(0195)《实变函数论》网上作业题及答案
实变函数试题库参考答案
《实变函数》试题库及参考答案(完整版)选择题1,下列对象不能构成集合的是:( )A 、全体自然数B 、0,1 之间的实数全体C 、[0, 1]上的实函数全体D 、全体大个子2、下列对象不能构成集合的是:( )A 、{全体实数}B 、{全体整数}C 、{全体小个子}D 、{x :x>1}3、下列对象不能构成集合的是:( )A 、{全体实数}B 、{全体整数}C 、{x :x>1}D 、{全体胖子}4、下列对象不能构成集合的是:( )A 、{全体实数}B 、{全体整数}C 、{x :x>1}D 、{全体瘦子}5、下列对象不能构成集合的是:( )A 、{全体小孩子}B 、{全体整数}C 、{x :x>1}D 、{全体实数}6、下列对象不能构成集合的是:( )A 、{全体实数}B 、{全体大人}C 、{x :x>1}D 、{全体整数}7、设}1:{ααα≤<-=x x A , I 为全体实数, 则ααA I∈⋃= ( ) A 、(-1, 1) B 、(-1, 0) C 、(-∞, +∞) D 、(1,+∞)8、设}1111:{ix i x A i -≤≤+-=, N i ∈, 则i i A ∞=⋃1= ( ) A 、(-1, 1) B 、(-1, 0) C 、[0, 1]D 、[-1, 1]9、设}110:{ix x A i +≤≤=, N i ∈, 则i i A ∞=⋂1= ( ) A 、(0, 1) B 、[0, 1] C 、[0, 1] D 、(0, +∞)10、设}1211:{ix i x A i +<<-=, N i ∈, 则i i A ∞=⋃1= ( ) A 、[1, 2] B 、(1, 2) C 、 (0, 3) D 、(1, 2)11、设}23:{+≤≤=i x i x A i , N i ∈, 则i i A ∞=⋂1= ( ) A 、(-1, 1) B 、[0, 1] C 、Φ D 、{0}12、设}11:{ix i x A i <<-=, N i ∈, 则i i A ∞=⋂1= ( ) A 、(-1, 1) B 、[0, 1] C 、Φ D 、{0}13、设]1212,0[12--=-n A n , ]211,0[2nA n +=, N n ∈,则=∞→n n A lim ( )A 、[0, 2]B 、[0, 2]C 、[0, 1]D 、[0, 1]14、设]1212,0[12--=-n A n , ]211,0[2nA n +=, N n ∈, 则=∞→n n A lim ( ) A 、[0, 2]B 、[0, 2]C 、[0, 1]D 、[0,1]15、设),0(n A n =, N n ∈, 则=∞→n n A lim ( )A 、ΦB 、[0, n]C 、RD 、(0, ∞)16、设)1,0(nA n =, N n ∈, 则=∞→n n A lim ( ) A 、(0, 1)B 、(0, n1) C 、{0} D 、Φ 17、设)1,0(12nA n =-, ),0(2n A n =, N n ∈, 则=∞→n n A lim ( )A 、ΦB 、(0, n1) C 、(0, n) D 、(0, ∞) 18、设)1,0(12nA n =-, ),0(2n A n =, N n ∈, 则=∞→n n A lim ( ) A 、ΦB 、(0, n1) C 、(0, n) D 、(0, ∞) 19、设A 、B 、C 是三个集合, 则A-(A-B)= ( )A 、B B 、AC 、A ⋂BD 、A ⋃B20、设A 、B 、C 是三个集合, 则A-(B ⋃C)= ( )A 、(A-B)⋂(A-C)B 、(A-B)⋃(A-C)C 、A ⋂BD 、A ⋂C21、设A 、B 、C 是三个集合, 则A-(B ⋂C)= ( )A 、(A-B)⋂(A-C)B 、(A-B)⋃(A-C)C 、A ⋂BD 、A ⋂C22、设A 、B 、S 是三个集合, 且S A ⊂, S B ⊂, 则)(B A C s -= ( )A 、BC A C s s ⋃ B 、B C A C s s ⋂ C 、B A C s ⋃D 、B A C s ⋂23、设A 、B 、S 是三个集合, 且S A ⊂, S B ⊂, 则)(B A C s ⋃= ( )A 、BC A C s s ⋃ B 、B C A C s s ⋂ C 、B A C s ⋃D 、B C A s ⋃24、设A 、B 、C 是三个集合, 则A-(B-C) = ( )A 、 A ⋃C-B B 、 A-B-C C 、 (A-B)⋃(A ⋂C)D 、 C-(B-A)25、集合E 的全体内点所成的集合称为E 的 ( )A 、开核B 、边界C 、导集D 、闭包26、集合E 的全体聚点所成的集合称为E 的 ( )A 、开核B 、边界C 、导集D 、闭包27、集合E 的全体边界点和内点所成的集合是E 的 ( )A 、开核B 、边界C 、导集D 、闭包28、E-E '所成的集合是 ( )A 、开核B 、边界C 、外点D 、{E 的全体孤立点}29、E 的全体边界点所成的集合称为E 的 ( )A 、开核B 、边界C 、导集D 、闭包30、设点P 是集合E 的边界点, 则 ( )A 、P 是E 的聚点B 、P 是E 的孤立点C 、P 是E 的内点D 、P 是CE 的边界点31、设)3,2()1,0(⋃=G , 则下列那一个是G 的构成区间: ( )A 、(0, 1)B 、(21, 1) C 、[0, 1] D 、(0, 2) 32、设)1,0(1=G , )2,21()0,1(2⋃-=G 21G G G ⋃=, 则下列那一个是G 的构成区间: ( )A 、(0, 1)B 、(0, 2)C 、(-1, 21) D 、(-1, 2) 33、设)4,0(1=G , )4,3()1,0(2⋃=G 21G G G ⋃=, 则下列那一个是G 的构成区间: ( )A 、(0, 1)B 、(3, 4)C 、(0, 4)D 、 (1, 4)34、设)1,0(1=G , )4,3()2,1(2⋃=G 21G G G ⋃=, 则下列那一个是G 的构成区间: ( )A 、(0, 1)B 、(0, 3)C 、(0, 4)D 、(1, 4)35、设)2,0(1=G , )4,3()2,1(2⋃=G 21G G G ⋃=, 则下列那一个是G 的构成区间: ( )A 、(0, 1)B 、(0, 2)C 、(1, 2)D 、(1, 4)36、设)2,1()1,0(1⋃=G , )23,21()0,1(2⋃-=G 21G G G ⋃=, 则下列那一个是G 的构成区间: ( )A 、(21, 23) B 、(1, 2) C 、(0, 1) D 、(-1, 0) 37、若B A ⊂ ,则下列命题错误的是: ( )A 、B A ⊂ B 、A '⊂B 'C 、B A ∂⊂∂D 、B A ⊂38、若C B A =⋃, 则下列命题正确的是:( )A 、 CB A =⋃ B 、 A '⋃B '=C ' C 、C B A ∂=∂⋃∂D 、{A 的孤立点}⋃{B 的孤立点}={C 的孤立点}39、若C B A =⋂, 则下列命题错误的是:( )A 、 CB A =⋂ B 、C '⊂ A '⋂B ' C 、C B A =⋂D 、{A 的孤立点}⋂{B 的孤立点}={C 的孤立点}40、设CA 是A 的余集,则下列命题正确的是:( )A 、 )()(CA A C =B 、)(CA A ∂=∂C 、C(A ')=(CA )'D 、CA A C =)(41、设A -B=C, 则下列命题正确的是:( )A 、CB A ∂=∂-∂ B 、C B A =- C 、A '-B '=C 'D 、{A 的孤立点}-{B 的孤立点}={C 的孤立点}42、 (2-4-1-2) 下列命题错误的是:( )A 、A 是闭集B 、A '是闭集C 、A ∂是闭集D 、 A 是闭集43、若A 是闭集,B 是开集,则A -B 是:( )A 、开集B 、闭集C 、既非开集又非闭集D 、无法判断 44、若A 是开集,B 是闭集,则A -B 是:( )A 、开集B 、闭集C 、既非开集又非闭集D 、无法判断 45、若}{n A 是一开集列,则n n A ∞=⋃1是:( )A 、开集B 、闭集C 、既非开集又非闭集D 、无法判断 46、若}{n A 是一开集列,则n n A ∞=⋂1是:( )A 、开集B 、闭集C 、既非开集又非闭集D 、无法判断 47、若}{n A 是一闭集列,则n n A ∞=⋃1是:( )A 、开集B 、闭集C 、既非开集又非闭集D 、无法判断 48、若}{n A 是一闭集列,则n n A ∞=⋂1是:( )A 、开集B 、闭集C 、既非开集又非闭集D 、无法判断 49、若]1,0[ QE =,则=mE ( )A 、0B 、1C 、2D 、350、下述结论( )正确.A 、E m E m **>B 、E m E m *≥*C 、E m E m **<D 、E m E m **≤51、下列说法正确的是( )A 、x x f 1)(=在(0,1)有限B 、xx f 1)(=在)1,21(无界 C 、⎪⎩⎪⎨⎧=∞+∈=0,]1,0(,1)(x x x x f ,在[0,1]有限 D 、⎪⎩⎪⎨⎧=∈=0,1]1,0(,1)(x x x x f ,在[0,1]有界 52、函数列n n x x f =)(在[0,1]上( )于0.A 、a ,e 一致收敛B 、收敛C 、一致收敛D 、基本上一致收敛53、设E 是[0,1]中的不可测集,⎩⎨⎧-∈-∈=Ex E x x f ]1,0[,1,1)( 则下列函数在[0,1]上可测的是( ).A 、)(x fB 、)(x f +C 、|)(|x fD 、)(x f -54、若)(x f 可测,则它必是( ).A 、连续函数B 、单调函数C 、简单函数D 、简单函数列的极限55、若Q E -=]1,0[,则=mE ( )A 、0B 、1C 、2D 、356、下列说法不正确的是( )A 、E 的测度有限,则E 必有界B 、E 的测度无限,则E 必无界C 、有界点集的测度有限D 、n R 的测度无限57、(4-4-2-1)下述论断正确的是( )A 、x x f tg )(=在)4,0(π无界 B 、⎪⎩⎪⎨⎧=∞+∈=2,)2,0[,tg )(ππx x x x f 在]2,0[π有限 C 、⎪⎩⎪⎨⎧=∈=2,1)2,0[,tg )(ππx x x x f 在]2,0[π有界 D 、x x f tg )(=在)2,0(π有限58、函数列n n x x f )21()(=在[0, 2]上( )于0. A 、收敛 B 、一致收敛 C 、基本上一致收敛 D 、a.e.一致收敛59、设⎩⎨⎧-∈-∈=E x x E x x x f ]1,0[,,)(其中E 是[0,1]的不可测集,则下列函数在[0, 1]可测的是( ).A 、|)(|x fB 、)(x fC 、)(x f +D 、)(x f -60、一个函数在其定义域中的( )点处都是连续的.A 、边界点B 、内点C 、聚点D 、孤立点.61、0P 是康托尔(cantor )集,则=0mP ( )A 、0B 、1C 、2D 、362、设A 是B 的真子集,则( )A 、B m A m **< B 、B m A m **≤C 、B m A m **>D 、B m A m **≥63、下列说法正确的是( )A 、x x f ctg )(=在)2,4(ππ无界 B 、⎪⎩⎪⎨⎧=∞+∈=0,]2,0(ctg )(x x x x f π在]2,0[π有限 C 、⎪⎩⎪⎨⎧=∈=0,1]2,0(ctg )(x x xx f π在]2,0[π有界 D 、x x f ctg )(=在)2,0(π有限64、函数列n n n x x f 2)(=在]21,0[上( )于0. A 、收敛 B 、一致收敛、 C 、基本上一致收敛 D 、a. e.一致收敛65、设E 是[0, 1]上的不可测集,⎩⎨⎧-∈-∈=Ex xE x x x f ]1,0[)(22则下列函数在[0, 1]可测的是( ). A 、)(x f B 、)(x f + C 、|)(|x f D 、)(x f -66、设E 为可测集,则下列结论中正确的是( )A 、若)}({x f n 在E 上a , e 收敛于一个a , e 有限的可测函数)(x f ,则)(x f n 一致收敛于)(x fB 、若)}({x f n 在E 上a , e 收敛于一个a , e 有限的可测函数)(x f ,则)(x f n 基本上一致收敛于)(x fC 、若)}({x f n 在E 上a , e 收敛于一个a , e 有限的可测函数)(x f ,则)(x f n ⇒)(x fD 、若)}({x f n 在E 上基本上一致收敛于)(x f ,则)(x f n a , e 收敛于)(x f67、G 表示康托尔(cantor )集在[0,1]中的余集,则mG=( )A 、0B 、1C 、2D 、368、设21,S S 都可测,则21S S ( )A 、可测B 、不可测C 、可能可测也可能不可测D 、以上都不对69、下列说法正确的是( )A 、x x f sec )(=在)4,0(π上无界 B 、x x f sec )(=在)4,0(π上有限C 、⎪⎩⎪⎨⎧=∞+∈=2)2,0[sec )(ππx x x x f 在]2,0[π上有限 D 、⎪⎩⎪⎨⎧=∈=21)2,0[sec )(ππx x x x f 在]2,0[π上有界 70、函数列n n n x x f 3)(=在]31,0[上( )于0 A 、收敛 B 、一致收敛 C 、基本上一致收敛 D 、a. e.一致收敛71、设⎩⎨⎧-∈∈-=Ex x E x x x f ]1,0[,,)(33,其中E 是[0, 1]上的不可测集,则( )在[0, 1]可测.A 、)(x f 、B 、)(x f +C 、)(x f -D 、|)(|x f72、关于连续函数与可测函数,下列论述中正确的是( )A 、它们是同一概念B 、a , e 有限的可测函数是连续函数C 、a , e 有限的可测函数是基本上连续的函数D 、a , e 有限的可测函数是a , e 连续的函数73、()=-)2,1()1,0( m ( )A 、1、B 、2C 、3D 、474、A 可测,B 是A 的真子集,则( )A 、mB mA ≥ B 、B m mA *≥C 、B m mA *=D 、以上都不对75、下列说法正确的是( )A 、21)(x x f =在(0, 1)有限、B 、21)(xx f =在]1,21[无界 C 、⎪⎩⎪⎨⎧=∞+∈=0,]1,0(,1)(2x x x x f 在[0, 1]有限 D 、⎪⎩⎪⎨⎧=∈=1,1]1,0(,1)(2x x x x f 在[0, 1]有界76、函数列x x f n n sin )(=在]2,0[π上( )于0.A 、收敛B 、基本上一致收敛C 、一致收敛D 、a. e.一致收敛77、设⎩⎨⎧-∈∈-=Ex x E x x x f ]1,0[,,)(22其中E 是[0, 1]上的不可测集,则( )在[0, 1]上是可测的.A 、|)(|x fB 、)(x fC 、)(x f +D 、)(x f -78、关于简单函数与可测函数下述结论不正确的是( )A 、简单函数一定是可测函数B 、简单函数列的极限是可测函数C 、简单函数与可测函数是同一概念D 、简单函数列的极限与可测函数是同一概念79、()=-]3,2()1,1[ m ( )A 、1B 、2C 、3D 、480、L 可测集类,对运算( )不封闭.A 、可数和B 、有限交C 、单调集列的极限D 、任意和.81、下列说法正确的是( )A 、31)(x x f =在)1,21(无界B 、31)(xx f =在)1,0(有限C 、⎪⎩⎪⎨⎧=∞+∈=0]1,0(1)(3x x x x f 在[0, 1]有限D 、⎪⎩⎪⎨⎧=∈=01]1,0(1)(3x x x x f 在[0, 1]有界82、函数列x x f n n cos )(=在]2,0[π上( )于0.A 、基本一致收敛B 、收敛C 、一致收敛D 、a. e.一致收敛83、设E 是]2,0[π中的不可测集,⎪⎩⎪⎨⎧-∈-∈=E x x E x x x f ]2,0[,sin ,sin )(π 则下列函数在]2,0[π上可测的是( ).A 、)(x fB 、|)(|x fC 、)(x f +D 、)(x f -84、关于依测度收敛,下列说法中不正确的是( )A 、依测度收敛不一定一致收敛B 、依测度收敛不一定收敛C 、若)}({x f n 在E 上 a.e.收敛于 a.e.有限的可测函数)(x f ,则)()(x f x f n ⇒D 、若)()(x f x f n ⇒,则存在子列)}({x f i n a. e.收敛于)(x f85、设)(x f 是可测集E 上的非负可测函数,则)(x f ( )A 、必可积B 、必几乎处处有限C 、必积分确定D 、不一定积分确定86、设)(x f 在可测集E 上可积,则在E 上( )A 、)(x f +与)(x f -只有一个可积B 、)(x f +与)(x f -皆可积C 、)(x f +与)(x f -不一定可积D 、)(x f +与)(x f -至少有一个不可积87、设0=mE (Φ≠E ),)(x f 是E 上的实函数,则下面叙述正确的是( )A 、)(x f 在E 上不一定可测B 、)(x f 在E 上可测但不一定可积C 、)(x f 在E 上可积且积分值为0D 、)(x f 在E 上不可积88、)(x f 在可测集E 上)(L 可积的必要条件是,)(x f 为( )A 、连续函数B 、几乎处处连续函数C 、单调函数D 、几乎处处有限的可测函数89、设)(x D 为狄立克雷函数,则⎰=10)()(dx x D L ( ) A 、 0 B 、 1 C 、1/2 D 、不存在90、设)(x f 为Cantor 集的特征函数,则⎰=10)()(dx x f L ( ) A 、 0 B 、 1/3 C 、2/3 D 、 1填空题1、设A 为一集合,B 是A 的所有子集构成的集合;若A =n, 则B =2、设A 为一集合,B 是A 的所有子集构成的集合;若A 是一可数集, 则B =3、若c A =, c B =, 则=⋃B A4、若c A =, B 是一可数集, 则=⋃B A5、若c A =, n B =, 则=⋃B A6、若}{n A 是一集合列, 且c A n =, =⋃∞=n n A 1 7、若I A ∈αα}{是任意集族, 其中I 是指标集, 则ααA I∈⋂=8、若I A ∈αα}{是任意集族, 其中I 是指标集, 则ααA I∈⋃= 9、若I A ∈αα}{是任意集族, 其中I 是指标集, S 是一集合, 则)(ααA C IS ∈⋂= 10、若I A ∈αα}{是任意集族, 其中I 是指标集, S 是一集合, 则)(ααA C IS ∈⋃= 11、若}{n A 是任意一个集合列, 则=∞→n n A lim 12、若}{n A 是任意一个集合列, 则=∞→n n A lim13、欧氏空间n R 中, 任意两点),,(21n x x x x =, ),,(21n y y y y =的距离d(x, y)=14、C[a, b]空间中,任意两元素x(t), y(t) 的距离 d(x, y)= 15、2l 空间中, 任意两元素 ),,,(21 n x x x x =, ),,(21 n y y y y =的距离 d(x, y)=16、欧氏空间2R 中, 任意两点),(21x x x =, ),(21y y y =的距离 d(x, y)=17、欧氏空间3R 中, 任意两点),,(321x x x x =, ),,(321y y y y =的距离d(x, y)=18、欧氏空间4R 中, 任意两点),,,(4321x x x x x =, ),,,(4321y y y y y =的距离d(x,y)=19、设2R X =,}1:),{(22<+=y x y x E ,则E =20、设3R X =, }1:),,{(222<++=z y x z y x E , 则E =21、设2R X =,}1:),{(22<+=y x y x E ,则E ∂=22、设2R X =,}1:),{(22<+=y x y x E ,则E '=23、设3R X =, }1:),,{(222<++=z y x z y x E , 则 E ∂=24、设3R X =, }1:),,{(222<++=z y x z y x E , 则E '=25、设A= [0, 1] , B = [3, 4] , 则 d(A, B) =26、设C 是康托完备集, G= [0, 1]-C , 则d (C, G) =27、设C 是康托完备集, 则C 的半径)(C δ=28、两个非空集合A, B 距离的定义为 d (A, B ) =29、一个非空集合A 的直径的定义为)(A δ=30、设A = [0, 1] ⋂Q, 则)(A δ=31、n R E ⊂,对每一列覆盖E 的开区间 ∞=⊃1i i E I ,定义=E m *________。
《实变函数》试卷及参考答案
《实变函数》试卷及参考答案《实变函数》试卷一一、单项选择题(3分×5=15分)1、1、下列各式正确的是( ),,,,limAA,,,limAA,,,(A); (B); nknk,,,,nnkn11nknn,,,,,,,,limAA,,,limAA,,,(C); (D); nknk,,,,nnkn1,,nkn1,,n2、设P为Cantor集,则下列各式不成立的是( ),'P,mP,0(A) c (B) (C) (D) P,PP,P3、下列说法不正确的是( ) (A) 凡外侧度为零的集合都可测(B)可测集的任何子集都可测(C) 开集和闭集都是波雷耳集 (D)波雷耳集都可测fx()E是上的有限的可测函数列,则下面不成立的是( ) 4、设ae..,,n sup()fxfxfx()(),fxfx()(),(A)若, 则 (B) 是可测函数 ,,nnnnfxfx()(), (C)是可测函数;(D)若,则可测 inf()fxfx(),,nnn5、设f(x)是上有界变差函数,则下面不成立的是( ) [a,b](A) 在上有界 (B) 在上几乎处处存在导数 f(x)[a,b]f(x)[a,b]b'f'(x)dx,f(b),f(a)f(x)(C)在上L可积 (D) [a,b],a二. 填空题(3分×5=15分)()(())CACBAAB,,,,,1、_________ sso'E0,12、设是上有理点全体,则=______,=______,=______. EEE,, nET3、设是中点集,如果对任一点集都有R1 (第页,共47页)EL_________________________________,则称是可测的、可测的________条件是它可以表成一列简单函数的极限函数. 4f(x)(填“充分”,“必要”,“充要”)ab,ab,5、设为上的有限函数,如果对于的一切分划,使fx(),,,,ab,______________________,则称为上的有界变差函数。
华中师大《实变函数》练习题库及答案
1《实变函数》练习题库及答案一、单项选择题1.下列集合关系成立的是( )A ()\B A A =∅ B ()\A B A =∅C ()\A B B A =D ()\B A A B =2.若nR E ⊂是开集,则( )A E E '⊂B 0E E =C E E =DE E '=4.设(){}n f x 是E 上一列非负可测函数,则( )A ()()lim lim n n E E n n f x dx f x dx →∞→∞≤⎰⎰B ()()lim lim n n E En n f x dx f x dx →∞→∞≤⎰⎰C ()()lim lim n n E En n f x dx f x dx →∞→∞≤⎰⎰D ()()lim lim n n EE n n f x dx f x →∞→∞≤⎰⎰5.下列集合关系成立的是( )A c c A A αααα∈Λ∈Λ⎛⎫= ⎪⎝⎭ B ccA A αααα∈Λ∈Λ⎛⎫= ⎪⎝⎭ C ccA A αααα∈Λ∈Λ⎛⎫= ⎪⎝⎭ D ccA A αααα∈Λ∈Λ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭6.若n R E ⊂是闭集,则( )A E E '=B E E '⊂C E E '⊂D 0E E =7.设E 为无理数集,则( )A E 为闭集B E 是不可测集C mE =+∞D 0mE = 9.下列集合关系成立的是( )2A c c A A αααα∈Λ∈Λ⎛⎫= ⎪⎝⎭ B ccA A αααα∈Λ∈Λ⎛⎫= ⎪⎝⎭ C ccA A αααα∈Λ∈Λ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭ D cc c A A αααα∈Λ∈Λ⎛⎫= ⎪⎝⎭10.设n R E ⊂,则( )A E E ⊃B E E '⊂C E E '⊂DE E =11.设P 为康托集,则( )A P 是可数集B 0mP =C P 是不可数集D P 是开集 13.下列集合关系成立的是( )A 若AB ⊂则c c B A ⊂ B 若A B ⊂则c c A B ⊂C 若A B ⊂则A B B =D 若A B ⊂则A B B =14.设nR E ⊂,则( )A ()E E = B 0E E ⊃ C E E '⊂ D E E '⊂15.设(){},001E x x =≤≤,则( )A 1mE =B 0mE =C E 是2R 中闭集DE 是2R 中完备集16.设()f x ,()g x 是E 上的可测函数,则( )A ()()E x f x g x ⎡⎤≥⎣⎦不一定是可测集B ()()E x f x g x ⎡⎤≠⎣⎦是可测集C ()()E x f x g x ⎡⎤≤⎣⎦是不可测集D ()()E x f x g x ⎡⎤=⎣⎦不一定是可测集17.下列集合关系成立的是( )(A )(\)A B B A B = (B )(\)A B B A = (C )(\)B A A A ⊆ (D )\B A A ⊆318. 若()nE R⊆是开集,则 ( )(A )E 的导集E ⊆ (B )E 的开核E = (C )E E = (D )E 的导集E = 19. 设P 的康托集,则(A )P 为可数集 (B )P 为开集 (C )0mP = (D )1mP =20、设E 是1R 中的可测集,()x ϕ是E 上的简单函数,则 ( ) (A )()x ϕ是E 上的连续函数 (B )()x ϕ是E 上的单调函数 (C )()x ϕ在E 上一定不L 可积 (D )()x ϕ是E 上的可测函数 21.下列集合关系成立的是( )(A )()()()A B C A B A C = (B )(\)A B A =∅ (C )(\)B A A =∅ (D )A B A B ⊆ 22. 若()nE R⊆是闭集,则 ( )(A )0E E = (B )E E = (C )E E '⊆ (D )E E '= 23. 设Q 的有理数集,则( )(A )0mQ > (B )Q 为闭集 (C )0mQ = (D )Q 为不可测集24.设E 是n R 中的可测集,()f x 为E 上的可测函数,若()0Ef x dx =⎰,则 ( )(A )在E 上,()f x 不一定恒为零 (B )在E 上,()0f x ≥ (C )在E 上,()0f x ≡ (D )在E 上,()0f x ≠ 25.二、填空题41.设,A B 为集合,则()\A B B _A B (用描述集合间关系的符号填写) 2.设A 是B 的子集,则A _B (用描述集合间关系的符号填写) 3.如果E 中聚点都属于E ,则称E 是_集 4.有限个开集的交是_集5.设1E 、2E 是可测集,则()12m E E _12mE mE +(用描述集合间关系的符号填写) 6.设n E ⊂ 是可数集,则*m E _07.设()f x 是定义在可测集E 上的实函数,如果1a ∀∈ ,()E x f x a ⎡⎤≥⎣⎦是_,则称()f x 在E 上可测8.可测函数列的上极限也是_函数9.设()()n f x f x ⇒,()()n g x g x ⇒,则()()n n f x g x +⇒_ 10.设()f x 在E 上L 可积,则()f x 在E 上_11.设,A B 为集合,则()\B A A _A (用描述集合间关系的符号填写) 12.设{}211,2,A k k =-= ,则A _a (其中a 表示自然数集N 的基数) 13.设nE ⊂ ,如果E 中没有不属于E ,则称E 是_集 14.任意个开集的并是_集15.设1E 、2E 是可测集,且12E E ⊂,则1mE _2mE 16.设E 中只有孤立点,则*m E _017.设()f x 是定义在可测集E 上的实函数,如果1a ∀∈ ,()E x f x a ⎡⎤<⎣⎦是_,则称()f x 在E 上可测18.可测函数列的下极限也是_函数19.设()()n f x f x ⇒,()()n g x g x ⇒,则()()n n f x g x ⇒_ 20.设()n x ϕ是E 上的单调增收敛于()f x 的非负简单函数列,则()Ef x dx =⎰_21.设,A B 为集合,则()\A B B _B522.设A 为有理数集,则A _a (其中a 表示自然数集N 的基数) 23.设n E ⊂ ,如果E 中的每个点都是内点,则称E 是_集 24.有限个闭集的交是_集 25.设n E ⊂ ,则*m E _026.设E 是n 中的区间,则*m E _E 的体积27.设()f x 是定义在可测集E 上的实函数,如果1a ∀∈ ,()E x f x a ⎡⎤≤⎣⎦是_,则称()f x 在E 上可测28.可测函数列的极限也是_函数29.设()()n f x f x ⇒,()()n g x g x ⇒..a e ,则()n f x _()g x30.设()n f x 是E 上的非负可测函数列,且单调增收敛于()f x ,由勒维定理,有()Ef x dx =⎰_31.设,A B 为集合,则()\B A B A _A B32.设A 为无理数集,则A _c (其中c 表示自然数集[]0,1的基数) 33.设nE ⊂ ,如果E 中没有不是内点的点,则称E 是_集 34.任意个闭集的交是_集35.设n E ⊂ ,称E 是可测集,如果nT ∀⊂ ,()**m T m T E =+ _36.设E 是外测度为零的集合,且F E ⊂,则*m F _037.设()f x 是定义在可测集E 上的实函数,如果1a ∀∈ ,()E x a f xb ⎡⎤≤<⎣⎦是_,(a b ≤)则称()f x 在E 上可测 38.可测函数列的上确界也是_函数39.设()()n f x f x ⇒,()()n g x g x ⇒..a e ,则()()n n f x g x ⇒_40.设()()n f x f x ⇒,那么由_定理,(){}n f x 有子列()k n f x ,使()()k n f x f x →..a e 于6E41.设,A B 为两个集合,则__cA B A B - .42.设n E R ⊂,如果E 满足E E '⊆(其中E '表示E 的导集),则E 是____集.43.若开区间(,)αβ为直线上开集G 的一个构成区间,则(,)αβ满(i)_______________(ii)__________.44.设A 为无限集.则A 的基数__A a (其中a 表示自然数集N 的基数). 45.设12,E E 为可测集, 2mE <+∞,则1212(\)__m E E mE mE -. 46.设()f x 是定义在可测集E 上的实函数,若对任意实数a ,都有[()]E x f x a >是______,则()f x 是E 上的可测函数.47.设0x 是E (R ⊆)的内点,则*__0m E .48.设{}()n f x 为可测集E 上的可测函数列,且()(),n f x f x x E ⇒∈,则由______定理可知得,存在{}()n f x 的子列{}()k n f x ,使得.()()()k a en f x f x x E →∈.49.设()f x 为可测集E (n R ⊆)上的可测函数,则()f x 在E 上的L 积分值不一定存在且|()|f x 在E 上____________L 可积.50.若()f x 是[,]a b 上的绝对连续函数,则()f x ____[,]a b 上的有界变差函数. 51.设,A B 为集合,则___(\)A B B A A52.设nE R ⊂,如果E 满足0E E =(其中0E 表示E 的内部),则E 是_____集 53.设G 为直线上的开集,若开区间(,)a b 满足(,)a b G ⊆且,a G b G ∉∉,则(,)a b 必为G 的________区间54.设{|2,}A x x n n ==为自然数,则A 的基数____ a (其中a 表示自然数集N 的基数) 55.设,A B 为可测集,B A ⊆且mB <+∞,则__(\)mA mB m A B -756.设()f x 是可测集E 上的可测函数,则对任意实数,()a b a b <,都有[()]E x a f x b <<是______57.若()E R ⊆是可数集,则__0mE58.设{}()n f x 为可测集E 上的可测函数列,()f x 为E 上的可测函数,如果.()()()a en f x f x x E →∈,则()()n f x f x ⇒ x E ∈_________59. 设()f x 为可测集()nE R ⊆上的非负可测函数,则()f x 在E 上的L 积分值_________ 60.若()f x 是[,]a b 上的有界变差函数,则()f x 必可表示成两个_______________________61.设B 是1R 中无理数集,则=B 。
实变函数试题库参考答案 (2)
《实变函数》试题题库参考答案一、选择题1、D2、C3、D4、D5、A6、B7、C8、A9、B 10、C 11、C 12、D 13、C 14、B 15、C 16、D 17、A 18、D 19、C 20、A 21、B 22、C 23、B 24、C 25、A 26、C 27、D 28、D 29、B 30、D 31、A 32、B 33、C 34、A 35、B 36、D 37、C 38、B 39、C 40、B 41、B 42、D 43、B 44、A 45、A 46、D 47、D 48、B 49、A 50、B 51、A 52、D 53、C 54、D 55、B 56、A 57、D 58、C 59、A 60、D 61、A 62、B 63、D 64、C 65、C 66、D 67、B 68、A 69、B 70、C 71、D 72、C 73、C 74、B 75、A 76、B 77、A 78、C 79、C 80、D 81、B 82、A 83、B 84、C 85、C 86、B 87、C 88、D 89、A 90、A二、填空题1、n 2 ;2、c ;3、c ;4、c ;5、c ;6、c ;7、{x:对于任意的I ∈α,有αA x ∈};8、{x:存在I ∈α,使得αA x ∈};9、ααA C s I∈⋃;10、ααA C s I ∈⋂;11、n kn k A ∞=∞=⋃⋂1;12、n kn k A ∞=∞=⋂⋃1;13、211)(∑=nk k x ;14、|})()({|sup ],[t y t x b a x -∈;15、2112})({∑∞=-k k k y x ;16、21222211})(){(y x y x -+-;17、21233222211})()(){(y x y x y x -+-+-;18、21244233222211})()()(){(y x y x y x y x ++-+-+-;19、}1:),{(22≤+=y x y x E ;20、}1:),,{(222≤++z y x z y x ;21、}1:),{(22=+y x y x ; 22、}1:),{(22≤+y x y x ;23、}1:),,{(222=++z y x z y x ; 24、}1:),,{(222=++z y x z y x ; 25、2;26、0;27、1;28、)},({inf ,y x d By A x ∈∈;29、)},({sup ,y x d Ay A x ∈∈;30、1;31、∑∞=1||infi i I ;32、n n mS ∞→lim ;33、)(a f E >可测;34、0>∀σ有 ∞=<1i i I E ;35、C B D A ⊂⊂⊂;36、||x ;37、可测函数;38、点态收敛与一致收敛;39、)(*||E I m I --;40、次可数可加性;41、可测函数;42、可测函数;43、单调性;44、 ∞=1i i G (i G 开);45、推广;46、测度;47、)(*)(**CE T m E T m T m +=;48、 ∞=1n n F ,(n F 闭集);49、常数;50、可测函数,连续函数;51、n n mS ∞→lim ;52、零测集; 53、可测函数;54、依测度; 55、0; 56、0; 57、0; 58、0; 59、0;60、0三、判断题 1、( √ )理由: 集合具有无序性 2、( × )理由: 举一反例, 比如: 取A={1}, B={2} 3、( √ )理由: 空集Φ是任意集合的子集. 4、( × )理由:符号⊂表示集合间的关系,不能表示元素和集合的关系. 5、( × )理由:Φ表示没有任何元素的集合,而{Φ}表示单元素集合,这个元素是Φ6、( × )理由: Φ表示没有任何元素的集合,而{0}表示单元素集合,这个元素是07、( √ )理由: 根据内点的定义, 内点一定是聚点8、( × )理由: 举一反例,比如: E=(0,1),元素1不是E的外点,但却属于E的余集分9、( √ )理由: 有内点的定义可得.10、( √ )理由: 有内点的定义可得.11、( × )理由: 举例说明,比如: E=(0,1),元素1是E的边界点,但属于E.12、( × )理由: 举一反例,比如: E=(0,1),元素1是E的内点,但不属于E13、(×)理由: 因有若]1,0[]1,0)([-可测⊂E,E不可测,而EE14、(√)理由: 因)eaggf=>=≠E>f()(E()()gg(agaff>E==≠E>((())()f))g)(g((a两可测集的并可测。
《实变函数》试卷一与参考答案(可打印修改)
考生答题不得超此线21(A )若, 则 (B) 是可测函数()()n f x f x ⇒()()n f x f x →{}sup ()n nf x (C )是可测函数;(D )若,则可测{}inf ()n nf x ()()n f x f x ⇒()f x 5、设f(x)是上有界变差函数,则下面不成立的是( )],[b a (A) 在上有界 (B) 在上几乎处处存在导数)(x f ],[b a )(x f ],[b a (C )在上L 可积 (D))('x f ],[b a ⎰-=b a a f b f dx x f )()()('二. 填空题(3分×5=15分)1、_________()(())s s C A C B A A B ⋃⋂--=2、设是上有理点全体,则=______,=______,=______.E []0,1'E oE E 3、设是中点集,如果对任一点集都有E n R T _________________________________,则称是可测的E L 4、可测的________条件是它可以表成一列简单函数的极限函数. )(x f (填“充分”,“必要”,“充要”)5、设为上的有限函数,如果对于的一切分划,使()f x [],a b [],a b _____________________________________________________,则称为 ()f x 上的有界变差函数。
[],a b 三、下列命题是否成立?若成立,则证明之;若不成立,则举反例说明.(5分×4=20分)1、设,若E 是稠密集,则是无处稠密集。
1E R ⊂CE 2、若,则一定是可数集.0=mE E 得 分得 分3、若是可测函数,则必是可测函数。
|()|f x ()f x4.设在可测集上可积分,若,则()f x E ,()0x E f x ∀∈>()0Ef x >⎰四、解答题(8分×2=16分).1、(8分)设 ,则在上是否可积,是否2,()1,x x f x x ⎧=⎨⎩为无理数为有理数()f x []0,1R -可积,若可积,求出积分值。
《实变函数论》纯答案
1. 证明:()B A A B -=U 的充要条件是A B ⊂.证明:若()B A A B -=U ,则()A B A A B ⊂-⊂U ,故A B ⊂成立.反之,若A B ⊂,则()()B A A B A B B -⊂-⊂U U ,又x B ∀∈,若x A ∈,则()x B A A ∈-U ,若x A ∉,则()x B A B A A ∈-⊂-U .总有()x B A A ∈-U .故 ()B B A A ⊂-U ,从而有()B A A B -=U 。
证毕2. 证明cA B A B -=I .证明:x A B ∀∈-,从而,x A x B ∈∉,故,c x A x B ∈∈,从而x A B ∀∈-, 所以c A B A B -⊂I .另一方面,cx A B ∀∈I ,必有,cx A x B ∈∈,故,x A x B ∈∉,从而x A B ∈-, 所以 cA B A B ⊂-I .综合上两个包含式得c A B A B -=I . 证毕3. 证明定理4中的(3)(4),定理6(De Morgan 公式)中的第二式和定理9. 证明:定理4中的(3):若A B λλ⊂(λ∈∧),则A B λλλλ∈∧∈∧⊂I I .证:若x A λλ∈∧∈I ,则对任意的λ∈∧,有x A λ∈,所以A B λλ⊂(∀λ∈∧)成立知x A B λλ∈⊂,故x B λλ∈∧∈I ,这说明A B λλλλ∈∧∈∧⊂I I .定理4中的(4):()()()A B A B λλλλλλλ∈∧∈∧∈∧=U U U U U .证:若()x A B λλλ∈∧∈U U ,则有'λ∈∧,使 ''()()()x A B A B λλλλλλ∈∧∈∧∈⊂U U U U .反过来,若()()x A B λλλλ∈∧∈∧∈U U U 则x A λλ∈∧∈U 或者x B λλ∈∧∈U .不妨设x A λλ∈∧∈U ,则有'λ∈∧使'''()x A A B A B λλλλλλ∈∧∈⊂⊂U U U .故()()()A B A B λλλλλλλ∈∧∈∧∈∧⊂U U U U U .综上所述有()()()A B A B λλλλλλλ∈∧∈∧∈∧=U U U U U .定理6中第二式()c c A A λλλλ∈∧∈∧=I U .证:()cx A λλ∈∧∀∈I ,则x A λλ∈∧∉I ,故存在'λ∈∧ ,'x A λ∉所以'c cx A A λλλ∈∧∉⊂U从而有()c c A A λλλλ∈∧∈∧⊂I U .反过来,若c x A λλ∈∧∈U ,则'λ∃∈∧使'cx A λ∉,故'x A λ∉,x A λλ∈∧∴∉I ,从而()c x A λλ∈∧∈I()c c A A λλλλ∈∧∈∧∴⊃I U . 证毕定理9:若集合序列12,,,,n A A A K K 单调上升,即1n n A A +⊂(相应地1n n A A +⊃)对一切n 都成立,则 1lim n n n A ∞→∞==U (相应地)1lim n n n A ∞→∞==I .证明:若1n n A A +⊂对n N ∀∈成立,则i m i mA A ∞==I .故从定理8知11lim inf n i m n m i mm A A A ∞∞∞→∞=====U I U另一方面,m n ∀,令m i i mS A ∞==U ,从1m m A A +⊂对m N ∀∈成立知11111()()m i m i m i i m i mi m i m i m S A A A A A A S ∞∞∞∞++==+=+=+==⊂==U U U U U U .故定理8表明1111lim sup lim inf n i m m n n n m i mm m A A S S A A ∞∞∞∞→∞→∞=========I U I U故1lim lim sup lim inf n n n m n n n m A A A A ∞→∞→∞→∞====U .4. 证明()()A B B A B B -=-U U 的充要条件是B =∅.证:充分性 若B =∅,则()()A B B A A A A A -=-∅∅=-∅==∅=∅-∅U U U U 必要性 若()()A B B A B B -=-U U ,而B ≠∅则存在x B ∈.所以()()x A B B A B B ∈-=-U U 即所以,x A B x B ∈∉U 这与x B ∈矛盾, 所以x B ∈.4. 设{}{}{}{}1,2,3,4,1,2,3,4S A ==,求()F A .又如果1;1,2,3,,S n n ⎧⎫==⎨⎬⎩⎭L01;A n ⎧⎫=⎨⎬⎩⎭为奇数,{}1111,,,,321A i ⎧⎫⎧⎫⎧⎫=⎨⎨⎨⎬⎬-⎩⎭⎩⎭⎩⎭L L ,问()()01,F A F A 是什么.解:若{}{}{}{}1,2,3,4,1,2,3,4S A ==,则(){}{}{}{},1,2,3,4,1,2,3,4F A =∅.若011111;1,2,3,,;1,,,,3521S n A n n i ⎧⎫⎧⎫⎧⎫====⎨⎬⎨⎬⎨⎬-⎩⎭⎩⎭⎩⎭L LL 为奇数, 则从1111111,,,,,,,3521242ci i ⎧⎫⎧⎫=⎨⎬⎨⎬-⎩⎭⎩⎭L L L L ,易知()111111,,1,,,,,,,,3521242F A S i i ⎧⎫⎧⎫⎧⎫=∅⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭LL L L . {}1111,,,,321A i ⎧⎫⎧⎫⎧⎫=⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭LL . 令11;1,2,,;1,2,212B i C i i i ⎧⎫⎧⎫====⎨⎬⎨⎬-⎩⎭⎩⎭L L .{}{}{}°1,F A S A K A B K C K A=∅==∅U U @为的子集,或. 证明: 因为{}111,,,,,321A B i ⎧⎫⎧⎫∈⎨⎬⎨⎬-⎩⎭⎩⎭L L 的任何子集()1F A . 所以有()1B F A ∈,而c B C =,故()1C F A ∈,又()1F A ∅∈. 任取B 的一子集A ,()1A A F A ∅=∈U ,且()1A C F A ∈U .显°S A ∈,故只用证°A 的确是一个 -域.(1) °,ccS S A∅==∅∈,且B ∀的子集A ,若K =∅,则 °,c K A A A C ∅==U U(B A -是B 的子集,故()°°()ccA A C F A ∅=∈U U )又B ∀的子集A ,()ccccA C A C AB ==U I I .显然是B 的子集,所以()()°ccA C AB A =∅∈U I U .又若n A 为B 的子集()1,2,3,,n n K C ==L 或∅.则()°°111n n n n n n n A K A K A K∞∞∞===⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭U U U U U U . 这里°1n n A A B ∞==⊂U 是B 的子集.°1nn K K C ∞===U 或∅. 所以()°1n n n A K A ∞=∈U U .若n A 中除B 的子集外,还有S ,则()°1n n n A K S A ∞==∈U U .若n A 中有∅,不影响1n n A B ∞=⊂U .故°A 是σ-域,且()°1F A A =. 证毕.6.对于S 的子集A ,定义A 的示性函数为()10A x Ax x A ϕ∈⎧=⎨∉⎩证明:(1)()()liminf liminf n n A A x x ϕϕ= (2)()()limsup lim sup n n A A x x ϕϕ= 证明:x S ∀∈,若()liminf n A x x ϕ∈则()liminf 1n A x ϕ=。
(完整版)实变函数论课后答案第一章3
实变函数论课后答案第一章3(p20-21)第一章第三节1. 证明[]0,1上的全体无理数构成一不可数无穷集合.证明:记[]0,1上的全体有理数的集合为°()12,,,,nQ r r r =L L . []0,1全体无理数的集合为°R,则[]°°0,1Q R =U . 由于°Q 是一可数集合,°R 显然是无穷集合(否则[]0,1为可数集,°°Q R U 是可数集,得矛盾).故从P21定理7得 []°°°0,1QR R =U :. 所以°R=ℵ,°R 为不可数无穷集合. 2. 证明全体代数数(即整系数多项式的零点)构成一可数集合,进而证明必存在超越数(即非代数数). 证明:记全体整系数多项式的全体的集合为z P ,全体有理多项式的集合为Q P .则上节习题3,已知Q P 是可数集,而z Q P P ⊂,故z P 至多是可数集,()z Q P P ≤,而z P 显然为无穷集合,故z P 必为可数集.,0z z m m P P ∞==U .任取一,0,z f P m ∈∃≥有,z m f P ∈.f 的不同零点至多有m 个,故全体,z m f P ∈的零点的并至多为无数.((){},;0z mf P z f z ∈=U至多为可数集,所以全体代数数之集(){},0;0z mm f P z f z ∞=∈=UU也是至多可数集.又{},1;1,2,n N nx n ∀∈+=L 是可数集,110nx x n+=⇔=. 带市数显然有无穷个,故全体代数数之集为一可数集.3. 证明如果a 是可数基数,则2ac =.证明:一方面对于正整数N 的任意子集A ,考虑A 的示性函数()()()10A A An n An n n A ϕϕϕ=∈⎧⎪=⎨=∉⎪⎩当当{}2N A N ∀∈@的子集所构成的集令()()()0.1,2A A J A x ϕϕ==L则()()0,1J A x =∈若()()J A J B =,则()(),1,2,A B n n n ϕϕ=∀=L故A B =(否则()()0000,10A B n A n B n n ϕϕ∃∈∉⇒=≠=)故2N与()0,1的一个子集对等(()20,1N≤)另一方面,()0,1x ∀∈.令±{};,x A r r x r R =≤∈ (这里±0R 为()0,1中的全体有理数组成的集合) 若(),,0,1x y x y ≠∈,则由有理数的稠密性,x y A A ≠x A 是±0R 这一与N 对等的集合的子集. 故()0,1与±0R 的全体子集组成的集合的一个子集对等(()±00,1R ≤的全体子集组成集的势,即()()0,120,1N≤≤)也就与2N的一个子集对等. 由Berrstein 定理()0,12N:所以2ac =.4. 证明如果A B c =U ,则,A B 中至少一个为c . 证明:E A B c ==U ,故不妨认为(){},;01,01E x y x y =<<<<,,A B 为E 的子集.若存在x ,01x <<使得(){},;01x A E x y y ⊃=<<.则由于x E c =(显然()0,1x E :) 故A c ≥,而,A E A E c ⊂≤=. 由Berrsrein 定理A c =.若,01,x x x E A ∀<<⊄,则从x E E A B ⊂=U 知(){},;01x B E B x y y =<<≠∅I I所以(),x x y B ∃∈,则显然(){},;01xx y x <<具有势c故易知c B E c ≤≤= 由Berrsrein 定理B c = 证毕5. 设F 是[]0,1上全体实函数所构成的集合,证明2cF =证明:[]0,1∀的子集A ,作A 的示性函数()10A x Ax x A ϕ∈⎧=⎨∉⎩则映射()A A x ϕa规定了[]0,1的所有子集的集合到[]0,1上全体实函数所构成的集合的一个对应,且若A ,B ⊂[]0,1使得()()[],0,1A B x x x ϕϕ=∀∈成立 则必有A B = 所以[]0,12与F 的一个子集对等.反过来,任取()f x F ∈,()()[]{},;0,1f A t f t t =∈,fA 是f 在2R中的图象,是2R 中的一个子集.且若,f g F ∈,使f g A A =则[]0,1t ∀∈,()(),f g t f t A A ∈= 表明[]10,1t ∃∈使()()()()11,,t f t t g t =()()1,,t t f t g t t ⇒==∀故f g =.所以F 与2R 的全体子集所组成的集合的一个子集对等,故从[]20,1R :知[]20,122R F ≤=即F 与[]0,12的一个子集对等.所以由Berstein 定理[]0,122c F ==.。
(0195)《实变函数》复习大纲、样题及
(0195)《实变函数》复习大纲第一章集合论一、基本内容:集合、集合的运算、对等、基数、可数集、不可数集二、基本结论1、集合的运算规律2、可数集的性质(1)任何无限集必含有可数子集(2)可数集的子集至多是可数的。
即或为有限集或为可数集。
(3)可数个可数集的并集是可数集。
(4)若A中每个元素由n个互相独立的记号所决定,各记号跑遍一个可数集A={}nxxxa,,,21Λ,()()()nkxxxkkk.,2,1;,,21ΛΛ==则A为可数集。
3、常见的可数集:有理数及其无限子集。
三、基本要求:1、理解集的概念,分清集的元与集的归属关系,集与集之间的包含关系的区别。
2、掌握集之间的并、交、差、余运算。
3、掌握集列的上、下限集的概念及其交并表示。
4、理解集列的收敛、单调集列的概念。
5、掌握――映射,两集合对等及集合基数等概念。
6、理解伯恩斯坦定理(不要求掌握证明),能利用定义及伯恩斯坦定理证明两集合对等。
7、理解可数集,不可数集的意义,掌握可数集、基数为C的集合的性质,理解不存在最大基数的定理的意义。
四、重点:正确应用集合的运算规律,证明有关集合的等式,用可数集合的性质证明某个集合是可数集合。
五、学习主要事项:集合的基数概念十分抽象,它是集合元素“个数”的推广,我们是用“对等”的方法加以定义的。
即对待的集合必有相同的基数,例如,所有可数集合有相同的基数,但是有理数集与无理数集的基数却不同,有理数集是可数集合,而无理数集是不可数集合。
我们还应该注意到,无穷集合是可以与其真子集对等的,这是无穷集合的本质特征。
第二章点集一、基本内容:度量空间、聚点、内点、界点、邻域、开集、闭集、闭包、完备集、有界集以及直线上开集和闭集的构造定理。
二、基本结论1、开集的运算性质:开集关于任意并及有限交运算是封闭的。
2、闭集的运算性质:闭集关于任意交及有限并运算是封闭的。
3、开集、闭集具有对偶性。
4、Cantor 集合的构造及性质:Cantor 集是不可数的完备的疏朗集,测度为零。
(完整版)实变函数论考试试题及答案
实变函数论考试试题及答案证明题:60分1、证明 1lim =n m n n m nA A ∞∞→∞==。
证明:设lim n n x A →∞∈,则N ∃,使一切n N >,n x A ∈,所以 ∞+=∈1n m mAx ∞=∞=⊂1n nm m A ,则可知n n A ∞→lim ∞=∞=⊂1n nm m A 。
设 ∞=∞=∈1n n m m A x ,则有n ,使 ∞=∈nm m A x ,所以n n A x lim ∞→∈。
因此,n n A lim ∞→= ∞=∞=1n nm m A 。
2、若n R E ⊂,对0>∀ε,存在开集G , 使得G E ⊂且满足 *()m G E ε-<, 证明E 是可测集。
证明:对任何正整数n , 由条件存在开集E G n ⊃,使得()1*m G E n-<。
令 ∞==1n n G G ,则G 是可测集,又因()()1**n m G E m G E n-≤-<, 对一切正整数n 成立,因而)(E G m -*=0,即E G M -=是一零测度集,故可测。
由)(E G G E --=知E 可测。
证毕。
3、设在E 上()()n f x f x ⇒,且1()()n n f x f x +≤几乎处处成立, ,3,2,1=n , 则有{()}n f x a.e.收敛于)(x f 。
证明 因为()()n f x f x ⇒,则存在{}{}i n n f f ⊂,使()i n f x 在E 上a.e.收敛到()f x 。
设0E 是()i n f x 不收敛到()f x 的点集。
1[]n n n E E f f +=>,则00,0n mE mE ==。
因此0()0n n n n m E mE ∞∞==≤=∑。
在1n n E E ∞=-上,()i n f x 收敛到()f x , 且()n f x 是单调的。
因此()n f x 收敛到()f x (单调序列的子列收敛,则序列本身收敛到同一极限)。
《实变函数》习题库参考答案
《实变函数》习题库参考答案一、判断题 1、( √ )理由:由内点定义知,存在A P U ⊂),(0δ,从而对任意的)(0P U ,必含有A 中无穷多个点。
满足聚点定义 2、( √ )理由:[法一]:都具有连续基数,故对等 [法二]:可建立一个映射)2tan()(ππ-⋅--=a b a x x f ,则f(x)为),(b a 到R 的一一映射.3、( √ )理由:由B A ⊂知, A A B B )(-=,从而由有限可加性知,mA A B m mB +-=)(,又由 +∞<mB 知,+∞<-+∞<)(,A B m mA 。
从而移项可得结论。
4、( √ )理由:f(x)在区间[0,5)及[5,10]上均为连续函数,故分别在2个区间上是可测函数, 从而再其和集上也是可测函数。
5、( × )理由:例如有理数集Q ,无理数2是Q 的聚点,但不是其内点。
6、( √ )理由:[法一]:都是可数集,故有相同的基数,即对等。
[法二]:可建立一个映射⎪⎩⎪⎨⎧==+==...2,1,1,11,0,1)(n n x n x x f ,则f(x)为集合 ⎭⎬⎫⎩⎨⎧ ,1,,31,21,1,0n 到集合⎭⎬⎫⎩⎨⎧ ,1,,31,21,1n 的一一映射。
7、( √ )理由:由B A ⊂知A A B B )(-=,且φ=-A A B )(, 故mA mA A B m mB =+-=)(8、( √ )理由:狄利克莱函数⎩⎨⎧-∈∈=.]1,0[,0]1,0[,1)(Q x Qx x D 是[0,1]上的简单函数,故可测。
9、( √ )理由:由于E E ⊆Φ=',所以.}3,2,1{为闭集=E 10、( × )理由:如无界。
,但,则N mN N E +∞<==0 11、( √ )理由:由于可测。
在连续,从而在]2,1[2)(]2,1[2)(-=-=x f x f 12、( √ ) 理由:事实上:)()(***CE T m E T m T m T E +=∀⇔:可测]([)(**CE C T m CE T m +=可测。
实变函数论课后答案
λ∈∧
λ∈∧
λ∈∧
定理 4 中的(4): ∪ ( Aλ ∪ Bλ ) = ( ∪ Aλ ) ∪ ( ∪ Bλ ) .
λ∈∧
λ∈∧
λ∈∧
证 : 若 x ∈ ∪ ( Aλ ∪ Bλ ) , 则 有 λ ' ∈ ∧ , 使 λ∈∧
x
∈
(
A λ
'
∪
Bλ'
)
⊂
(∪
λ∈∧
Aλ ) ∪ ( ∪ λ∈∧
Bλ ) .
∞
∞
An ⊃ An+1 )对一切 n 都成立,则
lim
n→∞
=
∪
n=1
An
(相应地)
lim
n→∞
=
∩
n=1
An
.
∞
证明:若 An ⊂ An+1 对 ∀n ∈ N 成立,则 ∩ Ai = Am .故从定理 8 知 i=m
∞∞
∞
lim inf
n→∞
An
=
∪∩
m=1 i=m
Ai
=
∪
m=1
Am
∞
另一方面 ∀m, n ,令 Sm = ∪ Ai ,从 Am ⊂ Am+1 对 ∀m ∈ N 成立知 i=m
.
{ } F {A1} = {∅, S} ∪ A ∪ K A为B的子集,K = C或K = ∅ ≜ �A .
证明:
因为
{1}
,
⎧ ⎨ ⎩
1 3
⎫ ⎬ ⎭
,⋯,
⎧ ⎨ ⎩
1 2i −
1
⎫ ⎬ ⎭
,⋯
∈
A,
B
的任何子集
F
(
实变函数测试题与参考答案
实变函数试题一,填空题1. 设1,2n A n ⎡⎤=⎢⎥⎣⎦,1,2n =,则lim n n A →∞= . 2. ()(),,a b -∞+∞,因为存在两个集合之间的一一映射为3. 设E 是2R 中函数1cos ,00,0x y x x ⎧≠⎪=⎨⎪ =⎩的图形上的点所组成的集合,则E '= ,E ︒= .4. 若集合nE R ⊂满足E E '⊂,则E 为 集. 5. 若(),αβ是直线上开集G 的一个构成区间,则(),αβ满足:, .6. 设E 使闭区间[],a b 中的全体无理数集,则mE = .7. 若()n mE f x →()0f x ⎡⎤=⎣⎦,则说{}()n f x 在E 上 .8. 设nE R ⊂,0nx R ∈,若 ,则称0x 是E 的聚点.9. 设{}()n f x 是E 上几乎处处有限的可测函数列,()f x 是E 上几乎处处有限的可测函数,若0σ∀>,有 ,则称{}()n f x 在E 上依测度收敛于()f x . 10. 设()()n f x f x ⇒,x E ∈,则∃{}()n f x 的子列{}()jn fx ,使得.二,判断题.正确的证明,错误的举反例. 1. 若,A B 可测,A B ⊂且A B ≠,则mA mB <. 2. 设E 为点集,P E ∉,则P 是E 的外点.3. 点集11,2,,E n ⎧⎫=⎨⎬⎩⎭的闭集. 4. 任意多个闭集的并集是闭集.5. 若nE R ⊂,满足*m E =+∞,则E 为无限集合. 三,计算证明题1.证明:()()()A B C A B A C --=-2.设M 是3R 空间中以有理点(即坐标都是有理数)为中心,有理数为半径的球的全体,证明M 为可数集.3.设nE R ⊂,i E B ⊂且i B 为可测集,1,2i =.根据题意,若有()()*0,i m B E i -→ →∞,证明E 是可测集.4. 设P 是Cantor 集,()[]32ln 1,(),0,1x x P f x x x P ⎧+ ∈⎪=⎨ ∈-⎪⎩.求10(L)()f x dx ⎰.5. 设函数()f x 在Cantor 集0P 中点x 上取值为3x ,而在0P 的余集中长为13n 的构成区间上取值为16n ,()1,2n =,求1()f x dx ⎰.6. 求极限:13230lim(R)sin 1n nx nxdx n x →∞+⎰.实变函数试题解答一填空题 1.[]0,2.2.{}1(,)cos ,0(0,)1x y y x y y x ⎧⎫=≠≤⎨⎬⎩⎭;∅.3.闭集.4.b a -.5.几乎处处收敛于()f x 或a.e.收敛于()f x .6.对000,(,)U x δδ∀> 有{}()0E x -=∅.7.()()n f x f x → a.e.于E . 二判断题1. F .例如,(0,1)A =,[]0,1B =,则A B ⊂且A B ≠,但1mA mB ==.2. F .例如,0(0,1)∉,但0不是(0,1)的外点.3. F .由于{}0E E '=⊄.4. F .例如,在1R 中,11,1n F n n ⎡⎤=-⎢⎥⎣⎦,3,4n =是一系列的闭集,但是3(0,1)n n F ∞==不是闭集.5. T .因为若E 为有界集合,则存在有限区间I ,I <+∞,使得E I ⊂,则**,m E m I I ≤=<+∞ 于*m E =+∞ .三,计算证明题. 1.证明如下:2. M 中任何一个元素可以由球心(,,)x y z ,半径为r 唯一确定,x ,y ,z 跑遍所有的正有理数,r 跑遍所有的有理数.因为有理数集于正有理数集为可数集都是可数集,故M 为可数集.3. 令1i i B B ∞==,则i E B B ⊂⊂且B 为可测集,于是对于i ∀,都有i B E B E -⊂-,故()()**0i m B E m B E ≤-≤-,令i →∞,得到()*0m B E -=,故B E -可测.从而()E B B E =--可测.4. 已知0mP =,令[]0,1G P =-,则()1320221130(L)()(L)ln 1(L)(L)()(L)(L)(R)()133PGGPGf x dx x dx x dxf x dxx dx x dxf x dxx=++ =0+ =+ = ==⎰⎰⎰⎰⎰⎰⎰. 5. 将积分区间[]0,1分为两两不相交的集合:0P ,1G ,2G ,其中0P 为Cantor 集,n G 是0P 的余集中一切长为13n 的构成区间(共有12n -个)之并.由L 积分的可数可加性,并且注意到题中的00mP =,可得6. 因为323sin 1nx nx n x +在[]0,1上连续,13230(R)sin 1nx nxdx n x+⎰存在且与13230(L)sin 1nx nxdx n x +⎰的值相等.易知由于12x 在()0,1上非负可测,且广义积分1012dx x ⎰收敛,则 12x在()0,1上(L)可积,由于323lim sin 01n nx nx n x →∞=+,()0,1x ∈,于是根据勒贝格控制收敛定理,得到1133232300132301lim(R)sin lim(L)sin 11lim sin 100n n n nx nx nxdx nxdx n x n x nx nx dxn x dx →∞→∞→∞=++⎛⎫ = ⎪+⎝⎭ ==⎰⎰⎰⎰.一、判定下列命题正确与否,简明理由(对正确者予以证明,对错误者举处反例)(15分,每小题3分) 1. 非可数的无限集为c 势集 2. 开集的余集为闭集。
《实变函数》作业参考答案
《实变函数》作业参考答案一.判断题1.对; 2.错; 3.对;4.对; 5.错; 6.对; 7.错; 8.对; 9.对; 10.对; 11.对; 12.错。
13、错 14、对 15、错16、错 17、对 18、对 二.1.证明:).()(B A B A II-=-∈∈αααα证明:直接的用定义,证明左边包含右边,右边包含左边。
2.试找出使)1,0(和]1,0[之间一一对应的一种方法。
证明:令)1,0(,...},,{321⊂x x x ,做)(x f ,使得⎪⎩⎪⎨⎧>====+2,01)(212n x x x x x x x x f n n ,其它处,.)(x x f =3令,...},{21r r 表示(0,1)上的全体有理数,则,...},,1,0{21r r 是[0,1]上的全体有理数,且有,...},,1,0{\]1,0[,...},{\)1,0(2121r r r r =如下定义一个函数)(x f⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧====∈=-............10,...},{\)1,0()(3212121n n r x r x r x r x r r r r x x x f ,则这是满足条件的一一对应。
4)).(()()(1111B A BA BA B A i i ci i ci i i i -=⋂=⋂=-∞=∞=∞=∞=三.证明题1. 设)(x f n 是E 上几乎处处有限的可测函数列,∞<mE ,而)(x f n 几乎处处收敛于有限函数)(x f ,则对任意的0>ε,存在常数c 与可测集E E ⊂0,ε<)\(0E E m ,使在0E 上,对一切n ,有c x f <|)(|。
证明:直接利用鲁津定理。
2. 证明:证明})(|{a x f x CG >=是开集,事实上,对任意CG x ∈,则a x f >)(,由连续函数的局部保号性,存在0>δ,使得对一切的),(δx B t ∈,有a t f >)(,即CG x B ⊂),(δ,所以x 是内点,从而})(|{a x f x CG >=是开集。
实变函数论课后答案
λ∈∧
λ∈∧
λ∈∧
综上所述有 ∪ ( Aλ ∪ Bλ ) = ( ∪ Aλ ) ∪ ( ∪ Bλ ) .
λ∈∧
λ∈∧
λ∈∧
定理
6
中第二式 ( ∩
λ∈∧
Aλ )c
=
∪
λ∈∧
Aλc
.
证 : ∀x ∈ ( ∩ Aλ )c , 则 x ∉ ∩ Aλ , 故 存 在 λ ' ∈ ∧
λ∈∧
λ∈∧
, x ∉ Aλ' 所 以
( ) x0
∞∞ ∞
∈∩ ∪ ∩
k =1 m=1 i=m
E
⎡⎢⎣ x;
fi
x
≤
a
+
1 k
⎤ ⎥⎦
.
所以E
⎡⎣ x;
f
(x)
≤
a⎤⎦
⊂
∞∞ ∞
∩∪∩
k =1 m=1 i=m
理 9.
证明:定理 4 中的(3):若 Aλ ⊂ Bλ ( λ ∈ ∧ ),则 ∩ Aλ ⊂ ∩ Bλ .
λ∈∧
λ∈∧
证:若 x ∈ ∩ Aλ ,则对任意的 λ ∈ ∧ ,有 x ∈ Aλ ,所以 Aλ ⊂ Bλ( ∀ λ ∈ ∧ ) λ∈∧
成立
知 x ∈ Aλ ⊂ Bλ ,故 x ∈ ∩ Bλ ,这说明 ∩ Aλ ⊂ ∩ Bλ .
(因为 ∃n, 使 1 n
≤
f
( x0 ) − a )
所以
x0
∈
∞
∪E
n=1
⎡ ⎢⎣
x;
f
(
x)
≥
a
+
1⎤ n ⎥⎦
.
从而有
E
实变函数论作业部分习题解(参考)
《实变函数论》作业部分习题解(参考)说明:1. 本题解是视频课体置的全部习题,只是作业1~作业4的部分习题。
2.题序为“章——节——题号”作业1(第一章~第二章)1-1-1 证明(B —A ) A=B 的充要条件是A ⊂B.证:必要性显然,事实上A 为B 的子集,因而A ⊂B. 充分性:由A ⊂B 知B-A ⊂B ,所以(B-A ) A ⊂B. 但(B-A ) A ⊃B 恒成立,于是得证. 1-1-2 证明A-B=A BC证:B A x -∈∀,即A x ∈且B x ∈,亦即c B x A x ∈∈且,于是c B A x ∈.再c B A x ∈∀ ,即A x ∈且c B x ∈. 亦即B x A x ∈∈且,边就是B A x -∈.综上述得证. 1-1-3 证明定理4中的(3),(4),定理6中第二式。
证:定理4(3):00,λλλλB x B x ∈∈∀∧∈使必存在 ,从而0λA x ∈,当然有 ∧∈∈λλA x ,又,由上述c x ∈显然成立. 证毕.定理4(4):∈∀x 左边,必存在000λλλB A x ∈有, 由0λA x ∈,当然有 ∧∈∈λλ0A x ,由0λB x ∈,当然有 ∧∈∈λλB x . 所以∈x 右边. 再∈∀x 右边,则 ∧∈∈λλA x 或 ∧∈∈λλB x ,由 ∧∈∈λλA x ,则存在某λ使λA x ∈,又由 ∧∈∈λλB x ,也存在某λλB x ∈使,从而λλB A x ∈,故 ∧∈∈λλλ)(B A x =左边. 综上述,命题得证 定理6(第二式):∈∀x 左边,解 ∧∈∈λλA x ,必存在某λ使λA x ∈,即cA x λ∈,从而 ∧∈∈λλcA x 显然成立.再,∈∀x 右边,存在某λ使cA x λ∈,即λA x ∈,当然满足 ∧∈∈λλA x ,即有cA x )( ∧∈∈λλ综上述,得证.1-1-4 证明(A-B ) B=(A B )—B 的充要条件是B=φ. 证:充分性显然,现证必要性:用反证法,若φ≠B ,则可令B x ∈,从而)(B A B x -∈ .但由题设又有B B A x -∈)( 推到B x ∈产生矛盾证毕.1-2-1 用解析式给出(-1,1)和(),+∞-∞之间的一个1-1对应。
实变函数练习及答案
实变函数练习及答案实变函数练习及答案一、选择题1、以下集合,()是不可数集合。
.A 所有系数为有理数的多项式集合; .B [0,1]中的无理数集合;.C 单调函数的不连续点所成集合; .D 以直线上互不相交的开区间为元素的集。
2、设E 是可测集,A 是不可测集,0mE =,则E A U 是().A 可测集且测度为零; .B 可测集但测度未必为零; .C 不可测集; .D 以上都不对。
3、下列说法正确的是().A ()f x 在[,]a b L —可积?()f x 在[,]a b L —可积; .B ()f x 在[,]a b R —可积?()f x 在[,]a b R —可积;.C ()f x 在[,]a b L —可积?()f x 在[,]a b R —可积; .D ()f x 在(],a +∞R —广义可积?()f x 在[,]a b L —可积4、设{}n E 是一列可测集,12......,n E E E 则有() .A 1()lim n nn n m E mE∞→∞=>U ; .B 1()lim n nn n m E mE∞→∞==U ;.C 1()lim n n n n m E mE ∞→∞==I ; .D 以上都不对。
5、()()\\\A B C A B C =U 成立的充分必要条件是().A A B ?; .B B A ?; .C A C ?; .D C A ?。
6、设E 是闭区间[]0,1中的无理点集,则().A 1mE =; .B 0mE =; .C E 是不可测集; .D E 是闭集。
7、设mE <+∞,(){}nf x 是E 上几乎处处有限的可测函数列,()f x 是E 上几乎处处有限的可测函数,则(){}nf x 几乎处处收敛于()f x 是(){}n f x 依测度收敛于()f x 的().A 必要条件; .B 充分条件; .C 充分必要条件; .D 无关条件。
《实变函数》习题库参考答案
《实变函数》习题库参考答案一、判断题 1、( √ )理由:由内点定义知,存在A P U ⊂),(0δ,从而对任意的)(0P U ,必含有A 中无穷多个点。
满足聚点定义 2、( √ )理由:[法一]:都具有连续基数,故对等 [法二]:可建立一个映射)2tan()(ππ-⋅--=a b a x x f ,则f(x)为),(b a 到R 的一一映射.3、( √ )理由:由B A ⊂知, A A B B )(-=,从而由有限可加性知,mA A B m mB +-=)(,又由 +∞<mB 知,+∞<-+∞<)(,A B m mA 。
从而移项可得结论。
4、( √ )理由:f(x)在区间[0,5)及[5,10]上均为连续函数,故分别在2个区间上是可测函数, 从而再其和集上也是可测函数。
5、( × )理由:例如有理数集Q ,无理数2是Q 的聚点,但不是其内点。
6、( √ )理由:[法一]:都是可数集,故有相同的基数,即对等。
[法二]:可建立一个映射⎪⎩⎪⎨⎧==+==...2,1,1,11,0,1)(n n x n x x f ,则f(x)为集合 ⎭⎬⎫⎩⎨⎧ ,1,,31,21,1,0n 到集合⎭⎬⎫⎩⎨⎧ ,1,,31,21,1n 的一一映射。
7、( √ )理由:由B A ⊂知A A B B )(-=,且φ=-A A B )(, 故mA mA A B m mB =+-=)(8、( √ )理由:狄利克莱函数⎩⎨⎧-∈∈=.]1,0[,0]1,0[,1)(Q x Qx x D 是[0,1]上的简单函数,故可测。
9、( √ )理由:由于E E ⊆Φ=',所以.}3,2,1{为闭集=E 10、( × )理由:如无界。
,但,则N mN N E +∞<==0 11、( √ )理由:由于可测。
在连续,从而在]2,1[2)(]2,1[2)(-=-=x f x f 12、( √ ) 理由:事实上:)()(***CE T m E T m T m T E +=∀⇔:可测]([)(**CE C T m CE T m +=可测。
实变函数积分理论部份温习题(附答案版)
2020级实变函数积分理论温习题一、判定题(判定正误,正确的请简要说明理由,错误的请举出反例)一、设{}()n f x 是[0,1]上的一列非负可测函数,那么1()()nn f x fx ∞==∑是[0,1]上的Lebesgue 可积函数。
(×) 二、设{}()n f x 是[0,1]上的一列非负可测函数,那么1()()nn f x fx ∞==∑是[0,1]上的Lebesgue 可测函数。
(√) 3、设{}()n f x 是[0,1]上的一列非负可测函数,那么[0,1][0,1]lim ()d lim ()d n n n n f x x f x x →∞→∞=⎰⎰。
(×)4、设{}()n f x 是[0,1]上的一列非负可测函数,那么存在{}()n f x 的一个子列{}()k n f x ,使得,[0,1][0,1]lim ()d lim ()d k k n n k k f x x f x x →∞→∞<⎰⎰。
(×,比如{}()n f x 为单调递增时,由Levi 定理,如此的子列必然不存在。
)5、设{}()n f x 是[0,1]上的一列非负可测函数,那么存在{}()n f x 的一个子列{}()k n f x ,使得,[0,1][0,1]lim ()d lim ()d k k n n k k f x x f x x →∞→∞=⎰⎰。
(×,比如讲义上法都引理取严格不等号的例子。
) 六、设{}()n f x 是[0,1]上的一列非负可测函数,那么[0,1][0,1]lim ()d lim ()d n n n n f x x f x x →∞→∞≤⎰⎰。
(√)7、设{}()n f x 是[0,1]上的一列非负可测函数,那么[0,1][0,1]lim ()d lim ()d n n n n f x x f x x →∞→∞≥⎰⎰。
(×)八、设()f x 是[0,1]上的黎曼可积函数,那么()f x 必为[0,1]上的可测函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[0195]《实变函数论》
第一次作业
[单选题]1.开集减去闭集是()
A:A.开集
B:B.闭集
C:C.既不是开集也不是闭集
参考答案:A
[单选题]2.闭集减去开集是()
A:开集
B:闭集
C:既不是开集也不是闭集
参考答案:B
[单选题]3.可数多个开集的交是()
A:开集
B:闭集
C:可测集
参考答案:C
[单选题]4.可数多个闭集的并是()
A:开集
B:闭集
C:可测集
参考答案:C
[单选题]6.可数集与有限集的并是()
A:有界集
B:可数集
C:闭集
参考答案:B
[判断题]5.任意多个开集的并仍是开集。
参考答案:正确
[单选题]8.可数多个有限集的并一定是()
A:可数集
B:有限集
C:以上都不对
参考答案:C
[单选题]7.设f(x)是定义在[a,b]上的单调函数,则f(x)的间断点集是()A:开集
B:闭集
C:可数集
参考答案:C
[单选题]9.设f(x)是定义在R上的连续函数,E=R(f>0),则E是
A:开集
B:闭集
C:有界集
参考答案:A
[单选题]10.波雷尔集是()
A:开集
B:闭集
C:可测集
参考答案:C
[判断题]7.可数多个零测集的并仍是零测集合。
参考答案:正确
[单选题]1.开集减去闭集是()。
A:A.开集 B.闭集 C.既不是开集也不是闭集
参考答案:A
[单选题]5.可数多个开集的并是()
A:开集
B:闭集
C:可数集
参考答案:A
[判断题]8.不可数集合的测度一定大于零。
参考答案:错误
[判断题]6.闭集一定是可测集合。
参考答案:正确
[判断题]10.开集一定是可测集合。
参考答案:正确
[判断题]4.连续函数一定是可测函数。
参考答案:错误
[判断题]3.零测度集合或者是可数集合或者是有限集。
参考答案:正确
[判断题]2.有界集合的测度一定是实数。
参考答案:正确
[判断题]1.可数集合是零测集
参考答案:正确
[判断题]9.任意多个闭集的并仍是闭集。
参考答案:错误
[判断题]9.任意多个闭集的并仍是闭集。
参考答案:错误
第二次作业
[单选题]4.设E是平面上边长为2的正方形中所有无理点构成的集合,则E的测度是A:0
B:2
C:4
参考答案:C
[单选题]3.设E是平面上边长为2的正方形中所有有理点构成的集合,则E的测度是A:0
B:2
C:4
参考答案:A
[单选题].2.[0,1] 中的全体有理数构成的集合的测度是()
A:0
B:1
参考答案:A
[单选题]1.[0,1] 中的全体无理数构成的集合的测度是()
A:0
B:1
C:2
参考答案:B
[单选题]5.若E是R的子集,x是一个实数,如果x的任何邻域内均有E中异于x的点,则x是E的()A:内点
B:界点
C:聚点
参考答案:C
[判断题]10.简单函数一定是可测函数。
参考答案:正确
[判断题]9.可测函数一定是简单函数。
参考答案:错误
[判断题]8.可测函数一定是有界函数。
参考答案:错误
[判断题]7.任何函数与其立方有相同的可测性。
参考答案:正确
[判断题]6.依测度收敛的函数列一定是几乎处处收敛。
参考答案:错误
[判断题]5.任何函数与其平方有相同的可测性。
参考答案:错误
[判断题]4.几乎处处收敛的函数列一定是依测度收敛。
参考答案:正确
[判断题]2.几乎处处相等的函数具有相同的可测性。
参考答案:正确
[判断题]1.任何连续函数均为可测函数
参考答案:错误
[判断题]3.定义在零测集上的任何函数均可测。
参考答案:正确
第三次作业
[单选题]5.设f(x)为[0,2]上如下定义的函数:当x是[0,2]的有理数时,f(x)=sinx,当x是[0,2]的无理数时,f(x)=x,那么f(x)在[0,2]上的勒贝格积分是()
A:2
B:1-cos2
C:0
参考答案:A
[单选题]4.设f(x)是可积函数,g(x)是不可积函数,则f(x)+|g(x)|是()A:可积函数
B:不可积函数
C:有界函数
参考答案:B
[单选题]3.有界可测集上的勒贝格可积函数一定是()
A:可测函数
B:连续函数
C:简单函数
参考答案:A
[单选题]2.函数列依测度收敛是函数列几乎处处收敛的()
A:必要条件
B:充分条件
C:无关条件
参考答案:C
[单选题]1.设f(x)是定义在[a,b]上的可测函数,则f(x)是()
A:连续函数
B:简单函数
C:一列简单函数的极限
参考答案:C
[判断题]10.定义在区间上的单调函数是可积函数。
参考答案:正确
[判断题]9.定义在有界可测集合上的连续函数是可积函数。
参考答案:正确
[判断题]8.定义在同一个可测集合上的两个可积函数的和函数仍是可积函数。
参考答案:正确
[判断题]7.定义在有界可测集合上的简单函数是可积函数。
参考答案:正确
[判断题]6.可测函数列的极限函数仍是可测函数。
参考答案:正确
[判断题]5.可积函数列的极限函数仍是可积函数。
参考答案:错误
[判断题]4.任何函数与其绝对值函数有相同的可积性。
参考答案:正确
[判断题]3.几乎处处相等的函数有相同的可积性与积分值。
参考答案:正确
[判断题]2.可积函数是几乎处处有限的函数。
参考答案:正确
[判断题]1.可积函数是有界函数。
参考答案:错误。