变性淀粉基础
变性淀粉名词解释
![变性淀粉名词解释](https://img.taocdn.com/s3/m/25fe9736f08583d049649b6648d7c1c708a10ba1.png)
变性淀粉名词解释变性淀粉是一种无定形、无嗅、白色、坚硬、难溶于冷水的化学物质。
变性淀粉通常由变性剂与天然或合成的高分子化合物混合,经机械搅拌后加热糊化,再经成型、干燥而得。
最早变性淀粉只是用玉米、土豆等含淀粉多糖的植物制成的。
到20世纪80年代中期,以淀粉为原料通过化学法改性制备的变性淀粉问世。
20世纪90年代以来,随着生物技术的进步,一些细菌和酶被应用于变性淀粉的改性和提取。
目前已成功地将微生物细胞壁多糖变性,并通过酶解工艺制备出变性淀粉产品。
变性淀粉的发展历程有两个主要方面: 1、淀粉接枝丙烯酸酯树脂(TPU)改性淀粉的研制成功和实现工业化生产;2、甘薯及其它原料经过预处理和蒸煮后,通过多种生物酶处理和连续化工序制取具有多孔结构的聚甘露聚糖(DGGE)。
其淀粉的可消化性及低抗原性,使其成为变性淀粉在食品、医药领域应用的基础。
变性淀粉又称作物淀粉,是以玉米、小麦、甘薯等农副产品为原料,经酶解、过滤、脱水、脱醇等精制工序加工而成的粉末状物质。
主要特点是容易被淀粉酶水解,而且本身几乎不含蛋白质和脂肪,具有很高的营养价值和保健作用。
例如,常见的食用玉米淀粉,即属于变性淀粉。
2、甘薯及其它原料经过预处理和蒸煮后,通过多种生物酶处理和连续化工序制取具有多孔结构的聚甘露聚糖(DGGE)。
其淀粉的可消化性及低抗原性,使其成为变性淀粉在食品、医药领域应用的基础。
变性淀粉又称作物淀粉,是以玉米、小麦、甘薯等农副产品为原料,经酶解、过滤、脱水、脱醇等精制工序加工而成的粉末状物质。
主要特点是容易被淀粉酶水解,而且本身几乎不含蛋白质和脂肪,具有很高的营养价值和保健作用。
例如,常见的食用玉米淀粉,即属于变性淀粉。
3、利用淀粉酶对玉米、马铃薯等原料的直接作用,使之转化成液态糊精,经蒸发、浓缩后制得淀粉糖,再经脱色、浓缩,最终生成变性淀粉。
4、将植物淀粉和动物蛋白质以及脂类混合,经淀粉酶作用制得复合变性淀粉,或将变性淀粉添加到面团中制得食品。
淀粉与变性淀粉知识
![淀粉与变性淀粉知识](https://img.taocdn.com/s3/m/051e99845122aaea998fcc22bcd126fff6055d56.png)
§淀粉颗粒膨胀和糊化
(40℃)
淀粉在冷水中是以不溶性悬浮颗粒 (60℃) (淀粉乳)形态存在。
当水被加热到某个温度(糊化温度) 时,水分子进入到淀粉颗粒中,颗 粒迅速膨胀并伴随粘度增加,形成 淀粉糊。此过程称之为淀粉的糊化。
§糊化过程淀粉颗粒的变化
淀粉糊化过程中, 淀粉颗粒由小变 大。
当膨胀达到极限 时,随温度的升 高和搅拌力的作 用,颗粒开始破 碎,伴随粘度下 降。
氢键
糊
水
化
陈 化
溶胶
稀溶液 浓溶液
凝沉 凝胶
●淀粉的理化检测
§淀粉糊的粘度及测量仪器
概念:粘度是流体的内摩擦,是一层流体对另一层流体相对 运动时的阻力。包括动力粘度、运动粘度、相对粘度和条件粘度
常见的粘度计:RVA、旋转式粘度计(Brookfield、NDJ) 、 Brabender
NDJ-97
Brabender
粘度曲线:
交联淀粉 原淀粉
●氧化淀粉
次氯酸钠氧化反应:
CH2OH
O
CH2OH
O
O
O
O + NaCLO
NaOH pH = 11
Sodium hypochlorite
+
+ NaCL
●氧化淀粉的性质特点
粘度曲线:
●变性淀粉的应用
变性淀粉的应用是根据其性质来选择,性质则由上述原料类型、 分子结构、变性方式和程度共同决定。
§淀粉颗粒的偏光十字(Maltese cross)
马铃薯淀粉颗粒在显微 偏光/普通光下比较
普通光学显微镜下淀 粉颗粒偏光十字现象
淀粉在偏光下观察,通常可以看到一个明显 的偏光十字,十字的交叉点与淀粉颗粒的脐 点重合,淀粉的这种现象证明了淀粉颗粒存 在辐射状的组织结构。当淀粉颗粒糊化后, 有序的结构被打乱,偏光十字消失。
变性淀粉知识简介
![变性淀粉知识简介](https://img.taocdn.com/s3/m/4b2e67d87f1922791688e833.png)
变性淀粉知识简介变性淀粉是通过物理或化学方法使淀粉分子链被切断、重排或引入其他化学基团以改变其结构而获得的。
经过变性的淀粉比原淀粉具有更优良的性能。
根据变性方法,主要分为物理变性淀粉、化学变性淀粉、酶变性淀粉和天然变性淀粉。
物理变性是通过加热,挤压,辐射等物理方法使淀粉微晶结构发生变化,而生成工业所需要功能性质的变性淀粉。
化学变性是将原淀粉经过化学试剂处理,发生结构变化而改变其性质,达到应用的要求。
酶变性淀粉是通过酶作用产生的变性淀粉。
天然变性淀粉是通过品种培育和遗传技术改变淀粉的结构,使之具有与化学变性淀粉相同特性的天然淀粉。
一、预糊化淀粉将原淀粉在一定量的水存在下进行加热处理后,淀粉颗粒溶胀为糊状,规则排列的胶束被破坏,微晶消失,并且易接受酶的作用。
能够在冷水中溶胀溶解,形成具有一定粘度的糊液,且其凝沉性比原淀粉要小,使用方便。
二、酸变性淀粉和糊精基本上不改变团粒形状,酸仅作催化剂,盐酸作用最强,其次是硫酸和硝酸。
酸变性淀粉具有较低的热糊粘度,即有较高的热糊流度。
酸变性淀粉的相对分子量随流度升高而降低。
三、糊精包括白糊精、黄糊精和英国胶。
四、氧化淀粉氧化淀粉具有低粘度,高固体分散性,极小的凝胶作用。
由于氧化淀粉引入了羟基和羧基,使得直链淀粉的凝沉趋向降到最低限度,从而保持粘度的稳定性。
能形成强韧、清晰、连续的薄膜。
比酸解淀粉或原淀粉的薄膜更均匀,收缩及爆裂的可能性更少,薄膜也更易溶于水。
五、交联淀粉交联作用是指在分子之间架桥形成化学键,加强了分子之间氢键的作用。
交联淀粉的糊粘度对热、酸和剪切力影响具有高稳定性。
其稳定性随交联化学键不同而有差异。
交联具有较高的冷冻稳定性和冻融稳定性。
六、酯化淀粉常用的酯化剂有淀粉磷酸酯、淀粉醋酸酯、淀粉烯基琥珀酸酯等淀粉磷酸酯的糊液具有较高的透明度,较高的粘度,较强的胶粘性,糊的稳定性高,凝沉性弱,冷却或长期贮存也不致凝结成胶冻。
交联的淀粉磷酸双酯的分散液,有较高的粘度,耐高温,耐剪切力,耐酸,耐碱,这类淀粉常作为增稠剂和稳定剂。
变性淀粉基础资料培训
![变性淀粉基础资料培训](https://img.taocdn.com/s3/m/4d84d5320722192e4536f6ac.png)
改性淀粉:1、定义,顾名思义,凡是改变天然淀粉原来性质的淀粉就是改性淀粉。
这里既包括采用加热熟化的方法,只改变天然淀粉物理性质的改性,也包括采用酶制剂进行的生物改性,更包括利用有效的分子切断、重排、氧化或在分子中引入取代基团的化学改性。
在天然淀粉所具有的固有特性的基础上,为改善天然淀粉的性能和扩大应用范围,利用物理、化学或酶法处理的手段,改变天然淀粉的原有性质,增加其某些功能性或引进新的特性,使其更适合于一定应用的要求,这种经过二次加工,改变了性质的天然淀粉就是改性淀粉。
改性淀粉又称为变性淀粉、修饰淀粉和化工淀粉。
2、目的:现代食品加工工艺中的高温杀菌、机械搅拌、泵的输运,要求淀粉具有耐热、抗剪切稳定性;冷藏食品则要求糊化后的淀粉不易回生凝沉,具有较强的亲水性;偏酸性食品要求淀粉有较强的耐酸稳定性;有些食品还需淀粉具有一些特殊的功能,如成膜性、涂抹性等。
耐酸耐碱耐高温耐低温抗剪切抗老化不易凝沉3、优点(一)使用改性淀粉,可以使其在高温、高剪切力和低PH条件下保持较高的粘度稳定性,从而保持增稠能力。
(二)通过改性处理,可以使淀粉在室温或低温保藏过程中不易回生,从而避免食品凝沉或胶凝,形成水质分离。
(三)通过改性处理提高淀粉糊的透明度,改善食品外观,提高其光泽度。
(四)通过改性处理改善乳化性能。
原淀粉分子是没有什么乳化性的,不能用它来形成稳定的水、油混合体系。
(五)通过改性处理可提高淀粉浓度,降低淀粉粘度,还可提高淀粉形成凝胶的能力。
(六)通过改性处理提高淀粉溶解度或改善其在冷水中的吸水膨胀能力,改善淀粉在食品中的加工性能。
(七)通过改性处理改善淀粉的成膜性。
4、改性淀粉的分类和评价方式和特点物理改性、化学改性、生物改性(酶法改性)和复合改性。
物理改性包括预糊化(α-化)淀粉、γ射线、超高频辐射处理淀粉、机械研磨处理淀粉、温热处理淀粉等。
预糊化淀粉的评价指标为糊化度化学改性是用化学试剂对淀粉进行处理,主要可以生产两大类改性淀粉。
变性淀粉概述
![变性淀粉概述](https://img.taocdn.com/s3/m/33357a42e518964bcf847ce3.png)
概述:变性淀粉是指为了使用的需要,需将天然淀粉经化学处理或酶处理,使淀粉原有的物理性质发生一定的变化,如水溶性、黏度、色泽、味道、流动性等。
这种经过处理的淀粉总称改性淀粉即变性淀粉1.变性淀粉的分类目前,变性淀粉的品种、规格达两千多种,变性淀粉的分类一般是根据以下处理方式来进行。
(1)物理变性:预糊化(α-化)淀粉、γ射线、超高频辐射处理淀粉、机械研磨处理淀粉、湿热处理淀粉等。
(2)化学变性:用各种化学试剂处理得到的变性淀粉。
其中有两大类:一类是使淀粉分子量下降,如酸解淀粉、氧化淀粉、焙烤糊精等;另一类是使淀粉分子量增加,如交联淀粉、酯化淀粉、醚化淀粉、接枝淀粉等。
(3)酶法变性(生物改性):各种酶处理淀粉。
如α、β、γ-环状糊精、麦芽糊精、直链淀粉等。
(4)复合变性:采用两种以上处理方法得到的变性淀粉。
如氧化交联淀粉、交联酯化淀粉等。
采用复合变性得到的变性淀粉具有两种变性淀粉的各自优点。
另外,变性淀粉还可按生产工艺路线进行分类,有干法(如磷酸酯淀粉、酸解淀粉、阳离子淀粉、羚甲基淀粉等)、湿法、有机溶剂法(如羧基淀粉制备一般采用乙醇作溶剂)、挤压法和滚筒干燥法(如天然淀粉或变性淀粉为原料生产预糊化淀粉)等。
不过市售的变性淀粉大多是以化学变性得到的具体如:1.1 酸变性淀粉在糊化温度以下,用无机酸处理淀粉,改变其性质的产品称为酸变性淀粉。
反应机理:在用酸处理淀粉的过程中,酸作用于糖苷键使淀粉分子水解,淀粉分子变小。
酸在这里只是起催化剂的作用,它并不参加反应,只起到加快水解速率的作用。
淀粉颗粒是由直链淀粉和支链淀粉组成,前者具有a -1,4键,后者除a -1,4键,还有少量a -1,6键,这两种糖苷键被酸水解的难易存在差别。
由干淀粉颗粒结晶结构的影响,直链淀粉分子间经由氢键结合成晶态结构,酸渗入困难,其α-1,4键不易被酸水解。
而颗粒中无定形区域的支链淀粉分子的a-1,4键、a-1,6键较易被酸渗入而发生水解。
变性淀粉的基础知识
![变性淀粉的基础知识](https://img.taocdn.com/s3/m/aa04e376302b3169a45177232f60ddccda38e6ad.png)
变性淀粉的基础知识变性淀粉的基础知识一、定义变性淀粉是指利用物理、化学或酶的手段来改变天然淀粉的性质。
通过分子切断、重排、氧化或淀粉分子中引入取代基可制得性质发生变化、加强或具有新的性质的淀粉衍生物。
二、分类物理变性:预糊化淀粉、r射线、超高频辐射处理淀粉、机械研磨处理淀粉、湿热处理淀粉等。
化学变性:用化学试剂处理得到的变性淀粉。
其中有两大类:一类是使分子量下降,如酸解淀粉、氧化淀粉、焙烤糊精等;另一类是使分子量增加,如交联淀粉、酯化淀粉、醚化淀粉、接枝淀粉等。
酶法变性(生物改性):各种酶处理淀粉。
如α、β、γ-环糊精、麦芽糊精、直链淀粉等。
复合变性:采用两种以上处理方法得到的变性淀粉。
如氧化交联、交联酯化淀粉等。
采用复合变性的淀粉具有两种变性淀粉的各自优点。
三、淀粉的化学基础1、淀粉的分子结构。
2、淀粉的分类。
2,1直链淀粉:一种线形多聚物,都是由a-D-葡萄糖通过a-D-1,4糖苷键连接而成的链状分子。
直链淀粉的用途较多,如可制成强度很高的纤维和透明薄膜,它无味、无毒,具有抗水和抗油性能,是一种良好的食品包装材料。
2,2支链淀粉:是一种高度分散的大分子,主链上分出支链,各G单元之间以a-1,4糖苷键连接构成它的主链,支链通过a-1,6糖苷键与主链相连。
3、淀粉的回生(或称老化、凝沉)3,1 淀粉稀溶液或淀粉糊在低温下静置一定的时间,浑浊度增加,溶解度减少,在稀溶液中会有沉淀析出,如果冷却速度快,特别是高浓度的淀粉糊,就会变成凝胶体(凝胶长时间保持时即出现回生),好象冷凝的果胶或动物胶溶液,这种现象称为回生或老化,这种淀粉称为回生淀粉(β-淀粉).3,2 回生的本质是糊化的淀粉分子在温度降低时由于分子运动减慢,此时直链淀粉分子和支链淀粉分子的分支都回头趋向于平行排列,互相靠拢,彼此以氢键结合,重新组成混合微晶。
3,3 影响回生的因素:①分子组成(直链淀粉的含量),直链淀粉,长支链淀粉易于回生。
变性淀粉
![变性淀粉](https://img.taocdn.com/s3/m/88038e5cbe23482fb4da4ce4.png)
变性淀粉的分类
按变性处理方法 物理变性、化学变性、酶法变性
常见变性淀粉:预糊化淀粉、麦芽 糊精、酸变性淀粉、羟丙基淀粉、 醚化淀粉、酯化淀粉、羧甲基淀粉、 交联淀粉
羟丙基淀粉 Ⅰ.物理性质:白色(无色)粉末,流动性好, 具有良好的水溶性,其水溶液透明无色,稳定性 好。对酸、碱稳定,煳化温度低于原淀粉,冷热 黏度变化较原淀粉稳定。与食盐、蔗糖等混用对 黏度无影响。醚化后,冰融稳定性和透明度都有 所提高。 Ⅱ.化学性质:有羟丙基取代基的淀粉衍生物 的性质,构成淀粉的葡萄糖单位有3个可被置换的 羟丙基,因此可获得不同置换度的产品。 Ⅲ.性能:淀粉经羟丙基化后,其冻融稳定性、 透光率均有明显提高.
变性淀粉
之羟丙基淀粉
走进变性淀粉
变性淀粉是一种改良淀粉,即在淀粉固有的特性 基础上,为改善其性能和扩大应用范围,利用物理 方法、化学方法和酶法处理,在淀粉分子上引入新 的官能团或改变淀粉分子大小和淀粉颗粒性质,从 而改变淀粉的天然(如:糊化温度、热粘度及其稳定 性、冻融稳定性、凝胶力、成膜性、透明性等),使 其更适合于一定应用的要求而制备的淀粉衍生物。
羟丙基淀粉在食品中
谢谢观看
羟丙基淀粉的制备
在强碱性条件下,由淀粉与环氧丙烷反应制得.
羟丙基淀粉的应用
①增稠剂:沙司、肉汁、果肉布丁中增稠剂,使 之平滑、浓稠透明、无颗粒结构,并具有良好 的冻融性和耐煮性,口感好 ②良好的悬浮剂:用于浓缩果汁中,使之澄清, 具有良好的流动性,静置不分层或沉淀 ③改善面条的口感:亲水性比小麦淀粉好,易 吸水膨胀,能与面筋蛋白、小麦淀粉结合形成 致密的网状结构,所以可以降低淀粉的回生程 度是放置储存后的湿面具有较柔软的口感
变性淀粉和普通淀粉的区别
![变性淀粉和普通淀粉的区别](https://img.taocdn.com/s3/m/06ae0321e97101f69e3143323968011ca200f743.png)
变性淀粉和普通淀粉的区别近年来,变性淀粉的发展非常迅速。
在欧美一些发达国家,变性淀粉被添加到几乎所有的谷物快餐食品和肉制品中。
变性淀粉作为食品添加剂并不是基于它的营养价值,而是由于它的添加能改善加工食品的功能性质,能提升产品的保水、冻融、抗老化等作用。
下面我简单的为大家介绍几种淀粉的特性及其应用。
什么是变性淀粉?在天然淀粉所具有的固有特性的基础上,为改善淀粉的性能、扩大其应用范围,利用物理、化学或酶法处理,在淀粉分子上引入新的官能团或改变淀粉分子大小和淀粉颗粒性质,从而改变淀粉的天然特性,使其更适合于一定应用的要求。
这种经过二次加工,改变性质的淀粉统称为变性淀粉。
变性淀粉的来源及特性变性淀粉的来源主要有:马铃薯、蜡质玉米/玉米、木薯、小麦4个种类。
与普通淀粉相比,变性淀粉具有糊化温度低、透明度高、溶解度高、凝胶性强、冻融稳定性好、黏度低、耐低温和耐高温等特性。
马铃薯变性淀粉粉不仅有很好的透明度,清谈的口感,不含谷物的腥味,口感清爽顺滑,不糊口,粘度还比其他淀粉的要高,具有非常好的抗老化,抗冻,保水等性能。
例如进口品牌瑞典Lyckeby的马铃薯变性淀粉,它的粘度很高,可降低5-10%的用量而达到同样的粘度效果,降低10%左右的生产成本,而且性价比相对其他品牌要高,供货的稳定性也占了很大的优势。
蜡质玉米/玉米变性淀粉通的玉米淀粉,所以它的糊液稳定性很好,黏度高,不易老化,并且具有透明度高和耐高温等优点。
在调味品,酱料,乳制品等产品上用的也比较广泛,因此蜡质玉米变性淀粉在食品行业中具有不可替代的商业价值。
例如进口品牌中性价比较高的英国泰莱的蜡质玉米变性淀粉,泰莱主要是以技术研发这块更为突出,可以为客户提供解决方案,像调味品行业中的李锦记这些大客户,也是使用着泰莱蜡质玉米变性淀粉,并得到了认可。
木薯变性淀粉剂,也是最佳的增量剂、甜味剂、和膨化剂。
使用木薯变性淀粉的食品包括罐头食品、冷冻食品、焙烤食品、汤料、香肠、奶制品和肉制品等。
变性淀粉在食品中的运用
![变性淀粉在食品中的运用](https://img.taocdn.com/s3/m/15877a40bb68a98271fefac0.png)
淀粉的基础知识
n 淀粉的化学结构
直链淀粉与纤维素的结构
支链淀粉的结构
直链淀粉与支链淀粉的比较
不同来源淀粉的直链、支链含量
不同来源淀粉的性能比较
不同来源淀粉粘度曲线比较
淀粉的回生
什么是变性淀粉
n 改善淀粉的稳定性--抗高温、酸碱、剪切力 n 改善糊液的抗老化程度、透明度、光泽度 n 降低淀粉的糊化温度 n 改变糊液的粘度 n 改善糊液状态--长丝、短丝结构 n 改善糊液的凝胶强度 n 改善淀粉的乳化性能
火腿肠中加变性淀粉与原淀粉的比较
如何正确选择和使用变性淀粉
n 淀粉在目标食品中的功能作用 n 淀粉的使用形式 n 淀粉的状态 n 食品体系中其它配料的存在 n 食品的加工条件 n 食品的保存条件及期望的保质期 n 期望的透明度 n 食品的组织状态 n 期望的口感
淀粉在目标食品中的功能作用
n 粘结力(Adhesion) n 持水性(Hold water) n 微胶囊化(Encapsulation) n 成膜性(Film forming) n 增稠稳定(Thicken) n 改进组织结构(Texturize) n 凝胶性(Gel)
n 酯化交联
n
n n
n St - OH
n n n n
n
+ Na3P3O9
三偏磷酸钠
O
‖
St - O - P -O-St +
Na2H2P2O7
ONa
玉米原淀粉与磷酸酯淀粉的曲线对比
糊化程度不同对糊液状态的影响
n 糊化不足
n Under-cook
n 透明度差 n 粘度低 n 糊液稀薄 n 保质期短 n 淀粉味 n 颗粒部分膨胀 n 有偏光十字
[整理]变性淀粉相关知识
![[整理]变性淀粉相关知识](https://img.taocdn.com/s3/m/114197918662caaedd3383c4bb4cf7ec4afeb6b1.png)
先介绍一下变性淀粉的定义:淀粉是一种天然高分子碳水化合物,广泛存在与植物的种子,茎杆或根块中。
资源充沛,价格低廉.但天然淀粉在高浓度时(如5%以上时)粘度高、流性差、成胶凝状,用水稀释后,会发生沉淀。
为解决这种现象,必须对淀粉进行改性,即将原淀粉通过物理或化学或酶法处理,改变淀粉的糊化温度、粘度、透明度、稳定性、成膜性和膜强度等等。
以适用各种应用的要求。
改性以后的淀粉称为“变性淀粉”或“淀粉衍生物简要说明一下变性淀粉在中国的情况。
天然淀粉已广泛应用于工业、食品等领域。
随着新产品的不断推出,产品性能的不断提高,新工艺、新技术的不断开发,淀粉的深加工—变性淀粉的研究、开发、应用得到了有利的推动。
追溯变性淀粉的历史可以至十九世纪初,“英国胶”的诞生,我国变性淀粉的生产却是在本世纪60年代,而到了80年代后才有了很大发展,应用面也越来越广:从纺织、造纸,到食品、饲料、医药、建筑、钻井等方面明一下原淀粉的化学结构和性质:淀粉是由α-D六环葡萄糖组成,以糖苷键将其连成多聚长链的均一多糖。
分为两大类:一类为直链淀粉(Amylose),仅由D-葡萄糖单位以α-1,4-糖苷键连接并成卷曲、呈螺旋形的线状大分子,形成每个环有6~8个葡萄糖基。
碘分子极易进入螺旋环内部,形成蓝色的络合物。
若加热至70℃,蓝色消失;冷却后蓝色重现。
另一类是支链淀粉(Amylopectin),是一种分枝很多的高分子多糖,分子比直链淀粉大,分子量在20万道尔顿以上,相当于1300个以上的葡萄糖单位组成。
整个分子由很多较短的α-1,4-糖苷键连接的直链,再以α-1,6-糖苷键为分枝点,相连接成高度分枝状的大分子。
其分子中90%为α-1,4-键;还有10%则为α-1,6-键,是分子的分枝处。
与碘很难络合,所以遇碘仅呈现红紫色请问直链淀粉的链部分断裂后,与碘还否有呈色反应?并不是所有的直链淀粉遇碘都变为蓝色,而是要达到聚合度大于45才可以,所以直链淀粉的链断了以后,要看它的聚合度是否在45以上,如果以下则遇碘不变为蓝色变性淀粉在肉制品中的应用,可以说是变性淀粉在食品中的应用的最早期领域之一,在高温肠和低低肠中都有用,主要是替代部分大豆蛋白和一些胶。
粮食加工学 第七章 变性淀粉的生产工艺
![粮食加工学 第七章 变性淀粉的生产工艺](https://img.taocdn.com/s3/m/d656762dcfc789eb172dc85b.png)
第三节 氧化淀粉
一、氧化淀粉的概念
氧化淀粉是淀粉在酸、碱、中性介质中与氧化剂作用,氧化 所得产品。
二、氧化淀粉制备的氧化反应机理
(一)氧化剂的种类:
1.酸性氧化剂:如硝酸、铬酸、高锰酸盐、过氧化氢、次卤 酸、过氧醋酸、过氧脂肪酸等; 2.碱性氧化剂:碱性次卤酸盐、碱性高锰酸盐、碱性过氧化 物、碱性过硫酸盐等; 3.中性氧化剂:溴、碘等。
10
第二节 预糊化淀粉
一、预糊化淀粉的概念
淀粉一般是先经加热糊化再使用。为了避免这种加热糊
化的麻烦,工业上生产预先糊化再干燥的淀粉产品,用户使 用时只要用冷水调成糊就可以了。这种经事先糊化并经干燥、
粉碎的产品,称为预糊化淀粉,又称α-淀粉。
11
二、预糊化淀粉的生产方法
1.滚筒法
12
2.喷雾法 本法是先将淀粉乳糊化,将所得糊喷入干燥塔,淀粉乳浓 度控制在10%以下,一般为4%-5%。 3.挤压膨化法 利用螺旋挤出机的原理,通过挤压摩擦产生热量使淀粉糊化, 然后由顶端小孔以爆发形式喷出,通过瞬间减压而得到膨胀、 干燥。 4.微波法
33
第七节 接枝淀粉
34
2. 羧基和羰基含量 一般说来,氧化淀粉的羧基含量随着次氯酸盐用量的增加 呈线性增加。
3. 热浆流度及冷热浆特性 一般情况,氧化淀粉随着氧化程度的增加,糊化温度下降, 热浆粘度下降流度增加,冷却时凝沉性减弱,透明度增加。
4. 薄膜性能 用次氯酸盐氧化的淀粉能形成强韧、清晰、连续的薄膜。 它们比原淀粉的薄膜更均匀,收缩及爆裂的可能性更少,薄膜 也更易溶于水。
18
第四节 交联淀粉
一、交联淀粉的概念
交联淀粉是指有两处或两处以上的羟基与多官能基结合构成的 淀粉衍生物。
变性淀粉测定标准(精)
![变性淀粉测定标准(精)](https://img.taocdn.com/s3/m/f8d383f4172ded630b1cb636.png)
变性淀粉PH值的测定1.原理通过测量两个浸液电极的电位差来测量样品溶液的PH值。
2.仪器(1). pH计,玻璃电极,甘汞电极。
(2). 标准缓冲溶液pH4和7。
3.测定步骤将电极与pH计连接好,打开电源预热一定时间,并将温度补偿开关旋至被测溶液温度相同的数值,调节仪器的零点,用标准液进行定位后,移去缓冲溶液,用蒸馏水冲洗电极并用滤纸吸干电极上的水待用。
称取 6g(士0.1g)样品,放入 400ml烧杯中加入 194ml纯水,搅拌使样品分散,并把烧杯置于沸水浴中,水浴液面应高于样品液面,搅拌淀粉乳直至淀粉糊化(大约5min),在冷水浴中立即冷却到室温(大约25℃),从水浴中取出并搅拌淀粉糊以破坏任何已形成的凝胶。
用磁力搅拌器以足够的速度搅拌淀粉糊,使其在溶液表面产生小的旋涡。
在淀粉糊中插入已标定好的电极,待读数稳定后,记录PH值至0.1个pH单位。
蛋白质的测定(一)凯氏法见GB12309—90小麦淀粉、豌豆淀粉及蚕豆淀粉的换算系数为5.70。
(二)分光光度法测定蛋白质1.原理在催化剂存在下,用硫酸裂解淀粉及其衍生物。
然后碱化反应产物,并进行蒸馏使氨释放,同时用硫酸溶液收集。
加入奈氏试剂,用分光光度计测定铵盐,并转换成氨含量。
注:奈氏试剂:红棕色浓度低时,没有沉淀产生,但溶液呈黄色或棕色。
2.试剂在测定过程中,只可使用分析纯的试剂和蒸馏水,或至少纯度相当的水。
(1)浓质量分数 9 6%,为1.84g/ml。
(2)NaOH溶液质量分数 40%,为1.43g/ml。
(3)催化剂 9 7g 硫酸钾和 3g 无水硫酸铜。
(4)硫酸铵。
(5)0.1 mol/L 标准溶液。
(6)奈氏试剂将100g碘化汞和70g碘化钾溶于100ml水中,另将244g氢氧化钾溶于内有700ml水的1000ml容量瓶中,并冷却至室温。
将上述碘化汞和碘化钾溶液慢慢注入容量瓶中,边加边摇动。
加水至刻度,摇匀,放置至少2天。
试剂应保存在棕色玻璃瓶中,置暗处。
淀粉与变性淀粉ppt
![淀粉与变性淀粉ppt](https://img.taocdn.com/s3/m/461312eeb1717fd5360cba1aa8114431b80d8e6d.png)
淀粉与变性淀粉ppt
第5页
淀粉颗粒见图
玉米淀粉颗粒 马铃薯淀粉颗粒 小麦淀粉颗粒 糯玉米淀粉颗粒 木薯淀粉颗粒
淀粉与变性淀粉ppt
第6页
淀粉化学组成
淀粉基础组度成单位是a-D-吡喃葡萄糖, 分子式为(C6H10O5)n,经过a-D-1,4或a-D-1, 6糖苷键链接而成。n值不定,称为聚合度。
淀粉与变性淀粉ppt
第22页
淀粉回生
淀粉回生回生机理 各种淀粉回生速度:聚合度在100-200之
间分子凝沉性最强,另外,脂类化合物 对凝沉也有促进作用。 影响淀粉回生作用原因
淀粉与变性淀粉ppt
第23页
淀粉回生机理
淀粉完全糊化,充分水合,然后降温,
当温度降到一定程度之后,因为分子热 运动能量不足,体系处于热力学非平衡 状态,分子链间借氢键相互吸引与排列, 使体系自由焓降低,最终形成结晶。水 不溶解,增大到一定程度,变成白色沉 淀下降,糊胶体结构被破坏,有水分析 出。
原端基。
深蓝色,吸附碘量 紫红色,吸附碘量小
1于水,溶液稳
强。
定,凝沉性弱。
结晶结构
无定形结构
淀粉与变性淀粉ppt
第11页
不一样起源淀粉直链、支链 含量
淀粉 玉米 糯玉米 高直链玉米 高粱 稻米 小麦 马铃薯 木薯 甘薯 绿豆
直链淀粉(%) 27 0 70 27 19 27 20 17 18 70
淀粉吸湿与解吸
淀粉中水分不是固定不变,而是受空气 湿度和温度改变影响。当阴雨天,空气 中相对湿度高,淀粉水分增加。干燥天 气,空气相对湿度低,则淀粉水分降低。
淀粉与变性淀粉ppt
第15页
变性淀粉——精选推荐
![变性淀粉——精选推荐](https://img.taocdn.com/s3/m/6dbef07e7f21af45b307e87101f69e314232fa41.png)
什么是变性淀粉一、预糊化淀粉:预糊化淀粉是一种加工简单,用途广泛的变性淀粉,应用时只要用冷水调成糊,免除了加热糊化的麻烦。
广泛应用与医药、食品、化妆品、饲料、石油钻井、金属铸造、纺织、造纸等很多行业。
淀粉的糊化:淀粉粒在适当温度下(各种来源的淀粉所需温度不同,一般60~80℃)在水中溶胀、分裂、形成均匀糊状溶液的作用称为糊化作用。
糊化作用的本质是淀粉粒中有序及无序(晶质与非晶质)态的淀粉分子之间的氢键断开,分散在水中成为胶体溶液。
糊化作用的过程可分为三个阶段:(1)可逆吸水阶段,水分进入淀粉粒的非晶质部分,体积略有膨胀,此时冷却干燥,颗粒可以复原,双折射现象不变;(2)不可逆吸水阶段,随着温度升高,水分进入淀粉微晶间隙,不可逆地大量吸水,双折射现象逐渐模糊以至消失,亦称结晶“溶解”,淀粉粒胀至原始体积的50~100倍;(3)淀粉粒最后解体,淀粉分子全部进入溶液。
糊化后的淀粉又称为α-化淀粉。
将新鲜制备的糊化淀粉浆脱水干燥,可得易分散与凉水的无定形粉末,即“可溶性α-淀粉”。
2、淀粉糊化作用的测定方法:有光学显微镜法,电子显微镜法,光传播法,粘度测定法,溶胀和溶解度的测定,酶的分析,核磁共振,激光光散射法等。
工业上常用粘度测定法,溶胀和溶解度的测定。
二、酸变性淀粉在糊化温度以下,用无机酸处理淀粉,改变其性质的产品称为酸变性淀粉。
反应机理:在用酸处理淀粉的过程中,酸作用于糖苷键使淀粉分子水解,淀粉分子变小。
淀粉颗粒是由直链淀粉和支链淀粉组成,前者具有α-1,4键,后者除α-1,4键,还有少量α-1,6键,这两种糖苷键被酸水解的难易存在差别。
由于淀粉颗粒结晶结构的影响,直链淀粉分子间经由氢键结合成晶态结构,酸渗入困难,其α-1,4键不易被酸水解。
而颗粒中无定形区域的支链淀粉分子的α-1,4键、α-1,6键较易被酸渗入,发生水解。
工艺与原理:通常制取酸变性淀粉是使用浓淀粉淤浆,含固量约为36%~40%,加热到糊化温度之下(常为40~60℃),加入无机酸并搅拌一个小时或几个小时。
变性淀粉及其在食品中的应用
![变性淀粉及其在食品中的应用](https://img.taocdn.com/s3/m/9692aaceaaea998fcd220e3e.png)
□ 变性淀粉在食品应用中的介绍 4.使用方法 按面粉量的5~10%加入和面机中混匀后和面即可。 5.应用示例
淀粉1: 9面粉 盐水
混合机
连续机
复合机
切条、制波、 分段
整面
风干
淋味
风干
蒸煮
油炸
多段式冷却
包装
□ 变性淀粉在食品应用中的介绍
§. 变性淀粉在速冻水饺皮中的应用
1.选用淀粉类别
醋酸酯化淀粉
3)此系列变性淀粉通过变性引入了乙酰基团、羟丙基团,提高 了淀粉的保水性能,避免制品出现脱水、分层等不良现象。
5.使用方法
将淀粉按3~6%添加量加水配成淀粉乳,与其它配料加热即可。
□ 变性淀粉在食品应用中的介绍
§. 变性淀粉在果酱类中的应用 1.适合产品 烘焙果酱、涂抹果酱、耐热果占等 2.选用淀粉类别 交联酯化淀粉 交联羟丙基酯化淀粉 3.作用性能 1)良好的热稳定性,耐高温焙烤。 2)保水性能优良。 3)透明度、光亮度高。 4)赋予制品良好的体态。
二.变性淀粉的分类及性质 1.变性淀粉的分类
物理变性
预糊化淀粉
醋酸酯淀粉
交联淀粉
变
氧化淀粉
性 淀
化学变性
醚化淀粉
粉
磷酸酯淀粉
酸转化淀粉
酶变性
接枝淀粉 复合变性
其它
2.化学变性淀粉的性质 —醋酸酯化淀粉 v反应机理(图5-1); v 分子结构(图5-2); v Brabender粘度曲线(图5-3); v主要特性 糊化温度低;粘度高;透明度好;可形成韧性膜 —交联淀粉 v反应机理(图6-1); v分子结构(图6-2); v Brabender粘度曲线(图6-3,图6-4,图6-5,图6-6); v主要特性 耐机械加工(高温;强酸;剪切力)稳定性好;糊丝短而细腻;冻融稳定性好 —次氯酸钠氧化淀粉 v反应机理(图7-1); v Brabender粘度曲线(图7-2); v主要特性 粘度低;流动性好;透明度高;可形成脆性膜;具有一定的凝胶性 —酸水解淀粉 v反应条件:一定温度下浓酸作用于淀粉,使其大分子链被切断成为小分子链。 v主要特性 粘度低;流动性好;具有一定的凝胶性 v与次氯酸钠氧化淀粉的区别 反应机理:分子链被切断,羟基未被氧化为羧基或醛基
【实用文档】变性淀粉介绍
![【实用文档】变性淀粉介绍](https://img.taocdn.com/s3/m/0407d42f1ed9ad51f01df27e.png)
变性淀粉介绍
变性淀粉是指在淀粉具有的固有特性基础上,为改善其性能和扩大其应用范围,而利用物理方法、化学方法和酶法改变淀粉的天然性质,增加其性能或引进新的特性而制备的淀粉衍生物。
目前变性淀粉的研究和生产可谓进入了一个新的阶段,从原来的通用型转为专用型。
目前单就食品类变性淀粉根据用途不同就可分为糖果专用变性淀粉、肉制品专用变性淀粉、冷冻食品专用变性淀粉、蚝油专用变性淀粉、番茄沙司专用变性淀粉、酱油专用变性淀粉、雪糕冰淇淋专用变性淀粉、饮料专用变性淀粉、方便面专用变性淀粉和膨化食品专用变性淀粉等。
这些专用变性各有各自的理化指标和生产标准,看来淀粉深加工的力度正在加大,而向专业化发展是未来趋势。
变性淀粉的生产工艺描述:
将淀粉与水按照比例配成一定浓度的淀粉乳液(通常为21°bé),或者直接从淀粉加工厂将淀粉乳输送到淀粉乳液罐。
如果是生产比较简单的预糊化淀粉,则只需要将淀粉乳液输送到滚筒干燥机进行干燥即可。
如果生产湿法变性淀粉或复合变性淀粉,则需要测定淀粉乳液罐中实际的淀粉乳液浓度,然后将淀粉乳液输送到反应罐中,再根据淀粉乳液的浓度,产品的种类等选择淀粉变性所需要的化学试剂的种类和浓度;然后将各种化学试剂按照反应要求添加到反应罐中进行反应。
在反应过程中,需要不断地监测反应的温度和溶液的pH值,为了保证反应所需要的温度,需要在反应的过程中采用热交换器对淀粉乳液进行加热。
反应的时间根据生产品种的不同而不同,一般在几个小时到几十个小时不等。
变性淀粉生产工艺
![变性淀粉生产工艺](https://img.taocdn.com/s3/m/85eda955a26925c52cc5bf7e.png)
变性淀粉生产工艺
变性淀粉生产工艺
• 干法生产变性淀粉 • 干法生产工艺中,原淀粉含水量最多保持在40%以下,一般为 20%左右,整体反应过程处于相对于的状态下进行。该法的优点 是节省了湿法必用的脱水与干燥过程,节约能源,降低生产成本, 无污染。但也存在缺点,即淀粉与化学试剂混合不均匀;反应不 充分,所以只能生产少数几种产品,如黄糊精、白糊精、酸降解 淀粉和淀粉磷酸酯等。 ‘
变性淀粉生产工艺
•
2.生产方法 生产
• —化淀粉的方法有:热滚法、喷雾干燥法、挤压膨化法和微波法 等。 · • (1)热滚法。又称滚筒干燥法。它是将淀粉浆喷洒在加热的滚 筒表面,使淀粉乳充分糊化,然后干燥,获得成品的一种方法, 也是传统生产e—淀粉的主要方法。
变性淀粉生产工艺
变性淀粉生产工艺
ห้องสมุดไป่ตู้
• 第二节 预糊化淀粉(o—化淀粉) • 预糊化淀粉,亦称。—化淀粉,顾名思义,这是一种已被糊化 的淀粉产品。它是一种经物理方法(湿热处理)而生成的变性淀粉。 与原淀粉的明显区别是。—化淀粉能够在冷水中溶解,即在冷水 中溶胀后形成具有一定熟度的淀粉糊,使用方便,凝沉性也比原 淀粉 • 一、生产方法 • 1.工艺原理 • 未变性淀粉具有微结晶胶束构造,冷水中不溶解膨胀,对淀粉酶 不敏感,这种状态的淀粉称为p—淀粉。将p—淀粉在一定量的 水存在下进行加热,使之糊化,规律 排列地胶束结构被破坏, 分子间氢键断开,水分子进入其间,这时在偏光显微镜下观察失 去双折射现象,结晶构造消失,并且易接受酶的作用,这种结构 称e—结构。生产。—化淀粉的原理就是在热滚筒表面使淀粉乳 充分糊化后,迅速干燥;或在挤压设备内淀粉受到高温高压作用, 从微细的喷嘴喷出,压力骤降,· 淀粉颗粒瞬间膨化,由原p—结 构转为a—结构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变性淀粉基础知识神洲淀粉科技公司1、直链淀粉直链淀粉经熬煮不易成糊,冷却后呈凝胶体,易回生,热可逆性差。
其大分子结构上,葡萄糖分子排列整齐。
工业上直链淀粉的用途较多,如可制成强度很高的纤维和透明薄膜,它无味、无臭、无毒,具有抗水和抗油性能,是一种良好的食品包装材料。
直链淀粉具有抗润胀性,水溶性较差,不溶于脂肪;直链淀粉不产生胰岛素抗性;直链淀粉糊化温度较高,糯淀粉为73℃,而直链淀粉为81.35℃;直链淀粉的成膜性和强度很好,粘附性和稳定性较支链淀粉差;直链淀粉具有近似纤维的性能,用直链淀粉制成的薄膜,具有好的透明度、柔韧性、抗张强度和水不溶性,可应用于密封材料、包装材料和耐水耐压材料的生产。
直链淀粉是由葡萄糖以α-1,4-糖苷键结合而成的链状化合物,能被淀粉酶水解为麦芽糖。
在淀粉中的含量约为10~30%。
能溶于热水而不成糊状。
遇碘显蓝色。
2、支链淀粉支链淀粉易成糊其粘性较大,但冷却后不能呈凝胶体,不易回生,热可逆性好。
结构上,葡萄糖分子排列不整齐,也能制成透明薄膜,但强度很差,遏水立即溶解。
二、淀粉糊化(一)物化的概念和本质将淀粉乳加热,则颗粒可逆地吸水膨胀,而后加热至某一温度时,颗粒突然膨胀,晶体结构消失,最后变成粘稠的糊,虽停止搅拌,也不会很快下沉,这种现象称为淀粉的糊化。
发生糊化所需的温度称为糊化温度。
糊化后的淀粉颗粒称为糊化淀粉(又称为o·化淀粉)。
糊化的本质是水分子进入淀粉粒中,结晶相和无定形相的淀粉分子之间的氢键断裂,破坏了淀粉分子间的缔合状态,分散在水中成为亲水性的肢体溶液。
(二)影响糊化的各种因素1.颗粒大小与直链淀粉含量破坏分子间的氢键需要外能,分子问结合力大,排列紧密者,拆开微晶束所需的外能就大,因此糊化温度就高。
由此可见,不同种类的淀粉,其糊化温度不会相同(如表2—19所示)。
一般来说,小颗粒淀粉内部结构紧密,糊化温度比大颗粒高;直链淀粉分子间结合力较强。
因此直链淀粉含量高的淀粉比直链淀粉含量低的淀粉难糊化,因此可从糊化温度上初步鉴别淀粉的种类。
2.使糊化温度下降的外界因素(1)电解质电解质可破坏分子间氢键.因而促进淀粉的糊化。
(2)非质子有机溶剂二甲基亚矾、盐酸肥、腮等在室温或低温下可破坏分子氢键促进淀粉物化。
(3)物理因素如强烈研磨、挤压蒸煮、7射线等物理因素也能使淀粉的糊化温度下降。
(4)化学因素淀粉经酯化、醚化等化学变性处理,在淀粉分子上引入亲水性基团,使淀粉糊化温度下降。
3.使物化温度升高的外界因素’(1)糖类、盐类糖类和盐类能破坏淀粉粒表面的水化膜,降低水分活度,使物化温度升高。
(2)脂类直链淀粉与硬脂酸形成复合物,加热至100℃不会被破坏,所以谷类淀粉(含有脂质多)不如马铃著易糊化,如果脱脂,则彻化温度降低3—4℃。
(3)亲水性高分子(胶体)亲水性高分子如明胶、下酪素和cMc等与淀粉竞争吸附水,使淀粉糊化温度升高。
(4)物理、化学因素淀粉经酸解及交联等处理,使淀粉糊化温度升高。
这是因为酸解使淀粉分子变小,增加了分子间相互形成氢键的能力。
(5)生长的环境因素生长在高温环境下的淀粉糊化温度高。
三、淀粉的回生(或称老化、凝沉)1.回生的概念与本质淀粉稀溶液或淀粉糊在低温下静置一定的时间,混浊度增加,溶解度减少,在稀溶液中会有沉淀析出,如果冷却速度快,特别是高浓度的淀粉糊,就会变成凝胶体(凝胶长时间保持时,即出现回生),好像冷凝的果胶或动物胶溶液,这种现象称为淀粉的回生或老化.这种淀粉称为回生淀粉(或称β淀粉)。
回生本质是彻化的淀粉分子在温度降低时由于分子运动减慢,此时直链淀粉分子和支链淀粉分子的分支都回头趋向于平行排列,互相靠拢,彼此以氢键结合,重新组成混合微晶束。
其结构与原来的生淀粉粒的结构很相似,但不成放射状,而是零乱地组合。
由于其所得的淀粉糊中分子中氢键很多,分子间缔合很牢固,水溶解性下降,如果淀粉糊的冷却速度很快,特别是较高浓度的淀粉糊,直链淀粉分子来不及重新排列结成束状结构,便形成凝胶体。
回生后的直链淀粉非常稳定.加热加压也难溶解,如有文链淀粉分子混存,仍有加热成糊的可能。
回生是造成面包硬化,淀粉凝胶收缩的主要原因。
当淀粉制品长时间保存时(如爆玉米),常常变成咬不动,这是因为淀粉从大气中吸收水分,并且回生成不溶的物质。
回生后的米饭、向包等不容易被酶消化吸收。
当淀粉凝胶被冷冻和融化时,淀粉凝胶的回生是非常大的,冷冻与融化淀粉凝胶,破坏了它的海绵状的性质,且放出的水容易挤压出来,这种现象是不受欢迎的。
2.影响回生的因素(1)分子组成(直链淀粉的含量)直链淀粉的链状结构在溶液中空间障碍小,易于取向,故易于回生;支链淀粉呈树状结构,在溶液中空间障碍大,不易于取向,故难于回生,但若支链淀粉分支长,浓度高,也可回生。
糯性淀粉围几乎不合直链淀粉,故不易回生;而玉米、小麦等谷类淀粉回生程度较大。
(2)分子的大小(链长)直链淀粉若链太长,取向困难,也不易回生;相反,若链太短,易于扩散(不易聚集,布朗运动阻止分子相互吸引).不易定向排列,也不易回生(溶解度大),所以只有中等长度的直链淀粉才易回生。
例如,马铃薯淀粉中直链淀粉的链较长,聚合度约1000一6000,故回生慢;玉米淀粉中直链淀粉的聚合度约为200—1200,平均800,故容易回生,加上还含有0.6%的脂类物质,对回生有促进作用。
(3)淀粉溶液的浓度——水分淀粉溶液浓度大,分子碰撞机会高,易于回生;浓度小则相反。
一般水加0%一60%的淀粉溶液易回生。
水训、于10%的干燥状态则难于回生。
(4)温度接近0一4℃时贮存可加速淀粉的回生。
(5)冷却速度缓慢冷却,可使淀粉分子有充分时间取向平行排列,因而有利于回生。
迅速冷却,可减少回生(如速冻)。
(6)PH值pH值中性易回生,在更高或更低的pH值,不易回生。
(7)各种无机离子及添加剂等一些无机离子能阻止淀粉回生,其作用的顺序是CNS‾>PO 43->CO 32->I ->NO 3->Br ->Cl ->Ba 2+>Sr 2+>Ca 2+>K +>Na +。
如CaCl 2、ZnCl 2、NaCNS 促进糊化,阻止老化;MgSO 4、NaF 促进老化,阻止糊化;甘油与蔗糖、葡萄糖等形成的单甘酯易与宣链淀粉形成复合物,延缓老化(乳化剂)。
因此,防止回生的方法有快速冷却干燥,这是因为迅速干燥,急剧降低其中所含水分,这样淀粉分子联结而固定下来,保持住。
—型,仍可复水。
另外可考虑加字毗剂,如面包中加乳化剂,保持住面包中的水分,防止面包老化。
四、变性淀粉常见变性方式特性变性的主要作用是改变糊化和蒸煮特性,主要是改变如下性质。
(1)糊化温度解聚使糊化温度<GT)下降;非解聚中GT 有升高也有下降,一般在淀粉结构中引进亲水团如—0H 、删oH 、—cH2凹OH ,可增加淀粉分子与水的作用,使GT 下糊化温度粘度透明度糊丝长短凝胶性抗酸性抗剪切性抗冻性酸变性↓↓↓↓↑交联变性↑↑↓↑↓↑↑↑酯化变性↓↑↑↓↓↑↑↑醚化变性↓↑↑↓↓↑↑↑降。
交联起阻挡作用,不利水分子进入,使GT增加。
高直链淀粉结合紧密,品格能高,较难糊化。
(2)淀粉糊的热稳定性一般谷类的热稳定性大子薯类;通过接枝或衍生某些基团,从而改变基团大小或架桥,可使淀粉的热稳定性增加。
(3)淀粉糊的冷稳定性淀粉结构中接些亲水化学基团,造成空间障碍,分子不易重排。
另外亲水基团的引入使亲水作用增强,强化了与水的结合力,使淀粉脱水作用下降。
(4)抗酸的稳定性尽可能使淀粉改变结构成为网状结构粉能耐pH值3—3.5的酸性。
(5)抗剪切力一般抗酸的淀粉也抗剪切。
(6)复合改性具有多功能性。
变性淀粉舶性质取决于下列一些因素。
淀粉的来源(玉米、薯类、小麦、大米等)、预处理(酸催化水解或糊精化等)、直链淀粉与支链淀粉的比例或含量、分子量分布的范围(粘度或流动性)、衍生物的类型(酯化、醚化等)、取代基的性质(乙酰基、逐丙基等)、取代度(D5)或摩尔取代度的大小、物理形状(颗粒状、预物化)、缔合成分(蛋白质、脂肪酸、磷化合物)或天然取代基。
也就是说,不同来源的淀粉,采取的不同的变性方法、不同的变性程度,相应可得到不同性质的变性淀粉产品。
因此我们必须了解每一种变性淀粉产品的性质,以便在实际生产中加以选择利用。
变性淀粉的性质主要考察以下几个方面:糊的透明度,溶解性、溶胀能力,冻融稳定性,粘度及稳定性,耐酸、耐剪切性,粘合性,老化性,乳化性。
下面将讨论各种常见的变性淀粉的性质,以供读者选用时参考。
一、酸变性淀粉用酸在韧化温度以下处理淀粉改变其性质的产品称为酸变性淀粉。
在糊化温度以上的酸水解淀粉产品和更高温度酸热解淀粉产品都不属于酸变性淀粉。
在酸催化水解过程中,盲链淀粉和支链淀粉分子变小,聚合度降低,产品流度增高。
破变性淀粉仍基本保持了原淀粉颗粒形状,但在水中受热发生的变化与原淀粉有很大差别。
原淀粉颗粒受热膨胀时体积增大几倍,而政变性淀粉颗粒因酸的作用具有辐射形裂纹,受热沿裂纹裂解而不是膨胀。
随流度的增加,裂解越容易。
酸变性淀粉易被水分散,流度越高越易分散。
酸变性淀粉具有较低的热糊粘度和较高的冷糊粘度。
常用热粘度和冷粘度的比表示其胶凝性质。
比值大,胶凝性强,冷却易于形成强度高的凝胶。
改变酸变性条件能得到流度相同而胶凝性不同的产品。
例如:D.1咖1儿硫酸,在40t处理玉米淀粉12h得流度60mL 产品;提高酸的浓度缩短反应时间,得到相同流度的产品,但其凝胶性能强于前者;而降低酸的浓度延长反应时间则得到相反的结果,即凝胶强度降低。
不同品种淀粉经酸处理所得的变性淀粉产品的性质存在差别。
玉米、小麦、高粱等谷类酸变性淀粉,热糊相当透明,凝沉性较强,冷却后透明度降低,生成不透明、强度高的凝胶。
粘玉米淀粉是由支链淀粉组成,不含直链淀粉,经酸变性后,凝沉性很弱,热糊透明度和流动性都高,冷却不形成凝胶。
80一90mL流度酸变性淀粉由于产生较多链状分子水解物,凝沉性增强,稳定性有所降低。
酸变性木兽淀粉糊,在o一40mL流度范围内稳定性和透明度与粘玉米粉相同;约50mL流度以上的产品的热糊透明度都高,但冷却后透明度降低。
酸变性马铃兽淀粉热糊的流动性和透度都高,且胶凝性强,冷却后很快形成不透明的凝胶。
酸变性淀粉粘度低,能配制高浓度糊液,含水分较少,干燥快,粘合快,胶粘力强,适合子成膜性及粘附性的工业。
例如经纱上浆、纸袋粘合、纸板制造等。
酸变性淀粉的薄膜强度暗低于原淀粉,酸变性玉米淀粉对其薄膜性质的影响如表4—4所示。
二、氧化淀粉氧化淀粉的颗粒与原淀粉相似,仍保持原有的偏光性和X射线衍射图像,表明氧化反应发生在颗粒的无定形区,仍保持与碘的显色反应。
由于次氯酸盐的漂白作用,所以氧化淀粉比原淀粉色泽要白些。
氧化淀粉一般对热敏感.高温下变成黄色或褐色。