中23231x x x 的系数是()12. 在1和610之间只由数字1,2或3构成的整数个数为() A.2136- B. 2336- C. 2137- D. 2337-13. 在1和300之间的整数中能被3或5整除的整数共有()个14. 已知(){}o n n f ≥是Fibonacci 数列且()()348,217==f f ,则()=10f ()15. 递推关系3143---=n n n a a a 的特征方程是()A.0432=+-x xB. 0432=-+x xC. 04323=+-x xD. 04323=-+x x16. 已知()⋯⋯=⨯+=,2,1,0232n a n n ,则当2≥n 时,=n a ()A.2123--+n n a aB. 2123---n n a aC.2123--+-n n a aD. 2123----n n a a17. 递推关系()⎩⎨⎧=≥+=-312201a n a a n n n 的解为()A.32+⨯=n n n aB. ()221+⨯+=n n n aC. ()122+⨯+=n n n aD. ()n n n a 23⨯+=18. 设()⋯⋯=⨯=,2,1,025n a n n ,则数列{}0≥n n a 的常生成函数是() A.x 215- B. ()2215x - C.()x 215- D. ()2215x -19. 把15个相同的足球分给4个人,使得每人至少分得3个足球,不同的分法共有()种20. 多重集{}b a S ⋅⋅=4,2的5-排列数为()21. 部分数为3且没有等于1的部分的15-分拆的个数为()22. 设n,k 都是正整数,以()n P k 表示部分数为k 的n-分拆的个数,则()116P 的值是()23. 设A ,B ,C 是实数且对任意正整数n 都有⎪⎪⎭⎫ ⎝⎛⋅+⎪⎪⎭⎫ ⎝⎛⋅+⎪⎪⎭⎫ ⎝⎛⋅=1233n C n B n A n ,则B 的值是()24. 不定方程1722321=++x x x 的正整数解的个数是()25. 已知数列{}0≥n n a 的指数生成函数是()()t t e e t E 521⋅-=,则该数列的通项公式是()A.n n n n a 567++=B. n n n n a 567+-=C. n n n n a 5627+⨯+=D. n n n n a 5627+⨯-=二、填空题1. 在1和2000之间能被6整除但不能被15整除的正整数共有_________个2. 用红、黄、蓝、黑4种颜色去图n ⨯1棋盘,每个方格涂一种颜色,则使得被涂成红色的方格数是奇数的涂色方法共有_______种3. 已知递归推关系()31243321≥-+=---n a a a a n n n n 的一个特征根为2,则其通解为___________4. 把()3≥n n 个人分到3个不同的房间,每个房间至少1人的分法数为__________5. 棋盘⨯⨯⨯⨯⨯⨯⨯的车多项式为___________ 6. 由5个字母a,b,c,d,e 作成的6次齐次式最多可以有_________个不同类的项。
组合练习题及答案
组合练习题及答案练习题一:组合的基本运算1. 给定集合A={1, 2, 3, 4},求A的所有子集。
2. 集合B={a, b, c},求B的所有真子集。
3. 若集合C={1, 2, 3},求C的幂集。
4. 集合D={x | x是小于10的正整数},求D的元素个数。
答案一:1. 集合A的子集有:∅, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}。
2. 集合B的真子集有:∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}。
3. 集合C的幂集为:∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}。
4. 集合D的元素个数为9,因为D={1, 2, 3, 4, 5, 6, 7, 8, 9}。
练习题二:组合的应用问题1. 从5个不同的球中选出3个球,有多少种不同的选法?2. 有6个人参加一个会议,需要选出3个人组成委员会,有多少种不同的组合方式?3. 一个班级有30个学生,需要选出5个学生代表,有多少种不同的组合方式?4. 一个团队有10名成员,需要选出队长和副队长各一名,有多少种不同的选择方式?答案二:1. 从5个不同的球中选出3个球的选法为C(5, 3) = 5! / (3! * (5-3)!) = 10种。
2. 从6个人中选出3个人组成委员会的组合方式为C(6, 3) = 6! / (3! * (6-3)!) = 20种。
3. 从30个学生中选出5个学生代表的组合方式为C(30, 5) = 30! / (5! * (30-5)!)。
4. 从10名成员中选出队长和副队长的组合方式为C(10, 1) * C(9, 1) = 10 * 9 = 90种。
小学六年级数的组合练习题
小学六年级数的组合练习题【一、选择题】1. 一个集市有8种水果,小明只能买其中的2种,他可以选择的种类有几种?A. 24B. 12C. 16D. 282. 有5个红球、4个蓝球和3个黄球,从中任选两个球,求不同颜色的组合数。
A. 10B. 12C. 15D. 183. 一个4位数,各位数字都不相同,百位数是偶数,十位数是奇数,千位数是某个奇数的平方,个位数是某个偶数的平方,这个数字是多少?A. 8467B. 8234C. 8142D. 83674. 有一堆4个白球和6个黑球,在其中任选3个球,求选中至少一个白球的概率是多少?A. 25%B. 50%C. 60%D. 75%【二、填空题】1. 用数字1、2、3、4、5、6,填到下面的方格中,每个数字恰好填一次。
使得三个相邻数字的和最大的行,与三个相邻数字的和最小的行之差最大是__________。
2. 以下方程式中,求满足条件的整数解个数:x + y + z = 103. 用数字1、2、3、4、5、6、7,填到下面的方格中,每个数字恰好填一次。
使得横行、纵列和对角线上的三个数字的和都相等,填在三角形的小圆圈中的数字是__________。
4. 一个5位数,百位数为2,个位数为7,千位数是十位数的平方,求这个五位数的数值是__________。
【三、计算题】1. 有一些5元、2元、1元的纸币,若总共有15张,总额为30元,问有多少种组合方式?2. 求1到100之间所有的整数中,可以被3整除且个位数为2的数的个数。
3. 一个小组有8个同学,共有2个队长,1个体育委员和不少于3个组员,求该小组可能有多少个组员?4. 某次比赛中,小明参加了七种不同的项目,其中的男子项目有4种,小明至少参加了几个女子项目?【四、应用题】1. 在一个果园里,有梨树和苹果树各16棵。
每棵梨树每年可以结20个梨,而每棵苹果树每年可以结30个苹果。
现在准备将这些果实按“每5个梨、每9个苹果”装箱,问最多可以装几箱?(提示:使用整数除法和取余运算)2. 小华去一家商店买铅笔和橡皮,他一共买了15个,花了8元。
小学数学的组合练习题
小学数学的组合练习题一、车厢搭配问题小学一年级的班级将进行一次郊游活动,所有学生需乘坐多辆大巴车。
每辆大巴车有10个座位,学校有4个一年级班级,每个班级有30名学生。
为了保证每辆大巴车的座位均衡利用,请计算以下几种搭配方式:1. 如果每辆大巴车只搭载一个班级的学生,计算有多少种不同的搭配方式。
2. 如果每辆大巴车搭载两个班级的学生,计算有多少种不同的搭配方式。
并计算每辆大巴车上每个班级的学生数量。
3. 如果每辆大巴车搭载三个班级的学生,计算有多少种不同的搭配方式。
并计算每辆大巴车上每个班级的学生数量。
提示:本题是车厢搭配问题,涉及到组合的计算。
二、水果摆放问题小明家里有5种水果:苹果、香蕉、葡萄、橙子、草莓。
小明准备将这些水果摆放在水果篮中,每个水果篮最多可以放10个水果。
请计算以下几种情况的摆放方式:1. 如果每种水果都放入一个水果篮中,计算有多少种不同的摆放方式。
2. 如果每种水果最少放入一个水果篮中,计算有多少种不同的摆放方式。
并计算每个水果篮中水果的数量。
3. 如果每种水果最多只能放入两个水果篮中,计算有多少种不同的摆放方式。
并计算每个水果篮中水果的数量。
提示:本题是组合的计算问题,需要考虑水果的种类和水果篮的限制条件。
三、颜色组合问题某小学一年级有5个班级,每个班级的学生数量相同,每个班级的学生都有一种颜色的围巾。
学校准备组织一次集体活动,要求每个小组中的学生围巾颜色不能重复。
请计算以下几种情况的组合方式:1. 如果每个小组有3个班级的学生,计算有多少种不同的组合方式。
并计算每个小组中学生的数量。
2. 如果每个小组有4个班级的学生,计算有多少种不同的组合方式。
并计算每个小组中学生的数量。
3. 如果每个小组有5个班级的学生,计算有多少种不同的组合方式。
并计算每个小组中学生的数量。
提示:本题是关于颜色组合问题的计算,需要考虑班级数量和小组的要求。
四、字母排列问题小学二年级的班级正在学习英文字母的组合与排列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
组合数学试题集一.简单题目可以根据需要改成选择题或者填空题1.在1到9999之间,有多少个每位上数字全不相同而且由奇数构成的整数?(参见课本21页)解:该题相当于从“1,3,5,7,9”五个数字中分别选出1,2,3,4作排列的方案数; (1)选1个,即构成1位数,共有15P 个;(2)选2个,即构成两位数,共有25P 个;(3)选3个,即构成3位数,共有35P 个;(4)选4个,即构成4位数,共有45P 个;由加法法则可知,所求的整数共有:12345555205P P P P +++=个。
2.一教室有两排,每排8个座位,今有14名学生,问按下列不同的方式入座,各有多少种做法?(参见课本21页)(1)规定某5人总坐在前排,某4人总坐在后排,但每人具体座位不指定;(2)要求前排至少坐5人,后排至少坐4人。
解:(1)因为就坐是有次序的,所有是排列问题。
5人坐前排,其坐法数为(8,5)P ,4人坐后排,其坐法数为(8,4)P ,剩下的5个人在其余座位的就坐方式有(7,5)P 种,根据乘法原理,就座方式总共有:(8,5)(8,4)(7,5)28449792000P P P =(种)(2)因前排至少需坐6人,最多坐8人,后排也是如此。
可分成三种情况分别讨论:① 前排恰好坐6人,入座方式有(14,6)(8,6)(8,8)C P P ;② 前排恰好坐7人,入座方式有(14,7)(8,7)(8,7)C P P ;③ 前排恰好坐8人,入座方式有(14,8)(8,8)(8,6)C P P ;各类入座方式互相不同,由加法法则,总的入座方式总数为:(14,6)(8,6)(8,8)(14,7)(8,7)(8,7)(14,8)(8,8)(8,6)10461394944000C P P C P P C P P ++= 3.一位学者要在一周安排50个小时的工作时间,而且每天至少工作5小时,问共有多少种安排方案?(参见课本21页)解:用i x 表示第i 天的工作时间,1,2,,7i =,则问题转化为求不定方程123456750x x x x x x x ++++++=的整数解的组数,且5i x ≥,于是又可以转化为求不定方程123456715y y y y y y y ++++++=的整数解的组数。
该问题等价于:将15个没有区别的球,放入7个不同的盒子中,每盒球数不限,即相异元素允许重复的组合问题。
故安排方案共有:(,15)(1571,15)54264RC C ∞=+-= (种)♦ 另解:因为允许0i y =,所以问题转化为长度为1的15条线段中间有14个空,再加上前后两个空,共16个空,在这16个空中放入6个“+”号,每个空放置的“+”号数不限,未放“+”号的线段合成一条线段,求放法的总数。
从而不定方程的整数解共有:212019181716(,6)(1661,6)54264654321RC C ⨯⨯⨯⨯⨯∞=+-==⨯⨯⨯⨯⨯(组) 即共有54 264种安排方案。
4.求下列函数的母函数: {(1)}n n -;(参见课本51页)母函数为:2323000222()(1)(1)2(1)(1)(1)n n nn n n x x x G x n n x n n x nx x x x ∞∞∞====-=+-=-=---∑∑∑; ♦ 方法二:()()()()()2202222002222023()(1)00121121nn n n n n n n n n G x n n x x n n x x n n x x x x x x x x x x ∞∞-==∞∞+==∞+==-=++-"=++=""⎛⎫⎛⎫== ⎪ ⎪-⎝⎭⎝⎭=-∑∑∑∑∑5.求下列函数的母函数:{(2)}n n +;(参见课本51页)母函数为:232300023()(2)(1)(1)(1)(1)n n nn n n x x x x G x n n x n n x nx x x x ∞∞∞===-=+=++=+=---∑∑∑。
♦ 方法二:()()()()()()()()00002121000023223()(2)1211111121111111131n n nn n n n n n n n n n n n n G x n n x n n x n x x x x x x x x x x x x x x x x x x x ∞∞∞∞====∞∞∞∞++++=====+=++-+-"'"'⎛⎫⎛⎫=--=-- ⎪ ⎪--⎝⎭⎝⎭"'⎛⎫⎛⎫=--=-- ⎪ ⎪----⎝⎭--⎝⎭-=-∑∑∑∑∑∑∑∑6.利用递推关系求下列和:0(2)nn k S k k ==+∑ (参见课本第92页)显然,1(2)n n S S n n --=+,同理对应的齐次方程的特征根为1,特解为(1)n n S A A ==,非齐次方程的特解为:*232()nS n Bn Cn D Bn Cn Dn =++=++, 所以,非齐次方程的通解为:32n S Bn Cn Dn A =+++,初始条件为:01230,3,11,26S S S S ====,代入上式,可得00S A ==,13S B C D A =+++=,284211S B C D A =+++=,3279326S B C D A =+++=,解得:0A =,13B =,32C =,76D =, 所以 32137(1)(27)3266n n n n S n n n ++=++= ♦ 方法二:显然,1(2)n n S S n n --=+,类似可得,12(1)(1)n n S S n n ---=-+,两式相减得12221n n n S S S n ---+=+,同理可得12322(1)1n n n S S S n ----+=-+,两式再相减得123332n n n n S S S S ----+-=,同理得1234332n n n n S S S S -----+-=,两式再相减,可得关于n S 的齐次定解问题:1234012346400,3,11,26n n n n n S S S S S S S S S -----+-+=⎧⎨====⎩ 由(1)知,方程的通解为:23n S A Bn Cn Dn =+++,代入初始条件得:00S A ==,13S A B C D =+++=,224811S A B C D =+++=,3392726S A B C D =+++=,解得:7310,,,623A B C D ====, 故 23731(1)(27)6236n n n n S n n n ++=++= ♦ 方法三(快速求系数) 通解为:0123(1)(1)(2)2!3!n n n n n n S A A n A A ---=+++, 初始条件:01230,3,11,26S S S S ====,代入得00A =,013A A +=,012211A A A ++=,01233326A A A A +++=,解得:00A =,13A =,25A =,32A =所以,(1)(1)(2)(1)(27)3522!3!6n n n n n n n n n S n ---++=++=7.利用递推关系求下列和:0(1)(2)n n k S k k k ==++∑ (参见课本第92页) 显然,1(1)(2)n n S S n n n --=++,同理对应的齐次方程的特征根为1,特解为(1)n n S A A ==,非齐次方程的特解为:*32432()nS n Bn Cn Dn E Bn Cn Dn En =+++=+++, 所以,非齐次方程的通解为:432n S Bn Cn Dn En A =++++,初始条件为:012340,6,30,90,210S S S S S =====,代入上式,可得00S A ==,16S B C D E A =++++=,21684230S B C D E A =++++=,381279390S B C D E A =++++=,425664164210S B C D E A =++++= 解得:0A =,14B =,32C =,114D =,32E = 所以 ()()()4321231311342424n n n n n S n n n n +++=+++= ♦ 方法二: 显然,1(1)(2)n n S S n n n --=++,类似可得,12(1)(1)n n S S n n n ---=-+,两式相减得1223(1)n n n S S S n n ---+=+,同理可得12323(1)n n n S S S n n ----+=-,两式再相减得123336n n n n S S S S n ----+-=,同理得1234336(1)n n n n S S S S n -----+-=-,两式再相减得12344646n n n n n S S S S S -----+-+=,同理可得123454646n n n n n S S S S S ------+-+=,两式再相减,可得关于n S 的齐次定解问题:123450123451010500,6,30,90,210n n n n n n S S S S S S S S S S S ------+-+-=⎧⎨=====⎩ 其特征方程为:543251010510x x x x x -+-+-=,1x =是五重特征根,所以方程的通解为:234n S A Bn Cn Dn En =++++,代入初始条件得:00S A ==,16S A B C D E =++++=,22481630S A B C D E =++++=, 339278190S A B C D E =++++=,441664256210S A B C D E =++++=, 解得:311310,,,,2424A B C D E =====, 故 ()()()2341233113124244n n n n n S n n n n +++=+++= ♦ 方法三(快速求系数) 通解为:01234(1)(1)(2)(1)(2)(3)2!3!4!n n n n n n n n n n S A A n A A A ------=++++, 初始条件:012340,6,30,90,210S S S S S =====,代入得00A =,016A A +=,012230A A A ++=,01233390A A A A +++=,01234464210A A A A A ++++=解得:00A =,16A =,218A =,318A =,46A =所以,()()()(1)(1)(2)(1)(2)(3)6181862!3!4!1234n n n n n n n n n n S n n n n n ------=++++++=8. 求从1到500的整数中能被3和5整除但不能被7整除的数的个数。