2013年高考真题分类汇编:考点8 函数的图象 Word版含解析
2013年高考真题分类汇编:考点30 合情推理与演绎推理 Word版含解析
考点30 合情推理与演绎推理一、选择题1. (2013·广东高考理科·T8)设整数4n ≥,集合{1,2,3,,}X n =.令集合S ={(,,)x y z |,,x y z X ∈,且三条件,,x y z y z x z x y <<<<<<恰有一个成立},若(,,)x y z 和(,,)z w x 都在S 中,则下列选项正确的是( )A.(,,),(,,)y z w S x y w S ∈∉B.(,,),(,,)y z w S x y w S ∈∈C.(,,),(,,)y z w S x y w S ∉∈D.(,,),(,,)y z w S x y w S ∉∉【解题指南】本题在集合背景下利用新定义考查推力论证能力,应理解好元素在集合S 中的含义.【解析】选B. (,,)x y z S ∈即,,x y z X ∈,且三条件,,x y z y z x z x y <<<<<<恰有一个成立,则,,x y z 是X 中两两互不相同的三个数(不妨设x y z <<),同理,(,,)z w x S ∈意味着,,z w x 也两两互不相同(由于x z <,w x z <<或x z w <<有且只有一个成立),对于(,,)y z w 由于y z <,且w x z w y z <<⇒<<或x z w y z w <<⇒<<,所以(,,)y z w S ∈.同理,对于(,,)x y w 由于x y <,x z w x y w <<⇒<<或w x z w x y <<⇒<<,所以(,,)x y w S ∈.二、填空题2.(2013·山东高考文科·T16)与(2013·山东高考理科·T16)相同 定义“正对数”:0,01ln ln ,1x x x x +<<⎧=⎨≥⎩,现有四个命题: ①若0,0a b >>,则ln ()ln b a b a ++=②若0,0a b >>,则ln ()ln ln ab a b +++=+③若0,0a b >>,则ln ()ln ln aa b b+++≥- ④若0,0a b >>,则ln ()ln ln ln 2a b a b ++++≤++ 其中的真命题有: (写出所有真命题的编号)【解题指南】 本题为新定义问题,要注意新定义的函数的特点,根据新定义解决问题.【解析】①当1,0a b >>时,1b a >,ln ()ln ln ,ln ln b b a a b a b a b a ++===,所以ln ()ln b a b a ++=成立.当01,0a b <<>时,01b a <<,此时ln ()0,ln 0b a b a ++==,即ln ()ln b a b a ++=成立.综上ln ()ln b a b a ++=恒成立. ②当1,a e b e==时,ln ()ln10,ln ln 1,ln 0ab a e b +++=====,所以ln ()ln ln ab a b +++=+不成立.对于③,当a ≥b>0时,a b≥1,此时ln ()ln()0,a ab b+=≥, 当a ≥b ≥1时,ln +a-ln +b=lna-lnb=ln()a b , 此时命题成立;当a>1>b>0时,ln +a-ln +b=lna,此时ab>a>1,故命题成立;同理可验证当1>a ≥b>0时, ln ()a b +≥ln +a-ln +b 成立;当a b <1时,同理可验证是正确的,故③正确;对于④,可分a ≤1,b ≤1与两者中仅有一个小于等于1、两者都大于1三类讨论,依据定义判断出④是正确的.【答案】①③④3. (2013·陕西高考理科·T14)观察下列等式:211= ,22123-=-,2221263+-=,2222124310-+-=-,…照此规律, 第n 个等式可为 .【解题指南】通过观察发现:“=”号右侧数的绝对值为首项为1,公差为1的等差数列的前n 项和,从而根据等差数列求和公式求解.【解析】12=1,12-22=-(1+2),12-22+32=1+2+3,12-22+32-42=-(1+2+3+4),…,12-22+32-42+…+(-1)n+1n 2=(-1)n+1(1+2+…+n) =n 1n(n 1)1)2(-++ 【答案】222n 1n(n 1)1231)2n-12--(-1)n (-++++= 4. (2013·陕西高考文科·T13)观察下列等式:23(11)21(21)(22)213(31)(32)(33)2135+=⨯++=⨯⨯+++=⨯⨯⨯…照此规律, 第n 个等式可为 .【解题指南】根据已经给出的部分规律推知整体的规律,然后根据这些规律和相关的数学知识进行推理或计算,从而找到问题的答案.【解析】考察规律的观察、概况能力,注意项数,开始值和结束值. 第n 个等式可为: n (n 1)(n 2)(n 3)(n n)2135(2n 1)++++=⋅⋅⋅⋅⋅- 【答案】n (n 1)(n 2)(n 3)(n n)2135(2n 1)++++=⨯⨯⨯⨯⨯-。
2013年高考试题分项版解析数学(理) 专题02 函数(Word精析版)(2)
第二章 函数 一.基础题组1.【2013年普通高等学校招生全国统一考试(江西卷)理】函数错误!未找到引用源。
的定义域为 ()A.(0,1)B.[0,1)C.(0,1]D.[0,1]2.【2013年普通高等学校统一考试试题大纲全国理科】已知函数()f x 的定义域为(1,0)-,则函数(21)f x +的定义域( )A .(1,1)-B .1(1,)2--C .(1,0)-D .1(,1)23.【2013年普通高等学校招生全国统一考试(陕西卷)】设全集为R, 函数()f x =M, 则C M R 为 ( )(A) [-1,1](B) (-1,1)(C) ,1][1,)(∞-⋃+∞-(D) ,1)(1,)(∞-⋃+∞-4.【2013年普通高等学校招生全国统一考试(广东卷)理】定义域为R 的四个函数3y x =,2x y =,21y x =+,2sin y x =中,奇函数的个数是( )A . 4B .3C .2D .15.【2013年普通高等学校招生全国统一考试(北京卷)理】函数f (x )的图象向右平移一个单位长度,所得图象与y =e x关于y 轴对称,则f (x )=( )A.1e x +B. 1e x -C. 1e x -+D. 1e x --6.【2013年普通高等学校招生全国统一考试(湖南卷)】函数()2ln f x x =的图像与函数()245g x x x =-+的图像的交点个数为( )A .3B .2C .1D .07.【2013年普通高等学校招生全国统一考试数学浙江理】已知y x ,为正实数,则( ) A.y x yx lg lg lg lg 222+=+ B. lg()lg lg 222x y x y += C.y x yx lg lg lg lg 222+=∙ D. lg()lg lg 222xy x y =【答案】D8.【2013年普通高等学校统一考试试题大纲全国理科】函数21()log (1)(0)f x x x=+>的反函数1()f x -=( )A .1(0)21x x >- B .1(0)21xx ≠- C .21()xx R -∈ D .21(0)x x ->9.【2013年普通高等学校招生全国统一考试(山东卷)】已知函数()f x 为奇函数,且当0x >时, ()21,f x x x=+,则()1f -=A.2-B. 0C. 1D. 210.【2013年普通高等学校招生全国统一考试(上海卷)理】方程1313313x x-+=-的实数解为________.二.能力题组11.【2013年普通高等学校招生全国统一考试(四川卷)理科】函数331x x y =-的图象大致是( )12.【2013年普通高等学校统一考试天津卷理科】函数0.5()2|log |1x f x x =-的零点个数为( )(A) 1(B) 2(C) 3(D) 413.【2013年普通高等学校招生全国统一考试(山东卷)】函数cos sin y x x x =+的图象大致为14.【2013年普通高等学校统一考试试题新课标Ⅱ数学(理)卷】设a =log 36,b=log 510,c=log 714,则 (A )c >b >a (B )b >c >a (C )a >c >b (D)a >b >c15.【2013年普通高等学校招生全国统一考试(陕西卷)】在如图所示的锐角三角形空地中, 欲建一个面积不小于300m 2的内接矩形花园(阴影部分), 则其边长x(单位m)的取值范围是 ( ) (A) [15,20] (B) [12,25](C) [10,30](D) [20,30]16.【2013年普通高等学校招生全国统一考试(上海卷)理】设a 为实常数,()y f x =是定义在R 上的奇函数,当0x <时,2()97a f x x x=++,若()1f x a ≥+对一切0x ≥成立,则a 的取值范围为______. 40m17.【2013年全国高考新课标(I )理科】若函数f (x )=(1-x 2)(x 2+ax +b )的图像关于直线x =-2对称,则f (x )的最大值是______.18.【2013年普通高等学校统一考试江苏数学试题】已知()f x 是定义在R 上的奇函数. 当0x >时,2()4f x x x =-,则不等式()f x x >的解集用区间表示为 .三.拔高题组19.【2013年普通高等学校招生全国统一考试(四川卷)理科】设函数()f x =a R ∈,e 为自然对数的底数)。
2013年全国高考理科数学试题分类汇编2:函数Word版含答案
2013 年全国高考理科数学试题分类汇编2:函数一、选择题1 .(2 013年高考江西卷(理))函数 y= x ln(1-x) 的定义域为A.(0,1)B.[0,1) C.(0,1] D.[0,1]【答案】 D 2 .( 2 013年普通高等学校招生统一考试重庆数学(理)试题(含答案))若a bc , 则函数f x x a x b x b x c x c x a 的两个零点分别位于区间( )A.a,b 和 b, c 内 B., a 和 a,b 内C. b,c 和 c, 内D. ,a 和 c, 内【答案】 A13 .( 2 013年上海市春季高考数学试卷(含答案 ))函数 f( x) x2的大致图像是 ( )y y y yA x 0Bx 0 x 0xC D【答案】 A 4 .( 2013年高考四川卷(理))设函数 f ( x)e x x a ( aR , e为自然对数的底数 ).若曲线y sin x 上存在( x , y) 使得 f ( f( y ))y,则a的取值范围是 ( ) 000 0(A ) [1,e](B)1 ,(C)[1, e1](D)1[ e,-11] [e -1, e 1]【答案】 A5 .( 2013年高考新课标 1(理))已知函数 f ( x) x22x, x 0, 若|f (x) | ≥ ax ,则 aln( x1),x 0的取值范围是A. ,0]B. ( ,1]C.D. [ 2,0]( [ 2,1] 【答案】 D6 .( 2013年普通高等学校招生统一考试大纲版数学(理)WORD版含答案(已校对))函数f x = log 2 1 1 x 0 的反函数f1x=x第 1 页共 7 页(A) 1 x 0 (B) 1 x 0 (C) 2x 1 x R (D) 2x 1 x 0 2x 1 2x 1【答案】 A7 .( 2 013 年普通高等学校招生统一考试浙江数学(理)试题(纯WORD版))已知 x, y为正实数 , 则A. 2lgxlgy 2lg x2lg y B.2lg( xy)2lgx 2lg yC. 2lgxlgy 2lg x2lg y D.2lg( xy)2lgx 2lg y【答案】 D8 .年普通高等学校招生统一考试山东数学(理)试题(含答案))已知函数f( x)为奇( 2013函数 , 且当 x 0时 , f( x) x21 , 则 f ( 1)x(A)2(B) 0 (C) 1 (D) 2【答案】 A9 .(2 013 年高考陕西卷(理))在如图所示的锐角三角形空地中,欲建一个面积不小于3002m的内接矩形花园 ( 阴影部分 ), 则其边长x( 单位) 的取值范围是mx40m40m(A) [15,20] (B) [12,25] (C) [10,30] (D) [20,30]【答案】 C10 .( 2013 年普通高等学校招生统一考试重庆数学(理)试题(含答案))y 3 a a 6 6 a 3 的最大值为( )A.9B.9C. 33 2 2 D.2 【答案】 B 11.( 2 013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知函数f x 的定义域为1,0, 则函数 f 2 x1 的定义域为(A) 1,1(B) 1, 1(C) -1,0 (D) 1 ,12 2第 2 页共 7 页【答案】 B 12.( 2 013年高考湖南卷(理))函数 f x2ln x 的图像与函数g x x24x 5 的图像的交点个数为A.3B.2C.1D.0 【答案】 B 13.( 2 013x2) 年高考四川卷(理))函数 y 的图象大致是(3x 1【答案】 C14.( 2 013 年普通高等学校招生统一考试辽宁数学(理)试题(WORD版))已知函数f x x2 2 a 2 x a2 ,g x x2 2 a 2 x a28. 设H1x max f x , g x , H 2x min f x , g x , max p, q表示 p,q 中的较大值 , min p,q 表示 p, q 中的较小值 , 记 H1x 得最小值为 A,H 2x 得最小值为 B ,则A B(A) a22a 16 (B) a22a 16 (C) 16 (D) 16【答案】 B15.( 20 13年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))定义域为R 的四个函数 y x3 ,y 2x , y x21, y 2sin x 中 , 奇函数的个数是 ( )A . 4 B. 3 C. 2 D. 1【答案】 C16.( 2013 年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))若函数f (x)=x3 +bx+c 有极值点 x1 , x2 , 且 f (x1)=x1 , 则关于 x 的方程 3(f (x1)) 2 +2f(x)+b=0 的不同实根个数是(A)3 (B)4 (C) 5 (D)6【答案】 A17 .( 2013 年普通高等学校招生统一考试天津数学(理)试题(含答案))函数第 3 页共 7 页f ( x) 2x | log 0.5x | 1的零点个数为(A) 1 (B) 2 (C)3 (D) 4【答案】 B18.( 2013年高考北京卷(理) ) 函数 f ( x) 的图象向右平移 1 个单位长度 , 所得图象与y=ex关于 y 轴对称 , 则 f( x)=A. e x 1B. e x 1C. e x 1D. e x 1【答案】 D19.( 2013 年上海市春季高考数学试卷(含答案 ))设 f -1( x) 为函数 f ( x) x 的反函数 ,下列结论正确的是( )(A)f 1(2) 2 (B) f 1(2) 4 (C) f 1(4) 2 (D) f 1(4)4【答案】 B20.( 2013 年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对) )若函 数 f x =x 2 ax 1 在 1 ,+ 是增函数 , 则 a 的取值范围是x 2(A) [-1,0] (B) [ 1, ) (C) [0,3] (D) [3, ) 【答案】 D 二、填空题21 .( 2013年 上 海 市 春 季 高 考 数 学 试 卷 ( 含 答案 ) ) 函 数 y log 2 x( 2)的 定 义 域是_______________【答案】 ( 2, )22.( 2013 年高考上海卷(理) )方程3x 31 3x1的实数解为 ________1 3 【答案】 x log3 4 .23(.2013 年高考上海卷(理))对区间 I 上有定义的函数g( x) , 记 g (I ){ y | y g( x), x I } ,已知定义域为[0,3]的函数y f ( x) 有反函数y f 1( x) , 且f 1 ([0,1)) [1,2), f 1 ((2,4]) [0,1), 若方程 f( x) x 0有解x0 ,则x0_____第 4 页共 7 页【答案】 x0 2 .24.( 2 013年高考新课标 1(理))若函数 f ( x) = (1 x2 )( x2ax b) 的图像关于直线x2对称 , 则 f ( x) 的最大值是______.【答案】 16.25.( 2 013年上海市春季高考数学试卷(含答案 ))方程 2x8 的解是_________________【答案】 3 26.( 2 013年高考湖南卷(理))设函数f ( x) a x b x c x , 其中 c a 0,c b 0.(1)记集合 M (a,b, c) a,b,c不能构成一个三角形的三条边长,且a=b , 则( a,b, c) M 所对应的 f ( x) 的零点的取值集合为____.(2)若 a,b, c是 ABC的三条边长,则下列结论正确的是 ______.( 写出所有正确结论的序号 )①x ,1 , f x 0;②x R,使 xa x ,b x , c x不能构成一个三角形的三条边长;③若 ABC为钝角三角形,则x 1,2 , 使 f x 0.【答案】 (1) (0,1](2) ①②③27.( 2 013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯 WORD版含附加题))已知 f ( x) 是定义在 R 上的奇函数 . 当x 0 时 , f ( x) x24x , 则不等式 f (x)x的解集用区间表示为 ___________. 【答案】5,0 5,28.( 2 013年高考上海卷(理))设 a为实常数 , yf ( x) 是定义在 R 上的奇函数 , 当 x 0时, f ( x)a27 , 若 f ( x) a 1对一切x0 成立 , 则 a 的取值范围为________9xx【答案】 a 8 . 7三、解答题29.( 2 013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))设函数第 5 页共 7 页f ( x) ax (1 a2 ) x2 , 其中 a 0 , 区间 I | x f (x)>0( Ⅰ) 求的长度 ( 注 : 区间 ( , ) 的长度定义为 ); ( Ⅱ) 给定常数 k (0,1) , 当时 , 求 l 长度的最小值 .【答案】解 : ( Ⅰ) f( x) x[ a (1 a 2 )x]( Ⅱ) 由( Ⅰ) 知 ,a 1 l2 11 aaa已知 k(0,1),0 1 - k a 1 k.令11 kg(a) a 1在 a 1 k时取最大值a0 x (0,a) . 所以区间长度为aa2.1 1 a2 1 - kk 20 11 - k恒成立 .1 k这时 l1 k 1 k(1 k )2 1 (1 k ) 211k所以当a1 k时, l取最小值1 (1 k )2 .30.( 2013 年上海市春季高考数学试卷 (含答案 ))本题共有 3 个小题 ,第 1 小题满分 5 分, 第 2 小题满分 7 分 , 第 3 小题满分 6 分 .已知真命题 : “函数y f ( x) 的图像关于点P(a、b) 成中心对称图形”的充要条件为“函数y f ( x a) b 是奇函数” .(1 ) 将函数g( x) x33x2的图像向左平移1 个单位 , 再向上平移2 个单位 , 求此时图像对应的函数解析式 , 并利用题设中的真命题求函数g (x) 图像对称中心的坐标 ;(2 ) 求函数h( x) log 22x图像对称中心的坐标 ;4 x(3)已知命题 : “函数y f ( x) 的图像关于某直线成轴对称图像”的充要条件为“存在实数 a 和 b, 使得函数 y f (x a) b 是偶函数” . 判断该命题的真假. 如果是真命题 ,请给予证明 ; 如果是假命题 , 请说明理由 , 并类比题设的真命题对它进行修改, 使之成为真命题( 不必证明 ).【答案】(1) 平移后图像对应的函数解析式为y (x 1)33(x 1)2 2 , 整理得 y x3 3x ,第 6 页共 7 页由于函数yx 3 3x 是奇函数 , 由题设真命题知 , 函数 g( x) 图像对称中心的坐标是(1, 2) . (2) 设 h( x) log 2 2x 的对称中心为 P(a ,b) , 由题设知函数 h(x a) b 是奇函数 .4 x设 f (x) h( x a) b, 2( x a) 2x 2a 则 f ( x) log 2 ( x a) b , 即 f (x) log 2 a b . 4 4 x 由不等式 2x 2a 0 的解集关于原点对称, 得 a 2 . 4 a x此时 f (x) lo g 2( x 2) , , . 2 x b x ( 2 2) 2 任取 x ( 2,2) , 由 f ( x) f (x) 0 , 得 b 1,所以函数 h(x)log 2 2x 图像对称中心的坐标是 (2,1) . 4 x (3) 此命题是假命题 .举反例说明 : 函数 f ( x) x 的图像关于直线 y x 成轴对称图像 , 但是对任意实数 a 和 b ,函数 y f (x a) b , 即 y x a b 总不是偶函数 .修改后的真命题 :“函数 y f ( x) 的图像关于直线 x a 成轴对称图像”的充要条件是“函数 y f ( x a)是偶函数” .第 7 页共 7 页。
2013年高考真题理科数学分类汇编(解析版):函数及答案
2013年高考真题理科数学分类汇编(解析版)函 数1、(2013年高考(安徽卷))函数=()y f x 的图像如图所示,在区间[],a b 上可找到(2)n n ≥ 个不同的数12,...,,n x x x 使得1212()()()==,n nf x f x f x x x x 则n 的取值范围是 (A ){}3,4 (B ){}2,3,4 (C ) {}3,4,5 (D ){}2,3【答案】B【解析】由题知,过原点的直线与曲线相交的个数即n 的取值.用尺规作图,交点可取2,3,4. 所以选B 2、(2013年高考(北京卷))函数f (x )的图象向右平移一个单位长度,所得图象与y =e x 关于y 轴对称,则f (x )= A.1ex + B. 1ex - C. 1ex -+ D. 1ex --3、(2013年高考(广东卷))定义域为R 的四个函数3y x =,2xy =,21y x =+,2sin y x =中,奇函数的个数是( )A . 4B .3C .2D .【解析】C ;考查基本初等函数和奇函数的概念,是奇函数的为3y x =与2sin y x =,故选C .4、(2013年高考(全国(广西)卷))已知函数()()()-1,021f x f x -的定义域为,则函数的定义域为(A )()1,1- (B )11,2⎛⎫- ⎪⎝⎭ (C )()-1,0 (D )1,12⎛⎫ ⎪⎝⎭【答案】B【解析】由题意可知 1210,x -<+<,则112x -<<-。
故选B5、(2013年高考(全国(广西)卷))函数()()1=log 10f x x x ⎛⎫+> ⎪⎝⎭的反函数()1=f x - (A )()1021x x >- (B )()1021xx ≠- (C )()21x x R -∈ (D )()210x x -> 【答案】A【解析】由题意知1112(0)21y y x y x +=⇒=<-, 因此,故选A6、(2013年高考(全国(广西)卷))若函数()211=,2f x x ax a x ⎛⎫++∞ ⎪⎝⎭在是增函数,则的取值范围是(A )[]-1,0 (B )[]-∞1, (C )[]0,3 (D )[]3∞,+7、(2013年高考(湖南卷))函数()2ln f x x =的图像与函数()245g x x x =-+的图像的交点个数为A .3B .2C .1D .0【答案】B【解析】画出两个函数的图象,可得交点数。
2013高考数学真题分类汇编---------函数模块
2013高考数学—三角函数分类汇编1.(2013山东卷理3)已知函数)(x f 为奇函数,当0>x 时,xx x f 1)(2+=,在=-)1(f .A 2- .B 0 .C 1 .D 22.(2013陕西卷理1)设全集为R ,函数21)(x x f -=的定义域为M ,则M C R 为.A ]1,1[- .B )1,1(-.C ),1[]1,(+∞--∞ .D ),1()1,(+∞--∞3.(2013陕西卷理12)设][x 表示不大于x 的最大整数,则对任意实数y x ,,有.A ][][x x -=- .B ][2]2[x x = .C ][][][y x y x +≤+ .D ][][][y x y x -≤-4.(2013新课标2卷理10)已知函数c bx ax x x f +++=23)(,下列结论错误的是.A R x ∈∃0,0)(0=x f .B 函数)(x f y =的图像是中心对称图形.C 若0x 是)(x f 的极小值点,则)(x f 在区间),(0x -∞单调递减 .D 若0x 是)(x f 的极值点,则0)(0'=x f5.(2013新课标1卷理11)已知函数⎩⎨⎧>+≤+-=)0(),1ln()0(,2)(2x x x x x x f ,若ax x f ≥)(,则a 的取值范围是.A ]0,(-∞ .B ]1,(-∞ .C ]1,2[- ]0,2.[-D6.(2013新课标1卷理16)若函数))(1()(22b ax x x x f ++-=的图像关于直线2-=x 对称,在)(x f 的最大值是7.(2013江西卷理2)函数)1ln(x x y -=的定义域为.A )1,0( .B )1,0[ .C ]1,0( .D ]1,0[8.(2013江西卷理10)如图,半径为1的半圆O 与等边三角形夹在两平行线21,l l 之间,1l ∥2l ,l 与半圆相交于G F ,两点,与三角形ABC 两边相交于D E ,两点,设弧FG 的长为x (π<<x 0),CD BC EB y ++=,若l 从1l 平移到2l ,则函数)(x f y =的图像大致是9.(2013广西卷理5)函数)(11(log )(2+=xx f 的反函数)(1x f-=.A 121-x )0(>x.B 121-x )0(≠x .C 12-x (R x ∈) .D 12-x )0(>x10.(2013辽宁卷理11)已知函数)(x f 满足22)2(2)(a x a x x f ++-=,8)2(2)(22+--+-=a x a x x g 。
2013年高考真题解析分类汇编(理科数学)含解析
2013高考试题解析分类汇编(理数)5:平面向量一、选择题1 .(2013年高考上海卷(理))在边长为1的正六边形ABCDEF中,记以A为起点,其余顶点为终点的向量分别为;以D为起点,其余顶点为终点的向量分别为.若分别为的最小值、最大值,其中,,则满足()A. B. C. D.D.【解答】作图知,只有,其余均有,故选D.2 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD版))已知点()A. B. C. D.A,所以,所以同方向的单位向量是,选A.3 .(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD版))设是边上一定点,满足,且对于边上任一点,恒有.则()A. B. C. D.D以AB所在的直线为x轴,以AB的中垂线为y轴建立直角坐标系,设AB=4,C(a,b),P(x,0)则BP0=1,A(﹣2,0),B(2,0),P0(1,0)所以=(1,0),=(2﹣x,0),=(a﹣x,b),=(a﹣1,b)因为恒有所以(2﹣x)(a﹣x)≥a﹣1恒成立整理可得x2﹣(a+2)x+a+1≥0恒成立所以△=(a+2)2﹣4(a+1)≤0即△=a2≤0所以a=0,即C在AB的垂直平分线上所以AC=BC故△ABC为等腰三角形故选D4 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD版))在四边形ABCD中,,,则四边形的面积为()A. B. C.5 D.10C由题意,容易得到.设对角线交于O点,则四边形面积等于四个三角形面积之和即S= .容易算出,则算出S=5.故答案C5 .(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD版))在平面直角坐标系中,是坐标原点,两定点满足则点集所表示的区域的面积是()A. B. C. D.D.在本题中,.建立直角坐标系,设A(2,0),所以选D6 .(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))在平面上,,,.若,则的取值范围是()A. B. C. D.D【命题立意】本题考查平面向量的应用以及平面向量的基本定理。
2013年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)
2013年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合A={x|x2﹣2x>0},B={x|﹣<x<},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B2.(5分)若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.﹣4B.C.4D.3.(5分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样4.(5分)已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y=B.y=C.y=±x D.y=5.(5分)执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于()A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5] 6.(5分)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为()A.B.C.D.7.(5分)设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3B.4C.5D.68.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π9.(5分)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=()A.5B.6C.7D.810.(5分)已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.11.(5分)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0] 12.(5分)设△A n B n C n的三边长分别为a n,b n,c n,△A n B n C n的面积为S n,n=1,2,3…若b1>c1,b1+c1=2a1,a n+1=a n,,,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列二.填空题:本大题共4小题,每小题5分.13.(5分)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t=.14.(5分)若数列{a n}的前n项和为S n=a n+,则数列{a n}的通项公式是a n=.15.(5分)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=.16.(5分)若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,则f(x)的最大值为.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=,求PA;(2)若∠APB=150°,求tan∠PBA.18.(12分)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.19.(12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.20.(12分)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P 的半径最长时,求|AB|.21.(12分)已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.四、请考生在第22、23、24题中任选一道作答,并用2B铅笔将答题卡上所选的题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分,不涂,按本选考题的首题进行评分.22.(10分)(选修4﹣1:几何证明选讲)如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D.(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.23.已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).24.已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)的解集;(Ⅱ)设a>﹣1,且当x∈[﹣,]时,f(x)≤g(x),求a的取值范围.2013年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合A={x|x2﹣2x>0},B={x|﹣<x<},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B【考点】1D:并集及其运算;73:一元二次不等式及其应用.【专题】59:不等式的解法及应用;5J:集合.【分析】根据一元二次不等式的解法,求出集合A,再根据的定义求出A∩B和A∪B.【解答】解:∵集合A={x|x2﹣2x>0}={x|x>2或x<0},∴A∩B={x|2<x<或﹣<x<0},A∪B=R,故选:B.【点评】本题考查一元二次不等式的解法,以及并集的定义,属于基础题.2.(5分)若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.﹣4B.C.4D.【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】由题意可得z==,再利用两个复数代数形式的乘除法法则化简为+i,由此可得z的虚部.【解答】解:∵复数z满足(3﹣4i)z=|4+3i|,∴z====+i,故z的虚部等于,故选:D.【点评】本题主要考查复数的基本概念,两个复数代数形式的乘除法法则的应用,属于基础题.3.(5分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样【考点】B3:分层抽样方法.【专题】21:阅读型.【分析】若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.【解答】解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.了解某地区中小学生的视力情况,按学段分层抽样,这种方式具有代表性,比较合理.故选:C.【点评】本小题考查抽样方法,主要考查抽样方法,属基本题.4.(5分)已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y=B.y=C.y=±x D.y=【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由离心率和abc的关系可得b2=4a2,而渐近线方程为y=±x,代入可得答案.【解答】解:由双曲线C:(a>0,b>0),则离心率e===,即4b2=a2,故渐近线方程为y=±x=x,故选:D.【点评】本题考查双曲线的简单性质,涉及的渐近线方程,属基础题.5.(5分)执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于()A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5]【考点】3B:分段函数的解析式求法及其图象的作法;EF:程序框图.【专题】27:图表型;5K:算法和程序框图.【分析】本题考查的知识点是程序框图,分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算一个分段函数的函数值,由条件为t<1我们可得,分段函数的分类标准,由分支结构中是否两条分支上对应的语句行,我们易得函数的解析式.【解答】解:由判断框中的条件为t<1,可得:函数分为两段,即t<1与t≥1,又由满足条件时函数的解析式为:s=3t;不满足条件时,即t≥1时,函数的解析式为:s=4t﹣t2故分段函数的解析式为:s=,如果输入的t∈[﹣1,3],画出此分段函数在t∈[﹣1,3]时的图象,则输出的s属于[﹣3,4].故选:A.【点评】要求条件结构对应的函数解析式,要分如下几个步骤:①分析流程图的结构,分析条件结构是如何嵌套的,以确定函数所分的段数;②根据判断框中的条件,设置分类标准;③根据判断框的“是”与“否”分支对应的操作,分析函数各段的解析式;④对前面的分类进行总结,写出分段函数的解析式.6.(5分)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为()A.B.C.D.【考点】LG:球的体积和表面积.【专题】11:计算题;5F:空间位置关系与距离.【分析】设正方体上底面所在平面截球得小圆M,可得圆心M为正方体上底面正方形的中心.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质建立关于R的方程并解出R=5,用球的体积公式即可算出该球的体积.【解答】解:设正方体上底面所在平面截球得小圆M,则圆心M为正方体上底面正方形的中心.如图.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质,得R2=(R﹣2)2+42,解出R=5,∴根据球的体积公式,该球的体积V===.故选:A.【点评】本题给出球与正方体相切的问题,求球的体积,着重考查了正方体的性质、球的截面圆性质和球的体积公式等知识,属于中档题.7.(5分)设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3B.4C.5D.6【考点】83:等差数列的性质;85:等差数列的前n项和.【专题】11:计算题;54:等差数列与等比数列.【分析】由a n与S n的关系可求得a m+1与a m,进而得到公差d,由前n项和公式及S m=0可求得a1,再由通项公式及a m=2可得m值.【解答】解:a m=S m﹣S m﹣1=2,a m+1=S m+1﹣S m=3,所以公差d=a m﹣a m=1,+1S m==0,m﹣1>0,m>1,因此m不能为0,得a1=﹣2,所以a m=﹣2+(m﹣1)•1=2,解得m=5,另解:等差数列{a n}的前n项和为S n,即有数列{}成等差数列,则,,成等差数列,可得2•=+,即有0=+,解得m=5.又一解:由等差数列的求和公式可得(m﹣1)(a1+a m﹣1)=﹣2,m(a1+a m)=0,(m+1)(a1+a m+1)=3,可得a1=﹣a m,﹣2a m+a m+1+a m+1=+=0,解得m=5.故选:C.【点评】本题考查等差数列的通项公式、前n项和公式及通项a n与S n的关系,考查学生的计算能力.8.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π【考点】L!:由三视图求面积、体积.【专题】16:压轴题;27:图表型.【分析】三视图复原的几何体是一个长方体与半个圆柱的组合体,依据三视图的数据,得出组合体长、宽、高,即可求出几何体的体积.【解答】解:三视图复原的几何体是一个长方体与半个圆柱的组合体,如图,其中长方体长、宽、高分别是:4,2,2,半个圆柱的底面半径为2,母线长为4.∴长方体的体积=4×2×2=16,半个圆柱的体积=×22×π×4=8π所以这个几何体的体积是16+8π;故选:A.【点评】本题考查了几何体的三视图及直观图的画法,三视图与直观图的关系,柱体体积计算公式,空间想象能力9.(5分)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=()A.5B.6C.7D.8【考点】DA:二项式定理.【专题】5P:二项式定理.【分析】根据二项式系数的性质求得a和b,再利用组合数的计算公式,解方程13a=7b求得m的值.【解答】解:∵m为正整数,由(x+y)2m展开式的二项式系数的最大值为a,以及二项式系数的性质可得a=,同理,由(x+y)2m+1展开式的二项式系数的最大值为b,可得b==.再由13a=7b,可得13=7,即13×=7×,即13=7×,即13(m+1)=7(2m+1),解得m=6,故选:B.【点评】本题主要考查二项式系数的性质的应用,组合数的计算公式,属于中档题.10.(5分)已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.【考点】K3:椭圆的标准方程.【专题】5D:圆锥曲线的定义、性质与方程.【分析】设A(x1,y1),B(x2,y2),代入椭圆方程得,利用“点差法”可得.利用中点坐标公式可得x1+x2=2,y1+y2=﹣2,利用斜率计算公式可得==.于是得到,化为a2=2b2,再利用c=3=,即可解得a2,b2.进而得到椭圆的方程.【解答】解:设A(x1,y1),B(x2,y2),代入椭圆方程得,相减得,∴.∵x1+x2=2,y1+y2=﹣2,==.∴,化为a2=2b2,又c=3=,解得a2=18,b2=9.∴椭圆E的方程为.故选:D.【点评】熟练掌握“点差法”和中点坐标公式、斜率的计算公式是解题的关键.11.(5分)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0]【考点】7E:其他不等式的解法.【专题】16:压轴题;59:不等式的解法及应用.【分析】由函数图象的变换,结合基本初等函数的图象可作出函数y=|f(x)|的图象,和函数y=ax的图象,由导数求切线斜率可得l的斜率,进而数形结合可得a的范围.【解答】解:由题意可作出函数y=|f(x)|的图象,和函数y=ax的图象,由图象可知:函数y=ax的图象为过原点的直线,当直线介于l和x轴之间符合题意,直线l为曲线的切线,且此时函数y=|f(x)|在第二象限的部分解析式为y=x2﹣2x,求其导数可得y′=2x﹣2,因为x≤0,故y′≤﹣2,故直线l的斜率为﹣2,故只需直线y=ax的斜率a介于﹣2与0之间即可,即a∈[﹣2,0]故选:D.【点评】本题考查其它不等式的解法,数形结合是解决问题的关键,属中档题.12.(5分)设△A n B n C n的三边长分别为a n,b n,c n,△A n B n C n的面积为S n,n=1,2,3…若b1>c1,b1+c1=2a1,a n+1=a n,,,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列【考点】82:数列的函数特性;8H:数列递推式.【专题】16:压轴题;54:等差数列与等比数列;55:点列、递归数列与数学归纳法.=a n可知△A n B n C n的边B n C n为定值a1,由b n+1+c n+1﹣【分析】由a n+12a1=及b1+c1=2a1得b n+c n=2a1,则在△A n B n C n中边长B n C n=a1为定值,另两边A n C n、A n B n的长度之和b n+c n=2a1为定值,由此可知顶点A n在以B n、C n为焦点的椭圆上,根据b n+1﹣c n+1=,得b n﹣c n=,可知n→+∞时b n→c n,据此可判断△A n B n C n的边B nC n的高h n随着n的增大而增大,再由三角形面积公式可得到答案.【解答】解:b1=2a1﹣c1且b1>c1,∴2a1﹣c1>c1,∴a1>c1,∴b1﹣a1=2a1﹣c1﹣a1=a1﹣c1>0,∴b1>a1>c1,又b1﹣c1<a1,∴2a1﹣c1﹣c1<a1,∴2c1>a1,∴,由题意,+a n,∴b n+1+c n+1﹣2a n=(b n+c n﹣2a n),∴b n+c n﹣2a n=0,∴b n+c n=2a n=2a1,∴b n+c n=2a1,由此可知顶点A n在以B n、C n为焦点的椭圆上,﹣c n+1=,∴=a1﹣b n,又由题意,b n+1﹣a1=,∴b n﹣a1=,∴b n+1∴,c n=2a1﹣b n=,∴[][]=[﹣]单调递增(可证当n=1时>0)故选:B.【点评】本题主要考查由数列递推式求数列通项、三角形面积海伦公式,综合考查学生分析解决问题的能力,有较高的思维抽象度,是本年度全国高考试题中的“亮点”之一.二.填空题:本大题共4小题,每小题5分.13.(5分)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t=2.【考点】9H:平面向量的基本定理;9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】由于•=0,对式子=t+(1﹣t)两边与作数量积可得=0,经过化简即可得出.【解答】解:∵,,∴=0,∴tcos60°+1﹣t=0,∴1=0,解得t=2.故答案为2.【点评】熟练掌握向量的数量积运算是解题的关键.14.(5分)若数列{a n}的前n项和为S n=a n+,则数列{a n}的通项公式是a n=(﹣2)n﹣1.【考点】88:等比数列的通项公式.【专题】54:等差数列与等比数列.【分析】把n=1代入已知式子可得数列的首项,由n≥2时,a n=S n﹣S n﹣1,可得数列为等比数列,且公比为﹣2,代入等比数列的通项公式分段可得答案.【解答】解:当n=1时,a1=S1=,解得a1=1当n≥2时,a n=S n﹣S n﹣1=()﹣()=,整理可得,即=﹣2,故数列{a n}从第二项开始是以﹣2为首项,﹣2为公比的等比数列,故当n≥2时,a n=(﹣2)n﹣1,经验证当n=1时,上式也适合,故答案为:(﹣2)n﹣1【点评】本题考查等比数列的通项公式,涉及等比数列的判定,属基础题.15.(5分)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=﹣.【考点】GP:两角和与差的三角函数;H4:正弦函数的定义域和值域.【专题】16:压轴题;56:三角函数的求值.【分析】f(x)解析式提取,利用两角和与差的正弦函数公式化为一个角的正弦函数,由x=θ时,函数f(x)取得最大值,得到sinθ﹣2cosθ=,与sin2θ+cos2θ=1联立即可求出cosθ的值.【解答】解:f(x)=sinx﹣2cosx=(sinx﹣cosx)=sin(x﹣α)(其中cosα=,sinα=),∵x=θ时,函数f(x)取得最大值,∴sin(θ﹣α)=1,即sinθ﹣2cosθ=,又sin2θ+cos2θ=1,联立得(2cosθ+)2+cos2θ=1,解得cosθ=﹣.故答案为:﹣【点评】此题考查了两角和与差的正弦函数公式,同角三角函数间的基本关系,以及正弦函数的定义域与值域,熟练掌握公式是解本题的关键.16.(5分)若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,则f(x)的最大值为16.【考点】57:函数与方程的综合运用;6E:利用导数研究函数的最值.【专题】11:计算题;16:压轴题;51:函数的性质及应用;53:导数的综合应用.【分析】由题意得f(﹣1)=f(﹣3)=0且f(1)=f(﹣5)=0,由此求出a=8且b=15,由此可得f(x)=﹣x4﹣8x3﹣14x2+8x+15.利用导数研究f(x)的单调性,可得f(x)在区间(﹣∞,﹣2﹣)、(﹣2,﹣2+)上是增函数,在区间(﹣2﹣,﹣2)、(﹣2+,+∞)上是减函数,结合f(﹣2﹣)=f(﹣2+)=16,即可得到f(x)的最大值.【解答】解:∵函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,∴f(﹣1)=f(﹣3)=0且f(1)=f(﹣5)=0,即[1﹣(﹣3)2][(﹣3)2+a•(﹣3)+b]=0且[1﹣(﹣5)2][(﹣5)2+a•(﹣5)+b]=0,解之得,因此,f(x)=(1﹣x2)(x2+8x+15)=﹣x4﹣8x3﹣14x2+8x+15,求导数,得f′(x)=﹣4x3﹣24x2﹣28x+8,令f′(x)=0,得x1=﹣2﹣,x2=﹣2,x3=﹣2+,当x∈(﹣∞,﹣2﹣)时,f′(x)>0;当x∈(﹣2﹣,﹣2)时,f′(x)<0;当x∈(﹣2,﹣2+)时,f′(x)>0;当x∈(﹣2+,+∞)时,f′(x)<0∴f(x)在区间(﹣∞,﹣2﹣)、(﹣2,﹣2+)上是增函数,在区间(﹣2﹣,﹣2)、(﹣2+,+∞)上是减函数.又∵f(﹣2﹣)=f(﹣2+)=16,∴f(x)的最大值为16.故答案为:16.【点评】本题给出多项式函数的图象关于x=﹣2对称,求函数的最大值.着重考查了函数的奇偶性、利用导数研究函数的单调性和函数的最值求法等知识,属于中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=,求PA;(2)若∠APB=150°,求tan∠PBA.【考点】HP:正弦定理;HR:余弦定理.【专题】58:解三角形.【分析】(I)在Rt△PBC,利用边角关系即可得到∠PBC=60°,得到∠PBA=30°.在△PBA中,利用余弦定理即可求得PA.(II)设∠PBA=α,在Rt△PBC中,可得PB=sinα.在△PBA中,由正弦定理得,即,化简即可求出.【解答】解:(I)在Rt△PBC中,=,∴∠PBC=60°,∴∠PBA=30°.在△PBA中,由余弦定理得PA2=PB2+AB2﹣2PB•ABcos30°==.∴PA=.(II)设∠PBA=α,在Rt△PBC中,PB=BCcos(90°﹣α)=sinα.在△PBA中,由正弦定理得,即,化为.∴.【点评】熟练掌握直角三角形的边角关系、正弦定理和余弦定理是解题的关键.18.(12分)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.【考点】LW:直线与平面垂直;LY:平面与平面垂直;MI:直线与平面所成的角.【专题】5F:空间位置关系与距离;5G:空间角.【分析】(Ⅰ)取AB的中点O,连接OC,OA1,A1B,由已知可证OA1⊥AB,AB ⊥平面OA1C,进而可得AB⊥A1C;(Ⅱ)易证OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立坐标系,可得,,的坐标,设=(x,y,z)为平面BB1C1C的法向量,则,可解得=(,1,﹣1),可求|cos <,>|,即为所求正弦值.【解答】解:(Ⅰ)取AB的中点O,连接OC,OA1,A1B,因为CA=CB,所以OC⊥AB,由于AB=AA1,∠BAA1=60°,所以△AA1B为等边三角形,所以OA1⊥AB,又因为OC∩OA1=O,所以AB⊥平面OA1C,又A1C⊂平面OA1C,故AB⊥A1C;(Ⅱ)由(Ⅰ)知OC⊥AB,OA1⊥AB,又平面ABC⊥平面AA1B1B,交线为AB,所以OC⊥平面AA1B1B,故OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立如图所示的坐标系,可得A(1,0,0),A1(0,,0),C(0,0,),B(﹣1,0,0),则=(1,0,),=(﹣1,,0),=(0,﹣,),设=(x,y,z)为平面BB1C1C的法向量,则,即,可取y=1,可得=(,1,﹣1),故cos<,>==,又因为直线与法向量的余弦值的绝对值等于直线与平面的正弦值,故直线A1C与平面BB1C1C所成角的正弦值为:.【点评】本题考查直线与平面所成的角,涉及直线与平面垂直的性质和平面与平面垂直的判定,属难题.19.(12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.【考点】CG:离散型随机变量及其分布列;CH:离散型随机变量的期望与方差.【专题】5I:概率与统计.【分析】(Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品全是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,由概率得加法公式和条件概率,代入数据计算可得;(Ⅱ)X可能的取值为400,500,800,分别求其概率,可得分布列,进而可得期望值.【解答】解:(Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品全是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,所以P(A)=P(A1B1)+P(A2B2)=P(A1)P(B1|A1)+P(A2)P(B2|A2)==(Ⅱ)X可能的取值为400,500,800,并且P(X=800)=,P(X=500)=,P(X=400)=1﹣﹣=,故X的分布列如下:X 400 500 800P故EX=400×+500×+800×=506.25【点评】本题考查离散型随机变量及其分布列涉及数学期望的求解,属中档题.20.(12分)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P 的半径最长时,求|AB|.【考点】J3:轨迹方程;J9:直线与圆的位置关系.【专题】5B:直线与圆.【分析】(I)设动圆的半径为R,由已知动圆P与圆M外切并与圆N内切,可得|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,求出即可;(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤4﹣2=2,所以R ≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.分①l的倾斜角为90°,此时l与y轴重合,可得|AB|.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,根据,可得Q(﹣4,0),所以可设l:y=k(x+4),与椭圆的方程联立,得到根与系数的关系利用弦长公式即可得出.【解答】解:(I)由圆M:(x+1)2+y2=1,可知圆心M(﹣1,0);圆N:(x﹣1)2+y2=9,圆心N(1,0),半径3.设动圆的半径为R,∵动圆P与圆M外切并与圆N内切,∴|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,∴a=2,c=1,b2=a2﹣c2=3.∴曲线C的方程为(x≠﹣2).(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤3﹣1=2,所以R≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.①l的倾斜角为90°,则l与y轴重合,可得|AB|=.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,则,可得Q(﹣4,0),所以可设l:y=k(x+4),由l于M相切可得:,解得.当时,联立,得到7x2+8x﹣8=0.∴,.∴|AB|===由于对称性可知:当时,也有|AB|=.综上可知:|AB|=或.【点评】本题综合考查了两圆的相切关系、直线与圆相切问题、椭圆的定义及其性质、直线与椭圆相交问题转化为方程联立得到根与系数的关系、弦长公式等基础知识,需要较强的推理能力和计算能力及其分类讨论的思想方法.21.(12分)已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.【考点】3R:函数恒成立问题;6H:利用导数研究曲线上某点切线方程.【专题】16:压轴题;53:导数的综合应用.【分析】(Ⅰ)对f(x),g(x)进行求导,已知在交点处有相同的切线及曲线y=f (x)和曲线y=g(x)都过点P(0,2),从而解出a,b,c,d的值;(Ⅱ)由(I)得出f(x),g(x)的解析式,再求出F(x)及它的导函数,通过对k的讨论,判断出F(x)的最值,从而判断出f(x)≤kg(x)恒成立,从而求出k的范围.【解答】解:(Ⅰ)由题意知f(0)=2,g(0)=2,f′(0)=4,g′(0)=4,而f′(x)=2x+a,g′(x)=e x(cx+d+c),故b=2,d=2,a=4,d+c=4,从而a=4,b=2,c=2,d=2;(Ⅱ)由(I)知,f(x)=x2+4x+2,g(x)=2e x(x+1)设F(x)=kg(x)﹣f(x)=2ke x(x+1)﹣x2﹣4x﹣2,则F′(x)=2ke x(x+2)﹣2x﹣4=2(x+2)(ke x﹣1),由题设得F(0)≥0,即k≥1,令F′(x)=0,得x1=﹣lnk,x2=﹣2,①若1≤k<e2,则﹣2<x1≤0,从而当x∈(﹣2,x1)时,F′(x)<0,当x∈(x1,+∞)时,F′(x)>0,即F(x)在(﹣2,x1)上减,在(x1,+∞)上是增,故F(x)在[﹣2,+∞)上的最小值为F(x1),而F(x1)=﹣x1(x1+2)≥0,x≥﹣2时F(x)≥0,即f(x)≤kg(x)恒成立.②若k=e2,则F′(x)=2e2(x+2)(e x﹣e﹣2),从而当x∈(﹣2,+∞)时,F′(x)>0,即F(x)在(﹣2,+∞)上是增,而F(﹣2)=0,故当x≥﹣2时,F(x)≥0,即f(x)≤kg(x)恒成立.③若k>e2时,F′(x)>2e2(x+2)(e x﹣e﹣2),而F(﹣2)=﹣2ke﹣2+2<0,所以当x>﹣2时,f(x)≤kg(x)不恒成立,综上,k的取值范围是[1,e2].【点评】此题主要考查利用导数研究曲线上某点切线方程,函数恒成立问题,考查分类讨论思想,解题的关键是能够利用导数工具研究函数的性质,此题是一道中档题.四、请考生在第22、23、24题中任选一道作答,并用2B铅笔将答题卡上所选的题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分,不涂,按本选考题的首题进行评分.22.(10分)(选修4﹣1:几何证明选讲)如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D.(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.【考点】NC:与圆有关的比例线段.【专题】5B:直线与圆.【分析】(I)连接DE交BC于点G,由弦切角定理可得∠ABE=∠BCE,由已知角平分线可得∠ABE=∠CBE,于是得到∠CBE=∠BCE,BE=CE.由已知DB⊥BE,可知DE为⊙O的直径,Rt△DBE≌Rt△DCE,利用三角形全等的性质即可得到DC=DB.(II)由(I)可知:DG是BC的垂直平分线,即可得到BG=.设DE的中点为O,连接BO,可得∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.得到CF⊥BF.进而得到Rt△BCF的外接圆的半径=.【解答】(I)证明:连接DE交BC于点G.由弦切角定理可得∠ABE=∠BCE,而∠ABE=∠CBE,∴∠CBE=∠BCE,BE=CE.又∵DB⊥BE,∴DE为⊙O的直径,∠DCE=90°.∴△DBE≌△DCE,∴DC=DB.(II)由(I)可知:∠CDE=∠BDE,DB=DC.故DG是BC的垂直平分线,∴BG=.设DE的中点为O,连接BO,则∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.∴CF⊥BF.∴Rt△BCF的外接圆的半径=.【点评】本题综合考查了圆的性质、弦切角定理、等边三角形的性质、三角形全等、三角形的外接圆的半径等知识,需要较强的推理能力、分析问题和解决问题的能力.23.已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【专题】11:计算题;35:转化思想;4R:转化法;5S:坐标系和参数方程.【分析】(1)曲线C1的参数方程消去参数t,得到普通方程,再由,能求出C1的极坐标方程.(2)曲线C2的极坐标方程化为直角坐标方程,与C1的普通方程联立,求出C1与C2交点的直角坐标,由此能求出C1与C2交点的极坐标.【解答】解:(1)将,消去参数t,化为普通方程(x﹣4)2+(y﹣5)2=25,即C1:x2+y2﹣8x﹣10y+16=0,将代入x2+y2﹣8x﹣10y+16=0,得ρ2﹣8ρcosθ﹣10ρsinθ+16=0.∴C1的极坐标方程为ρ2﹣8ρcosθ﹣10ρsinθ+16=0.(2)∵曲线C2的极坐标方程为ρ=2sinθ.∴曲线C2的直角坐标方程为x2+y2﹣2y=0,。
2013年高考真题2:函数 Word版含答案
2013年高考解析分类汇编2:函数一、选择题错误!未指定书签。
.(2013年高考重庆卷(文1))函数21log (2)y x =-的定义域为( )A .(,2)-∞B .(2,)+∞C .(2,3)(3,)+∞D .(2,4)(4,)+∞【答案】C【命题立意】本题考查函数的定义域。
要使函数有意义则,220log (2)0x x ->⎧⎨-≠⎩,即2021x x ->⎧⎨-≠⎩,即2x >且3x ≠,所以选C. 错误!未指定书签。
.(2013年高考重庆卷(文9))已知函数3()s i n 4(,)f x a x b x a b R =++∈,2(lg(log 10))5f =,则(lg(lg 2))f =( )A .5-B .1-C .3D .4 【答案】C【命题立意】本题考查函数的奇偶性以及对数的运算性质。
因为22lg10lg(log 10)lg(lg 2)lg(log 10lg 2)lg(lg 2)lg1012g +=⋅=⨯==,所以2l g (lg 2)l g (l o g 10)=-。
设2lg(log 10),t =则lg(lg 2)t =-。
由条件可知()5f t =,即3()sin 45f t at b t =++=,所以2si n 1a tb t +=,所以3()s i n 4143f t a t b t -=--+=-+=,选C. 错误!未指定书签。
.(2013年高考大纲卷(文6))函数()()()-121log 10=f x x f x x ⎛⎫=+> ⎪⎝⎭的反函数( )A .()1021x x >- B .()1021xx ≠- C .()21x x R -∈ D .()210x x -> 【答案】A)0)(11(log )(2>+==y x x f y ,所以y x 211=+,所以121-=y x,所以)0(121>-=y x y ,所以)0(121>-=x y x ,即)0(121)(1>-=-x x f x ,故选A.错误!未指定书签。
2013年高考真题理科数学分类汇编(解析版):函数及答案
2013年高考真题理科数学分类汇编(解析版)函 数1、(2013年高考(安徽卷))函数=()y f x 的图像如图所示、在区间[],a b 上可找到(2)n n ≥ 个不同的数12,...,,n x x x 使得1212()()()==,n nf x f x f x x x x 则n 的取值范围是 (A ){}3,4 (B ){}2,3,4 (C ) {}3,4,5 (D ){}2,3【答案】B【解析】由题知、过原点的直线与曲线相交的个数即n 的取值.用尺规作图、交点可取2,3,4. 所以选B 2、(2013年高考(北京卷))函数f (x )的图象向右平移一个单位长度、所得图象与y =e x 关于y 轴对称、则f (x )= A.1ex + B. 1ex - C. 1ex -+ D. 1ex --3、(2013年高考(广东卷))定义域为R 的四个函数3y x =,2xy =,21y x =+,2sin y x =中,奇函数的个数是( )A . 4B .3C .2D .【解析】C ;考查基本初等函数和奇函数的概念,是奇函数的为3y x =与2sin y x =,故选C .4、(2013年高考(全国(广西)卷))已知函数()()()-1,021f x f x -的定义域为,则函数的定义域为(A )()1,1- (B )11,2⎛⎫- ⎪⎝⎭ (C )()-1,0 (D )1,12⎛⎫ ⎪⎝⎭【答案】B【解析】由题意可知 1210,x -<+<、则112x -<<-。
故选B5、(2013年高考(全国(广西)卷))函数()()1=log 10f x x x ⎛⎫+> ⎪⎝⎭的反函数()1=f x - (A )()1021x x >- (B )()1021xx ≠- (C )()21x x R -∈ (D )()210x x -> 【答案】A【解析】由题意知1112(0)21y y x y x +=⇒=<-、 因此、故选A6、(2013年高考(全国(广西)卷))若函数()211=,2f x x ax a x ⎛⎫++∞ ⎪⎝⎭在是增函数,则的取值范围是(A )[]-1,0 (B )[]-∞1, (C )[]0,3 (D )[]3∞,+7、(2013年高考(湖南卷))函数()2ln f x x =的图像与函数()245g x x x =-+的图像的交点个数为A .3B .2C .1D .0【答案】B【解析】画出两个函数的图象、可得交点数。
2013年全国高考理科数学试题分类汇编2:函数Word版含答案
2013 年全国高考理科数学试题分类汇编2:函数一、选择题1.( 2013年高考江西卷(理))函数 y= x ln(1-x) 的定义域为A.(0,1)B.[0,1)C.(0,1]D.[0,1]【答案】 D2.( 2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))若 a b c ,则函数f x x a x b x b x c x c x a 的两个零点分别位于区间()A.a,b 和 b, c内B., a 和 a,b内C. b,c和c,内D.,a 和 c,内【答案】 A13.( 2013年上海市春季高考数学试卷(含答案 ))函数f ( x) x 2的大致图像是 ()y y y yA x0Bx0x0xC D【答案】 A4 .( 2013年高考四川卷(理))设函数 f ( x)ex x a (a R ,e为自然对数的底数).若曲线 y sin x 上存在( x, y) 使得 f ( f ( y ))y, 则a 的取值范围是 ( )0000(A)[1,e](B)1,(C)[1, e1](D)1[ e,-11][e-1, e 1]【答案】 A5 .( 2013年高考新课标 1(理))已知函数f ( x)x22x, x0,若 | f (x) |≥ax,则aln( x1),x0的取值范围是A. (,0]B. (,1]C. [ 2,1]D.[2,0]【答案】 D6 .( 2013年普通高等学校招生统一考试大纲版数学(理)WORD版含答案(已校对))函数f x = log 2 11x 0的反函数 f 1 x=x(A)1x 0(B)1x 0 (C) 2x1 xR (D) 2x1 x 02x12x1【答案】 A7 .( 2013 年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版)) 已知 x, y 为正实数 , 则A. 2lg x lg y 2lg x 2lg yB. 2lg( x y) 2lg x 2lg yC.2lg x lg y 2lg x 2lg yD.2lg( xy) 2lg x 2lg y【答案】 D8 .年普通高等学校招生统一考试山东数学(理)试题(含答案))已知函数 f ( x)为奇( 2013函数 , 且当 x 0时 , f ( x)x 21, 则 f ( 1)x(A)2(B) 0 (C) 1(D) 2【答案】 A9 .(2013年高考陕西卷 (理))在如图所示的锐角三角形空地中, 欲建一个面积不小于300 2m的内接矩形花园 ( 阴影部分 ),则其边长 x ( 单位 ) 的取值范围是mx40m40m(A) [15,20] (B) [12,25](C) [10,30] (D) [20,30]【答案】 C10 .( 2013年 普 通 高 等 学 校 招 生 统 一 考 试 重 庆 数 学 ( 理 ) 试 题 ( 含 答 案 ))y3 a a 66 a3 的最大值为 ( )A.9B.9 C.33 22D.2【答案】 B11.( 2013 年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对) ) 已知函数 f x 的定义域为 1,0 , 则函数 f 2 x 1 的定义域为(A)1,1(B)1,1(C)-1,0(D)1,122【答案】 B12.( 2013年高考湖南卷(理))函数 f x2ln x 的图像与函数g x x24x 5 的图像的交点个数为A.3B.2C.1D.0【答案】 B13.( 2013x2)年高考四川卷(理))函数 y的图象大致是 (3x1【答案】 C14.( 2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD版))已知函数f x x2 2 a 2 x a2 ,g x x2 2 a 2 x a28. 设H1x max f x , g x, H 2x min f x , g x , max p, q表示 p,q 中的较大值 ,min p,q表示 p, q 中的较小值,记 H1x 得最小值为A, H 2x 得最小值为B,则A B(A)a22a 16(B)a22a16(C)16(D)16【答案】 B15.( 2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))定义域为R的四个函数 y x3,y 2x, y x21,y2sin x 中,奇函数的个数是()A .4 B.3 C.2 D.1【答案】 C16.( 2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD版))若函数f (x)=x3 +bx+c 有极值点 x1, x2,且 f (x1)=x1,则关于 x 的方程 3(f (x1)) 2 +2f (x)+b=0 的不同实根个数是(A)3(B)4 (C) 5(D)6【答案】 A17 .( 2013年普通高等学校招生统一考试天津数学(理)试题(含答案))函数f ( x)2x | log0.5 x |1的零点个数为(A) 1(B) 2(C) 3(D) 4【答案】 B18.( 2013年高考北京卷(理))函数 f ( x)的图象向右平移 1 个单位长度 , 所得图象与y=e x 关于 y 轴对称,则 f ( x)=A. e x 1B.e x 1C. e x 1D.e x 1【答案】 D19.( 2013年上海市春季高考数学试卷(含答案 ))设f-1( x)为函数f ( x)x 的反函数,下列结论正确的是 ( )(A) f1 (2)2(B)f1(2)4(C) f 1(4)2(D)f1(4)4【答案】 B20.( 2013年普通高等学校招生统一考试大纲版数学(理)WORD版含答案(已校对))若函数 f x =x2ax1在1, +是增函数 , 则a的取值范围是x2(A) [-1,0](B)[ 1,) (C)[0,3](D)[3,)【答案】 D二、填空题21 .( 2013年上海市春季高考数学试卷 ( 含答案 ) )函数y log 2x( 2)的定义域是_______________【答案】 (2,)22.( 2013年高考上海卷(理))方程3x 313x1的实数解为 ________ 13【答案】 x log3 4 .23(.2013 年高考上海卷(理))对区间I上有定义的函数g( x) ,记 g (I ){ y | y g( x), x I } ,已知定义域为[0,3]的函数y f ( x)有反函数y f1( x) ,且f 1 ([0,1))[1,2), f1 ((2,4])[0,1), 若方程f ( x)x0有解x0,则x0_____【答案】 x0 2 .24.( 2013年高考新课标 1(理))若函数f ( x)=(1x2 )( x2ax b) 的图像关于直线x2对称 , 则f ( x)的最大值是 ______.【答案】 16.25.( 2013年上海市春季高考数学试卷(含答案 ))方程2x8 的解是_________________【答案】 326.( 2013年高考湖南卷(理))设函数 f ( x) ax b x c x , 其中 c a 0,c b0. (1)记集合 M (a,b, c) a,b,c不能构成一个三角形的三条边长,且a=b ,则( a,b, c) M 所对应的 f ( x) 的零点的取值集合为____.(2)若 a,b, c是 ABC的三条边长,则下列结论正确的是______.(写出所有正确结论的序号 )①x,1 , f x0;②x R,使 xa x ,b x , c x不能构成一个三角形的三条边长;③若ABC为钝角三角形,则x 1,2 , 使 f x0.【答案】 (1)(0,1](2) ①②③27.( 2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯 WORD 版含附加题))已知 f ( x) 是定义在 R 上的奇函数.当 x 0 时, f ( x)x24x ,则不等式 f (x)x 的解集用区间表示为 ___________.【答案】5,05,28.( 2013年高考上海卷(理))设 a 为实常数,y f ( x) 是定义在R上的奇函数,当 x0时, f ( x)a27 ,若 f ( x) a 1对一切 x0 成立,则a的取值范围为________ 9xx【答案】 a 8 . 7三、解答题29.( 2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))设函数f ( x) ax (1 a 2 ) x 2, 其中 a 0 , 区间 I | x f (x)>0( Ⅰ) 求的长度 ( 注 : 区间 ( , ) 的长度定义为 );( Ⅱ) 给定常数 k(0,1) , 当时 , 求 l 长度的最小值 .【答案】 解 : ( Ⅰ) f ( x) x[ a (1 a 2)x]( Ⅱ) 由( Ⅰ) 知 , a 1l211 aaa已知 k (0,1),01 - k a 1k.令1 1 kg(a)a 1在 a 1 k 时取最大值 a0 x (0,a ) . 所以区间长度为 aa 2 .11 a 21 - kk211 - k 恒成立 .1 k这时 l1 k 1 k (1 k )21 (1 k )211 k所以当a 1 k 时, l 取最小值1 (1 k )2 .30.( 2013 年上海市春季高考数学试卷 (含答案 )) 本题共有 3 个小题 , 第 1 小题满分 5 分, 第 2 小题满分 7 分 , 第 3 小题满分 6 分 .已知真命题 : “函数y f ( x) 的图像关于点 P(a 、b) 成中心对称图形”的充要条件为“函数 y f ( x a) b 是奇函数” .(1) 将函数 g( x) x33x 2的图像向左平移 1 个单位 , 再向上平移 2 个单位 , 求此时图像对应的函数解析式 , 并利用题设中的真命题求函数 g (x) 图像对称中心的坐标 ;(2) 求函数 h( x)log 22x图像对称中心的坐标 ;4x(3) 已知命题 : “函数y f ( x) 的图像关于某直线成轴对称图像”的充要条件为“存在实数 a 和 b, 使得函数 y f (x a) b 是偶函数” . 判断该命题的真假. 如果是真命题 , 请给予 证明 ; 如果是假命题 , 请说明理由 , 并类比题设的真命题对它进行修改 , 使之成为真命题 ( 不必证明 ).【答案】 (1) 平移后图像对应的函数解析式为y (x 1)33(x 1)22 ,整理得 yx 33x ,由于函数 yx33x 是奇函数 ,由题设真命题知 , 函数 g( x) 图像对称中心的坐标是 (1, 2) .(2) 设 h( x)log 22x的对称中心为 P(a ,b) , 由题设知函数 h(x a)b 是奇函数 .4 x设 f (x) h( xa) b,2( x a) 2x 2a 则 f ( x) log 2( x a)b , 即 f (x) log 2ab .4 4 x由不等式2x 2a0 的解集关于原点对称 , 得 a 2 .4 a x此时f (x) log 2( x 2),, .2x b x( 2 2)2任取 x ( 2,2) , 由 f ( x)f (x) 0 , 得 b 1,所以函数 h(x)log 2 2x 图像对称中心的坐标是(2,1) .4 x(3) 此命题是假命题 .举反例说明 : 函数 f ( x)x 的图像关于直线yx 成轴对称图像 , 但是对任意实数 a 和 b ,函数 yf (x a) b , 即 y x a b 总不是偶函数 .修改后的真命题 :“函数 yf ( x) 的图像关于直线 x a 成轴对称图像”的充要条件是“函数 y f ( x a)是偶函数” .。
2013年全国统一高考数学试卷(理科)(大纲版)(含解析版)
2013年全国统一高考数学试卷(理科)(大纲版)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为()A.3B.4C.5D.62.(5分)=()A.﹣8B.8C.﹣8i D.8i3.(5分)已知向量=(λ+1,1),=(λ+2,2),若(+)⊥(﹣),则λ=()A.﹣4B.﹣3C.﹣2D.﹣14.(5分)已知函数f(x)的定义域为(﹣1,0),则函数f(2x+1)的定义域为()A.(﹣1,1)B .C.(﹣1,0)D .5.(5分)函数f(x)=log2(1+)(x>0)的反函数f﹣1(x)=()A .B .C.2x﹣1(x∈R)D.2x﹣1(x>0)6.(5分)已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B .C.3(1﹣3﹣10)D.3(1+3﹣10)7.(5分)(1+x)3(1+y)4的展开式中x2y2的系数是()A.5B.8C.12D.188.(5分)椭圆C :的左、右顶点分别为A1、A2,点P在C上且直线PA2斜率的取值范围是[﹣2,﹣1],那么直线PA1斜率的取值范围是()A .B .C .D .9.(5分)若函数f(x)=x2+ax +是增函数,则a的取值范围是()A.[﹣1,0]B.[﹣1,+∞)C.[0,3]D.[3,+∞)10.(5分)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于()A .B .C .D .11.(5分)已知抛物线C:y2=8x的焦点为F,点M(﹣2,2),过点F且斜率为k的直线与C交于A,B 两点,若,则k=()A .B .C .D.212.(5分)已知函数f(x)=cosxsin2x,下列结论中不正确的是()A.y=f(x)的图象关于(π,0)中心对称B .C .D.f(x)既是奇函数,又是周期函数二、填空题:本大题共4小题,每小题5分.13.(5分)已知α是第三象限角,sinα=﹣,则co tα=.14.(5分)6个人排成一行,其中甲、乙两人不相邻的不同排法共有种.(用数字作答)15.(5分)记不等式组所表示的平面区域为D.若直线y=a(x+1)与D有公共点,则a 的取值范围是.16.(5分)已知圆O和圆K是球O的大圆和小圆,其公共弦长等于球O的半径,,则球O的表面积等于.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(10分)等差数列{a n}的前n项和为S n.已知S3=a22,且S1,S2,S4成等比数列,求{a n}的通项式.18.(12分)设△ABC的内角A,B,C的内角对边分别为a,b,c,满足(a+b+c)(a﹣b+c)=ac.(Ⅰ)求B.(Ⅱ)若sinAsinC=,求C.19.(12分)如图,四棱锥P﹣ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB与△PAD都是等边三角形.(Ⅰ)证明:PB⊥CD;(Ⅱ)求二面角A﹣PD﹣C的大小.20.(12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为,各局比赛的结果都相互独立,第1局甲当裁判.(Ⅰ)求第4局甲当裁判的概率;(Ⅱ)X表示前4局中乙当裁判的次数,求X的数学期望.21.(12分)已知双曲线C :=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为3,直线y=2与C 的两个交点间的距离为.(I)求a,b;(II)设过F2的直线l与C的左、右两支分别相交于A、B两点,且|AF1|=|BF1|,证明:|AF2|、|AB|、|BF2|成等比数列.22.(12分)已知函数.(I)若x≥0时,f(x)≤0,求λ的最小值;(II)设数列{a n}的通项a n=1+.2013年全国统一高考数学试卷(理科)(大纲版)参考答案与试题解析一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为()A.3B.4C.5D.6【考点】13:集合的确定性、互异性、无序性;1A:集合中元素个数的最值.【专题】11:计算题.【分析】利用已知条件,直接求出a+b,利用集合元素互异求出M中元素的个数即可.【解答】解:因为集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},所以a+b的值可能为:1+4=5、1+5=6、2+4=6、2+5=7、3+4=7、3+5=8,所以M中元素只有:5,6,7,8.共4个.故选:B.【点评】本题考查集合中元素个数的最值,集合中元素的互异性的应用,考查计算能力.2.(5分)=()A.﹣8B.8C.﹣8i D.8i【考点】A5:复数的运算.【分析】复数分子、分母同乘﹣8,利用1的立方虚根的性质(),化简即可.【解答】解:故选:A.【点评】复数代数形式的运算,是基础题.3.(5分)已知向量=(λ+1,1),=(λ+2,2),若(+)⊥(﹣),则λ=()A.﹣4B.﹣3C.﹣2D.﹣1【考点】9T:数量积判断两个平面向量的垂直关系.【专题】5A:平面向量及应用.【分析】利用向量的运算法则、向量垂直与数量积的关系即可得出.【解答】解:∵,.∴=(2λ+3,3),.∵,∴=0,∴﹣(2λ+3)﹣3=0,解得λ=﹣3.故选:B.【点评】熟练掌握向量的运算法则、向量垂直与数量积的关系是解题的关键.4.(5分)已知函数f(x)的定义域为(﹣1,0),则函数f(2x+1)的定义域为()A.(﹣1,1)B .C.(﹣1,0)D .【考点】33:函数的定义域及其求法.【专题】51:函数的性质及应用.【分析】原函数的定义域,即为2x+1的范围,解不等式组即可得解.【解答】解:∵原函数的定义域为(﹣1,0),∴﹣1<2x+1<0,解得﹣1<x <﹣.∴则函数f(2x+1)的定义域为.故选:B.【点评】考查复合函数的定义域的求法,注意变量范围的转化,属简单题.5.(5分)函数f(x)=log2(1+)(x>0)的反函数f﹣1(x)=()A .B .C.2x﹣1(x∈R)D.2x﹣1(x>0)【考点】4R:反函数.【专题】51:函数的性质及应用.【分析】把y看作常数,求出x:x=,x,y互换,得到y=log2(1+)的反函数.注意反函数的定义域.【解答】解:设y=log2(1+),把y看作常数,求出x:1+=2y,x=,其中y>0,x,y互换,得到y=log2(1+)的反函数:y=,故选:A.【点评】本题考查对数函数的反函数的求法,解题时要认真审题,注意对数式和指数式的相互转化.6.(5分)已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B .C.3(1﹣3﹣10)D.3(1+3﹣10)【考点】89:等比数列的前n项和.【专题】11:计算题;54:等差数列与等比数列.【分析】由已知可知,数列{a n}是以﹣为公比的等比数列,结合已知可求a1,然后代入等比数列的求和公式可求【解答】解:∵3a n+1+a n=0∴∴数列{a n}是以﹣为公比的等比数列∵∴a1=4由等比数列的求和公式可得,S10==3(1﹣3﹣10)故选:C.【点评】本题主要考查了等比数列的通项公式及求和公式的简单应用,属于基础试题7.(5分)(1+x)3(1+y)4的展开式中x2y2的系数是()A.5B.8C.12D.18【考点】DA:二项式定理.【专题】11:计算题.【分析】由题意知利用二项展开式的通项公式写出展开式的通项,令x的指数为2,写出出展开式中x2的系数,第二个因式y2的系数,即可得到结果.【解答】解:(x+1)3的展开式的通项为T r+1=C3r x r令r=2得到展开式中x2的系数是C32=3,(1+y)4的展开式的通项为T r+1=C4r y r令r=2得到展开式中y2的系数是C42=6,(1+x)3(1+y)4的展开式中x2y2的系数是:3×6=18,故选:D.【点评】本题考查利用二项展开式的通项公式解决二项展开式的特定项问题,本题解题的关键是写出二项式的展开式,所有的这类问题都是利用通项来解决的.8.(5分)椭圆C :的左、右顶点分别为A1、A2,点P在C上且直线PA2斜率的取值范围是[﹣2,﹣1],那么直线PA1斜率的取值范围是()A .B .C .D .【考点】I3:直线的斜率;KH:直线与圆锥曲线的综合.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由椭圆C :可知其左顶点A1(﹣2,0),右顶点A2(2,0).设P(x0,y0)(x0≠±2),代入椭圆方程可得.利用斜率计算公式可得,再利用已知给出的的范围即可解出.【解答】解:由椭圆C :可知其左顶点A1(﹣2,0),右顶点A2(2,0).设P(x0,y0)(x0≠±2),则,得.∵=,=,∴==,∵,∴,解得.故选:B.【点评】熟练掌握椭圆的标准方程及其性质、斜率的计算公式、不等式的性质等是解题的关键.9.(5分)若函数f(x)=x2+ax +是增函数,则a的取值范围是()A.[﹣1,0]B.[﹣1,+∞)C.[0,3]D.[3,+∞)【考点】6B:利用导数研究函数的单调性.【专题】53:导数的综合应用.【分析】由函数在(,+∞)上是增函数,可得≥0在(,+∞)上恒成立,进而可转化为a ≥﹣2x 在(,+∞)上恒成立,构造函数求出﹣2x 在(,+∞)上的最值,可得a的取值范围.【解答】解:∵在(,+∞)上是增函数,故≥0在(,+∞)上恒成立,即a ≥﹣2x 在(,+∞)上恒成立,令h(x)=﹣2x,则h′(x)=﹣﹣2,当x ∈(,+∞)时,h′(x)<0,则h(x)为减函数.∴h(x)<h ()=3∴a≥3.故选:D.【点评】本题考查的知识点是利用导数研究函数的单调性,恒成立问题,是导数的综合应用,难度中档.10.(5分)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于()A .B .C .D .【考点】MI:直线与平面所成的角.【专题】15:综合题;16:压轴题;5G:空间角;5H:空间向量及应用.【分析】设AB=1,则AA1=2,分别以的方向为x轴、y轴、z轴的正方向建立空间直角坐标系,设=(x,y,z)为平面BDC1的一个法向量,CD与平面BDC1所成角为θ,则sinθ=||,在空间坐标系下求出向量坐标,代入计算即可.【解答】解:设AB=1,则AA1=2,分别以的方向为x轴、y轴、z轴的正方向建立空间直角坐标系,如下图所示:则D(0,0,2),C1(1,0,0),B(1,1,2),C(1,0,2),=(1,1,0),=(1,0,﹣2),=(1,0,0),设=(x,y,z)为平面BDC1的一个法向量,则,即,取=(2,﹣2,1),设CD与平面BDC1所成角为θ,则sinθ=||=,故选:A.【点评】本题考查直线与平面所成的角,考查空间向量的运算及应用,准确理解线面角与直线方向向量、平面法向量夹角关系是解决问题的关键.11.(5分)已知抛物线C:y2=8x的焦点为F,点M(﹣2,2),过点F且斜率为k的直线与C交于A,B 两点,若,则k=()A .B .C .D.2【考点】9O:平面向量数量积的性质及其运算;K8:抛物线的性质.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】斜率k存在,设直线AB为y=k(x﹣2),代入抛物线方程,利用=(x1+2,y1﹣2)•(x2+2,y2﹣2)=0,即可求出k的值.【解答】解:由抛物线C:y2=8x得焦点(2,0),由题意可知:斜率k存在,设直线AB为y=k(x﹣2),代入抛物线方程,得到k2x2﹣(4k2+8)x+4k2=0,△>0,设A(x1,y1),B(x2,y2).∴x1+x2=4+,x1x2=4.∴y1+y2=,y1y2=﹣16,又=0,∴=(x1+2,y1﹣2)•(x2+2,y2﹣2)==0∴k=2.故选:D.【点评】本题考查直线与抛物线的位置关系,考查向量的数量积公式,考查学生的计算能力,属于中档题.12.(5分)已知函数f(x)=cosxsin2x,下列结论中不正确的是()A.y=f(x)的图象关于(π,0)中心对称B .C .D.f(x)既是奇函数,又是周期函数【考点】H1:三角函数的周期性;HW:三角函数的最值.【专题】11:计算题;57:三角函数的图像与性质.【分析】根据函数图象关于某点中心对称或关于某条直线对称的公式,对A、B两项加以验证,可得它们都正确.根据二倍角的正弦公式和同角三角函数的关系化简,得f(x)=2sinx(1﹣sin2x),再换元:令t=sinx,得到关于t的三次函数,利用导数研究此函数的单调性可得f(x)的最大值为,故C不正确;根据函数周期性和奇偶性的定义加以验证,可得D项正确.由此可得本题的答案.【解答】解:对于A,因为f(π+x)=cos(π+x)sin(2π+2x)=﹣cosxsin2x,f(π﹣x)=cos(π﹣x)sin(2π﹣2x)=cosxsin2x,所以f(π+x)+f(π﹣x)=0,可得y=f(x)的图象关于(π,0)中心对称,故A正确;对于B,因为f (+x)=cos (+x)sin(π+2x)=﹣sinx(﹣sin2x)=sinxsin2x,f (﹣x)=cos (﹣x)sin(π﹣2x)=sinxsin2x,所以f (+x)=f (﹣x),可得y=f(x)的图象关于直线x=对称,故B正确;对于C,化简得f(x)=cosxsin2x=2cos2xsinx=2sinx(1﹣sin2x),令t=sinx,f(x)=g(t)=2t(1﹣t2),﹣1≤t≤1,∵g(t)=2t(1﹣t2)的导数g'(t)=2﹣6t2=2(1+t)(1﹣t)∴当t∈(﹣1,﹣)时或t ∈(,1)时g'(t)<0,函数g(t)为减函数;当t ∈(﹣,)时g'(t)>0,函数g(t)为增函数.因此函数g(t)的最大值为t=﹣1时或t=时的函数值,结合g(﹣1)=0<g ()=,可得g(t )的最大值为.由此可得f(x )的最大值为而不是,故C不正确;对于D,因为f(﹣x)=cos(﹣x)sin(﹣2x)=﹣cosxsin2x=﹣f(x),所以f(x)是奇函数.因为f(2π+x)=cos(2π+x)sin(4π+2x)=cosxsin2x=f(x),所以2π为函数的一个周期,得f(x)为周期函数.可得f(x)既是奇函数,又是周期函数,得D 正确.综上所述,只有C项不正确.故选:C.【点评】本题给出三角函数式,研究函数的奇偶性、单调性和周期性.着重考查了三角恒等变换公式、利用导数研究函数的单调性和函数图象的对称性等知识,属于中档题.二、填空题:本大题共4小题,每小题5分.13.(5分)已知α是第三象限角,sinα=﹣,则cotα=2.【考点】GG:同角三角函数间的基本关系.【专题】56:三角函数的求值.【分析】根据α是第三象限的角,得到cosα小于0,然后由sinα的值,利用同角三角函数间的基本关系求出cosα的值,进而求出cotα的值.【解答】解:由α是第三象限的角,得到cosα<0,又sinα=﹣,所以cosα=﹣=﹣则cotα==2故答案为:2【点评】此题考查学生灵活运用同角三角函数间的基本关系化简求值,是一道基础题.学生做题时注意α的范围.14.(5分)6个人排成一行,其中甲、乙两人不相邻的不同排法共有480种.(用数字作答)【考点】D9:排列、组合及简单计数问题.【专题】11:计算题.【分析】排列好甲、乙两人外的4人,然后把甲、乙两人插入4个人的5个空位中即可.【解答】解:6个人排成一行,其中甲、乙两人不相邻的不同排法:排列好甲、乙两人外的4人,有中方法,然后把甲、乙两人插入4个人的5个空位,有种方法,所以共有:=480.故答案为:480.【点评】本题考查了乘法原理,以及排列的简单应用,插空法解答不相邻问题.15.(5分)记不等式组所表示的平面区域为D.若直线y=a(x+1)与D有公共点,则a 的取值范围是[,4] .【考点】7C:简单线性规划.【专题】16:压轴题;59:不等式的解法及应用.【分析】本题考查的知识点是简单线性规划的应用,我们要先画出满足约束条件的平面区域,然后分析平面区域里各个角点,然后将其代入y=a(x+1)中,求出y=a(x+1)对应的a的端点值即可.【解答】解:满足约束条件的平面区域如图示:因为y=a(x+1)过定点(﹣1,0).所以当y=a(x+1)过点B(0,4)时,得到a=4,当y=a(x+1)过点A(1,1)时,对应a=.又因为直线y=a(x+1)与平面区域D有公共点.所以≤a≤4.故答案为:[,4]【点评】在解决线性规划的小题时,我们常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.16.(5分)已知圆O和圆K是球O的大圆和小圆,其公共弦长等于球O的半径,,则球O的表面积等于16π.【考点】LG:球的体积和表面积.【专题】16:压轴题;5F:空间位置关系与距离.【分析】正确作出图形,利用勾股定理,建立方程,即可求得结论.【解答】解:如图所示,设球O的半径为r,AB是公共弦,∠OCK是面面角根据题意得OC=,CK=在△OCK中,OC2=OK2+CK2,即∴r2=4∴球O的表面积等于4πr2=16π故答案为16π【点评】本题考查球的表面积,考查学生分析解决问题的能力,属于中档题.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(10分)等差数列{a n}的前n项和为S n.已知S3=a22,且S1,S2,S4成等比数列,求{a n}的通项式.【考点】85:等差数列的前n项和;88:等比数列的通项公式.【专题】11:计算题;54:等差数列与等比数列.【分析】由,结合等差数列的求和公式可求a2,然后由,结合等差数列的求和公式进而可求公差d,即可求解通项公式【解答】解:设数列的公差为d由得,3∴a2=0或a2=3由题意可得,∴若a2=0,则可得d2=﹣2d2即d=0不符合题意若a2=3,则可得(6﹣d)2=(3﹣d)(12+2d)解可得d=0或d=2∴a n=3或a n=2n﹣1【点评】本题主要考查了等差数列的通项公式及求和公式的应用,等比数列的性质的简单应用,属于基础试题18.(12分)设△ABC的内角A,B,C的内角对边分别为a,b,c,满足(a+b+c)(a﹣b+c)=ac.(Ⅰ)求B.(Ⅱ)若sinAsinC=,求C.【考点】GP:两角和与差的三角函数;HR:余弦定理.【专题】58:解三角形.【分析】(I)已知等式左边利用多项式乘多项式法则计算,整理后得到关系式,利用余弦定理表示出cosB,将关系式代入求出cosB的值,由B为三角形的内角,利用特殊角的三角函数值即可求出B的度数;(II)由(I)得到A+C的度数,利用两角和与差的余弦函数公式化简cos(A﹣C),变形后将cos(A+C)及2sinAsinC的值代入求出cos(A﹣C)的值,利用特殊角的三角函数值求出A﹣C的值,与A+C 的值联立即可求出C的度数.【解答】解:(I)∵(a+b+c)(a﹣b+c)=(a+c)2﹣b2=ac,∴a2+c2﹣b2=﹣ac,∴cosB==﹣,又B为三角形的内角,则B=120°;(II)由(I)得:A+C=60°,∵sinAsinC=,cos(A+C)=,∴cos(A﹣C)=cosAcosC+sinAsinC=cosAcosC﹣sinAsinC+2sinAsinC=cos(A+C)+2sinAsinC=+2×=,∴A﹣C=30°或A﹣C=﹣30°,则C=15°或C=45°.【点评】此题考查了余弦定理,两角和与差的余弦函数公式,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.19.(12分)如图,四棱锥P﹣ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB与△PAD都是等边三角形.(Ⅰ)证明:PB⊥CD;(Ⅱ)求二面角A﹣PD﹣C的大小.【考点】LW:直线与平面垂直;M5:共线向量与共面向量.【专题】11:计算题;5G:空间角.【分析】(I)取BC的中点E,连接DE,过点P作PO⊥平面ABCD于O,连接OA、OB、OD、OE.可证出四边形ABED是正方形,且O为正方形ABED的中心.因此OE⊥OB,结合三垂线定理,证出OE⊥PB,而OE是△BCD的中位线,可得OE∥CD,因此PB⊥CD;(II)由(I)的结论,证出CD⊥平面PBD,从而得到CD⊥PD.取PD的中点F,PC的中点G,连接FG,可得FG∥CD,所以FG⊥PD.连接AF,可得AF⊥PD,因此∠AFG为二面角A﹣PD﹣C的平面角,连接AG、EG,则EG∥PB,可得EG⊥OE.设AB=2,可求出AE、EG、AG、AF和FG的长,最后在△AFG中利用余弦定理,算出∠AFG=π﹣arccos,即得二面角A﹣PD﹣C的平面角大小.【解答】解:(I)取BC的中点E,连接DE,可得四边形ABED是正方形过点P作PO⊥平面ABCD,垂足为O,连接OA、OB、OD、OE∵△PAB与△PAD都是等边三角形,∴PA=PB=PD,可得OA=OB=OD因此,O是正方形ABED的对角线的交点,可得OE⊥OB∵PO⊥平面ABCD,得直线OB是直线PB在内的射影,∴OE⊥PB∵△BCD中,E、O分别为BC、BD的中点,∴OE∥CD,可得PB⊥CD;(II)由(I)知CD⊥PO,CD⊥PB ∵PO、PB是平面PBD内的相交直线,∴CD⊥平面PBD∵PD⊂平面PBD,∴CD⊥PD取PD的中点F,PC的中点G,连接FG,则FG为△PCD有中位线,∴FG∥CD,可得FG⊥PD连接AF,由△PAD是等边三角形可得AF⊥PD,∴∠AFG为二面角A﹣PD﹣C的平面角连接AG、EG,则EG∥PB∵PB⊥OE,∴EG⊥OE,设AB=2,则AE=2,EG=PB=1,故AG==3在△AFG中,FG=CD=,AF=,AG=3∴cos∠AFG==﹣,得∠AFG=π﹣arccos,即二面角A﹣PD﹣C的平面角大小是π﹣arccos.【点评】本题给出特殊的四棱锥,求证直线与直线垂直并求二面角平面角的大小,着重考查了线面垂直的判定与性质、三垂线定理和运用余弦定理求二面的大小等知识,属于中档题.20.(12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为,各局比赛的结果都相互独立,第1局甲当裁判.(Ⅰ)求第4局甲当裁判的概率;(Ⅱ)X表示前4局中乙当裁判的次数,求X的数学期望.【考点】CB:古典概型及其概率计算公式;CH:离散型随机变量的期望与方差.【专题】5I:概率与统计.【分析】(I)令A1表示第2局结果为甲获胜,A2表示第3局甲参加比赛时,结果为甲负,A表示第4局甲当裁判,分析其可能情况,每局比赛的结果相互独立且互斥,利用独立事件、互斥事件的概率求解即可.(II)X的所有可能值为0,1,2.分别求出X取每一个值的概率,列出分布列后求出期望值即可.【解答】解:(I)令A1表示第2局结果为甲获胜.A2表示第3局甲参加比赛时,结果为甲负.A表示第4局甲当裁判.则A=A1•A2,P(A)=P(A1•A2)=P(A1)P(A2)=;(Ⅱ)X的所有可能值为0,1,2.令A3表示第3局乙和丙比赛时,结果为乙胜.B1表示第1局结果为乙获胜,B2表示第2局乙和甲比赛时,结果为乙胜,B3表示第3局乙参加比赛时,结果为乙负,则P(X=0)=P(B1B 2)=P(B1)P(B2)P ()=.P(X=2)=P (B3)=P ()P(B3)=.P(X=1)=1﹣P(X=0)﹣P(X=2)=.从而EX=0×+1×+2×=.【点评】本题考查互斥、独立事件的概率,离散型随机变量的分布列和期望等知识,同时考查利用概率知识解决问题的能力.21.(12分)已知双曲线C :=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为3,直线y=2与C 的两个交点间的距离为.(I)求a,b;(II)设过F2的直线l与C的左、右两支分别相交于A、B两点,且|AF1|=|BF1|,证明:|AF2|、|AB|、|BF2|成等比数列.【考点】K4:椭圆的性质;KH:直线与圆锥曲线的综合.【专题】14:证明题;15:综合题;16:压轴题;35:转化思想;5D:圆锥曲线的定义、性质与方程.【分析】(I)由题设,可由离心率为3得到参数a,b的关系,将双曲线的方程用参数a表示出来,再由直线建立方程求出参数a即可得到双曲线的方程;(II)由(I)的方程求出两焦点坐标,设出直线l的方程设A(x1,y1),B(x2,y2),将其与双曲线C的方程联立,得出x1+x2=,,再利用|AF1|=|BF1|建立关于A,B坐标的方程,得出两点横坐标的关系,由此方程求出k的值,得出直线的方程,从而可求得:|AF2|、|AB|、|BF2|,再利用等比数列的性质进行判断即可证明出结论.【解答】解:(I )由题设知=3,即=9,故b2=8a2所以C的方程为8x2﹣y2=8a2将y=2代入上式,并求得x=±,由题设知,2=,解得a2=1所以a=1,b=2(II)由(I)知,F1(﹣3,0),F2(3,0),C的方程为8x2﹣y2=8 ①由题意,可设l的方程为y=k(x﹣3),|k|<2代入①并化简得(k2﹣8)x2﹣6k2x+9k2+8=0设A(x1,y1),B(x2,y2),则x1≤﹣1,x2≥1,x1+x2=,,于是|AF1|==﹣(3x1+1),|BF1|==3x2+1,|AF1|=|BF1|得﹣(3x1+1)=3x2+1,即故=,解得,从而=﹣由于|AF2|==1﹣3x1,|BF2|==3x2﹣1,故|AB|=|AF2|﹣|BF2|=2﹣3(x1+x2)=4,|AF2||BF2|=3(x1+x2)﹣9x1x2﹣1=16因而|AF2||BF2|=|AB|2,所以|AF2|、|AB|、|BF2|成等比数列【点评】本题考查直线与圆锥曲线的综合关系,考查了运算能力,题设条件的转化能力,方程的思想运用,此类题综合性强,但解答过程有其固有规律,一般需要把直线与曲线联立利用根系关系,解答中要注意提炼此类题解答过程中的共性,给以后解答此类题提供借鉴.22.(12分)已知函数.(I)若x≥0时,f(x)≤0,求λ的最小值;(II)设数列{a n}的通项a n=1+.【考点】6E:利用导数研究函数的最值;8E:数列的求和;8K:数列与不等式的综合.【专题】16:压轴题;35:转化思想;53:导数的综合应用;54:等差数列与等比数列.【分析】(I)由于已知函数的最大值是0,故可先求出函数的导数,研究其单调性,确定出函数的最大值,利用最大值小于等于0求出参数λ的取值范围,即可求得其最小值;(II)根据(I)的证明,可取λ=,由于x>0时,f(x)<0得出,考察发现,若取x=,则可得出,以此为依据,利用放缩法,即可得到结论【解答】解:(I)由已知,f(0)=0,f′(x)==,∴f′(0)=0欲使x≥0时,f(x)≤0恒成立,则f(x)在(0,+∞)上必为减函数,即在(0,+∞)上f′(x)<0恒成立,当λ≤0时,f′(x)>0在(0,+∞)上恒成立,为增函数,故不合题意,若0<λ<时,由f′(x)>0解得x <,则当0<x <,f′(x)>0,所以当0<x <时,f(x)>0,此时不合题意,若λ≥,则当x>0时,f′(x)<0恒成立,此时f(x)在(0,+∞)上必为减函数,所以当x>0时,f(x)<0恒成立,综上,符合题意的λ的取值范围是λ≥,即λ的最小值为(II)令λ=,由(I)知,当x>0时,f(x)<0,即取x=,则于是a2n﹣a n +=++…++====>=ln2n﹣lnn=ln2所以【点评】本题考查了数列中证明不等式的方法及导数求最值的普通方法,解题的关键是充分利用已有的结论再结合放缩法,本题考查了推理判断的能力及转化化归的思想,有一定的难度。
2013年高考理科数学湖北卷word解析版
2013年普通高等学校夏季招生全国统一考试数学理工农医类(湖北卷)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013湖北,理1)在复平面内,复数2i=1iz+(i为虚数单位)的共轭复数对应的点位于( ).A.第一象限 B.第二象限 C.第三象限 D.第四象限2.(2013湖北,理2)已知全集为R,集合112xA x⎧⎫⎪⎪⎛⎫=≤⎨⎬⎪⎝⎭⎪⎪⎩⎭,B={x|x2-6x+8≤0},则A ∩=( ).A.{x|x≤0} B.{x|2≤x≤4}C.{x|0≤x<2或x>4} D.{x|0<x≤2或x≥4}3.(2013湖北,理3)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( ).A.(⌝p)∨(⌝q) B.p∨(⌝q) C.(⌝p)∧(⌝q) D.p∨q4.(2013湖北,理4)将函数yx+sin x(x∈R)的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是( ).A.π12 B.π6 C.π3 D.5π65.(2013湖北,理5)已知π0<<4θ,则双曲线C1:2222=1cos sinx yθθ-与C2:22222=1sin sin tany xθθθ-的( ).A.实轴长相等 B.虚轴长相等 C.焦距相等 D.离心率相等6.(2013湖北,理6)已知点A(-1,1),B(1,2),C(-2,-1),D(3,4),则向量AB在CD方向上的投影为( ).A.2 B. C.2-D.7.(2013湖北,理7)一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v(t)=25 731tt-++(t的单位:s,v的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是( ).A.1+25ln 5 B.118+25ln3 C.4+25ln 5 D.4+50ln 28.(2013湖北,理8)一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为V1,V2,V3,V4,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有( ).A.V1<V2<V4<V3 B.V1<V3<V2<V4C.V2<V1<V3<V4 D.V2<V3<V1<V49.(2013湖北,理9)如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体.经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X,则X的均值E(X)=( ).A .126125B .65C .168125D .7510.(2013湖北,理10)已知a 为常数,函数f (x )=x (ln x -ax )有两个极值点x 1,x 2(x 1<x 2),则( ).A .f(x1)>0,f(x2)>12-B .f(x1)<0,f(x2)<12-C .f(x1)>0,f(x2)<12-D .f(x1)<0,f(x2)>12-二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号.......的位置上,答错位置,书写不清,模棱两可均不得分. 11.(2013湖北,理11)从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示.(1)直方图中x 的值为__________;(2)在这些用户中,用电量落在区间[100,250)内的户数为__________.12.(2013湖北,理12)阅读如图所示的程序框图,运行相应的程序,输出的结果i =__________.13.(2013湖北,理13)设x ,y ,z ∈R ,且满足:x 2+y 2+z 2=1,x +2y +3z 则x +y +z =__________. 14.(2013湖北,理14)古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,…,第n 个三角形数为2111222n n n n (+)=+.记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式:三角形数 N (n,3)=21122n n +, 正方形数 N (n,4)=n 2, 五边形数 N (n,5)=23122n n -, 六边形数 N (n,6)=2n 2-n ,…… ……可以推测N (n ,k )的表达式,由此计算N (10,24)=__________.(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B 铅笔涂黑.如果全选,则按第15题作答结果计分.)15.(2013湖北,理15)(选修4—1:几何证明选讲)如图,圆O 上一点C 在直径AB 上的射影为D ,点D 在半径OC 上的射影为E .若AB =3AD ,则CEEO的值为______.16.(2013湖北,理16)(选修4—4:坐标系与参数方程) 在直角坐标系xOy 中,椭圆C 的参数方程为cos sin x a y b ϕϕ=⎧⎨=⎩(φ为参数,a >b >0).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l 与圆O 的极坐标方程分别为πsin 42m ρθ⎛⎫+= ⎪⎝⎭(m 为非零常数)与ρ=b .若直线l 经过椭圆C 的焦点,且与圆O 相切,则椭圆C 的离心率为__________.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(2013湖北,理17)(本小题满分12分)在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c .已知cos 2A -3cos(B +C )=1.(1)求角A 的大小;(2)若△ABC 的面积S =b =5,求sin B sin C 的值.18.(2013湖北,理18)(本小题满分12分)已知等比数列{a n }满足:|a 2-a 3|=10,a 1a 2a 3=125. (1)求数列{a n }的通项公式; (2)是否存在正整数m ,使得121111ma a a +++≥?若存在,求m 的最小值;若不存在,说明理由.19.(2013湖北,理19)(本小题满分12分)如图,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,直线PC ⊥平面ABC ,E ,F 分别是PA ,PC 的中点.(1)记平面BEF 与平面ABC 的交线为l ,试判断直线l 与平面PAC 的位置关系,并加以证明;(2)设(1)中的直线l 与圆O 的另一个交点为D ,且点Q 满足12DQ CP =,记直线PQ 与平面ABC 所成的角为θ,异面直线PQ 与EF 所成的角为α,二面角E -l -C 的大小为β,求证:sin θ=sin αsin β.20.(2013湖北,理20)(本小题满分12分)假设每天从甲地去乙地的旅客人数X是服从正态分布N(800,502)的椭机变量.记一天中从甲地去乙地的旅客人数不超过900的概率为p0.(1)求p0的值;(参考数据:若X~N(μ,σ2),有P(μ-σ<X≤μ+σ)=0.682 6,P(μ-2σ<X≤μ+2σ)=0.954 4,P(μ-3σ<X≤μ+3σ)=0.997 4.)(2)某客运公司用A,B两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A,B两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1 600元/辆和2 400元/辆.公司拟组建一个不超过21辆车的客运车队,并要求B型车不多于A型车7辆.若每天要以不小于p0的概率运完从甲地去乙地的旅客,且使公司从甲地去乙地的营运成本最小,那么应配备A型车、B型车各多少辆?21.(2013湖北,理21) (本小题满分13分)如图,已知椭圆C1与C2的中心在坐标原点O,长轴均为MN且在x轴上,短轴长分别为2m,2n(m>n),过原点且不与x轴重合的直线l与C1,C2的四个交点按纵坐标从大到小依次为A,B,C,D.记λ=mn,△BDM和△ABN的面积分别为S1和S2.(1)当直线l与y轴重合时,若S1=λS2,求λ的值;(2)当λ变化时,是否存在与坐标轴不重合的直线l,使得S1=λS2?并说明理由.22.(2013湖北,理22)(本小题满分14分)设n是正整数,r为正有理数.(1)求函数f(x)=(1+x)r+1-(r+1)x-1(x>-1)的最小值;(2)证明:111111<<11r r r rrn n n nnr r++++-(-)(+)-++;(3)设x∈R,记[x]为不小于...x的最小整数,例如[2]=2,[π]=4,3=12⎡⎤--⎢⎥⎣⎦.令3125S+,求[S]的值.(参考数据:4380344.7≈,4381350.5≈,43124618.3≈,43126631.7≈)2013年普通高等学校夏季招生全国统一考试数学理工农医类(湖北卷)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.答案:D解析:∵2i 2i 1i =1i 1i 1i z (-)=+(+)(-)=i(1-i)=1+i , ∴复数2i=1iz +的共轭复数z =1-i ,其在复平面内对应的点(1,-1)位于第四象限.2.答案:C解析:由题意知集合112xA x ⎧⎫⎪⎪⎛⎫=≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭={x |x ≥0},集合B ={x |x 2-6x +8≤0}={x |2≤x ≤4},={x |x <2或x >4}.因此A ∩()={x |0≤x <2或x >4}.3.答案:A解析:“至少有一位学员没有降落在指定范围”包括甲或乙没有落在指定范围或者两人均没有落在指定范围,因此应为(⌝p )∨(⌝q ).4.答案:B解析:∵y x +sin x =π2sin 3x ⎛⎫+ ⎪⎝⎭,∴函数y x +sin x (x ∈R )的图象向左平移m (m >0)个单位长度后,变为函数π=2sin 3y x m ⎛⎫++ ⎪⎝⎭的图象.又∵所得到的图象关于y 轴对称,则有π3+m =k π+π2,k ∈Z , ∴m =ππ6k +,k ∈Z .∵m >0,∴当k =0时,m 的最小值为π6. 5.答案:D解析:对于双曲线C 1:2222=1cos sin x y θθ-,21a =cos 2θ,21b =sin 2θ,21c =1; 对于双曲线C 2:22222=1sin sin tan y x θθθ-,22a =sin 2θ,22b =sin 2θtan 2θ,22c =sin 2θ+sin 2θtan 2θ=sin 2θ(1+tan 2θ)=22222sin sin sin 1cos cos θθθθθ⎛⎫+= ⎪⎝⎭=tan 2θ. ∵只有当θ=ππ4k +(k ∈Z )时,21a =22a 或21b =22b 或21c =22c ,而π0<<4θ,∴排除A ,B ,C.设双曲线C 1,C 2的离心率分别为e 1,e 2,则2121cos e θ=,22222tan 1sin cos e θθθ==. 故e 1=e 2,即两双曲线的离心率相等.6.答案:A解析:由题意可知AB =(2,1),CD =(5,5),故AB 在CD方向上的投影为2AB CD CD⋅==. 7.答案:C 解析:由于v (t )=7-3t +251t+,且汽车停止时速度为0, 因此由v (t )=0可解得t =4, 即汽车从刹车到停止共用4 s. 该汽车在此期间所行驶的距离4025=73d 1s t t t ⎛⎫-+ ⎪+⎝⎭⎰ =423725ln 12tt t ⎡⎤-+(+)⎢⎥⎣⎦ =4+25ln 5(m). 8.答案:C解析:由三视图可知,四个几何体自上而下分别为圆台,圆柱,四棱柱,四棱台.结合题中所给数据可得:V 1=13(4π+π+2π)=7π3,V 2=2π, V 3=23=8,V 4=13(16+4+8)=283.故V 2<V 1<V 3<V 4.9.答案:B解析:由题意可知涂漆面数X 的可能取值为0,1,2,3.由于P (X =0)=27125,P (X =1)=54125,P (X =2)=36125,P (X =3)=8125, 故E (X )=275436815060+1+231251251251251255⨯⨯⨯⨯==+. 10.答案:D解析:由题意知,函数f (x )=x (ln x -ax )=x ln x -ax 2有两个极值点, 即f ′(x )=ln x +1-2ax =0在区间(0,+∞)上有两个根. 令h (x )=ln x +1-2ax ,则h ′(x )=121=2ax a x x-+-=,当a ≤0时h ′(x )>0,f ′(x )在区间(0,+∞)上递增,f ′(x )=0不可能有两个正根,∴a >0.由h ′(x )=0,可得12x a =,从而可知h (x )在区间10,2a ⎛⎫ ⎪⎝⎭上递增,在区间1,2a ⎛⎫∞ ⎪⎝⎭上递减.因此需111=ln +11=ln >0222h a a a ⎛⎫- ⎪⎝⎭,即1>12a 时满足条件,故当10<<2a 时,h (x )=0有两个根x 1,x 2,且121<2x x a<.又h (1)=1-2a >0, ∴1211<2x x a<<,从而可知函数f (x )在区间(0,x 1)上递减,在区间(x 1,x 2)上递增,在区间(x 2,+∞)上递减.∴f (x 1)<f (1)=-a <0,f (x 2)>f (1)=12a ->-.故选D. 二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应.....题号..的位置上,答错位置,书写不清,模棱两可均不得分. 11.答案:(1)0.004 4 (2)70解析:(1)由频率分布直方图知[200,250)小组的频率为1-(0.002 4+0.003 6+0.006 0+0.002 4+0.001 2)×50=0.22, 于是x =0.2250=0.004 4. (2)∵数据落在[100,250)内的频率为(0.003 6+0.006 0+0.004 4)×50=0.7, ∴所求户数为0.7×100=70. 12.答案:5解析:第一次执行循环体后:a =5,i =2;第二次执行循环体后:a =16,i =3;第三次执行循环体后:a =8,i =4;第四次执行循环体后:a =4,i =5,满足条件,循环结束.输出i =5. 13.答案:7解析:由柯西不等式得(x 2+y 2+z 2)(12+22+32)≥(x +2y +3z )2当且仅当123x y z==时等号成立,此时y =2x ,z =3x .∵x 2+y 2+z 2=1,x +2y +3z∴14x =,14y =,14z =. ∴x +y +z=14.答案:1 000解析:由题中数据可猜想:含n 2项的系数为首项是12,公差是12的等差数列,含n 项的系数为首项是12,公差是12-的等差数列,因此 N (n ,k )=2211112433222222k k k n k n n n ⎡⎤--⎡⎤⎛⎫+(-)++(-)-=+ ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎣⎦.故N (10,24)=11n 2-10n =11×102-10×10=1 000.(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B 铅笔涂黑.如果全选,则按第15题作答结果计分.) 15.答案:8解析:设AD =2,则AB =6, 于是BD =4,OD =1. 如图,由射影定理得CD 2=AD ·BD =8, 则CD=在Rt △OCD 中,DE=·133OD CD OC ⨯==.则83CE ==,EO =OC -CE =81333-=.因此83=813CE EO =.16.答案:3解析:将椭圆C的参数方程cos,sinx ay bϕϕ=⎧⎨=⎩(φ为参数,a>b>0)化为标准方程为22221x ya b+=(a>b>0).又直线l的极坐标方程为πsin42mρθ⎛⎫+=⎪⎝⎭(m为非零常数),即sin cosρθθ⎛=⎝⎭,则该直线的一般式为y+x-m=0.圆的极坐标方程为ρ=b,其标准方程为x2+y2=b2.∵直线与圆O相切,=b,|m.又∵直线l经过椭圆C的焦点,∴|m|=c.∴c=,c2=2b2.∵a2=b2+c2=3b2,∴22223cea==.∴e=.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.解:(1)由cos 2A-3cos(B+C)=1,得2cos2A+3cos A-2=0,即(2cos A-1)(cos A+2)=0,解得cos A=12或cos A=-2(舍去).因为0<A<π,所以A=π3.(2)由S=12bc sin A=1224bc⋅==bc=20.又b=5,知c=4.由余弦定理得a2=b2+c2-2bc cos A=25+16-20=21,故a=又由正弦定理得sin B sin C=222035sin sin sin2147b c bcA A Aa a a⋅==⨯=.18.解:(1)设等比数列{a n}的公比为q,则由已知可得331211125,||10,a qa q a q⎧=⎨-=⎩解得15,33,aq⎧=⎪⎨⎪=⎩或15,1.aq=⎧⎨=-⎩故1533nna-=⋅,或a n=-5·(-1)n-1.(2)若1533nna-=⋅,则113153nna-⎛⎫=⋅ ⎪⎝⎭,故1na⎧⎫⎨⎬⎩⎭是首项为35,公比为13的等比数列,从而1311531=113mmn na=⎡⎤⎛⎫⋅-⎢⎥⎪⎝⎭⎢⎥⎣⎦-∑=9191<110310m⎡⎤⎛⎫⋅-<⎢⎥⎪⎝⎭⎢⎥⎣⎦.若a n=(-5)·(-1)n-1,则111(1)5nna-=--,故1na⎧⎫⎨⎬⎩⎭是首项为15-,公比为-1的等比数列,从而11,21,150,2,mn nm k kam k k+=+⎧-=-(∈)⎪=⎨⎪=(∈)⎩∑NN故111mn na=<∑.综上,对任何正整数m ,总有111mn na =<∑. 故不存在正整数m ,使得121111ma a a +++≥成立.19. (1)解:直线l ∥平面PAC ,证明如下:连接EF ,因为E ,F 分别是PA ,PC 的中点, 所以EF ∥AC .又EF 平面ABC ,且AC ⊂平面ABC , 所以EF ∥平面ABC .而EF ⊂平面BEF ,且平面BEF ∩平面ABC =l ,所以EF ∥l .因为l 平面PAC ,EF ⊂平面PAC , 所以直线l ∥平面PAC .(2)证明:(综合法)如图1,连接BD ,由(1)可知交线l 即为直线BD ,且l ∥AC . 因为AB 是O 的直径, 所以AC ⊥BC , 于是l ⊥BC .已知PC ⊥平面ABC ,而l ⊂平面ABC ,所以PC ⊥l . 而PC ∩BC =C ,所以l ⊥平面PBC . 连接BE ,BF ,因为BF ⊂平面PBC , 所以l ⊥BF .故∠CBF 就是二面角E -l -C 的平面角, 即∠CBF =β. 由12DQ CP =,作DQ ∥CP ,且12DQ CP =. 连接PQ ,DF ,因为F 是CP 的中点,CP =2PF ,所以DQ =PF ,从而四边形DQPF 是平行四边形,PQ ∥FD .连接CD ,因为PC ⊥平面ABC ,所以CD 是FD 在平面ABC 内的射影, 故∠CDF 就是直线PQ 与平面ABC 所成的角,即∠CDF =θ. 又BD ⊥平面PBC ,有BD ⊥BF ,知∠BDF 为锐角,故∠BDF 为异面直线PQ 与EF 所成的角,即∠BDF =α, 于是在Rt △DCF ,Rt △FBD ,Rt △BCF 中,分别可得sin θ=CF DF ,sin α=BF DF ,sin β=CFBF, 从而sin αsin β=CF BF CFBF DF DF⋅==sin θ, 即sin θ=sin αsin β. (向量法)如图2,由12DQ CP =,作DQ ∥CP ,且12DQ CP =. 连接PQ ,EF ,BE ,BF ,BD ,由(1)可知交线l 即为直线BD .以点C 为原点,向量CA ,CB ,CP 所在直线分别为x 、y 、z 轴,建立如图所示的空间直角坐标系,设CA =a ,CB =b ,CP =2c ,则有C (0,0,0),A (a,0,0),B (0,b,0),P (0,0,2c ),Q (a ,b ,c ),E 1,0,2a c ⎛⎫ ⎪⎝⎭,F (0,0,c ).于是1,0,02FE a ⎛⎫=⎪⎝⎭,QP =(-a ,-b ,c ),BF=(0,-b ,c ),所以cos α=FE QP FEQPa ⋅=⋅sin α=.又取平面ABC 的一个法向量为m =(0,0,1),可得sin QP QPa θ⋅==⋅m m ,设平面BEF 的一个法向量为n =(x ,y ,z ),所以由0,0,FE BF ⎧⋅=⎪⎨⋅=⎪⎩n n 可得10,20.ax by cz ⎧=⎪⎨⎪-+=⎩取n =(0,c ,b ).于是|cos β|=||||||⋅=⋅m n m n , 从而sin β=故sin αsin β=sin θ,即sin θ=sin αsin β.20.解:(1)由于随机变量X 服从正态分布N (800,50), 故有μ=800,σ=50,P (700<X ≤900)=0.954 4. 由正态分布的对称性,可得p 0=P (X ≤900)=P (X ≤800)+P (800<X ≤900) =1122P +(700<X ≤900)=0.977 2. (2)设A 型、B 型车辆的数量分别为x ,y 辆,则相应的营运成本为1 600x +2 400y . 依题意,x ,y 还需满足:x +y ≤21,y ≤x +7,P (X ≤36x +60y )≥p 0. 由(1)知,p 0=P (X ≤900),故P (X ≤36x +60y )≥p 0等价于36x +60y ≥900.于是问题等价于求满足约束条件21,7,3660900,,0,,,x y y x x y x y x y +≤⎧⎪≤+⎪⎨+≥⎪⎪≥∈⎩N且使目标函数z =1 600x +2 400y 达到最小的x ,y .作可行域如图所示,可行域的三个顶点坐标分别为P (5,12),Q (7,14),R (15,6).由图可知,当直线z =1 600x +2 400y 经过可行域的点P 时,直线z =1 600x +2 400y 在y 轴上截距2400z最小,即z 取得最小值.故应配备A 型车5辆、B 型车12辆.21.解:依题意可设椭圆C 1和C 2的方程分别为C 1:2222=1x y a m +,C 2:2222=1x y a n+.其中a >m >n >0,λ=>1mn.(1)解法1:如图1,若直线l 与y 轴重合,即直线l 的方程为x =0,则S1=12|BD |·|OM |=12a |BD |,S 2=12|AB |·|ON |=12a |AB |,图1所以12||||S BD S AB =. 在C 1和C 2的方程中分别令x =0,可得y A =m ,y B =n ,y D =-m ,于是||||1||||1B D A B y y BD m n AB y y m n λλ-++===---. 若12=SS λ,则1=1λλλ+-,化简得λ2-2λ-1=0. 由λ>1,可解得λ.故当直线l 与y 轴重合时,若S 1=λS 2,则λ.解法2:如图1,若直线l 与y 轴重合,则|BD |=|OB |+|OD |=m +n ,|AB |=|OA |-|OB |=m -n ;S 1=12|BD |·|OM |=12a |BD |, S 2=12|AB |·|ON |=12a |AB |.所以12||1||1S BD m n S AB m n λλ++===--. 若12=SS λ,则1=1λλλ+-,化简得λ2-2λ-1=0. 由λ>1,可解得λ.故当直线l 与y 轴重合时,若S 1=λS 2,则λ.(2)解法1:如图2,若存在与坐标轴不重合的直线l ,使得S 1=λS 2.根据对称性,不妨设直线l :y =kx (k >0),点M (-a,0),N (a,0)到直线l 的距离分别为d 1,d 2,则1d ==,2d ==d 1=d 2.图2又S 1=12|BD |d 1,S 2=12|AB |d 2,所以12||||S BD S AB λ==,即|BD |=λ|AB |. 由对称性可知|AB |=|CD |,所以|BC |=|BD |-|AB |=(λ-1)|AB |,|AD |=|BD |+|AB |=(λ+1)|AB |,于是||1||1AD BC λλ+=-.① 将l 的方程分别与C 1,C 2的方程联立,可求得A x =B x =.根据对称性可知x C =-x B ,x D =-x A ,于是2||||2A Bx AD BC x ==从而由①和②式可得11λλλ+=(-).③ 令1=1t λλλ+(-),则由m >n ,可得t ≠1,于是由③可解得22222211n t k a t λ(-)=(-). 因为k ≠0,所以k 2>0.于是③式关于k 有解,当且仅当222221>01n t a t λ(-)(-), 等价于2221(1)<0t t λ⎛⎫-- ⎪⎝⎭由λ>1,可解得1λ<t <1,即11<11λλλλ+<(-),由λ>1,解得λ>,所以 当1<λ≤时,不存在与坐标轴不重合的直线l ,使得S 1=λS 2;当λ>时,存在与坐标轴不重合的直线l 使得S 1=λS 2.解法2:如图2,若存在与坐标轴不重合的直线l ,使得S 1=λS 2.根据对称性,不妨设直线l :y =kx (k >0),点M (-a,0),N (a,0)到直线l 的距离分别为d 1,d 2,则1d ==2d ==d 1=d 2.又S 1=12|BD |d 1,S 2=12|AB |d 2,所以12||=||S BD S AB λ=.因为||||A B A B x x BD AB x x λ+===-,所以11A Bx x λλ+=-.由点A (x A ,kx A ),B (x B ,kx B )分别在C 1,C 2上,可得22222=1A A x k x a m +,22222=1B B x k x a n+,两式相减可得22222222=0A B A B x x k x x a mλ-(-)+, 依题意x A >x B >0,所以22A B x x >.所以由上式解得22222222A B B A m x x k a x x λ(-)=(-).因为k 2>0,所以由2222222>0A B B A m x x a x x λ(-)(-),可解得<1A B x x λ<. 从而11<<1λλλ+-,解得λ>,所以 当1<λ≤时,不存在与坐标轴不重合的直线l ,使得S 1=λS 2; 当λ>时,存在与坐标轴不重合的直线l 使得S 1=λS 2.22. (1)解:因为f ′(x )=(r +1)(1+x )r -(r +1)=(r +1)[(1+x )r-1],令f ′(x )=0,解得x =0.当-1<x <0时,f ′(x )<0,所以f (x )在(-1,0)内是减函数; 当x >0时,f ′(x )>0,所以f (x )在(0,+∞)内是增函数. 故函数f (x )在x =0处取得最小值f (0)=0.(2)证明:由(1),当x ∈(-1,+∞)时,有f (x )≥f (0)=0,即(1+x )r +1≥1+(r +1)x ,且等号当且仅当x =0时成立, 故当x >-1且x ≠0时,有(1+x )r +1>1+(r +1)x .①在①中,令1x n =(这时x >-1且x ≠0),得+1111>1+r r n n+⎛⎫+ ⎪⎝⎭. 上式两边同乘nr +1,得(n +1)r +1>nr +1+n r(r +1),即1111r r rn n n r ++(+)-<+.②当n >1时,在①中令1x n=-(这时x >-1且x ≠0),类似可得 1111r r rn n n r ++-(-)>+.③且当n =1时,③也成立. 综合②,③得11111111r r r r rn n n n n r r ++++-(-)(+)-<<++.④(3)解:在④中,令13r =,n 分别取值81,82,83,…,125,得4444333333(8180)(8281)44--<, 4444333333(8281)(8382)44--, 4444333333(8382)(8483)44--<, ……4444333333(125124)(126125)44--<. 将以上各式相加,并整理得4444333333(12580)(12681)44S --<<. 代入数据计算,可得44333(12580)210.24-≈,44333(126)210.94-≈.由[S ]的定义,得[S ]=211.。
2013年理科全国各省市高考真题——函数(解答题带答案)
2013年全国各省市理科数学—函数1、2013大纲理T22.(本小题满分12分) 已知函数()()()1=ln 1.1x x f x x xλ++-+(I )若0x ≥时,()0f x ≤,求λ的最小值;(II )设数列{}211111,ln 2.234n n n n a a a a n n=+++⋅⋅⋅+-+>的通项证明:2、2013新课标I 理T21.(本小题满分12分)已知函数b ax x x f ++=2)(,)()(d cx e x g x+=若曲线)(x f y =和曲线)(x g y =都过点)2,0(P ,且在点P 处有相同的切线24+=x y . (Ⅰ)求a ,b ,c ,d 的值;(Ⅱ)若x ≥-2时,)()(x kg x f ≤,求k 的取值范围.3、2013新课标Ⅱ理T21.(本小题满分12分) 已知函数)ln()(m x e x f x +-=。
(Ⅰ)设0=x 是)(x f 的极值点,求m 并讨论)(x f 的单调性; (Ⅱ)当2≤m 时,证明)(x f >0。
4、2013辽宁理T21.(本小题满分12分)已知函数()()()[]321,12cos .0,12e xx f x x g x ax x x x -=+=+++∈当时,(I )求证:()11-;1x f x x≤≤+ (II )若()()f x g x ≥恒成立,a 求实数的取值范围.5、2013山东理T21.(本小题满分13分)(1)求()f x 的单调区间,最大值;(2)讨论关于x 的方程|ln |()x f x =根的个数.6、2013山东理T22.(本小题满分13分)(Ⅰ)求椭圆C 的方程;(Ⅱ)点P 是椭圆C 上除长轴端点外的任一点,连接PF 1、PF 2,设∠F 1PF 2的角平分线PM 交C 的长轴于点M (m ,0),求m 的取值范围;7、2013北京理T18. (本小题共13分)设l 为曲线C :ln xy x=在点(1,0)处的切线. (I)求l 的方程;(II)证明:除切点(1,0)之外,曲线C 在直线l 的下方8、2013重庆理T17.设()()256ln f x a x x =-+,其中a R ∈,曲线()y f x =在点()()1,1f 处的切线与y 轴相交于点()0,6。
2013山东高考数学试卷(理科)及答案详解
2013年普通高等学校招生全国统一考试(山东卷) 理 科 数 学参考公式:如果事件A 、B 互斥,那么()()+()P A B P A P B += 如果事件A 、B 独立,那么()()()=•P AB P A P B 。
第Ⅰ卷(共60分)一、选择题:本大题共12小题。
每小题5分共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、复数z 满组(3)(2)5--=z i (z 为虚数单位),则z 的共轭复数z 为(A) 2+i (B) 2-i (C) 5+i (D) 5-i2、已知集合{}0,1,2=A ,则集合{},=-∈∈B x y x A y A 中元素的个数是(A) 1 (B) 3 (C) 5 (D) 93、已知函数()f x 为奇函数,且当0>x 时,21(),=+f x x x则(1)-=f (A) -2 (B) 0 (C) 1 (D) 24、已知三棱柱111-ABC A B C 的侧棱与底面垂直,体积为94,底面是边长为3的正三角形,若P 为底面111A B C 的中心,则PA 与平面ABC 所成角的大小为(A)512π (B) 3π (C) 4π (D) 6π 5、将函数sin(2)ϕ=+y x 的图象沿x 轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为 (A)34π (B) 4π(C) 0 (D) 4π- 6、在平面直角坐标系xOy 中,M 为不等式组220210,380,--≥⎧⎪+-≥⎨⎪+-≤⎩x y x y x y 所表示的区域上一动点,则直线OM的斜率的最小值为(A) 2 (B) 1 (C) 13-(D) 12- 7、给定两个命题,.p q若⌝p 是q 的必要不充分条件,则p 是⌝q 的(A) 充分不必要条件 (B) 必要不充分条件 (C) 充要条件 (D) 既不充分也不必要条件8、函数cos sin =+y x x x 的图象大致为πOxyπO xy πOxyπOxy(A) (B) (C) (D)9、过点(3,1)作圆22(1)1-+=x y 的两条切线,切点分别为,A B ,则直线AB 的方程为(A) 230+-=x y (B) 230--=x y (C) 430--=x y (D) 430+-=x y 10、用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为(A) 243 (B) 252 (C) 261 (D) 27911、抛物线211:(0)2=>C y x p p 的焦点与双曲线222:13-=x C y 的右焦点的连线交1C 于第一象限的点.M若1C 在点M 处的切线平行于2C 的一条渐近线,则=p(A)316 (B) 38 (C) 233 (D) 43312、设正实数,,x y z 满足22340.-+-=x xy y z 则当xyz取得最大值时,212+-x y z 的最大值为(A) 0 (B) 1 (C) 94(D) 3第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分。
2013年高考数学(理)--函数及详细解析
2013高考数学(理)解析:函数一、选择题1 .(2013年高考江西卷(理))函数的定义域为A.(0,1)B.[0,1)C.(0,1]D.[0,1]B 考查函数的定义域。
要使函数有意义,则010x x ≥⎧⎨->⎩,即01x x ≥⎧⎨<⎩,解得01x ≤<,选B.2 .(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))若a b c <<,则函数()()()()()()()f x x a x b x b x c x c x a =--+--+--的两个零点分别位于区间( )A.(),a b 和(),b c 内B.(),a -∞和(),a b 内C.(),b c 和(),c +∞内D.(),a -∞和(),c +∞内A【命题立意】本题考查二次函数的图像与性质以及函数零点的判断。
因为()()()f a a b a c =--,()()()f b b c b a =--,()()()f c c a c b =--,又a b c <<,所以()0,()0,()0f a f b f c ><>,即函数()f x 的两个零点分别在(),a b 和(),b c 内,选A.3 .(2013年高考四川卷(理))设函数()f x =a R ∈,e 为自然对数的底数).若曲线sin y x =上存在00(,)x y 使得00(())f f y y =,则a 的取值范围是( )(A)[1,]e (B)1[,-11]e -, (C)[1,1]e + (D)1[-1,1]e e -+ A 曲线y=sinx 上存在点(x 0,y 0)使得f (f (y 0))=y 0,则y 0∈[﹣1,1]考查四个选项,B ,D 两个选项中参数值都可取0,C ,D 两个选项中参数都可取e+1,A ,B ,C ,D 四个选项参数都可取1,由此可先验证参数为0与e+1时是否符合题意,即可得出正确选项 当a=0时,,此是一个增函数,且函数值恒非负,故只研究y 0∈[0,1]时f(f (y 0))=y 0是否成立 由于是一个增函数,可得出f (y 0)≥f (0)=1,而f (1)=>1,故a=0不合题意,由此知B ,D 两个选项不正确 当a=e+1时,此函数是一个增函数,=0,而f (0)没有意义,故a=e+1不合题意,故C ,D 两个选项不正确 综上讨论知,可确定B ,C ,D 三个选项不正确,故A 选项正确4 .(2013年高考新课标1(理))已知函数()f x =22,0ln(1),0x x x x x ⎧-+≤⎨+>⎩,若|()f x |≥ax ,则a 的取值范围是A.(,0]-∞B.(,1]-∞C.[2,1]-D.[2,0]- D由题意可作出函数y=|f (x )|的图象,和函数y=ax 的图象,由图象可知:函数y=ax 的图象为过原点的直线,当直线介于l 和x 轴之间符合题意,直线l 为曲线的切线,且此时函数y=|f (x )|在第二象限的部分解析式为y=x 2﹣2x , 求其导数可得y ′=2x ﹣2,因为x ≤0,故y ′≤﹣2,故直线l 的斜率为﹣2, 故只需直线y=ax 的斜率a 介于﹣2与0之间即可,即a ∈[﹣2,0]。
2013年高考真题——文科数学(陕西卷)解析版 Word版含答案
2013年普通高等学校招生全国统一考试文科数学注意事项:1. 本试卷分为两部分, 第一部分为选择题,第二部分为非选择题.。
2. 考生领到试卷后,须按规定在试卷上填写姓名、准考证号,并在答题卡上填涂对应的试卷类型信息.。
3. 所有解答必须填写在答题卡上指定区域内。
考试结束后,将本试卷和答题卡一并交回。
第一部分(共50分)1. 第一部分(共50分)一、选择题:在每小题给出的四个选项中,只有一项符合题目要求(本大题共10小题,每小题5分,共50分)1. 设全集为R , 函数()f x =M , 则C M R 为(A) (-∞,1)(B) (1, + ∞)(C) (,1]-∞ (D) [1,)+∞【答案】B【解析】),1(],1,(.1,0-1∞=-∞=≤∴≥MR C M x x 即 ,所以选B 2. 已知向量 (1,),(,2)a m b m ==, 若a //b , 则实数m 等于(A) (B)(C) (D) 02. 【答案】C【解析】.221,//),2,(),,1(±=⇒⋅=⋅∴==m m m b a m b m a 且 ,所以选C 3. 设a , b , c 均为不等于1的正实数, 则下列等式中恒成立的是 (A) ·log log log a c c b a b = (B) ·log lo log g a a a b a b =(C) ()log ?l g o lo g a a a b c bc =(D) ()log g og o l l a a a b b c c +=+3. 【答案】B【解析】a, b,c ≠1. 考察对数2个公式: abb y x xyc c a a a a log log log ,log log log =+= 对选项A: bab a b bc c a c c a log log log log log log =⇒=⋅,显然与第二个公式不符,所以为假。
2013届最新3年高考数学(理)试题分类汇编:专题8 三角函数的图像与性质 PDF版含答案
泡利 ( 三) ㊀ 在物理学界还曾笑谈存在一种 泡利效应
当泡 利 在 哪 里 出 现 时 , 那儿的人不管做理论
最新 3 年高考试题分类解析 ������ 数学 π 的最小正周期为 , ) ( , , 则( - = ㊀㊀) . π 且f( ω> 0 | | < ) x) x) f( φ φ 2
2 2 ) 在圆x 动点 A( +y =1 上 绕 坐 1 0 ������ ( x, 2 0 1 0������ 安徽 ������ 理 9 y) 已 知 时 间t=0 标原 点 沿 逆 时 针 方 向 匀 速 旋 转 , 1 2 秒 旋 转 一 周.
5 π 上的值域 ) , 当圆滚动到圆心位于点( 点( 圆在 x 轴上沿正向滚 动 . 2, 1) g( 0, 0 的图象 . 求 g( 在 0, x) x) . 2 4 ң 时, O P的坐标为 ㊀㊀㊀㊀ . π 已 知 函 数 f( =s i n2 x) + 2 3 ������ ( 2 0 1 2������ 天 津 ������ 理 1 5) x+ 3
π个 单 位 后 与 原 图 象 重 合 , 则 w 的最小值是 的图象向右 平 移4 3 ( ㊀㊀ ) ������ 3 C. 2 2 A. 3 4 B. 3 D. 3
π 函 数 y=s 设 w >0, i n( w x+ ) +2 1 4 ������ ( 2 0 1 0������ 辽 宁 ������ 理 5) 3
( ) 则在 设函数 f( =4 s i n 2 x) x+1) -x, 1 1 ������ ( 2 0 1 0������ 浙江 ������ 理 9 下列区间中函数 f( 不存在零点的是 ( ㊀㊀ ) ������ x) ] A.[ -4, -2 ] C.[ 0, 2 π 的 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点8 函数的图象
1.(2013·福建高考文科·T12)与 (2013·福建高考理科·T8)相同 设函数f(x)的定义域为R ,x 0()00≠x 是f(x)的极大值点,以下结论一定正确的是 ( )
A.∀x ∈R ,f(x)≤f(x 0)
B.-x 0是f(-x)的极小值点
C.-x 0是-f(x)的极小值点
D.-x 0是-f(-x)的极小值点
【解题指南】)(x f y =与)(x f y --=的图象关于原点对称,结合图象找出结论. 【解析】选 D.()f x --是 ()f x 的图象关于原点对称,00(,())x f x 是极高点,那么
00(,()x f x ---就是极低点.
2. (2013·湖北高考文科·T5)
小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了
赶时间加快速度行驶. 与以上事件吻合得最好的图象是( )
【解题指南】图象反映出单调性.
【解析】选C.距学校越来越近则图象下降,交通堵塞时距离不变,后加速行
驶,直线斜率变大,直线变陡.
3.(2013·湖南高考理科·T5)函数()2ln
g x x x
=-+
=的图象与函数()245
f x x
的图象的交点个数为()
A.3 B.2 C.1 D.0
【解题指南】本题只要能在同一坐标系中作出这两个函数的图象即可得到答案.
【解析】选B.在同一坐标系中作出f(x)=2㏑x和g(x)=x2-4x+5的图象就看出有两交点.
4.(2013·湖南高考文科·T6)函数f(x)=㏑x的图像与函数g(x)=x2-4x+4的图像的交点个数为()
A.0
B.1
C.2
D.3
【解题指南】本题只要能在同一坐标系作出这两个函数的图像即可得到答案【解析】选C,在同一坐标系中作出f(x)=㏑x和g(x)=x2-4x+4的图像就看出有两交点
5.(2013·江西高考理科·T10)如图,半径为1的半圆O与等边三角形ABC夹在两平行线
l,2l之间,l//1l,l与半圆相交于F,G两点,与三角形ABC
1
两边相交于E,D两点.设弧FG的长为x(0<x<π),y=EB+BC+CD,若l从
l平
1
行移动到
l,则函数y=f(x)的图像大致是( )
2
【解题指南】注意到弧FG所对的圆心角为x,可构造y关于x的三角函数,
借助于三角函数的图像可解决.
【解析】选D. △AOB的高为圆的半径1
,可求边长为,弧FG所对的圆
心角为x,所以O到FG的距离为x
cos
2,则
EB=
x
1cos x
2cos)
sin602
-
=-
,故
x
y(1cos)
323
=-
+
x
cos
32
=,(0<x<π),结合余弦函数的图像知选项D正确.
6.(2013·安徽高考文科·T8)与(2013·安徽高考理科·T8)相同
函数=()
y f x的图像如图所示,在区间[],a b上可找到(2)
n n³个不同的数12,...,,n
x x x
使得12
12
()
()()
==...=,
n
n
f x
f x f x
x x x
则n的取值范围是
( )
A.{}
3,4 B.{}
2,3,4 C. {}
3,4,5 D.{}
2,3
【解题指南】作直线y=kx(k≠0),转化为直线与曲线的交点个数问题,数形结合进行判断。
【解析】选B。
11
11
()()0
f x f x
x x
-
=
-
表示
11
(,())
x f x与原点连线的斜率;
12
12
()
()()
n
n
f x
f x f x
x x x
===表示1122
(,())(,())(,())
n n
x f x x f x x f x
,,,与原点连线的斜率相
等,而
1122
(,())(,())(,())
n n
x f x x f x x f x
,,,在曲线图像上,故只需考虑经过原点的直线与曲线的交点个数有几种情况.如图所示,
数形结合可得,有2,3,4三种情况,故选B.
7.(2013·山东高考文科·T9)与(2013·山东高考理科·T8)相同 函数y=xcosx + sinx 的图象大致为 ( )
【解题指南】本题考查函数的图象,可先利用函数的奇偶性,再利用特殊点来求解.
【解析】选D. 函数y=xcosx + sinx 为奇函数,所以图象关于原点对称,所以排除B ,C.当x π=时,()0f ππ=-<,排除A,选D.
8. (2013·四川高考理科·T7)函数3
31
x x y =-的图象大致是( )
【解题指南】本题考查的是函数的图象,解决本题的关键是抓住函数的解析式及函数图象的特殊点进行验证求解.
【解析】选C.首先考虑当x<0时,函数值应为正值,所以排除选项B,当x=0时解析式没有意义,故排除选项A,当x 无穷大时,考虑指数函数比幂函数增长快,所以函数值越来越小,故选C.。