2020合肥中考数学试卷评析
2020年安徽中考数学试卷分析
2020年安徽中考数学试卷分析2020年安徽中考数学试卷卷面满分150分,要求学生在120分钟内完成,整套试卷包含8个答题,共计23个小题,其中第一大题是选择题,包含10道小题,每小题4分,选择题合计40分;第二大题是填空题,包含4道小题,每小题5分,填空题合计20分;第三、四、五、六、七、八大题都是解题题目,共计9道小题,解答题合计90分。
本试卷题量适中,但与某些省市中考数学试卷的题量相比,略微偏小,但试卷满分150分,因此单题的分值略高,试题考查的范围较广,重点突出,考查大大都是比较基础的知识点,考法常见,整体试卷的难度不大,没有出现过偏,过难的题目。
选择题:第1题考查的是实数大小比较,给出四个数,选出比-2小的数,比较简单,直接根据实数大小比较方法进行比较即可得出答案;第2题考查的是幂的运算,主要涉及幂的乘方和同底数幂的除法运算,解题的关键是熟练掌握和灵活运用幂的运算法则,在本题中需要注意符号和指数问题,题目比较简单;第3题主要考查几何题的主视图,解题的关键是结合各选项几何题的特征分析判断其主视图,然后进行选择即可,题目比较简单;第4题主要考查的是用科学计数法表示绝对值较大的数,解题的关键是掌握科学技术表示较大的数的方法,注意乘方前的数字及乘方的次数的确定方法,题目比较简单;第5题主要考查的是一元二次方程实数根的情况,可以直接根据根的判别式进行分析和选择,在运用根的判别式前,首先需要将方程化为标准形式,找出各项系数,然后进行分析和运算,题目比较简单;第6题主要考查数据的整理和分析,掌握几种常见的统计量的含义及计算方法,逐个分析。
运算并判断即可,求一组数据的中位数比较容易出错,需要先排序;求方差运算量较大,在这个题目中可以先算别的统计量,然后运用排除法即可,题目比较简单;第7题主要考查的是一次函数的图像和性质,已知一次函数解析式的常数项,k值未知,但根据y随x 的增大而减小可得k值必然为负数,然后讲各选项的值代入计算求出k值即可,选出k值为负的选项即可,题目难度中等偏下,注意这种选项代入的解题思路和方法。
2020年安徽省中考数学试卷及答案解析
2020年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的. 1.(4分) 下列各数中,比﹣2小的数是( ) A .﹣3B .﹣1C .0D .22.(4分) 计算(﹣a )6÷a 3的结果是( ) A .﹣a 3B .﹣a 2C .a 3D .a 23.(4分) 下面四个几何体中,主视图为三角形的是( )A .B .C .D .4.(4分) 安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为( ) A .5.47×108B .0.547×108C .547×105D .5.47×1075.(4分) 下列方程中,有两个相等实数根的是( ) A .x 2+1=2xB .x 2+1=0C .x 2﹣2x =3D .x 2﹣2x =06.(4分) 冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是( ) A .众数是11B .平均数是12C .方差是187D .中位数是137.(4分) 已知一次函数y =kx +3的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( ) A .(﹣1,2)B .(1,﹣2)C .(2,3)D .(3,4)8.(4分) 如图,Rt △ABC 中,∠C =90°,点D 在AC 上,∠DBC =∠A .若AC =4,cos A =45,则BD 的长度为( )A.94B.125C.154D.49.(4分)已知点A,B,C在⊙O上,则下列命题为真命题的是()A.若半径OB平分弦AC,则四边形OABC是平行四边形B.若四边形OABC是平行四边形,则∠ABC=120°C.若∠ABC=120°,则弦AC平分半径OBD.若弦AC平分半径OB,则半径OB平分弦AC10.(4分)如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC在直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x 变化的函数图象大致为()A.B.C.D .二、填空题(本大题共4小题,每小题5分,满分20分) 11.(5分) 计算:√9−1= . 12.(5分) 分解因式:ab 2﹣a = .13.(5分) 如图,一次函数y =x +k (k >0)的图象与x 轴和y 轴分别交于点A 和点B .与反比例函数y =kx的图象在第一象限内交于点C ,CD ⊥x 轴,CE ⊥y 轴.垂足分别为点D ,E .当矩形ODCE 与△OAB 的面积相等时,k 的值为 .14.(5分) 在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD 沿过点A 的直线折叠,使得点B 落在CD 上的点Q 处.折痕为AP ;再将△PCQ ,△ADQ 分别沿PQ ,AQ 折叠,此时点C ,D 落在AP 上的同一点R 处.请完成下列探究: (1)∠P AQ 的大小为 °; (2)当四边形APCD 是平行四边形时,AB QR的值为 .三、(本大题共2小题,每小题8分,满分16分)15.(8分) 解不等式:2x−12>1.16.(8分) 如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB ,线段MN 在网格线上.(1)画出线段AB 关于线段MN 所在直线对称的线段A 1B 1(点A 1,B 1分别为A ,B 的对应点);(2)将线段B 1A 1绕点B 1顺时针旋转90°得到线段B 1A 2,画出线段B 1A 2.四、(本大题共2小题,每小题8分,满分16分) 17.(8分) 观察以下等式: 第1个等式:13×(1+21)=2−11,第2个等式:34×(1+22)=2−12, 第3个等式:55×(1+23)=2−13, 第4个等式:76×(1+24)=2−14. 第5个等式:97×(1+25)=2−15. …按照以上规律,解决下列问题: (1)写出第6个等式: ;(2)写出你猜想的第n 个等式: (用含n 的等式表示),并证明.18.(8分) 如图,山顶上有一个信号塔AC ,已知信号塔高AC =15米,在山脚下点B 处测得塔底C 的仰角∠CBD =36.9°,塔顶A 的仰角∠ABD =42.0°,求山高CD (点A ,C ,D 在同一条竖直线上).(参考数据:tan36.9°≈0.75,sin36.9°≈0.60,tan42.0°≈0.90.)五、(本大题共2小题,每小题10分,满分20分)19.(10分)某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元)线上销售额(元)线下销售额(元)2019年4月份a x a﹣x2020年4月份 1.1a 1.43x(2)求2020年4月份线上销售额与当月销售总额的比值.20.(10分)如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;(2)若BE=BF,求证:AC平分∠DAB.六、(本题满分12分)21.(12分)某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A套餐的人数为,扇形统计图中“C”对应扇形的圆心角的大小为°;(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.七、(本题满分12分)22.(12分)在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m 经过点A,抛物线y=ax2+bx+1恰好经过A,B,C三点中的两点.(1)判断点B是否在直线y=x+m上,并说明理由;(2)求a,b的值;(3)平移抛物线y=ax2+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y 轴交点纵坐标的最大值.八、(本题满分14分)23.(14分)如图1,已知四边形ABCD是矩形,点E在BA的延长线上,AE=AD.EC 与BD相交于点G,与AD相交于点F,AF=AB.(1)求证:BD⊥EC;(2)若AB=1,求AE的长;(3)如图2,连接AG,求证:EG﹣DG=√2AG.2020年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.(4分)下列各数中,比﹣2小的数是()A.﹣3B.﹣1C.0D.2【解答】解:根据两个负数,绝对值大的反而小可知﹣3<﹣2.故选:A.2.(4分)计算(﹣a)6÷a3的结果是()A.﹣a3B.﹣a2C.a3D.a2【解答】解:原式=a6÷a3=a3.故选:C.3.(4分)下面四个几何体中,主视图为三角形的是()A.B.C.D.【解答】解:A 、主视图是圆,故A 不符合题意; B 、主视图是三角形,故B 符合题意; C 、主视图是矩形,故C 不符合题意; D 、主视图是正方形,故D 不符合题意; 故选:B .4.(4分) 安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为( ) A .5.47×108B .0.547×108C .547×105D .5.47×107【解答】解:54700000用科学记数法表示为:5.47×107. 故选:D .5.(4分) 下列方程中,有两个相等实数根的是( ) A .x 2+1=2xB .x 2+1=0C .x 2﹣2x =3D .x 2﹣2x =0【解答】解:A 、△=(﹣2)2﹣4×1×1=0,有两个相等实数根; B 、△=0﹣4=﹣4<0,没有实数根;C 、△=(﹣2)2﹣4×1×(﹣3)=16>0,有两个不相等实数根;D 、△=(﹣2)2﹣4×1×0=4>0,有两个不相等实数根. 故选:A .6.(4分) 冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是( ) A .众数是11B .平均数是12C .方差是187D .中位数是13【解答】解:数据11,10,11,13,11,13,15中,11出现的次数最多是3次,因此众数是11,于是A 选项不符合题意;将这7个数据从小到大排列后,处在中间位置的一个数是11,因此中位数是11,于是D 符合题意;x =(11+10+11+13+11+13+15)÷7=12,即平均数是12,于是选项B 不符合题意;S 2=17[(10﹣12)2+(11﹣12)2×3+(13﹣12)2×2+(15﹣12)2]=187,因此方差为187,于是选项C 不符合题意; 故选:D .7.(4分) 已知一次函数y =kx +3的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是()A.(﹣1,2)B.(1,﹣2)C.(2,3)D.(3,4)【解答】解:A、当点A的坐标为(﹣1,2)时,﹣k+3=2,解得:k=1>0,∴y随x的增大而增大,选项A不符合题意;B、当点A的坐标为(1,﹣2)时,k+3=﹣2,解得:k=﹣5<0,∴y随x的增大而减小,选项B符合题意;C、当点A的坐标为(2,3)时,2k+3=3,解得:k=0,选项C不符合题意;D、当点A的坐标为(3,4)时,3k+3=4,解得:k=13>0,∴y随x的增大而增大,选项D不符合题意.故选:B.8.(4分)如图,Rt△ABC中,∠C=90°,点D在AC上,∠DBC=∠A.若AC=4,cos A= 45,则BD的长度为()A.94B.125C.154D.4【解答】解:∵∠C=90°,AC=4,cos A=4 5,∴AB=ACcosA=5,∴BC=√AB2−AC2=3,∵∠DBC=∠A.∴cos∠DBC=cos∠A=BCBD=45,∴BD=3×54=154,故选:C.9.(4分)已知点A,B,C在⊙O上,则下列命题为真命题的是()A.若半径OB平分弦AC,则四边形OABC是平行四边形B.若四边形OABC是平行四边形,则∠ABC=120°C.若∠ABC=120°,则弦AC平分半径OBD.若弦AC平分半径OB,则半径OB平分弦AC【解答】解:A、如图,若半径OB平分弦AC,则四边形OABC不一定是平行四边形;原命题是假命题;B、若四边形OABC是平行四边形,则AB=OC,OA=BC,∵OA=OB=OC,∴AB=OA=OB=BC=OC,∴∠ABO=∠OBC=60°,∴∠ABC=120°,是真命题;C、如图,若∠ABC=120°,则弦AC不平分半径OB,原命题是假命题;D、如图,若弦AC平分半径OB,则半径OB不一定平分弦AC,原命题是假命题;故选:B.10.(4分)如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC在直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x 变化的函数图象大致为()A.B.C.D.【解答】解:如图1所示:当0<x≤2时,过点G作GH⊥BF于H.∵△ABC和△DEF均为等边三角形,∴△GEJ为等边三角形.∴GH=√32EJ=√32x,∴y=12EJ•GH=√34x2.当x=2时,y=√3,且抛物线的开口向上.如图2所示:2<x≤4时,过点G作GH⊥BF于H.y=12FJ•GH=√34(4﹣x)2,函数图象为抛物线的一部分,且抛物线开口向上.故选:A.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)计算:√9−1=2.【解答】解:原式=3﹣1=2.故答案为:2.12.(5分)分解因式:ab2﹣a=a(b+1)(b﹣1).【解答】解:原式=a(b2﹣1)=a(b+1)(b﹣1),故答案为:a(b+1)(b﹣1)13.(5分)如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B.与反比例函数y=kx的图象在第一象限内交于点C,CD⊥x轴,CE⊥y轴.垂足分别为点D,E.当矩形ODCE与△OAB的面积相等时,k的值为2.【解答】解:一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B,令x =0,则y=k,令y=0,则x=﹣k,故点A、B的坐标分别为(﹣k,0)、(0,k),则△OAB 的面积=12OA •OB =12k 2,而矩形ODCE 的面积为k , 则12k 2=k ,解得:k =0(舍去)或2,故答案为2.14.(5分) 在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD 沿过点A 的直线折叠,使得点B 落在CD 上的点Q 处.折痕为AP ;再将△PCQ ,△ADQ 分别沿PQ ,AQ 折叠,此时点C ,D 落在AP 上的同一点R 处.请完成下列探究: (1)∠P AQ 的大小为 30 °; (2)当四边形APCD 是平行四边形时,AB QR的值为 √3 .【解答】解:(1)由折叠的性质可得:∠B =∠AQP ,∠DAQ =∠QAP =∠P AB ,∠DQA =∠AQR ,∠CQP =∠PQR ,∠D =∠ARQ ,∠C =∠QRP , ∵∠QRA +∠QRP =180°, ∴∠D +∠C =180°, ∴AD ∥BC ,∴∠B +∠DAB =180°, ∵∠DQR +∠CQR =180°, ∴∠DQA +∠CQP =90°, ∴∠AQP =90°, ∴∠B =∠AQP =90°, ∴∠DAB =90°,∴∠DAQ =∠QAP =∠P AB =30°, 故答案为:30;(2)由折叠的性质可得:AD =AR ,CP =PR , ∵四边形APCD 是平行四边形,∴AD =PC , ∴AR =PR , 又∵∠AQP =90°, ∴QR =12AP ,∵∠P AB =30°,∠B =90°, ∴AP =2PB ,AB =√3PB , ∴PB =QR , ∴AB QR=√3,故答案为:√3.三、(本大题共2小题,每小题8分,满分16分) 15.(8分) 解不等式:2x−12>1.【解答】解:去分母,得:2x ﹣1>2, 移项,得:2x >2+1, 合并,得:2x >3, 系数化为1,得:x >32.16.(8分) 如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB ,线段MN 在网格线上.(1)画出线段AB 关于线段MN 所在直线对称的线段A 1B 1(点A 1,B 1分别为A ,B 的对应点);(2)将线段B 1A 1绕点B 1顺时针旋转90°得到线段B 1A 2,画出线段B 1A 2.【解答】解:(1)如图线段A 1B 1即为所求. (2)如图,线段B 1A 2即为所求.四、(本大题共2小题,每小题8分,满分16分) 17.(8分) 观察以下等式: 第1个等式:13×(1+21)=2−11,第2个等式:34×(1+22)=2−12, 第3个等式:55×(1+23)=2−13, 第4个等式:76×(1+24)=2−14. 第5个等式:97×(1+25)=2−15. …按照以上规律,解决下列问题: (1)写出第6个等式:118×(1+26)=2−16 ;(2)写出你猜想的第n 个等式: 2n−1n+2×(1+2n )=2−1n(用含n 的等式表示),并证明.【解答】解:(1)第6个等式:118×(1+26)=2−16;(2)猜想的第n 个等式:2n−1n+2×(1+2n)=2−1n.证明:∵左边=2n−1n+2×n+2n =2n−1n =2−1n=右边, ∴等式成立.故答案为:118×(1+26)=2−16;2n−1n+2×(1+2n )=2−1n .18.(8分) 如图,山顶上有一个信号塔AC ,已知信号塔高AC =15米,在山脚下点B 处测得塔底C 的仰角∠CBD =36.9°,塔顶A 的仰角∠ABD =42.0°,求山高CD (点A ,C ,D 在同一条竖直线上).(参考数据:tan36.9°≈0.75,sin36.9°≈0.60,tan42.0°≈0.90.)【解答】解:由题意,在Rt△ABD中,tan∠ABD=AD BD,∴tan42.0°=ADBD≈0.9,∴AD≈0.9BD,在Rt△BCD中,tan∠CBD=CD BD,∴tan36.9°=CDBD≈0.75,∴CD≈0.75BD,∵AC=AD﹣CD,∴15=0.15BD,∴BD=100米,∴CD=0.75BD=75(米),答:山高CD为75米.五、(本大题共2小题,每小题10分,满分20分)19.(10分)某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元)线上销售额(元)线下销售额(元)2019年4月份a x a﹣x2020年4月份 1.1a 1.43x 1.04(a﹣x)(2)求2020年4月份线上销售额与当月销售总额的比值.【解答】解:(1)∵与2019年4月份相比,该超市2020年4月份线下销售额增长4%,∴该超市2020年4月份线下销售额为1.04(a﹣x)元.故答案为:1.04(a﹣x).(2)依题意,得:1.1a=1.43x+1.04(a﹣x),解得:x =213a , ∴1.43x 1.1a=1.43⋅213a 1.1a=0.22a 1.1a=0.2.答:2020年4月份线上销售额与当月销售总额的比值为0.2.20.(10分) 如图,AB 是半圆O 的直径,C ,D 是半圆O 上不同于A ,B 的两点,AD =BC ,AC 与BD 相交于点F .BE 是半圆O 所在圆的切线,与AC 的延长线相交于点E . (1)求证:△CBA ≌△DAB ;(2)若BE =BF ,求证:AC 平分∠DAB .【解答】(1)证明:∵AB 是半圆O 的直径, ∴∠ACB =∠ADB =90°,在Rt △CBA 与Rt △DAB 中,{BC =AD BA =AB ,∴Rt △CBA ≌Rt △DAB (HL );(2)解:∵BE =BF ,由(1)知BC ⊥EF , ∴∠E =∠BFE ,∵BE 是半圆O 所在圆的切线, ∴∠ABE =90°, ∴∠E +∠BAE =90°, 由(1)知∠D =90°, ∴∠DAF +∠AFD =90°, ∵∠AFD =∠BFE , ∴∠AFD =∠E ,∴∠DAF =90°﹣∠AFD ,∠BAF =90°﹣∠E , ∴∠DAF =∠BAF , ∴AC 平分∠DAB . 六、(本题满分12分)21.(12分) 某单位食堂为全体960名职工提供了A ,B ,C ,D 四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A套餐的人数为60,扇形统计图中“C”对应扇形的圆心角的大小为108°;(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.【解答】解:(1)在抽取的240人中最喜欢A套餐的人数为240×25%=60(人),则最喜欢C套餐的人数为240﹣(60+84+24)=72(人),∴扇形统计图中“C”对应扇形的圆心角的大小为360°×72240=108°,故答案为:60、108;(2)估计全体960名职工中最喜欢B套餐的人数为960×84240=336(人);(3)画树状图为:共有12种等可能的结果数,其中甲被选到的结果数为6,∴甲被选到的概率为612=12.七、(本题满分12分)22.(12分)在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A ,抛物线y =ax 2+bx +1恰好经过A ,B ,C 三点中的两点. (1)判断点B 是否在直线y =x +m 上,并说明理由; (2)求a ,b 的值;(3)平移抛物线y =ax 2+bx +1,使其顶点仍在直线y =x +m 上,求平移后所得抛物线与y 轴交点纵坐标的最大值.【解答】解:(1)点B 是在直线y =x +m 上,理由如下: ∵直线y =x +m 经过点A (1,2), ∴2=1+m ,解得m =1, ∴直线为y =x +1,把x =2代入y =x +1得y =3, ∴点B (2,3)在直线y =x +m 上;(2)∵直线y =x +1与抛物线y =ax 2+bx +1都经过点(0,1),且B 、C 两点的横坐标相同,∴抛物线只能经过A 、C 两点,把A (1,2),C (2,1)代入y =ax 2+bx +1得{a +b +1=24a +2b +1=1,解得a =﹣1,b =2;(3)由(2)知,抛物线为y =﹣x 2+2x +1,设平移后的抛物线为y =﹣x 2+px +q ,其顶点坐标为(p2,p 24+q ),∵顶点仍在直线y =x +1上, ∴p 24+q =p2+1,∴q =−p 24+p2+1,∵抛物线y =﹣x 2+px +q 与y 轴的交点的纵坐标为q , ∴q =−p 24+p2+1=−14(p ﹣1)2+54,∴当p =1时,平移后所得抛物线与y 轴交点纵坐标的最大值为54.八、(本题满分14分)23.(14分) 如图1,已知四边形ABCD 是矩形,点E 在BA 的延长线上,AE =AD .EC 与BD 相交于点G ,与AD 相交于点F ,AF =AB . (1)求证:BD ⊥EC ;(2)若AB=1,求AE的长;(3)如图2,连接AG,求证:EG﹣DG=√2AG.【解答】(1)证明:∵四边形ABCD是矩形,点E在BA的延长线上,∴∠EAF=∠DAB=90°,又∵AE=AD,AF=AB,∴△AEF≌△ADB(SAS),∴∠AEF=∠ADB,∴∠GEB+∠GBE=∠ADB+∠ABD=90°,即∠EGB=90°,故BD⊥EC,(2)解:∵四边形ABCD是矩形,∴AE∥CD,∴∠AEF=∠DCF,∠EAF=∠CDF,∴△AEF∽△DCF,∴AEDC =AF DF,即AE•DF=AF•DC,设AE=AD=a(a>0),则有a•(a﹣1)=1,化简得a2﹣a﹣1=0,解得a=1+√52或1−√52(舍去),∴AE=1+√5 2.(3)如图,在线段EG上取点P,使得EP=DG,在△AEP与△ADG中,AE=AD,∠AEP=∠ADG,EP=DG,∴△AEP≌△ADG(SAS),∴AP=AG,∠EAP=∠DAG,∴∠P AG=∠P AD+∠DAG=∠P AD+∠EAP=∠DAE=90°,∴△P AG为等腰直角三角形,∴EG﹣DG=EG﹣EP=PG=√2AG.第21页(共21页)。
2020年安徽省中考数学试题含答案解析(Word版)
2020年安徽省初中学业水平考试数学一、选择题(本大题共10小题,每小题4分,满分40分)1. 的绝对值是()A. B. 8 C. D.【答案】B【详解】数轴上表示数-8的点到原点的距离是8,所以-8的绝对值是8,故选B.【点睛】本题考查了绝对值的概念,熟记绝对值的概念是解题的关键.2. 2017年我赛粮食总产量为635.2亿斤,其中635.2亿科学记数法表示()A. B. C. D.【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】635.2亿=63520000000,63520000000小数点向左移10位得到6.352,所以635.2亿用科学记数法表示为:6.352×108,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3. 下列运算正确的是()A. B. C. D.【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.4. 一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为()A. (A)B. (B)C. (C)D. (D)【答案】A【解析】【分析】根据主视图是从几何体正面看得到的图形,认真观察实物,可得这个几何体的主视图为长方形上面一个三角形,据此即可得.【详解】观察实物,可知这个几何体的主视图为长方体上面一个三角形,只有A选项符合题意,故选A.【详解】本题考查了几何体的主视图,明确几何体的主视图是从几何体的正面看得到的图形是解题的关键.5. 下列分解因式正确的是()A. B.C. D.【答案】C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项正确;D. =(x-2)2,故D选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.6. 据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【答案】B【解析】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键.7. 若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A. B. 1 C. D.【答案】A【解析】【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a的方程,解方程即可得.【详解】x(x+1)+ax=0,x2+(a+1)x=0,由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,解得:a1=a2=-1,故选A.【点睛】本题考查一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.8. 为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:类于以上数据,说法正确的是()A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差【答案】D【解析】【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.【详解】甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7,,=4,乙:数据8出现了2次,次数最多,所以众数为8,排序后最中间的数是4,所以中位数是4,,=6.4,所以只有D选项正确,故选D.【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.9. □ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是()A. BE=DFB. AE=CFC. AF//CED. ∠BAE=∠DCF【答案】B【解析】【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得.【详解】A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AF CE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AE CF,∴四边形AECF是平行四边形,故不符合题意,故选B.【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.10. 如图,直线都与直线l垂直,垂足分别为M,N,MN=1,正方形ABCD的边长为,对角线AC 在直线l上,且点C位于点M处,将正方形ABCD沿l向右平移,直到点A与点N重合为止,记点C平移的距离为x,正方形ABCD的边位于之间分的长度和为y,则y关于x的函数图象大致为()A. B. C. D.【答案】A【解析】【分析】由已知易得AC=2,∠ACD=45°,分0≤x≤1、1<x≤2、2<x≤3三种情况结合等腰直角三角形的性质即可得到相应的函数解析式,由此即可判断.【详解】由正方形的性质,已知正方形ABCD的边长为,易得正方形的对角线AC=2,∠ACD=45°,如图,当0≤x≤1时,y=2,如图,当1<x≤2时,y=2m+2n=2(m+n)= 2,如图,当2<x≤3时,y=2,综上,只有选项A符合,故选A.【点睛】本题考查了动点问题的函数图象,涉及到正方形的性质,等腰直角三角形的性质,勾股定理等,结合图形正确分类是解题的关键.二、填空题(本大共4小题,每小题5分,满分30分)11. 不等式的解集是___________.【答案】x>10【解析】【分析】按去分母、移项、合并同类项的步骤进行求解即可得.【详解】去分母,得x-8>2,移项,得x>2+8,合并同类项,得x>10,故答案为:x>10.【点睛】本题考查了解一元一次不等式,熟练掌握解一元一次不等式的基本步骤及注意事项是解题的关键.12. 如图,菱形ABOC的AB,AC分别与⊙O相切于点D、E,若点D是AB的中点,则∠DOE__________.【答案】60°【解析】【分析】由AB,AC分别与⊙O相切于点D、E,可得∠BDO=∠ADO=∠AEO=90°,根据已知条件可得到BD=OB,在Rt△OBD中,求得∠B=60°,继而可得∠A=120°,再利用四边形的内角和即可求得∠DOE 的度数.【详解】∵AB,AC分别与⊙O相切于点D、E,∴∠BDO=∠ADO=∠AEO=90°,∵四边形ABOC是菱形,∴AB=BO,∠A+∠B=180°,∵BD=AB,∴BD=OB,在Rt△OBD中,∠ODB=90°,BD=OB,∴cos∠B=,∴∠B=60°,∴∠A=120°,∴∠DOE=360°-120°-90°-90°=60°,故答案为:60°.【点睛】本题考查了切线的性质,菱形的性质,解直角三角形的应用等,熟练掌握相关的性质是解题的关键.13. 如图,正比例函数y=kx与反比例函数y=的图象有一个交点A(2,m),AB⊥x轴于点B,平移直线y=kx使其经过点B,得到直线l,则直线l对应的函数表达式是_________ .【答案】y=x-3【解析】【分析】由已知先求出点A、点B的坐标,继而求出y=kx的解析式,再根据直线y=kx平移后经过点B,可设平移后的解析式为y=kx+b,将B点坐标代入求解即可得.【详解】当x=2时,y==3,∴A(2,3),B(2,0),∵y=kx过点A(2,3),∴3=2k,∴k=,∴y=x,∵直线y=x平移后经过点B,∴设平移后的解析式为y=x+b,则有0=3+b,解得:b=-3,∴平移后的解析式为:y=x-3,故答案为:y=x-3.【点睛】本题考查了一次函数与反比例函数的综合应用,涉及到待定系数法,一次函数图象的平移等,求出k的值是解题的关键.14. 矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为数___________.【答案】3或1.2【解析】【分析】由△PBE∽△DBC,可得∠PBE=∠DBC,继而可确定点P在BD上,然后再根据△APD是等腰三角形,分DP=DA、AP=DP两种情况进行讨论即可得.【详解】∵四边形ABCD是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,∵△PBE∽△DBC,∴∠PBE=∠DBC,∴点P在BD上,如图1,当DP=DA=8时,BP=2,∵△PBE∽△DBC,∴PE:CD=PB:DB=2:10,∴PE:6=2:10,∴PE=1.2;如图2,当AP=DP时,此时P为BD中点,∵△PBE∽△DBC,∴PE:CD=PB:DB=1:2,∴PE:6=1:2,∴PE=3;综上,PE的长为1.2或3,故答案为:1.2或3.【点睛】本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P在线段BD上是解题的关键.三、解答题15. 计算:【答案】7【解析】【分析】先分别进行0次幂的计算、二次根式的乘法运算,然后再按运算顺序进行计算即可.【详解】=1+2+=1+2+4=7.【点睛】本题考查了实数的运算,熟练掌握实数的运算法则、0次幂的运算法则是解题的关键. 16. 《孙子算经》中有过样一道题,原文如下: “今有百鹿入城,家取一鹿不尽,又三家共一鹿适尽,问城中家几何?” 大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问城中有多少户人家?请解答上述问题.【答案】城中有75户人家.【解析】【分析】设城中有x户人家,根据今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,可得方程x+x=100,解方程即可得.【详解】设城中有x户人家,由题意得x+x=100,解得x=75,答:城中有75户人家.【点睛】本题考查了一元一次方程的应用,弄清题意,找出等量关系列方程进行求解是关键.17. 如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点. (1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段(点A,B的对应点分别为).画出线段;(2)将线段绕点逆时针旋转90°得到线段.画出线段;(3)以为顶点的四边形的面积是个平方单位.【答案】(1)画图见解析;(2)画图见解析;(3)20【解析】【分析】(1)结合网格特点,连接OA并延长至A1,使OA1=2OA,同样的方法得到B1,连接A1B1即可得;(2)结合网格特点根据旋转作图的方法找到A2点,连接A2B1即可得;(3)根据网格特点可知四边形AA1 B1 A2是正方形,求出边长即可求得面积.【详解】(1)如图所示;(2)如图所示;(3)结合网格特点易得四边形AA1 B1 A2是正方形,AA1=,所以四边形AA1 B1 A2的在面积为:=20,故答案为:20.【点睛】本题考查了作图-位似变换,旋转变换,能根据位似比、旋转方向和旋转角得到关键点的对应点是作图的关键.18. 观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证. 【详解】(1)观察可知第6个等式为:,故答案为:;(2)猜想:,证明:左边====1,右边=1,∴左边=右边,∴原等式成立,∴第n个等式为:,故答案为:.【点睛】本题考查了规律题,通过观察、归纳、抽象出等式的规律与序号的关系是解题的关键. 19. 为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置个平面镜E,使得B,E,D在同一水平线上,如图所示.该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED).在F处测得旗杆顶A的仰角为39.3°,平面镜E的俯角为45°,FD=1.8米,问旗杆AB的高度约为多少米? (结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3°≈10.02)【答案】旗杆AB高约18米.【解析】【分析】如图先证明△FDE∽△ABE,从而得,在Rt△FEA中,由tan∠AFE=,通过运算求得AB的值即可.【详解】如图,∵FM//BD,∴∠FED=∠MFE=45°,∵∠DEF=∠BEA,∴∠AEB=45°,∴∠FEA=90°,∵∠FDE=∠ABE=90°,∴△FDE∽△ABE,∴,在Rt△FEA中,∠AFE=∠MFE+∠MFA=45°+39.3°=84.3°,tan84.3°=,∴,∴AB=1.8×10.02≈18,答:旗杆AB高约18米.【点睛】本题考查了解直角三角形的应用,相似三角形的判定与性质,得到是解题的关键.20. 如图,⊙O为锐角△ABC的外接圆,半径为5.(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧BC的交点E(保留作图痕迹,不写作法);(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.【答案】(1)画图见解析;(2)CE=【解析】【分析】(1)以点A为圆心,以任意长为半径画弧,分别与AB、AC有交点,再分别以这两个交点为圆心,以大于这两点距离的一半为半径画弧,两弧交于一点,过点A与这点作射线,与圆交于点E ,据此作图即可;(2)连接OE交BC于点F,连接OC、CE,由AE平分∠BAC,可推导得出OE⊥BC,然后在Rt△OFC中,由勾股定理可求得FC的长,在Rt△EFC中,由勾股定理即可求得CE的长.【详解】(1)如图所示,射线AE就是所求作的角平分线;(2)连接OE交BC于点F,连接OC、CE,∵AE平分∠BAC,∴,∴OE⊥BC,EF=3,∴OF=5-3=2,在Rt△OFC中,由勾股定理可得FC==,在Rt△EFC中,由勾股定理可得CE==.【点睛】本题考查了尺规作图——作角平分线,垂径定理等,熟练掌握角平分线的作图方法、推导得出OE⊥BC是解题的关键.21. “校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图部分信息如下:(1)本次比赛参赛选手共有人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为;(2)赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.【答案】(1)50,30%;(2)不能,理由见解析;(3)P=【解析】【分析】(1)由直方图可知59.5~69.5分数段有5人,由扇形统计图可知这一分数段人占10%,据此可得选手总数,然后求出89.5~99.5这一分数段所占的百分比,用1减去其他分数段的百分比即可得到分数段69.5~79.5所占的百分比;(2)观察可知79.5~99.5这一分数段的人数占了60%,据此即可判断出该选手是否获奖;(3)画树状图得到所有可能的情况,再找出符合条件的情况后,用概率公式进行求解即可.【详解】(1)本次比赛选手共有(2+3)÷10%=50(人),“89.5~99.5”这一组人数占百分比为:(8+4)÷50×100%=24%,所以“69.5~79.5”这一组人数占总人数的百分比为:1-10%-24%-36%=30%,故答案为:50,30%;(2)不能;由统计图知,79.5~89.5和89.5~99.5两组占参赛选手60%,而78<79.5,所以他不能获奖;(3)由题意得树状图如下由树状图知,共有12种等可能结果,其中恰好选中1男1女的8结果共有种,故P==.【点睛】本题考查了直方图、扇形图、概率,结合统计图找到必要信息进行解题是关键.22. 小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元)(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?【答案】(1)W1=-2x²+60x+8000,W2=-19x+950;(2)当x=10时,W总最大为9160元.【解析】【分析】(1)第二期培植的盆景比第一期增加x盆,则第二期培植盆景(50+x)盆,花卉(50-x)盆,根据盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元,②花卉的平均每盆利润始终不变,即可得到利润W1,W2与x的关系式;(2)由W总=W1+W2可得关于x的二次函数,利用二次函数的性质即可得.【详解】(1)第二期培植的盆景比第一期增加x盆,则第二期培植盆景(50+x)盆,花卉[100-(50+x)]=(50-x)盆,由题意得W1=(50+x)(160-2x)=-2x²+60x+8000,W2=19(50-x)=-19x+950;(2)W总=W1+W2=-2x²+60x+8000+(-19x+950)=-2x²+41x+8950,∵-2<0,=10.25,故当x=10时,W总最大,W总最大=-2×10²+41×10+8950=9160.【点睛】本题考查了二次函数的应用,弄清题意,找准数量关系列出函数解析式是解题的关键.23. 如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB于点E,点M为BD中点,CM的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.【答案】(1)证明见解析;(2)∠EMF=100°;(3)证明见解析.【解析】【分析】(1)在Rt△DCB和Rt△DEB中,利用直角三角形斜边中线等于斜边一半进行证明即可得;(2)根据直角三角形两锐角互余可得∠ABC=40°,根据CM=MB,可得∠MCB=∠CBM,从而可得∠CMD=2∠CBM,继而可得∠CME=2∠CBA=80°,根据邻补角的定义即可求得∠EMF的度数;【详解】(1)∵M为BD中点,Rt△DCB中,MC=BD,Rt△DEB中,EM=BD,∴MC=ME;(2)∵∠BAC=50°,∠ACB=90°,∴∠ABC=90°-50°=40°,∵CM=MB,∴∠MCB=∠CBM,∴∠CMD=∠MCB+∠CBM=2∠CBM,同理,∠DME=2∠EBM,∴∠CME=2∠CBA=80°,∴∠EMF=180°-80°=100°;(3)∵△DAE≌△CEM,CM=EM,∴AE=EM,DE=CM,∠CME=∠DEA=90°,∠ECM=∠ADE,∵CM=EM,∴AE=ED,∴∠DAE=∠ADE=45°,∴∠ABC=45°,∠ECM=45°,又∵CM=ME=BD=DM,∴DE=EM=DM,∴△DEM是等边三角形,∴∠EDM=60°,∴∠MBE=30°,∵CM=BM,∴∠BCM=∠CBM,∵∠MCB+∠ACE=45°,∠CBM+∠MBE=45°,∴∠ACE=∠MBE=30°,∴∠ACM=∠ACE+∠ECM=75°,连接AM,∵AE=EM=MB,∴∠MEB=∠EBM=30°,∠AME=∠MEB=15°,∵∠CME=90°,∴∠CMA=90°-15°=75°=∠ACM,∴AC=AM,∵N为CM中点,∴AN⊥CM,∵CM⊥EM,∴AN∥CM.【点睛】本题考查了三角形全等的性质、直角三角形斜边中线的性质、等腰三角形的判定与性质、三角形外角的性质等,综合性较强,正确添加辅助线、灵活应用相关知识是解题的关键.。
2020年安徽省中考数学试卷(含解析)
2020年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的.1.(4分)(2020•安徽)下列各数中,比﹣2小的数是( )A .﹣3B .﹣1C .0D .22.(4分)(2020•安徽)计算(﹣a )6÷a 3的结果是( )A .﹣a 3B .﹣a 2C .a 3D .a 23.(4分)(2020•安徽)下面四个几何体中,主视图为三角形的是( )A .B .C .D .4.(4分)(2020•安徽)安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为( )A .5.47×108B .0.547×108C .547×105D .5.47×1075.(4分)(2020•安徽)下列方程中,有两个相等实数根的是( )A .x 2+1=2xB .x 2+1=0C .x 2﹣2x =3D .x 2﹣2x =06.(4分)(2020•安徽)冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是( )A .众数是11B .平均数是12C .方差是187D .中位数是139.(4分)(2020•安徽)已知点A ,B ,C 在⊙O 上,则下列命题为真命题的是( )A .若半径OB 平分弦AC ,则四边形OABC 是平行四边形B .若四边形OABC 是平行四边形,则∠ABC =120°C .若∠ABC =120°,则弦AC 平分半径OBD .若弦AC 平分半径OB ,则半径OB 平分弦AC10.(4分)(2020•安徽)如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC在直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A.B.C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)(2020•安徽)计算:√9−1=.12.(5分)(2020•安徽)分解因式:ab2﹣a=.13.(5分)(2020•安徽)如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B.与反比例函数y=kx的图象在第一象限内交于点C,CD⊥x轴,CE⊥y轴.垂足分别为点D,E.当矩形ODCE与△OAB的面积相等时,k的值为.14.(5分)(2020•安徽)在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD 沿过点A 的直线折叠,使得点B 落在CD 上的点Q 处.折痕为AP ;再将△PCQ ,△ADQ 分别沿PQ ,AQ 折叠,此时点C ,D 落在AP 上的同一点R 处.请完成下列探究:(1)∠P AQ 的大小为 °;(2)当四边形APCD 是平行四边形时,AB QR 的值为 .四、(本大题共2小题,每小题8分,满分16分)17.(8分)(2020•安徽)观察以下等式:第1个等式:13×(1+21)=2−11, 第2个等式:34×(1+22)=2−12, 第3个等式:55×(1+23)=2−13, 第4个等式:76×(1+24)=2−14. 第5个等式:97×(1+25)=2−15.…按照以上规律,解决下列问题:(1)写出第6个等式: ;(2)写出你猜想的第n 个等式: (用含n 的等式表示),并证明.18.(8分)(2020•安徽)如图,山顶上有一个信号塔AC,已知信号塔高AC=15米,在山脚下点B处测得塔底C的仰角∠CBD=36.9°,塔顶A的仰角∠ABD=42.0°,求山高CD(点A,C,D在同一条竖直线上).(参考数据:tan36.9°≈0.75,sin36.9°≈0.60,tan42.0°≈0.90.)五、(本大题共2小题,每小题10分,满分20分)19.(10分)(2020•安徽)某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元)线上销售额(元)线下销售额(元)2019年4月份a x a﹣x2020年4月份 1.1a 1.43x(2)求2020年4月份线上销售额与当月销售总额的比值.20.(10分)(2020•安徽)如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;(2)若BE=BF,求证:AC平分∠DAB.六、(本题满分12分)21.(12分)(2020•安徽)某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A套餐的人数为,扇形统计图中“C”对应扇形的圆心角的大小为°;(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.七、(本题满分12分)22.(12分)(2020•安徽)在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=ax2+bx+1恰好经过A,B,C三点中的两点.(1)判断点B是否在直线y=x+m上,并说明理由;(2)求a,b的值;(3)平移抛物线y=ax2+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y 轴交点纵坐标的最大值.八、(本题满分14分)23.(14分)(2020•安徽)如图1,已知四边形ABCD是矩形,点E在BA的延长线上,AE =AD.EC与BD相交于点G,与AD相交于点F,AF=AB.(1)求证:BD⊥EC;(2)若AB=1,求AE的长;(3)如图2,连接AG,求证:EG﹣DG=√2AG.2020年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.(4分)(2020•安徽)下列各数中,比﹣2小的数是()A.﹣3B.﹣1C.0D.2【解答】解:根据两个负数,绝对值大的反而小可知﹣3<﹣2.故选:A.2.(4分)(2020•安徽)计算(﹣a)6÷a3的结果是()A.﹣a3B.﹣a2C.a3D.a2【解答】解:原式=a6÷a3=a3.故选:C.3.(4分)(2020•安徽)下面四个几何体中,主视图为三角形的是()A.B.C.D.【解答】解:A、主视图是圆,故A不符合题意;B、主视图是三角形,故B符合题意;C、主视图是矩形,故C不符合题意;D、主视图是正方形,故D不符合题意;故选:B.4.(4分)(2020•安徽)安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为()A.5.47×108B.0.547×108C.547×105D.5.47×107【解答】解:54700000用科学记数法表示为:5.47×107.故选:D .5.(4分)(2020•安徽)下列方程中,有两个相等实数根的是( )A .x 2+1=2xB .x 2+1=0C .x 2﹣2x =3D .x 2﹣2x =0【解答】解:A 、△=(﹣2)2﹣4×1×1=0,有两个相等实数根;B 、△=0﹣4=﹣4<0,没有实数根;C 、△=(﹣2)2﹣4×1×(﹣3)=16>0,有两个不相等实数根;D 、△=(﹣2)2﹣4×1×0=4>0,有两个不相等实数根.故选:A .6.(4分)(2020•安徽)冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是( )A .众数是11B .平均数是12C .方差是187D .中位数是13【解答】解:数据11,10,11,13,11,13,15中,11出现的次数最多是3次,因此众数是11,于是A 选项不符合题意;将这7个数据从小到大排列后,处在中间位置的一个数是11,因此中位数是11,于是D 符合题意; x =(11+10+11+13+11+13+15)÷7=12,即平均数是12,于是选项B 不符合题意;S 2=17[(10﹣12)2+(11﹣12)2×3+(13﹣12)2×2+(15﹣12)2]=187,因此方差为187,于是选项C 不符合题意;故选:D .9.(4分)(2020•安徽)已知点A ,B ,C 在⊙O 上,则下列命题为真命题的是( )A .若半径OB 平分弦AC ,则四边形OABC 是平行四边形B .若四边形OABC 是平行四边形,则∠ABC =120°C .若∠ABC =120°,则弦AC 平分半径OBD .若弦AC 平分半径OB ,则半径OB 平分弦AC【解答】解:A 、如图,若半径OB平分弦AC,则四边形OABC不一定是平行四边形;原命题是假命题;B、若四边形OABC是平行四边形,则AB=OC,OA=BC,∵OA=OB=OC,∴AB=OA=OB=BC=OC,∴∠ABO=∠OBC=60°,∴∠ABC=120°,是真命题;C、如图,若∠ABC=120°,则弦AC不平分半径OB,原命题是假命题;D、如图,若弦AC平分半径OB,则半径OB不一定平分弦AC,原命题是假命题;故选:B.10.(4分)(2020•安徽)如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC在直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A.B.C.D.【解答】解:如图1所示:当0<x≤2时,过点G作GH⊥BF于H.∵△ABC和△DEF均为等边三角形,∴△GEJ为等边三角形.∴GH=√32EJ=√32x,∴y=12EJ•GH=√34x2.当x=2时,y=√3,且抛物线的开口向上.如图2所示:2<x≤4时,过点G作GH⊥BF于H.y =12FJ •GH =√34(4﹣x )2,函数图象为抛物线的一部分,且抛物线开口向上. 故选:A .二、填空题(本大题共4小题,每小题5分,满分20分) 11.(5分)(2020•安徽)计算:√9−1= 2 . 【解答】解:原式=3﹣1=2. 故答案为:2.12.(5分)(2020•安徽)分解因式:ab 2﹣a = a (b +1)(b ﹣1) . 【解答】解:原式=a (b 2﹣1)=a (b +1)(b ﹣1), 故答案为:a (b +1)(b ﹣1)13.(5分)(2020•安徽)如图,一次函数y =x +k (k >0)的图象与x 轴和y 轴分别交于点A 和点B .与反比例函数y =kx 的图象在第一象限内交于点C ,CD ⊥x 轴,CE ⊥y 轴.垂足分别为点D ,E .当矩形ODCE 与△OAB 的面积相等时,k 的值为 2 .【解答】解:一次函数y =x +k (k >0)的图象与x 轴和y 轴分别交于点A 和点B ,令x =0,则y =k ,令y =0,则x =﹣k ,故点A 、B 的坐标分别为(﹣k ,0)、(0,k ),则△OAB 的面积=12OA •OB =12k 2,而矩形ODCE 的面积为k , 则12k 2=k ,解得:k =0(舍去)或2,故答案为2.14.(5分)(2020•安徽)在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD 沿过点A 的直线折叠,使得点B 落在CD 上的点Q 处.折痕为AP ;再将△PCQ ,△ADQ 分别沿PQ ,AQ 折叠,此时点C ,D 落在AP 上的同一点R 处.请完成下列探究: (1)∠P AQ 的大小为 30 °; (2)当四边形APCD 是平行四边形时,AB QR的值为 √3 .【解答】解:(1)由折叠的性质可得:∠B =∠AQP ,∠DAQ =∠QAP =∠P AB ,∠DQA =∠AQR ,∠CQP =∠PQR ,∠D =∠ARQ ,∠C =∠QRP , ∵∠QRA +∠QRP =180°, ∴∠D +∠C =180°, ∴AD ∥BC ,∴∠B +∠DAB =180°, ∵∠DQR +∠CQR =180°, ∴∠DQA +∠CQP =90°, ∴∠AQP =90°, ∴∠B =∠AQP =90°, ∴∠DAB =90°,∴∠DAQ =∠QAP =∠P AB =30°, 故答案为:30;(2)由折叠的性质可得:AD =AR ,CP =PR , ∵四边形APCD 是平行四边形, ∴AD =PC , ∴AR =PR , 又∵∠AQP =90°,∴QR =12AP ,∵∠P AB =30°,∠B =90°, ∴AP =2PB ,AB =√3PB , ∴PB =QR , ∴AB QR=√3,故答案为:√3.四、(本大题共2小题,每小题8分,满分16分) 17.(8分)(2020•安徽)观察以下等式: 第1个等式:13×(1+21)=2−11,第2个等式:34×(1+22)=2−12, 第3个等式:55×(1+23)=2−13, 第4个等式:76×(1+24)=2−14. 第5个等式:97×(1+25)=2−15. …按照以上规律,解决下列问题: (1)写出第6个等式:118×(1+26)=2−16 ;(2)写出你猜想的第n 个等式: 2n−1n+2×(1+2n )=2−1n (用含n 的等式表示),并证明.【解答】解:(1)第6个等式:118×(1+26)=2−16;(2)猜想的第n 个等式:2n−1n+2×(1+2n)=2−1n.证明:∵左边=2n−1n+2×n+2n =2n−1n =2−1n=右边, ∴等式成立. 故答案为:118×(1+26)=2−16;2n−1n+2×(1+2n )=2−1n .18.(8分)(2020•安徽)如图,山顶上有一个信号塔AC ,已知信号塔高AC =15米,在山脚下点B 处测得塔底C 的仰角∠CBD =36.9°,塔顶A 的仰角∠ABD =42.0°,求山高CD(点A,C,D在同一条竖直线上).(参考数据:tan36.9°≈0.75,sin36.9°≈0.60,tan42.0°≈0.90.)【解答】解:由题意,在Rt△ABD中,tan∠ABD=AD BD,∴tan42.0°=ADBD≈0.9,∴AD≈0.9BD,在Rt△BCD中,tan∠CBD=CD BD,∴tan36.9°=CDBD≈0.75,∴CD≈0.75BD,∵AC=AD﹣CD,∴15=0.15BD,∴BD=100米,∴CD=0.75BD=75(米),答:山高CD为75米.五、(本大题共2小题,每小题10分,满分20分)19.(10分)(2020•安徽)某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元)线上销售额(元)线下销售额(元)2019年4月份a x a﹣x2020年4月份 1.1a 1.43x 1.04(a﹣x)(2)求2020年4月份线上销售额与当月销售总额的比值.【解答】解:(1)∵与2019年4月份相比,该超市2020年4月份线下销售额增长4%,∴该超市2020年4月份线下销售额为1.04(a﹣x)元.故答案为:1.04(a ﹣x ).(2)依题意,得:1.1a =1.43x +1.04(a ﹣x ), 解得:x =213a , ∴1.43x 1.1a=1.43⋅213a 1.1a=0.22a 1.1a=0.2.答:2020年4月份线上销售额与当月销售总额的比值为0.2.20.(10分)(2020•安徽)如图,AB 是半圆O 的直径,C ,D 是半圆O 上不同于A ,B 的两点,AD =BC ,AC 与BD 相交于点F .BE 是半圆O 所在圆的切线,与AC 的延长线相交于点E .(1)求证:△CBA ≌△DAB ;(2)若BE =BF ,求证:AC 平分∠DAB .【解答】(1)证明:∵AB 是半圆O 的直径, ∴∠ACB =∠ADB =90°,在Rt △CBA 与Rt △DAB 中,{BC =AD BA =AB ,∴Rt △CBA ≌Rt △DAB (HL );(2)解:∵BE =BF ,由(1)知BC ⊥EF , ∴∠E =∠BFE ,∵BE 是半圆O 所在圆的切线, ∴∠ABE =90°, ∴∠E +∠BAE =90°, 由(1)知∠D =90°, ∴∠DAF +∠AFD =90°, ∵∠AFD =∠BFE , ∴∠AFD =∠E ,∴∠DAF =90°﹣∠AFD ,∠BAF =90°﹣∠E , ∴∠DAF =∠BAF ,∴AC平分∠DAB.六、(本题满分12分)21.(12分)(2020•安徽)某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A套餐的人数为60,扇形统计图中“C”对应扇形的圆心角的大小为108°;(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.【解答】解:(1)在抽取的240人中最喜欢A套餐的人数为240×25%=60(人),则最喜欢C套餐的人数为240﹣(60+84+24)=72(人),∴扇形统计图中“C”对应扇形的圆心角的大小为360°×72240=108°,故答案为:60、108;(2)估计全体960名职工中最喜欢B套餐的人数为960×84240=336(人);(3)画树状图为:共有12种等可能的结果数,其中甲被选到的结果数为6,∴甲被选到的概率为612=12.七、(本题满分12分)22.(12分)(2020•安徽)在平面直角坐标系中,已知点A (1,2),B (2,3),C (2,1),直线y =x +m 经过点A ,抛物线y =ax 2+bx +1恰好经过A ,B ,C 三点中的两点. (1)判断点B 是否在直线y =x +m 上,并说明理由; (2)求a ,b 的值;(3)平移抛物线y =ax 2+bx +1,使其顶点仍在直线y =x +m 上,求平移后所得抛物线与y 轴交点纵坐标的最大值.【解答】解:(1)点B 是在直线y =x +m 上,理由如下: ∵直线y =x +m 经过点A (1,2), ∴2=1+m ,解得m =1, ∴直线为y =x +1,把x =2代入y =x +1得y =3, ∴点B (2,3)在直线y =x +m 上;(2)∵直线y =x +1与抛物线y =ax 2+bx +1都经过点(0,1),且B 、C 两点的横坐标相同,∴抛物线只能经过A 、C 两点,把A (1,2),C (2,1)代入y =ax 2+bx +1得{a +b +1=24a +2b +1=1,解得a =﹣1,b =2;(3)由(2)知,抛物线为y =﹣x 2+2x +1,设平移后的抛物线为y =﹣x 2+px +q ,其顶点坐标为(p2,p 24+q ),∵顶点仍在直线y =x +1上, ∴p 24+q =p2+1, ∴q =−p 24+p2+1,∵抛物线y =﹣x 2+px +q 与y 轴的交点的纵坐标为q , ∴q =−p 24+p 2+1=−14(p ﹣1)2+54,∴当p =1时,平移后所得抛物线与y 轴交点纵坐标的最大值为54.八、(本题满分14分)23.(14分)(2020•安徽)如图1,已知四边形ABCD是矩形,点E在BA的延长线上,AE =AD.EC与BD相交于点G,与AD相交于点F,AF=AB.(1)求证:BD⊥EC;(2)若AB=1,求AE的长;(3)如图2,连接AG,求证:EG﹣DG=√2AG.【解答】(1)证明:∵四边形ABCD是矩形,点E在BA的延长线上,∴∠EAF=∠DAB=90°,又∵AE=AD,AF=AB,∴△AEF≌△ADB(SAS),∴∠AEF=∠ADB,∴∠GEB+∠GBE=∠ADB+∠ABD=90°,即∠EGB=90°,故BD⊥EC,(2)解:∵四边形ABCD是矩形,∴AE∥CD,∴∠AEF=∠DCF,∠EAF=∠CDF,∴△AEF∽△DCF,∴AEDC =AF DF,即AE•DF=AF•DC,设AE=AD=a(a>0),则有a•(a﹣1)=1,化简得a2﹣a﹣1=0,解得a=1+√52或1−√52(舍去),∴AE=1+√5 2.(3)如图,在线段EG上取点P,使得EP=DG,在△AEP与△ADG中,AE=AD,∠AEP=∠ADG,EP=DG,∴△AEP≌△ADG(SAS),∴AP=AG,∠EAP=∠DAG,∴∠P AG=∠P AD+∠DAG=∠P AD+∠EAP=∠DAE=90°,∴△P AG为等腰直角三角形,∴EG﹣DG=EG﹣EP=PG=√2AG.。
2020年安徽省中考数学试卷(含解析)打印版
2020年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.(4分)下列各数中,比﹣2小的数是()A.﹣3B.﹣1C.0D.22.(4分)计算(﹣a)6÷a3的结果是()A.﹣a3B.﹣a2C.a3D.a23.(4分)下面四个几何体中,主视图为三角形的是()A.B.C.D.4.(4分)安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为()A.5.47×108B.0.547×108C.547×105D.5.47×1075.(4分)下列方程中,有两个相等实数根的是()A.x2+1=2x B.x2+1=0C.x2﹣2x=3D.x2﹣2x=06.(4分)冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是()A.众数是11B.平均数是12C.方差是D.中位数是137.(4分)已知一次函数y=kx+3的图象经过点A,且y随x的增大而减小,则点A的坐标可以是()A.(﹣1,2)B.(1,﹣2)C.(2,3)D.(3,4)8.(4分)如图,Rt△ABC中,∠C=90°,点D在AC上,∠DBC=∠A.若AC=4,cos A=,则BD 的长度为()A.B.C.D.49.(4分)已知点A,B,C在⊙O上,则下列命题为真命题的是()A.若半径OB平分弦AC,则四边形OABC是平行四边形B.若四边形OABC是平行四边形,则∠ABC=120°C.若∠ABC=120°,则弦AC平分半径OBD.若弦AC平分半径OB,则半径OB平分弦AC10.(4分)如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC在直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A.B.C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)计算:﹣1=.12.(5分)分解因式:ab2﹣a=.13.(5分)如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B.与反比例函数y=的图象在第一象限内交于点C,CD⊥x轴,CE⊥y轴.垂足分别为点D,E.当矩形ODCE与△OAB的面积相等时,k的值为.14.(5分)在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD沿过点A的直线折叠,使得点B落在CD上的点Q处.折痕为AP;再将△PCQ,△ADQ分别沿PQ,AQ折叠,此时点C,D 落在AP上的同一点R处.请完成下列探究:(1)∠P AQ的大小为°;(2)当四边形APCD是平行四边形时,的值为.三、(本大题共2小题,每小题8分,满分16分)15.(8分)解不等式:>1.16.(8分)如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB,线段MN在网格线上.(1)画出线段AB关于线段MN所在直线对称的线段A1B1(点A1,B1分别为A,B的对应点);(2)将线段B1A1绕点B1顺时针旋转90°得到线段B1A2,画出线段B1A2.四、(本大题共2小题,每小题8分,满分16分)17.(8分)观察以下等式:第1个等式:×(1+)=2﹣,第2个等式:×(1+)=2﹣,第3个等式:×(1+)=2﹣,第4个等式:×(1+)=2﹣.第5个等式:×(1+)=2﹣.…按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.18.(8分)如图,山顶上有一个信号塔AC,已知信号塔高AC=15米,在山脚下点B处测得塔底C的仰角∠CBD=36.9°,塔顶A的仰角∠ABD=42.0°,求山高CD(点A,C,D在同一条竖直线上).(参考数据:tan36.9°≈0.75,sin36.9°≈0.60,tan42.0°≈0.90.)五、(本大题共2小题,每小题10分,满分20分)19.(10分)某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元)线上销售额(元)线下销售额(元)2019年4月份a x a﹣x2020年4月份 1.1a 1.43x(2)求2020年4月份线上销售额与当月销售总额的比值.20.(10分)如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;(2)若BE=BF,求证:AC平分∠DAB.六、(本题满分12分)21.(12分)某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A套餐的人数为,扇形统计图中“C”对应扇形的圆心角的大小为°;(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.七、(本题满分12分)22.(12分)在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=ax2+bx+1恰好经过A,B,C三点中的两点.(1)判断点B是否在直线y=x+m上,并说明理由;(2)求a,b的值;(3)平移抛物线y=ax2+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y轴交点纵坐标的最大值.八、(本题满分14分)23.(14分)如图1,已知四边形ABCD是矩形,点E在BA的延长线上,AE=AD.EC与BD相交于点G,与AD相交于点F,AF=AB.(1)求证:BD⊥EC;(2)若AB=1,求AE的长;(3)如图2,连接AG,求证:EG﹣DG=AG.2020年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.(4分)下列各数中,比﹣2小的数是()A.﹣3B.﹣1C.0D.2【分析】先根据正数都大于0,负数都小于0,可排除C、D,再根据两个负数,绝对值大的反而小,可得比﹣2小的数是﹣3.【解答】解:根据两个负数,绝对值大的反而小可知﹣3<﹣2.故选:A.2.(4分)计算(﹣a)6÷a3的结果是()A.﹣a3B.﹣a2C.a3D.a2【分析】直接利用同底数幂的除法运算法则计算得出答案.【解答】解:原式=a6÷a3=a3.故选:C.3.(4分)下面四个几何体中,主视图为三角形的是()A.B.C.D.【分析】根据主视图是从正面看得到的图形,可得答案.【解答】解:A、主视图是圆,故A不符合题意;B、主视图是三角形,故B符合题意;C、主视图是矩形,故C不符合题意;D、主视图是正方形,故D不符合题意;故选:B.4.(4分)安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为()A.5.47×108B.0.547×108C.547×105D.5.47×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:54700000用科学记数法表示为:5.47×107.故选:D.5.(4分)下列方程中,有两个相等实数根的是()A.x2+1=2x B.x2+1=0C.x2﹣2x=3D.x2﹣2x=0【分析】判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.有两个相等实数根的一元二次方程就是判别式的值是0的一元二次方程.【解答】解:A、△=(﹣2)2﹣4×1×1=0,有两个相等实数根;B、△=0﹣4=﹣4<0,没有实数根;C、△=(﹣2)2﹣4×1×(﹣3)=16>0,有两个不相等实数根;D、△=(﹣2)2﹣4×1×0=4>0,有两个不相等实数根.故选:A.6.(4分)冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是()A.众数是11B.平均数是12C.方差是D.中位数是13【分析】根据平均数、众数、中位数、方差的计算方法分别计算这组数据的平均数、众数、中位数、方差,最后做出选择.【解答】解:数据11,10,11,13,11,13,15中,11出现的次数最多是3次,因此众数是11,于是A选项不符合题意;将这7个数据从小到大排列后,处在中间位置的一个数是11,因此中位数是11,于是D符合题意;=(11+10+11+13+11+13+15)÷7=12,即平均数是12,于是选项B不符合题意;S2=[(10﹣12)2+(11﹣12)2×3+(13﹣12)2×2+(15﹣12)2]=,因此方差为,于是选项C不符合题意;故选:D.7.(4分)已知一次函数y=kx+3的图象经过点A,且y随x的增大而减小,则点A的坐标可以是()A.(﹣1,2)B.(1,﹣2)C.(2,3)D.(3,4)【分析】由点A的坐标,利用一次函数图象上点的坐标特征求出k值,结合y随x的增大而减小即可确定结论.【解答】解:A、当点A的坐标为(﹣1,2)时,﹣k+3=2,解得:k=1>0,∴y随x的增大而增大,选项A不符合题意;B、当点A的坐标为(1,﹣2)时,k+3=﹣2,解得:k=﹣5<0,∴y随x的增大而减小,选项B符合题意;C、当点A的坐标为(2,3)时,2k+3=3,解得:k=0,选项C不符合题意;D、当点A的坐标为(3,4)时,3k+3=4,解得:k=>0,∴y随x的增大而增大,选项D不符合题意.故选:B.8.(4分)如图,Rt△ABC中,∠C=90°,点D在AC上,∠DBC=∠A.若AC=4,cos A=,则BD 的长度为()A.B.C.D.4【分析】在△ABC中,由三角函数求得AB,再由勾股定理求得BC,最后在△BCD中由三角函数求得BD.【解答】解:∵∠C=90°,AC=4,cos A=,∴AB=,∴,∵∠DBC=∠A.∴cos∠DBC=cos∠A=,∴,故选:C.9.(4分)已知点A,B,C在⊙O上,则下列命题为真命题的是()A.若半径OB平分弦AC,则四边形OABC是平行四边形B.若四边形OABC是平行四边形,则∠ABC=120°C.若∠ABC=120°,则弦AC平分半径OBD.若弦AC平分半径OB,则半径OB平分弦AC【分析】根据垂径定理,平行四边形的性质判断即可.【解答】解:A、如图,若半径OB平分弦AC,则四边形OABC不一定是平行四边形;原命题是假命题;B、若四边形OABC是平行四边形,则AB=OC,OA=BC,∵OA=OB=OC,∴AB=OA=OB=BC=OC,∴∠ABO=∠OBC=60°,∴∠ABC=120°,是真命题;C、如图,若∠ABC=120°,则弦AC不平分半径OB,原命题是假命题;D、如图,若弦AC平分半径OB,则半径OB不一定平分弦AC,原命题是假命题;故选:B.10.(4分)如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC在直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A.B.C.D.【分析】分为0<x≤2、2<x≤4两种情况,然后依据等边三角形的性质和三角形的面积公式可求得y 与x的函数关系式,于是可求得问题的答案.【解答】解:如图1所示:当0<x≤2时,过点G作GH⊥BF于H.∵△ABC和△DEF均为等边三角形,∴△GEJ为等边三角形.∴GH=EJ=x,∴y=EJ•GH=x2.当x=2时,y=,且抛物线的开口向上.如图2所示:2<x≤4时,过点G作GH⊥BF于H.y=FJ•GH=(4﹣x)2,函数图象为抛物线的一部分,且抛物线开口向上.故选:A.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)计算:﹣1=2.【分析】直接利用二次根式的性质化简进而得出答案.【解答】解:原式=3﹣1=2.故答案为:2.12.(5分)分解因式:ab2﹣a=a(b+1)(b﹣1).【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(b2﹣1)=a(b+1)(b﹣1),故答案为:a(b+1)(b﹣1)13.(5分)如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B.与反比例函数y=的图象在第一象限内交于点C,CD⊥x轴,CE⊥y轴.垂足分别为点D,E.当矩形ODCE与△OAB的面积相等时,k的值为2.【分析】分别求出矩形ODCE与△OAB的面积,即可求解.【解答】解:一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B,令x=0,则y=k,令y=0,则x=﹣k,故点A、B的坐标分别为(﹣k,0)、(0,k),则△OAB的面积=OA•OB=k2,而矩形ODCE的面积为k,则k2=k,解得:k=0(舍去)或2,故答案为2.14.(5分)在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD沿过点A的直线折叠,使得点B落在CD上的点Q处.折痕为AP;再将△PCQ,△ADQ分别沿PQ,AQ折叠,此时点C,D 落在AP上的同一点R处.请完成下列探究:(1)∠P AQ的大小为30°;(2)当四边形APCD是平行四边形时,的值为.【分析】(1)由折叠的性质可得∠B=∠AQP,∠DAQ=∠QAP=∠P AB,∠DQA=∠AQR,∠CQP=∠PQR,∠D=∠ARQ,∠C=∠QRP,由平角的性质可得∠D+∠C=180°,∠AQP=90°,可证AD ∥BC,由平行线的性质可得∠DAB=90°,即可求解;(2)由平行四边形和折叠的性质可得AR=PR,由直角三角形的性质可得AP=2PB=2QR,AB=PB,即可求解.【解答】解:(1)由折叠的性质可得:∠B=∠AQP,∠DAQ=∠QAP=∠P AB,∠DQA=∠AQR,∠CQP=∠PQR,∠D=∠ARQ,∠C=∠QRP,∵∠QRA+∠QRP=180°,∴∠D+∠C=180°,∴AD∥BC,∴∠B+∠DAB=180°,∵∠DQR+∠CQR=180°,∴∠DQA+∠CQP=90°,∴∠AQP=90°,∴∠B=∠AQP=90°,∴∠DAB=90°,∴∠DAQ=∠QAP=∠P AB=30°,故答案为:30;(2)由折叠的性质可得:AD=AR,CP=PR,∵四边形APCD是平行四边形,∴AD=PC,∴AR=PR,又∵∠AQP=90°,∴QR=AP,∵∠P AB=30°,∠B=90°,∴AP=2PB,AB=PB,∴PB=QR,∴=,故答案为:.三、(本大题共2小题,每小题8分,满分16分)15.(8分)解不等式:>1.【分析】根据解一元一次不等式基本步骤:去分母、移项、合并同类项、系数化为1可得.【解答】解:去分母,得:2x﹣1>2,移项,得:2x>2+1,合并,得:2x>3,系数化为1,得:x>.16.(8分)如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB,线段MN在网格线上.(1)画出线段AB关于线段MN所在直线对称的线段A1B1(点A1,B1分别为A,B的对应点);(2)将线段B1A1绕点B1顺时针旋转90°得到线段B1A2,画出线段B1A2.【分析】(1)分别作出A,B的对应点A1,B2即可.(2)作出点A1的对应点A2即可.【解答】解:(1)如图线段A1B1即为所求.(2)如图,线段B1A2即为所求.四、(本大题共2小题,每小题8分,满分16分)17.(8分)观察以下等式:第1个等式:×(1+)=2﹣,第2个等式:×(1+)=2﹣,第3个等式:×(1+)=2﹣,第4个等式:×(1+)=2﹣.第5个等式:×(1+)=2﹣.…按照以上规律,解决下列问题:(1)写出第6个等式:×(1+)=2﹣;(2)写出你猜想的第n个等式:×(1+)=2﹣(用含n的等式表示),并证明.【分析】(1)根据题目中前5个等式,可以发现式子的变化特点,从而可以写出第6个等式;(2)把上面发现的规律用字母n表示出来,并运用分式的混合运算法则计算等号的右边的值,进而得到左右相等便可.【解答】解:(1)第6个等式:×(1+)=2﹣;(2)猜想的第n个等式:×(1+)=2﹣.证明:∵左边=×==2﹣=右边,∴等式成立.故答案为:×(1+)=2﹣;×(1+)=2﹣.18.(8分)如图,山顶上有一个信号塔AC,已知信号塔高AC=15米,在山脚下点B处测得塔底C的仰角∠CBD=36.9°,塔顶A的仰角∠ABD=42.0°,求山高CD(点A,C,D在同一条竖直线上).(参考数据:tan36.9°≈0.75,sin36.9°≈0.60,tan42.0°≈0.90.)【分析】根据三角函数的定义和直角三角形的性质解答即可.【解答】解:由题意,在Rt△ABD中,tan∠ABD=,∴tan42.0°=≈0.9,∴AD≈0.9BD,在Rt△BCD中,tan∠CBD=,∴tan36.9°=≈0.75,∴CD≈0.75BD,∵AC=AD﹣CD,∴15=0.15BD,∴BD=100米,∴CD=0.75BD=75(米),答:山高CD为75米.五、(本大题共2小题,每小题10分,满分20分)19.(10分)某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元)线上销售额(元)线下销售额(元)2019年4月份a x a﹣x2020年4月份 1.1a 1.43x 1.04(a﹣x)(2)求2020年4月份线上销售额与当月销售总额的比值.【分析】(1)由线下销售额的增长率,即可用含a,x的代数式表示出2020年4月份的线下销售额;(2)根据2020年4月份的销售总额=线上销售额+线下销售额,即可得出关于x的一元一次方程,解之即可得出x的值(用含a的代数式表示),再将其代入中即可求出结论.【解答】解:(1)∵与2019年4月份相比,该超市2020年4月份线下销售额增长4%,∴该超市2020年4月份线下销售额为1.04(a﹣x)元.故答案为:1.04(a﹣x).(2)依题意,得:1.1a=1.43x+1.04(a﹣x),解得:x=a,∴===0.2.答:2020年4月份线上销售额与当月销售总额的比值为0.2.20.(10分)如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;(2)若BE=BF,求证:AC平分∠DAB.【分析】(1)根据圆周角定理得到∠ACB=∠ADB=90°,根据全等三角形的判定定理即可得到结论;(2)根据等腰三角形的性质得到∠E=∠BFE,根据切线的性质得到∠ABE=90°,根据三角形的内角和以及角平分线的定义即可得到结论.【解答】(1)证明:∵AB是半圆O的直径,∴∠ACB=∠ADB=90°,在Rt△CBA与Rt△DAB中,,∴Rt△CBA≌Rt△DAB(HL);(2)解:∵BE=BF,由(1)知BC⊥EF,∴∠E=∠BFE,∵BE是半圆O所在圆的切线,∴∠ABE=90°,∴∠E+∠BAE=90°,由(1)知∠D=90°,∴∠DAF+∠AFD=90°,∵∠AFD=∠BFE,∴∠AFD=∠E,∴∠DAF=90°﹣∠AFD,∠BAF=90°﹣∠E,∴∠DAF=∠BAF,∴AC平分∠DAB.六、(本题满分12分)21.(12分)某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A套餐的人数为60,扇形统计图中“C”对应扇形的圆心角的大小为108°;(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.【分析】(1)用被调查的职工人数乘以最喜欢A套餐人数所占百分比即可得其人数;再由四种套餐人数之和等于被调查的人数求出C对应人数,继而用360°乘以最喜欢C套餐人数所占比例即可得;(2)用总人数乘以样本中最喜欢B套餐的人数所占比例即可得;(3)画树状图列出所有等可能结果,从中找到符合条件的结果数,利用概率公式求解可得答案.【解答】解:(1)在抽取的240人中最喜欢A套餐的人数为240×25%=60(人),则最喜欢C套餐的人数为240﹣(60+84+24)=72(人),∴扇形统计图中“C”对应扇形的圆心角的大小为360°×=108°,故答案为:60、108;(2)估计全体960名职工中最喜欢B套餐的人数为960×=336(人);(3)画树状图为:共有12种等可能的结果数,其中甲被选到的结果数为6,∴甲被选到的概率为=.七、(本题满分12分)22.(12分)在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=ax2+bx+1恰好经过A,B,C三点中的两点.(1)判断点B是否在直线y=x+m上,并说明理由;(2)求a,b的值;(3)平移抛物线y=ax2+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y轴交点纵坐标的最大值.【分析】(1)根据待定系数法求得直线的解析式,然后即可判断点B(2,3)在直线y=x+m上;(2)因为直线经过A、B和点(0,1),所以经过点(0,1)的抛物线不同时经过A、B点,即可判断抛物线只能经过A、C两点,根据待定系数法即可求得a、b;(3)设平移后的抛物线为y=﹣x2+px+q,其顶点坐标为(,+q),根据题意得出+q=+1,由抛物线y=﹣x2+px+q与y轴交点的纵坐标为q,即可得出q=﹣﹣1=﹣(p﹣1)2+,从而得出q的最大值.【解答】解:(1)点B是在直线y=x+m上,理由如下:∵直线y=x+m经过点A(1,2),∴2=1+m,解得m=1,∴直线为y=x+1,把x=2代入y=x+1得y=3,∴点B(2,3)在直线y=x+m上;(2)∵直线y=x+1与抛物线y=ax2+bx+1都经过点(0,1),且B、C两点的横坐标相同,∴抛物线只能经过A、C两点,把A(1,2),C(2,1)代入y=ax2+bx+1得,解得a=﹣1,b=2;(3)由(2)知,抛物线为y=﹣x2+2x+1,设平移后的抛物线为y=﹣x2+px+q,其顶点坐标为(,+q),∵顶点仍在直线y=x+1上,∴+q=+1,∴q=﹣++1,∵抛物线y=﹣x2+px+q与y轴的交点的纵坐标为q,∴q=﹣++1=﹣(p﹣1)2+,∴当p=1时,平移后所得抛物线与y轴交点纵坐标的最大值为.八、(本题满分14分)23.(14分)如图1,已知四边形ABCD是矩形,点E在BA的延长线上,AE=AD.EC与BD相交于点G,与AD相交于点F,AF=AB.(1)求证:BD⊥EC;(2)若AB=1,求AE的长;(3)如图2,连接AG,求证:EG﹣DG=AG.【分析】(1)证明△AEF≌△ADB(SAS),得出∠AEF=∠ADB,证得∠EGB=90°,则结论得出;(2)证明△AEF∽△DCF,得出,即AE•DF=AF•DC,设AE=AD=a(a>0),则有a•(a﹣1)=1,化简得a2﹣a﹣1=0,解方程即可得出答案;(3)在线段EG上取点P,使得EP=DG,证明△AEP≌△ADG(SAS),得出AP=AG,∠EAP=∠DAG,证得△P AG为等腰直角三角形,可得出结论.【解答】(1)证明:∵四边形ABCD是矩形,点E在BA的延长线上,∴∠EAF=∠DAB=90°,又∵AE=AD,AF=AB,∴△AEF≌△ADB(SAS),∴∠AEF=∠ADB,∴∠GEB+∠GBE=∠ADB+∠ABD=90°,即∠EGB=90°,故BD⊥EC,(2)解:∵四边形ABCD是矩形,∴AE∥CD,∴∠AEF=∠DCF,∠EAF=∠CDF,∴△AEF∽△DCF,∴,即AE•DF=AF•DC,设AE=AD=a(a>0),则有a•(a﹣1)=1,化简得a2﹣a﹣1=0,解得或(舍去),∴AE=.(3)如图,在线段EG上取点P,使得EP=DG,在△AEP与△ADG中,AE=AD,∠AEP=∠ADG,EP=DG,∴△AEP≌△ADG(SAS),∴AP=AG,∠EAP=∠DAG,∴∠P AG=∠P AD+∠DAG=∠P AD+∠EAP=∠DAE=90°,∴△P AG为等腰直角三角形,∴EG﹣DG=EG﹣EP=PG=AG.。
2020年安徽省中考数学试卷 (解析版)
2020年安徽省中考数学试卷一、选择题1.下列各数中,比﹣2小的数是()A.﹣3B.﹣1C.0D.22.计算(﹣a)6÷a3的结果是()A.﹣a3B.﹣a2C.a3D.a23.下面四个几何体中,主视图为三角形的是()A.B.C.D.4.安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为()A.5.47×108B.0.547×108C.547×105D.5.47×1075.下列方程中,有两个相等实数根的是()A.x2+1=2x B.x2+1=0C.x2﹣2x=3D.x2﹣2x=06.冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是()A.众数是11B.平均数是12C.方差是D.中位数是13 7.已知一次函数y=kx+3的图象经过点A,且y随x的增大而减小,则点A的坐标可以是()A.(﹣1,2)B.(1,﹣2)C.(2,3)D.(3,4)8.如图,Rt△ABC中,∠C=90°,点D在AC上,∠DBC=∠A.若AC=4,cos A=,则BD的长度为()A.B.C.D.49.已知点A,B,C在⊙O上,则下列命题为真命题的是()A.若半径OB平分弦AC,则四边形OABC是平行四边形B.若四边形OABC是平行四边形,则∠ABC=120°C.若∠ABC=120°,则弦AC平分半径OBD.若弦AC平分半径OB,则半径OB平分弦AC10.如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC在直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A.B.C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.计算:﹣1=.12.分解因式:ab2﹣a=.13.如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B.与反比例函数y=的图象在第一象限内交于点C,CD⊥x轴,CE⊥y轴.垂足分别为点D,E.当矩形ODCE与△OAB的面积相等时,k的值为.14.在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD沿过点A的直线折叠,使得点B落在CD上的点Q处.折痕为AP;再将△PCQ,△ADQ分别沿PQ,AQ折叠,此时点C,D落在AP上的同一点R处.请完成下列探究:(1)∠PAQ的大小为°;(2)当四边形APCD是平行四边形时,的值为.三、(本大题共2小题,每小题8分,满分16分)15.解不等式:>1.16.如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB,线段MN在网格线上.(1)画出线段AB关于线段MN所在直线对称的线段A1B1(点A1,B1分别为A,B的对应点);(2)将线段B1A1绕点B1顺时针旋转90°得到线段B1A2,画出线段B1A2.四、(本大题共2小题,每小题8分,满分16分)17.观察以下等式:第1个等式:×(1+)=2﹣,第2个等式:×(1+)=2﹣,第3个等式:×(1+)=2﹣,第4个等式:×(1+)=2﹣.第5个等式:×(1+)=2﹣.…按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.18.如图,山顶上有一个信号塔AC,已知信号塔高AC=15米,在山脚下点B处测得塔底C的仰角∠CBD=36.9°,塔顶A的仰角∠ABD=42.0°,求山高CD(点A,C,D在同一条竖直线上).(参考数据:tan36.9°≈0.75,sin36.9°≈0.60,tan42.0°≈0.90.)五、(本大题共2小题,每小题10分,满分20分)19.某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元)线上销售额(元)线下销售额(元)2019年4月份a x a﹣x2020年4月份 1.1a 1.43x(2)求2020年4月份线上销售额与当月销售总额的比值.20.如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;(2)若BE=BF,求证:AC平分∠DAB.六、(本题满分12分)21.某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A套餐的人数为,扇形统计图中“C”对应扇形的圆心角的大小为°;(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.七、(本题满分12分)22.在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=ax2+bx+1恰好经过A,B,C三点中的两点.(1)判断点B是否在直线y=x+m上,并说明理由;(2)求a,b的值;(3)平移抛物线y=ax2+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y轴交点纵坐标的最大值.八、(本题满分14分)23.如图1,已知四边形ABCD是矩形,点E在BA的延长线上,AE=AD.EC与BD相交于点G,与AD相交于点F,AF=AB.(1)求证:BD⊥EC;(2)若AB=1,求AE的长;(3)如图2,连接AG,求证:EG﹣DG=AG.参考答案一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.下列各数中,比﹣2小的数是()A.﹣3B.﹣1C.0D.2【分析】先根据正数都大于0,负数都小于0,可排除C、D,再根据两个负数,绝对值大的反而小,可得比﹣2小的数是﹣3.解:根据两个负数,绝对值大的反而小可知﹣3<﹣2.故选:A.2.计算(﹣a)6÷a3的结果是()A.﹣a3B.﹣a2C.a3D.a2【分析】直接利用同底数幂的除法运算法则计算得出答案.解:原式=a6÷a3=a3.故选:C.3.下面四个几何体中,主视图为三角形的是()A.B.C.D.【分析】根据主视图是从正面看得到的图形,可得答案.解:A、主视图是圆,故A不符合题意;B、主视图是三角形,故B符合题意;C、主视图是矩形,故C不符合题意;D、主视图是正方形,故D不符合题意;故选:B.4.安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为()A.5.47×108B.0.547×108C.547×105D.5.47×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.解:54700000用科学记数法表示为:5.47×107.故选:D.5.下列方程中,有两个相等实数根的是()A.x2+1=2x B.x2+1=0C.x2﹣2x=3D.x2﹣2x=0【分析】判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.有两个相等实数根的一元二次方程就是判别式的值是0的一元二次方程.解:A、△=(﹣2)2﹣4×1×1=0,有两个相等实数根;B、△=0﹣4=﹣4<0,没有实数根;C、△=(﹣2)2﹣4×1×(﹣3)=16>0,有两个不相等实数根;D、△=(﹣2)2﹣4×1×0=4>0,有两个不相等实数根.故选:A.6.冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是()A.众数是11B.平均数是12C.方差是D.中位数是13【分析】根据平均数、众数、中位数、方差的计算方法分别计算这组数据的平均数、众数、中位数、方差,最后做出选择.解:数据11,10,11,13,11,13,15中,11出现的次数最多是3次,因此众数是11,于是A选项不符合题意;将这7个数据从小到大排列后,处在中间位置的一个数是11,因此中位数是11,于是D 符合题意;=(11+10+11+13+11+13+15)÷7=12,即平均数是12,于是选项B不符合题意;S2=[(10﹣12)2+(11﹣12)2×3+(13﹣12)2×2+(15﹣12)2]=,因此方差为,于是选项C不符合题意;故选:D.7.已知一次函数y=kx+3的图象经过点A,且y随x的增大而减小,则点A的坐标可以是()A.(﹣1,2)B.(1,﹣2)C.(2,3)D.(3,4)【分析】由点A的坐标,利用一次函数图象上点的坐标特征求出k值,结合y随x的增大而减小即可确定结论.解:A、当点A的坐标为(﹣1,2)时,﹣k+3=3,解得:k=1>0,∴y随x的增大而增大,选项A不符合题意;B、当点A的坐标为(1,﹣2)时,k+3=﹣2,解得:k=﹣5<0,∴y随x的增大而减小,选项B符合题意;C、当点A的坐标为(2,3)时,2k+3=3,解得:k=0,选项C不符合题意;D、当点A的坐标为(3,4)时,3k+3=4,解得:k=>0,∴y随x的增大而增大,选项D不符合题意.故选:B.8.如图,Rt△ABC中,∠C=90°,点D在AC上,∠DBC=∠A.若AC=4,cos A=,则BD的长度为()A.B.C.D.4【分析】在△ABC中,由三角函数求得AB,再由勾股定理求得BC,最后在△BCD中由三角函数求得BD.解:∵∠C=90°,AC=4,cos A=,∴AB=,∴,∵∠DBC=∠A.∴cos∠DBC=cos∠A=,∴,故选:C.9.已知点A,B,C在⊙O上,则下列命题为真命题的是()A.若半径OB平分弦AC,则四边形OABC是平行四边形B.若四边形OABC是平行四边形,则∠ABC=120°C.若∠ABC=120°,则弦AC平分半径OBD.若弦AC平分半径OB,则半径OB平分弦AC【分析】根据垂径定理,平行四边形的性质判断即可.解:A、如图,若半径OB平分弦AC,则四边形OABC不一定是平行四边形;原命题是假命题;B、若四边形OABC是平行四边形,则AB=OC,OA=BC,∵OA=OB=OC,∴AB=OA=OB=BC=OC,∴∠ABO=∠OBC=60°,∴∠ABC=120°,是真命题;C、如图,若∠ABC=120°,则弦AC不平分半径OB,原命题是假命题;D、如图,若弦AC平分半径OB,则半径OB不一定平分弦AC,原命题是假命题;故选:B.10.如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC在直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A.B.C.D.【分析】分为0<x≤2、2<x≤4两种情况,然后依据等边三角形的性质和三角形的面积公式可求得y与x的函数关系式,于是可求得问题的答案.解:如图1所示:当0<x≤2时,过点G作GH⊥BF于H.∵△ABC和△DEF均为等边三角形,∴△GEJ为等边三角形.∴GH=EJ=x,∴y=EJ•GH=x2.当x=2时,y=,且抛物线的开口向上.如图2所示:2<x≤4时,过点G作GH⊥BF于H.y=FJ•GH=(4﹣x)2,函数图象为抛物线的一部分,且抛物线开口向上.故选:A.二、填空题(本大题共4小题,每小题5分,满分20分)11.计算:﹣1=2.【分析】直接利用二次根式的性质化简进而得出答案.解:原式=3﹣1=2.故答案为:2.12.分解因式:ab2﹣a=a(b+1)(b﹣1).【分析】原式提取a,再利用平方差公式分解即可.解:原式=a(b2﹣1)=a(b+1)(b﹣1),故答案为:a(b+1)(b﹣1)13.如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B.与反比例函数y=的图象在第一象限内交于点C,CD⊥x轴,CE⊥y轴.垂足分别为点D,E.当矩形ODCE与△OAB的面积相等时,k的值为2.【分析】分别求出矩形ODCE与△OAB的面积,即可求解.解:一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B,令x=0,则y =k,令y=0,则x=﹣k,故点A、B的坐标分别为(﹣k,0)、(0,k),则△OAB的面积=OA•OB=k2,而矩形ODCE的面积为k,则k2=k,解得:k=0(舍去)或2,故答案为2.14.在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD沿过点A的直线折叠,使得点B落在CD上的点Q处.折痕为AP;再将△PCQ,△ADQ分别沿PQ,AQ折叠,此时点C,D落在AP上的同一点R处.请完成下列探究:(1)∠PAQ的大小为30°;(2)当四边形APCD是平行四边形时,的值为.【分析】(1)由折叠的性质可得∠B=∠AQP,∠DAQ=∠QAP=∠PAB,∠DQA=∠AQR,∠CQP=∠PQR,∠D=∠ARQ,∠C=∠QRP,由平角的性质可得∠D+∠C=180°,∠AQP=90°,可证AD∥BC,由平行线的性质可得∠DAB=90°,即可求解;(2)由平行四边形和折叠的性质可得AR=PR,由直角三角形的性质可得AP=2PB=2QR,AB=PB,即可求解.解:(1)由折叠的性质可得:∠B=∠AQP,∠DAQ=∠QAP=∠PAB,∠DQA=∠AQR,∠CQP=∠PQR,∠D=∠ARQ,∠C=∠QRP,∵∠QRA+∠QRP=180°,∴∠D+∠C=180°,∴AD∥BC,∴∠B+∠DAB=180°,∵∠DQR+∠CQR=180°,∴∠DQA+∠CQP=90°,∴∠AQP=90°,∴∠B=∠AQP=90°,∴∠DAB=90°,∴∠DAQ=∠QAP=∠PAB=30°,故答案为:30;(2)由折叠的性质可得:AD=AR,CP=PR,∵四边形APCD是平行四边形,∴AD=PC,∴AR=PR,又∵∠AQP=90°,∴QR=AP,∵∠PAB=30°,∠B=90°,∴AP=2PB,AB=PB,∴PB=QR,∴=,故答案为:.三、(本大题共2小题,每小题8分,满分16分)15.解不等式:>1.【分析】根据解一元一次不等式基本步骤:去分母、移项、合并同类项、系数化为1可得.解:去分母,得:2x﹣1>2,移项,得:2x>2+1,合并,得:2x>3,系数化为1,得:x>.16.如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB,线段MN在网格线上.(1)画出线段AB关于线段MN所在直线对称的线段A1B1(点A1,B1分别为A,B的对应点);(2)将线段B1A1绕点B1顺时针旋转90°得到线段B1A2,画出线段B1A2.【分析】(1)分别作出A,B的对应点A1,B2即可.(2)作出点A1的对应点A2即可.解:(1)如图线段A1B1即为所求.(2)如图,线段B1A2即为所求.四、(本大题共2小题,每小题8分,满分16分)17.观察以下等式:第1个等式:×(1+)=2﹣,第2个等式:×(1+)=2﹣,第3个等式:×(1+)=2﹣,第4个等式:×(1+)=2﹣.第5个等式:×(1+)=2﹣.…按照以上规律,解决下列问题:(1)写出第6个等式:×(1+)=2﹣;(2)写出你猜想的第n个等式:×(1+)=2﹣(用含n的等式表示),并证明.【分析】(1)根据题目中前5个等式,可以发现式子的变化特点,从而可以写出第6个等式;(2)把上面发现的规律用字母n表示出来,并运用分式的混合运算法则计算等号的右边的值,进而得到左右相等便可.解:(1)第6个等式:×(1+)=2﹣;(2)猜想的第n个等式:×(1+)=2﹣.证明:∵左边=×==2﹣=右边,∴等式成立.故答案为:×(1+)=2﹣;×(1+)=2﹣.18.如图,山顶上有一个信号塔AC,已知信号塔高AC=15米,在山脚下点B处测得塔底C的仰角∠CBD=36.9°,塔顶A的仰角∠ABD=42.0°,求山高CD(点A,C,D在同一条竖直线上).(参考数据:tan36.9°≈0.75,sin36.9°≈0.60,tan42.0°≈0.90.)【分析】根据三角函数的定义和直角三角形的性质解答即可.解:由题意,在Rt△ABD中,tan∠ABD=,∴tan42.0°=≈0.9,∴AD≈0.9BD,在Rt△BCD中,tan∠CBD=,∴tan36.9°=≈0.75,∴CD≈0.75BD,∵AC=AD﹣CD,∴15=0.15BD,∴BD=100米,∴CD=0.75BD=75(米),答:山高CD为75米.五、(本大题共2小题,每小题10分,满分20分)19.某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元)线上销售额(元)线下销售额(元)2019年4月份a x a﹣x2020年4月份 1.1a 1.43x 1.04(a﹣x)(2)求2020年4月份线上销售额与当月销售总额的比值.【分析】(1)由线下销售额的增长率,即可用含a,x的代数式表示出2020年4月份的线下销售额;(2)根据2020年4月份的销售总额=线上销售额+线下销售额,即可得出关于x的一元一次方程,解之即可得出x的值(用含a的代数式表示),再将其代入中即可求出结论.解:(1)∵与2019年4月份相比,该超市2020年4月份线下销售额增长4%,∴该超市2020年4月份线下销售额为1.04(a﹣x)元.故答案为:1.04(a﹣x).(2)依题意,得:1.1a=1.43x+1.04(a﹣x),解得:x=,∴===0.2.答:2020年4月份线上销售额与当月销售总额的比值为0.2.20.如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;(2)若BE=BF,求证:AC平分∠DAB.【分析】(1)根据圆周角定理得到∠ACB=∠ADB=90°,根据全等三角形的判定定理即可得到结论;(2)根据等腰三角形的性质得到∠E=∠BFE,根据切线的性质得到∠ABE=90°,根据三角形的内角和以及角平分线的定义即可得到结论.【解答】(1)证明:∵AB是半圆O的直径,∴∠ACB=∠ADB=90°,在Rt△CBA与Rt△DAB中,,∴Rt△CBA≌Rt△DAB(HL);(2)解:∵BE=BF,由(1)知BC⊥EF,∴∠E=∠BFE,∵BE是半圆O所在圆的切线,∴∠ABE=90°,∴∠E+∠BAE=90°,由(1)知∠D=90°,∴∠DAF+∠AFD=90°,∵∠AFD=∠BFE,∴∠AFD=∠E,∴∠DAF=90°﹣∠AFD,∠BAF=90°﹣∠E,∴∠DAF=∠BAF,∴AC平分∠DAB.六、(本题满分12分)21.某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A套餐的人数为60,扇形统计图中“C”对应扇形的圆心角的大小为108°;(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.【分析】(1)用被调查的职工人数乘以最喜欢A套餐人数所占百分比即可得其人数;再由四种套餐人数之和等于被调查的人数求出C对应人数,继而用360°乘以最喜欢C 套餐人数所占比例即可得;(2)用总人数乘以样本中最喜欢B套餐的人数所占比例即可得;(3)画树状图列出所有等可能结果,从中找到符合条件的结果数,利用概率公式求解可得答案.解:(1)在抽取的240人中最喜欢A套餐的人数为240×25%=60(人),则最喜欢C套餐的人数为240﹣(60+84+24)=72(人),∴扇形统计图中“C”对应扇形的圆心角的大小为360°×=108°,故答案为:60、108;(2)估计全体960名职工中最喜欢B套餐的人数为960×=336(人);(3)画树状图为:共有12种等可能的结果数,其中甲被选到的结果数为6,∴甲被选到的概率为=.七、(本题满分12分)22.在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=ax2+bx+1恰好经过A,B,C三点中的两点.(1)判断点B是否在直线y=x+m上,并说明理由;(2)求a,b的值;(3)平移抛物线y=ax2+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y轴交点纵坐标的最大值.【分析】(1)根据待定系数法求得直线的解析式,然后即可判断点B(2,3)在直线y =x+m上;(2)因为直线经过A、B和点(0,1),所以经过点(0,1)的抛物线不同时经过A、B点,即可判断抛物线只能经过A、C两点,根据待定系数法即可求得a、b;(3)设平移后的抛物线为y=﹣x+px+q,其顶点坐标为(,+q),根据题意得出+q =+1,由抛物线y=﹣x+px+q与y轴交点的纵坐标为q,即可得出q=﹣﹣1=﹣(p﹣1)2+,从而得出q的最大值.解:(1)点B是在直线y=x+m上,理由如下:∵直线y=x+m经过点A(1,2),∴2=1+m,解得m=1,∴直线为y=x+1,把x=2代入y=x+1得y=3,∴点B(2,3)在直线y=x+m上;(2)∵直线y=x+1与抛物线y=ax2+bx+1都经过点(0,1),且B、C两点的横坐标相同,∴抛物线只能经过A、C两点,把A(1,2),C(2,1)代入y=ax2+bx+1得,解得a=﹣1,b=2;(3)由(2)知,抛物线为y=﹣x2+2x+1,设平移后的抛物线为y=﹣x+px+q,其顶点坐标为(,+q),∵顶点仍在直线y=x+1上,∴+q=+1,∴q=﹣﹣1,∵抛物线y=﹣x+px+q与y轴的交点的纵坐标为q,∴q=﹣﹣1=﹣(p﹣1)2+,∴当p=1时,平移后所得抛物线与y轴交点纵坐标的最大值为.八、(本题满分14分)23.如图1,已知四边形ABCD是矩形,点E在BA的延长线上,AE=AD.EC与BD相交于点G,与AD相交于点F,AF=AB.(1)求证:BD⊥EC;(2)若AB=1,求AE的长;(3)如图2,连接AG,求证:EG﹣DG=AG.【分析】(1)证明△AEF≌△ADB(SAS),得出∠AEF=∠ADB,证得∠EGB=90°,则结论得出;(2)证明△AEF∽△DCF,得出,即AE•DF=AF•DC,设AE=AD=a(a >0),则有a•(a﹣1)=1,化简得a2﹣a﹣1=0,解方程即可得出答案;(3)在线段EG上取点P,使得EP=DG,证明△AEP≌△ADG(SAS),得出AP=AG,∠EAP=∠DAG,证得△PAG为等腰直角三角形,可得出结论.【解答】(1)证明:∵四边形ABCD是矩形,点E在BA的延长线上,∴∠EAF=∠DAB=90°,又∵AE=AD,AF=AB,∴△AEF≌△ADB(SAS),∴∠AEF=∠ADB,∴∠GEB+∠GBE=∠ADB+∠ABD=90°,即∠EGB=90°,故BD⊥EC,(2)解:∵四边形ABCD是矩形,∴AE∥CD,∴∠AEF=∠DCF,∠EAF=∠CDF,∴△AEF∽△DCF,∴,即AE•DF=AF•DC,设AE=AD=a(a>0),则有a•(a﹣1)=1,化简得a2﹣a﹣1=0,解得或(舍去),∴AE=.(3)如图,在线段EG上取点P,使得EP=DG,在△AEP与△ADG中,AE=AD,∠AEP=∠ADG,EP=DG,∴△AEP≌△ADG(SAS),∴AP=AG,∠EAP=∠DAG,∴∠PAG=∠PAD+∠DAG=∠PAD+∠EAP=∠DAE=90°,∴△PAG为等腰直角三角形,∴EG﹣DG=EG﹣EP=PG=AG.。
2020年安徽中考数学试卷分析
2020年安徽中考数学试卷分析2020年安徽中考数学试卷卷面满分150分,要求学生在120分钟内完成,整套试卷包含8个答题,共计23个小题,其中第一大题是选择题,包含10道小题,每小题4分,选择题合计40分;第二大题是填空题,包含4道小题,每小题5分,填空题合计20分;第三、四、五、六、七、八大题都是解题题目,共计9道小题,解答题合计90分。
本试卷题量适中,但与某些省市中考数学试卷的题量相比,略微偏小,但试卷满分150分,因此单题的分值略高,试题考查的范围较广,重点突出,考查大大都是比较基础的知识点,考法常见,整体试卷的难度不大,没有出现过偏,过难的题目。
选择题:第1题考查的是实数大小比较,给出四个数,选出比-2小的数,比较简单,直接根据实数大小比较方法进行比较即可得出答案;第2题考查的是幂的运算,主要涉及幂的乘方和同底数幂的除法运算,解题的关键是熟练掌握和灵活运用幂的运算法则,在本题中需要注意符号和指数问题,题目比较简单;第3题主要考查几何题的主视图,解题的关键是结合各选项几何题的特征分析判断其主视图,然后进行选择即可,题目比较简单;第4题主要考查的是用科学计数法表示绝对值较大的数,解题的关键是掌握科学技术表示较大的数的方法,注意乘方前的数字及乘方的次数的确定方法,题目比较简单;第5题主要考查的是一元二次方程实数根的情况,可以直接根据根的判别式进行分析和选择,在运用根的判别式前,首先需要将方程化为标准形式,找出各项系数,然后进行分析和运算,题目比较简单;第6题主要考查数据的整理和分析,掌握几种常见的统计量的含义及计算方法,逐个分析。
运算并判断即可,求一组数据的中位数比较容易出错,需要先排序;求方差运算量较大,在这个题目中可以先算别的统计量,然后运用排除法即可,题目比较简单;第7题主要考查的是一次函数的图像和性质,已知一次函数解析式的常数项,k值未知,但根据y随x 的增大而减小可得k值必然为负数,然后讲各选项的值代入计算求出k值即可,选出k值为负的选项即可,题目难度中等偏下,注意这种选项代入的解题思路和方法。
2020年安徽省合肥五十中西校中考数学评测试卷(2)
2020年安徽省合肥五十中西校中考数学评测试卷(2)一、选择题(本大题共10小题,每小题3分,满分30分) 1.(3分)64-的立方根为( ) A .4B .4-C .8-D .不存在2.(3分)如图是一个几何体的主视图和俯视图,则这个几何体是( )A .三棱柱B .正方体C .三棱锥D .长方体3.(3分)2020年3月11日晚,安徽省统计局、国家统计局安徽调查总队联合发布,安徽省全年生产总值()37114GDP 亿元,居全国第11位;按可比价格计算,比上年增长7.5%,居全国第7位,其中数字37114亿用科学记数法表示为( ) A .43.711410⨯B .50.3711410⨯C .123.711410⨯D .113.711410⨯4.(3分)下列计算正确的是( ) A 527B .235()x x x --=- C .22(2)(2)4x y x y x y -+--=-D .222(2)4x y x y -=-5.(3分)2018年第一季度,合肥高新区某企业营收入比2017年同期增长12%,2019年第一季度营收入比2018年同期增长10%,设2018年和2019年第一季度营收入的平均增长率为x ,则可列方程( ) A .212%10%x =+B .2(1)112%10%x +=++C .12(112%)(110%)x +=++D .2(1)(112%)(110%)x +=++6.(3分)如图,在ABC ∆中,AB AC =,CD 平分ACB ∠交AB 于点D ,//AE DC 交BC 的延长线于点E ,已知32BAC ∠=︒,求E ∠的度数为( )A.48︒B.42︒C.37︒D.32︒7.(3分)三个正方形方格在扇形中的位置如图所示,点O为扇形的圆心,格点A,B,C 分别在扇形的两条半径和弧上,已知每个方格的边长为1,则扇形EOF的面积为()A.54πB.98πC.πD.32π8.(3分)我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知90A∠=︒,4BD=,6CF=,则正方形ADOF的边长是()A.2B.2C.3D.49.(3分)若将直线410y x=-+向下平移m个单位长度与双曲线4yx=恰好只有一个公共点,则m的值为()A.2B.18C.2-或18D.2或18 10.(3分)如图,等边ABC∆的边长为4,点D是边AC上的一动点,连接BD,以BD为斜边向上作等腰Rt BDE∆,连接AE,则AE的最小值为()A .1B .2C .2D .221-二、填空题(本大题共4小题,每小题4分,满分16分) 11.(4分)不等式222x x ->-的解集为 . 12.(4分)如图,点A 在双曲线6y x =上,点B 在双曲线(0)ky k x=≠上,//AB x 轴,过点A 作AD x ⊥轴于D ,连接OB ,与AD 相交于点C ,若2AC CD =,则k 的值为 .13.(4分)如图,若点D 为等边ABC ∆的边BC 的中点,点E ,F 分别在AB ,AC 边上,且90EDF ∠=︒,当2BE =,1CF =时,EF 的长度为 .14.(4分)已知2a b -=,2220ab b c c +-+=,当0b …,21c -<…时,整数a 的值是 . 三、解答题(本大题共7小题,共54分)15.(5分)计算:1012sin 60()2020|132-︒+---16.(5分)解方程:22142xx x =---. 17.(6分)如图,已知矩形ABCD 中,点E ,F 分别是AD ,AB 上的点,EF EC ⊥,且AE CD =. (1)求证:AF DE =; (2)若25DE AD =,求tan AFE ∠.18.(7分)如图,某数学兴趣小组为测量一颗古树BH 和教学楼CG 的高,先在A 处用高1.5米的测角仪AF 测得古树顶端H 的仰角HFE ∠为45︒,此时教学楼顶端G 恰好在视线FH 上,再向前走10米到达B 处,又测得教学楼顶端G 的仰角GED ∠为60︒,点A 、B 、C 三点在同一水平线上.(1)求古树BH 的高;(2)求教学楼CG 的高.(参考数据:2 1.4=,3 1.7)=19.(7分)小昕的口袋中有5把相似的钥匙,其中2把钥匙(记为1A ,2)A 能打开教室前门锁,而剩余的3把钥匙(记为1B ,2B ,3)B 不能打开教室前门锁. (1)小昕从口袋中随便摸出一把钥匙就能打开教室前门锁的概率是 ;(2)请用树状图或列表等方法,求出小昕从口袋中第一次随机摸出的一把钥匙不能打开教室前门锁(摸出的钥匙不再放回),而第二次随机摸出的一把钥匙正好能打开教室前门锁的概率.20.(12分)如图1,抛物线2(2)4y x m x =+++的顶点C 在x 轴正半轴上,直线2y x =+与抛物线交于A ,B 两点(点A 在点B 的左侧). (1)求抛物线的函数表达式;(2)点P 是抛物线上一点,若2PAB ABC S S ∆∆=,求点P 的坐标;(3)如图2,若点M 是位于直线AB 下方抛物线上一动点,以MA 、MB 为邻边作平行四边形MANB ,当平行四边形MANB 的面积最大时,请直接写出平行四边形MANB 的面积S 及点M 的坐标.21.(12分)如图1,在ABC=,点D,E分别是边BC,AC上的点,且ADE B∆中,AB AC∠=∠.(1)求证:AB CE BD CDg g;=(2)若5BC=,求AE的最小值;AB=,6(3)如图2,若ABCAD=,∆为等边三角形,AD DE⊥,点C在线段DE上,3⊥,BE DEBE=,求DE的长.42020年安徽省合肥五十中西校中考数学评测试卷(2)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分) 1.(3分)64-的立方根为( ) A .4B .4-C .8-D .不存在【解答】解:64-的立方根是4-, 故选:B .2.(3分)如图是一个几何体的主视图和俯视图,则这个几何体是( )A .三棱柱B .正方体C .三棱锥D .长方体【解答】解:由主视图和俯视图可得几何体为三棱柱, 故选:A .3.(3分)2020年3月11日晚,安徽省统计局、国家统计局安徽调查总队联合发布,安徽省全年生产总值()37114GDP 亿元,居全国第11位;按可比价格计算,比上年增长7.5%,居全国第7位,其中数字37114亿用科学记数法表示为( ) A .43.711410⨯B .50.3711410⨯C .123.711410⨯D .113.711410⨯【解答】解:37114亿123711400000000 3.711410==⨯. 故选:C .4.(3分)下列计算正确的是( ) A 527B .235()x x x --=- C .22(2)(2)4x y x y x y -+--=-D .222(2)4x y x y -=-【解答】解:A 52,无法计算,故此选项错误;B 、23()x x --,无法计算,故此选项错误;C 、22(2)(2)4x y x y x y -+--=-,正确;D 、222(2)44x y x ax y -=-+,故此选项错误;故选:C .5.(3分)2018年第一季度,合肥高新区某企业营收入比2017年同期增长12%,2019年第一季度营收入比2018年同期增长10%,设2018年和2019年第一季度营收入的平均增长率为x ,则可列方程( ) A .212%10%x =+B .2(1)112%10%x +=++C .12(112%)(110%)x +=++D .2(1)(112%)(110%)x +=++【解答】解:设2018年和2019年第一季度营收入的平均增长率为x , 则可列方程2(1)(112%)(110%)x +=++, 故选:D .6.(3分)如图,在ABC ∆中,AB AC =,CD 平分ACB ∠交AB 于点D ,//AE DC 交BC 的延长线于点E ,已知32BAC ∠=︒,求E ∠的度数为( )A .48︒B .42︒C .37︒D .32︒【解答】解:AB AC =Q ,32BAC ∠=︒,74B ACB ∴∠=∠=︒, CD Q 平分ACB ∠,1372BCD ACB ∴∠=∠=︒,//AE DC Q , 37E BCD ∴∠=∠=︒.故选:C .7.(3分)三个正方形方格在扇形中的位置如图所示,点O 为扇形的圆心,格点A ,B ,C 分别在扇形的两条半径和弧上,已知每个方格的边长为1,则扇形EOF 的面积为( )A .54πB .98πC .πD .32π【解答】解:连接OC ,由勾股定理得:221310OC =+=, 由正方形的性质得:45EOB ∠=︒,所以扇形EOF 的面积为:245(10)54ππ⨯=,故选:A .8.(3分)我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知90A ∠=︒,4BD =,6CF =,则正方形ADOF 的边长是( )A 2B .2C 3D .4【解答】解:设正方形ADOF 的边长为x , 由题意得:4BE BD ==,6CE CF ==,10BC BE CE BD CF ∴=+=+=,在Rt ABC ∆中,222AC AB BC +=, 即222(6)(4)10x x +++=, 整理得,210240x x +-=, 解得:2x =,或12x =-(舍去),2x ∴=,即正方形ADOF 的边长是2;故选:B.9.(3分)若将直线410y x=-+向下平移m个单位长度与双曲线4yx=恰好只有一个公共点,则m的值为()A.2B.18C.2-或18D.2或18【解答】解:将直线410y x=-+向下平移m个单位长度得直线解析式为410y x m=-+-,根据题意方程组4410yxy x m⎧=⎪⎨⎪=-+-⎩只有一组解,消去y得4410x mx=-+-,整理得24(10)40x m x--+=,△2(10)4440m=--⨯⨯=,解得2m=或18m=,故选:D.10.(3分)如图,等边ABC∆的边长为4,点D是边AC上的一动点,连接BD,以BD为斜边向上作等腰Rt BDE∆,连接AE,则AE的最小值为()A.1B.2C.2D.221-【解答】解:如图,过点B作BH AC⊥于H点,作射线HE,ABC∆Q是等边三角形,BH AC⊥,2AH CH∴==,90BED BHD∠=∠=︒Q,∴点B,点D,点H,点E四点共圆,45BHE BDE∴∠=∠=︒,∴点E在AHB∠的角平分线上运动,∴当AE EH⊥时,AE的长度有最小值,45AHE∠=︒Q,22AH AE∴==,AE∴的最小值为2,故选:B.二、填空题(本大题共4小题,每小题4分,满分16分)11.(4分)不等式222xx->-的解集为2x>.【解答】解:242x x->-,242x x+>+,36x>,2x>,故答案为:2x>.12.(4分)如图,点A在双曲线6yx=上,点B在双曲线(0)ky kx=≠上,//AB x轴,过点A作AD x⊥轴于D,连接OB,与AD相交于点C,若2AC CD=,则k的值为18.【解答】解:过点B作BE x⊥轴于E,延长线段BA,交y轴于F,//AB xQ轴,AF y∴⊥轴,∴四边形AFOD是矩形,四边形OEBF是矩形,AF OD∴=,BF OE=,AB DE∴=,Q点A在双曲线6yx=上,6AFOD S ∴=矩形,同理OEBF S k =矩形,//AB OD Q ,∴12OD CD AB AC ==, 2AB OD ∴=,2DE OD ∴=,318OEBF AFOD S S ∴==矩形矩形,18k ∴=,故答案是:18.13.(4分)如图,若点D 为等边ABC ∆的边BC 的中点,点E ,F 分别在AB ,AC 边上,且90EDF ∠=︒,当2BE =,1CF =时,EF 的长度为7 .【解答】解:作EM BC ⊥于点M ,作FN BC ⊥于点N , 则90EMB EMD ∠=∠=︒,90FNC FND ∠=∠=︒,ABC ∆Q 是等边三角形,2BE =,1CF =, 60B C ∴∠=∠=︒,1BM ∴=,3EM =12CN =,3FN =90EDF ∠=︒Q ,90EDM DEM ∠+∠=︒, 90EDM FDN ∴∠+∠=︒,DEM FDN ∴∠=∠, EDM DFN ∴∆∆∽,EM DMDN FN =, Q 点D 为BC 的中点,设BDa =,则1DM a =-,12DN a =-, ∴3132a =-, 解得,112a =-(舍去),22a =,1DM ∴=,32DN =,90EMD ∠=︒Q ,90FND ∠=︒,2222(3)12DE EM DM ∴=+=+=,222233()()322DF DN FN =+=+=,又90EDF ∠=︒Q ,22222(3)7EF DE DF ∴=+=+=,故答案为:7.14.(4分)已知2a b -=,2220ab b c c +-+=,当0b …,21c -<…时,整数a 的值是 2或3 .【解答】解:2a b -=Q ,2a b ∴=+,222ab b c c ∴+-+ 2(2)22b b b c c =++-+ 224(2)b b c c =+--22(2)(1)3b c =+---0=,0b Q …,21c -<…,24(2)12b ∴+剟, a Q 是整数,0b ∴=或1, 2a ∴=或3.故答案为:2或3.三、解答题(本大题共7小题,共54分)15.(5分)计算:1012sin 60()2020|13|2-︒+----【解答】解:原式3221(31)=⨯----, 32131=---+,2=-.16.(5分)解方程:22142xx x =---. 【解答】解:去分母得:22224x x x =+-+, 解得:1x =-,经检验1x =-是分式方程的解.17.(6分)如图,已知矩形ABCD 中,点E ,F 分别是AD ,AB 上的点,EF EC ⊥,且AE CD =. (1)求证:AF DE =; (2)若25DE AD =,求tan AFE ∠.【解答】(1)证明:Q 四边形ABCD 是矩形,90A D ∴∠=∠=︒, EF CE ⊥Q , 90FEC ∴∠=︒,90AFE AEF AEF DEC ∴∠+∠=∠+∠=︒, AFE DEC ∴∠=∠,在AEF ∆与DCE ∆中,A D AFE DEC AE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AEF DCE AAS ∴∆≅∆,AF DE ∴=;(2)解:25DE AD =Q ,32AE DE ∴=, AF DE =Q ,332tan 2DEAFE DE ∴∠==. 18.(7分)如图,某数学兴趣小组为测量一颗古树BH 和教学楼CG 的高,先在A 处用高1.5米的测角仪AF 测得古树顶端H 的仰角HFE ∠为45︒,此时教学楼顶端G 恰好在视线FH 上,再向前走10米到达B 处,又测得教学楼顶端G 的仰角GED ∠为60︒,点A 、B 、C 三点在同一水平线上.(1)求古树BH 的高;(2)求教学楼CG 的高.(参考数据:2 1.4=,3 1.7)=【解答】解:(1)在Rt EFH ∆中,90HEF ∠=︒,45HFE ∠=︒,10HE EF ∴==,1.51011.5BH BE HE ∴=+=+=,∴古树的高为11.5米;(2)在Rt EDG ∆中,60GED ∠=︒,tan 603DG DE DE ∴=︒=,设DE x =米,则3DG x =米,在Rt GFD ∆中,90GDF ∠=︒,45GFD ∠=︒,GD DF EF DE ∴==+,∴310x x =+,解得:535x =+,3 1.53(535) 1.516.55325CG DG DC x ∴=+=+=++=+≈,答:教学楼CG 的高约为25米.19.(7分)小昕的口袋中有5把相似的钥匙,其中2把钥匙(记为1A ,2)A 能打开教室前门锁,而剩余的3把钥匙(记为1B ,2B ,3)B 不能打开教室前门锁. (1)小昕从口袋中随便摸出一把钥匙就能打开教室前门锁的概率是25; (2)请用树状图或列表等方法,求出小昕从口袋中第一次随机摸出的一把钥匙不能打开教室前门锁(摸出的钥匙不再放回),而第二次随机摸出的一把钥匙正好能打开教室前门锁的概率.【解答】解:(1)Q 一个口袋中装有5把不同的钥匙,分别为1A ,2A ,1B ,2B ,3B ,P ∴(取出一个1A 或22)5A =;(2)画树状图得:Q 共有20种等可能的结果,第一次随机摸出的一把钥匙不能打开教室前门锁(摸出的钥匙不再放回),而第二次随机摸出的一把钥匙正好能打开教室前门锁的有6种可能, ∴第一次随机摸出的一把钥匙不能打开教室前门锁(摸出的钥匙不再放回),而第二次随机摸出的一把钥匙正好能打开教室前门锁的概率632010==. 20.(12分)如图1,抛物线2(2)4y x m x =+++的顶点C 在x 轴正半轴上,直线2y x =+与抛物线交于A ,B 两点(点A 在点B 的左侧). (1)求抛物线的函数表达式;(2)点P 是抛物线上一点,若2PAB ABC S S ∆∆=,求点P 的坐标;(3)如图2,若点M 是位于直线AB 下方抛物线上一动点,以MA 、MB 为邻边作平行四边形MANB ,当平行四边形MANB 的面积最大时,请直接写出平行四边形MANB 的面积S 及点M 的坐标.【解答】解:(1)Q 抛物线2(2)4y x m x =+++的顶点C 在x 轴正半轴上, ∴△2(2)40m =+-=,且202m +-> 解得6m =-.∴抛物线的函数表达式是244y x x =-+;(2)如图1,过点C 作//CE AB 交y 轴于点E ,设直线AB 交y 轴于点H .由直线:2AB y x =+,得点(0,2)H . 设直线:CE y x b =+. 2244(2)y x x x =-+=-Q ,(2,0)C ∴.20b ∴+=,则2b =-.4HE ∴=.由2PAB ABC S S ∆∆=,可在y 轴上且点H 上方取一点F ,使2FH HE =,则(0,10)F . 过点F 作//FP AB 交抛物线于点1P 、2P .此时满足2PAB ABC S S ∆∆=, 设直线1P 、2P 的函数解析式为:y x k =+. (0,10)F Q 在直线1P 、2P 上,10k ∴=.∴直线1P 、2P 的函数解析式为:10y x =+.联立21044y x y x x =+⎧⎨=-+⎩. 解得1119x y =-⎧⎨=⎩,22616x y =⎧⎨=⎩,综上,满足条件的点P 的坐标是1(1,9)P -,2(6,16)P ; (3)如图2,过点M 在作ME x ⊥轴,交AB 于点E ,Q 直线2y x =+与抛物线交于A ,B 两点,2244x x x ∴+=-+, 2520x x ∴-+=,517x ±∴=, ||17B A x x ∴-=设点2(,44)M n n n -+,则(,2)E n n +225172(44)()24EM n n n n ∴=+--+=--+,2151717[()]224MAB S n ∆∴=⨯⨯--+Q 平行四边形4MAB MANB S ∆=⨯,∴当MAB S ∆的值最大时,平行四边形MANB 的面积最大,∴当52n =时,平行四边形MANB 的最大面积1717=,此时,点5(2M ,1)4.21.(12分)如图1,在ABC ∆中,AB AC =,点D ,E 分别是边BC ,AC 上的点,且ADE B ∠=∠. (1)求证:AB CE BD CD =g g ;(2)若5AB =,6BC =,求AE 的最小值;(3)如图2,若ABC ∆为等边三角形,AD DE ⊥,BE DE ⊥,点C 在线段DE 上,3AD =,4BE =,求DE 的长.【解答】(1)证明:AB AC =Q ,B C ∴∠=∠,ADC ∠Q 为ABD ∆的外角, ADE EDC B DAB ∴∠+∠=∠+∠, ADE B ∠=∠Q ,BAD CDE ∴∠=∠,又B C ∠=∠, ABD DCE ∴∆∆∽,∴AB BD CD CE=,AB CE BD CD ∴=g g ;(2)解:设BD x =,AE y =, 由(1)得,5(5)(6)y x x ⨯-=⨯-,整理得,216555y x x =-+2116(3)55x =-+, AE ∴的最小值为165; (3)解:作AF BE ⊥于F , 则四边形ADEF 为矩形,3EF AD ∴==,AF DE =, 1BF BE EF ∴=-=,设CD x =,CE y =, 则AF DE x y ==+,由勾股定理得,222AD CD AC +=,222CE BE BC +=,222AF BF AB +=,ABC ∆Q 为等边三角形, AB AC BC ∴==,2223x AC ∴+=,2224y BC +=,222()1x y AC ++=, 227x y ∴-=,228y xy +=,解得,53x =,23y =, 73DE x y ∴=+=.。
安徽省2020年中考数学试题及详解(WORD版)
第一部分:2020年安徽省初中学业水平考试数学试题卷(1-9)第二部分:2020年安徽省初中学业水平考试数学试题解析(10-19) 考生须知:1.本试卷满分120分,考试时间为120分钟.2.答题前,考生先将自己的“姓名”、“考号”、“考场”、“座位号”在答题卡上填写清楚,将“条形码”准确粘贴在条形码区域内.3.请按照题号顺序在答题卡各题目的区域内作答,超出答题区域的答案无效;在草稿纸上、试题纸上答案无效.4.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.5.保持卡面整洁,不要折叠、不要弄脏、弄皱,不准使用涂改液、刮纸刀.一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的.1.下列各数中比2-小的数是( )A. 3-B. 1-C. 0D. 2 2.计算()63a a -÷的结果是( )A. 3a -B. 2a -C. 3aD. 2a3.下列四个几何体中,主视图为三角形的是 A. B. C. D.4.安徽省计划到2022年建成54 700 000亩高标准农田,其中54 700 000用科学记数法表示为( )A. 0.547B. 80.54710⨯C. 554710⨯D. 75.4710⨯5.下列方程中,有两个相等实数根的是( )A. 212x x +=B. 21=0x +C. 223x x -=D. 220x x -=6.冉冉妈妈在网上销售装饰品.最近一周, 每天销售某种装饰品的个数为:11,10,11,13,11,1315,.关于这组数据,冉冉得出如下结果,其中错误的是( )A. 众数11 B. 平均数是12 C. 方差是187 D. 中位数是137.已知一次函数3y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A. ()1,2-B. ()1,2-C. ()2,3D. ()3,48.如图,Rt ABC 中,90C ∠=︒ ,点D 在AC 上,DBC A ∠=∠.若44,5AC cosA ==,则BD 的长度为( )A. 94B. 125C. 154D. 49.已知点,,A B C 在O 上.则下列命题为真命题的是( )A. 若半径OB 平分弦AC .则四边形OABC 是平行四边形B. 若四边形OABC 是平行四边形.则120ABC ∠=︒C. 若120ABC ∠=︒.则弦AC 平分半径OBD. 若弦AC 平分半径OB .则半径OB 平分弦AC10.如图ABC 和DEF 都是边长为2的等边三角形,它们的边,BC EF 在同一条直线l 上,点C ,E 重合,现将ABC ∆沿着直线l 向右移动,直至点B 与F 重合时停止移动.在此过程中,设点移动的距离为x ,两个三角形重叠部分的面积为y ,则y 随x 变化的函数图像大致为( )A. B.C. D.二、填空题(本大题共4小题,每小题5分,满分20分)11.计算:91-=______.12.分解因式:2ab a -=______.13.如图,一次函数()0y x k k =+>的图象与x 轴和y 轴分别交于点A 和点B 与反比例函数k y x=上的图象在第一象限内交于点,C CD x ⊥轴,CE y ⊥轴,垂足分别为点,D E ,当矩形ODCE 与OAB ∆的面积相等时,k 的值为__________.14.在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD 沿过点A 的直线折叠,使得点B 落在CD 上的点Q 处,折痕为AP ;再将,PCQ ADQ ∆∆分别沿,PQ AQ 折叠,此时点,C D 落在AP 上的同一点R 处.请完成下列探究:()1PAQ ∠的大小为__________︒;()2当四边形APCD 是平行四边形时ABQR 的值为__________.三、解答题15.解不等式:2112x ->16.如图1,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB ,线段,M N 在网格线上,()1画出线段AB 关于线段MN 所在直线对称的线段11A B (点11A B 分别为,A B 的对应点);()2将线段11B A ,绕点1B ,顺时针旋转90︒得到线段12B A ,画出线段12B A .四、解答题17.观察以下等式:第1个等式:12112311⎛⎫⨯+=- ⎪⎝⎭ 第2个等式:32112422⎛⎫⨯+=- ⎪⎝⎭ 第3个等式:52112533⎛⎫⨯+=- ⎪⎝⎭ 第4个等式:72112644⎛⎫⨯+=- ⎪⎝⎭ 第5个等式:92112755⎛⎫⨯+=- ⎪⎝⎭ ······按照以上规律.解决下列问题: ()1写出第6个等式____________;()2写出你猜想的第n 个等式: (用含n 的等式表示),并证明.18.如图,山顶上有一个信号塔AC ,已知信号塔高15AC =米,在山脚下点B 处测得塔底C 的仰角36.9CBD ∠=︒,塔顶A 的仰角42ABD ∠=︒.求山高CD (点,,A C D 在同一条竖直线上).(参考数据:36.90.75, 36.90.60, 42.00.90tan sin tan ︒≈︒≈︒≈ )五、解答题19.某超市有线上和线下两种销售方式.与2019年4月份相比.该超市2020年4月份销售总额增长10%,其中线上销售额增长43%.线下销售额增长4%,()1设2019年4月份的销售总额为a元.线上销售额为x元,请用含,a x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);()2求2020年4月份线上销售额与当月销售总额的比值.20.如图,AB 是半圆O 的直径,,C D 是半圆O 上不同于,A B 的两点,AD BC AC =与BD 相交于点,F BE 是半圆O 所任圆的切线,与AC 的延长线相交于点E ,()1求证:CBA DAB ∆∆≌;()2若,BE BF =求AC 平分DAB ∠.六、解答题21.某单位食堂为全体名职工提供了,,,A B C D 四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查,根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:()1在抽取的240人中最喜欢A 套餐的人数为 ,扇形统计图中“C ”对应扇形的圆心角的大小为 ;()2依据本次调查的结果,估计全体960名职工中最喜欢B 套餐的人数;()3现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到概率.七、解答题22.在平而直角坐标系中,已知点()()()1,2.2,3.2,1A B C ,直线y x m =+经过点A .抛物线21y ax bx =++恰好经过,,A B C 三点中的两点.()1判断点B 是否在直线y x m =+上.并说明理由;()2求,a b的值; ()3平移抛物线21y ax bx =++,使其顶点仍在直线y x m =+上,求平移后所得抛物线与y 轴交点纵坐标的最大值.八、解答题23.如图1.已知四边形ABCD 是矩形.点E 在BA 的延长线上.. AE AD EC =与BD 相交于点G ,与AD 相交于点,.F AF AB =()1求证:BD EC ⊥;()2若1AB =,求AE 的长;()3如图2,连接AG ,求证:2EG DG AG -=.2020年安徽省初中学业水平考试数学试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的.1、先根据正数都大于0,负数都小于0,可排除C 、D ,再根据两个负数,绝对值大的反而小,可得比-2小的数是-3.【详解】∵|-3|=3,|-1|=1,又0<1<2<3,∴-3<-2,所以,所给出的四个数中比-2小的数是-3,故选:A2、先处理符号,化为同底数幂的除法,再计算即可.【详解】解:()63a a -÷ 63a a =÷3.a =故选C .3、试题分析:主视图是从物体正面看,所得到的图形.A 、圆锥的主视图是三角形,符合题意;B 、球的主视图是圆,不符合题意;C 、圆柱的主视图是长方形,不符合题意;D 、正方体的主视图是正方形,不符合题意.故选A .4、根据科学记数法的表示方法对数值进行表示即可.【详解】解:54700000=5.47×107, 故选:D .5、根据根的判别式逐一判断即可.【详解】A.212x x +=变形为2210x x -+=,此时△=4-4=0,此方程有两个相等的实数根,故选项A 正确;B.21=0x +中△=0-4=-4<0,此时方程无实数根,故选项B 错误;C.223x x -=整理为2230x x --=,此时△=4+12=16>0,此方程有两个不相等的实数根,故此选项错误;D.220x x -=中,△=4>0,此方程有两个不相等的实数根,故选项D 错误.故选:A.6、分别根据众数、平均数、方差、中位数的定义判断即可.【详解】将这组数据从小到大的顺序排列:10,11,11,11,13,13,15,A .这组数据的众数为11,此选项正确,不符合题意;B .这组数据的平均数为(10+11+11+11+13+13+15)÷7=12,此选项正确,不符合题意;C .这组数据的方差为22221(1012)(1112)3(1312)2(1512)7⎡⎤-+-⨯+-⨯+-⎣⎦=187,此选项正确,不符合题意;D .这组数据的中位数为11,此选项错误,符合题意,故选:D .7、先根据一次函数的增减性判断出k 的符号,再将各项坐标代入解析式进行逐一判断即可.【详解】∵一次函数3y kx =+的函数值y 随x 的增大而减小,∴k ﹤0,A .当x=-1,y=2时,-k+3=2,解得k=1﹥0,此选项不符合题意;B .当x=1,y=-2时,k+3=-2,解得k=-5﹤0,此选项符合题意;C .当x=2,y=3时,2k+3=3,解得k=0,此选项不符合题意;D .当x=3,y=4时,3k+3=4,解得k=13﹥0,此选项不符合题意, 故选:B .8、先根据445AC cosA ==,,求出AB=5,再根据勾股定理求出BC=3,然后根据DBC A ∠=∠,即可得cos ∠DBC=cosA=45,即可求出BD . 【详解】∵∠C=90°, ∴cos =AC A AB, ∵445AC cosA ==,, ∴AB=5,根据勾股定理可得, ∵DBC A ∠=∠,∴cos ∠DBC=cosA=45, ∴cos ∠DBC=BC BD =45,即3BD =45∴BD=154, 故选:C .9、根据圆的有关性质、垂径定理及其推论、特殊平行四边形的判定与性质依次对各项判断即可.【详解】A.∵半径OB平分弦AC,∴OB⊥AC,AB=BC,不能判断四边形OABC是平行四边形,假命题;B.∵四边形OABC是平行四边形,且OA=OC, ∴四边形OABC是菱形,∴OA=AB=OB,OA∥BC,∴△OAB是等边三角形,∴∠OAB=60º, ∴∠ABC=120º, 真命题;C.∵120ABC∠=︒,∴∠AOC=120º,不能判断出弦AC平分半径OB,假命题;D.只有当弦AC垂直平分半径OB时,半径OB平分弦AC,所以是假命题,故选:B.10根据图象可得出重叠部分三角形的边长为x,x,由此得出面积y是x的二次函数,直到重合面积固定,再往右移动重叠部分的边长变为(4-x),同时可得【详解】C点移动到F点,重叠部分三角形的边长为x,由于是等边三角形,则高为2x,面积为y=x·2x·122,B点移动到F点,重叠部分三角形的边长为(4-x),高为42x,面积为y=(4-x)4x·12)24x-,两个三角形重合时面积正好为由二次函数图象的性质可判断答案为A,故选A.二、填空题(本大题共4小题,每小题5分,满分20分)11、根据算术平方根的性质即可求解.1=3-1=2.故填:2.12、解:原式=2(1)a b -=a (b +1)(b ﹣1),故答案为a (b +1)(b ﹣1).13、根据题意由反比例函数k 的几何意义得:,ODCE S k =矩形再求解,A B 的坐标及21,2ABO Sk =建立方程求解即可. 【详解】解: 矩形ODCE ,C 在k y x=上, ,ODCE S k ∴=矩形把0x =代入:,y x k =+,y k ∴=()0,,B k ∴把0y =代入:,y x k =+,x k ∴=-(),0,A k ∴-21,2ABO S k ∴= 由题意得:21,2k k = 解得:2,0k k ==(舍去)2.k ∴=故答案为:2.14、(1)根据折叠得到∠D+∠C=180°,推出AD ∥BC ,,进而得到∠AQP=90°,以及∠A=180°-∠B=90°,再由折叠,得到∠DAQ=∠BAP=∠PAQ=30°即可;(2)根据题意得到DC ∥AP ,从而证明∠APQ=∠PQR ,得到QR=PR 和QR=AR ,结合(1)中结论,设QR=a ,则AP=2a ,由勾股定理表达出=即可解答.【详解】解:(1)由题意可知,∠D+∠C=180°,∴AD ∥BC ,由折叠可知∠AQD=∠AQR ,∠CQP=∠PQR ,∴∠AQR+∠PQR=1()902DQR CQR ∠+∠=︒,即∠AQP=90°, ∴∠B=90°,则∠A=180°-∠B=90°,由折叠可知,∠DAQ=∠BAP=∠PAQ ,∴∠DAQ=∠BAP=∠PAQ=30°,故答案为:30;(2)若四边形APCD为平行四边形,则DC∥AP,∴∠CQP=∠APQ,由折叠可知:∠CQP=∠PQR,∴∠APQ=∠PQR,∴QR=PR,同理可得:QR=AR,即R为AP的中点,由(1)可知,∠AQP=90°,∠PAQ=30°,且AB=AQ,设QR=a,则AP=2a,∴QP=12AP a=,∴AB=AQ=223AP QP a-=,∴33 AB aQR a==,故答案为:3.三、解答题15、根据解不等式的方法求解即可.【详解】解:211 2x->212x->23x>32x>.16、(1)先找出A,B两点关于MN对称的点A1,B1,然后连接A1B1即可;(2)根据旋转的定义作图可得线段B1A2.【详解】(1)如图所示,11A B即为所作;(2)如图所示,12B A即为所作.四、解答题17、(1)根据前五个个式子的规律写出第六个式子即可;(2)观察各个式子之间的规律,然后作出总结,再根据等式两边相等作出证明即可.【详解】(1)由前五个式子可推出第6个等式为:112112866⎛⎫⨯+=- ⎪⎝⎭; (2)2121122n n n n-⎛⎫⨯+=- ⎪+⎝⎭, 证明:∵左边=2122122111222n n n n n n n n n n --+-⎛⎫⨯+=⨯==- ⎪++⎝⎭=右边, ∴等式成立.18、设山高CD =x 米,先在Rt △BCD 中利用三角函数用含x 的代数式表示出BD ,再在Rt △ABD 中,利用三角函数用含x 的代数式表示出AD ,然后可得关于x 的方程,解方程即得结果.【详解】解:设山高CD =x 米,则在Rt △BCD 中,tan CD CBD BD ∠=,即tan 36.9x BD ︒=, ∴4tan 36.90.753x x BD x =≈=︒, 在Rt △ABD 中,tan AD ABD BD ∠=,即tan 4243AD x ︒=, ∴44tan 420.9 1.233AD x x x =⋅︒≈⋅=, ∵AD -CD =15,∴1.2x -x =15,解得:x =75.∴山高CD =75米.五、解答题19、()1根据增长率的含义可得答案;()2由题意列方程()1.43 1.04 1.1,x a x a +-=求解x 即可得到比值.【详解】解:()12020年线下销售额为()1.04a x -元,故答案为:()1.04a x -.()2由题意得:()1.43 1.04 1.1,x a x a +-=0.390.06,x a ∴=2,13x a ∴= ∴ 2020年4月份线上销售额与当月销售总额的比值为:21.432113 1.3.1.1135a a ⨯=⨯=答:2020年4月份线上销售额与当月销售总额的比值为:1.520、()1利用,AD BC =证明,ABD BAC ∠=∠利用AB直径,证明90,ADB BCA ∠=∠=︒结合已知条件可得结论; ()2利用等腰三角形的性质证明:,EBC FBC ∠=∠ 再证明,CBF DAF ∠=∠ 利用切线的性质与直径所对的圆周角是直角证明:,EBC CAB ∠=∠ 从而可得答案.【详解】()1证明:,AD BC =,AD BC ∴=,ABD BAC ∴∠=∠ AB 为直径,90,ADB BCA ∴∠=∠=︒,AB BA =CBA DAB ∴≌.()2证明:,90,BE BF ACB =∠=︒,FBC EBC ∴∠=∠90,,ADC ACB DFA CFB ∠=∠=︒∠=∠,DAF FBC EBC ∴∠=∠=∠ BE 为半圆O 的切线,90,90,ABE ABC EBC ∴∠=︒∠+∠=︒90,ACB ∠=︒90,CAB ABC ∴∠+∠=︒,CAB EBC ∴∠=∠,DAF CAB ∴∠=∠AC ∴平分DAB ∠.六、解答题21、(1)用最喜欢A 套餐的人数对应的百分比乘以总人数即可,先求出最喜欢C 套餐的人数,然后用最喜欢C 套餐的人数占总人数的比值乘以360°即可求出答案;(2)先求出最喜欢B 套餐的人数对应的百分比,然后乘以960即可;(3)用列举法列出所有等可能的情况,然后找出甲被选到的情况即可求出概率.【详解】(1)最喜欢A 套餐的人数=25%×240=60(人),最喜欢C 套餐人数=240-60-84-24=72(人),扇形统计图中“C ”对应扇形的圆心角为:360°×72240=108°, 故答案为:60,108°;(2)最喜欢B 套餐的人数对应的百分比为:84240×100%=35%, 估计全体960名职工中最喜欢B 套餐的人数为:960×35%=336(人);(3)由题意可得,从甲、乙、丙、丁四名职工中任选两人,总共有6种不同的结果,每种结果发生的可能性相同,列举如下:甲乙,甲丙,甲丁,乙丙,乙丁,丙丁,其中甲被选到的情况有甲乙,甲丙,甲丁3种,故所求概率P=36=12. 七、解答题22、(1)先将A 代入y x m =+,求出直线解析式,然后将将B 代入看式子能否成立即可;(2)先跟抛物线21y ax bx =++与直线AB 都经过(0,1)点,且B ,C 两点的横坐标相同,判断出抛物线只能经过A ,C 两点,然后将A ,C 两点坐标代入21y ax bx =++得出关于a ,b 的二元一次方程组; (3)设平移后所得抛物线的对应表达式为y=-(x-h )2+k ,根据顶点在直线1y x 上,得出k=h+1,令x=0,得到平移后抛物线与y 轴交点的纵坐标为-h 2+h+1,在将式子配方即可求出最大值.【详解】(1)点B 在直线y x m =+上,理由如下:将A (1,2)代入y x m =+得21m =+,解得m=1,∴直线解析式为1y x , 将B (2,3)代入1y x ,式子成立,∴点B 在直线y x m =+上;(2)∵抛物线21y ax bx =++与直线AB 都经过(0,1)点,且B ,C 两点的横坐标相同,∴抛物线只能经过A ,C 两点,将A ,C 两点坐标代入21y ax bx =++得124211a b a b ++=⎧⎨++=⎩, 解得:a=-1,b=2;(3)设平移后所得抛物线的对应表达式为y=-(x-h )2+k ,∵顶点在直线1y x 上, ∴k=h+1,令x=0,得到平移后抛物线与y 轴交点的纵坐标为-h 2+h+1,∵-h 2+h+1=-(h-12)2+54,∴当h=12时,此抛物线与y 轴交点的纵坐标取得最大值54. 八、解答题23、(1)由矩形的形及已知证得△EAF ≌△DAB ,则有∠E=∠ADB ,进而证得∠EGB=90º即可证得结论; (2)设AE=x ,利用矩形性质知AF ∥BC ,则有EA AF EB BC=,进而得到x 的方程,解之即可; (3)在EF 上截取EH=DG ,进而证明△EHA ≌△DGA ,得到∠EAH=∠DAG ,AH=AG ,则证得△HAG 为等腰直角三角形,即可得证结论.【详解】(1)∵四边形ABCD 是矩形,∴∠BAD=∠EAD=90º,AO=BC ,AD ∥BC ,在△EAF 和△DAB ,AE ADEAF DAB AF AB=⎧⎪∠=∠⎨⎪=⎩,∴△EAF ≌△DAB(SAS),∴∠E=∠BDA ,∵∠BDA+∠ABD=90º,∴∠E+∠ABD=90º,∴∠EGB=90º,∴BG ⊥EC ;(2)设AE=x ,则EB=1+x ,BC=AD=AE=x ,∵AF ∥BC ,∠E=∠E ,∴△EAF ∽△EBC , ∴EAAFEB BC =,又AF=AB=1, ∴11x x x =+即210x x --=,解得:12x +=,12x -=(舍去)即;(3)在EG 上截取EH=DG ,连接AH ,在△EAH 和△DAG ,AE ADHEA GDA EH DG=⎧⎪∠=∠⎨⎪=⎩,∴△EAH≌△DAG(SAS),∴∠EAH=∠DAG,AH=AG,∵∠EAH+∠DAH=90º,∴∠DAG+∠DAH=90º,∴∠EAG=90º,∴△GAH是等腰直角三角形,∴222=,2AG GH AH AG GH+=即22∴GH=2AG,∵GH=EG-EH=EG-DG,∴2EG DG AG-=.。
安徽省2020年中考数学试题(含答案与解析)
安徽省2020年初中学业水平考试试题卷数 学考生须知:1.本试卷满分150分,考试时间为120分钟.2.答题前,考生先将自己的“姓名”、“考号”、“考场”、“座位号”在答题卡上填写清楚,将“条形码”准确粘贴在条形码区域内.3.请按照题号顺序在答题卡各题目的区域内作答,超出答题区域的答案无效;在草稿纸上、试题纸上答案无效.4.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.5.保持卡面整洁,不要折叠、不要弄脏、弄皱,不准使用涂改液、刮纸刀.一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的.1.下列各数中比2-小的数是( )A. 3-B. 1-C. 0D. 2 2.计算()63a a -÷的结果是( )A. 3a -B. 2a -C. 3aD. 2a 3.下列四个几何体中,主视图为三角形的是 A. B. C. D.4.安徽省计划到2022年建成54 700 000亩高标准农田,其中54 700 000用科学记数法表示为( )A. 0.547B. 80.54710⨯C. 554710⨯D.75.4710⨯5.下列方程中,有两个相等实数根的是( )A. 212x x +=B. 21=0x +C. 223x x -=D. 220x x -=6.冉冉的妈妈在网上销售装饰品.最近一周, 每天销售某种装饰品的个数为:11,10,11,13,11,1315,.关于这组数据,冉冉得出如下结果,其中错误的是( )A. 众数是11 B. 平均数是12 C. 方差是187 D. 中位数是137.已知一次函数3y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A. ()1,2-B. ()1,2-C. ()2,3D. ()3,4 8.如图,Rt ABC 中,90C ∠=︒ ,点D 在AC 上,DBC A ∠=∠.若44,5AC cosA ==,则BD 的长度为( )A. 94B. 125C. 154D. 4 9.已知点,,A B C 在O 上.则下列命题为真命题的是( )A. 若半径OB 平分弦AC .则四边形OABC 是平行四边形B. 若四边形OABC 是平行四边形.则120ABC ∠=︒C. 若120ABC ∠=︒.则弦AC 平分半径OBD. 若弦AC 平分半径OB .则半径OB 平分弦AC10.如图ABC 和DEF 都是边长为2的等边三角形,它们的边,BC EF 在同一条直线l上,点C ,E 重合,现将ABC ∆沿着直线l 向右移动,直至点B 与F 重合时停止移动.在此过程中,设点移动的距离为x ,两个三角形重叠部分的面积为y ,则y 随x 变化的函数图像大致为( )A. B. C. D.二、填空题(本大题共4小题,每小题5分,满分20分)11.计算:91-=______.12.分解因式:2ab a -=______.13.如图,一次函数()0y x k k =+>的图象与x 轴和y 轴分别交于点A 和点B 与反比例函数k y x=上的图象在第一象限内交于点,C CD x ⊥轴,CE y ⊥轴,垂足分别为点,D E ,当矩形ODCE 与OAB ∆的面积相等时,k 的值为__________.14.在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD 沿过点A 的直线折叠,使得点B 落在CD 上的点Q 处,折痕为AP ;再将,PCQ ADQ ∆∆分别沿,PQ AQ 折叠,此时点,C D 落在AP 上的同一点R 处.请完成下列探究:()1PAQ ∠的大小为__________︒;()2当四边形APCD 是平行四边形时AB QR的值为__________.三、解答题15.解不等式:2112x -> 16.如图1,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB ,线段,M N 在网格线上,()1画出线段AB 关于线段MN 所在直线对称的线段11A B (点11A B 分别为,A B 的对应点); ()2将线段11B A ,绕点1B ,顺时针旋转90︒得到线段12B A ,画出线段12B A .四、解答题17.观察以下等式:第1个等式:12112311⎛⎫⨯+=- ⎪⎝⎭ 第2个等式:32112422⎛⎫⨯+=- ⎪⎝⎭ 第3个等式:52112533⎛⎫⨯+=- ⎪⎝⎭ 第4个等式:72112644⎛⎫⨯+=- ⎪⎝⎭ 第5个等式:92112755⎛⎫⨯+=- ⎪⎝⎭ ······按照以上规律.解决下列问题:()1写出第6个等式____________;()2写出你猜想的第n 个等式: (用含n 的等式表示),并证明.18.如图,山顶上有一个信号塔AC ,已知信号塔高15AC =米,在山脚下点B 处测得塔底C 的仰角36.9CBD ∠=︒,塔顶A 的仰角42ABD ∠=︒.求山高CD (点,,A C D 在同一条竖直线上).(参考数据:36.90.75, 36.90.60, 42.00.90tan sin tan ︒≈︒≈︒≈ )五、解答题19.某超市有线上和线下两种销售方式.与2019年4月份相比.该超市2020年4月份销售总额增长10%,其中线上销售额增长43%.线下销售额增长4%,()1设2019年4月份的销售总额为a 元.线上销售额为x 元,请用含,a x 的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);()2求2020年4月份线上销售额与当月销售总额的比值.20.如图,AB 是半圆O 的直径,,C D 是半圆O 上不同于,A B 的两点,AD BC AC =与BD 相交于点,F BE 是半圆O 所任圆的切线,与AC 的延长线相交于点E ,()1求证:CBA DAB ∆∆≌;()2若,BE BF =求AC 平分DAB ∠.六、解答题21.某单位食堂为全体名职工提供了,,,A B C D 四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查,根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:()1在抽取的240人中最喜欢A 套餐的人数为 ,扇形统计图中“C ”对应扇形的圆心角的大小为 ;()2依据本次调查的结果,估计全体960名职工中最喜欢B 套餐的人数;()3现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.七、解答题22.在平而直角坐标系中,已知点()()()1,2.2,3.2,1A B C ,直线y x m =+经过点A .抛物线21y ax bx =++恰好经过,,A B C 三点中的两点. ()1判断点B 是否在直线y x m =+上.并说明理由;()2求,a b 的值;()3平移抛物线21y ax bx =++,使其顶点仍在直线y x m =+上,求平移后所得抛物线与y 轴交点纵坐标的最大值.八、解答题23.如图1.已知四边形ABCD 是矩形.点E 在BA 的延长线上.. AE AD EC =与BD 相交于点G ,与AD 相交于点,.F AF AB =()1求证:BD EC ⊥;()2若1AB =,求AE 的长;()3如图2,连接AG ,求证:2EG DG AG -=.数学答案与解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的.1.下列各数中比2-小的数是( )A. 3-B. 1-C. 0D. 2 【答案】A【解析】【分析】先根据正数都大于0,负数都小于0,可排除C 、D ,再根据两个负数,绝对值大的反而小,可得比-2小的数是-3.【详解】∵|-3|=3,|-1|=1,又0<1<2<3,∴-3<-2,所以,所给出的四个数中比-2小的数是-3,故选:A【点睛】本题考查了有理数的大小比较,其方法如下:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.2.计算()63a a -÷的结果是( )A. 3a -B. 2a -C. 3aD. 2a【答案】C【解析】【分析】先处理符号,化为同底数幂的除法,再计算即可.【详解】解:()63a a -÷ 63a a =÷3.a =故选C .【点睛】本题考查的是乘方符号的处理,考查同底数幂的除法运算,掌握以上知识是解题的关键.3.下列四个几何体中,主视图为三角形的是 A. B. C.D.【答案】A【解析】试题分析:主视图是从物体正面看,所得到的图形.A 、圆锥的主视图是三角形,符合题意;B 、球的主视图是圆,不符合题意;C 、圆柱的主视图是长方形,不符合题意;D 、正方体的主视图是正方形,不符合题意.故选A .考点: 简单几何体的三视图.4.安徽省计划到2022年建成54 700 000亩高标准农田,其中54 700 000用科学记数法表示为( )A. 0547B. 80.54710⨯C. 554710⨯D. 75.4710⨯【答案】D【解析】【分析】根据科学记数法的表示方法对数值进行表示即可.【详解】解:54700000=5.47×107,故选:D .【点睛】本题考查了科学记数法,掌握科学记数法的表示方法是解题关键.5.下列方程中,有两个相等实数根的是( )A. 212x x +=B. 21=0x +C. 223x x -=D. 220x x -=【答案】A【解析】【分析】根据根的判别式逐一判断即可.【详解】A.212x x +=变形为2210x x -+=,此时△=4-4=0,此方程有两个相等的实数根,故选项A 正确;B.21=0x +中△=0-4=-4<0,此时方程无实数根,故选项B 错误;C.223x x -=整理为2230x x --=,此时△=4+12=16>0,此方程有两个不相等的实数根,故此选项错误;D.220x x -=中,△=4>0,此方程有两个不相等的实数根,故选项D 错误.故选:A.【点睛】本题主要考查根的判别式,熟练掌握根的情况与判别式间的关系是解题的关键. 6.冉冉的妈妈在网上销售装饰品.最近一周, 每天销售某种装饰品的个数为:11,10,11,13,11,1315,.关于这组数据,冉冉得出如下结果,其中错误的是( )A. 众数是11B. 平均数是12C. 方差是187D. 中位数是13【答案】D【解析】【分析】分别根据众数、平均数、方差、中位数的定义判断即可.【详解】将这组数据从小到大的顺序排列:10,11,11,11,13,13,15,A .这组数据的众数为11,此选项正确,不符合题意;B .这组数据的平均数为(10+11+11+11+13+13+15)÷7=12,此选项正确,不符合题意;C .这组数据的方差为22221(1012)(1112)3(1312)2(1512)7⎡⎤-+-⨯+-⨯+-⎣⎦=187,此选项正确,不符合题意;D .这组数据的中位数为11,此选项错误,符合题意,故选:D .【点睛】本题考查了众数、平均数、方差、中位数,熟练掌握他们的意义和计算方法是解答的关键.7.已知一次函数3y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A. ()1,2-B. ()1,2-C. ()2,3D. ()3,4 【答案】B【解析】【分析】先根据一次函数的增减性判断出k 的符号,再将各项坐标代入解析式进行逐一判断即可.【详解】∵一次函数3y kx =+的函数值y 随x 的增大而减小,∴k ﹤0,A .当x=-1,y=2时,-k+3=2,解得k=1﹥0,此选项不符合题意;B .当x=1,y=-2时,k+3=-2,解得k=-5﹤0,此选项符合题意;C .当x=2,y=3时,2k+3=3,解得k=0,此选项不符合题意;D .当x=3,y=4时,3k+3=4,解得k=13﹥0,此选项不符合题意, 故选:B .【点睛】本题考查了一次函数的性质、待定系数法,熟练掌握一次函数图象上点的坐标特征是解答的关键.8.如图,Rt ABC 中,90C ∠=︒ ,点D 在AC 上,DBC A ∠=∠.若44,5AC cosA ==,则BD 的长度为( )A. 94B. 125C. 154D. 4【答案】C【解析】【分析】先根据445AC cosA ==,,求出AB=5,再根据勾股定理求出BC=3,然后根据DBC A ∠=∠,即可得cos ∠DBC=cosA=45,即可求出BD . 【详解】∵∠C=90°,∴cos =AC A AB, ∵445AC cosA ==,, ∴AB=5,根据勾股定理可得22AB AC -,∵DBC A ∠=∠, ∴cos ∠DBC=cosA=45, ∴cos ∠DBC=BC BD =45,即3BD =45 ∴BD=154, 故选:C .【点睛】本题考查了解直角三角形和勾股定理,求出BC 的长是解题关键.9.已知点,,A B C 在O 上.则下列命题为真命题的是( )A. 若半径OB 平分弦AC .则四边形OABC 是平行四边形B. 若四边形OABC 是平行四边形.则120ABC ∠=︒C. 若120ABC ∠=︒.则弦AC 平分半径OBD. 若弦AC 平分半径OB .则半径OB 平分弦AC【答案】B【解析】【分析】根据圆的有关性质、垂径定理及其推论、特殊平行四边形的判定与性质依次对各项判断即可. 【详解】A .∵半径OB 平分弦AC ,∴OB ⊥AC ,AB=BC ,不能判断四边形OABC 是平行四边形,假命题; B .∵四边形OABC 是平行四边形,且OA=OC, ∴四边形OABC 是菱形,∴OA=AB=OB ,OA ∥BC ,∴△OAB 是等边三角形,∴∠OAB=60º,∴∠ABC=120º,真命题;C .∵120ABC ∠=︒,∴∠AOC=120º,不能判断出弦AC 平分半径OB , 假命题;D .只有当弦AC 垂直平分半径OB 时,半径OB 平分弦AC ,所以是 假命题,故选:B .【点睛】本题主要考查命题与证明,涉及垂径定理及其推论、菱形的判定与性质、等边三角形的判定与性质等知识,解答的关键是会利用所学的知识进行推理证明命题的真假. 10.如图ABC 和DEF 都是边长为2的等边三角形,它们的边,BC EF 在同一条直线l 上,点C ,E 重合,现将ABC ∆沿着直线l 向右移动,直至点B 与F 重合时停止移动.在此过程中,设点移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图像大致为()A. B.C. D.【答案】A【解析】【分析】根据图象可得出重叠部分三角形的边长为x,3x,由此得出面积y是x的二次函数,直到重合面积固定,再往右移动重叠部分的边长变为(4-x),同时可得【详解】C点移动到F点,重叠部分三角形的边长为x,由于是等边三角形,3x,面积为y=x·32x·1223,B点移动到F点,重叠部分三角形的边长为(4-x),高为342x,面积为y=(4-x)·342x·12=)2344x-,3由二次函数图象的性质可判断答案为A,故选A.【点睛】本题考查三角形运动面积和二次函数图像性质,关键在于通过三角形面积公式结合二次函数图形得出结论.二、填空题(本大题共4小题,每小题5分,满分20分)11.1=______.【答案】2【解析】 【分析】根据算术平方根的性质即可求解.1=3-1=2.故填:2. 【点睛】此题主要考查实数的运算,解题的关键是熟知算术平方根的性质. 12.分解因式:2ab a -=______.【答案】a (b +1)(b ﹣1).【解析】【详解】解:原式=2(1)a b -=a (b +1)(b ﹣1), 故答案为a (b +1)(b ﹣1).13.如图,一次函数()0y x k k =+>的图象与x 轴和y 轴分别交于点A 和点B 与反比例函数k y x =上的图象在第一象限内交于点,C CD x ⊥轴,CE y ⊥轴,垂足分别为点,D E ,当矩形ODCE 与OAB ∆的面积相等时,k 的值为__________.【答案】2【解析】【分析】根据题意由反比例函数k 的几何意义得:,ODCE S k =矩形再求解,A B 的坐标及21,2ABO Sk =建立方程求解即可. 【详解】解: 矩形ODCE ,C 在k y x=上, ,ODCE S k ∴=矩形把0x =代入:,y x k =+,y k ∴=()0,,B k ∴把0y =代入:,y x k =+,x k ∴=-(),0,A k ∴-21,2ABO S k ∴= 由题意得:21,2k k = 解得:2,0k k ==(舍去)2.k ∴=故答案为:2.【点睛】本题考查的是一次函数与反比例函数的性质,掌握反比例函数中k 的几何意义,一次函数与坐标轴围成的三角形面积的计算是解题的关键.14.在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD 沿过点A 的直线折叠,使得点B 落在CD 上的点Q 处,折痕为AP ;再将,PCQ ADQ ∆∆分别沿,PQ AQ 折叠,此时点,C D 落在AP 上的同一点R 处.请完成下列探究:()1PAQ ∠的大小为__________︒;()2当四边形APCD 是平行四边形时AB QR的值为__________.【答案】 (1). 30 (2).3【解析】【分析】 (1)根据折叠得到∠D+∠C=180°,推出AD ∥BC ,,进而得到∠AQP=90°,以及∠A=180°-∠B=90°,再由折叠,得到∠DAQ=∠BAP=∠PAQ=30°即可;(2)根据题意得到DC ∥AP ,从而证明∠APQ=∠PQR ,得到QR=PR 和QR=AR ,结合(1)中结论,设QR=a ,则AP=2a ,由勾股定理表达出223AP QP a -=即可解答. 【详解】解:(1)由题意可知,∠D+∠C=180°,∴AD ∥BC ,由折叠可知∠AQD=∠AQR ,∠CQP=∠PQR ,∴∠AQR+∠PQR=1()902DQR CQR ∠+∠=︒,即∠AQP=90°,∴∠B=90°,则∠A=180°-∠B=90°,由折叠可知,∠DAQ=∠BAP=∠PAQ ,∴∠DAQ=∠BAP=∠PAQ=30°,故答案为:30;(2)若四边形APCD 为平行四边形,则DC ∥AP ,∴∠CQP=∠APQ ,由折叠可知:∠CQP=∠PQR ,∴∠APQ=∠PQR ,∴QR=PR ,同理可得:QR=AR ,即R 为AP 的中点,由(1)可知,∠AQP=90°,∠PAQ=30°,且AB=AQ ,设QR=a ,则AP=2a ,∴QP=12AP a =,∴=,∴AB QR a==【点睛】本题考查了四边形中的折叠问题,涉及了平行四边形的性质,勾股定理等知识点,解题的关键是读懂题意,熟悉折叠的性质.三、解答题15.解不等式:2112x -> 【答案】32x >【解析】【分析】根据解不等式的方法求解即可. 【详解】解:2112x ->212x ->23x > 32x >. 【点睛】此题主要考查不等式的求解,解题的关键是熟知其解法.16.如图1,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB ,线段,M N 在网格线上,()1画出线段AB 关于线段MN 所在直线对称的线段11A B (点11A B 分别为,A B 的对应点); ()2将线段11B A ,绕点1B ,顺时针旋转90︒得到线段12B A ,画出线段12B A .【答案】(1)见解析;(2)见解析.【解析】【分析】(1)先找出A ,B 两点关于MN 对称的点A 1,B 1,然后连接A 1B 1即可;(2)根据旋转的定义作图可得线段B 1A 2.【详解】(1)如图所示,11A B 即为所作;(2)如图所示,12B A 即为所作.【点睛】本题主要考查作图-旋转与轴对称,解题的关键是掌握旋转变换和轴对称的定义与性质.四、解答题17.观察以下等式:第1个等式:121 12 311⎛⎫⨯+=-⎪⎝⎭第2个等式:321 12 422⎛⎫⨯+=-⎪⎝⎭第3个等式:521 12 533⎛⎫⨯+=-⎪⎝⎭第4个等式:721 12 644⎛⎫⨯+=-⎪⎝⎭第5个等式:921 12 755⎛⎫⨯+=-⎪⎝⎭······按照以上规律.解决下列问题:()1写出第6个等式____________;()2写出你猜想的第n个等式:(用含n的等式表示),并证明.【答案】(1)112112866⎛⎫⨯+=-⎪⎝⎭;(2)2121122nn n n-⎛⎫⨯+=-⎪+⎝⎭,证明见解析.【解析】【分析】(1)根据前五个个式子的规律写出第六个式子即可;(2)观察各个式子之间的规律,然后作出总结,再根据等式两边相等作出证明即可.【详解】(1)由前五个式子可推出第6个等式为:112112866⎛⎫⨯+=-⎪⎝⎭;(2)2121122nn n n-⎛⎫⨯+=-⎪+⎝⎭,证明:∵左边=2122122111222n n n nn n n n n n--+-⎛⎫⨯+=⨯==-⎪++⎝⎭=右边,∴等式成立.【点睛】本题是规律探究题,解答过程中,要注意各式中相同位置数字的变化规律,并将其用代数式表示出来.18.如图,山顶上有一个信号塔AC ,已知信号塔高15AC =米,在山脚下点B 处测得塔底C 的仰角36.9CBD ∠=︒,塔顶A 的仰角42ABD ∠=︒.求山高CD (点,,A C D 在同一条竖直线上).(参考数据:36.90.75, 36.90.60, 42.00.90tan sin tan ︒≈︒≈︒≈)【答案】75米 【解析】 【分析】设山高CD =x 米,先在Rt △BCD 中利用三角函数用含x 的代数式表示出BD ,再在Rt △ABD 中,利用三角函数用含x 的代数式表示出AD ,然后可得关于x 的方程,解方程即得结果. 【详解】解:设山高CD =x 米,则在Rt △BCD 中,tan CD CBD BD∠=,即tan 36.9xBD ︒=,∴4tan 36.90.753x x BD x =≈=︒,在Rt △ABD 中,tan AD ABD BD∠=,即tan 4243ADx ︒=, ∴44tan 420.9 1.233AD x x x =⋅︒≈⋅=,∵AD -CD =15,∴1.2x -x =15,解得:x =75. ∴山高CD =75米.【点睛】本题考查了解直角三角形的应用,属于常考题型,正确理解题意、熟练掌握三角函数的知识是解题的关键.五、解答题19.某超市有线上和线下两种销售方式.与2019年4月份相比.该超市2020年4月份销售总额增长10%,其中线上销售额增长43%.线下销售额增长4%,()1设2019年4月份的销售总额为a 元.线上销售额为x 元,请用含,a x 的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);()2求2020年4月份线上销售额与当月销售总额的比值.【答案】()1()1.04a x -;()21.5【解析】 【分析】()1根据增长率的含义可得答案;()2由题意列方程()1.43 1.04 1.1,x a x a +-=求解x 即可得到比值.【详解】解:()12020年线下销售额为()1.04a x -元, 故答案为:()1.04a x -.()2由题意得:()1.43 1.04 1.1,x a x a +-=0.390.06,x a ∴=2,13x a ∴=∴ 2020年4月份线上销售额与当月销售总额的比值为:21.432113 1.3.1.1135aa ⨯=⨯= 答:2020年4月份线上销售额与当月销售总额的比值为:1.5【点睛】本题考查的列代数式及一元一次方程的应用,掌握列一元一次方程解决应用题是解题的关键.20.如图,AB 是半圆O 的直径,,C D 是半圆O 上不同于,A B 的两点,AD BC AC =与BD相交于点,F BE 是半圆O 所任圆的切线,与AC 的延长线相交于点E ,()1求证:CBA DAB ∆∆≌;()2若,BE BF =求AC 平分DAB ∠.【答案】()1证明见解析;()2证明见解析. 【解析】 【分析】()1利用,AD BC =证明,ABD BAC ∠=∠利用AB直径,证明90,ADB BCA ∠=∠=︒结合已知条件可得结论;()2利用等腰三角形的性质证明:,EBC FBC ∠=∠ 再证明,CBF DAF ∠=∠ 利用切线的性质与直径所对的圆周角是直角证明:,EBC CAB ∠=∠ 从而可得答案. 【详解】()1证明:,AD BC =,AD BC ∴= ,ABD BAC ∴∠=∠AB 为直径,90,ADB BCA ∴∠=∠=︒ ,AB BA = CBA DAB ∴≌.()2证明:,90,BE BF ACB =∠=︒,FBC EBC ∴∠=∠90,,ADC ACB DFA CFB ∠=∠=︒∠=∠ ,DAF FBC EBC ∴∠=∠=∠BE 为半圆O 的切线,90,90,ABE ABC EBC ∴∠=︒∠+∠=︒90,ACB ∠=︒90,CAB ABC ∴∠+∠=︒ ,CAB EBC ∴∠=∠ ,DAF CAB ∴∠=∠AC ∴平分DAB ∠.【点睛】本题考查的是圆的基本性质,弧,弦,圆心角,圆周角之间的关系,直径所对的圆周角是直角,三角形的全等的判定,切线的性质定理,三角形的内角和定理,掌握以上知识是解题的关键.六、解答题21.某单位食堂为全体名职工提供了,,,A B C D 四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查,根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:()1在抽取的240人中最喜欢A 套餐的人数为 ,扇形统计图中“C ”对应扇形的圆心角的大小为 ;()2依据本次调查的结果,估计全体960名职工中最喜欢B 套餐的人数;()3现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.【答案】(1)60,108°;(2)336;(3)12【解析】 【分析】(1)用最喜欢A 套餐的人数对应的百分比乘以总人数即可,先求出最喜欢C 套餐的人数,然后用最喜欢C 套餐的人数占总人数的比值乘以360°即可求出答案; (2)先求出最喜欢B 套餐的人数对应的百分比,然后乘以960即可;(3)用列举法列出所有等可能的情况,然后找出甲被选到的情况即可求出概率. 【详解】(1)最喜欢A 套餐的人数=25%×240=60(人), 最喜欢C 套餐的人数=240-60-84-24=72(人), 扇形统计图中“C ”对应扇形的圆心角为:360°×72240=108°, 故答案为:60,108°;(2)最喜欢B 套餐的人数对应的百分比为:84240×100%=35%, 估计全体960名职工中最喜欢B 套餐的人数为:960×35%=336(人);(3)由题意可得,从甲、乙、丙、丁四名职工中任选两人,总共有6种不同的结果,每种结果发生的可能性相同,列举如下:甲乙,甲丙,甲丁,乙丙,乙丁,丙丁, 其中甲被选到的情况有甲乙,甲丙,甲丁3种, 故所求概率P=36=12. 【点睛】本题考查了条形统计图和扇形统计图,用样本估计总体,用列举法求概率,由图表获取正确的信息是解题关键.七、解答题22.在平而直角坐标系中,已知点()()()1,2.2,3.2,1A B C ,直线y x m =+经过点A .抛物线21y ax bx =++恰好经过,,A B C 三点中的两点.()1判断点B 是否在直线y x m =+上.并说明理由; ()2求,a b 的值;()3平移抛物线21y ax bx =++,使其顶点仍在直线y x m =+上,求平移后所得抛物线与y轴交点纵坐标的最大值.【答案】(1)点B 在直线y x m =+上,理由见详解;(2)a=-1,b=2;(3)54【解析】 【分析】(1)先将A 代入y x m =+,求出直线解析式,然后将将B 代入看式子能否成立即可;(2)先跟抛物线21y ax bx =++与直线AB 都经过(0,1)点,且B ,C 两点的横坐标相同,判断出抛物线只能经过A ,C 两点,然后将A ,C 两点坐标代入21y ax bx =++得出关于a ,b 的二元一次方程组;(3)设平移后所得抛物线的对应表达式为y=-(x-h )2+k ,根据顶点在直线1yx 上,得出k=h+1,令x=0,得到平移后抛物线与y 轴交点的纵坐标为-h 2+h+1,在将式子配方即可求出最大值.【详解】(1)点B 在直线y x m =+上,理由如下: 将A (1,2)代入y x m =+得21m =+, 解得m=1, ∴直线解析式为1y x ,将B (2,3)代入1yx ,式子成立,∴点B 在直线y x m =+上;(2)∵抛物线21y ax bx =++与直线AB 都经过(0,1)点,且B ,C 两点的横坐标相同,∴抛物线只能经过A ,C 两点,将A ,C 两点坐标代入21y ax bx =++得124211a b a b ++=⎧⎨++=⎩,解得:a=-1,b=2;(3)设平移后所得抛物线的对应表达式为y=-(x-h )2+k , ∵顶点在直线1y x 上,∴k=h+1,令x=0,得到平移后抛物线与y 轴交点的纵坐标为-h 2+h+1,∵-h 2+h+1=-(h-12)2+54, ∴当h=12时,此抛物线与y 轴交点的纵坐标取得最大值54. 【点睛】本题考查了求一次函数解析式,用待定系数法求二次函数解析式,二次函数的平移和求最值,求出两个函数的表达式是解题关键.八、解答题23.如图1.已知四边形ABCD 是矩形.点E 在BA 的延长线上.. AE AD EC =与BD 相交于点G ,与AD 相交于点,.F AF AB =()1求证:BD EC ⊥; ()2若1AB =,求AE 的长;()3如图2,连接AG ,求证:2EG DG AG -=.【答案】(1)见解析;(215+;(3)见解析 【解析】 【分析】(1)由矩形的形及已知证得△EAF ≌△DAB ,则有∠E=∠ADB ,进而证得∠EGB=90º即可证得结论;(2)设AE=x ,利用矩形性质知AF ∥BC ,则有EA AFEB BC=,进而得到x 的方程,解之即可; (3)在EF 上截取EH=DG ,进而证明△EHA ≌△DGA ,得到∠EAH=∠DAG ,AH=AG ,则证得△HAG 为等腰直角三角形,即可得证结论. 【详解】(1)∵四边形ABCD 是矩形, ∴∠BAD=∠EAD=90º,AO=BC ,AD ∥BC , 在△EAF 和△DAB ,AE AD EAF DAB AF AB =⎧⎪∠=∠⎨⎪=⎩, ∴△EAF ≌△DAB(SAS), ∴∠E=∠BDA , ∵∠BDA+∠ABD=90º, ∴∠E+∠ABD=90º, ∴∠EGB=90º, ∴BG ⊥EC ;(2)设AE=x ,则EB=1+x ,BC=AD=AE=x , ∵AF ∥BC ,∠E=∠E , ∴△EAF ∽△EBC , ∴EA AFEB BC=,又AF=AB=1, ∴11x x x=+即210x x --=,解得:12x +=,12x -=(舍去) 即; (3)在EG 上截取EH=DG ,连接AH , 在△EAH 和△DAG ,AE AD HEA GDA EH DG =⎧⎪∠=∠⎨⎪=⎩,∴△EAH≌△DAG(SAS),∴∠EAH=∠DAG,AH=AG,∵∠EAH+∠DAH=90º,∴∠DAG+∠DAH=90º,∴∠EAG=90º,∴△GAH是等腰直角三角形,∴222=,2AG GHAH AG GH+=即22∴GH=2AG,∵GH=EG-EH=EG-DG,∴2-=.EG DG AG【点睛】本题主要考查了矩形的性质、全等三角形的判定与性质、等腰三角形的判定与性质、直角定义、相似三角形的判定与性质、解一元二次方程等知识,涉及知识面广,解答的关键是认真审题,提取相关信息,利用截长补短等解题方法确定解题思路,进而推理、探究、发现和计算。
2020年安徽省中考数学试卷(精析版)
2020年安徽省中考数学试卷一、选择题(本大题共10小题,共40.0分)1.下列各数中,比−2小的数是()A. −3B. −1C. 0D. 2【答案】A【解析】【分析】本题考查了有理数的大小比较,其方法如下:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.先根据正数都大于0,负数都小于0,可排除C、D,再根据两个负数,绝对值大的反而小,可得比−2小的数是−3.【解答】解:根据两个负数,绝对值大的反而小可知−3<−2.故选A.2.计算(−a)6÷a3的结果是()A. −a3B. −a2C. a3D. a2【答案】C【解析】解:原式=a6÷a3=a3.故选:C.直接利用同底数幂的除法运算法则计算得出答案.此题主要考查了同底数幂的除法运算,正确掌握相关运算法则是解题关键.3.下面四个几何体中,主视图为三角形的是()A. B. C. D.【答案】B【解析】解:A、主视图是圆,故A不符合题意;B、主视图是三角形,故B符合题意;C、主视图是矩形,故C不符合题意;D、主视图是正方形,故D不符合题意;故选:B.根据主视图是从正面看得到的图形,可得答案.本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为()A. 5.47×108B. 0.547×108C. 547×105D. 5.47×107【答案】D【解析】解:54700000用科学记数法表示为:5.47×107.故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.5.下列方程中,有两个相等实数根的是()A. x2+1=2xB. x2+1=0C. x2−2x=3D. x2−2x=0【答案】A【解析】解:A、△=(−2)2−4×1×1=0,有两个相等实数根;B、△=0−4=−4<0,没有实数根;C、△=(−2)2−4×1×(−3)=16>0,有两个不相等实数根;D、△=(−2)2−4×1×0=4>0,有两个不相等实数根.故选:A.判断上述方程的根的情况,只要看根的判别式△=b2−4ac的值的符号就可以了.有两个相等实数根的一元二次方程就是判别式的值是0的一元二次方程.本题考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是()A. 众数是11B. 平均数是12C. 方差是187D. 中位数是13【答案】D【解析】解:数据11,10,11,13,11,13,15中,11出现的次数最多是3次,因此众数是11,于是A选项不符合题意;将这7个数据从小到大排列后,处在中间位置的一个数是11,因此中位数是11,于是D符合题意;x−=(11+10+11+13+11+13+15)÷7=12,即平均数是12,于是选项B不符合题意;S2=17[(10−12)2+(11−12)2×3+(13−12)2×2+(15−12)2]=187,因此方差为187,于是选项C不符合题意;故选:D.根据平均数、众数、中位数、方差的计算方法分别计算这组数据的平均数、众数、中位数、方差,最后做出选择.本题考查平均数、中位数、众数、方差的意义和计算方法,掌握计算方法是得出正确答案的前提.7.已知一次函数y=kx+3的图象经过点A,且y随x的增大而减小,则点A的坐标可以是()A. (−1,2)B. (1,−2)C. (2,3)D. (3,4)【答案】B【解析】解:A、当点A的坐标为(−1,2)时,−k+3=3,解得:k=1>0,∴y随x的增大而增大,选项A不符合题意;B、当点A的坐标为(1,−2)时,k+3=−2,解得:k=−5<0,∴y随x的增大而减小,选项B符合题意;C、当点A的坐标为(2,3)时,2k+3=3,解得:k=0,选项C不符合题意;D、当点A的坐标为(3,4)时,3k+3=4,解得:k=13>0,∴y随x的增大而增大,选项D不符合题意.故选:B.由点A的坐标,利用一次函数图象上点的坐标特征求出k值,结合y随x的增大而减小即可确定结论.本题考查了一次函数的性质以及一次函数图象上点的坐标特征,根据点的坐标,利用一次函数图象上点的坐标特征求出k值是解题的关键.8.如图,Rt△ABC中,∠C=90°,点D在AC上,∠DBC=∠A.若AC=4,cosA=45,则BD的长度为()A. 94B. 125C. 154D. 4【答案】C【解析】解:∵∠C=90°,AC=4,cosA=45,∴AB=ACcosA=5,∴BC=√AB2−AC2=3,∵∠DBC=∠A.∴cos∠DBC=cos∠A=BCBD =45,∴BD=3×54=154,故选:C.在△ABC中,由三角函数求得AB,再由勾股定理求得BC,最后在△BCD中由三角函数求得BD.本题主要考查了勾股定理,解直角三角形的应用,关键是解直角三角形.9.已知点A,B,C在⊙O上,则下列命题为真命题的是()A. 若半径OB平分弦AC,则四边形OABC是平行四边形B. 若四边形OABC是平行四边形,则∠ABC=120°C. 若∠ABC=120°,则弦AC平分半径OBD. 若弦AC平分半径OB,则半径OB平分弦AC【答案】B【解析】解:A、如图,若半径OB平分弦AC,则四边形OABC不一定是平行四边形;原命题是假命题;B、若四边形OABC是平行四边形,则AB=OC,OA=BC,∵OA=OB=OC,∴AB=OA=OB=BC=OC,∴∠ABO=∠OBC=60°,∴∠ABC=120°,是真命题;C、如图,若∠ABC=120°,则弦AC不平分半径OB,原命题是假命题;D、如图,若弦AC平分半径OB,则半径OB不一定平分弦AC,原命题是假命题;故选:B.根据垂径定理,平行四边形的性质判断即可.本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC在直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A. B.C. D.【答案】A【解析】解:如图1所示:当0<x≤2时,过点G作GH⊥BF于H.∵△ABC和△DEF均为等边三角形,∴△GEJ为等边三角形.∴GH=√32EJ=√32x,∴y=12EJ⋅GH=√34x2.当x=2时,y=√3,且抛物线的开口向上.如图2所示:2<x≤4时,过点G作GH⊥BF于H.y=12FJ⋅GH=√34(4−x)2,函数图象为抛物线的一部分,且抛物线开口向上.故选:A.分为0<x≤2、2<x≤4两种情况,然后依据等边三角形的性质和三角形的面积公式可求得y与x的函数关系式,于是可求得问题的答案.本题主要考查的是动点问题的函数图象,求得函数的解析式是解题的关键.二、填空题(本大题共4小题,共20.0分)11.√9−1=______.【答案】2【解析】解:原式=3−1=2.故答案为:2.直接利用二次根式的性质化简进而得出答案.此题主要考查了实数运算,正确化简二次根式是解题关键.12.分解因式:ab2−a=____________.【答案】a(b+1)(b−1)【解析】【分析】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.首先将原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(b2−1)=a(b+1)(b−1),故答案为:a(b+1)(b−1)13.如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B.与反比例函数y=kx的图象在第一象限内交于点C,CD⊥x轴,CE⊥y轴.垂足分别为点D,E.当矩形ODCE与△OAB的面积相等时,k的值为______.【答案】2【解析】解:一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B,令x=0,则y=k,令y=0,则x=−k,故点A、B的坐标分别为(−k,0)、(0,k),则△OAB的面积=12OA⋅OB=12k2,而矩形ODCE的面积为k,则12k2=k,解得:k=0(舍去)或2,故答案为2.分别求出矩形ODCE与△OAB的面积,即可求解.本题考查的是反比例函数与一次函数的交点问题,计算矩形ODCE与△OAB的面积是解题的关键.14.在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD沿过点A的直线折叠,使得点B落在CD上的点Q处.折痕为AP;再将△PCQ,△ADQ分别沿PQ,AQ折叠,此时点C,D落在AP上的同一点R处.请完成下列探究:(1)∠PAQ的大小为______°;(2)当四边形APCD是平行四边形时,ABQR的值为______.【答案】30 √3【解析】解:(1)由折叠的性质可得:∠B=∠AQP,∠DAQ=∠QAP=∠PAB,∠DQA=∠AQR,∠CQP=∠PQR,∠D=∠ARQ,∠C=∠QRP,∵∠QRA+∠QRP=180°,∴∠D+∠C=180°,∴AD//BC,∴∠B+∠DAB=180°,∵∠DQR+∠CQR=180°,∴∠DQA+∠CQP=90°,∴∠AQP=90°,∴∠B=∠AQP=90°,∴∠DAB=90°,∴∠DAQ=∠QAP=∠PAB=30°,故答案为:30;(2)由折叠的性质可得:AD=AR,CP=PR,∵四边形APCD是平行四边形,∴AD=PC,∴AR=PR,又∵∠AQP=90°,AP,∴QR=12∵∠PAB=30°,∠B=90°,∴AP=2PB,AB=√3PB,∴PB=QR,=√3,∴ABQR故答案为:√3.(1)由折叠的性质可得∠B=∠AQP,∠DAQ=∠QAP=∠PAB,∠DQA=∠AQR,∠CQP=∠PQR,∠D=∠ARQ,∠C=∠QRP,由平角的性质可得∠D+∠C=180°,∠AQP=90°,可证AD//BC,由平行线的性质可得∠DAB=90°,即可求解;(2)由平行四边形和折叠的性质可得AR=PR,由直角三角形的性质可得AP=2PB= 2QR,AB=√3PB,即可求解.本题考查了翻折变换,平行四边形的性质,直角三角形的性质,熟练运用这些性质解决问题是本题的关键.三、解答题(本大题共9小题,共90.0分)>1.15.解不等式:2x−12【答案】解:去分母,得:2x−1>2,移项,得:2x>2+1,合并,得:2x>3,.系数化为1,得:x>32【解析】根据解一元一次不等式基本步骤:去分母、移项、合并同类项、系数化为1可得.本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.16.如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB,线段MN在网格线上.(1)画出线段AB关于线段MN所在直线对称的线段A1B1(点A1,B1分别为A,B的对应点);(2)将线段B1A1绕点B1顺时针旋转90°得到线段B1A2,画出线段B1A2.【答案】解:(1)如图线段A1B1即为所求.(2)如图,线段B1A2即为所求.【解析】(1)分别作出A,B的对应点A1,B2即可.(2)作出点A1的对应点A2即可.本题考查作图−旋转变换,轴对称变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.观察以下等式:第1个等式:13×(1+21)=2−11,第2个等式:34×(1+22)=2−12,第3个等式:55×(1+23)=2−13,第4个等式:76×(1+24)=2−14.第5个等式:97×(1+25)=2−15.…按照以上规律,解决下列问题:(1)写出第6个等式:______;(2)写出你猜想的第n个等式:______(用含n的等式表示),并证明.【答案】118×(1+26)=2−162n−1n+2×(1+2n)=2−1n【解析】解:(1)第6个等式:118×(1+26)=2−16;(2)猜想的第n个等式:2n−1n+2×(1+2n)=2−1n.证明:∵左边=2n−1n+2×n+2n=2n−1n=2−1n=右边,∴等式成立.故答案为:118×(1+26)=2−16;2n−1n+2×(1+2n)=2−1n.(1)根据题目中前5个等式,可以发现式子的变化特点,从而可以写出第6个等式;(2)把上面发现的规律用字母n表示出来,并运用分式的混合运算法则计算等号的右边的值,进而得到左右相等便可.本题考查数字的变化类,解答本题的关键是明确题意,发现式子的变化特点,写出相应的等式,并证明猜想的正确性.18.如图,山顶上有一个信号塔AC,已知信号塔高AC=15米,在山脚下点B处测得塔底C的仰角∠CBD=36.9°,塔顶A的仰角∠ABD=42.0°,求山高CD(点A,C,D在同一条竖直线上).(参考数据:tan36.9°≈0.75,sin36.9°≈0.60,tan42.0°≈0.90.)【答案】解:由题意,在Rt△ABD中,tan∠ABD=ADBD,∴tan42.0°=ADBD≈0.9,∴AD≈0.9BD,在Rt△BCD中,tan∠CBD=CDBD,∴tan36.9°=CDBD≈0.75,∴CD≈0.75BD,∵AC=AD−CD,∴15=0.15BD,∴BD=100米,∴CD=0.75BD=75(米),答:山高CD为75米.【解析】根据三角函数的定义和直角三角形的性质解答即可.本题考查了解直角三角形的应用−仰角俯角问题,注意方程思想与数形结合思想的应用.19.某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式20204()时间销售总额(元)线上销售额(元)线下销售额(元)2019年4月份a x a−x2020年4月份 1.1a 1.43x______【答案】1.04(a−x)【解析】解:(1)∵与2019年4月份相比,该超市2020年4月份线下销售额增长4%,∴该超市2020年4月份线下销售额为1.04(a−x)元.故答案为:1.04(a−x).(2)依题意,得:1.1a=1.43x+1.04(a−x),解得:x =213, ∴1.43x 1.1a=1.43⋅213a 1.1a=0.22a 1.1a=0.2.答:2020年4月份线上销售额与当月销售总额的比值为0.2.(1)由线下销售额的增长率,即可用含a ,x 的代数式表示出2020年4月份的线下销售额;(2)根据2020年4月份的销售总额=线上销售额+线下销售额,即可得出关于x 的一元一次方程,解之即可得出x 的值(用含a 的代数式表示),再将其代入1.43x1.1a 中即可求出结论. 本题考查了一元一次方程的应用以及列代数式,找准等量关系,正确列出一元一次方程是解题的关键.20. 如图,AB 是半圆O 的直径,C ,D 是半圆O 上不同于A ,B 的两点,AD =BC ,AC 与BD 相交于点F.BE 是半圆O 所在圆的切线,与AC 的延长线相交于点E . (1)求证:△CBA≌△DAB ;(2)若BE =BF ,求证:AC 平分∠DAB . 【答案】(1)证明:∵AB 是半圆O 的直径, ∴∠ACB =∠ADB =90°,在Rt △CBA 与Rt △DAB 中,{BC =ADBA =AB,∴Rt △CBA≌Rt △DAB(HL);(2)解:∵BE =BF ,由(1)知BC ⊥EF , ∴∠E =∠BFE ,∵BE 是半圆O 所在圆的切线, ∴∠ABE =90°,∴∠E +∠BAE =90°, 由(1)知∠D =90°,∴∠DAF +∠AFD =90°, ∵∠AFD =∠BFE , ∴∠AFD =∠E ,∴∠DAF =90°−∠AFD ,∠BAF =90°−∠E , ∴∠DAF =∠BAF , ∴AC 平分∠DAB .【解析】(1)根据圆周角定理得到∠ACB =∠ADB =90°,根据全等三角形的判定定理即可得到结论;(2)根据等腰三角形的性质得到∠E =∠BFE ,根据切线的性质得到∠ABE =90°,根据三角形的内角和以及角平分线的定义即可得到结论.本题考查了切线的性质,全等三角形的判定和性质,圆周角定理,正确的识别图形是解题的关键.21. 某单位食堂为全体960名职工提供了A ,B ,C ,D 四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A套餐的人数为______,扇形统计图中“C”对应扇形的圆心角的大小为______°;(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.【答案】60 108【解析】解:(1)在抽取的240人中最喜欢A套餐的人数为240×25%=60(人),则最喜欢C套餐的人数为240−(60+84+24)=72(人),∴扇形统计图中“C”对应扇形的圆心角的大小为360°×72240=108°,故答案为:60、108;(2)估计全体960名职工中最喜欢B套餐的人数为960×84240=336(人);(3)画树状图为:共有12种等可能的结果数,其中甲被选到的结果数为6,∴甲被选到的概率为612=12.(1)用被调查的职工人数乘以最喜欢A套餐人数所占百分比即可得其人数;再由四种套餐人数之和等于被调查的人数求出C对应人数,继而用360°乘以最喜欢C套餐人数所占比例即可得;(2)用总人数乘以样本中最喜欢B套餐的人数所占比例即可得;(3)画树状图列出所有等可能结果,从中找到符合条件的结果数,利用概率公式求解可得答案.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.22.在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=ax2+bx+1恰好经过A,B,C三点中的两点.(1)判断点B是否在直线y=x+m上,并说明理由;(2)求a,b的值;(3)平移抛物线y =ax 2+bx +1,使其顶点仍在直线y =x +m 上,求平移后所得抛物线与y 轴交点纵坐标的最大值.【答案】解:(1)点B 是在直线y =x +m 上,理由如下: ∵直线y =x +m 经过点A(1,2), ∴2=1+m ,解得m =1, ∴直线为y =x +1,把x =2代入y =x +1得y =3, ∴点B(2,3)在直线y =x +m 上;(2)∵直线y =x +1与抛物线y =ax 2+bx +1都经过点(0,1),且B 、C 两点的横坐标相同,∴抛物线只能经过A 、C 两点,把A(1,2),C(2,1)代入y =ax 2+bx +1得{a +b +1=24a +2b +1=1,解得a =−1,b =2;(3)由(2)知,抛物线为y =−x 2+2x +1,设平移后的抛物线为y =−x +px +q ,其顶点坐标为(p 2,p 24+q),∵顶点仍在直线y =x +1上, ∴p 24+q =p2+1,∴q =p 24−p2−1,∵抛物线y =−x +px +q 与y 轴的交点的纵坐标为q , ∴q =p 24−p 2−1=−14(p −1)2+54,∴当p =1时,平移后所得抛物线与y 轴交点纵坐标的最大值为54.【解析】(1)根据待定系数法求得直线的解析式,然后即可判断点B(2,3)在直线y =x +m 上;(2)因为直线经过A 、B 和点(0,1),所以经过点(0,1)的抛物线不同时经过A 、B 点,即可判断抛物线只能经过A 、C 两点,根据待定系数法即可求得a 、b ; (3)设平移后的抛物线为y =−x +px +q ,其顶点坐标为(p 2,p 24+q),根据题意得出p 24+q =p2+1,由抛物线y =−x +px +q 与y 轴交点的纵坐标为q ,即可得出q =p 24−p 2−1=−14(p −1)2+54,从而得出q 的最大值.本题考查了待定系数法求一次函数的解析式和二次函数的解析式,二次函数的图象与几何变换,二次函数的性质,题目有一定难度.23. 如图1,已知四边形ABCD 是矩形,点E 在BA 的延长线上,AE =AD.EC 与BD 相交于点G ,与AD 相交于点F ,AF =AB . (1)求证:BD ⊥EC ;(2)若AB =1,求AE 的长;(3)如图2,连接AG ,求证:EG −DG =√2AG .【答案】(1)证明:∵四边形ABCD 是矩形,点E 在BA 的延长线上, ∴∠EAF =∠DAB =90°, 又∵AE =AD ,AF =AB , ∴△AEF≌△ADB(SAS), ∴∠AEF =∠ADB ,∴∠GEB +∠GBE =∠ADB +∠ABD =90°, 即∠EGB =90°, 故BD ⊥EC ,(2)解:∵四边形ABCD 是矩形, ∴AE//CD ,∴∠AEF =∠DCF ,∠EAF =∠CDF , ∴△AEF∽△DCF , ∴AE DC=AF DF,即AE ⋅DF =AF ⋅DC ,设AE =AD =a(a >0),则有a ⋅(a −1)=1,化简得a 2−a −1=0, 解得a =1+√52或1−√52(舍去),∴AE =1+√52.(3)如图,在线段EG 上取点P ,使得EP =DG ,在△AEP 与△ADG 中,AE =AD ,∠AEP =∠ADG ,EP =DG , ∴△AEP≌△ADG(SAS),∴AP =AG ,∠EAP =∠DAG ,∴∠PAG =∠PAD +∠DAG =∠PAD +∠EAP =∠DAE =90°, ∴△PAG 为等腰直角三角形,∴EG −DG =EG −EP =PG =√2AG .【解析】(1)证明△AEF≌△ADB(SAS),得出∠AEF =∠ADB ,证得∠EGB =90°,则结论得出;(2)证明△AEF∽△DCF ,得出AEDC =AFDF ,即AE ⋅DF =AF ⋅DC ,设AE =AD =a(a >0),则有a ⋅(a −1)=1,化简得a 2−a −1=0,解方程即可得出答案;(3)在线段EG上取点P,使得EP=DG,证明△AEP≌△ADG(SAS),得出AP=AG,∠EAP=∠DAG,证得△PAG为等腰直角三角形,可得出结论.本题是四边形综合题,考查了矩形的性质,相似三角形的判定与性质,全等三角形的判定与性质,等腰直角三角形的判定与性质等知识,熟练掌握全等三角形的判定与性质是解题的关键.。
安徽省2020年中考数学试题(解析版)
2020年安徽省初中学业水平考试数学试题卷考生须知:1、本试卷满分120分,考试时间为120分钟、2、答题前,考生先将自己的“姓名”、“考号”、“考场”、“座位号”在答题卡上填写清楚,将“条形码”准确粘贴在条形码区域内、3、请按照题号顺序在答题卡各题目的区域内作答,超出答题区域的答案无效;在草稿纸上、试题纸上答案无效、4、选择题必须使用2B 铅笔填涂;非选择题必须使用0、5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚、5、保持卡面整洁,不要折叠、不要弄脏、弄皱,不准使用涂改液、刮纸刀、一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的、1、下列各数中比2-小的数是( ) A 、 3- B 、 1- C 、 0 D 、 2【答案】A 【解析】 【分析】先根据正数都大于0,负数都小于0,可排除C 、D ,再根据两个负数,绝对值大的反而小,可得比-2小的数是-3、【详解】∵|-3|=3,|-1|=1, 又0<1<2<3, ∴-3<-2,所以,所给出的四个数中比-2小的数是-3, 故选:A【点睛】本题考查了有理数的大小比较,其方法如下:(1)负数<0<正数;(2)两个负数,绝对值大的反而小、2、计算()63a a -÷的结果是( )A 、 3a -B 、 2a -C 、 3aD 、 2a【解析】 【分析】先处理符号,化为同底数幂的除法,再计算即可、 【详解】解:()63a a -÷63a a =÷ 3.a =故选C 、【点睛】本题考查的是乘方符号的处理,考查同底数幂的除法运算,掌握以上知识是解题的关键、 3、下列四个几何体中,主视图为三角形的是A 、B 、C 、D 、【答案】A 【解析】试题分析:主视图是从物体正面看,所得到的图形、 A 、圆锥的主视图是三角形,符合题意; B 、球的主视图是圆,不符合题意; C 、圆柱的主视图是长方形,不符合题意; D 、正方体的主视图是正方形,不符合题意、 故选A 、考点: 简单几何体的三视图、4、安徽省计划到2022年建成54 700 000亩高标准农田,其中54 700 000用科学记数法表示为( ) A 、 0547B 、 80.54710⨯C 、 554710⨯D 、 75.4710⨯【答案】D 【解析】 【分析】根据科学记数法的表示方法对数值进行表示即可、 【详解】解:54700000=5、47×107,【点睛】本题考查了科学记数法,掌握科学记数法的表示方法是解题关键、 5、下列方程中,有两个相等实数根的是( ) A 、 212x x += B 、 21=0x + C 、 223x x -= D 、 220x x -=【答案】A 【解析】 【分析】根据根的判别式逐一判断即可、【详解】A 、212x x +=变形为2210x x -+=,此时△=4-4=0,此方程有两个相等的实数根,故选项A 正确;B 、21=0x +中△=0-4=-4<0,此时方程无实数根,故选项B 错误;C 、223x x -=整理为2230x x --=,此时△=4+12=16>0,此方程有两个不相等的实数根,故此选项错误;D 、220x x -=中,△=4>0,此方程有两个不相等的实数根,故选项D 错误、 故选:A 、【点睛】本题主要考查根的判别式,熟练掌握根的情况与判别式间的关系是解题的关键、6、冉冉的妈妈在网上销售装饰品、最近一周, 每天销售某种装饰品的个数为:11,10,11,13,11,1315,、关于这组数据,冉冉得出如下结果,其中错误的是( ) A 、 众数是11 B 、 平均数是12C 、 方差是187D 、 中位数是13【答案】D 【解析】 【分析】分别根据众数、平均数、方差、中位数的定义判断即可、【详解】将这组数据从小到大的顺序排列:10,11,11,11,13,13,15, A 、这组数据的众数为11,此选项正确,不符合题意;B 、这组数据的平均数为(10+11+11+11+13+13+15)÷7=12,此选项正确,不符合题意;C 、这组数据的方差为22221(1012)(1112)3(1312)2(1512)7⎡⎤-+-⨯+-⨯+-⎣⎦=187,此选项正确,不符合题意;D 、这组数据的中位数为11,此选项错误,符合题意, 故选:D 、【点睛】本题考查了众数、平均数、方差、中位数,熟练掌握他们的意义和计算方法是解答的关键、 7、已知一次函数3y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( ) A 、 ()1,2- B 、 ()1,2-C 、 ()2,3D 、 ()3,4【答案】B 【解析】 【分析】先根据一次函数的增减性判断出k 的符号,再将各项坐标代入解析式进行逐一判断即可、 【详解】∵一次函数3y kx =+的函数值y 随x 的增大而减小, ∴k ﹤0,A 、当x=-1,y=2时,-k+3=2,解得k=1﹥0,此选项不符合题意;B 、当x=1,y=-2时,k+3=-2,解得k=-5﹤0,此选项符合题意;C 、当x=2,y=3时,2k+3=3,解得k=0,此选项不符合题意;D 、当x=3,y=4时,3k+3=4,解得k=13﹥0,此选项不符合题意, 故选:B 、【点睛】本题考查了一次函数的性质、待定系数法,熟练掌握一次函数图象上点的坐标特征是解答的关键、 8、如图,Rt ABC 中,90C ∠=︒ ,点D 在AC 上,DBC A ∠=∠、若44,5AC cosA ==,则BD 的长度为( )A 、94B 、125C 、154D 、 4【解析】 【分析】先根据445AC cosA ==,,求出AB=5,再根据勾股定理求出BC=3,然后根据DBC A ∠=∠,即可得cos ∠DBC=cosA=45,即可求出BD 、 【详解】∵∠C=90°, ∴cos =ACA AB, ∵445AC cosA ==,, ∴AB=5,根据勾股定理可得,∵DBC A ∠=∠,∴cos ∠DBC=cosA=45, ∴cos ∠DBC=BC BD =45,即3BD =45∴BD=154, 故选:C 、【点睛】本题考查了解直角三角形和勾股定理,求出BC 的长是解题关键、 9、已知点,,A B C 在O 上、则下列命题为真命题的是( ) A 、 若半径OB 平分弦AC 、则四边形OABC 是平行四边形 B 、 若四边形OABC 是平行四边形、则120ABC ∠=︒ C 、 若120ABC ∠=︒、则弦AC 平分半径OB D 、 若弦AC 平分半径OB 、则半径OB 平分弦AC 【答案】B 【解析】 【分析】根据圆的有关性质、垂径定理及其推论、特殊平行四边形的判定与性质依次对各项判断即可、 详解】A 、∵半径OB 平分弦AC ,∴OB ⊥AC ,AB=BC ,不能判断四边形OABC 是平行四边形,B 、∵四边形OABC 是平行四边形,且OA=OC, ∴四边形OABC 是菱形, ∴OA=AB=OB ,OA ∥BC , ∴△OAB 是等边三角形, ∴∠OAB=60º, ∴∠ABC=120º, 真命题;C 、∵120ABC ∠=︒,∴∠AOC=120º,不能判断出弦AC 平分半径OB , 假命题;D 、只有当弦AC 垂直平分半径OB 时,半径OB 平分弦AC ,所以是 假命题, 故选:B 、【点睛】本题主要考查命题与证明,涉及垂径定理及其推论、菱形的判定与性质、等边三角形的判定与性质等知识,解答的关键是会利用所学的知识进行推理证明命题的真假、10、如图ABC 和DEF 都是边长为2的等边三角形,它们的边,BC EF 在同一条直线l 上,点C ,E 重合,现将ABC ∆沿着直线l 向右移动,直至点B 与F 重合时停止移动、在此过程中,设点移动的距离为x ,两个三角形重叠部分的面积为y ,则y 随x 变化的函数图像大致为( )A 、B 、C、D、【答案】A【解析】【分析】根据图象可得出重叠部分三角形的边长为x,3x,由此得出面积y是x的二次函数,直到重合面积固定,再往右移动重叠部分的边长变为(4-x),同时可得【详解】C点移动到F点,重叠部分三角形的边长为x,由于是等边三角形,则高为3x,面积为y=x·32x·1223,B点移动到F点,重叠部分三角形的边长为(4-x),34x,面积为y=(4-x)34x·12)234x-,3由二次函数图象的性质可判断答案为A,故选A、【点睛】本题考查三角形运动面积和二次函数图像性质,关键在于通过三角形面积公式结合二次函数图形得出结论、二、填空题(本大题共4小题,每小题5分,满分20分)1191=______、【答案】2【解析】分析】根据算术平方根的性质即可求解、91=3-1=2、故填:2、【点睛】此题主要考查实数的运算,解题的关键是熟知算术平方根的性质、 12、分解因式:2ab a -=______、 【答案】a (b +1)(b ﹣1)、 【解析】【详解】解:原式=2(1)a b -=a (b +1)(b ﹣1), 故答案为a (b +1)(b ﹣1)、13、如图,一次函数()0y x k k =+>的图象与x 轴和y 轴分别交于点A 和点B 与反比例函数ky x=上的图象在第一象限内交于点,C CD x ⊥轴,CE y ⊥轴,垂足分别为点,D E ,当矩形ODCE 与OAB ∆的面积相等时,k 的值为__________、【答案】2 【解析】 【分析】根据题意由反比例函数k 的几何意义得:,ODCE S k =矩形再求解,A B 的坐标及21,2ABOS k =建立方程求解即可、 【详解】解:矩形ODCE ,C 在ky x=上, ,ODCE S k ∴=矩形把0x =代入:,y x k =+,y k ∴=()0,,B k ∴把0y =代入:,y x k =+,x k ∴=-(),0,A k ∴-21,2ABOSk ∴=由题意得:21,2k k =解得:2,0k k ==(舍去)2.k ∴=故答案为:2.【点睛】本题考查的是一次函数与反比例函数的性质,掌握反比例函数中k 的几何意义,一次函数与坐标轴围成的三角形面积的计算是解题的关键、14、在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD 沿过点A 的直线折叠,使得点B 落在CD 上的点Q 处,折痕为AP ;再将,PCQ ADQ ∆∆分别沿,PQ AQ 折叠,此时点,CD 落在AP 上的同一点R 处、请完成下列探究:()1PAQ ∠的大小为__________︒;()2当四边形APCD 是平行四边形时ABQR 的值为__________、【答案】 (1)、 30 (2)、3【解析】 【分析】(1)根据折叠得到∠D+∠C=180°,推出AD ∥BC ,,进而得到∠AQP=90°,以及∠A=180°-∠B=90°,再由折叠,得到∠DAQ=∠BAP=∠PAQ=30°即可;(2)根据题意得到DC ∥AP ,从而证明∠APQ=∠PQR ,得到QR=PR 和QR=AR ,结合(1)中结论,设QR=a ,则AP=2a ,由勾股定理表达出=即可解答、【详解】解:(1)由题意可知,∠D+∠C=180°, ∴AD ∥BC ,由折叠可知∠AQD=∠AQR ,∠CQP=∠PQR , ∴∠AQR+∠PQR=1()902DQR CQR ∠+∠=︒,即∠AQP=90°, ∴∠B=90°,则∠A=180°-∠B=90°, 由折叠可知,∠DAQ=∠BAP=∠PAQ , ∴∠DAQ=∠BAP=∠PAQ=30°, 故答案为:30;(2)若四边形APCD 为平行四边形,则DC ∥AP , ∴∠CQP=∠APQ ,由折叠可知:∠CQP=∠PQR , ∴∠APQ=∠PQR , ∴QR=PR ,同理可得:QR=AR ,即R 为AP 的中点,由(1)可知,∠AQP=90°,∠PAQ=30°,且AB=AQ , 设QR=a ,则AP=2a , ∴QP=12AP a =,∴=,∴AB QR ==,【点睛】本题考查了四边形中的折叠问题,涉及了平行四边形的性质,勾股定理等知识点,解题的关键是读懂题意,熟悉折叠的性质、三、解答题15、解不等式:2112x -> 【答案】32x > 【解析】 【分析】根据解不等式的方法求解即可、 【详解】解:2112x -> 212x -> 23x >32x >、 【点睛】此题主要考查不等式的求解,解题的关键是熟知其解法、16、如图1,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB ,线段,M N 在网格线上,()1画出线段AB 关于线段MN 所在直线对称的线段11A B (点11A B 分别为,A B 的对应点); ()2将线段11B A ,绕点1B ,顺时针旋转90︒得到线段12B A ,画出线段12B A 、【答案】(1)见解析;(2)见解析、 【解析】 【分析】(1)先找出A ,B 两点关于MN 对称的点A 1,B 1,然后连接A 1B 1即可; (2)根据旋转的定义作图可得线段B 1A 2、 【详解】(1)如图所示,11A B 即为所作;(2)如图所示,12B A即为所作、【点睛】本题主要考查作图-旋转与轴对称,解题的关键是掌握旋转变换和轴对称的定义与性质、四、解答题17、观察以下等式:第1个等式:121 12 311⎛⎫⨯+=-⎪⎝⎭第2个等式:321 12 422⎛⎫⨯+=-⎪⎝⎭第3个等式:521 12 533⎛⎫⨯+=-⎪⎝⎭第4个等式:721 12 644⎛⎫⨯+=-⎪⎝⎭第5个等式:921 12 755⎛⎫⨯+=-⎪⎝⎭······按照以上规律、解决下列问题:()1写出第6个等式____________;()2写出你猜想的第n个等式: (用含n的等式表示),并证明、【答案】(1)112112866⎛⎫⨯+=-⎪⎝⎭;(2)2121122nn n n-⎛⎫⨯+=-⎪+⎝⎭,证明见解析、【解析】【分析】(1)根据前五个个式子的规律写出第六个式子即可;(2)观察各个式子之间的规律,然后作出总结,再根据等式两边相等作出证明即可、【详解】(1)由前五个式子可推出第6个等式为:112112 866⎛⎫⨯+=-⎪⎝⎭;(2)2121122nn n n-⎛⎫⨯+=-⎪+⎝⎭,证明:∵左边=2122122111222n n n nn n n n n n--+-⎛⎫⨯+=⨯==-⎪++⎝⎭=右边,∴等式成立、【点睛】本题是规律探究题,解答过程中,要注意各式中相同位置数字的变化规律,并将其用代数式表示出来、18、如图,山顶上有一个信号塔AC,已知信号塔高15AC=米,在山脚下点B处测得塔底C的仰角36.9CBD∠=︒,塔顶A的仰角42ABD∠=︒、求山高CD(点,,A C D在同一条竖直线上)、(参考数据:36.90.75,36.90.60,42.00.90tan sin tan︒≈︒≈︒≈ )【答案】75米【解析】【分析】设山高CD=x米,先在Rt△BCD中利用三角函数用含x的代数式表示出BD,再在Rt△ABD中,利用三角函数用含x的代数式表示出AD,然后可得关于x的方程,解方程即得结果、【详解】解:设山高CD=x米,则在Rt△BCD中,tanCDCBDBD∠=,即tan36.9xBD︒=,∴4tan36.90.753x xBD x=≈=︒,在Rt△ABD中,tanADABDBD∠=,即tan4243ADx︒=,∴44tan420.9 1.233AD x x x=⋅︒≈⋅=,∵AD-CD=15,∴1、2x -x =15,解得:x =75、 ∴山高CD =75米、【点睛】本题考查了解直角三角形的应用,属于常考题型,正确理解题意、熟练掌握三角函数的知识是解题的关键、五、解答题19、某超市有线上和线下两种销售方式、与2019年4月份相比、该超市2020年4月份销售总额增长10%,其中线上销售额增长43%、线下销售额增长4%,()1设2019年4月份的销售总额为a 元、线上销售额为x 元,请用含,a x 的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);()2求2020年4月份线上销售额与当月销售总额的比值、【答案】()1()1.04a x -;()21.5【解析】 【分析】()1根据增长率的含义可得答案;()2由题意列方程()1.43 1.04 1.1,x a x a +-=求解x 即可得到比值、【详解】解:()12020年线下销售额为()1.04a x -元, 故答案为:()1.04a x -、()2由题意得:()1.43 1.04 1.1,x a x a +-=0.390.06,x a ∴=2,13x a ∴=∴ 2020年4月份线上销售额与当月销售总额的比值为: 21.432113 1.3.1.1135aa ⨯=⨯= 答:2020年4月份线上销售额与当月销售总额的比值为:1.5【点睛】本题考查的列代数式及一元一次方程的应用,掌握列一元一次方程解决应用题是解题的关键、20、如图,AB 是半圆O 的直径,,C D 是半圆O 上不同于,A B 的两点,AD BC AC =与BD 相交于点,F BE 是半圆O 所任圆的切线,与AC 的延长线相交于点E ,()1求证:CBA DAB ∆∆≌;()2若,BE BF =求AC 平分DAB ∠、【答案】()1证明见解析;()2证明见解析、 【解析】 【分析】()1利用,AD BC =证明,ABD BAC ∠=∠利用AB直径,证明90,ADB BCA ∠=∠=︒结合已知条件可得结论;()2利用等腰三角形的性质证明:,EBC FBC ∠=∠ 再证明,CBF DAF ∠=∠ 利用切线的性质与直径所对的圆周角是直角证明:,EBC CAB ∠=∠ 从而可得答案、 【详解】()1证明:,AD BC =,AD BC ∴= ,ABD BAC ∴∠=∠AB 为直径,90,ADB BCA ∴∠=∠=︒ ,AB BA =CBA DAB ∴≌、()2证明:,90,BE BF ACB =∠=︒,FBC EBC ∴∠=∠90,,∠=∠=︒∠=∠ADC ACB DFA CFB∴∠=∠=∠,DAF FBC EBCBE为半圆O的切线,∴∠=︒∠+∠=︒ABE ABC EBC90,90,ACB∠=︒90,∴∠+∠=︒CAB ABC90,CAB EBC∴∠=∠,∴∠=∠DAF CAB,∠、AC∴平分DAB【点睛】本题考查的是圆的基本性质,弧,弦,圆心角,圆周角之间的关系,直径所对的圆周角是直角,三角形的全等的判定,切线的性质定理,三角形的内角和定理,掌握以上知识是解题的关键、六、解答题A B C D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机21、某单位食堂为全体名职工提供了,,,抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查,根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:()1在抽取的240人中最喜欢A套餐的人数为,扇形统计图中“C”对应扇形的圆心角的大小为;()2依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;()3现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率、【答案】(1)60,108°;(2)336;(3)12【解析】 【分析】(1)用最喜欢A 套餐的人数对应的百分比乘以总人数即可,先求出最喜欢C 套餐的人数,然后用最喜欢C 套餐的人数占总人数的比值乘以360°即可求出答案;(2)先求出最喜欢B 套餐的人数对应的百分比,然后乘以960即可;(3)用列举法列出所有等可能的情况,然后找出甲被选到的情况即可求出概率、 【详解】(1)最喜欢A 套餐的人数=25%×240=60(人), 最喜欢C 套餐的人数=240-60-84-24=72(人), 扇形统计图中“C ”对应扇形的圆心角为:360°×72240=108°, 故答案为:60,108°;(2)最喜欢B 套餐的人数对应的百分比为:84240×100%=35%, 估计全体960名职工中最喜欢B 套餐的人数为:960×35%=336(人);(3)由题意可得,从甲、乙、丙、丁四名职工中任选两人,总共有6种不同的结果,每种结果发生的可能性相同,列举如下:甲乙,甲丙,甲丁,乙丙,乙丁,丙丁, 其中甲被选到的情况有甲乙,甲丙,甲丁3种, 故所求概率P=36=12、 【点睛】本题考查了条形统计图和扇形统计图,用样本估计总体,用列举法求概率,由图表获取正确的信息是解题关键、七、解答题22、在平而直角坐标系中,已知点()()()1,2.2,3.2,1A B C ,直线y x m =+经过点A 、抛物线21y ax bx =++恰好经过,,A B C 三点中的两点、()1判断点B 是否在直线y x m =+上、并说明理由; ()2求,a b 的值;()3平移抛物线21y ax bx =++,使其顶点仍在直线y x m =+上,求平移后所得抛物线与y 轴交点纵坐标的最大值、【答案】(1)点B 在直线y x m =+上,理由见详解;(2)a=-1,b=2;(3)54【解析】 【分析】(1)先将A 代入y x m =+,求出直线解析式,然后将将B 代入看式子能否成立即可;(2)先跟抛物线21y ax bx =++与直线AB 都经过(0,1)点,且B ,C 两点的横坐标相同,判断出抛物线只能经过A ,C 两点,然后将A ,C 两点坐标代入21y ax bx =++得出关于a ,b 的二元一次方程组; (3)设平移后所得抛物线的对应表达式为y=-(x-h )2+k ,根据顶点在直线1yx 上,得出k=h+1,令x=0,得到平移后抛物线与y 轴交点的纵坐标为-h 2+h+1,在将式子配方即可求出最大值、 【详解】(1)点B 在直线y x m =+上,理由如下: 将A (1,2)代入y x m =+得21m =+, 解得m=1, ∴直线解析式为1y x ,将B (2,3)代入1yx ,式子成立,∴点B 在直线y x m =+上;(2)∵抛物线21y ax bx =++与直线AB 都经过(0,1)点,且B ,C 两点的横坐标相同, ∴抛物线只能经过A ,C 两点,将A ,C 两点坐标代入21y ax bx =++得124211a b a b ++=⎧⎨++=⎩,解得:a=-1,b=2;(3)设平移后所得抛物线的对应表达式为y=-(x-h )2+k , ∵顶点在直线1y x 上,∴k=h+1,令x=0,得到平移后抛物线与y 轴交点的纵坐标为-h 2+h+1, ∵-h 2+h+1=-(h-12)2+54, ∴当h=12时,此抛物线与y 轴交点的纵坐标取得最大值54、 【点睛】本题考查了求一次函数解析式,用待定系数法求二次函数解析式,二次函数的平移和求最值,求出两个函数的表达式是解题关键、八、解答题23、如图1、已知四边形ABCD 是矩形、点E 在BA 的延长线上、. AE AD EC =与BD 相交于点G ,与AD相交于点,.F AF AB =()1求证:BD EC ⊥; ()2若1AB =,求AE 的长;()3如图2,连接AG ,求证:2EG DG AG -=、【答案】(1)见解析;(215+;(3)见解析 【解析】 【分析】(1)由矩形的形及已知证得△EAF ≌△DAB ,则有∠E=∠ADB ,进而证得∠EGB=90º即可证得结论; (2)设AE=x ,利用矩形性质知AF ∥BC ,则有EA AFEB BC=,进而得到x 的方程,解之即可; (3)在EF 上截取EH=DG ,进而证明△EHA ≌△DGA ,得到∠EAH=∠DAG ,AH=AG ,则证得△HAG 为等腰直角三角形,即可得证结论、【详解】(1)∵四边形ABCD 是矩形, ∴∠BAD=∠EAD=90º,AO=BC ,AD ∥BC , 在△EAF 和△DAB ,AE AD EAF DAB AF AB =⎧⎪∠=∠⎨⎪=⎩,∴△EAF ≌△DAB(SAS), ∴∠E=∠BDA , ∵∠BDA+∠ABD=90º, ∴∠E+∠ABD=90º, ∴∠EGB=90º, ∴BG ⊥EC ;(2)设AE=x ,则EB=1+x ,BC=AD=AE=x , ∵AF ∥BC ,∠E=∠E , ∴△EAF ∽△EBC , ∴EA AFEB BC=,又AF=AB=1, ∴11x x x=+即210x x --=,解得:x =,x =(舍去) 即AE=12; (3)在EG 上截取EH=DG ,连接AH , 在△EAH 和△DAG ,AE AD HEA GDA EH DG =⎧⎪∠=∠⎨⎪=⎩, ∴△EAH ≌△DAG(SAS), ∴∠EAH=∠DAG ,AH=AG , ∵∠EAH+∠DAH=90º, ∴∠DAG+∠DAH=90º, ∴∠EAG=90º,∴△GAH 是等腰直角三角形,∴222AH AG GH +=即222AG GH =, ∴, ∵GH=EG-EH=EG-DG ,∴2EG DG AG-=、【点睛】本题主要考查了矩形的性质、全等三角形的判定与性质、等腰三角形的判定与性质、直角定义、相似三角形的判定与性质、解一元二次方程等知识,涉及知识面广,解答的关键是认真审题,提取相关信息,利用截长补短等解题方法确定解题思路,进而推理、探究、发现和计算。
2020年安徽中考数学23题赏析
突出核心知识,指向关键能力——2020年安徽中考23题赏析一、原题呈现(2020•安徽)如图1,已知四边形ABCD是矩形,点E在BA的延长线上, =.EC与BD相交于点G,与AD相交于点F,AF AB=.AE AD(1)求证:BD EC⊥;(2)若1AB=,求AE的长;(3)如图2,连接AG,求证:EG DG−=.二、试题赏析作为一道中考的压轴题,本题图形简洁,背景熟悉,构思巧妙,层次分明,重视对核心知识和学生关键能力的考查.题目以矩形为背景,却也涉及到了角平分线、全等三角形、相似三角形、直角三角形、圆的相关知识以及线段数量关系和位置关系的计算与证明.同时,后两问视角广阔,解法多样,给了学生很大的发挥空间,在平凡中体现学生的数学能力和素养.还引导教师和学生在平时的教学过程中要重视对基本图形的归纳和变式、对数学思想方法的提炼,可谓简约而不简单!三、解法分析本文主要分析第(3)小问的解法,解数学题尤其是几何题,关键是要抓住其中的数据和结构,本题容易从以下三个方面找到突破口.思路一:截长补短解法1如图,过A作AH⊥AG交EG于点H.∵AE =AD,AF =AB,∠EAF =∠DAB =90°, ∴△EAF ≌△DAB ,∴∠E =∠ADB ,EC ⊥BD .(后面不再证明) ∵AH ⊥EG ,AD ⊥AE , ∴∠DAG =∠EAH , 在△EHA 和△AGD 中,∵∠E =∠ADG ,EA =AD ,∠EAH =∠DAG , ∴△EAH ≌△DAG , ∴AH =AG ,EH =DG ,∴HG =,∴EG DG −=.解法2 如图,在EG 上截取GH =GA ,连接DE .则DE DHAD DG=,∠EDH =∠ADG , ∴△DEH ∽△DAG ,∴EH =,∴EG DG −=.解法3 如图,过A 作AM ⊥BD 交DB 延长线于点M .E则∠F AG =∠BAM ,∠FGA =∠M =90BAG ︒−∠, ∵AF =AB ,∴△AFG ≌△ABM , ∴AG=AM ,GM.∵∠E =∠ADM ,AE =AD ,∠EGA =∠M , ∴△EAG ≌△DAM , ∴EG =DM ,∴EG DG −=.解法4 如图,延长GD 至点M ,使得GM =GE ,连接ME ,DE .则ME DEEG EA==∠MED =∠GEA , ∴△MDE ∽△GAE , ∴MD =,∴EG DG −=.,也可以考虑构造22EG DG ,. 解法5 如图,分别过D ,E 作AG 的垂线,垂足分别为M ,N,连接FB .E∵∠DAB =∠FGC =90°, ∴G ,F ,A ,B 四点共圆,∴∠DGM =∠FGA =∠FBA =45°,∴22EN EG MG DG ==,.∵∠AEN =∠MAD ,∠N =∠M ,AE =AD , ∴△AEN ≌△DAM , ∴EN =AM ,即22EG AG DG =+,∴EG DG −=.思路二:利用角平分线的性质解法6 如图,过点A 作AM ⊥EG 于点M ,AN ⊥BD 于点N .易知AG 平分∠EGB ,∴AM =AN =NG =MG ,∠AME =∠AND =90°, ∵AE =AD ,∴△AME ≌△AND , ∴EM =DN ,∴EG =EM +MG =DG +2GN =DG,∴EG DG −=.E思路三:利用四点共圆的性质解法7 如图,由∠DAB =∠FGB =90°可知G ,F ,A ,B 四点共圆.由托勒密定理得FA GB AB FG FB AG ⋅+⋅=⋅,∵FB =,∴BG FG +=,∴EG EF FG BD FG DG =+=+=+,∴EG DG −=.解法8 如图,由∠EDA =∠EGA =45°可知D ,E ,A ,G 四点共圆.由托勒密定理得DE AG DG AE EG AD ⋅+⋅=⋅,∵DE AD AE ==,,∴EG DG −=.补充:(托勒密定理)如图,若A ,B ,C ,D 四点共圆,则AB CD AD BC AC BD ⋅+⋅=⋅.E点评:本题中的多种解法,其思路来源就是题目中特殊的问题结构(线段和差)、图形结构(共圆)和数据形式(,本质上都是构造相似三角形(全等算特殊的相似),只有熟悉基础知识,基本图形才能快速找到解题思路.另外,去掉多余的线段,如图,从共圆的视角,我们更容易发现本题的本质其实是我们非常熟悉的一个结论:若△ADE 为等腰直角三角形,且A ,G ,D ,E 四点共圆,则有:||EG DG −,EG DG +=.四、类题迁移1.(2014•重庆A )如图,正方形ABCD 的边长为6,点O 是对角线AC 、BD 的交点,点E 在CD 上,且2DE CE =,过点C 作CF BE ⊥,垂足为F ,连接OF ,则OF 的长为 .2.(2014•重庆B )如图,在边长为ABCD 中,E 是AB 边上一点,G 是AD 延长线上一点,BE=DG ,连接EG ,CF ⊥EG 交EG 于点H ,交AD 于点F ,连接CE ,BH .若8BH =,则FG = .3.(2016•桂林)如图,在Rt ACB∆中,90ACB∠=︒,3AC BC==,1CD=,CH BD⊥于H,点O是AB中点,连接OH,则OH=.4.(2020•金华)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连结EG,BD相交于点O、BD与HC相交于点P.若GO=GP,则S正方形ABCDS正方形EFGH的值是()A.1B.2+ C.5 D.15 45.(2020•南充)如图,边长为1的正方形ABCD中,点K在AD上,连接BK,过点A,C作BK的垂线,垂足分别为M,N,点O是正方形ABCD的中心,连接OM,ON.(1)求证:AM BN=.(2)请判定OMN∆的形状,并说明理由.(3)若点K在线段AD上运动(不包括端点),设AK x=,OMN∆的面积为y,求y关于x的函数关系式(写出x的范围);若点K在射线AD上运动,且OMN∆的面积为110,请直接写出AK长.鸣谢:陈斯定、张淑婷、黄泽众、盛昊灿等老师提供解法!。
2020年安徽省中考数学试卷及答案解析
2020年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的.1.(4分)下列各数中,比﹣2小的数是( )A .﹣3B .﹣1C .0D .22.(4分)计算(﹣a )6÷a 3的结果是( )A .﹣a 3B .﹣a 2C .a 3D .a 23.(4分)下面四个几何体中,主视图为三角形的是( )A .B .C .D .4.(4分)安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为( )A .5.47×108B .0.547×108C .547×105D .5.47×1075.(4分)下列方程中,有两个相等实数根的是( )A .x 2+1=2xB .x 2+1=0C .x 2﹣2x =3D .x 2﹣2x =06.(4分)冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是( )A .众数是11B .平均数是12C .方差是187D .中位数是137.(4分)已知一次函数y =kx +3的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A .(﹣1,2)B .(1,﹣2)C .(2,3)D .(3,4)8.(4分)如图,Rt △ABC 中,∠C =90°,点D 在AC 上,∠DBC =∠A .若AC =4,cos A =45,则BD 的长度为( )A.94B.125C.154D.49.(4分)已知点A,B,C在⊙O上,则下列命题为真命题的是()A.若半径OB平分弦AC,则四边形OABC是平行四边形B.若四边形OABC是平行四边形,则∠ABC=120°C.若∠ABC=120°,则弦AC平分半径OBD.若弦AC平分半径OB,则半径OB平分弦AC10.(4分)如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC在直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A.B.C.D .二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)计算:√9−1= .12.(5分)分解因式:ab 2﹣a = .13.(5分)如图,一次函数y =x +k (k >0)的图象与x 轴和y 轴分别交于点A 和点B .与反比例函数y =k x的图象在第一象限内交于点C ,CD ⊥x 轴,CE ⊥y 轴.垂足分别为点D ,E .当矩形ODCE 与△OAB 的面积相等时,k 的值为 .14.(5分)在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD 沿过点A 的直线折叠,使得点B 落在CD 上的点Q 处.折痕为AP ;再将△PCQ ,△ADQ 分别沿PQ ,AQ 折叠,此时点C ,D 落在AP 上的同一点R 处.请完成下列探究:(1)∠P AQ 的大小为 °;(2)当四边形APCD 是平行四边形时,AB QR 的值为 .三、(本大题共2小题,每小题8分,满分16分)15.(8分)解不等式:2x−12>1.16.(8分)如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB ,线段MN 在网格线上.(1)画出线段AB 关于线段MN 所在直线对称的线段A 1B 1(点A 1,B 1分别为A ,B 的对应点);(2)将线段B 1A 1绕点B 1顺时针旋转90°得到线段B 1A 2,画出线段B 1A 2.四、(本大题共2小题,每小题8分,满分16分)17.(8分)观察以下等式:第1个等式:13×(1+21)=2−11, 第2个等式:34×(1+22)=2−12, 第3个等式:55×(1+23)=2−13, 第4个等式:76×(1+24)=2−14. 第5个等式:97×(1+25)=2−15.…按照以上规律,解决下列问题:(1)写出第6个等式: ;(2)写出你猜想的第n 个等式: (用含n 的等式表示),并证明.18.(8分)如图,山顶上有一个信号塔AC ,已知信号塔高AC =15米,在山脚下点B 处测得塔底C 的仰角∠CBD =36.9°,塔顶A 的仰角∠ABD =42.0°,求山高CD (点A ,C ,D 在同一条竖直线上).(参考数据:tan36.9°≈0.75,sin36.9°≈0.60,tan42.0°≈0.90.)五、(本大题共2小题,每小题10分,满分20分)19.(10分)某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元)线上销售额(元)线下销售额(元)2019年4月份a x a﹣x2020年4月份 1.1a 1.43x(2)求2020年4月份线上销售额与当月销售总额的比值.20.(10分)如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;(2)若BE=BF,求证:AC平分∠DAB.六、(本题满分12分)21.(12分)某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A套餐的人数为,扇形统计图中“C”对应扇形的圆心角的大小为°;(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.七、(本题满分12分)22.(12分)在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m 经过点A,抛物线y=ax2+bx+1恰好经过A,B,C三点中的两点.(1)判断点B是否在直线y=x+m上,并说明理由;(2)求a,b的值;(3)平移抛物线y=ax2+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y 轴交点纵坐标的最大值.八、(本题满分14分)23.(14分)如图1,已知四边形ABCD是矩形,点E在BA的延长线上,AE=AD.EC与BD相交于点G,与AD相交于点F,AF=AB.(1)求证:BD⊥EC;(2)若AB=1,求AE的长;(3)如图2,连接AG,求证:EG﹣DG=√2AG.参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.(4分)下列各数中,比﹣2小的数是()A.﹣3B.﹣1C.0D.2【解答】解:根据两个负数,绝对值大的反而小可知﹣3<﹣2.故选:A.2.(4分)计算(﹣a)6÷a3的结果是()A.﹣a3B.﹣a2C.a3D.a2【解答】解:原式=a6÷a3=a3.故选:C.3.(4分)下面四个几何体中,主视图为三角形的是()A.B.C.D.【解答】解:A、主视图是圆,故A不符合题意;B、主视图是三角形,故B符合题意;C、主视图是矩形,故C不符合题意;D、主视图是正方形,故D不符合题意;故选:B.4.(4分)安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为()A.5.47×108B.0.547×108C.547×105D.5.47×107【解答】解:54700000用科学记数法表示为:5.47×107.故选:D.5.(4分)下列方程中,有两个相等实数根的是( )A .x 2+1=2xB .x 2+1=0C .x 2﹣2x =3D .x 2﹣2x =0【解答】解:A 、△=(﹣2)2﹣4×1×1=0,有两个相等实数根;B 、△=0﹣4=﹣4<0,没有实数根;C 、△=(﹣2)2﹣4×1×(﹣3)=16>0,有两个不相等实数根;D 、△=(﹣2)2﹣4×1×0=4>0,有两个不相等实数根.故选:A .6.(4分)冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是( )A .众数是11B .平均数是12C .方差是187D .中位数是13【解答】解:数据11,10,11,13,11,13,15中,11出现的次数最多是3次,因此众数是11,于是A 选项不符合题意;将这7个数据从小到大排列后,处在中间位置的一个数是11,因此中位数是11,于是D 符合题意; x =(11+10+11+13+11+13+15)÷7=12,即平均数是12,于是选项B 不符合题意;S 2=17[(10﹣12)2+(11﹣12)2×3+(13﹣12)2×2+(15﹣12)2]=187,因此方差为187,于是选项C 不符合题意;故选:D .7.(4分)已知一次函数y =kx +3的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A .(﹣1,2)B .(1,﹣2)C .(2,3)D .(3,4)【解答】解:A 、当点A 的坐标为(﹣1,2)时,﹣k +3=2,解得:k =1>0,∴y 随x 的增大而增大,选项A 不符合题意;B 、当点A 的坐标为(1,﹣2)时,k +3=﹣2,解得:k =﹣5<0,∴y 随x 的增大而减小,选项B 符合题意;C 、当点A 的坐标为(2,3)时,2k +3=3,解得:k =0,选项C 不符合题意;D、当点A的坐标为(3,4)时,3k+3=4,解得:k=13>0,∴y随x的增大而增大,选项D不符合题意.故选:B.8.(4分)如图,Rt△ABC中,∠C=90°,点D在AC上,∠DBC=∠A.若AC=4,cos A= 45,则BD的长度为()A.94B.125C.154D.4【解答】解:∵∠C=90°,AC=4,cos A=4 5,∴AB=ACcosA=5,∴BC=√AB2−AC2=3,∵∠DBC=∠A.∴cos∠DBC=cos∠A=BCBD=45,∴BD=3×54=154,故选:C.9.(4分)已知点A,B,C在⊙O上,则下列命题为真命题的是()A.若半径OB平分弦AC,则四边形OABC是平行四边形B.若四边形OABC是平行四边形,则∠ABC=120°C.若∠ABC=120°,则弦AC平分半径OBD.若弦AC平分半径OB,则半径OB平分弦AC【解答】解:A、如图,若半径OB平分弦AC,则四边形OABC不一定是平行四边形;原命题是假命题;B、若四边形OABC是平行四边形,则AB=OC,OA=BC,∵OA=OB=OC,∴AB=OA=OB=BC=OC,∴∠ABO=∠OBC=60°,∴∠ABC=120°,是真命题;C、如图,若∠ABC=120°,则弦AC不平分半径OB,原命题是假命题;D、如图,若弦AC平分半径OB,则半径OB不一定平分弦AC,原命题是假命题;故选:B.10.(4分)如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC在直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A.B.C.D.【解答】解:如图1所示:当0<x≤2时,过点G作GH⊥BF于H.∵△ABC和△DEF均为等边三角形,∴△GEJ为等边三角形.∴GH=√32EJ=√32x,∴y=12EJ•GH=√34x2.当x=2时,y=√3,且抛物线的开口向上.如图2所示:2<x≤4时,过点G作GH⊥BF于H.y =12FJ •GH =√34(4﹣x )2,函数图象为抛物线的一部分,且抛物线开口向上.故选:A .二、填空题(本大题共4小题,每小题5分,满分20分) 11.(5分)计算:√9−1= 2 . 【解答】解:原式=3﹣1=2. 故答案为:2.12.(5分)分解因式:ab 2﹣a = a (b +1)(b ﹣1) . 【解答】解:原式=a (b 2﹣1)=a (b +1)(b ﹣1), 故答案为:a (b +1)(b ﹣1)13.(5分)如图,一次函数y =x +k (k >0)的图象与x 轴和y 轴分别交于点A 和点B .与反比例函数y =kx 的图象在第一象限内交于点C ,CD ⊥x 轴,CE ⊥y 轴.垂足分别为点D ,E .当矩形ODCE 与△OAB 的面积相等时,k 的值为 2 .【解答】解:一次函数y =x +k (k >0)的图象与x 轴和y 轴分别交于点A 和点B ,令x =0,则y =k ,令y =0,则x =﹣k ,故点A 、B 的坐标分别为(﹣k ,0)、(0,k ),则△OAB 的面积=12OA •OB =12k 2,而矩形ODCE 的面积为k , 则12k 2=k ,解得:k =0(舍去)或2,故答案为2.14.(5分)在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD 沿过点A 的直线折叠,使得点B 落在CD 上的点Q 处.折痕为AP ;再将△PCQ ,△ADQ 分别沿PQ ,AQ 折叠,此时点C ,D 落在AP 上的同一点R 处.请完成下列探究: (1)∠P AQ 的大小为 30 °;(2)当四边形APCD 是平行四边形时,AB QR的值为 √3 .【解答】解:(1)由折叠的性质可得:∠B =∠AQP ,∠DAQ =∠QAP =∠P AB ,∠DQA =∠AQR ,∠CQP =∠PQR ,∠D =∠ARQ ,∠C =∠QRP , ∵∠QRA +∠QRP =180°, ∴∠D +∠C =180°, ∴AD ∥BC ,∴∠B +∠DAB =180°, ∵∠DQR +∠CQR =180°, ∴∠DQA +∠CQP =90°, ∴∠AQP =90°, ∴∠B =∠AQP =90°, ∴∠DAB =90°,∴∠DAQ =∠QAP =∠P AB =30°, 故答案为:30;(2)由折叠的性质可得:AD =AR ,CP =PR , ∵四边形APCD 是平行四边形, ∴AD =PC , ∴AR =PR , 又∵∠AQP =90°, ∴QR =12AP ,∵∠P AB =30°,∠B =90°, ∴AP =2PB ,AB =√3PB , ∴PB =QR ,∴AB QR=√3,故答案为:√3.三、(本大题共2小题,每小题8分,满分16分) 15.(8分)解不等式:2x−12>1.【解答】解:去分母,得:2x ﹣1>2, 移项,得:2x >2+1, 合并,得:2x >3, 系数化为1,得:x >32.16.(8分)如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB ,线段MN 在网格线上.(1)画出线段AB 关于线段MN 所在直线对称的线段A 1B 1(点A 1,B 1分别为A ,B 的对应点);(2)将线段B 1A 1绕点B 1顺时针旋转90°得到线段B 1A 2,画出线段B 1A 2.【解答】解:(1)如图线段A 1B 1即为所求. (2)如图,线段B 1A 2即为所求.四、(本大题共2小题,每小题8分,满分16分) 17.(8分)观察以下等式:第1个等式:13×(1+21)=2−11,第2个等式:34×(1+22)=2−12, 第3个等式:55×(1+23)=2−13, 第4个等式:76×(1+24)=2−14. 第5个等式:97×(1+25)=2−15. …按照以上规律,解决下列问题: (1)写出第6个等式:118×(1+26)=2−16;(2)写出你猜想的第n 个等式: 2n−1n+2×(1+2n )=2−1n(用含n 的等式表示),并证明.【解答】解:(1)第6个等式:118×(1+26)=2−16;(2)猜想的第n 个等式:2n−1n+2×(1+2n )=2−1n .证明:∵左边=2n−1n+2×n+2n =2n−1n =2−1n=右边, ∴等式成立. 故答案为:118×(1+26)=2−16;2n−1n+2×(1+2n )=2−1n .18.(8分)如图,山顶上有一个信号塔AC ,已知信号塔高AC =15米,在山脚下点B 处测得塔底C 的仰角∠CBD =36.9°,塔顶A 的仰角∠ABD =42.0°,求山高CD (点A ,C ,D 在同一条竖直线上).(参考数据:tan36.9°≈0.75,sin36.9°≈0.60,tan42.0°≈0.90.)【解答】解:由题意,在Rt △ABD 中,tan ∠ABD =ADBD , ∴tan42.0°=ADBD ≈0.9,∴AD ≈0.9BD ,在Rt △BCD 中,tan ∠CBD =CDBD , ∴tan36.9°=CDBD≈0.75, ∴CD ≈0.75BD , ∵AC =AD ﹣CD , ∴15=0.15BD , ∴BD =100米,∴CD =0.75BD =75(米), 答:山高CD 为75米.五、(本大题共2小题,每小题10分,满分20分)19.(10分)某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a 元,线上销售额为x 元,请用含a ,x 的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);时间 销售总额(元)线上销售额(元)线下销售额(元)2019年4月份 a x a ﹣x 2020年4月份1.1a1.43x1.04(a ﹣x )(2)求2020年4月份线上销售额与当月销售总额的比值.【解答】解:(1)∵与2019年4月份相比,该超市2020年4月份线下销售额增长4%, ∴该超市2020年4月份线下销售额为1.04(a ﹣x )元. 故答案为:1.04(a ﹣x ).(2)依题意,得:1.1a =1.43x +1.04(a ﹣x ), 解得:x =213a , ∴1.43x 1.1a=1.43⋅213a 1.1a=0.22a 1.1a=0.2.答:2020年4月份线上销售额与当月销售总额的比值为0.2.20.(10分)如图,AB 是半圆O 的直径,C ,D 是半圆O 上不同于A ,B 的两点,AD =BC ,AC 与BD 相交于点F .BE 是半圆O 所在圆的切线,与AC 的延长线相交于点E . (1)求证:△CBA ≌△DAB ;(2)若BE =BF ,求证:AC 平分∠DAB .【解答】(1)证明:∵AB 是半圆O 的直径, ∴∠ACB =∠ADB =90°,在Rt △CBA 与Rt △DAB 中,{BC =AD BA =AB ,∴Rt △CBA ≌Rt △DAB (HL );(2)解:∵BE =BF ,由(1)知BC ⊥EF , ∴∠E =∠BFE ,∵BE 是半圆O 所在圆的切线, ∴∠ABE =90°, ∴∠E +∠BAE =90°, 由(1)知∠D =90°, ∴∠DAF +∠AFD =90°, ∵∠AFD =∠BFE , ∴∠AFD =∠E ,∴∠DAF =90°﹣∠AFD ,∠BAF =90°﹣∠E , ∴∠DAF =∠BAF , ∴AC 平分∠DAB . 六、(本题满分12分)21.(12分)某单位食堂为全体960名职工提供了A ,B ,C ,D 四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A套餐的人数为60,扇形统计图中“C”对应扇形的圆心角的大小为108°;(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.【解答】解:(1)在抽取的240人中最喜欢A套餐的人数为240×25%=60(人),则最喜欢C套餐的人数为240﹣(60+84+24)=72(人),∴扇形统计图中“C”对应扇形的圆心角的大小为360°×72240=108°,故答案为:60、108;(2)估计全体960名职工中最喜欢B套餐的人数为960×84240=336(人);(3)画树状图为:共有12种等可能的结果数,其中甲被选到的结果数为6,∴甲被选到的概率为612=12.七、(本题满分12分)22.(12分)在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m 经过点A,抛物线y=ax2+bx+1恰好经过A,B,C三点中的两点.(1)判断点B是否在直线y=x+m上,并说明理由;(2)求a ,b 的值;(3)平移抛物线y =ax 2+bx +1,使其顶点仍在直线y =x +m 上,求平移后所得抛物线与y 轴交点纵坐标的最大值.【解答】解:(1)点B 是在直线y =x +m 上,理由如下: ∵直线y =x +m 经过点A (1,2), ∴2=1+m ,解得m =1, ∴直线为y =x +1,把x =2代入y =x +1得y =3, ∴点B (2,3)在直线y =x +m 上;(2)∵直线y =x +1与抛物线y =ax 2+bx +1都经过点(0,1),且B 、C 两点的横坐标相同,∴抛物线只能经过A 、C 两点,把A (1,2),C (2,1)代入y =ax 2+bx +1得{a +b +1=24a +2b +1=1,解得a =﹣1,b =2;(3)由(2)知,抛物线为y =﹣x 2+2x +1,设平移后的抛物线为y =﹣x 2+px +q ,其顶点坐标为(p2,p 24+q ),∵顶点仍在直线y =x +1上, ∴p 24+q =p2+1,∴q =p 24−p2−1,∵抛物线y =﹣x 2+px +q 与y 轴的交点的纵坐标为q ,∴q =p 24−p 2−1=−14(p ﹣1)2+54,∴当p =1时,平移后所得抛物线与y 轴交点纵坐标的最大值为54.八、(本题满分14分)23.(14分)如图1,已知四边形ABCD 是矩形,点E 在BA 的延长线上,AE =AD .EC 与BD 相交于点G ,与AD 相交于点F ,AF =AB . (1)求证:BD ⊥EC ; (2)若AB =1,求AE 的长;(3)如图2,连接AG ,求证:EG ﹣DG =√2AG .【解答】(1)证明:∵四边形ABCD是矩形,点E在BA的延长线上,∴∠EAF=∠DAB=90°,又∵AE=AD,AF=AB,∴△AEF≌△ADB(SAS),∴∠AEF=∠ADB,∴∠GEB+∠GBE=∠ADB+∠ABD=90°,即∠EGB=90°,故BD⊥EC,(2)解:∵四边形ABCD是矩形,∴AE∥CD,∴∠AEF=∠DCF,∠EAF=∠CDF,∴△AEF∽△DCF,∴AEDC =AF DF,即AE•DF=AF•DC,设AE=AD=a(a>0),则有a•(a﹣1)=1,化简得a2﹣a﹣1=0,解得a=1+√52或1−√52(舍去),∴AE=1+√5 2.(3)如图,在线段EG上取点P,使得EP=DG,在△AEP与△ADG中,AE=AD,∠AEP=∠ADG,EP=DG,∴△AEP≌△ADG(SAS),∴AP=AG,∠EAP=∠DAG,∴∠P AG=∠P AD+∠DAG=∠P AD+∠EAP=∠DAE=90°,∴△P AG为等腰直角三角形,∴EG﹣DG=EG﹣EP=PG=√2AG.。
2020安徽合肥中考数学试卷分析
一、2020年中考数学试卷整体评价:整体试卷难度一般,基础考查较多,无偏题怪题,均属于常规题型,期中难题也是属于课堂必讲的。
本卷较难的有选择题第10题,大题第22题(3),第23题(3),共计12分。
基础扎实的学生可以很容易考138到150分。
二、具体分析:1.选择题:(4分)第1题考查有理数大小比较,(7上1章);【基础题】第2题考查幂的运算,(7下8章),需要注意符号和指数问题;【基础题】第3题考查三视图,(9下25章);【基础题】第4题考查科学计数法,(7上1章);【基础题】第5题考查一元二次方程实数根,(8下17章);【基础题】第6题考查数据的初步分析,(8下20章);【基础题】第7题考查的是一次函数的图像和性质,(8上12章);【基础题】第8题考查勾股定理(8下18章),三角函数运用(9上23章);【基础题】第9题考查圆的性质(9下24章),命题(8上13章);【中等题】第10题是几何动点面积问题,主要二次函数性质(9上21章)。
本题若作为解答题出,难度较大,但作为选择题出,学生只要判断出增长趋势和减小趋势就可以快速选出正确答案。
【难题】2.填空题:(5分)第11题考查是平方根(7下6章);【基础题】第12题考查因式分解(7下8章);【基础题】第13题考查一次函数(8上12章)和反比例函数(9上21)的图像和性质;【中等题】第14题主要考查轴对称的性质(8上15章)与平行四边形运用(8下19章);【难题】3.解答题:第15题考查解一元一次不等式(7下7章);【基础题】(8分)第16题考查轴对称(8上15)和旋转(9下24章);【基础题】(8分)第17题考查规律总结归纳题目和证明(8上13章);【基础题】(8分)第18题考查三角函数运用(9上23章);【基础题】(8分)第19题考查方程应用(7上3章);【基础题】(10分)第20题(1)考查三角形全等判定,(8上14章);【基础题】(5分)(2)考查圆的基本性质(9下24章);【中等题】(5分)第21题考查数据分析(8下20章)和概率初步(9下26章);【基础题】(12分)第22题(1)考查一次函数性质(8上12章);【基础题】(4分)(2)考查二次函数性质(9上21章);【中等题】(4分)(3)考查二次函数与一次函数结合;【难题】(4分)第23题(1)考查三角形全等,三角形内角和180°(8上13,14章)【中等题】(5分)(2)考查三角形相似(9上22章),一元二次方程等(8下17章)【中等题】(5分)(3)考查三角形全等运用(8上14章)【难题】(4分)【课堂老师必讲的截长补短法证明全等】中考数学知识点分值分布。
【附2套中考卷】2020合肥中考数学试卷评析
2020合肥中考数学试卷评析2018年安徽中考数学试卷考察全面,难易适中,层次分明,取材新颖,设计巧妙,贴近学生生活实际,体现了数学的核心素养。
仍保持“考察基础,注重过程,渗透思想,突出能力,强调应用,着意创新”的指导思想,仍坚持“稳中求变,变中求新”。
本试卷突出基础性和探索性,有利于学生稳定发挥其数学水平。
一、考查全面,结构合理:本试卷总体感觉稳定。
如,第1题考查绝对值,第2题考查科学记数法,第3题考查幂的运算,第4题考查三视图,第5题考查因式分解,第6题考查增长率,第8题考查数据整理,第10题考查函数图象…… 第22题考查二次函数,第23题考查几何图形。
其中,“数与代数”74分,“空间与图形”60分,“统计与概率”16分,考查的知识点几乎覆盖了所有的考纲内容。
二、难易适度,位置稳定:本试卷难度系数保持在0.7左右,难度梯度接近7∶2∶1,有难度的试题所在的位置稳定,安排在第10、14题和第22、23题的最后一问上。
三、关注方法,体现思想:本试卷从不同角度对数学思想和方法进行了考查。
第22题考查了配方法,第13、22题考查了待定系数法,第18题考查了归纳法,第6、7、10、13、16、22题体现函数与方程思想,第10题体现数形结合思想,第14题体现分类讨论思想。
四、关注热点,弘扬文化:第2、6、19、21、22题从社会热点和生活实际出发,使学生切身感受到数学就在身边,特别是第16题选用《孙子算经》中的问题,弘扬中华文化,激发爱国热情。
五、注重能力,着意创新:第10、18题借助数形情境考查了观察、猜测、验证、推理等基本能力,第17题借助位似、旋转,考查了学生动手操作等基本技能,第7题考查了考纲中新增的内容(一元二次方程根与系数的关系),第20题的亮点是用尺规在圆中作角的平分线,第23题虽是几何问题,但可用代数方法解决,渗透了解析几何的思想。
本试卷注重核心素养的考查,注重学以致用。
六、对今后教学的启示:教学应关注基础,多给学生提供一些独立思考、合作交流的机会,让学生多体验知识的形成过程;要加强数学思想方法的教学,要在培养学生的思维能力上多下功夫;要重视几何知识的教学,理解代数与几何的联系;要渗透核心素养,提高教学的实效性。
2020年安徽省合肥五十中西校中考数学评测试卷(2)(含答案解析)
2020年安徽省合肥五十中西校中考数学评测试卷(2)一、选择题(本大题共10小题,共30.0分)1.−8的立方根是()A. −2B. ±2C. 2D. −42.一个几何体的主视图与俯视图如图所示(其中俯视图是边长为4的正三角形),则该几何体的左视图的面积为()A. 12B. 24C. 8√3D. 12√33.根据衢州市统计局发布的统计数据显示,衢州市2017年全市生产总值为138000000000元,按可比价格计算,比上年增长7.3%,数据138000000000元用科学记数法表示为()A. 1.38×1010元B. 1.38×1011元C. 1.38×1012元D. 0.138×1012元4.已知x+y=−6,x−y=5,则下列计算正确的是()A. (x+y)2=36B. (y−x)2=−10C. xy=−2.75D. x2−y2=255.某市2018年生产总值(GDP)比2017年增长了9%,预计2019年比2018年增长10%.若这两年的平均增长率为x%,则x%满足的关系是()A. 9%+10%=x%B. (1+9%)(1+10%)=2(1+x%)C. 9%+10%=2⋅x%D. (1+9%)(1+10%)=(1+x%)26.在△ABC中,AB=AC,BD平分∠ABC交AC边于点D,∠BDC=75°,则∠A的度数是().A. 35°B. 40°C. 70°D. 110°7.如图,在△ABC中,∠ACB=90°,AC=1,AB=2,以点A为圆心,AC长为半径画弧,交AB于点D,则扇形CAD的面积是()A. 2π3B. π3C. π6D. π128.如图,在正方形ABCD中,点E、F分别在边BC,CD上,如果AE=4,EF=3,AF=5,那么正方形ABCD的面积等于()A. 22516B. 25615C. 25617D. 289169.在平面直角坐标系中,直线y=−x+2与反比例函数y=1的图象有唯一公共点,若直线y=x−x+b与反比例函数y=1的图象有2个公共点,则b的取值范围是()xA. b>2B. −2<b<2C. b<−2D. b>2或b<−210.如图,边长为6的等边三角形ABC中,E是对称轴AD上的一个动点,连接EC,将线段EC绕点C逆时针转60°得到FC,连接DF.则在点E运动过程中,DF的最小值是()A. 6B. 3C. 2D. 1.5二、填空题(本大题共4小题,共16.0分)x+1>3的解集是______.11.不等式−1212.若点(3,1)在双曲线y=k上,则k=______ .x13.如图,△ABC是等边三角形,点D为AC边上一点,以BD为边作等边△BDE,连接CE.若CD=1,CE=3,则BC=______.14.已知a、b满足a2+b2−8a−4b+20=0,则a2−b2=______.三、计算题(本大题共1小题,共5.0分)15.解方程:(1)3x+1=6x2−1;(2)x2x−1=21−2x+1.四、解答题(本大题共6小题,共49.0分)16.计算:计算:(−12)−2−|−1+√3|+2sin60°+(π−4)0.17.如图,E、F分别是矩形ABCD的边AD、AB上的点,若EF=EC,且EF⊥EC.(1)求证:AE=DC;(2)已知DC=√2,求BE的长.18.数学综合与实践活动中,某小组测量公园里广场附近古塔的高度.如图,他们先在点D用高1.5米的测角仪DA测得塔顶M的仰角为30°,然后沿DF方向前行40m到达点E处,在E处测得塔顶M的仰角为60°.请根据他们的测量数据求古塔MF的高(结果精确到0.1m).(参考数据:√2≈1.414,√3≈1.732)19.有两把不同的锁和三把不同的钥匙,其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁,随机取出一把钥匙开任意一把锁,一次打开锁的概率是多少?x2+bx+c的图象经过A(−2,0),B(0,4)两点.20.如图,二次函数y=−12(1)求这个二次函数的解析式,并直接写出顶点D的坐标;(2)若该抛物线与x轴的另一个交点为C,点P为第一象限内抛物线上一点,求P点坐标为多少时,△BCP的面积最大,并求出这个最大面积.(3)在直线CD上有点E,作EF⊥x轴于点F,当以O、B、E、F为顶点的四边形是矩形时,直接写出E点坐标.21.如图,在等边△ABC中,DE分别是AB,AC上的点,且AD=CE.(1)求证:BE=CD;(2)求∠1+∠2的度数.【答案与解析】1.答案:A解析:本题考查了立方根定义的应用,根据立方根定义求出即可.3=−2;解:−8的立方根是√−8故选A.2.答案:D解析:本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用.由视图知,此几何体的侧视图为一个长方形,故由题设条件求出侧视图的面积即可.解:由主视图和俯视图可知该几何体是正三棱柱,其左视图是矩形,面积为4sin60∘×6=12√3.故选D.3.答案:B解析:【试题解析】解:将138000000000用科学记数法表示为:1.38×1011.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.据此解答即可.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.4.答案:A解析:解:A、(x+y)2=36,正确;B、应为(y−x)2=(−5)2=25,故本选项错误;C、应为xy=14[(x+y)2−(y−x)2]=14(36−25)=2.75,故本选项错误;D、应为x2−y2=(x+y)(x−y)=(−6)×5=−30,故本选项错误.故选A.结合各选项,把两已知条件直接平方即可判断A、B,平方后相减求出xy的值,两式相乘求出x2−y2的值.然后即可选出正确答案.本题考查了完全平方公式,平方差公式,熟记公式结构是解题的关键.5.答案:D解析:本题考查了实际问题与一元二次方程,利用平均增长率:a(1+x)n是解题关键.根据平均增长率:a(1+x)n,可得答案.解:设2017年该市生产总值为a,则2018年生产总值为a(1+9%),2019年生产总值为a(1+9%)(1+10%).若这两年的平均增长率为x%,则2019年的生产总值还可表示为a(1+x%)2,故a(1+9%)(1+10%)=a(1+x%)2,即(1+9%)(1+10%)=(1+x%)2.6.答案:B解析:此题考查角平分线的定义,等腰三角形的性质及三角形内角和定理,根据等腰三角形两底角相等和三角形内角和为180°求解解:设∠A的度数是x,则∠C=∠B=180°−x2∵BD平分∠ABC交AC边于点D∴∠DBC=180°−x4∴180°−x2+180°−x4+75°=180°∴x=40°∴∠A的度数是40°故选B.7.答案:C解析:本题考查的是扇形面积计算、直角三角形的性质,掌握扇形面积公式是解题的关键.根据直角三角形的性质求出∠B,根据三角形内角和定理求出∠A,根据扇形面积公式S=nπR2360计算,得到答案.解:∵∠ACB=90°,AC=1,AB=2,∴∠B=30°,∴∠A=60°,∴扇形CAD的面积=60π×12360=π6,故选:C.8.答案:C解析:本题综合考查了正方形的性质和勾股定理的应用,本题中利用勾股定理得出△AEF是直角三角形是解题的关键.因为AE=4,EF=3,AF=5,AE2+EF2=AF2,所以∠AEF=90°,可证△ABE∽△ECF,从而可得AB:EC=AE:EF=4:3,即EC=34AB=34BC,BE=BC4=AB4,在直角三角形ABE中,AB2+BE2=AE2,AB2+AB216=16,AB2=16217,所以正方形ABCD面积=AB2=25617.解:∵AE=4,EF=3,AF=5∴AE2+EF2=AF2,∴∠AEF=90°∴∠AEB+∠FEC=90°∵正方形ABCD∴∠ABE=∠FCE=90°∴∠CFE+∠CEF=∠EAB+∠AEB=90°∴∠FEC=∠EAB∴△ABE∽△ECF∴EC:AB=EF:AE=3:4,即EC=34AB=34BC∴BE=BC4=AB4∵AB2+BE2=AE2,∴AB2+AB216=16,∴AB2=162 17∴正方形ABCD面积=AB2=25617故选C.9.答案:D解析:。
2020年安徽中考数学试卷
2020年安徽中考数学试卷
2020年安徽中考数学试卷
一、试卷总体难度
在2020年的安徽中考数学试卷中,试卷总体难度整体属于中等难度,部分题目考查较为灵活,需要考生具备一定的计算能力和解题能力。
二、试卷分析
1.选择题部分
选择题部分题目数量较多,但难度不算过高。
主要考查考生对于知识点的熟练掌握和运用能力。
其中有几问考查了考生的逻辑判断能力,需要考生经过深入思考后得出正确答案。
2.填空题部分
填空题部分难度适中,有部分题目需要考生进行简单计算后才能得出答案,但并不会给考生造成太大的困扰。
整体难度和以往年份相差不大。
3.解答题部分
解答题部分难度最大,考查了考生的解题能力和计算能力。
其中有几
问需要考生进行复杂的计算和推理过程,考查了考生的思维能力和创
新能力。
三、注意事项
1.注意审题
在做试卷的过程中,考生需要仔细阅读题目,理解题目所要求的内容,并根据题目要求进行计算和推理。
2.注意时间控制
在考试的过程中,考生需要控制好时间,合理分配时间,尽量保证每
个题目都有时间进行作答,避免因为时间不足而导致未答完所有题目
的情况。
3.注意计算准确性
计算准确性是考试过程中的重要环节,考生需要注意对计算结果进行
检查确保答案的准确性。
四、总结
2020年安徽中考数学试卷整体难度适中,题目数量适度,能够考查考
生的知识点掌握能力、解题能力和计算能力。
考生在做试卷的过程中需要注意审题、时间控制和计算准确性等问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020合肥中考数学试卷评析2018年安徽中考数学试卷考察全面,难易适中,层次分明,取材新颖,设计巧妙,贴近学生生活实际,体现了数学的核心素养。
仍保持“考察基础,注重过程,渗透思想,突出能力,强调应用,着意创新”的指导思想,仍坚持“稳中求变,变中求新”。
本试卷突出基础性和探索性,有利于学生稳定发挥其数学水平。
一、考查全面,结构合理:本试卷总体感觉稳定。
如,第1题考查绝对值,第2题考查科学记数法,第3题考查幂的运算,第4题考查三视图,第5题考查因式分解,第6题考查增长率,第8题考查数据整理,第10题考查函数图象…… 第22题考查二次函数,第23题考查几何图形。
其中,“数与代数”74分,“空间与图形”60分,“统计与概率”16分,考查的知识点几乎覆盖了所有的考纲内容。
二、难易适度,位置稳定:本试卷难度系数保持在0.7左右,难度梯度接近7∶2∶1,有难度的试题所在的位置稳定,安排在第10、14题和第22、23题的最后一问上。
三、关注方法,体现思想:本试卷从不同角度对数学思想和方法进行了考查。
第22题考查了配方法,第13、22题考查了待定系数法,第18题考查了归纳法,第6、7、10、13、16、22题体现函数与方程思想,第10题体现数形结合思想,第14题体现分类讨论思想。
四、关注热点,弘扬文化:第2、6、19、21、22题从社会热点和生活实际出发,使学生切身感受到数学就在身边,特别是第16题选用《孙子算经》中的问题,弘扬中华文化,激发爱国热情。
五、注重能力,着意创新:第10、18题借助数形情境考查了观察、猜测、验证、推理等基本能力,第17题借助位似、旋转,考查了学生动手操作等基本技能,第7题考查了考纲中新增的内容(一元二次方程根与系数的关系),第20题的亮点是用尺规在圆中作角的平分线,第23题虽是几何问题,但可用代数方法解决,渗透了解析几何的思想。
本试卷注重核心素养的考查,注重学以致用。
六、对今后教学的启示:教学应关注基础,多给学生提供一些独立思考、合作交流的机会,让学生多体验知识的形成过程;要加强数学思想方法的教学,要在培养学生的思维能力上多下功夫;要重视几何知识的教学,理解代数与几何的联系;要渗透核心素养,提高教学的实效性。
2019-2020学年数学中考模拟试卷一、选择题1.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C .20°D .15°2.如图,半径为3的扇形AOB ,∠AOB=120°,以AB 为边作矩形ABCD 交弧AB 于点E ,F ,且点E ,F 为弧AB 的四等分点,矩形ABCD 与弧AB 形成如图所示的三个阴影区域,其面积分别为1S ,2S ,3S ,则132S S S +-为( )(π取3)A .99324B .99324C .159324D .27273243.如图,已知矩形 AOBC 的三个顶点的坐标分别为 O(0,0),A(0,3), B(4,0),按以下步骤作图:①以点 O 为圆心,适当长度为半径作弧, 分别交 OC ,OB 于点 D ,E ;②分别以点 D ,E 为圆心,大于12DE 的长为半径作弧,两弧在∠BOC 内交于点 F ;③作射线 OF ,交边 BC 于点 G ,则点 G 的坐标为( )A .(4, 43 )B .( 43 ,4)C .( 53 ,4)D .(4, 53) 4.关于x 的一元二次方程240x x k -+=有两个根,则k 的取值范围是( )A.4k <-B.4k ≤-C.4k <D.4k ≤5.若点A (x 1,﹣3)、B (x 2,﹣2)、C (x 3,1)在反比例函数y =﹣的图象上,则x 1、x 2、x 3的大小关系是( )A.x 1<x 2<x 3B.x 3<x 1<x 2C.x 2<x 1<x 3D.x 3<x 2<x 16.如图是一个由6个相同的正方体组成的立体图形,它的俯视图是( )A. B. C. D.7.如图,在Rt △ABC 中,∠B=90°,AB=6,BC=8,点D 在BC 上,以AC 为对角线的所有平行四边形ADCE 中,DE 的最小值是( )A.10B.8C.6D.48.若一个多边形的外角和是其内角和的12,则这个多边形的边数为( ) A.2 B.4 C.6 D.89.计算|1+3|+|3﹣2|=( )A .23﹣1B .1﹣23C .﹣1D .310.一个不透明的布袋里装有2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为( )A.15B.25C.35D.1211.下列尺规作图中,能确定圆心的是( )①如图1,在圆上任取三个点A ,B ,C ,分别作弦AB ,BC 的垂直平分线,交点O 即为圆心②如图2,在圆上任取一点B ,以B 为圆心,小于直径长为半径画弧交圆于A ,C 两点连结AB ,BC ,作∠ABC 的平分线交圆于点D ,作弦BD 的垂直平分线交BD 于点O ,点O 即为圆心③如图3,在圆上截取弦AB =CD ,连结AB ,BC ,CD ,分别作∠ABC 与∠DCB 的平分线,交点O 即为圆心A .①②B .①③C .②④D .①②③12.在平面直角坐标系中,有A ()21,,B ()33,两点,现另取一点C ()1a , ,当a = ( )时,AC+BC 的值最小( )A.2 B.53C.114D.3二、填空题13.在平面坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A2,作正方形A2B2C2C1,…按这样的规律进行下去,第2014个正方形的面积为_________。
14.某校初三(一)班课外活动小组为了测得学校旗杆的高度,他们在离旗杆6米的A处,用高为1.5米的仪器测得旗杆顶部B处的仰角为60°,如图所示,则旗杆的高度为_____米.(已知≈1.732结果精确到0.1米)15.如图,AB是⊙O的切线,B为切点,AC经过点O,与⊙O分别相交于点D、C,若∠ACB=30°,AB=5,则阴部分面积是_____.16.﹣3的绝对值是_____.17.如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为1的等边三角形,点A在x轴上,点O,B1,B2,B3,…都在直线1上,则点A2019的坐标是____.18.不透明的袋子里装有2个红球,2个白球,这些球除颜色外无其他差别,从袋子中随机摸出一个,摸到白球的概率为___.三、解答题19.如图,在菱形ABCD中,点F在边CD上,点E在边CB上,且CE=CF.(1)求证:AE=AF;(2)若∠D=120°,∠BAE=15°,求∠EAF的度数.20.2011年,陕西西安被教育部列为“减负”工作改革试点地区.学生的学业负担过重会严重影响学生对待学习的态度.为此我市教育部门对部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计我市近80000名八年级学生中大约有多少名学生学习态度达标(达标包括A级和B级)?21.如图1,在平面直角坐标系中,已知抛物线y=ax2+bx﹣5与x轴交于A(﹣1,0),B(5,0)两点,与y轴交于点C.(1)求抛物线的函数表达式;(2)如图2,CE∥x轴与抛物线相交于点E,点H是直线CE下方抛物线上的动点,过点H且与y轴平行的直线与BC,CE分别相交于点F,G,试探究当点H运动到何处时,四边形CHEF的面积最大,求点H的坐标;(3)若点K 为抛物线的顶点,点M (4,m )是该抛物线上的一点,在x 轴,y 轴上分别找点P ,Q ,使四边形PQKM 的周长最小,求出点P ,Q 的坐标.22.(1)计算:3020171313032602()cos sin π-︒︒⎛⎫⎛⎫-++-+- ⎪ ⎪⎝⎭⎝⎭(2)解分式方程:1233x x x +-+-=1 23.定义:若一个三角形一条边上的高长为这条边长的一半,则称该三角形为这条边上的“半高”三角形,这条高称为这条边上的“半高”,如图,△ABC 是BC 边上的“半高”三角形.点P 在边AB 上,PQ ∥BC 交AC 于点Q ,PM ⊥BC 于点M ,QN ⊥BC 于点N ,连接MQ .(1)请证明△APQ 为PQ 边上的“半高”三角形.(2)请探究BM ,PM ,CN 之间的等量关系,并说明理由;(3)若△ABC 的面积等于16,求MQ 的最小值24.如图,在平面直角坐标系中,△ABC 的三个顶点坐标为A(1,-4) ,B(3,-3) ,C(1,-1).(每个小方格都是边长为一个单位长度的正方形)(1)将△ABC 向左平移3个单位,再向上平移5个单位,画出平移后得到的△A 1B 1C 1;(2)将△ABC 绕点C 逆时针旋转90°,画出旋转后得到的△A 2B 2C 2,并直接写出点A 旋转到点A 2所经过的路径长.25.先化简,再求值222221b a ab a b a b a 2ab b -⎛⎫-÷ ⎪---+⎝⎭,其中a=2sin45°,8【参考答案】***一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B A A D B C C C D CA B 二、填空题13.402635()2⨯ 14.91553518π- 16.317.(20212,201932). 18.12. 三、解答题19.(1)见解析;(2)∠EAF =30°.【解析】【分析】(1)由菱形的性质可得=BC =CD =DA ,∠D =∠B ,可证DF =BE ,由“SAS”可证△ADF ≌△ABE ,可得AE =AF ;(2)由菱形的性质可得∠DAB =60°,由全等三角形的性质可得∠DAF =∠BAE =15°,即可求∠EAF 的度数.【详解】(1)∵四边形ABCD 是菱形∴AB=BC=CD=DA,∠D=∠B,∵CE=CF∴CD﹣CF=BC﹣CE∴DF=BE,且AD=AB,∠D=∠B∴△ADF≌△ABE(SAS)∴AE=AF(2)∵四边形ABCD是菱形,∴CD∥AB∴∠DAB+∠D=180°,且∠D=120°∴∠DAB=60°∵△ADF≌△ABE∴∠DAF=∠BAE=15°∴∠EAF=∠DAB﹣∠DAF﹣∠BAE=30°.【点睛】本题考查了菱形的性质,全等三角形的判定和性质,熟练运用全等三角形的判定和性质是本题的关键.20.(1)200,(2)补图见解析;(3)54°;(4)680000人.【解析】【分析】(1)根据A级有50人,所占的比例是25%,据此即可求解;(2)求得C级所占的比例,乘以总人数即可求解,进而作出条形图;(3)利用360度,乘以C级所占的比例即可求解;(4)总人数乘以A,B两级所占的比例的和即可求解.【详解】解:(1)50÷25%=200(名);(2)C级的人数是:200×(1﹣25%﹣60%)=30(人).;(3)C级所占的圆心角的度数是:360×(1﹣25%﹣60%)=54°;(4)80000×(25%+60%)=68000(人).【点睛】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°比.21.(1)y=x2﹣4x﹣5;(2)H(52,﹣354);(3)P(137,0),Q(0,﹣133)【解析】【分析】(1)根据待定系数法直接确定出抛物线解析式;(2)先求出直线BC的解析式,进而求出四边形CHEF的面积的函数关系式,即可求出;(3)利用对称性找出点P,Q的位置,进而求出P,Q的坐标.【详解】(1)∵点A(﹣1,0),B(5,0)在抛物线y=ax2+bx﹣5上,∴50 25550 a ba b--=⎧⎨+-=⎩,解得14 ab=⎧⎨=-⎩,∴抛物线的表达式为y=x2﹣4x﹣5,(2)设H(t,t2﹣4t﹣5),∵CE∥x轴,∴点E的纵坐标为﹣5,∵E在抛物线上,∴x2﹣4x﹣5=﹣5,∴x=0(舍)或x=4,∴E(4,﹣5),∴CE=4,∵B(5,0),C(0,﹣5),∴直线BC的解析式为y=x﹣5,∴F(t,t﹣5),∴HF=t﹣5﹣(t2﹣4t﹣5)=﹣(t﹣52)2+254,∵CE∥x轴,HF∥y轴,∴CE⊥HF,∴S四边形CHEF=12CE•HF=﹣2(t﹣52)2+252,∴H(52,﹣354);(3)如图2,∵K 为抛物线的顶点,∴K (2,﹣9),∴K 关于y 轴的对称点K'(﹣2,﹣9),∵M (4,m )在抛物线上,∴M (4,﹣5),∴点M 关于x 轴的对称点M'(4,5),∴直线K'M'的解析式为y =71333x -, ∴P (137,0),Q (0,﹣133). 【点睛】此题是二次函数综合题,主要考查了待定系数法,四边形的面积的计算方法,对称性,解的关键是利用对称性找出点P ,Q 的位置.22.(1)8;(2)x =0【解析】【分析】(1)先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算,无论何种运算,都要注意先定符号后运算;(2)解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.【详解】(1)原式3181322=-+++⨯ 833=+80+==8;(2)去分母,得(1)(3)2(3)3)3x x x x x +--+=+((﹣) 去括号,得2223269x x x x --=---,合并同类项,得40x -= ,∴0x=,经检验,0x=是原分式方程的根,故原方程的解为x=0.【点睛】本题考查了实数的计算以及解分式方程,熟练掌握实数的运算法则与分式方程的解法是解题的关键.23.(1)见解析;(2)2PM=BM+CN,理由见解析;(3)5.【解析】【分析】(1)根据平行相似,证明△APQ∽△ABC,利用相似三角形对应边的比等于对应高的比:PQ AKBC AR=,由“半高”三角形的定义可结论;(2)证明四边形PMNQ是矩形,得PQ=MN,PM=KR,代入AR=12BC,可得结论;(3)先根据△ABC的面积等于16,计算BC和AR的长,设MN=x,则BM+CN=8﹣x,PM=QN=12(8﹣x),根据勾股定理表示MQ,配方可得最小值.【详解】(1)证明:如图,过A作AR⊥BC于R,交PQ于K,∵△ABC是BC边上的“半高”三角形,∴AR=12 BC,∵PQ∥BC,∴△APQ∽△ABC,∴PQ AK BC AR=,∴AK AR1 PQ BC2==,∴AK=12 PQ,∴△APQ为PQ边上的“半高”三角形.(2)解:2PM=BM+CN,理由是:∵PM⊥BC,QN⊥BC,∴∠PMN=∠MNQ=∠MPQ=90°,∴四边形PMNQ是矩形,∴PQ=MN,PM=KR,∵AK=12PQ,AR=12BC,∴AK+RK=12(BM+MN+CN),12PQ+PM =12BM+12MN+12CN , ∴2PM =BM+CN ;(3)解:∵△ABC 的面积等于16, ∴12BC AR ⋅=16, ∵AR =12BC , 1122BC BC ⋅⋅=16, BC =8,AR =4,设MN =x ,则BM+CN =8﹣x ,PM =QN =12(8﹣x ), ∵MQ =2222215864(8)4455MN QN x x x ⎛⎫+=+-=-+⎪⎝⎭, ∴当x =85时,MQ 有最小值是855.【点睛】本题是三角形的综合题,考查的是新定义:“半高”三角形,涉及到相似三角形的性质和判定、三角形面积、勾股定理及新定义的理解和运用等知识,解决问题的关键是作辅助线解决问题. 24.(1)见解析;(2)32π 【解析】 【分析】(1)根据网格结构找出点A 、B 、C 平移后的对应点A 1、B 1、C 1的位置,然后顺次连接即可;(2)根据网格结构找出点A 、B 、C ,△ABC 绕点C 顺时针旋转90°后的对应点A 2、B 2、C 2的位置,然后顺次连接即可,再先求得AC 的长,再根据弧长公式列式计算即可. 【详解】(1)如图所示:A(1,-4) ,B(3,-3) ,C(1,-1) 向左平移3个单位,再向上平移5个单位的坐标分别为A 1(-2,1)、B 1(0,2)、C 1(-2,4). (2)如图所示:AC =4-1=3,2903233602AA ππ=⨯⨯=.【点睛】考查作图-旋转变换,轨迹,作图-平移变换,解题的关键是:平移,旋转后对应点的坐标表示出来,及弧长公式的正确运用. 25.26【解析】 【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a 与b 的值代入计算即可求出值. 【详解】解:原式=()()a b b a b a b +-+-•()2(a b)a a b --=1a b +,当a=2×222,2322.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.2019-2020学年数学中考模拟试卷一、选择题1.如图,AB∥ED,CD=BF,若△ABC≌△EDF,则还需要补充的条件可以是()A.AC=EFB.BC=DFC.AB=DED.∠B=∠E2.如图是由5个相同的正方体搭成的几何体,其左视图是()A. B.C. D.3.下列由阴影构成的图形既是轴对称图形,又是中心对称图形的是()A. B.C. D.4.在刚刚结束的中考英语听力、口语测试中,某班口语成绩情况如图所示,则下列说法正确的是()A.中位数是9 B.众数为16 C.平均分为7.78 D.方差为25.如图,从一个直径为4的圆形铁皮中剪下一个圆心角为60°的扇形ABC,将剪下来的扇形围成一个圆锥,则圆锥的底面半径为()A.23B.33C.233D.326.如图,点E是▱ABCD的边BC延长线上一点,连接AE交CD于点F,则下列结论中一定正确的是()A.CF CECD BC=B.CE EFAD AF=C.EF CECF AD=D.AF CFBC DF=7.跳远项目中,以测量最靠近起跳线的点到起跳线的距离作为成绩.如图是小慧在跳远训练中的一跳,下列线段中,它的长度能作为她的成绩的是()A.线段PAB.线段PBC.线段ADD.线段BD8.若反比例函数2yx=-的图象上有两个不同的点关于y轴的对称点都在一次函数y=-x+m的图象上,则m的取值范围是()A.22m>B.-22m<C.22-22m m>或<D.-2222m<<9.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出两个小球,两球恰好是一个黄球和一个红球的概率为()A.16B.14C.13D.1210.某校拟招聘一名应届毕业数学教师,现有甲、乙、丙三名教师入围,三名教师笔试、面试成绩如表所示,综合成绩按照笔试占60%、面试占40%进行计算,学校录取综合成绩得分最高者,则被录取教师的综合成绩为()教师成绩甲乙丙笔试80分82分78分面试76分74分78分A.78.8 B.78 C.80 D.78.411.若抛物线y=ax2+bx+c(a≠0)与x轴两个交点间的距离为6,称此抛物线为定弦抛物线.已知某定弦抛物线开口向上,对称轴为直线x=2,且通过(1,y1),(3,y2),(﹣1,y3),(﹣3,y4)四点,则y1,y 2,y 3,y 4中为正数的是( ) A .y 1B .y 2C .y 3D .y 412.设a ,b 是常数,不等式10x a b +>的解集为15x <,则关于x 的不等式0bx a ->的解集是( ) A .15x >B .15x <-C .15x >-D .15x <二、填空题13.若2x 2x 3-=,则多项式22x 4x 3-+=______. 14.123=⨯________.15.如图,O 为坐标原点,△OAB 是等腰直角三角形,∠OAB =90°,点B 的坐标为(0,22),将该三角形沿x 轴向右平移得到'''Rt o A B ,此时点B '的坐标为(22,22),则线段OA 在平移过程中扫过部分的图形面积为______.16.某工程队承建30千米的管道铺设工程,预计工期为60天,设施工x 天时未铺设的管道长度是y 千米,则y 关于x 的函数关系式是_____.17.计算331)的结果等于_____________. 18.不等式382x -+<的解集是_________. 三、解答题19.在某社区“全民健身”活动中,母女俩参加跳绳比赛,相同时间内妈妈跳180个,女儿跳210个,已知女儿每分钟比妈妈多跳20个,则妈妈每分钟跳多少个?20.(1)解不等式组:31122(6)5x x x x -⎧+>⎪⎨⎪--≥⎩,并求其整数解. (2)先化简,再求代数式(2124a a a ++-)÷12a a -+ 的值,其中011|4|2tan 6012()3a -=-+-+. 21.阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,1995年联合国教科文组织把每年4月23日确定为“世界读书日”.如图是某校三个年级学生人数分布扇形统计图,其中八年级人数为400人,如表是该校学生阅读课外书籍情况统计表.请你根据图表中的信息,解答下列问题: 图书种类 频数 频率 科普常识1600本B名人传记1280本0.32漫画丛书A本0.24其它160本0.04(1)求该校八年级的人数占全校总人数的百分率为;(2)表中A=,B=;(3)该校学生平均每人读多少本课外书?22.直觉的误差:有一张8cm×8cm的正方形纸片,面积是64cm2.把这些纸片按图1所示剪开成四小块,其中两块是三角形,另外两块是梯形.把剪出的4个小块按图2所示重新拼合,这样就得到了一个13cm×5cm 的长方形,面积是65cm2,面积多了1cm2,这是为什么?小明给出如下证明:如图2,可知,tan∠CEF=83,tan∠EAB=52,∵tan∠CEF>tan∠EAB,∴∠CEF>∠EAB,∵EF∥AB,∴∠EAB+∠AEF=180°,∴CEF+∠AEF>180°,因此A、E、C三点不共线.同理A、G、C三点不共线,所以拼合的长方形内部有空隙,故面积多了1cm2(1)小红给出的证明思路为:以B为原点,BC所在的直线为x轴,建立平面直角坐标系,证明三点不共线.请你帮小红完成她的证明;(2)将13cmx13cm的正方形按上述方法剪开拼合,是否可以拼合成一个长方形,但面积少了1cm2?如果能,求出剪开的三角形的短边长;如果不能,说明理由.23.如图,一艘海轮位于灯塔P的东北方向,距离灯塔40海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向,求海轮行驶的路程AB(结保留根号).24.先化简,再求值:2121x x x +-+÷2(1)1x +-,其中x =3. 25.已知等腰ABC ∆中,AB AC =,EDF ∠的顶点D 在线段BC 上,不与,B C 重合. (1)如图①,若,DE AC DF AB ∥∥且点D 在BC 中点时,四边形AEDF 是什么四边形并证明?(2)将EDF ∠绕点D 旋转至如图②所示位置,若,,B C EDF BD m CD n α∠=∠=∠===,设BDE ∆的面积为1S ;CDF ∆的面积为2S ,求12S S ⋅的值(用含有,,m n α的代数式表示).图① 图②【参考答案】*** 一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 C A B A B B D C D A DC二、填空题 13.9 14.6 15.4 16.1302y x =- 17.2 18.2x > 三、解答题 19.120个 【解析】 【分析】设妈妈每分钟跳x 个,则女儿每分钟跳(20+x )个,根据相同时间内妈妈跳180个,女儿跳210个列出方程,解方程即可求解. 【详解】解:设妈妈每分钟跳x 个,则女儿每分钟跳(20+x )个,由题意得:18021020x x =+, 解得:x =120,经检验,x =120是方程的解且符合题意, 答:妈妈每分钟跳120个. 【点睛】本题考查了分式方程的应用,设出未知数,以时间做为等量关系列出方程是解决问题的关键. 20.(1)﹣1,0,1,2;(2)65. 【解析】 【分析】(1)先分别解两不等式得到x<3和x≥﹣1,,再利用大小小大中间找确定不等式组的解集,然后在x 的取值范围内找出所有整数即可.(2)先根据分式混合运算的法则把原式进行化简,再求出a 的值代入进行计算即可. 【详解】(1)31122(6)5,x x x x -⎧+>⎪⎨⎪--≥⎩①② 由不等式①,得x <3, 由不等式②,得x≥﹣1,故原不等式组的解集是﹣1≤x<3,它的整数解是:﹣1,0,1,2;(2)211,242aa a a a -⎛⎫+÷ ⎪+-+⎝⎭ ()()()212,221a a a a a a -++=⋅+--2211,21a a a a -+=⋅--()211,21a a a -=⋅--1,2a a -=-当011|4|2tan 60()4373a -=-+=+=时,原式=715.726-=- 【点睛】考查不等式以及分式的混合运算,掌握分式混合运算的法则是解题的关键. 21.(1)40%;(2)960;0.4;(3)4(本). 【解析】【分析】(1)八年级的人数占全校总人数的百分率=1-32%-28%;(2)由频率的意义可知,B=1﹣0.32﹣0.24﹣0.04,再求出样本容量,利用样本容量×0.24即可求出A 的值;(3)先求出全校总人数,再求该校学生平均每人读的本数即可.【详解】解:(1)该校八年级的人数占全校总人数的百分率为1﹣32%﹣28%=40%,故答案为40%;(2)B=1﹣0.32﹣0.24﹣0.04=0.4,由160÷0.04=4000得图书总数是4000本,所以A=4000×0.24=960(本);故答案为960;0.4;(3)因为八年级的人数是400人,占40%,所以求得全校人数有:400÷40%=1000(人),所以全校学生平均每人阅读:4000÷1000=4(本).【点睛】本题考查的是频数分布表和扇形统计图的综合运用,考查分析频数分布直方图和频率的求法.扇形统计图直接反映部分占总体的百分比大小.22.(1) 见解析;(2) 5cm【解析】【分析】(1)以B为原点,BC所在的直线为x轴,建立平面直角坐标系,在Rt△EFC中,求出EC的长,在直角梯形ABFE中,求出AE长,若A、E、C三点共线,则在Rt△ABC中,利用勾股定理求出AC长,比较AC与AE+EC的大小即可得出结论;(2)设剪开的长方形短边长为xcm,根据题意可得关于x的方程,解方程即可求得答案.【详解】(1)以B为原点,BC所在的直线为x轴,建立平面直角坐标系,在Rt△EFC中,EC在直角梯形ABFE中,过点E作EM⊥AB,则四边形BFEM是矩形,∴BM=EF=3,∴AM=5-3=2,∴AE若A、E、C三点共线,则在Rt△ABC中,AC=≠∴A、E、C三点共线不共线,∴所以拼合的长方形内部有空隙;(2)设剪开的长方形短边长为xcm ,根据题意可得:(13﹣x)(13+13﹣x)=13×13﹣1,∴x 2﹣39x+170=0,∴x =5或x =34(舍),∴可以拼成成一个长方形,但面积少了1cm 2,剪开的三角形的短边长是5cm.【点睛】本题考查了勾股定理、矩形的判定与性质,正方形性质,一元二次方程的应用等,综合性较强,熟练掌握相关知识是解题的关键.23.海轮行驶的路程AB 为202206()+ 海里.【解析】【分析】根据等腰直角三角形的性质分别求出CA 、CP ,根据正切的定义求出CB ,计算即可.【详解】在Rt △APC 中,∠APC =45°,∴CA =CP =22AP =2 , 在Rt △APC 中,tanB =CP CB , 则CB =206tan CP B= ∴AB =AC+CB =26,答:海轮行驶的路程AB 为202206()+ 海里.【点睛】本题考查的是解直角三角形的应用﹣方向角问题,正确理解方向角、熟记锐角三角函数的定义是解题的关键.24.11x -31+. 【解析】【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】 原式=2112(1)1x x x x +-+÷-- =211(1)1x x x x +-⋅-+ =11x -,当x=12. 【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.25.(1)菱形;(2)2221sin 4n m α. 【解析】【分析】(1)根据菱形的判定方法进行证明即可;(2)首先证明△EBD ∽△DCF ,设BE=x ,CF=y ,可得xy=mn ,由S 1=12•mx•sinα,S 2=12nysinα,可得S 1•S 2=14(mn )2sin 2α;【详解】(1)菱形,∵点D 为BC 的中点,且,DE AC DF AB ∥∥∴,DE DF 为三角形中位线, ∴11,,22DE AC DF AB ==∵,AB AC =∴DE=DF∵,DE AF DF AE ,∴AEDF 是平行四边形,∴AEDF 是菱形.(2)设BE=x ,CF=y .∵∠EDC=∠EDF+∠FDC=∠B+∠BEF ,∠MDN=∠B ,∴∠BED=∠FDC ,∵∠B=∠C ,∴△BED ∽△CDF ,∴BE BD CD CF=, ∴x m n y =, ∴xy mn =∵S 1=12•BD•BE•sinα=12mxsinα,S 2=12CD•CF•sinα=12ysinα, ∴1211sin sin 22S S mx ny αα⋅=⋅=2221sin 4n m α 【点睛】 本题考查几何变换综合题、等边三角形的性质、等腰三角形的性质、相似三角形的判定和性质、三角形的面积公式.锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题.。