选修2-3第二章随机变量及其分布知识点总结
高中数学选修2-3 第二章随机变量及其分布 本章高效整合
[说明]识别条件概率的关键是看已知事件的发生与否会 不会影响所求事件的概率.
(2)条件概率的性质: ①0≤P(B|A)≤1; ②必然事件的条件概率为1,不可能事件的条件概率为 0; ③如果B和C是两个互斥事件,则P(B∪C|A)=P(B|A)+ P(C|A).
(3)事件的相互独立性:设A,B为两个事件,如果P(BA) =P(A)P(B),则称事件A与事件B相互独立.如果事件A与B 相互独立,那么A与 B , A 与B, A 与 B 也都相互独立.
3.离散型随机变量的均值与方差 (1)均值、方差:一般地,若离散型随机变量X的分布列 为:
X
x1
x2
…
xi
…
xn
P
p1
p2
…
pi
…
pn
则称E(X)=x1p1+x2p2+…+xipi+…+xnpn为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均 水平.
n
称D(X)= (xi-E(X))2pi为随机变量X的方差, DX
(1)从5道题中不放回地依次抽取2道题的事件数为n(Ω) =A52=20.
根据分步乘法计数原理,n(A)=A13×A14=12. 于是P(A)=nnΩA=1220=35.
(2)因为n(AB)=A23=6,
所以P(AB)=nnAΩB=260=130.
(3)方法一:由(1)(2)可得,在第1次抽到理科题的条件
将产品编号1,2,3号为一等品,4号为二等品,以(i,j)表 示第一次,第二次分别取到第i号、第j号产品,则试验的样 本空间为:
Ω={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),…, (4,1),(4,2),(4,3)}
高中数学选修2-3(人教B版)第二章随机变量及其分布2.1知识点总结含同步练习题及答案
描述:例题:高中数学选修2-3(人教B版)知识点总结含同步练习题及答案第二章 随机变量及其分布 2.1 离散型随机变量及其分布列一、学习任务1. 了解取有限值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;会求某些简单的离散型随机变量的分布列.2. 通过实例理解两点分布、超几何分布,理解其公式的推导过程,并能简单的运用.二、知识清单离散型随机变量的概念离散型随机变量的分布列三、知识讲解1.离散型随机变量的概念在随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这种对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量(random variable).随机变量常用字母 ,,,, 表示.如果随机变量 的所有可能的取值都能一一列举出来,则称为离散型随机变量.X Y ξη⋯X 投掷均匀硬币一次,随机变量为( )A.出现正面的次数 B.出现正面或反面的次数C.掷硬币的次数 D.出现正、反面次数之和解:A掷一枚硬币,可能出现的结果是正面向上或反面向上,以一个标准如正面向上的次数来描述一个随机试验,那么正面向上的次数就是随机变量 , 的取值是 ,,故选 A.而 B 中的事件是必然事件,C 中掷硬币次数是 ,不是随机变量,D 中对应的事件是必然事件,故选 A.ξξ011下列所述:①某座大桥一天经过的车辆数 ;②某无线电寻呼台一天内收到寻呼次数 ;③一天之内的温度 ;④一位射手对目标进行射击,击中目标得 分,未击中目标得 分,用 表示该射手在一次射击中的得分.其中 是离散型随机变量的是( )A.①②③ B.①②④ C.①③④ D.②③④解:B根据离散型随机变量的定义,判断一个随机变量是不是离散型随机变量,就是看这一变量的所有可能的取值是否可以一一列出.①②④中的 可能取的值,可以一一列举出来,而③中的 可以取某一区间内的一切值,不可以一一列出.X X X 10X X X X。
高中数学选修2-3知识点汇编
随机变量及其分布知识点1.什么是随机变量?答:在某试验中,可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化的,我们把这样的变量X 叫做一个随机变量。
离散型随机变量:如果随机变量X 的所有可能的取值都能一一列举出来,则称X 为离散型随机变量。
2.什么是概率分布列?答:要掌握一个离散型随机变量X 的取值规律,必须知道:(1)X 所有可能取的值n x x x ,,,21 ; (2)X 取每一个值i x 的概率n p p p ,,,21 ; 我们可以把这些信息列成表格(如此):X1x 2x …i x …n xP1p 2p …i p…np上表为离散型随机变量X 的概率分布,或称为离散型随机变量X 的分布列。
3.什么是二点分布? 答:X1 0Ppq其中p q p -=<<1,10,则称离散型随机变量X 服从参数为p 的二点分布。
4.什么是超几何分布?答:一般地,设有总数为N 件的两类物品,其中一类有M 件,从所有物品中任取()N n n ≤件,这n 件中所含这类物品件数X 是一个离散型随机变量,它取值为m 时的概率为()nNmn MN m M C C C m X P --==(l m ≤≤0,l 为n 和M 中较小的一个)。
我们称离散型随机变量X 的这种形式的概率分布为超几何分布,也称X 服从参数为n M N ,,的超几何分布。
5.什么是条件概率?答:对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号()A B P 来表示。
6.什么是事件的交(积)?答:事件A 和B 同时发生所构成的事件D ,称为事件A 和B 的交(积)。
7.什么是相互独立事件?答:事件A 是否发生对事件B 发生的概率没有影响,即()()B P A B P =,这时我们称两个事件A 和B 相互独立,并把这两个事件叫做相互独立事件。
一般地,当事件A 和B 相互独时,A 和B ,A 和B ,A 和B 也相互独立。
选修2-3离散型随机变量及其分布知识点
离散型随机变量及其分布知识点一:离散型随机变量的相关概念;随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量。
若ξ是随机变量,a b ηξ=+,其中a 、b 是常数,则η也是随机变量连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出离散型随机变量的分布列:设离散型随机变量ξ可能取的值为12i x x x ⋅⋅⋅⋅⋅⋅、ξ取每一个值()1,2,i x i =⋅⋅⋅的概率为()i i P x p ξ==,则称表为随机变量ξ的概率分布,简称ξ的分布列 知识点二:离散型随机变量分布列的两个性质;任何随机事件发生的概率都满足:0()1P A ≤≤,并且不可能事件的概率为0,必然事件的概率为1.由此你可以得出离散型随机变量的分布列都具有下面两个性质:(1) 01,2,i p i ≥=⋅⋅⋅,;12(2) 1P P ++=特别提醒:对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率的和即1()()()k k k P x P x P x ξξξ+≥==+=+知识点二:两点分布:若随机变量X 的分布列: 则称X 的分布列为两点分布列.特别提醒:(1)若随机变量X 的分布列为两点分布, 则称X 服从两点分布,而称P(X=1)为成功率.(2)两点分布又称为0-1分布或伯努利分布(3)两点分布列的应用十分广泛,如抽取的彩票是否中奖;买回的一件产品是否为正品;新生婴儿的性别;投篮是否命中等等;都可以用两点分布列来研究.知识点三:超几何分布:一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则(),0,1,,min{,},,,.k n kM N MnNC C P X k k m m M n n N M N C --===⋅⋅⋅=≤≤其中称超几何分布列.为超几何分布列,知识点四:离散型随机变量的二项分布;在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是p ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是kn k k n n q p C k P -==)(ξ,(0,1,2,3,k =…, p q -=1)于是得到随机变量ξ的概率分布如下:由于k k n knC p q -恰好是二项式展开式: 00111()n n n k k n kn n n n n n p q C p q C p q C p q C p q --+=+++++中的各项的值,所以称这样的随机变量ξ服从二项分布,记作(,)B n p ξ,其中n ,p 为参数,并记(,,)k k n kn C p q b k n p -=知识点五:离散型随机变量的几何分布:在独立重复试验中,某事件第一次发生时,所作试验的次数ξ也是一个正整数的离散型随机变量.“k ξ=”表示在第k 次独立重复试验时事件第一次发生.如果把k 次试验时事件A 发生记为k A 、事件A 不发生记为k A ,()k p A p =,(), (1)k p A q q p ==-,那么112311231()()()()()()()k k k k k P k P A A A A A P A P A P A P A P A q p ξ---====(0,1,2,k =…,p q -=1)于是得到随机变量ξ的概率分布如下:称这样的随机变量ξ服从几何分布, 记作1(,),0,1,2,,1.k g k p q p k q p -===-其中知识点六:求离散型随机变量分布列的步骤;(1)要确定随机变量ξ的可能取值有哪些.明确取每个值所表示的意义;(2)分清概率类型,计算ξ取得每一个值时的概率(取球、抽取产品等问题还要注意是放回抽样还是不放回抽样;(3)列表对应,给出分布列,并用分布列的性质验证. 几种常见的分布列的求法:(1)取球、投骰子、抽取产品等问题的概率分布,关键是概率的计算.所用方法主要有划归法、数形结合法、对应法等对于取球、抽取产品等问题,还要注意是放回抽样还是不放回抽样.(2)射击问题:若是一人连续射击,且限制在n 次射击中发生k 次,则往往与二项分布联系起来;若是首次命中所需射击的次数,则它服从几何分布,若是多人射击问题,一般利用相互独立事件同时发生的概率进行计算.(3)对于有些问题,它的随机变量的选取与所问问题的关系不是很清楚,此时要仔细审题,明确题中的含义,恰当地选取随机变量,构造模型,进行求解. 知识点六:期望数学期望:则称=ξE +11p x 22p x n n 数学期望的意义:数学期望离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平。
数学选修2-3知识点总结
第二章概率总结一、知识结构二、知识点1.随机试验的特点:①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个 ③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.2.分类随机变量(如果随机试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化,那么这样的变量叫做随机变量.随机变量常用大写字母X 、Y 等或希腊字母ξ、η等表示。
)离散型随机变量在上面的射击、产品检验等例子中,对于随机变量X 可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.连续型随机变量对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量.连续型随机变量的结果不可以一一列出.3.离散型随机变量的分布列一般的,设离散型随机变量X 可能取的值为 x 1,x 2,,x i ,,x nX 取每一个值xi(i=1,2, )的概率 P(ξ=x i )=P i ,则称表为离散型随机变量X 的概率分布,简称分布列性质:①pi ≥0,i=1,2,… ; ②p 1+p 2+…+p n =1.③一般地,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和。
4.求离散型随机变量分布列的解题步骤随机变量 条件概率 事件的独立性 正态分布超几何分布二项分布数学期望 方差离散型随机变量的数字特征 离散型随机变量连续性随机变例题:篮球运动员在比赛中每次罚球命中得1分,不中得0分,已知某运动员罚球命中的概率为0.7,求他罚球一次的得分的分布列.解:用随机变量X 表示“每次罚球得的分值”,依题可知,X 可能的取值为:1,0 且P (X=1)=0.7,P (X=0)=0.3 因此所求分布列为:引出超几何分布 一般地,设总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n(n ≤N)件,这n 件中所含这类物品件数X 是一个离散型随机变量,则它取值为k 时的概率为()(0,1,2,,)k n k M N MnN C C P X k k m C --===,其中{}min ,m M n =, 且*,,,,n N M N n M N N ∈≤≤则称随机变量X 的分布列为超几何分布列,且称随机变量X 服从参数N 、M 、n 的超几何分布 注意:(1)超几何分布的模型是不放回抽样;(2)超几何分布中的参数是N 、M 、n ,其意义分别是总体中的个体总数、N 中一类的总数、样本容量解题步骤:例题、在某年级的联欢会上设计了一个摸奖游戏,在一个口袋中装有10个红球和20个白球,这些球除色外完全相同.游戏者一次从中摸出5个球.至少摸到3个红球就中奖,求中奖的概率解:设摸出红球的个数为X,则X 服从超几何分布,其中30,10,5N M n === X 可能的取值为0,1,2,3,4,5.由题目可知,至少摸到3个红球的概率为(3)(3)(4)(5)P X P X P X P X ==+=+=≥324150102010201020555303030C C C C C C C C C =++≈0.191 答:中奖概率为0.191.条件概率1.定义:对任意事件A 和事件B ,在已知事件A 发生的条件下事件B 发生的概率,叫做条件概率.记作读作A 发生的条件下B 的概率2.事件的交(积):由事件A 和事件B 同时发生所构成的事件D ,称为事件A 与事件B 的交(或积D=A ∩B 或D=AB3.条件概率计算公式: 二点分布如果随机变量X 的分布列为: 其中0<p<1,q=1-p ,则称离散型随机变量X 服从参数p 的二点分布二点分布的应用:如抽取彩票是否中奖问题、新生婴儿的性别问题等.P(B|A)相当于把A 看作新的基本事件空间,求A∩B发生的概率:解题步骤: 例题、10个产品中有7个正品、3个次品,从中不放回地抽取两个,已知第一个取到次品,求第二到次品的概率. 解:设A={第一个取到次品},B={第二个取到次品},所以,P(B|A)=P(AB)/P(A)=2/9 答:第二个又取到次品的概率为2/9.相互独立事件1.定义:事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立2.相互独立事件同时发生的概率公式 两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。
高中数学选修2-3(人教B版)第二章随机变量及其分布2.4知识点总结含同步练习题及答案
f (x) =
相应的曲线称为标准正态曲线.
1 − x2 e 2 , x ∈ (−∞, + ∞) √− 2− π
正态分布 (1)正态分布的定义: 一般地,如果对于任何实数 a ,b ,随机变量 X 满足
P ( a < X ⩽ b) = ∫
b a
φμ,σ (x)dx
则称随机变量 X 服从正态分布(normal distribution).正态分布完全由参数 μ 和 σ 确定, 因此正态分布常记作 N (μ, σ 2 ).如果随机变量 X 服从正态分布,则记为 X ∼ N (μ, σ 2 ) .
2.正态分布 描述: 正态曲线的定义 如果随机变量 X 的概率密度函数为
φμ,σ (x) =
(x−μ) 1 − 2σ 2 , x ∈ (−∞, + ∞) e √− 2− πσ 2
其中实数 μ 和 σ ( σ > 0 )为参数.我们称 φμ,σ (x) 的图象为正态分布密度曲线,简称正态 曲线.
当 μ = 0 , σ = 1 时,函数表达式是
1. 对于标准正态分布 N (0, 1) 的概率密度函数 f (x) = A.f (x) 为偶函数 B.f (x) 最大值为
)
C.f (x) 在 x > 0 时是单调减函数,在 x ⩽ 0 时是单调增函数 D.f (x) 关于 x = 1 对称
答案: D 解析:
1 √− 2− π
f (x) 关于 x = 0 对称. )
2
σ = √2 ,不正确.
(x−μ) 1 − (x ∈ R ),从系数部分看 σ = 2,可是从指数部分看 2σ 2 e √− 2− π ⋅σ
D 错在指数部分缺少一个负号.
2 )(σ > 0)和 N (μ , σ 2 )(σ > 0)的分布密度函数图象如图,则有 设两个正态分布 N (μ1 , σ 1 1 2 2 2 ( )
数学人教A版选修2-3本章解说:第二章随机变量及其分布
第二章随机变量及其分布
本章解说
知识概要
概率论是一门研究现实世界中广泛存在的随机现象的规律的数学分支.本章主要讲了概率论的初步知识,随机变量、离散型随机变量及其分布列、期望、方差、均值等,其中二项分布、正态分布也是本章涉及的重要知识.
对于本章知识,教材借助于一些浅显、易懂的基本例题,帮助我们理解基本概念并建立起相关的知识网络,而随机变量又是概率论的一个重要的基本概念,是学好整章内容的基础.
随机变量及其分布是重要学习内容.随机变量是可取数值的,因此可对它进行各种数学运算.正因为如此,我们可用变量来刻画随机试验的结果以及随机事件,可借助数学工具对随机现象进行研究,完全可以这样说,随机变量的引入,使概率论的研究插上了翅膀.
本章的主要内容有
1.离散型随机变量及其分布列的概念.
2.超几何分布及其导出过程,以及简单的应用.
3.条件概率和两个事件相互独立的概念,几次独立重复试验的模型及二项分布.
4.离散型随机变量均值、方差的概念及其计算.
5.正态分布曲线的特点及曲线所表示的意义.
学法指导
本章知识是整个概率论部分的基础,也是重点,知识与知识板块联系紧密,在学习过程中,要注意知识的前后沟通与相互应用,使整个知识成为一个有机整体.此外,在处理数据时,计算量较大且繁琐,注意用科学的方法与计算器来处理,使之简单化.
我们要认真学好本章内容.本章知识内容对于开阔数学视野、丰富数学思想和方法,对于正确、灵活地解决有关实际问题将大有裨益.。
2.3.2 人教A版数学选修2-3 第2章 随机变量及其分布
2.3.2 离散型随机变量的方差、标准差填一填1.(1)定义:设离散型随机变量X 的分布列为X x 1 x 2 … x i … x n Pp 1p 2…p i…p n则(x i -E (X ))2描述了x i (i =1,2,…,n )相对于均值E (X )的偏离程度,而D (X )=∑i =1n(x i -E (X ))2p i 为这些偏离程度的加权平均,刻画了随机变量X 与其均值E (X )的平均偏离程度.称D (X )为随机变量X 的方差,其算术平方根D (X )为随机变量X 的标准差.(2)意义:随机变量的方差和标准差都反映了随机变量取值偏离于均值的平均程度.方差或标准差越小,则随机变量偏离于均值的平均程度越小.2.随机变量的方差与样本方差的关系随机变量的方差是总体的方差,它是一个常数,样本的方差则是随机变量,是随样本的变化而变化的.对于简单随机样本,随着样本容量的增加,样本的方差越来越接近于总体的方差.3.服从两点分布与二项分布的随机变量的方差 (1)若X 服从两点分布,则D (X )=p (1-p ); (2)若X ~B (n ,p ),则D (X )=np (1-p ).4.离散型随机变量方差的线性运算性质设a,b为常数,则D(aX+b)=a2D(X).判一判判断(1.离散型随机变量ξ的期望E(ξ)反映了ξ取值的概率的平均值.(×)2.离散型随机变量ξ的方差D(ξ)反映了ξ取值的平均水平.(×)3.离散型随机变量ξ的方差D(ξ)反映了ξ取值的波动水平.(√)4.离散型随机变量的方差越大,随机变量越稳定.(×)5.若a是常数,则D(a)=0.(√)6.若随机变量X服从两点分布,且成功的概率p=0.5,则D(X)为0.5.(×)7.牧场的10头牛,因误食疯牛病毒污染的饲料被感染,已知该病的发病率为0.02,设发病牛的头数为X,则D(X)等于0.196.(√)8.若X为随机变量则D(X-D(X))=D(X).(√)想一想1.提示:随机变量X的方差和标准差都反映了随机变量X取值的稳定与波动,集中与离散的程度,D(X)(或D(X))越小,稳定性越好,波动越小,显然D(X)≥0(D(X)≥0).2.离散型随机变量的方差与标准差的单位相同吗?提示:不同,方差的单位是随机变量单位的平方;标准差与随机变量本身有相同的单位.3.随机变量的方差与样本的方差有何联系与区别?提示:样本的方差是随着样本的不同而变化的,因此它是一个变量,而随机变量的方差是通过大量试验得出的,刻画了随机变量X 与其均值E (X )的平均偏离程度,因此它是一个常数(量).对于简单随机样本,随着样本容量的增加,样本方差越来越接近于总体的方差.4.决策问题中如何运用均值与方差?提示:离散型随机变量的均值反映了离散型随机变量取值的平均水平,而方差反映了离散型随机变量取值的稳定与波动、集中与离散的程度.因此在实际决策问题中,需先计算均值,看谁的平均水平高,然后再计算方差,分析谁的水平发挥相对稳定.当然不同的情形要求不同,应视情况而定。
高中数学选修2-3(人教B版)第二章随机变量及其分布2.2知识点总结含..
描述:例题:高中数学选修2-3(人教B版)知识点总结含同步练习题及答案第二章 随机变量及其分布 2.2 条件概率与事件的独立性一、学习任务1. 了解条件概率的定义及计算公式,并会利用条件概率解决一些简单的实际问题.2. 能通过实例理解相互独立事件的定义及概率乘法公式,并能综合利用互斥事件的概率加法公式及独立事件的概率乘法公式.3. 理解独立重复试验的概率及意义,理解事件在 次独立重复试验中恰好发生 次的概率公式,并能利用 次独立重复试验的模型模拟 次独立重复试验.二、知识清单事件的独立性与条件概率独立重复试验与二项分布三、知识讲解1.事件的独立性与条件概率条件概率的概念一般地,设 ,为两个事件,且 ,称为在事件 发生的条件下,事件 发生的条件概率(conditional probability).读作 发生的条件下 发生的概率.条件概率的性质①条件概率具有概率的性质,任何事件的条件概率都在 和 之间,即.②如果 和 是两个互斥事件,则相互独立事件的概念设 ,为两个事件,若 ,则称事件 与事件 相互独立(mutually independent).相互独立事件同时发生的概率:如果事件 ,,, 相互独立,那么这 个事件同时发生的概率等于每个事件发生概率的积,即n k n n A B P (A )>0P (B |A )=P (AB )P (A )A B P (B |A )A B 0 1 0≤P (B|A)≤1 B CP (B ∪C |A )=P (B |A )+P (C |A ).A B P (AB )=P (A )P (B )A B A 1A 2⋯A n n P (⋯)=P ()P ()⋯P ().A 1A 2A n A 1A 2A n 甲、乙两地都位于长江下游,根据一百多年气象记录,知道甲、乙两地一年中雨天占的比例分别20%18%12%为 和 ,两地同时下雨的比例为 ,问:(1)乙地为雨天时甲地也为雨天的概率是多少?(2)甲地为雨天时乙地也为雨天的概率是多少?解:设“甲地为雨天”, “ 乙地为雨天”,则根据题意有(1)乙地为雨天时甲地也为雨天的概率(2)甲地为雨天时乙地也为雨天的概率是20%18%12%A =B =P (A )=0.20,P (B )=0.18,P (AB )=0.12.P (A |B )==≈0.67.P (AB )P (B )0.120.18P (B |A )===0.60.P (AB )P (A )0.120.20如图,四边形 是以 为圆心,半径 的圆内接正方形,将一颗豆子随机地扔到该圆内,用 表示事件“豆子落在正方形 内”, 表示事件“豆子落在扇形 (阴影部分)内”,则(1)______;(2)______.解:;圆 的面积是,正方形 的面积是 ,扇形 的面积是 ,由几何概型概率公式得 ,由条件概率公式得EFGH O 1A EFGH B OHE P (A )=P (B |A )=2π14O πEF GH 2OHE π4P (A )=2πP (B |A)===.P (AB )P (A)12π2π14掷一枚正方体骰子一次,设事件 :“出现偶数点”,事件 :“出现 点或 点”,则事件 , 的关系是( )A.互斥但不相互独立 B.相互独立但不互斥 C.互斥且相互独立 D.既不相互独立也不互斥解:B事件 ,事件 ,事件 ,基本事件空间 .所以,,,即 ,因此,事件 与 相互独立.当“出现 点”,事件 , 同时发生,所以 , 不是互斥事件.A B 36A B A ={2,4,6}B ={3,6}AB ={6}Ω={1,2,3,4,5,6}P (A )==3612P (B )==2613P (AB )==×161213P (AB )=P (A )P (B )A B 6A B A B 甲、乙两人在罚球线投球命中的概率分别为与 .(1)甲、乙两人在罚球线各投球一次,求恰好命中一次的概率;(2)甲、乙两人在罚球线各投球二次,求这四次投球均不命中的概率.解:记“甲投一次命中”为事件 ,“乙投一次命中”为事件 ,则 ,1225A B P (A )=12213,,.(1)恰好命中一次的概率为(2)设事件“甲、乙两人在罚球线各投球二次均不命中”的概率为 ,则2P (B )=25P ()=A ¯¯¯12P ()=B ¯¯¯35P =P (A ⋅)+P (⋅B )B ¯¯¯A ¯¯¯=P (A )⋅P ()+P ()⋅P (B )B ¯¯¯A ¯¯¯=×+×12351225=.12P 1P 1=P (∩∩∩)A ¯¯¯A ¯¯¯B ¯¯¯B ¯¯¯=P ()⋅P ()⋅P ()⋅P ()A ¯¯¯A ¯¯¯B ¯¯¯B ¯¯¯=(1−(1−12)225)2=9100在一个选拔项目中,每个选手都需要进行 轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰.已知某选手能正确回答第一、二、三、四轮问题的概率分别为,,,,且各轮问题能否正确回答互不影响.(1)求该选手进入第三轮才被淘汰的概率;(2)求该选手至多进入第三轮考核的概率;解:设事件 ( ,,, )表示“该选手能正确回答第 轮问题”,由已知得,,,.(1)设事件 表示“该选手进入第三轮才被淘汰”,则(2)设事件 表示“该选手至多进入第三轮考核”,则456453413A i i =1234i P ()=A 156P ()=A 245P ()=A 334P ()=A 413B P (B )=P ()A 1A 2A ¯¯¯3=P ()P ()P ()A 1A 2A ¯¯¯3=××(1−)564534=.16C P (C )=P (++)A ¯¯¯1A 1A ¯¯¯2A 1A 2A ¯¯¯3=P ()+P ()+P ()A ¯¯¯1A 1A ¯¯¯2A 1A 2A ¯¯¯3=+×+××(1−)165615564534=.12描述:例题:2.独立重复试验与二项分布独立重复试验一般地,在相同条件下重复做的 次试验,称为次独立重复试验(independent andrepeated trials).二项分布一般地,在 次独立重复试验中,用表示事件发生的次数,设每次试验中事件发生的概率为,则此时称随机变量服从二项分布(binnomial distribution),记作 ),并称为成功概率.n n n X A A p P (X =k )=(1−p ,k=0,1,2,⋯,n .C kn pk )n −k X X ∼B (n ,p ) p 下列随机变量 的分布列不属于二项分布的是( )A.投掷一枚均匀的骰子 次, 表示点数 出现的次数B.某射手射中目标的概率为 ,设每次射击是相互独立的, 为从开始射击到击中目标所需要的射击次数C.实力相等的甲、乙两选手举行了 局乒乓球比赛, 表示甲获胜的次数D.某星期内,每次下载某网站数据后被病毒感染的概率为 , 表示下载 次数据后电脑被病毒感染的次数解:B选项 A,试验出现的结果只有两个:点数为 和点数不为 ,且点数为 的概率在每一次试验都为 ,每一次试验都是独立的,故随机变量 服从二项分布;选项 B,,故随机变量 不服从二项分布;选项 C,甲、乙的获胜率都相等,举行 次比赛,相当于进行了 次独立重复试验,故 服从二项分布;选项 D,由二项分布的定义可知,被感染次数 .X 5X 6p X 5X 0.3X n 66616X P (X =1)=p ,P (X =2)=(1−p )p ,P (X =k )=(1−p p )(k −1)X 55X X ∼B (n ,0.3)口袋中有 个白色乒乓球, 个黄色乒乓球,从中选取 次,每次取 个后又放回,则 次中恰有 次取到白球的概率是( )A. B. C. D . 解:D任意取球 次,取得白球 次的概率是5551531235C 35C 510⋅C 350.5553P (X =3)=(1−0.5=⋅C 350.53)5−3C 350.55甲、乙两名同学进行三分球投篮比赛,甲每次投中的概率为 ,乙每次投中的概率为 ,每人分别进行三次投篮.(1)设甲投中的次数为 ,求 的分布列;(2)求乙至多投中 次的概率;(3)求乙恰好比甲多投中 次的概率.1312ξξ221四、课后作业 (查看更多本章节同步练习题,请到快乐学)解:(1), 的可能取值为 ,,,. 的分布列为:(2)设“乙至多投中 次”为事件 ,则(3)设“乙比甲多投中 次”为事件 ,“乙恰投中 次且甲恰投中 次”为事件,“乙恰投中 次且甲恰投中 次”为事件 ,则 ,, 为互斥事件,则所以乙恰好比甲多投中 次的概率为.ξ∼B (3,)13ξ0123P(ξ=0)=(=,C 0323)3827P (ξ=1)=()(=,C 131323)249P (ξ=2)=(()=,C 2313)22329P (ξ=3)=(=.C 3313)3127ξξP082714922931272A P (A )=1−(=.C 3312)3782A 120B 131B 2=∪A 1B 1B 2B 1B 2P (A )=P ()+P ()=×+×=.B 1B 282738491816216答案:解析:1. 某一批花生种子,如果每 粒发芽的概率为 ,那么播下 粒种子恰有 粒发芽的概率是 A .B .C .D .B 概率为 .14542()1662596625192625256625=C 24()452(1−)45296625答案:2. 某地区空气质量监测资料表明,一天的空气质量为优良的概率是 ,连续两天为优良的概率是,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是 A .B .C .D .A0.750.6()0.80.750.60.453. 某厂生产电子元件,其产品的次品率为 ,现从一批产品中任意地连续取出 件,其中次品数 的5%2ξ高考不提分,赔付1万元,关注快乐学了解详情。
选修2-3第二章随机变量及其分布知识点总结
选修2-3第二章随机变量及其分布知识点总结(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第二章 概率 总结一、知识点1.随机试验的特点:①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.2.分类 随机变量(如果随机试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化,那么这样的变量叫做随机变量. 随机变量常用大写字母X 、Y 等或希腊字母 ξ、η等表示。
)离散型随机变量:连续型随机变量:3.离散型随机变量的分布列一般的,设离散型随机变量X 可能取的值为 x 1, x 2, ,x i , ,x n X 取每一个值 xi(i=1,2, )的 概率 P(ξ=x i )=P i ,则称表为离散型随机变量X 的概率分布,简称分布列性质: ① ----------------------------------------------② -------------------------------------------------.二点分布如果随机变量X 的分布列为:其中0<p<1,q=1-p ,则称离散型随机变量X 服从参数p的二点分布二点分布的应用:如抽取彩票是否中奖问题、新生婴儿的性别问题等.超几何分布一般地, 设总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n(n ≤N)件, 这n 件中所含这类物品件数X 是一个离散型随机变量,则它取值为k 时的概率为()(0,1,2,,)k n k M N MnNC C P X k k m C --===,其中则称随机变量X 的分布列,为超几何分布列,且称随机变量X 服从参数N 、M 、n 的超几何分布 注意:(1)超几何分布的模型是不放回抽样;(2)超几何分布中的参数是N 、M 、n ,其意义分别是总体中的个体总数、N 中一类的总数、样本容量条件概率1.定义:对任意事件A 和事件B ,在已知事件A 发生的条件下事件B 发生的概率,叫做条件概率.记作P(B|A),读作A 发生的条件下B 的概率2.事件的交(积):由事件A 和事件B 同时发生所构成的事件D ,称为事件A 与事件B的交(或积).记作D=A ∩B 或D=AB3.条件概率计算公式:例题、10个产品中有7个正品、3个次品,从中不放回地抽取两个,已知第一个取到次品,求第二个又取到次品的概率.相互独立事件1.定义:事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。
最新人教版高中数学选修2-3《随机变量及其分布》本章综述
第二章随机变量及其分布
本章综述
本章的主要内容包括随机变量及离散型随机变量的分布列、期望、均值与方差和条件概率、相互独立事件同时发生的概率、独立重复试验以及二项分布的应用和正态分布等知识.其中条件概率、相互独立事件概率、期望、均值和方差等是本章的难点,随机变量的分布列以及数学期望是本章重点.
概率论是近代数学的一个重要分支,它起源于人们对赌博中随机现象的研究,概率论广泛应用于我们社会生活的各个层面,是一门研究随机现象内部所蕴含的必然规律的学科.概率论在近代物理、无线电技术、自动控制技术、产品质量检测、农业试验、医疗技术、信息产业等许多方面有重要的应用,为科学技术和工农业生产做出了重要贡献.因此学好它不仅可以拓广我们知识,还能提高我们分辨事物的能力,发展理发思维.本章与前一章学习的排列、组合等知识有着比较密切的联系.对必修三所学的概率的定义和求解方法以及互斥事件、对立事件的概念都应该熟练掌握.学习中要抓住高考中的重点,即随机变量的分布列和数学期望.熟练掌握随机事件、互斥事件、相互独立事件和独立重复试验的有关概念和计算,学会用公式比较熟练的求解相关问题.
本章在整个高中数学中相对独立,与其他章节在思考方法和解题技巧上有很大不同.本章在高考题中以较为简单的题目为主要考查方式.综合性大题较少出现.。
高中数学选修2-3(人教A版)第二章随机变量及其分布知识点总结含同步练习及答案
描述:高中数学选修2-3(人教A版)知识点总结含同步练习题及答案第二章随机变量及其分布 2.3离散型随机变量的均值与方差一、学习任务了解取有限值的离散型随机变量的均值、方差的意义,会根据离散型随机变量的分布列求出期望、方差.二、知识清单离散型随机变量的数字特征三、知识讲解1.离散型随机变量的数字特征离散型随机变量的均值①一般地,若离散型随机变量的分布列为则称为随机变量 的均值(mean)(mean)或或数学期望(mathematical expectation)(mathematical expectation).它反映了离散型随机变量取值的平均水平..它反映了离散型随机变量取值的平均水平.②若 ,其中 , 为常数,则 也是随机变量.因为所以, 的分布列为于是,即③一般地,如果随机变量 服从两点分布,那么 ;如果 ,那么 .离散型随机变量的方差① 设离散型随机变量 的分布列为则 描述了 (,,,)相对于均值 的偏离程度.而X Px 1p 1x2p2⋯⋯x i p i⋯⋯x n p nE (X )=++⋯++⋯+x 1p 1x 2p 2x i p i x n p nX Y =aX +b a b Y P (Y =a +b )=P (X =),i =1,2,⋯,n ,x i x i Y Y Pa +b x 1p 1a +b x 2p 2⋯⋯a +b x i p i ⋯⋯a +bx n p n.E (X )=(a +b )+(a +b )+⋯+(a +b )+⋯+(a +b )x 1p 1x 2p 2x i p i x n p n=a (++⋯++⋯+)+b (++⋯+)x 1p 1x 2p 2x i p i x n p n p 1p 2p n =aE (X )+bE (aX +b )=aE (X )+b .X E (X )=p X ∼B (n ,p )E (X )=np X X P x 1p 1x 2p 2⋯⋯x i p i⋯⋯x n p n(−E (X )x i )2x i i =12⋯n E (X )D (X )=(−E (X )∑i =1nx i )2p iE (X )D (X )例题:为这些偏离程度的加权平均,刻画了随机变量 与其均值 的平均偏离程度.我们称 为随机变量 的方差(variance),并称其算术平方根 为随机变量 的标准差(standard deviation).随机变量的方差和标准差都反映了随机变量取值偏离于均值的平均程度.方差或标准差越小,则随机变量偏离于均值的平均程度越小.② 若 服从两点分布,则 ;若 ,则 .③ .X E (X )D (X )X D (X )−−−−−√X X D (X )=p (1−p )X ∼B (n ,p )D (X )=np (1−p )D (aX +b )=D(X )a 2某食品企业一个月内被消费者投诉的次数用 表示,据统计,随机变量 的概率分布如下:则 的值和 的数学期望分别是( )A., B., C., D.,解:B由概率分布可知:,解得 ,所以 .ξξξP 00.110.322a 3aa ξ0.2 1.80.2 1.70.1 1.80.1 1.70.1+0.3+2a +a =1a =0.2E (ξ)=0×0.1+1×0.3+2×0.4+3×0.2=1.7从饭店到火车站途中有 个交通岗,一出租车司机,假设他在各交通岗遇到红灯这一事件是相互独立的,并且概率都是 .(1)求这位司机遇到红灯前,已经通过了 个交通岗的概率;(2)求这位司机在途中遇到红灯数 的数学期望.解:(1)因为这位司机在第一个、第二个交通岗未遇到红灯,在第三个交通岗遇到红灯,所以(2)因为 ,所以 .6132ξP =(1−)×(1−)×=.131313427ξ∼B (6,)13E (ξ)=6×=213已知随机变量 的分布列为:求.解:,所以ξξP 00.110.1520.2530.2540.1550.1D (ξ)Eξ=0.1×0+0.15×1+0.25×2+0.25×3+0.15×4+0.1×5=2.5D (ξ)=(0−2.5×0.1+(1−2.5×0.15+(2−2.5×0.25+(3−2.5×0.25+(4−2.5×0.15+(5−2.5×0.1=2.05)2)2)2)2)2)2如果 是离散型随机变量,且 ,那么( )A.,B.,C.,D.,解:A由随机变量的均值与方差的性质可得答案.ξη=3ξ+2E (η)=3E (ξ)+2D (η)=9D (ξ)E (η)=3E (ξ)D (η)=3D (ξ)+2E (η)=3E (ξ)+2D (η)=9D (ξ)+4E (η)=3E (ξ)+4D (η)=3D (ξ)+2某人投弹击中目标的概率为 .(1)求投弹一次,击中次数 的均值和方差;(2)求重复投弹 次,击中次数 的均值和方差.解:(1)由题意可知 服从两点分布,其分布列为所以(2)由题意可知击中次数 服从二项分布,即 ,所以p =0.8X 10Y X X P00.210.8E (X )=0×0.2+1×0.8=0.8,D (X )=(0−0.8×0.2+(1−0.8×0.8=0.16.)2)2Y Y ∼B (10,0.8)E (Y )=np =10×0.8=8,D (Y )=10×0.8×0.2=1.6.甲、乙两名工人加工同一种零件,两人每天加工的零件数相同,所得次品数分别为 、, 和 的分布列如表.试对这两X Y X Y四、课后作业 (查看更多本章节同步练习题,请到快乐学)名工人的技术水平进行比较.解:工人甲生产出次品数 的数学期望和方差分别为工人乙生产出次品数 的数学期望和方差分别为由知,两人生产出次品的平均数相同,技术水平相当,但,可见乙的技术水平比较稳定.X P 061011102310Y P051013102210X E (X )=0×+1×+2×=0.7,610110310D (X )=(0−0.7×+(1−0.7×+(2−0.7×=0.81.)2610)2110)2310Y E (Y )=0×+1×+2×=0.7,510310210D (Y )=(0−0.7×+(1−0.7×+(2−0.7×=0.61)2510)2310)2210E (X )=E (Y )D (X )>D (Y )答案:1. 下列有关离散型随机变量的期望与方差的说法中,不正确的是 A .离散型随机变量的期望 反映了 取值的平均值B .离散型随机变量的方差 反映了 取值的集中与离散的程度C .离散型随机变量 的期望和方差都是一个数值,它们不随试验结果而变化D .离散型随机变量的方差是非负的A()ξEξξξDξξξ答案:解析:2. 已知离散型随机变量 的概率分布列如下表,则其数学期望 等于 .A .B .C .D .D所有随机变量取值概率之和是ξE (ξ)()ξP 10.53m 50.210.62+3m 2.41答案:解析:3. 已知 ,,,则 与 的值分别为 A . 和B . 和C . 和D . 和A ,,解得 ,.X ∼B (n ,p )E (X )=8D (X )=1.6n p ()100.8200.4100.21000.8E (X )=np =8D (X )=np (1−p )=1.6p =0.8n =10答案:解析:4. 在 个电子产品中,有 个次品, 个合格品,每次任取一个测试,测试完后不放回,直到两个次品都找到为止,如果两个次品找出为完成一次测试,那么测试次数 的数学期望是 A .B .C .D .D由题意知 的可能取值是 ,结合变量对应的事件写出变量的概率,当 时,表示取出的 只都是次品,当时,表示第三次取出的是次品,前两次中一个正品一个次品,以此类推,得到结果.624ξ()17151115536415ξ2,3,4,5ξ=22ξ=3高考不提分,赔付1万元,关注快乐学了解详情。
高中数学选修2-3-离散型随机变量及其分布列
离散型随机变量及其分布列知识集结知识元离散型随机变量及其分布列知识讲解1.离散型随机变量及其分布列【考点归纳】1、相关概念;(1)随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示.(2)离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是随机变量,η=aξ+b,其中a、b是常数,则η也是随机变量.(3)连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量(4)离散型随机变量与连续型随机变量的区别与联系:离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出.2、离散型随机变量(1)随机变量:在随机试验中,试验可能出现的结果可以用一个变量X来表示,并且X是随着试验结果的不同而变化的,这样的变量X叫做一个随机变量.随机变量常用大写字母X,Y,…表示,也可以用希腊字母ξ,η,…表示.(2)离散型随机变量:如果随机变量X的所有可能的取值都能一一列举出来,则称X为离散型随机变量.3、离散型随机变量的分布列.(1)定义:一般地,设离散型随机变量X的所有可能值为x1,x2,…,x n;X取每一个对应值的概率分别为p1,p2,…,p n,则得下表:X x1x2…x i…x nP p1p2…p i…p n该表为随机变量X的概率分布,或称为离散型随机变量X的分布列.(2)性质:①p i≥0,i=1,2,3,…,n;②p1+p2+…+p n=1.例题精讲离散型随机变量及其分布列例1.'袋中有2个白球,3个红球,5个黄球,这10个小球除颜色外完全相同.(1)从袋中任取3个球,求恰好取到2个黄球的概率;(2)从袋中任取2个球,记取到红球的个数为ξ,求ξ的分布列、期望E(ξ)和方差D(ξ).'例2.'甲、乙两人做定点投篮游戏,已知甲每次投篮命中的概率均为p,甲投篮3次均未命中的概率为,乙每次投篮命中的概率均为q,乙投篮2次恰好命中1次的概率为,甲、乙每次投篮是否命中相互之间没有影响.(1)若乙投篮3次,求至少命中2次的概率;(2)若甲、乙各投篮2次,设两人命中的总次数为X,求X的分布列和数学期望.'例3.'抛掷甲,乙两枚质地均匀且四面上分别标有1,2,3,4的正四面体,其底面落于桌面,记底面上所得的数字分别为x,y.记[]表示的整数部分,如:[]=1,设ξ为随机变量,ξ=[].(Ⅰ)求概率P(ξ=1);(Ⅱ)求ξ的分布列,并求其数学期望E(ξ).'当堂练习解答题练习1.'玉山一中篮球体育测试要求学生完成“立定投篮”和“三步上篮”两项测试,“立定投篮”和“三步上篮”各有2次投篮机会,先进行“立定投篮”测试,如果合格才能参加“三步上篮”测试.为了节约时间,每项测试只需且必须投中一次即为合格.小华同学“立定投篮”的命中率为,“三步上篮”的命中率为.假设小华不放弃任何一次投篮机会且每次投篮是否命中相互独立.(1)求小华同学两项测试均合格的概率;(2)设测试过程中小华投篮次数为X,求随机变量X的分布列和数学期望.'练习2.'某支教队有8名老师,现欲从中随机选出2名老师参加志愿活动,(1)若规定选出的至少有一名女老师,则共有18种不同的需安排方案,试求该支教队男、女老师的人数;(2)在(1)的条件下,记X为选出的2位老师中女老师的人数,写出X的分布列.'练习3.'装有除颜色外完全相同的6个白球、4个黑球和2个黄球的箱中随机地取出两个球,规定每取出1个黑球赢2元,而每取出1个白球输1元,取出黄球无输赢.(1)以X表示赢得的钱数,随机变量X可以取哪些值?求X的分布列;(2)求出赢钱(即X>0时)的概率.'练习4.'将10个白小球中的3个染成红色,3个染成黄色,试解决下列问题:(1)求取出3个小球中红球个数ξ的分布列;(2)求取出3个小球中红球个数多于白球个数的概率.'练习5.'新高考改革后,假设某命题省份只统一考试数学和语文,英语学科改为参加等级考试,每年考两次,分别放在每个学年的上下学期,其余六科政治,历史,地理,物理,化学,生物则以该省的省会考成绩为准.考生从中选择三科成绩,参加大学相关院校的录取.(Ⅰ)若英语等级考试有一次为优,即可达到某“双一流”院校的录取要求.假设某考生参加每次英语等级考试事件是相互独立的,且该生英语等级考试成绩为优的概率为,求该考生直到高二下期英语等级考试才为优的概率(Ⅱ)据预测,要想报考某“双一流”院校,省会考的六科成绩都在95分以上,才有可能被该校录取假设某考生在省会考六科的成绩都考到95分以上的概率都是,设该考生在省会考时考到95以上的科目数为X求X的分布列及数学期望.'练习6.'某高中志愿者男志愿者5人,女志愿者3人,这些人要参加社区服务工作.从这些人中随机抽取4人负责文明宣传工作,另外4人负责卫生服务工作.(Ⅰ)设M为事件;“负责文明宣传工作的志愿者中包含女志愿者甲但不包含男志愿者乙”,求事件M发生的概率;(Ⅱ)设X表示参加文明宣传工作的女志愿者人数,求随机变量X的分布列与数学期望.'练习7.'今年学雷锋日,乌鲁木齐市某中学计划从高中三个年级选派4名教师和若干名学生去当学雷锋文明交通宣传志愿者,用分层抽样法从高中三个年级的相关人员中抽取若干人组成文明交通宣传小组,学生的选派情况如下:(Ⅰ)求x,y的值;(Ⅱ)若从选派的高一、高二、高三年级学生中抽取3人参加文明交通宣传,求他们中恰好有1人是高三年级学生的概率;(Ⅲ)若4名教师可去A、B、C三个学雷锋文明交通宣传点进行文明交通宣传,其中每名教师去A、B、C三个文明交通宣传点是等可能的,且各位教师的选择相互独立.记到文明交通宣传点A的人数为X,求随机变量X的分布列和数学期望。
2015-2016学年高中数学 第二章 随机变量及其分布本章小结 新人教A版选修2-3
【金版学案】2015-2016学年高中数学 第二章 随机变量及其分布本章小结 新人教A 版选修2-3知识点一 条件概率条件概率是学习相互独立事件的前提和基础,计算条件概率时,必须搞清欲求的条件概率是在什么条件下发生的概率.一般地,计算条件概率常有两种方法:(1)P (B |A )=P (AB )P (A );(2)P (B |A )=n (AB )n (A ).在古典概型下,n (AB )指事件A 与事件B 同时发生的基本事件个数;n (A )是指事件A 发生的基本事件个数.例1 有20件产品,其中5件是次品,其余都是合格品,现不放回地从中依次抽2件,求:(1)第一次抽到次品的概率;(2)第一次和第二次都抽到次品的概率;(3)在第一次抽到次品的条件下,第二次抽到次品的概率. 解析:设第一次抽到次品为事件A ,第二次抽到次品为事件B .(1)第一次抽到次品的概率P (A )=520=14.(2)P (AB )=P (A )P (B )=119.(3)在第一次抽到次品的条件下,第二次抽到次品的概率为P (B |A )=119÷14=419.知识点二 求相互独立事件的概率1.相互独立事件一般与互斥事件、对立事件结合在一起进行考查,解答此类问题时应分清事件间的内部联系,在此基础上用基本事件之间的交、并、补运算表示出有关事件,并运用相应公式求解.2.特别注意以下两公式的使用前提:(1)若A ,B 互斥,则P (A ∪B )=P (A )+P (B ),反之不成立. (2)若A ,B 相互独立,则P (AB )=P (A )P (B ),反之成立.设对某目标进行三次相互独立的射击,各次的命中率分别为0.2、0.6、0.3,试求: (1)在三次射击中恰有一次命中的概率; (2)在三次射击中至少有一次命中的概率.解析:设“第i 次射击命中目标”为事件A i (i =1,2,3),由题意A 1、A 2、A 3相互独立. (1)恰有一次命中的概率为P =P (A 1A 2A 3)+P (A 1A 2A 3)+P (A 1A 2A 3)=P (A 1)·P (A 2)·P (A 3)+P (A 1)·(A 2)·P (A 3)+P (A 1)·P (A 2)·P (A 3)=0.2×(1-0.6)×(1-0.3)+(1-0.2)×0.6×(1-0.3)+(1-0.2)×(1-0.6)×0.3=0.488.(2)至少有一次命中的概率为P =1-P (A 1 A 2 A 3)=1-(1-0.2)×(1-0.6)×(1-0.3)=0.776. 知识点三 离散型随机变量的期望与方差离散型随机变量的期望和方差是随机变量中两种最重要的特征数,它们反映了随机变量取值的平均值及其稳定性,期望与方差在实际优化问题中有大量的应用,关键要将实际问题数学化,然后求出它们的概率分布列,同时,要注意运用两点分布、二项分布等特殊分布的期望、方差公式以及期望与方差的线性性质,如E(aX+b)=aE(X)+b,D(aX+b)=a2D(X).甲、乙两名射手在一次射击中的得分为两个相互独立的随机变量ξ、η,已知甲、乙两名射手在每次射击中击中的环数均大于6环,且甲射中的10,9,8,7环的概率分别为0.5、3a、a、0.1,乙射中10,9,8环的概率分别为0.3,0.3,0.2.(1)求ξ、η的分布列;(2)求ξ、η的数学期望与方差,并以此比较甲、乙的射击技术.解析:(1)依题意,0.5+3a+a+0.1=1解得a=0.1. 因为乙射中10,9,8环的概率分别为0.3,0.3,0.2,所以乙射中7环的概率为1-(0.3+0.3+0.2)=0.2.所以ξ、η的分布列分别为:ξ10987P 0.50.30.10.1η10987P 0.30.30.20.2(2)由(1)可得E(ξ)=10×0.5+9×0.3+8×0.1+7×0.1=9.2(环);E(η)=10×0.3+9×0.3+8×0.2+7×0.2=8.7(环);D(ξ)=(10-9.2)2×0.5+(9-9.2)2×0.3+(8-9.2)2×0.1+(7-9.2)2×0.1=0.96;D(η)=(10-8.7)2×0.3+(9-8.7)2×0.3+(8-8.7)2×0.2+(7-8.7)2×0.2=1.21.由于E(ξ)>E(η),说明甲平均射中的环数比乙高;又因为D(ξ)<D(η),说明甲射中的环数比乙集中,比较稳定.所以,甲比乙的技术好.知识点四正态分布对于正态分布问题,课标要求不是很高,只要求了解正态分布中最基础的知识,主要是:(1)掌握正态分布曲线函数关系式;(2)理解正态分布曲线的性质;(3)记住正态分布在三个区间内取值的概率,运用对称性结合图象求相应的概率.某地数学考试的成绩X服从正态分布,某密度函数曲线如下图所示,成绩X位于区间(52,68]的概率为多少?解析:设成绩X~N(μ,σ2),则正态分布的密度函数φμ,σ(x)=12πσe,由图可知,μ=60,σ=8.∴P(52<X≤68)=P(|X-60|<8)=P(|X-μ|<σ)=0.682 6.一、选择题1.(2013·广东卷)已知离散型随机变量X的分布列为:X 12 3P 35310110则X的数学期望E(X)=(A)A.32 B .2 C.52D .3 解析:E (X )=1×35+2×310+3×110=1510=32,故选A.2.(2013·景德镇高二期末)已知某离散型随机变量X 服从的分布列如下:X0 1 Pm2m则随机变量X 的方差D (X )等于(B ) A.19 B.29 C.13 D.23解析:由m +2m =1得,m =13,∴E (X )=0×13+1×23=23,D (X )=⎝ ⎛⎭⎪⎫0-232×13+⎝ ⎛⎭⎪⎫1-232×23=29,故选B. 3.若随机变量X 服从正态分布,其正态曲线上的最高点的坐标是⎝ ⎛⎭⎪⎫10,12,则该随机变量的方差等于(C )A .10B .100 C.2πD.2π解析:由正态分布密度曲线上的最高点⎝ ⎛⎭⎪⎫10,12知12π·σ=12,∴D (X )=σ2=2π.4.(2014·兰州一诊)随机变量X 的分布列为:X 1 2 4 P0.40.30.3则E (5X +4)等于(A)A .15B .11C .2.2D .2.3解析:∵E (X )=1×0.4+2×0.3+4×0.3=2.2,∴E (5X +4)=5E (X )+4=11+4=15. 能力提升5.甲射击命中目标的概率是12,乙命中目标的概率是13,丙命中目标的概率是14,现在三人同时射击目标,则目标被击中的概率是(A )A.34B.23C.45D.7106.已知一次考试共有60名同学参加,考生成绩X ~N (110,52),据此估计,大约有57人的分数所在的区间为(C )A .(90,100]B .(95,125]C .(100,120]D .(105,115]解析:因为X ~N (110,52),所以μ=110,σ=5.5760=0.95≈P (μ-2σ<X ≤μ+2σ)=P (100<X ≤120),所以X ∈(100,120].故选C.7.把10个骰子全部投出,设出现6点的骰子的个数为X ,则P (X ≤2)=(D)A .C 210×⎝ ⎛⎭⎪⎫162×⎝ ⎛⎭⎪⎫568B .C 110×16×⎝ ⎛⎭⎪⎫569+⎝ ⎛⎭⎪⎫5610C .C 110×16×⎝ ⎛⎭⎪⎫569+C 210×126×⎝ ⎛⎭⎪⎫568D .以上都不对解析:P (X ≤2)=P (X =0)+P (X =1)+P (X =2)=C 010×⎝ ⎛⎭⎪⎫160×⎝ ⎛⎭⎪⎫5610+C 110×16×⎝ ⎛⎭⎪⎫569+C 210×⎝ ⎛⎭⎪⎫162×⎝ ⎛⎭⎪⎫568.故选D. 8.(2014·成都调研)已知抛物线y =ax 2+bx +c (a ≠0)的对称轴在y 轴的左侧,其中a ,b ,c ∈{-3,-2,-1,0,1,2,3},在这些抛物线中,记随机变量X 为“|a -b |的取值”,则X 的数学期望E (X )为(A )A.89B.35C.25D.13解析:对称轴在y 轴的左侧(a 与b 同号)的抛物线有2C 13C 13C 17=126(条),X 的可能取值有0,1,2.P (X =0)=6×7126=13,P (X =1)=8×7126=49,P (X =2)=4×7126=29,故E (X )=0×13+1×49+2×29=89.9.将一颗骰子连掷100次,则点6出现次数X 的均值E (X )=________.解析:这是100次独立重复试验,X ~B ⎝ ⎛⎭⎪⎫100,16,∴E (X )=100×16=503. 答案:50310.某射手射击所得环数ξ的分布列如下:ξ78910Px 0.1 0.3 y已知ξ的期望E (ξ)=8.9,则y 的值为________.解析:由分布列可得x =0.6-y 且7x +0.8+2.7+10y =8.9,解得y =0.4.答案:0.411.将一个大正方形平均分成9个小正方形,向大正方形区域随机地投掷一个点(每次都能投中),投中最左侧3个小正方形区域的事件记为A ,投中最上面3个小正方形或正中间的1个小正方形区域的事件记为B ,则P (A |B )=____________.解析:根据几何概型,得P (AB )=19,P (B )=49,所以P (A |B )=P (AB )P (B )=14.答案:1412.(2014·浙江卷)随机变量ξ的取值为0,1,2.若P (ξ=0)=15,E (ξ)=1,则D (ξ)=________.解析:设P (ξ=1)=x ,P (ξ=2)=y ,则⎩⎪⎨⎪⎧x +y =45,x +2y =1⇒⎩⎪⎨⎪⎧x =35,y =15,所以D (ξ)=(0-1)2×15+(1-1)2×35+(2-1)2×15=25.答案:2513.(2013·广东珠海高二下学期期末)在一次购物抽奖活动中,假设某6张券中有一等奖券1张,可获价值50元的奖品;有二等奖券1张,每张可获价值20元的奖品;其余4张没有奖.某顾客从此6张中任抽1张,求:(1)该顾客中奖的概率;(2)该顾客参加此活动可能获得的奖品价值的期望值.解析:(1)P =26=13,即该顾客中奖的概率为13.(2)X 的所有可能值为:0,20,50(元),且P (X =0)=C 14C 16=46=23,P (X =20)=C 11C 16=16,P (X =50)=C 11C 16=16,故X 的分布列为:X 0 20 50 P231616E (X )=0×23+20×16+50×16=706=353.所以该顾客参加此活动可能获得奖品价值的期望值是353元. 14.坛子里放着5个相同大小、相同形状的咸鸭蛋,其中有3个是绿皮的,2个是白皮的.如果不放回地依次拿出2个鸭蛋,求:(1)第一次拿出绿皮鸭蛋的概率;(2)第1次和第2次都拿到绿皮鸭蛋的概率;(3)在第1次拿出绿皮鸭蛋的条件下,第2次拿出绿皮鸭蛋的概率.解析:设第1次拿出绿皮鸭蛋为事件A ,第2次拿出绿皮鸭蛋为事件B ,则第1次和第2次都拿出绿皮鸭蛋为事件AB .(1)从5个鸭蛋中不放回地依次拿出2个的基本事件数为μ(Ω)=A 25=20.又μ(A )=A 13×A 14=12.于是P (A )=μ(A )μ(Ω)=1220=35.(2)因为μ(AB )=A 23=6, 所以P (AB )=μ(AB )μ(Ω)=620=310.(3)解法一:由(1)(2)可得,在第1次拿出绿皮鸭蛋的条件下,第2次拿出绿皮鸭蛋的概率为P (B |A )=P (AB )P (A )=31035=12.解法二:因为μ(AB )=6,μ(A )=12, 所以P (B |A )=μ(AB )μ(A )=612=12.15.(2014·甘肃省三诊)甲、乙、丙、丁4名同学被随机地分到A 、B 、C 三个社区参加社会实践,要求每个社区至少有一名同学.(1)求甲、乙两人都被分到A 社区的概率; (2)求甲、乙两人不在同一个社区的概率;(3)设随机变量ξ为四名同学中到A 社区的人数,求ξ的分布列和E (ξ)的值.解析:(1)记甲、乙两人同时到A 社区为事件M ,那么P (M )=A 22C 24A 33=118,即甲、乙两人同时到A 社区的概率是118.(2)记甲、乙两人在同一社区为事件E ,那么 P (E )=A 33C 24A 33=16,所以,甲、乙两人不在同一社区的概率是P (E )=1-P (E )=56.(3)随机变量ξ可能取的值为1,2.事件“ξ=i (i =1,2)”是指有i 个同学到A 社区,则p (ξ=2)=C 24A 22C 24A 33=13.所以p (ξ=1)=1-p (ξ=2)=23,ξ的分布列是:ξ1 2 p2313∴E (ξ)=1×23+2×13=43.16.(2014·陕西卷)在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:作物产量(kg) 300 500 概 率0.50.5作物市场价格(元/kg)6 10 概 率0.40.6(1)设X 表示在这块地上种植1季此作物的利润,求X 的分布列; (2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.解析:(1)设A表示事件“作物产量为300 kg”,B表示事件“作物市场价格为6元/kg”,由题设知P(A)=0.5,P(B)=0.4,∵利润=产量× 市场价格-成本,∴X所有可能的取值为500×10-1000=4000,500×6-1000=2000,300×10-1000=2000,300×6-1000=800.P(X=4000)=P(A)P(B)=(1-0.5)×(1-0.4)=0.3,P(X=2000)=P(A)P(B)+P(A)P(B)=(1-0.5)×0.4+0.5×(1-0.4)=0.5,P(X=800)=P(A)P(B)=0.5×0.4=0.2,所以X的分布列为:X 40002000800P 0.30.50.2(2)设C i表示事件“第i季利润不少于2000元”(i=1,2,3),由题意知C1,C2,C3相互独立,由(1)知,P(C i)=P(X=4000)+P(X=2000)=0.3+0.5=0.8(i=1,2,3),3季的利润均不少于2000元的概率为P(C1C2C3)=P(C1)P(C2)P(C3)=0.83=0.512;3季中有2季利润不少于2000元的概率为P(C1C2C3)+P(C1C2C3)+P(C1C2C3)=3×0.82×0.2=0.384,所以,这3季中至少有2季的利润不少于2000元的概率为0.512+0.384=0.896.。
选修2-3--随机变量及其分布--复习
绵阳市开元中学高2013级高二(下)数学期末复习选修2—3 第二章 随机变量及其分布题卷设计:绵阳市开元中学 王小凤老师 学生姓名一.知识归纳1.离散型随机变量的相关概念(1)随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用字母X 、Y 、ξ、η等表示;(2)离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量。
若ξ是随机变量,a b ηξ=+(a 、b 是常数),则η也是随机变量。
(3)离散型随机变量的分布列:设离散型随机变量X 可能取的值为12i x x x ⋅⋅⋅⋅⋅⋅、,X 取每一个值()1,2,i x i =⋅⋅⋅的概率为()i i p x X P ==,则称表为随机变量X 的概率分布,简称X 的分布列。
(4)离散型随机变量的分布列都具有下面两个性质:(1) 01,2,i p i ≥=⋅⋅⋅,; 12(2) 1P P ++=2.两点分布:若随机变量X 的分布列为:()1==X P p 为则称随机变量X 服从两点分布. 而称成功概率.3.超几何分布:一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则 ,(),0,1,,min{,},,,.k n k M N Mn NC C P X k k m m M n n N M N C --===⋅⋅⋅=≤≤其中即若随机变量X 的分布列如上表,则称随机变量X 服从超几何分布.4.条件概率:对任意事件A 和事件B ,在已知事件A 发生的条件下事件B 发生的概率, 叫做条件概率。
记作()A B P ,读作A 发生的条件下B 发生的概率.$条件概率计算公式()()()()()A P AB P A n AB n A B P ==性质:(1)()10≤≤A B P (2)若B 与C 为互斥事件,则()()()A C P AB P AC B P += 5.相互独立事件定义:事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件注:(1)判断两事件A 、B 是否为相互独立事件,关键是看A (或B )发生与否对 B (或A )发生的概率是否影响,若两种状况下概率不变,则为相互独立.(2)互斥事件是指不可能同时发生的两个事件;相互独立事件是指一事件的发生与否对另一事件发生的概率没影响.(3)如果A 、B 是相互独立事件,则A 与B 、A 与B 、A 与B 也都相互独立. (4)两个相互独立事件A 、B 同时发生的概率()()()B P A P AB P =\(此公式可推广到多个相互独立事件)6.独立重复试验及二项分布定义:在同等条件下进行的,各次之间相互独立的一种试验在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数X 是一个随机变量.如果在一次试验中某事件发生的概率是p ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是()k k n kn P X k C p q -==,(0,1,2,,1)k q p ==-》由于k k n kn C p q -恰好是二项式展开式:00111()n n n k k n kn n n n n np q C p q C p q C p q C p q --+=+++++中的各项的值,所以称这样的随机变量X 服从二项分布,记作(,)X B n p .7.期望数学期望: 则称=ξE +11p x +22p x …++n n p x … 为X 的数学期望,简称期望数学期望的意义:数学期望离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平。
数学人教A选修2-3讲义:第二章 随机变量及其分布章末复习
章末复习学习目标 1.了解条件概率和两个事件相互独立的概念.2.理解离散型随机变量及分布列,并掌握两个特殊的分布列——二项分布和超几何分布.3.理解离散型随机变量的均值、方差的概念,并能应用其解决一些简单的实际问题.4.了解正态分布曲线特点及曲线所表示的意义.1.离散型随机变量的分布列(1)如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量;所有取值可以一一列出的随机变量,称为离散型随机变量.(2)若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则称表为离散型随机变量X 的概率分布列,简称为X 的分布列,具有性质: ①p i ≥ 0,i =1,2,…,n ;②∑ni =1p i =1. 离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和. 2.两点分布如果随机变量X 的分布列为其中0<p <1,q =1-p 则称离散型随机变量X 服从参数为p 的两点分布. 3.超几何分布在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{X =k }发生的概率:P (X =k )=C k M C n -kN -MC nN(k =0,1,2,…,m ),其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *,则称分布列为超几何分布列. 4.条件概率及其性质(1)对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号P (B |A )来表示,其公式为P (B |A )=P (AB )P (A )(P (A )>0). 在古典概型中,若用n (A )表示事件A 中基本事件的个数,则P (B |A )=n (AB )n (A ).(2)条件概率具有的性质: ①0≤P (B |A )≤1;②如果B 和C 是两个互斥事件, 则P (B ∪C |A )=P (B |A )+P (C |A ). 5.相互独立事件(1)对于事件A ,B ,若A 的发生与B 的发生互不影响,则称A ,B 是相互独立事件. (2)若A 与B 相互独立,则P (B |A )=P (B ), P (AB )=P (B |A )P (A )=P (A )P (B ).(3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. (4)若P (AB )=P (A )P (B ),则A 与B 相互独立. 6.二项分布(1)独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有两种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的.(2)在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则P (X =k )=C k n p k (1-p )n -k (k =0,1,2,…,n ),此时称随机变量X 服从二项分布,记为X ~B (n ,p ),并称p 为成功概率. 7.离散型随机变量的均值与方差 若离散型随机变量X 的分布列为(1)均值称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平. (2)方差称D (X )=∑ni =1 (x i -E (X ))2p i 为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,其算术平方根D (X )为随机变量X 的标准差. (3)均值与方差的性质 ①E (aX +b )=aE (X )+b .②D (aX +b )=a 2D (X ).(a ,b 为常数) (4)两点分布与二项分布的均值、方差①若X 服从两点分布,则E (X )=p ,D (X )=p (1-p ). ②若X ~B (n ,p ),则E (X )=np ,D (X )=np (1-p ). 8.正态分布(1)正态曲线:函数φμ,σ(x )=12πσ22()2e x μσ--,x ∈(-∞,+∞),其中μ和σ为参数(σ>0,μ∈R ).我们称函数φμ,σ(x )的图象为正态分布密度曲线,简称正态曲线. (2)正态曲线的性质:①曲线位于x 轴上方,与x 轴不相交; ②曲线是单峰的,它关于直线x =μ对称; ③曲线在x =μ处达到峰值1σ2π; ④曲线与x 轴之间的面积为 1 ;⑤当σ一定时,曲线的位置由μ确定,曲线随着 μ 的变化而沿x 轴平移,如图甲所示; ⑥当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中; σ越大,曲线越“矮胖”,表示总体的分布越分散,如图乙所示.(3)正态分布的定义及表示如果对于任何实数a ,b (a <b ),随机变量X 满足P (a <X ≤b )=ʃb a φμ,σ(x )d x ,则称随机变量X 服从正态分布,记作X ~N (μ,σ2). 正态总体在三个特殊区间内取值的概率值 ①P (μ-σ<X ≤μ+σ)=0.682 6; ②P (μ-2σ<X ≤μ+2σ)=0.954 4;③P (μ-3σ<X ≤μ+3σ)=0.997 4.类型一 条件概率的求法例1 设b 和c 分别是先后抛掷一枚骰子得到的点数,用随机变量ξ表示方程x 2+bx +c =0实根的个数(重根按一个计).求在先后两次出现的点数中有5的条件下,方程x 2+bx +c =0有实根的概率.考点 条件概率的定义及计算公式 题点 直接利用公式求条件概率解 记“先后两次出现的点数中有5”为事件M ,则基本事件总数为6×6=36.其中先后两次出现的点数中有5,共有11种.从而P (M )=1136.记“方程x 2+bx +c =0有实根”为事件N , 若使方程x 2+bx +c =0有实根, 则Δ=b 2-4c ≥0,即b ≥2c .∵b ,c 分别是先后抛掷一枚骰子得到的点数, ∴当先后两次出现的点数中有5时, 若b =5,则c =1,2,3,4,5,6;若c =5,则b =5,6.b =5,c =5只能算一种情况,从而P (MN )=736.∴在先后两次出现的点数中有5的条件下,方程x 2+bx +c =0有实根的概率为P (N |M )=P (MN )P (M )=711. 反思与感悟 条件概率是学习相互独立事件的前提和基础,计算条件概率时,必须搞清要求的条件概率是在什么条件下发生的概率.一般地,计算条件概率常有两种方法 (1)P (B |A )=P (AB )P (A ).(2)P (B |A )=n (AB )n (A ).在古典概型下,n (AB )指事件A 与事件B 同时发生的基本事件个数;n (A )是指事件A 发生的基本事件个数.跟踪训练1 已知男人中有5%患色盲,女人中有0.25%患色盲,从100个男人和100个女人中任选一人.(1)求此人患色盲的概率;(2)如果此人是色盲,求此人是男人的概率.(以上各问结果写成最简分式形式) 考点 条件概率的性质及应用题点 条件概率的性质的简单应用解 设“任选一人是男人”为事件A ,“任选一人是女人”为事件B ,“任选一人是色盲”为事件C .(1)此人患色盲的概率 P (C )=P (AC )+P (BC ) =P (A )P (C |A )+P (B )·P (C |B ) =100200×5100+100200×0.25100=21800. (2)由(1)得P (AC )=5200,又因为P (C )=21800,所以P (A |C )=P (AC )P (C )=520021800=2021.类型二 相互独立事件的概率与二项分布例2 天气预报,在元旦期间甲、乙两地都降雨的概率为16,至少有一个地方降雨的概率为23,已知甲地降雨的概率大于乙地降雨的概率,且在这段时间甲、乙两地降雨互不影响. (1)分别求甲、乙两地降雨的概率;(2)在甲、乙两地3天假期中,仅有一地降雨的天数为X ,求X 的分布列、均值与方差. 考点 二项分布的计算及应用 题点 求二项分布的分布列解 (1)设甲、乙两地降雨的事件分别为A ,B ,且P (A )=x ,P (B )=y . 由题意得⎩⎪⎨⎪⎧xy =16,1-(1-x )(1-y )=23,x >y ,解得⎩⎨⎧x =12,y =13.所以甲地降雨的概率为12,乙地降雨的概率为13.(2)在甲、乙两地中,仅有一地降雨的概率为P =P (A B )+P (A B )=P (A )P (B )+P (A )P (B ) =12×23+12×13=12. X 的可能取值为0,1,2,3. P (X =0)=C 03⎝⎛⎭⎫123=18, P (X =1)=C 13⎝⎛⎭⎫121⎝⎛⎭⎫1-122=38,P (X =2)=C 23⎝⎛⎭⎫122⎝⎛⎭⎫1-12=38, P (X =3)=C 33⎝⎛⎭⎫1-123=18, 所以X 的分布列为所以E (X )=0×18+1×38+2×38+3×18=32.方差D (X )=18×⎝⎛⎭⎫0-322+38×⎝⎛⎭⎫1-322+38×⎝⎛⎭⎫2-322+18×⎝⎛⎭⎫3-322=34. 反思与感悟 (1)求相互独立事件同时发生的概率需注意的三个问题①“P (AB )=P (A )P (B )”是判断事件是否相互独立的充要条件,也是解答相互独立事件概率问题的唯一工具.②涉及“至多”“至少”“恰有”等字眼的概率问题,务必分清事件间的相互关系. ③公式“P (A ∪B )=1-P (A B )”常应用于相互独立事件至少有一个发生的概率. (2)二项分布的判定与二项分布有关的问题关键是二项分布的判定,可从以下几个方面判定: ①每次试验中,事件发生的概率是相同的. ②各次试验中的事件是相互独立的.③每次试验只有两种结果:事件要么发生,要么不发生. ④随机变量是这n 次独立重复试验中某事件发生的次数.跟踪训练2 在一次抗洪抢险中,准备用射击的办法引爆从上游漂流而下的一个巨大汽油罐,已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆,每次射击是相互独立的,且命中的概率都是23.(1)求油灌被引爆的概率;(2)如果引爆或子弹打光则停止射击,设射击次数为ξ,求ξ不小于4的概率. 考点 互斥、对立、独立重复试验的概率问题 题点 互斥事件、对立事件、独立事件的概率问题解 (1)油罐引爆的对立事件为油罐没有引爆,没有引爆的可能情况是:射击5次只击中一次或一次也没有击中,故该事件的概率为 P =C 15×23×⎝⎛⎭⎫134+⎝⎛⎭⎫135, 所以所求的概率为1-P =1-⎣⎡⎦⎤C 15×23×⎝⎛⎭⎫134+⎝⎛⎭⎫135=232243. (2)当ξ=4时,记事件为A , 则P (A )=C 13×23×⎝⎛⎭⎫132×23=427,当ξ=5时,意味着前4次射击只击中一次或一次也未击中,记为事件B . 则P (B )=C 14×23×⎝⎛⎭⎫133+⎝⎛⎭⎫134=19,所以所求概率为P (A ∪B )=P (A )+P (B )=427+19=727.类型三 离散型随机变量的均值与方差例3 为回馈顾客,某商场拟通过摸球兑奖的方式对1 000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求: ①顾客所获的奖励额为60元的概率; ②顾客所获的奖励额的分布列及均值;(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由. 考点 均值与方差的应用 题点 均值与方差的综合应用 解 (1)设顾客所获的奖励额为X , ①依题意,得P (X =60)=C 11·C 13C 24=12,即顾客所获的奖励额为60元的概率为12.②依题意得X 的所有可能取值为20,60, P (X =20)=C 23C 24=12,P (X =60)=12,即X 的分布列为所以这位顾客所获奖励额的均值为E (X )=20×12+60×12=40.(2)根据商场的预算,每位顾客的平均奖励额为60元,所以先寻找均值为60元的可能方案. 对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以均值不可能为60元.如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以均值也不可能为60元,因此可能的方案是(10,10,50,50)记为方案1,对于面值由20元和40元组成的情况,同理可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40), 记为方案2,以下是对这两个方案的分析:对于方案1,即方案(10,10,50,50),设顾客所获的奖励额为X 1,则X 1的分布列为X 1的均值E (X 1)=20×16+60×23+100×16=60.X 1的方差D (X 1)=(20-60)2×16+(60-60)2×23+(100-60)2×16=1 6003,对于方案2,即方案(20,20,40,40),设顾客所获的奖励额为X 2,则X 2的分布列为X 2的均值E (X 2)=40×16+60×23+80×16=60,X 2的方差D (X 2)=(40-60)2×16+(60-60)2×23+(80-60)2×16=4003.由于两种方案的奖励额的均值都符合要求,但方案2奖励额的方差比方案1小,所以应该选择方案2.反思与感悟 求离散型随机变量X 的均值与方差的步骤 (1)理解X 的意义,写出X 可能的全部取值; (2)求X 取每个值的概率或求出函数P (X =k ); (3)写出X 的分布列;(4)由分布列和均值的定义求出E (X );(5)由方差的定义,求D (X ),若X ~B (n ,p ),则可直接利用公式求,E (X )=np ,D (X )=np (1-p ).跟踪训练3 某产品按行业生产标准分成8个等级,等级系数X 依次为1,2,…,8,其中X ≥5为标准A ,X ≥3为标准B ,已知甲厂执行标准A 生产该产品,产品的零售价为6元/件;乙厂执行标准B 生产该产品,产品的零售价为4元/件,假定甲、乙两厂的产品都符合相应的执行标准.(1)已知甲厂产品的等级系数X 1的分布列如下表:且X 1的均值E (X 1)=6,求a ,b 的值;(2)为分析乙厂产品的等级系数X 2,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下: 3 5 3 3 8 5 5 6 3 4 6 3 4 7 5 3 4 8 5 3 8 3 4 3 4 4 7 5 6 7用该样本的频率分布估计总体分布,将频率视为概率,求等级系数X 2的均值;(3)在(1)(2)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具有可购买性?说明理由.注:①产品的“性价比”=产品的等级系数的均值产品的零售价;②“性价比”高的产品更具有可购买性. 考点 均值与方差的应用 题点 均值与方差的综合应用 解 (1)∵E (X 1)=6,∴5×0.4+6a +7b +8×0.1=6, 即6a +7b =3.2,又由X 1的分布列得0.4+a +b +0.1=1, 即a +b =0.5.由⎩⎪⎨⎪⎧ 6a +7b =3.2,a +b =0.5,解得⎩⎪⎨⎪⎧a =0.3,b =0.2.(2)由已知得,样本的频率分布表如下:用该样本的频率分布估计总体分布,将频率视为概率,可得等级系数X 2的分布列如下:∴E (X 2)=3×0.3+4×0.2+5×0.2+6×0.1+7×0.1+8×0.1=4.8,即乙厂产品的等级系数的均值为4.8.(3)乙厂的产品更具有可购买性,理由如下: 甲厂产品的等级系数的均值为6,价格为6元/件, 其性价比为66=1,乙厂产品的等级系数的均值等于4.8,价格为4元/件, 其性价比为4.84=1.2.∴乙厂的产品更具有可购买性. 类型四 正态分布的应用例4 为了评估某大米包装生产设备的性能,从该设备包装的大米中随机抽取100袋作为样本,称其重量为经计算:样本的平均值μ=10.10,标准差σ=0.21.(1)为评判该生产线的性能,从该生产线中任抽取一袋,设其重量为X (kg),并根据以下不等式进行评判.①P (μ-σ<X ≤μ+σ)≥0.682 6; ②P (μ -2σ<X ≤μ+2σ)≥0.954 4; ③P (μ-3σ<X ≤μ+3σ)≥0.997 4;若同时满足三个不等式,则生产设备为甲级;满足其中两个,则为乙级;仅满足其中一个,则为丙级;若全不满足,则为丁级.请判断该设备的等级;(2)将重量小于或等于μ-2σ与重量大于μ+2σ的包装认为是不合格的包装,从设备的生产线上随机抽取5袋大米,求其中不合格包装袋数Y 的均值E (Y ). 考点 正态分布的应用 题点 正态分布的综合应用 解 (1)由题意得P (μ-σ<X ≤μ+σ)=P (9.89<X ≤10.31)=80100=0.8>0.682 6,P (μ-2σ<X ≤μ+2σ)=P (9.68<X ≤10.52)=94100=0.94<0.954 4,P (μ-3σ<X ≤μ+3σ)=P (9.47<X ≤10.73)=99100=0.99<0.997 4,所以该生产设备为丙级.(2)由表知,不合格的包装共有6袋,则从设备的生产线上随机抽一袋不合格的概率P =6100=350, 由题意知Y 服从二项分布,即Y ~B ⎝⎛⎭⎫5,350, 所以E (Y )=5×350=0.3.反思与感悟 正态曲线的应用及求解策略解答此类题目的关键在于将待求的问题向(μ-σ,μ+σ],(μ-2σ,μ+2σ],(μ-3σ,μ+3σ]这三个区间进行转化,然后利用上述区间的概率求出相应概率,在此过程中依然会用到化归思想及数形结合思想.跟踪训练4 某市去年高考考生成绩X 服从正态分布N (500,502),现有25 000名考生,试确定考生成绩在550分~600分的人数. 考点 正态分布的应用 题点 正态分布的实际应用解 ∵考生成绩X ~N (500,502),∴μ=500,σ=50, ∴P =(550<X ≤600)=12[P (500-2×50<X ≤500+2×50)-P (500-50<X ≤500+50)] =12(0.954 4-0.682 6)=0.135 9. 故考生成绩在550分~600分的人数约为25 000×0.135 9≈3 398.1.抛掷一枚骰子,观察出现的点数,若已知出现的点数不超过4,则出现的点数是奇数的概率为( )A.13B.14C.16D.12考点 条件概率的定义及计算公式 题点 利用缩小基本事件空间求条件概率 答案 D解析 设抛掷一枚骰子出现的点数不超过4为事件A ,抛掷一枚骰子出现的点数是奇数为事件B ,则P (B |A )=n (AB )n (A )=24=12.故选D.2.国庆节放假,甲、乙、丙三人去北京旅游的概率分别是13,14,15.假定三人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为( ) A.5960 B.35 C.12 D.160考点 相互独立事件的性质及应用 题点 独立事件与互斥事件的综合应用 答案 B解析 设“国庆节放假,甲、乙、丙三人去北京旅游”分别为事件A ,B ,C ,则A ,B ,C 相互独立且P (A )=13,P (B )=14,P (C )=15,∴至少有1人去北京旅游的概率为1-P (A B C )=1-P (A )·P (B )·P (C )=1-⎝⎛⎭⎫1-13×⎝⎛⎭⎫1-14×⎝⎛⎭⎫1-15=1-25=35,故选B. 3.某班有50名学生,一次考试后的数学成绩ξ~N (110,102),若P (100≤ξ≤110)=0.34,则估计该班学生的数学成绩在120分以上(含120分)的人数为( ) A .10 B .9 C .8 D .7 考点 正态分布的应用 题点 正态分布的实际应用 答案 C解析 ∵数学成绩ξ服从正态分布N (110,102), 且P (100≤ξ≤110)=0.34,∴P (ξ≥120)=P (ξ<100)=12×(1-0.34×2)=0.16,∴该班数学成绩在120分以上的人数为0.16×50=8.4.设随机变量ξ的分布列为P (ξ=k )=m ·⎝⎛⎭⎫23k ,k =1,2,3,则m 的值为 . 考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求参数 答案2738解析 因为P (ξ=1)+P (ξ=2)+P (ξ=3)=1, 即m ⎣⎡⎦⎤23+⎝⎛⎭⎫232+⎝⎛⎭⎫233=1,所以m =2738.5.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p ,且三个公司是否让其面试是相互独立的.记X 为该毕业生得到面试的公司个数,若P (X =0)=112,则随机变量X 的均值E (X )= .考点 相互独立事件的性质及应用 题点 独立事件与分布列 答案 53解析 随机变量X 的可能取值是0,1,2,3.由题意知P (X =0)=13(1-p )2=112,所以p =12,于是P (X =1)=23×12×12+13×12×12+13×12×12=13,P (X =3)=23×12×12=16,P (X =2)=1-P (X =0)-P (X =1)-P (X =3)=1-112-13-16=512,所以均值E (X )=0×112+1×13+2×512+3×16=53.1.条件概率的两个求解策略(1)定义法:计算P (A ),P (B ),P (AB ),利用P (A |B )=P (AB )P (B )⎝⎛⎭⎫或P (B |A )=P (AB )P (A )求解.(2)缩小样本空间法:利用P (B |A )=n (AB )n (A )求解. 其中(2)常用于古典概型的概率计算问题.2.求解实际问题的均值与方差的解题思路:先要将实际问题数学化,然后求出随机变量的分布列,同时要注意运用两点分布、二项分布等特殊分布的均值、方差公式以及均值与方差的线性性质.一、选择题1.已知某一随机变量X 的分布列如下,且E (X )=6.3,则a 的值为( )A.5 B .6 C .7 D .8 考点 离散型随机变量的可能取值 题点 离散型随机变量的结果 答案 C解析 由题意和分布列的性质得0.5+0.1+b =1,且E (X )=4×0.5+0.1a +9b =6.3, 解得b =0.4,a =7.2.某工程施工在很大程度上受当地年降水量的影响,施工期间的年降水量X (单位:mm)对工期延误天数Y 的影响及相应的概率P 如下表所示:在年降水量X 至少是100的条件下,工期延误小于30天的概率为( ) A .0.7 B .0.5 C .0.3D .0.2 考点 条件概率的定义及计算公式 题点 直接利用公式求条件概率 答案 B解析 设事件A 为“年降水量X 至少是100”,事件B 为“工期延误小于30天”,则P (B |A )=P (AB )P (A )=0.2+0.10.2+0.1+0.3=0.5,故选B. 3.从应届高中毕业生中选拔飞行员,已知这批学生体型合格的概率为13,视力合格的概率为16,其他几项标准合格的概率为15,从中任选一名学生,则该生均合格的概率为(假设各项标准互不影响)( ) A.49 B.59 C.45D.190考点 相互独立事件同时发生的概率计算 题点 求多个相互独立事件同时发生的概率 答案 D解析 该生各项均合格的概率为13×16×15=190.4.设随机变量X 服从正态分布N (3,4),则P (X <1-3a )=P (X >a 2+7)成立的一个必要不充分条件是( ) A .a =1或2 B .a =±1或2 C .a =2D .a =3-52考点 正态分布密度函数的概念题点正态曲线性质的应用答案 B解析∵X~N(3,4),P(X<1-3a)=P(X>a2+7),∴(1-3a)+(a2+7)=2×3,∴a=1或2.故选B.5.(2017·福建莆田二十四中高二期中)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648 B.0.432C.0.36 D.0.312考点互斥、对立、独立重复试验的概率问题题点互斥事件、对立事件、独立事件的概率问题答案 A解析根据独立重复试验公式得,该同学通过测试的概率为C230.62×0.4+C330.63=0.648. 6.命题r:随机变量ξ~N(3,σ2),若P(ξ≤2)=0.4,则P(ξ≤4)=0.6.命题q:随机变量η~B(n,p),且E(η)=200,D(η)=100,则p=0.5.则()A.r正确,q错误B.r错误,q正确C.r错误,q也错误D.r正确,q也正确考点正态分布的应用题点正态分布的综合应用答案 D解析因为随机变量ξ~N(3,σ2),所以正态曲线关于x=3对称,又P(ξ≤2)=0.4,则P(ξ>4)=P(ξ≤2)=0.4,所以P(ξ≤4)=0.6,所以r是正确的;随机变量η~B(n,p),且E(η)=np=200,D(η)=np(1-p)=100,所以200(1-p)=100,解得p=0.5,所以q是正确的.故选D. 7.节日期间,某种鲜花进货价是每束2.5元,销售价是每束5元;节日卖不出去的鲜花以每束1.6元价格处理.根据前五年销售情况预测,节日期间这种鲜花的需求量X服从如表所示的分布列若进这种鲜花500束,则利润的均值为()A.706元B.690元C.754元D.720元考点 离散型随机变量均值的概率与计算 题点 离散型随机变量均值的计算 答案 A解析 因为E (X )=200×0.2+300×0.35+400×0.3+500×0.15=340, 所以利润的均值为340×(5-2.5)-(500-340)×(2.5-1.6)=706元,故选A.8.某班50名学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].从样本成绩不低于80分的学生中随机选取2人,这2人中成绩在90分以上(含90分)的人数为ξ,则ξ的均值为( )A.13B.12C.23D.34考点 常见的几种均值题点 与排列、组合有关的随机变量的均值 答案 B解析 由频率分布直方图知,3×0.006×10+0.01×10+0.054×10+10x =1,解得x =0.018,∴成绩不低于80分的学生人数为(0.018+0.006)×10×50=12,成绩在90分以上(含90分)的学生人数为0.006×10×50=3,∴ξ的可能取值为0,1,2,P (ξ=0)=C 29C 212=611,P (ξ=1)=C 13×C 19C 212=922,P (ξ=2)=C 23C 212=122,∴E (ξ)=0×611+1×922+2×122=12.二、填空题9.盒中有10支螺丝钉,其中3支是坏的,现在从盒中不放回地依次抽取两支,那么在第一支抽取为好的条件下,第二支是坏的概率为 . 考点 条件概率的定义及计算公式 题点 直接利用公式求条件概率 答案 13解析 记事件A 为“第一支抽取为好的”,事件B 为“第二支是坏的”,则 P (A )=710,P (AB )=710×39=730,∴P (B |A )=P (AB )P (A )=13.10.甲、乙两人进行跳绳比赛,规定:若甲赢一局,比赛结束,甲胜出;若乙赢两局,比赛结束,乙胜出.已知每一局甲、乙二人获胜的概率分别为25,35,则甲胜出的概率为 .考点 互斥、对立、独立重复试验的概率问题 题点 互斥事件、对立事件、独立事件的概率问题 答案1625解析 方法一 甲胜的情况为:①举行一局比赛,甲胜出,比赛结束,②举行两局比赛,第一局乙胜,第二局甲胜,其概率分别为25,35×25,且这两个事件是互斥的,所以甲胜出的概率为25+35×25=1625. 方法二 因为比赛结果只有甲胜出和乙胜出两个结果,而乙胜出的情况只有一种,举行两局比赛都是乙胜出,其概率为35×35=925,所以甲胜出的概率为1-925=1625.11.一台机器生产某种产品,如果生产一件甲等品可获得50元,生产一件乙等品可获得30元,生产一件次品,要赔20元,已知这台机器生产出甲等品、乙等品和次品的概率分别为0.6,0.3和0.1,则这台机器每生产一件产品平均预期获利 元. 考点 离散型随机变量的均值的概念与计算 题点 离散型随机变量均值的计算 答案 37解析 设生产一件该产品可获利钱数为X ,则随机变量X 的取值可以是-20,30,50.依题意,X 的分布列为故E (X )=-20×0.1+30×0.3+50×0.6=37(元).12.一批玉米种子的发芽率是0.8,每穴只要有一粒发芽,就不需补种,否则需要补种.则每穴至少种 粒,才能保证每穴不需补种的概率大于98%.(lg 2=0.301 0) 考点 互斥、对立、独立重复试验的概率问题题点 互斥事件、对立事件、独立事件的概率问题 答案 3解析 记事件A 为“种一粒种子,发芽”, 则P (A )=0.8,P (A )=1-0.8=0.2.因为每穴种n 粒相当于做了n 次独立重复试验,记事件B 为“每穴至少有一粒种子发芽”,则P (B )=C 0n 0.80(1-0.8)n =0.2n,所以P (B )=1-P (B )=1-0.2n . 根据题意,得P (B )>98%,即0.2n <0.02. 两边同时取以10为底的对数,得 n lg 0.2<lg 0.02,即n (lg 2-1)<lg 2-2, 所以n >lg 2-2lg 2-1=-1.699 0-0.699 0≈2.43.因为n ∈N *,所以n 的最小正整数值为3. 三、解答题13.一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3.从盒中任取3张卡片. (1)求所取3张卡片上的数字完全相同的概率;(2)用X 表示所取3张卡片上的数字的中位数,求X 的分布列与均值. (注:若三个数a ,b ,c 满足a ≤b ≤c ,则称b 为这三个数的中位数) 考点 常见的几种均值题点 与排列、组合有关的随机变量的均值解 (1)由古典概型的概率计算公式知所求概率P =C 34+C 33C 39=584. (2)X 的所有可能取值为1,2,3,则P (X =1)=C 24×C 15+C 34C 39=1742, P (X =2)=C 13×C 14×C 12+C 23×C 16+C 33C 39=4384, P (X =3)=C 22×C 17C 39=112. 故X 的分布列为从而E (X )=1×1742+2×4384+3×112=4728.四、探究与拓展14.某公司在迎新年晚会上举行抽奖活动,有甲、乙两个抽奖方案供员工选择.方案甲:员工最多有两次抽奖机会,每次抽奖的中奖率均为45.第一次抽奖,若未中奖,则抽奖结束.若中奖,则通过抛一枚质地均匀的硬币,决定是否继续进行第二次抽奖.规定:若抛出硬币,反面朝上,员工则获得500元奖金,不进行第二次抽奖;若正面朝上,员工则须进行第二次抽奖且在第二次抽奖中,若中奖,则获得奖金1 000元;若未中奖,则所获得的奖金为0元.方案乙:员工连续三次抽奖,每次中奖率均为25,每次中奖均可获得奖金400元.(1)求某员工选择方案甲进行抽奖所获奖金X (元)的分布列;(2)试比较某员工选择方案乙与选择方案甲进行抽奖.哪个方案更划算? 考点 均值、方差的综合应用 题点 均值与方差在实际中的应用解 (1)由题意得,X 的所有可能取值为0,500,1 000,则P (X =0)=15+45×12×15=725,P (X =500)=45×12=25,P (X =1 000)=45×12×45=825,所以某员工选择方案甲进行抽奖所获奖金X (元)的分布列为(2)由(1)可知,选择方案甲进行抽奖所获奖金X 的均值E (X )=500×25+1 000×825=520,若选择方案乙进行抽奖,中奖次数ξ~B ⎝⎛⎭⎫3,25, 则E (ξ)=3×25=65,抽奖所获奖金Y 的均值E (Y )=E (400ξ)=400E (ξ)=480,故选择方案甲较划算.15.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式;(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:以100天记录的各需求量的频率作为各需求量发生的概率.①若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列、均值及方差; ②若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由. 考点 均值、方差的综合应用 题点 均值与方差在实际中的应用 解 (1)当日需求量n ≥16时,利润y =80. 当日需求量n <16时,利润y =10n -80.所以当天的利润y 关于当天需求量n 的函数解析式为y =⎩⎪⎨⎪⎧10n -80,n <16,80,n ≥16.(n ∈N ) (2)①X 可能的取值为60,70,80,并且P (X =60)=0.1,P (X =70)=0.2,P (X =80)=0.7. 故X 的分布列为E (X )=60×0.1+70×0.2+80×0.7=76,D (X )=(60-76)2×0.1+(70-76)2×0.2+(80-76)2×0.7=44. ②方法一:花店一天应购进16枝玫瑰花. 理由如下:若花店一天购进17枝玫瑰花,Y 表示当天的利润(单位:元),那么Y 的分布列为E (Y )=55×0.1+65×0.2+75×0.16+85×0.54=76.4,D (Y )=(55-76.4)2×0.1+(65-76.4)2×0.2+(75-76.4)2×0.16+(85-76.4)2×0.54=112.04. 由以上的计算结果可以看出,D (X )<D (Y ),即购进16枝玫瑰花时利润波动相对较小.另外,虽然E (X )<E (Y ),但两者相差不大,故花店一天应购进16枝玫瑰花. 方法二:花店一天应购进17枝玫瑰花.理由如下:若花店一天购进17枝玫瑰花,Y表示当天的利润(单位:元),那么Y的分布列为E(Y)=55×0.1+65×0.2+75×0.16+85×0.54=76.4.由以上的计算结果可以看出,E(X)<E(Y),即购进17枝玫瑰花时的平均利润大于购进16枝时的平均利润.故花店一天应购进17枝玫瑰花.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章概率总结
一、知识点
1.随机试验的特点:
①试验可以在相同的情形下重复进行;
②试验的所有可能结果是明确可知的,并且不止一个
③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会
出现哪一个结果.
2.分类
随机变量
(如果随机试验可能出现的结果可以用一个变量X来表示,并且X是随着试验的结
果的不同而变化,那么这样的变量叫做随机变量.随机变量常用大写字母X、Y等
或希腊字母ξ、η等表示。
)
离散型随机变量:连续型随机变量:
3.离散型随机变量的分布列
一般的,设离散型随机变量X可能取的值为x1, x2, ,x i , ,x n X取每一个值xi(i=1,2,)的概率P(ξ=x i)=P i,则称表
为离散型随机变量X 的概率分布,简称分布列
性质:①----------------------------------------------
②-------------------------------------------------.
二点分布
如果随机变量X的分布列为:
其中0<p<1,q=1-p,则称离散型随机变量X服从参数p 的二点分布二点分布的应用:如抽取彩票是否中奖问题、新生婴儿的性别问题等.
超几何分布
一般地, 设总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n(n ≤N)件, 这n 件中所含这类物品件数X 是一个离散型随机变量,
则它取值为k 时的概率为()(0,1,2,,)k n k M N M
n
N
C C P X k k m C --===,其中
则称随机变量X 的分布列
,
为超几何分布列,且称随机变量X 服从参数N 、M 、n 的超几何分布 注意:(1)超几何分布的模型是不放回抽样;
(2)超几何分布中的参数是N 、M 、n ,其意义分别是总体中的个体总数、N 中一类的
总数、样本容量
条件概率
1.定义:对任意事件A 和事件B ,在已知事件A 发生的条件下事件B 发生的概率,
叫做条件概率.记作P(B|A),读作A 发生的条件下B 的概率
2.事件的交(积):由事件A 和事件B 同时发生所构成的事件D ,称为事件A 与事件B
的交(或积).记作D=A ∩B 或D=AB
3.条件概率计算公式:
例题、10个产品中有7个正品、3个次品,从中不放回地抽取两个,已知第一个取到次品,
求第二个又取到次品的概率.
相互独立事件
1.定义:事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件
叫做相互独立事件
两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。
则有
如果事件A1,A2,…An 相互独立,那么这n 个事件同时发生的概率, 等于每个事件发生的概率的积。
即: P (A1·A2·…·An )=P (A1)·P (A2)·…·P(An)
3解题步骤
说明(1)判断两事件A 、B 是否为相互独立事件,关键是看A (或B )发生与否对B (或A )发生的概率是否影响,若两种状况下概率不变,则为相互独立. (2)互斥事件是指不可能同时发生的两个事件;相互独立事件是指一事件的发生与否对另一事件发生的概率没影响.
(3)如果A 、B 是相互独立事件,则A 的补集与B 的补集、A 与B 的补集、A 的补集与B 也都相互独立.
例题、一袋中有2个白球,2个黑球,做一次不放回抽样试验,从袋中连取2个球,观察球的颜色情况,记“第一个取出的是白球”为事件A,“第二个取出的是白球”
为事件B,试问A与B是不是相互独立事件?
独立重复试验
1.定义:在同等条件下进行的,各次之间相互独立的一种试验
2.说明:
①这种试验中,每一次试验只有两种结果,即某事件要么发生,要么不发生,并且任何
一次试验中发生的概率都是一样的
②每次试验是在同样条件下进行;
③每次试验间又是相互独立的,互不影响.
二项分布
1:设在n次独立重复试验中某个事件A发生的次数,A发生次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是p,事件A不发生的概率为q=1-p,那么在n次独立重复试验中随机变量ξ的概率分布如下:
由于
k
n
k
k
n
q
p
C-
恰好是二项展开式
b
C
b
a
C
b
a
C
a
C
b
a n n
n
r
r
n
r
n
n
n
n
n
n
+
+
+
+
+
=-
-
+
1
1
1
)
(
中的第k+1 项,所以,称这样的随机变量ξ服从二项分布,记作ξ~B(n,p) ,
解题步骤
例题、某厂生产电子元件,其产品的次品率为5%.现从一批产品中任意地连续取出2件,写出其中次品数ξ的概率分布.
离散型随机变量的期望和方差
一般地,若离散型随机变量ξ的概率分布为
则称Eξ=为ξ的数学期望或平均数、均值,数学期望又简称为期望.说明:(1)数学期望的一个特征数,它反映了离散型随机变量取值的平均水平(2)一般地,在有限取值离散型随机变量ξ的概率分布中,令p1=p2=…=pn,则有
p1=p2=…=pn = ,Eξ=(x1+x2+…+xn),所以ξ的数学期望又称为平均数、均值(3)随机变量的数学期望与样本的平均值的关系:前者是常数,不依赖样本抽取;
后者是一个随机变量.
D ξ= 叫随机变量ξ的均方差,简称方差。
说明:①、D ξ的算术平方根√D ξ—— 随机变量ξ的标准差,记作σξ; ②、标准差与随机变量的单位相同;
③、随机变量的方差与标准差都反映了随机变量取值的稳定与波动,集中与分散的程度。
若数据无限增多且组距无限缩小,那么频率分布直方图的顶边缩小乃至形成一条光滑的曲线, 我们称此曲线为概率密度曲线.
正态分布
若概率密度曲线就是或近似地是函数
)
,(,21
)(2
22)(+∞-∞∈=
--
x e x f x σμσ
π的图像,
其中解析式中的实数μ、)0(>σσ是参数,分别表示总体的平均数与标准差. 则其分布叫正态分布,记作 f( x )的图象称为正态曲线
2,σξμξ==D E 基本性质:
①曲线在x 轴的上方,与x 轴不相交.
②曲线关于直线x=μ对称,且在x=μ时位于最高点.
③当时μ<x ,曲线上升;当时μ>x ,曲线下降.并且当曲线向左、右两边无限延伸时, 以x 轴为渐近线,向它无限靠近.
④当μ一定时,曲线的形状由σ确定.σ越大,曲线越“矮胖”,表示总体的分布越分散;
σ越小,曲线越“瘦高”,表示总体的分布越集中. ⑤当σ相同时,正态分布曲线的位置由期望值μ来决定. ⑥正态曲线下的总面积等于1.
3σ原则表格
)
,(2σμN。