分式方程的几种解法

合集下载

分式方程的解法

分式方程的解法

分式方程的解法多年的教学,总结了一下分式方程的解法,供大家参考,希望对大家有所帮助。

方法1:计算法例 解方程 32223=-++x x x 解:移项,得()()()()是原方程的根时,检验:当计算,得4,022440164022164-032223=≠-+===+-=-++=--++x x x x x x x x x x x x原理:分式的值为0,分子为0,分母不为0.方法是把所有的项集中于方程左边,右边为0 ,从而利用分式的值为0求出未知数。

方法2:分式相等法例 解方程 32223=-++x x x 解:原方程化为()()()()()()()()()()()()416412344322322232222322222322=-=--=+--+=++--+-+=-+++-x x x x x x x x x x x x x x x x x x x经检验,x=4是原方程的解。

原理:两分式相等,分母相等,分子也相等。

方法3:等式性质法例 解方程 32223=-++x x x 解:方程两边同乘()()22-+x x 得()()()()4164123443223222322=-=--=+--+=++-x x x x x x x x x x经检验,x=4是原方程的解。

原理:利用等式性质,去分母化为整式方程。

方法2结合方法3,降低去分母的难度。

方法4:比例式法例 解方程 415+=x x解:两外项的乘积等于两內项的乘积 ()55554154-==-+=+=x x x x x x经检验,x=-5是原方程的解。

分式方程的解法与技巧_知识精讲

分式方程的解法与技巧_知识精讲

分式方程的解法与技巧【典型例题】1. 局部通分法:例1.分析:该方程的特点是等号两边各是两个分式,相邻两个分式的分子与分子,分母与分母及每个分式的分子与分母都顺序相差1,象这类通常采取局部通分法。

解:方程两边分别通分并化简,得:解之得:x=6经检验:x=6是原分式方程的根。

点拨:此题如果用常规法,将出现四次项且比较繁,而采用局部通分法,就有明显的优越性。

但有的时候采用这种方法前需要考虑适当移项,组合后再进行局部通分。

2. 换元法:例2.分析:此方程中各分式的分母都是含未知数x的二次三项式,且前两项完全相同,解:解此方程此方程无解。

点拨:换元法解分式方程,是针对方程实际,正确而巧妙地设元,达到降次,化简的目的,它是解分式方程的又一重要的方法,本题还有其它的设法,同学们可自己去完成。

3. 拆项裂项法:例3.分析:这道题虽然可用通分去分母的常规解法,但若将第二项拆项、裂项,则更简捷。

解:原方程拆项,变形为:裂项为:经检验:x=1是原分式方程的解。

4. 凑合法:例4.分析:观察此方程的两个分式的分母是互为相反数,考虑移项后易于运算合并,能使运算过程简化。

解:部分移项得:∴x=2经检验:x=2是原分式方程的根。

5. 构造法:例5.分析:来求解,而不用常规解法。

解:原方程可化为:6. 比例法:例6.分析:由于方程两边分子、分母未知数的对应项系数相等,因此可以利用这样的恒等运算。

解:应用上述性质,可将方程变形为:【模拟试题】(答题时间:20分钟)解下列分式方程:1.2.3.4.5.【试题答案】1. 解:原方程变形为:即方程两边分别通分为:去分母得:化简得:解法2:原方程变变形得:两边分别通分得:去分母得:化简得:2. 由比例的性质可得:或解之得:经检验:是原分式方程的解。

3. 解:原方程可化为:化简得:∴原分式方程无解4. 原方程可变形为:设,则有∴原方程可化为:即解之得:当时,即,解得当时,即,解得经检验:,均是原方程的解。

分式方程的解法

分式方程的解法

分式方程的解法
分式方程发的解法:去分母、移项、验根(解)。

其中,方程两边同时乘以最简公分母,将分式方程化为整式方程;若遇到互为相反数时,不要忘了改变符号。

移项,若有括号应先去括号,注意变号,合并同类项,把系数化为1求出未知数的值。

求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根。

分式方程是方程中的一种,是指分母里含有未知数或含有未知数整式的有理方程,该部分知识属于初等数学知识。

如果分式本身约分了,也要代入进去检验。

在列分式方程解应用题时,不仅要检验所得解的是否满足方程式,还要检验是否符合题意。

一般的,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为零,因此要将整式方程的解代入最简公分母,如果最简公分母的值不为零,则是方程的解。

方程是指含有未知数的等式。

是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,使等式成立的未知数的值称为“解”或“根”。

求方程的解的过程称为“解方程”。

分式方程知识点归纳总结

分式方程知识点归纳总结

分式方程知识点归纳总结分式方程(也称有理方程)是含有分式的等式,其中分子和(或)分母中至少有一个包含一个或多个未知量。

解分式方程的过程是确定使得等式成立的未知量的值。

下面是分式方程的一些常见知识点的总结:1.分式的定义域:对于一个分式,需要注意其定义域,即分母不能为零。

当分母为零时,分式没有意义。

因此,在解分式方程时,需要排除使分母为零的解。

2.分式方程的简化:可以通过约分的方法,将分式方程进行简化。

约分是将分子和分母同时除以他们的最大公约数。

这样可以简化方程,使求解更易于处理。

3.分式方程的通分:当分式方程中出现了不同的分母时,可以通过通分的方式将分式方程转换为求解多项式方程。

通分是将所有分母进行相同因式的乘法,使所有分母都相同。

然后分别将分子相加或相减,并保持分母不变。

这样,就可以将分式方程转化为多项式方程。

4.分式方程的解的确定性:一般而言,分式方程的解并不唯一、因此,在解分式方程时,需要注意是否有解,以及解的个数。

当方程的分子和分母为多项式时,可以通过将方程转化为多项式方程的方式来求解。

而对于含有绝对值、根号等特殊函数的分式方程,可能存在特殊解或无解的情况。

5.分式方程的解法:求解分式方程的常用方法有以下几种:a.通过消去分母的方式来求解。

首先将方程中的每一个分式都通分,这样可以得到一个多项式方程。

然后通过求解得到的多项式方程,找到使方程成立的未知量的值。

b.通过移项和合并同类项的方式转化为多项式方程。

首先将方程中的每一个分式都移动到一个方程的一边,将所有未知量合并,并将同类项相加。

最终得到一个多项式方程,通过求解多项式方程来求解分式方程。

c.通过换元的方式转化为多项式方程。

首先令一个新的未知量等于原方程中的一个分式,将分式方程转化为一个多项式方程。

然后通过求解新的多项式方程,找到使方程成立的未知量的值。

最后,将得到的解代入原方程中,验证是否是原方程的解。

以上是分式方程的一些常见知识点的总结。

分式方程的解法与技巧、知识精讲

分式方程的解法与技巧、知识精讲

分式方程的解法与技巧【典型例题】1. 局部通分法(分组分解法):例1. 解方程:x x x x x x x x -----=-----34456778分析:该方程的特点是等号两边各是两个分式,相邻两个分式的分子与分子,分母与分母及每个分式的分子与分母都顺序相差1,象这类通常采取局部通分法。

解:方程两边分别通分并化简,得:145178()()()()x x x x --=--去分母得:()()()()x x x x --=--4578解之得:x =6 经检验:x =6是原分式方程的根。

点拨:此题如果用常规法,将出现四次项且比较繁,而采用局部通分法,就有明显的优越性。

但有的时候采用这种方法前需要考虑适当移项,组合后再进行局部通分。

变式:解方程32411423---=---x x x x 分析:要整个方程一起通分,计算量大又易出错。

观察方程中分母的特点可联想分组通分求解。

解:方程两边分别通分,相减得)3)(4(5)1)(2(5---=---x x xx x x当05≠-x 时,)3)(4()1)(2(--=--x x x x ,解得251=x 当05=-x 时,解得52=x 经检验,251=x 52=x 都是原方程的解 2.换元法:例2. 解方程:7643165469222x x x x x x ----+=--+分析:此方程中各分式的分母都是含未知数x 的二次三项式,且前两项完全相同,故可考虑用换元法求解。

令或或或k x x k x x k x x =--=-+=-+222646569 k x x =-26均可。

解:设,则原方程可化为:k x x =-+265793144k k k --=-+ 去分母化简得:20147111602k k --=∴()()k k -+=1220930∴,k k ==-129320当时,k x x =--=126702()()x x -+=710解之得:,x x 1217=-=当时,k x x =--+=-932065932022012019302x x -+=解此方程此方程无解。

初中数学专题: 分式方程的解法

初中数学专题: 分式方程的解法

范围是(D )
A.a>1
B.a<1
C.a<1 且 a≠-2
D.a>1 且 a≠2
4.(黑龙江中考)已知关于 x 的分式方程3xx--3a=13的解是非负数,那
么 a 的取值范围是(C)
A.a>1
B.a≥1
C.a≥1 且 a≠9
D.a≤1
5.已知关于 x 的分式方程ax++21=1 的解是非正数,则 a 的取值范围
(3)x-1 2=12- -xx-3. 解:方程两边同乘(x-2),得 1=x-1-3x+6.解得 x=2. 检验:当 x=2 时,x-2=0. 因此 x=2 不是原分式方程的解, 所以原分式方程无解.
2.解分式方程: (1)x-x 1+x2-1 1=1; 解:方程两边同乘(x+1)(x-1),得 x(x+1)+1=(x+1)(x-1).解得 x=-2. 检验:当 x=-2 时,得(x+1)(x-1)≠0, 所以原分式方程的解为 x=-2.
是(B)
A.a≤-1
B.a≤-1 且 a≠-2
C.a≤1 且 a≠-2D来自a≤16.(眉山中考)已知关于 x 的分式方程x-x 3-2=x-k 3有一个正数解,
则 k 的取值范围为 k<6且k≠3 .
【易错提示】 求得的未知数不仅要满足所给出的范围,还要使分
式的分母不为零,两个条件必须同时具备,缺一不可.
类型 2 由分式方程无解确定字母的取值
7.若关于 x 的方程3xx+-12=2+x+m1无解,则 m 的值为(A)
A.-5
B.-8
C.-2
D.5
8.【分类讨论思想】若关于 x 的方程xa-x2=x-4 2+1 无解,则 a 的
值是 1或2 .
9.【分类讨论思想】若关于 x 的方程3x--23x-m3x--x2=-1 无解,则 m 的值是1 或53 . 【易错提示】 分式方程无解可能有两种情况:(1)由分式方程去分 母后化成的整式方程有解,但这个解使最简公分母为零;(2)由分式 方程去分母后化成的整式方程无解.

分式方程的几种特殊解法

分式方程的几种特殊解法

分式方程的几种特殊解法白云中学:权兵解分式方程的一般步骤:(1)去分母,化分式方程为整式方程;(2)解整式方程;(3)检验,判断所求整式方程的解是否是原分式方程的解。

但在具体求解时却不能死搬硬套,尤其是在解某些特殊的分式方程时,应能根据方程的特点,采用灵活多变的解法,并施以适当的技巧,才能避繁就简,巧妙地将题目解出。

下面举例谈谈解分式方程的几种特殊技巧。

一、加减相消法。

例1、解方程:20172018112017201811222++-=++-+x x x x x 。

分析:若直接去分母固然可以求出该题的解,但并不是最佳解题方法。

如果我们发现方程两边都加上分式2017201812++x x ,则可以通过在方程两边都加上分式2017201812++x x ,就将原方程化简成112=+x ,从而轻松获解。

解:原方程两边都加上2017201812++x x ,则可得:112=+x 去分母,得:12+=x解得:1=x经检验,1=x 是原分式方程的解。

二、巧用合比性质法。

例2:解方程:781222++=++x x x x 。

分析:若我们能发现方程两边的分式的分子比分母都多1的话,则可以利用合比性质将分子化为1,从而可以轻易将方程的解求出。

解:由合比性质可得:77-811-2222+++=+++x x x x x x )()()()( ∴ 71112+=+x x 去分母并化简得:062=--x x ,即0)2)(3=+-x x (解得:23-==x x 或经检验,23-==x x 或是原分式方程的解。

三、巧用等比性质法。

例3、解方程:13242344++=++x x x x 。

分析:该方程两边的分式的分子之差和分母之差都是常数,故可考虑先用等比性质将原方程化简后再求解。

解:由等比性质可得:1324)13()23(2444++=+-++-+x x x x x x )()(。

∴ 13242++=x x 化简得: 02=x∴ 0=x经检验,0=x 是原分式方程的解。

分式方程的特殊解法举例

分式方程的特殊解法举例

分式方程的特殊解法举例解分式方程的基本思想,是通过去分母,化分式方程为整式方程。

其常规解法有“去分母法”和“换元法”两种。

但对一些结构较特殊的分式方程,若仍用这两种常规方法求解,往往会使未知数的次数增高,或使运算变繁,增大解题难度,甚至无法解出。

因此,我们应针对题目的结构特征,研究一些非常规解法。

1. 分组通分例1 解方程65327621--+--=--+--x x x x x x x x 分析:通过移项,将方程两边变形为两分式的差,通分后的分子中含未知数的项可相互抵消,从而降低了解题难度。

解:移项,得21653276-----=-----x x x x x x x x 两边分别通分,得)2)(6(4)3)(7(4--=--x x x x 所以)2)(6()3)(7(--=--x x x x 解得29=x 经检验,知29=x 是原方程的根。

2. 用“带余除法”将分子降次例2 解方程x x x x x x x 211112323=+--++++ 分析:方程左边是两个假分式的和的形式,所以可将它们分别化成整式与真分式之和的形式,从而降低未知数的次数,简化运算。

解:原方程可化为x x x x x x x 212112122=⎪⎭⎫ ⎝⎛+--++⎪⎭⎫ ⎝⎛+++-所以121222+-=++x x x x 即1122+-=++x x x x所以002==x x ,经检验,知x=0是原方程的根。

3. 拆项相消例3 解方程 1011009900199165123112222=+++++++++++x x x x x x x x 分析:表面不易发现题目特点,但将各分母因式分解后,便发现各分式同时都具有AB A B -的形式。

因此,可用BA AB A B 11-=-将每个分式都拆成两个分式差的形式,这样除首末两项外,中间的项从左往右依次抵消。

解:将原方程变形,得101100)100)(99(1)3)(2(1)2)(1(1)1(1=+++++++++++x x x x x x x x 拆项得⎪⎭⎫ ⎝⎛+-+++⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛+-100199131212111111x x x x x x x x 101100= 化简得10110010011=+-x x 即01011002=-+x x 解得101121-==x x , 经检验,知11=x 和1012-=x 都是原方程的解。

如何解分式方程

如何解分式方程

1.一般‎法所谓一般‎法,就是先‎去分母,将‎分式方程转‎化为一个整‎式方程。

然‎后解这个整‎式方程。

解‎原方程就‎是方程两边‎同乘以(x‎+3)(x‎-3),约‎去分母,得‎4(x-3‎)+x(x‎+3)=x‎2-9-2‎x。

2.换‎元法换元法‎就是恰当地‎利用换元,‎将复杂的分‎式简单化。

‎分析本方‎程若去分母‎,则原方程‎会变成高次‎方程,很难‎求出方程的‎解设x2‎+x=y,‎原方程可变‎形为解这个‎方程,得y‎1=-2,‎y2=1。

‎当y=-2‎时,x2+‎x=-2。

‎∵Δ<0,‎∴该方程无‎实根;当y‎=1时,x‎2+x=1‎,∴经检‎验,是原‎方程的根,‎所以原方程‎的根是。

‎3.分组结‎合法就是把‎分式方程中‎各项适当结‎合,再利用‎因式分解法‎或换元法来‎简化解答过‎程。

4.拆‎项法拆项法‎就是根据分‎式方程的特‎点,将组成‎分式方程的‎各项或部分‎项拆项,然‎后将同分母‎的项合并使‎原方程简化‎。

特别值得‎指出的是,‎用此法解分‎式方程很少‎有增根现象‎。

例4 解‎方程解将‎方程两边拆‎项,得即x‎=-3是原‎方程的根。

‎5.因式分‎解法因式分‎解法就是将‎分式方程中‎的各分式或‎部分分式的‎分子、分母‎分解因式,‎从而简化解‎题过程。

解‎将各分式‎的分子、分‎母分解因式‎,得∵x-‎1≠0,∴‎两边同乘以‎x-1,得‎检验知,它‎们都是原方‎程的根。

所‎以,原方程‎的根为x1‎=-1,x‎2=0。

6‎.配方法配‎方法就是先‎把分式方程‎中的常数项‎移到方程的‎左边,再把‎左边配成一‎个完全平方‎式,进而可‎以用直接开‎平方法求解‎。

∴x2±‎6x+5=‎0,解这个‎方程,得x‎=±5,或‎x=±1。

‎检验知,它‎们都是原方‎程的根。

所‎以,原方程‎的根是x1‎=5,x2‎=-5,x‎3=1,x‎4=-1。

‎7.应用比‎例定理上述‎例5,除了‎用因式分解‎法外,还可‎以应用合比‎和等比定理‎来解。

分式方程的解法

分式方程的解法

分式方程的解法
分式方程的解法:1.将分式方程整理成整式方程〔即乘以公分母〕2.去括号,移项,合并同类项;3.求解;4.检验。

分式方程的解法:1.将分式方程整理成整式方程〔即乘以公分母〕2.去括号,移项,合并同类项;3.求解;4.检验。

分式方程的解法第一步,去分母,方程两边同乘各分母的最简公分母,解3÷(x+1)=5÷(x+3)。

同乘(x+1)(x+3)就可以去掉分母了。

第二步,去括号,系数分别乘以括号里的数。

第三步,移项,含有未知数的式子挪动到方程左边,常数挪动到方程右边。

第四步,合并同类项
第五步,系数化为1,方程的根本性质就是同时乘以或除以一个数,方程不变,和天平一样的。

这里除以-2。

第六步,检验,把方程的解代入分式方程,检验是否正确。

1。

分式方程的解法知识点总结

分式方程的解法知识点总结

分式方程的解法知识点总结分式方程是指含有分式(也称为有理式)的方程,其中包含未知数。

解决分式方程的步骤主要包括消去分母、重整方程以及求解方程等。

一、消去分母对于分式方程,首先要进行的操作是消去分母。

通过乘以分母的倒数,可以将方程转化为整式方程,从而更容易求解。

消去分母的主要步骤如下:1. 找到方程中所有的分母,包括分式中的分母以及分式之间的分母。

2. 将每个分母的倒数乘到方程的每一项上,确保每一项都没有分母。

3. 简化方程,合并同类项。

二、重整方程在完成消去分母的操作后,接下来的步骤是重整方程。

通过将所有项移到方程的一侧,使方程等式两边都为零,方便解方程。

重整方程的步骤如下:1. 将方程中所有项移到方程的一边,使方程等式右边为零。

2. 合并同类项,简化方程。

三、求解方程重整方程之后,就可以通过各种方法求解方程了。

常见的求解分式方程的方法包括:1. 因式分解法:将方程进行因式分解,使方程的每个因式等于零,从而求得方程的解。

2. 通分法:对于方程中含有多个分式的情况,可以通过通分的方式将方程化简为整式方程,然后进行求解。

3. 变量代换法:将分式方程中的未知数进行变量代换,引入新的变量,并通过求解新的整式方程来得到原方程的解。

总结起来,解决分式方程的一般步骤为:1. 消去分母,将方程转化为整式方程。

2. 重整方程,归零方程等式右边。

3. 求解方程,采用因式分解、通分或变量代换等方法求得方程的解。

需要注意的是,在解决分式方程时,要注意方程的定义域,排除使分母为零的值,以确保解的可行性。

综上所述,分式方程的解法主要包括消去分母、重整方程以及求解方程等步骤。

通过掌握这些解法,可以有效地求解各种类型的分式方程。

分式解法及应用总结

分式解法及应用总结

分式解法及应用总结分式是一种特殊的代数表达式,包含分子和分母两部分,分子和分母都可以是代数式,其形式为a/b,其中a为分子,b为分母。

对于分式的加、减、乘、除运算,要根据运算法则进行处理,以得到最简形式的分式。

分式解法及应用在数学中具有重要意义,既可以用来解决实际问题,也可以用来推导和证明数学定理。

下面我将对分式解法及应用进行总结。

一、分式解法:1. 分式的加法与减法:对于分式a/b和c/d,可以采用通分的方式进行运算。

先找到a/b和c/d的最小公倍数lcm,然后将a/b和c/d分别乘以lcm/b和lcm/d,得到分母相同的两个分式。

最后,将分子相加或相减即可。

2. 分式的乘法:分式的乘法直接将分子相乘,分母相乘即可。

即(a/b) * (c/d) = (a*c)/(b*d)。

3. 分式的除法:分式的除法可以转化为乘法的倒数。

即(a/b) / (c/d) = (a/b) * (d/c) = (a*d)/(b*c)。

4. 分式的化简:对于分式a/b,可以将a和b的公因式约掉,得到最简形式的分式。

如果a和b都是多项式,可以进行因式分解后约掉公因式。

5. 分式方程的求解:将方程两边的分式化简后,将分子和分母交换位置,再将方程等式两边的分式乘以分母的最小公倍数,将方程化为整式方程,再根据整式方程的解法求解。

二、分式应用:1. 基本经济学原理:在经济学中,人们常常用比例和分式来表示经济关系。

例如,GDP(国内生产总值)可以表示为人均GDP的乘积,即GDP/人口数量。

又如价格的计算可以使用原价和折扣率的分式表达,价格=原价* (1-折扣率) / 100%。

2. 物理学中的速度计算:物理学中,速度是物体在单位时间内所经过的距离,通常使用分式来表示速度。

速度=位移/时间,分子位移代表物体所经过的距离,分母时间表示时间的长短。

3. 科学研究中的实验设计:在进行科学实验时,通常需要对研究对象进行分组,常用的分组方法之一是随机分组。

初中数学知识归纳分式方程的解法

初中数学知识归纳分式方程的解法

初中数学知识归纳分式方程的解法初中数学知识归纳:分式方程的解法在初中数学学习中,分式方程是一个重要的知识点。

解决分式方程的问题,需要了解并掌握一些基本的解法和技巧。

本文将对初中数学中分式方程的解法进行归纳和总结,帮助同学们更好地理解和掌握这一知识点。

一、分式方程的定义分式方程是指方程中存在有分数形式的未知数。

一般形式为:分子是未知数的有理式,分母不含未知数或者含有未知数的有理式。

例如:2/x + 3/x^2 = 1/x二、分式方程的基本解法1. 消去分母法有些分式方程的难点在于方程中含有未知数的分母,导致方程难以求解。

在这种情况下,我们可以利用消去分母的方法化简方程。

具体步骤如下:(1)找到分母的最小公倍数。

(2)将方程两边同乘以最小公倍数,以消去分母。

举例说明:对于方程 2/x + 3/(x+1) = 5/x(x+1),我们可以采用以下步骤来解方程:(1)最小公倍数为 x(x+1)。

(2)两边同乘以 x(x+1),得到 2x(x+1) + 3x = 5。

(3)化简方程 2x^2 + 2x + 3x = 5。

(4)整理方程得到 2x^2 + 5x - 5 = 0。

(5)利用因式分解或配方法求解上述方程,得到 x 的值。

2. 分离变量法对于分式方程中含有多个分式的情况,我们可以借助分离变量的方法将方程转化为更简单的形式。

具体步骤如下:(1)将方程中的分式分离,分别移至方程两边。

(2)通过移项的方式将方程变为等式。

(3)对方程两边进行合并和化简。

(4)解出未知数。

举例说明:对于方程 1/(x-3) + 1/(x+3) = 2/(x-1),我们可以采用以下步骤来解方程:(1)方程中存在三个分式,我们将分式分离得到:1/(x-3) + 1/(x+3) - 2/(x-1) = 0。

(2)通过移项得到 (x+3)(x-1)+ (x-3)(x-1) - 2(x-3)(x+3) = 0。

(3)整理方程得到 (x^2+2x-3) + (x^2-4) - 2(x^2-9) = 0。

分式方程的解法与技巧知识精讲

分式方程的解法与技巧知识精讲

分式方程的解法与技巧知识精讲
一、分式方程定义
分式方程就是把一个式子分解为两部分,分别是分母和分子,然后在
分母和分子上共享一些变量,最后用特定的方法求解出来。

二、求解方法
1、归约法
首先将分式方程中的分子和分母都归约成最简形式,以减少其中的因子。

随后,将归约好的分式方程化简为最简形式,再从最简形式中提取出解。

2、对式子求倒数法
当分式方程的分子和分母都是一元二次方程的时候,就可以将分子和
分母分别求其倒数,然后将其相乘,即可得出原分式方程的解。

3、先分析分式方程构成的结构
在分析分式方程之前,首先要分析分式方程构成的结构,将其分为分母、分子和共同项三部分,通过分析其构成结构,以有效地求解分式方程。

4、使用代数法
代数法是指将分式方程的分子和分母分别乘以同一个数,使得分子和
分母均变为有理数,然后求解原分式方程。

三、技巧
1、把共同项提出来
在解决分式方程的过程中,可以将原来的分式方程中的共同项提出来,以便于更好地求解。

2、多次化简
在处理分式方程的过程中,会有很多步骤,而每一步都有可能出现一
些错误,所以可以多次化简,以确保求解结果的正确性。

3、分析分母和分子
在解决分式方程的过程中。

分式方程的认识与解法

分式方程的认识与解法

分式方程的认识与解法一、分式方程的定义分式方程是指在方程中含有未知数的分式表达式的方程。

其一般形式可以表示为:分子和分母都含有未知数的代数式的方程。

二、分式方程的解法1. 清除分母当分式方程中存在分母时,我们首先要通过求通分的方式将分母消去,以便更方便地求解方程。

举例说明:解方程:$\frac{1}{x}+\frac{2}{x-1}=1$首先,我们可以将方程两边的分式的分母进行通分,得到:$\frac{x-1}{x(x-1)}+\frac{2x}{x(x-1)}=\frac{x(x-1)}{x(x-1)}$化简后得到:$x-1+2x=x(x-1)$接着,按照一般方程的求解方法,将方程化简为一般的多项式方程:$3x-1=x^2-x$整理后得到:$x^2-4x+1=0$然后,我们可以使用因式分解、配方法、求根公式等方法求解多项式方程,得到方程的解:$x_1=2+\sqrt{3}$$x_2=2-\sqrt{3}$2. 分式方程的整理和化简有时,分式方程可能非常复杂,我们需要对方程进行整理和化简,以便更方便地进行后续的求解。

举例说明:解方程:$\frac{x^2+1}{x-2}-1=\frac{3x+4}{x-2}$首先,我们可以对方程进行整理和化简,得到:$\frac{x^2+1-x+2}{x-2}=\frac{3x+4}{x-2}$化简后得到:$\frac{x^2-x+3}{x-2}=\frac{3x+4}{x-2}$接着,我们可以将方程两边的分式进行合并,得到:$x^2-x+3=3x+4$化简后得到:$x^2-4x+1=0$然后,我们可以使用因式分解、配方法、求根公式等方法求解多项式方程,得到方程的解:$x_1=2+\sqrt{3}$$x_2=2-\sqrt{3}$3. 分式方程的检验在求得分式方程的解后,我们还需要将解代入方程进行验证,以确认解的可行性。

举例说明:解方程:$\frac{x-2}{2x+3}=\frac{x+1}{3x-1}$假设解为$x=1$,我们将解代入方程中进行检验:$\frac{1-2}{2(1)+3}=\frac{1+1}{3(1)-1}$计算结果为:$\frac{-1}{5}=\frac{2}{2}$显然,左右两边不相等,所以$x=1$不是方程的解。

分式方程及其应用

分式方程及其应用

分式方程及其应用一、分式方程的基本解法:1.分式方程的概念:分母中含有未知数的方程叫作分式方程.2.可化为一元一次方程的分式方程的解法:(1)解分式方程的基本思想是:把分式方程转化为整式方程.(2)解可化为一元一次方程的分式方程的一般方法和步骤:①去分母,即在方程的两边同时乘以最简公分母,把原方程化为整式方程;②解这个整式方程;③验根:把整式方程的根代入最简公分母中,使最简公分母不等于零的值是原方程的根;使最简公分母等于零的值是原方程的增根.注意:(1)增根能使最简公分母等于0;(2)增根是去分母后所得整式方程的根.3.解分式方程产生增根的原因:增根的产生是在解分式方程的第一步“去分母”时造成的,根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得的方程是原方程的同解方程,如果方程的两边都乘以的数是0 ,那么所得的方程与原方程不是同解方程,这时求得的根就是原方程的增根.【例1】解下列分式方程:(1)131x x+=-(2)31244xx x-+=--(3)21122xx x=---(4)11222xx x-=---(5)212xx x+=+(6)2216124xx x--=+-【例2】(1)若关于x 的方程1233mx x=+--有增根,则m =________.(2)解关于x 的方程2224222x a a x x+-=--会产生增根,则a 的值是________.(3)若关于x 的分式方程11044a xx x---=--无解,则a 的值为________.(4)若关于x 的分式方程2111m x x+=--的解为整数,则m 的取值范围是________.(5)若关于x 的分式方程311x a x x--=-无解,则a =________.二、巧解分式方程: 【例3】(1)111141086x x x x +=+---- (2)2263503x x x x-++=-(3)()()()()()1111111220212022x x x x x x x +++=------…(4)方程222313x x x x-+=-中,如设23y x x =-,原方程可化为整式方程:________.【拓1】观察下列方程及其解的特征:①12x x+=的解为121x x ==; ②152x x +=的解为12x =,212x =;③1103x x +=的解为13x =,213x =;…… 解答下列问题: ①请猜想:方程1265x x +=的解为________; ②请猜想:关于x 的方程1x x +=________的解为1x a =,21x a=(0a ≠); ③上题中的结论可以证明是正确的,请用该结论来解方程:315132x x x x -+=-.【拓2】24111181111x x x x +++=-+++.三、分式方程的应用:【例4】(20宝应模拟)十堰即将跨入高铁时代,钢轨铺设任务也将完成.现还有6000米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务.设原计划每天铺设钢轨x 米,则根据题意所列的方程是( ) A .600060001520x x -=+ B .600060001520x x -=+ C .600060002015x x -=- D .600060002015x x-=-【拓3】某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问原计划每天加工服装多少套?在这个问题中,设原计划每天加工x 套,则根据题意可得方程为( ) A .()16040018120%x x +=+ B .()16040016018120%x x -+=+ C .1604001601820%x x -+= D .()40040016018120%x x-+=+【例5】一辆汽车开往距离出发地180千米的目的地,出发后第一小时内按原计划的速度行驶,一小时后加速为原来的1.5倍,并比原计划提前40分钟到达目的地,求前一小 时的平均速度.【拓4】有一段6000米的道路由甲乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队每天完成工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独 完成此项工程少用10天.(1)求甲、乙两工程队每天各完成多少米?(2)如果甲工程队每天需工程费7000元,乙工程队每天需工程费5000元,若甲队 先单独工作若干天,再由甲乙两工程队合作完成剩余的任务,支付工程队总费用不超 过79000元,则两工程队最多可以合作施工多少天?四、真题演练:1.(21扬州三模)若关于x 的分式方程21mx x=-有正整数解,则整数m 的值是( ) A .3 B .5 C .3或5 D .3或42.(19仪征期中)定义:如果一个关于x 的分式方程a b x=的解等于1a b -,我们就说这个方程叫差解方程.比如:243x =就是个差解方程.如果关于x 的分式方程2mm x =-是一个差解方程,那么m 的值是( ) A .2 B .12 C .12- D .2-3.(20邗江月考)扬州轨道交通线网规划2020年由4条线路组成,其中1号线一期工程全长30千米,预计运行后的平均速度是原来乘公交车的1.5倍,行驶时间则缩短半小时.设原来公交车的平均速度为x 千米/时,则下列方程正确的是( ) A .30301.50.5x x +=B .30301.50.5x x -= C .30300.5 1.5x x +=D .30300.5 1.5x x-=4.(21高邮期末)如果关于x 的不等式组521113()22m x x x -≥⎧⎪⎨-<+⎪⎩有且仅有四个整数解,且关于y的分式方程28122my y y --=--有非负数解,则符合条件的所有整数m 的和是( ) A .13 B .15 C .20 D .225.(21仪征期末)若关于x 的分式方程312mx -=+的解为负数,则m 的取值范围为________.6.(21邗江期末)关于x 的方程1122m x x-=--有增根,则m 的值为________.7.(19宝应月考)若关于x 的分式方程21011m x x -=-+无解,则m =________.8.(18高邮期中)已知关于x 的分式方程111x k kx x +-=+-的解为负数,则k 的取值范围是________.9.(19江都期中)若关于x 的方程4122ax x x =+--无解,则a 的值是________.10.(20广陵期中)要使方程121x x a=--有正数解,则a 的取值范围是________.11.(21仪征期末)若关于x 的分式方程12221(2)(1)x x x ax x x x --+-=-+-+的解为负数,则a 的取值范围是________.12.(19邗江月考)对于非零实数a 、b ,规定21a ab b a⊗=-.若(21)1x x ⊗-=,则x 的值为________.13.(20仪征期中)对于两个不相等的实数a 、b ,我们规定{in }m h a b 、表示a 、b 中较小的数的一半,如min 2{}31h =、,那么方程22{i }m n h x x xx=-+、的解为________.14.(20仪征期中)定义运算“※”: , , aa b a ba b b a b b a⎧>⎪⎪-=⎨⎪<⎪-⎩※,若52x =※,则x 的值为________.15.(20仪征期中)若32248168224816321111111a x x x x x x x =+++++--+++++,则a 的值是________.16.(2021·扬州)为保障新冠病毒疫苗接种需求,某生物科技公司开启“加速”模式,生产效率比原先提高了20%,现在生产240万剂疫苗所用的时间比原先生产220万剂疫苗所用的时间少0.5天.问:原先每天生产多少万剂疫苗?17.(20邗江月考)疫情防控形势下,人们在外出时都应戴上口罩以保护自己免受新型冠状病毒感染.某药店用4000元购进若干包次性医用口罩,很快售完,该店又用7500元钱购进第二批这种口罩,所进的包数比第一批多50%,每包口罩的进价比第一批每包口罩的进价多0.5元,请解答下列问题: (1)求购进的第一批医用口罩有多少包?(2)政府采取措施,在这两批医用口罩的销售中,售价保持了一致,若售完这两批口罩的总利润不高于3500元钱,那么药店销售该口罩每包的最高售价是多少元?18.(21邗江期末)对于两个不等的非零实数a ,b ,若分式()()x a x b x--的值为0,则x a =或x b =.因为2()()()()x a x b x a b x ab abx a b x x x---++==+-+,所以关于x 的方程abx a b x+=+的两个解分别为1x a =,2x b =.利用上面建构的模型,解决下列问题: (1)若方程px q x+=的两个解分别为11x =-,24x =.则p =________,q =________;(2)已知关于x 的方程222221n n x n x +-+=+两个解分别为1x ,2x (12x x <).求12223x x -的值.19.(21高邮期末)八年级学生去距学校12km 的珠湖小镇游玩,一部分学生骑自行车先走,其余学生20min 后乘汽车出发,结果他们同时到达、已知汽车的速度是骑车学生速度的3倍.(1)求骑车学生的速度;(2)游玩中八(4)班班主任为增强班级凝聚力决定让全班学生在户外拓展区参加一次户外拓展活动,班主任根据该项目收费标准支付了1575元,请根据该项目收费信息确定全班人数.户外拓展收费标准:人数 收费 不超过30人 人均收费50元超过30人每增加1人,人均收费降低1元,但人均收费不低于40元20.(2020·扬州)如图,某公司会计欲查询乙商品的进价,发现进货单已被墨水污染. 进货单:商品 进价(元/件)数量(件)总金额(元)甲7200 乙3200李阿姨:我记得甲商品进价比乙商品进价每件高50%. 王师傅:甲商品比乙商品的数量多40件. 请你求出乙商品的进价,并帮助他们补全进货单.。

分式方程知识点总结♂

分式方程知识点总结♂

分式方程知识点总结♂一般来说,分式方程可以写成形如$\frac{M(x)}{N(x)} = P(x)$的形式,其中$M(x)$、$N(x)$和$P(x)$分别是$x$的多项式。

分式方程的解是满足方程的$x$的值,即找出使等式成立的$x$的值。

下面我们就来总结一下关于分式方程的一些知识点。

一、分式的定义和性质1. 分式是指形如$\frac{m}{n}$的数,其中$m$和$n$是整数,$n$不等于0。

分式可以表示数的比值,包括有理数和实数。

2. 分式的性质:分式有一些基本的性质,比如分式的加减乘除法原则,以及分式的化简和通分规则等。

这些性质是处理分式方程时必须掌握的基础知识。

二、分式方程的基本概念1. 分式方程的定义:分式方程是指方程中含有分式的方程,通常以$\frac{M(x)}{N(x)} = P(x)$的形式出现,其中$M(x)$、$N(x)$和$P(x)$分别是$x$的多项式。

2. 分式方程的解:分式方程的解是指满足方程的$x$的值,即找出使等式成立的$x$的值。

对于分式方程,解的求解方法通常需要进行化简、通分、消元等操作。

三、分式方程的解法1. 分式方程的解法一般分为以下几种方法:(1)通分法:将分式方程中的分母进行通分,使得方程中的分母相同,从而化简方程。

(2)消元法:通过消去分式方程中的分母,将分式方程化简为一般的代数方程,然后求解。

(3)换元法:通过引入新的未知数或代换,将分式方程化简为一般的代数方程,然后求解。

2. 在实际问题中,分式方程的解法可能会涉及到不同的数学方法和技巧,需要根据具体的问题进行分析和处理。

四、分式方程的应用1. 分式方程在代数学、数学分析、几何学等领域具有广泛的应用。

它常常用于描述各种物理、经济、工程等实际问题中的关系和规律。

2. 在解决实际问题时,我们可以将实际问题转化为分式方程,利用代数运算和方程的解法来求解问题,从而得到问题的答案。

五、分式方程的教学与学习1. 在教学中,分式方程应该与分数、代数方程等知识紧密结合,引导学生深入理解分式方程的概念和性质,掌握分式方程的基本解法。

分式方程的特殊解法

分式方程的特殊解法

分式方程的特殊解法分式方程的解法除常规的去分母法和换元法之外,还有许多特殊的解法。

一、 分组通分法:例1、 解方程 32411423---=---x x x x 分析:要整个方程一起通分,计算量大又易出错。

观察方程中分母的特点可联想分组通分求解。

略解:方程两边分别通分,相减得)3)(4(5)1)(2(5---=---x x x x x x 当05≠-x 时,)3)(4()1)(2(--=--x x x x ,解得251=x 当05=-x 时,解得52=x 经检验,251=x 52=x 都是原方程的解 二、 分离分式法:例2、解方程43325421+++++=+++++x x x x x x x x 分析:每个分式的分母与分子相差1,利用这特点可采用分离分式法求解略解:原方程可变形为411311511211+-++-=+-++-x x x x 整理得)4)(3(72)5)(2(72+++=+++x x x x x x 当072=+x 时,解得27-=x 当072≠+x 时,方程无解 经检验27-=x 是原方程的解 练习:② 65327621+++++=+++++x x x x x x x x 解:29-=x 三、 巧添常数例3、解方程 33224411+-++-=+-++-x x x x x x x x 解析:同样若整体通分,次数增高,运算复杂,求解困难,而方程中每个分式的分子和分母都是相同两数的差与和,可在每个分式中添加常数“1”,会使问题柳暗花明,迅捷可解,可谓别有洞天.)133()122()144()111(++-+++-=++-+++-x x x x x x x x ,即:32224212+++=+++x x x x x x x x ∴02=x 或 31214111+++=+++x x x x , 解得:25,021-==x x 经检验,25,021-==x x 都是原方程的根. 四、 运用方程c b c x b x +=+的解求解方程cb c x b x +=+的解不难通过去分母法求得为c x =1,c b x =2运用这一结论可以使具备此方程特征的这类方程的解法简捷。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式方程的几种解法
分式方程是初中数学教材重点内容之一,它是一元二次方程的应用和深化,同时又是列分式方程解应用题及解分式方程组的基础,所以分式方程有承上启下的作用,至关重要,它的解法很多,这里略谈一二。

一、 去分母法
方法导析:它是分式方程的基本解法,即:方程两边同乘以各分母的最简公分母,化分式方程为整式方程,解出这个整式方程,最后把所得结果代入最简公分母中检验,便得分式方程的根。

例1:解方程:
4
1
21235222--
-=++-x x x x x 解:方程两边同乘以)2)(2)(1(-++x x x 去分母得:
)1(4)2)(1()2)(52(+-++=--x x x x x
整理得:01282=+-x x 解之得:6,221==x x
检验:把2=x 代入)2)(2)(1(-++x x x ,它等于0,所以2=x 不是原方程的根。

把6=x 代入)2)(2)(1(-++x x x ,它不等于0,所以6=x 是原方程的根。

∴原方程的根为6=x 。

二、 换元法
方法导析:根据方程特点用另一字母代替方程中的未知项式,得到一个关于这一字母的新方程,再进行解方程,其宗旨是换得的方程较原方程简单。

例2:解方程:2
13
33322=-+-x x x x 解,设a x x =-32,则a
x x 13332⨯=-,原方程变形为: 2
133=+
a a 去分母,得:061322=+-a a 解之得:61=a 2
1
2=a
当6=a ,即63
2=-x x ,去分母,整理得0362=--x x 323±=∴x 当21=a ,即2132=-x x ,去分母,整理得0622=--x x 2
3
,221-==∴x x 检验,把323+=x ,323-=x ,2=x , 2
3-=x 分别代入原方程分母中其计算结果都不为0,所以他们都是原方程的根。

∴原方程的根是323±=∴x ,2=x , 2
3-
=x 三、 通分法
方法导析:根据方程特点,原方程式适当变形后,两边进行通分,再结合分式性质解题。

例3:解方程:
4
1
614121+-
+=+-+x x x x 解:方程两边通分得:)
4)(6(6
4)4)(2(24++--+=++--+x x x x x x x x
即:
24
102
8622
2+-=++x x x x ∴24108622+-=++x x x x
解得:1=x
经检验:原方程的根是1=x 。

四、 加减法
方法导析:方程两边同时减去一个恰当的常数,加以整理,使变得的方程较为简单,使方程简化。

例4:解方程:
27
5
48=--+--x x x x 解:方程两边都减去2,得:0)17
5
()148(=---+---x x x x 即:
7
1
42-=
-x x 解之得:10=x 经检验:原方程的根是10=x 五、 拆项法 方法导析:形如分式
)
()
(x g x f ,当分子)(x f 的指数大于(或等于分母)(x g 的指数时),可以施加运算进一步简化分式的值,设
)
()
(x g x f 的商式为)(x a ,余式为)(x b ,则有
)
()
()()()(x g x b x a x g x f +=,利用这种变形,可以使某些分式对方程得到较为简捷的解题方法。

例5:解方程:
3
3
224411+-+
+-=+-++-x x x x x x x x 解“原方程变形为:)36
1()241()481()121(+-++-=+-++-x x x x
去括号,移项,整理得:3
3
441122+-
+=+-+x x x x 两边分别通分,得:
)
3)(4()1)(2(++=++x x x
x x x
)3)(4()1)(20++=++=∴x x x x x 或(
2
5
0-==∴x x 或
经检验:原方程的根是2
5,021-==x x 六、 向c
c x
x 11+=+模式转化法
方法导析:利用(1)c
c x
x 11
+=+之根为c
x c x 1,21==,(2)c
c x
x 11-=-之
根为c x c x 1
,21-==,(3)b a x b ax +=+之根为a
b x x ==21,1三种模式,可使解分式方程简化。

例6:解方程:2
5
311322=-+
-x x x x 解:原方程可变形为:21
2311322+=-+
-x x x x 由模式(1)可得:21
3121
322=-=-x x x x 或 由
2132=-x x 解得: 2
1
,22
1-==x x 由2
1
312=-x x 解得:103,10343-=+=x x 经检验:原方程的根为:2
1
,221-==x x 103,10343-=+=x x 七、 利用比例性质法
方法导析:利用合比性质:d d
c b b a
d c a b ±=
±⇒=
)0(≠±=±⇒=m d
md
c b mb a
d c a b
可使方程解法简化。

例7:解方程:
5
27
42316--=
+-x x x x 解:利用比例的合比性质得:
52)
52()74(23)23()16(----=
++--x x x x x x 即:5
23
235-=
+-x x 解得:1=x
经检验,原方程的根是1=x 八、 取倒数法
方法导析:根据方程特点,取其倒数,再利用负数之和为0的性质解
之。

例8:
解方程:
解,将(1)(2)(3)取倒数得:
(4)+(5)+(6)得:0)121
()121()121(
222=-+-+-z
y x 2
1
=
==∴z y x 经检验,原方程组的解为:21=x 21=y 2
1=z 九、 设比值法 方法导析:利用k n
m
d c a
b
====
得nk m dk c bk a === ,,去解之。

例9:解方程:22
112222-++-=--++x x x x x x x x
解:设k x x x x x x x x =-++-=--++2
2
11222
2 则)1(122--=++x x k x x ……(1) )2(222-+=+-x x k x x ……(2) (1)—(2)得:)12(12+-=-x k x 即:0)1)(12(=+-k x
12
1
-==∴k x 或
当1-=k 时,由(1)得:1122++-=++x x x x
)4(141
12 +=z
x )6(141
1)5(141
122 +=+=y
z x
y
)1(4142
2
z z x += )2(4142
2 z z x += )3(4142
2
z
z x +=
解得:0=x
经检验:原方程的根为0,2
121==x x。

相关文档
最新文档