真核生物的基因表达调控机制
真核基因不同水平上的表达调控
真核生物基因表达的调控远比原核生物复杂,可以发生在DNA水平、转录水平、转录后的修饰、翻译水平和翻译后的修饰等多种不同层次(图真核生物基因表达中可能的调控环节)。
但是,最经济、最主要的调控环节仍然是在转录水平上。
(一)DNA水平的调控DNA水平上的调控是通过改变基因组中有关基因的数量、结构顺序和活性而控制基因的表达。
这一类的调控机制包括基因的扩增、重排或化学修饰。
其中有些改变是可逆的。
1、基因剂量与基因扩增细胞中有些基因产物的需要量比另一些大得多,细胞保持这种特定比例的方式之一是基因组中不同基因的剂量不同。
例如,有A、B两个基因,假如他们的转录、翻译效率相同,若A基因拷贝数比B基因多20 倍,则A基因产物也多20倍。
组蛋白基因是基因剂量效应的一个典型实例。
为了合成大量组蛋白用于形成染色质,多数物种的基因组含有数百个组蛋白基因拷贝。
基因剂量也可经基因扩增临时增加。
两栖动物如蟾蜍的卵母细胞很大,是正常体细胞的一百倍,需要合成大量核糖体。
核糖体含有rRNA分子,基因组中的rRNA基因数目远远不能满足卵母细胞合成核糖体的需要。
所以在卵母细胞发育过程中,rRNA基因数目临时增加了4000倍。
卵母细胞的前体同其他体细胞一样,含有约500个rRNA基因(rDNA)。
在基因扩增后,rRNA基因拷贝数高达2×106。
这个数目可使得卵母细胞形成1012个核糖体,以满足胚胎发育早期蛋白质大量合成的需要。
在基因扩增之前,这500个rRNA基因以串联方式排列。
在发生扩增的3周时间里,rDNA不再是一个单一连续DNA片段,而是形成大量小环即复制环,以增加基因拷贝数目。
这种rRNA基因扩增发生在许多生物的卵母细胞发育过程中,包括鱼、昆虫和两栖类动物。
目前对这种基因扩增的机制并不清楚。
在某些情况下,基因扩增发生在异常的细胞中。
例如,人类癌细胞中的许多致癌基因,经大量扩增后高效表达,导致细胞繁殖和生长失控。
有些致癌基因扩增的速度与病症的发展及癌细胞扩散程度高度相关。
真核生物的基因表达调控
转录因子得结构
绝大多数转录因子至少具有以下三种不同得结构域得 一种: (1)DNA结合结构域,直接与顺式作用元件结合得转录因子 都具有此结构域。转录因子通常使用此结构域之中得 特殊α-螺旋与顺式作用元件内得大沟接触,通过螺旋上 得特殊氨基酸残基得侧链基团与大沟中得特殊碱基对 之间得次级健(主要就是氢键)相互识别而产生特异性。 许多转录因子在此结构域上富含碱性氨基酸,这可能有 利于她和DNA骨架上带负电荷得磷酸根发生作用; (2)效应器结构域,这就是转录因子调节转录效率(激活或阻 遏)、产生效应得结构域; (3)多聚化结构域,此结构域得存在使得转录因子之间能够 组装成二聚体或多聚体(同源或异源)。下面将集中介绍 前两种结构域,特别就是DNA结合结构域。
在转录水平上得基因表达调控
真核生物得蛋白质基因得转录除了启动子、RNA聚合酶II和基础 转录因子以外,还需要其她顺式作用元件和反式作用因子得参与。 参与基因表达调控得主要顺式作用元件有:增强子、沉默子、绝缘 子和各种反应元件;参与基因表达调控得反式作用因子也称为转录 因子,她们包括激活蛋白、辅激活蛋白、阻遏蛋白和辅阻遏蛋白。 激活蛋白与增强子结合激活基因得表达,而阻遏蛋白与沉默子结合, 抑制基因得表达,某些转录因子既可以作为激活蛋白也可以作为阻 遏蛋白其作用,究竟就是起何种作用取决于被调节得基因。辅激活 蛋白缺乏DNA结合位点,但她们能够通过蛋白质与蛋白质得相互作 用而行使功能,作用方式包括:招募其她转录因子和携带修饰酶(如 激酶或乙酰基转移酶)到转录复合物而刺激激活蛋白得活性;辅阻 遏蛋白也缺乏DNA结合位点,但同样通过蛋白质与蛋白质得相互作 用而起作用,作用机理包括:掩盖激活蛋白得激活位点、作为负别构 效应物和携带去修饰酶去中和修饰酶(如磷酸酶或组蛋白去乙酰基 酶)得活性。
真核生物转录水平的调控机制
真核生物转录水平的调控机制一、转录因子转录因子是真核生物转录水平调控的重要环节。
它们可以识别和结合DNA上的特异序列,从而调控基因的表达。
根据结合位点的不同,转录因子可以分为上游启动子元件和增强子元件两类。
上游启动子元件主要包括TATA box和CAAT box等,而增强子元件则是一种具有增强基因转录功能的DNA序列。
二、染色质重塑染色质重塑是真核生物基因表达调控的重要机制之一。
染色质重塑可以改变染色质的结构,从而影响基因的表达。
染色质重塑过程中,染色质重塑复合物可以将核小体从DNA上移除或重新排列,从而改变染色质的可及性。
此外,染色质重塑还可以影响DNA的甲基化水平,进一步调控基因的表达。
三、miRNA和siRNAmiRNA和siRNA是真核生物中的非编码RNA,它们可以通过与mRNA的特异性结合来调控基因的表达。
miRNA和siRNA可以与mRNA 的3'UTR结合,导致mRNA的降解或翻译抑制,从而调控基因的表达。
此外,miRNA和siRNA还可以通过与转录因子或染色质重塑复合物等相互作用,影响基因的转录和表达。
四、转录起始和延伸转录起始和延伸是真核生物转录水平调控的重要环节。
转录起始和延伸过程中,RNA聚合酶可以识别启动子元件并开始转录,然后沿着DNA序列向下游移动并合成RNA。
在这个过程中,转录起始和延伸复合物可以与RNA聚合酶相互作用,从而影响转录的效率和方向。
此外,一些转录因子也可以与RNA聚合酶相互作用,进一步影响基因的表达。
五、转录后修饰真核生物中的RNA聚合酶可以使用各种转录后修饰来修饰其转录产物。
这些修饰可以包括mRNA的加尾、编辑、剪接和稳定性等。
这些过程可以影响mRNA的翻译效率和稳定性,从而影响基因的表达。
此外,一些蛋白质也可以通过磷酸化、乙酰化或甲基化等修饰来影响基因的表达。
六、细胞周期与细胞分化细胞周期和细胞分化是真核生物细胞生命活动中的重要过程,也是转录水平调控的重要方面。
真核生物基因表达调控的多种方式
真核生物基因表达调控的多种方式真核生物基因表达包括转录、翻译和蛋白修饰等复杂过程,其中涉及多种调控方式。
以下是真核生物基因表达的各种表达调控方式的简述:1. 转录前调控转录前调控是指在 DNA 复制后被转录成 RNA 的过程中,通过调控 RNA 聚合酶 (RNA polymerase) 的亲和力、移动速度和活性等方式来控制基因的表达。
其中一些调控因子可以与启动子区域中的特定序列结合,从而抑制或增强 RNA 聚合酶的活性。
此外,一些转录因子还可以与 RNA 聚合酶结合,促进 RNA 聚合酶的移动,从而加快转录速率。
2. 转录调控转录调控是指通过调控 RNA 聚合酶结合到特定基因的启动子上,来控制基因的表达。
转录调控可以通过调节转录因子的数量、亲和力和活性等方式来实现。
一些转录因子可以与启动子区域中的特定序列结合,从而抑制或增强 RNA 聚合酶的活性。
此外,一些转录因子还可以与 RNA 聚合酶结合,促进 RNA 聚合酶的活性,从而加快转录速率。
3. 转录后调控转录后调控是指在基因被转录后,通过调控 RNA 剪接、RNA 编辑、RNA 降解等方式来控制基因的表达。
这些调控方式可以影响 RNA 的稳定性、可用性和转录本的多样性。
例如,一些调控因子可以与 RNA 剪接因子结合,从而改变 RNA 剪接的速率和方向。
一些 RNA 编辑酶可以编辑 RNA,改变基因表达。
此外,RNA 降解酶可以降解 RNA,从而抑制基因的表达。
4. 翻译调控翻译调控是指通过调控 mRNA 的稳定性、可用性和翻译速率等方式来控制基因的表达。
例如,一些调控因子可以与 RNA 聚合酶结合,从而抑制或增强 RNA 聚合酶的活性。
此外,一些翻译调控因子可以与 mRNA 结合,从而改变 mRNA 的稳定性和翻译速率。
5. 蛋白修饰调控蛋白修饰调控是指通过调控蛋白质的修饰方式来控制蛋白质的活性、稳定性和可用性等方式来控制基因的表达。
例如,一些修饰因子可以与蛋白质结合,从而改变蛋白质的修饰方式。
基因表达和调控的机制和影响
基因表达和调控的机制和影响基因表达是指基因信息从DNA序列转化为蛋白质或RNA分子的过程。
这个过程涉及到许多复杂的分子机制和调控因素。
基因表达的调控对于生物体的正常发育和生理功能至关重要。
本文将详细介绍基因表达和调控的机制及其影响。
1. 基因表达的机制1.1 转录转录是指DNA模板上的信息被复制成RNA分子的过程。
在真核生物中,转录过程包括以下几个步骤:1)启动:RNA聚合酶II与启动子区域结合,形成转录起始复合物。
2)延伸:RNA聚合酶II沿着DNA模板移动,合成RNA链。
3)终止:RNA聚合酶II到达终止子区域,释放RNA链。
1.2 剪接剪接是指在RNA分子中去除内含子,保留外显子的过程。
剪接由剪接酶负责,通过特定的剪接位点识别和切割RNA分子,然后将外显子连接起来形成成熟的mRNA。
1.3 翻译翻译是指mRNA上的信息被翻译成蛋白质的过程。
在真核生物中,翻译过程包括以下几个步骤:1)核糖体与mRNA结合,识别起始密码子。
2)tRNA携带氨基酸,与mRNA上的密码子配对。
3)核糖体沿着mRNA移动,合成多肽链。
4)多肽链经过折叠和修饰,形成具有生物活性的蛋白质。
2. 基因表达的调控基因表达的调控主要发生在转录和剪接阶段。
调控因素包括转录因子、染色质重塑、非编码RNA等。
2.1 转录因子的调控转录因子是一类能够结合到DNA特定序列上,从而调控基因表达的蛋白质。
转录因子的调控作用包括:1)激活:某些转录因子可以增强基因的转录活性。
2)抑制:另一些转录因子可以抑制基因的转录活性。
3)协同作用:多种转录因子可以协同作用,共同调控基因表达。
2.2 染色质重塑染色质重塑是指染色质结构发生改变,从而影响基因表达的过程。
染色质重塑包括:1)核小体重塑:核小体的组装和解聚。
2)染色质纤维重塑:染色质纤维的紧密和松散。
3)染色质 looping:染色质片段之间的相互连接。
2.3 非编码RNA的调控非编码RNA是一类不编码蛋白质的RNA分子,包括miRNA、siRNA、lncRNA 等。
真核生物基因表达的调控
真核生物基因表达的调控09中西七2班 032009225 丁雪菲真核生物的基因表达可以随细胞内外环境条件的改变以及生长发育的不同阶段而在不同表达水平上加以精确的调节,这是真核生物基因表达调控的多层次性。
真核生物基因表达的调控可以发生在以下各个水平:1、染色质水平真核生物基因组DNA以致密的染色质形式存在,在DNA和染色质水平上发生的改变包括:染色质丢失(某些序列的删除)、基因扩增、基因重排、染色体DNA的修饰和异染色质化等。
发生在染色质水平的基因表达调控,也称转录前水平的调控。
真核生物中的基因组DNA与组蛋白形成复合物,组蛋白在细胞内含量丰富,几乎与DNA的含量相当。
真核生物中大多数编码蛋白质的基因为简单重复序列,但是组蛋白基因是中度重复序列,其中多数拷贝是完全相同的,有一些则差异较大。
导致组蛋白不均一性的另一个原因是组蛋白的修饰,最常见的组蛋白修饰是乙酰化,一般发生在N端氨基或者赖氨酸的ε-氨基上。
这种修饰可以影响染色质的结构和功能,调控基因活性。
2、转录起始水平组蛋白对基因转录活性的影响例子:爪蟾卵母细胞5SrRNA基因只在卵母细胞中转录实验证明:转录因子和组蛋白可以竞争基因的转录调控区,去过转录因子与调控区亲和力低,则基因的调控区与组蛋白形成核小体,并由H1将核小体交联成有序的紧密结构,抑制基因的转录活性;反之如果转录因子先与基因控制区结合,则不能与组蛋白形成核小体,基因具有转录活性。
3、转录后水平真核生物可以通过选择不同的5’-起始点或者3’-加尾位点产生不同的成熟mRNA,最终合成不同的蛋白;也可以进行组织特异性的选择性拼接,表达具有不同生物活性的蛋白。
3.1可变拼接mRNA前体可以选择不同的拼接途径产生不同的成熟mRNA,称为可变拼接。
例子:大鼠的免疫球蛋白μ重链基因大鼠的免疫球蛋白μ重链有两种存在形式:分泌型和膜结合型。
两种蛋白的区别在于羧基末端,膜结合型的羧基末端为疏水区,可以锚定在膜上;分泌型羧基端为亲水区,不能锚定在膜上而称为分泌型蛋白。
真核生物基因表达调控的机制
真核生物基因表达调控的机制
真核生物基因表达调控的机制
真核生物中的基因表达调控是一个复杂而且受多种影响的过程,其机制也极为复杂,主要包括以下七个方面。
一、基因结构调控
基因的结构调控可以通过改变基因的翻译或者转录起始点,改变基因的拷贝数量,改变基因的外显子结构等,从而调节基因表达。
这种机制也称为“结构调控”。
二、编码序列调控
基因编码序列可以用来调节基因表达。
包括基因内部的种类多样性,基因突变等,都会影响基因编码序列,从而影响基因表达。
三、转录因子调控
转录因子可以调节基因转录的开始时间,结束时间,影响基因转录的效率,从而影响基因表达。
四、mRNA加工调控
当mRNA处于加工过程中,其加工过程也会受到调控,这种调控会影响mRNA的翻译效率,从而影响基因的表达。
五、mRNA翻译调控
翻译调控是一种比较常见的调控机制,它可通过影响mRNA的结构、翻译初始效率以及翻译开始时间来调节基因的表达。
六、蛋白质稳定性调控
蛋白质稳定性的调控是指通过改变蛋白质的稳定性,来影响基因
的表达。
七、基因激活与抑制
基因激活与抑制是指通过外界影响,改变激活因子或者抑制因子的表达,来影响基因表达。
以上就是真核生物基因表达调控的七个机制,同时,也是基因组学研究中需要重点关注的重要机制。
第八章真核生物基因表达调控
hMLH1
缺损DNA错配修复,基因点突变
结肠癌[32]、胃癌[27]、子宫内膜瘤[33]、 卵巢癌[34]
MGMT
p53-相关基因,与DNA 修复及耐药性有关 肺癌[24]、脑瘤[35]
P15
细胞的过度激活与增殖
非白血性白血病[36]、淋巴瘤[37, 38]、鳞 状细胞癌、肺癌
RASSF1A
失去了对G1/S负调控抑制作用
③ The CTD may coordinate processing of RNA with transcription.
4. Many Transcriptional Activators
i.e. CAAT GC-box
Factors involved in gene expression include RNA polymerase and the basal apparatus, activators that bind directly to, co-activators that bind to both activators and the basal apparatus, and regulators that act on chromatin structure (chromatin remodeling complex).
1.马蛔虫受精卵的早期分裂 马蛔虫2n=2,但染色体上有多个着丝粒。第一 次卵裂是横裂,产生上下2个子细胞。第二次卵 裂时,一个子细胞仍进行横裂,保持完整的基 因组,而另一个子细胞却进行纵向分裂,丢失 部分染色体。
体细胞 生殖细胞
2.四膜虫: 大核: 营养核 可转录 小核: 生殖核 无转录活性 大核由小核发育而来,发育过程中有多处 染色质断裂,并删除约10%的基因组DNA, 被删除序列的存在可能抑制了基因的正常 表达。
真核生物基因的表达调控
细胞周期与基因表达
G1期
细胞在G1期主要合成与DNA 复制有关的蛋白质,如复制因 子等。
G2期
G2期细胞主要合成与分裂期有 关的蛋白质,如微管蛋白等。
细胞周期
真核生物细胞周期分为间期和 分裂期,不同时期基因表达DNA的复制,同 时合成组蛋白等与染色体组装 有关的蛋白质。
翻译和后翻译修饰
翻译
mRNA在细胞质中被核糖体读取并翻译成蛋白质。翻译的效率受到多种因素的 影响,包括mRNA的浓度、核糖体的数量、以及各种翻译调控因子。
后翻译修饰
新合成的蛋白质经常需要进行翻译后修饰,如磷酸化、乙酰化、糖基化等,以 增加其活性和稳定性。这些修饰通常由特定的酶催化,并受到细胞内环境和信 号通路的调节。
肾上腺素
02
03
甲状腺激素
肾上腺素可以激活糖原分解和脂 肪分解相关基因的表达,提高能 量供应。
甲状腺激素可以促进细胞代谢, 提高基础代谢率,同时还可以影 响神经系统的发育。
神经递质对基因表达的调控
多巴胺
01
多巴胺可以影响奖赏和愉悦相关基因的表达,与成瘾行为和心
理健康有关。
5-羟色胺
02
5-羟色胺可以影响情绪和行为,与抑郁症和精神分裂症等精神
染色质重塑
染色质重塑是基因表达调控的另一重要机制,通过改变染色质的结构和组成,影响转录因 子的结合和RNA聚合酶的活性。
microRNA的调节
microRNA通过与mRNA结合,调控靶基因的表达水平,参与多种生物学过程,如发育、 代谢和应激反应等。
02
转录水平的调控
转录因子
1 2 3
转录因子概述
葡萄糖
葡萄糖水平可以影响胰岛素的分 泌,进而影响与胰岛素相关的基 因表达。
真核生物基因表达调控的特点及主要调控环节
真核生物基因表达调控的特点及主要调控环节真核生物基因表达调控是一个复杂而精密的系统,涉及到多种调控机制和调控环节。
通过这些调控机制和环节,真核生物能够在不同的细胞类型和不同的发育阶段中表达特定的基因,从而实现细胞功能的多样化和分化。
下面我们将详细介绍真核生物基因表达调控的特点以及主要调控环节。
首先,真核生物基因表达调控具有高度的精细性和特异性。
在真核生物细胞中,每个细胞都包含着相同的基因组,但不同细胞类型和组织会表达不同的基因。
这种差异性主要是通过转录调控来实现的,即通过对特定基因的转录进行调控,使得只有需要的基因在特定的时间和空间表达。
这种精细性和特异性的调控是真核生物细胞功能多样化和分化的重要基础。
其次,真核生物基因表达调控涉及多种调控机制和调控因子。
在真核生物细胞中,基因表达的调控是一个复杂的过程,需要多种调控机制和调控因子的参与。
其中,转录因子是最为重要的调控因子之一,它们可以结合到基因的启动子区域,促进或抑制该基因的转录。
此外,还有一些非编码RNA、表观遗传学修饰等调控机制也在基因表达调控中扮演着重要角色。
这些调控机制和调控因子相互作用,共同调控着基因的表达。
另外,真核生物基因表达调控还存在着复杂的信号传导网络。
在细胞内部,存在着多种信号通路和信号分子,它们可以感知外界环境的变化,并将这些信息传递给细胞核,从而影响基因的表达。
这些信号传导网络可以通过激活或抑制转录因子的活性,改变基因的表达水平。
通过这种方式,细胞可以根据外界环境的变化做出相应的调整,保持内部稳态。
综上所述,真核生物基因表达调控具有高度的精细性和特异性,涉及多种调控机制和调控因子,以及复杂的信号传导网络。
这些特点和调控环节共同构成了真核生物基因表达调控系统的核心。
通过深入研究这些调控机制和调控环节,可以更好地理解细胞功能的多样化和分化过程,为疾病的治疗和生命科学研究提供重要的理论基础。
第六章 真核生物基因表达
(一)真核生物基因组DNA甲基化
1.真核生物DNA甲基化位点 真核生物DNA的mCpG是DNA甲基化的主要形式
CpG岛: 由于CpG通常成串在DNA双链对称出现,被称为~, mCpG占全部CpG的70%
76,000 ?
52,000 ?
44,000 ?
?
?
?
?
普遍 淋巴细胞 淋巴细胞 普遍 普遍
▪ 了解启动子及各个元件的特点、信息有 什么作用?
▪ 启动子有没有改造的空间呢?
▪ 双向启动子
▪ 组织特异性启动子
▪ 诱导性启动子
(二)增强子
增强子(enhancer):又称为远上游序列,位于转录起始位点
人类基因组中免疫球蛋白基因主要片段的数量比较
V、C和J基因片段在胚胎细胞中相隔较远。编码产生免疫球蛋白的细胞,发育 分化时,通过染色体内DNA重排把4个相隔较远的基因片段连接在一起,产生 具有表达活性的免疫球蛋白基因。
▪ 酿酒酵母接合型:
▪酵母细胞通 过交换型转 换过程改变 自己的性别。 MATa或 MATα基因 座位两侧分 别存在两个 MAT样基因 HMLα和 HMRa沉默 交配型盒。
(3)DNA去甲基化位点的特点
① DNA去甲基化位点范围和DNA酶I优先敏感区域十分 吻合
②只有一小部分CG二核苷酸对的去甲基化与基因激活有关, 它们位于对基因表达关系十分密切的序列中
▪ (4) DNA甲基化/去甲基化对基因活性调控的相对性 ① DNA甲基化程度因物种而异
DNA甲基化随进化程度的提高而增强
的上游,它们不是启动子的一部分,但能增强或促进转录的
【教学】第七章 真核生物基因的表达调控
一、基因丢失(Gene loss)
在细胞分化过程中,可以通过丢失掉某些基因 而去除这些基因的活性。某些原生动物、线虫、昆 虫和甲壳类动物在个体发育中,许多体细胞常常丢 失掉整条或部分的染色体,只有将来分化产生生殖 细胞的那些细胞一直保留着整套的染色体。 例如:在蛔虫胚胎发育过程中,有27%DNA丢失。在高
编辑ppt
2、组蛋白和核小体对基因转录的影响
组蛋白扮演了非特异性阻遏蛋白的作用。组蛋 白与DNA结合阻止DNA上基因的转录,去除组 蛋白基因又能够恢复转录;
核小体结构影响基因转录,转录活跃的区域也 常缺乏核小体的结构。
编辑ppt
第三节 转录水平的基因表达调控
( Transcriptional Regulation )
翻译水平的调控 Translational Regulation
蛋白质加工水平的调控 Protein maturation and Processing
编辑ppt
第二节 DNA水平的基因表达调控
(Gene Regulation at DNA level)
❖基因丢失 ❖基因扩增 ❖基因重排 ❖DNA甲基化状态与调控 ❖染色体结构与调控
⑥ 许多增强子还受外部信号的调控, 如:金属硫蛋白的基因启动区上游所带的增强 子,就可以对环境中的锌、镉浓度做出反应。
编辑ppt
增强子的作用原理是什么呢?
增强子可能有如下3种作用 机制:
① 影响模板附近的DNA双螺 旋结构,导致DNA双螺旋弯 折或在反式因子的参与下, 以蛋白质之间的相互作用为 媒介形成增强子与启动子之 间“成环”连接,活化基因 转
1、根据基因表达调控的性质可分为两大类:
第一类是瞬时调控或称为可逆调控,它相当于原 核细胞对环境条件变化所做出的反应。瞬时调控 包括某种底物或激素水平升降,及细胞周期不同 阶段中酶活性和浓度的调节。
简述真核生物基因表达调控过程
简述真核生物基因表达调控过程真核生物基因表达调控过程是指在真核生物细胞中,如何通过一系列的调控机制,将基因中的遗传信息转化为蛋白质,以实现细胞功能的正常发挥。
基因表达调控过程可以分为转录调控和转录后调控两个阶段。
在转录调控阶段,首先是在细胞核中进行转录。
细胞核中的DNA被RNA聚合酶酶识别并解链,形成单链mRNA。
但并不是所有基因都会被转录,细胞会根据需要选择性地进行转录。
这是通过转录因子的作用来实现的。
转录因子是一类能够与DNA特定序列结合的蛋白质,它们能够促进或抑制转录的进行。
转录因子的结合位点位于启动子区域,当转录因子结合到启动子区域时,会引发一系列的反应,包括启动RNA聚合酶的活性和引导其结合到合适位置上,从而促使转录的进行。
转录因子的表达受到多种因素的调控,如细胞内的信号分子、细胞周期等。
转录后调控是指在mRNA合成后,通过一系列的调控机制来决定其在细胞中的命运。
mRNA在合成后需要经过剪接、修饰和运输等过程。
剪接是指将mRNA中的内含子去除,将外显子进行连接的过程。
通过剪接的不同方式,可以生成不同的mRNA亚型,从而在翻译过程中产生不同的蛋白质。
修饰是指在mRNA上加上帽子和尾巴等化学修饰,这些修饰可以保护mRNA不被降解,并帮助mRNA与翻译机器结合。
运输是指mRNA离开细胞核,进入到细胞质中,进一步参与翻译过程。
这个过程受到RNA结合蛋白的调控。
在翻译过程中,mRNA被核糖体识别并翻译成蛋白质。
这个过程也受到多种调控机制的影响。
一方面,mRNA上的启动子序列会影响翻译的起始位置,从而决定蛋白质的翻译起始位点。
另一方面,mRNA的稳定性也会影响翻译的效率和蛋白质的表达水平。
mRNA 的稳定性受到RNA结合蛋白和非编码RNA的调控。
总的来说,真核生物基因表达调控过程是一个复杂而精细的调控网络。
通过转录调控和转录后调控的相互作用,细胞可以根据内外环境的需要,在不同的时空位置上产生不同类型的蛋白质,以实现细胞功能的正常发挥。
真核生物基因表达调控的层次
真核生物基因表达调控的层次引言:基因表达调控是指基因转录和翻译过程中的调节机制,它决定了细胞在不同时间和环境中产生不同功能的蛋白质。
真核生物基因表达调控具有多个层次,包括染色质结构调控、转录水平调控、RNA加工和转运调控、翻译调控以及蛋白质修饰和定位调控。
本文将就这些层次进行详细介绍。
一、染色质结构调控:染色质结构调控是指通过改变染色质的结构和组织方式来调控基因表达。
染色质的结构包括开放的区域和紧密的区域,开放的区域便于转录因子的结合和启动子的访问,从而促进基因的转录。
染色质结构调控包括DNA甲基化、组蛋白修饰以及非编码RNA的参与等。
DNA甲基化是一种常见的染色质结构调控方式,通过甲基化酶催化DNA上的甲基化反应,使得某些基因的启动子区域被甲基化,从而阻止转录因子的结合。
组蛋白修饰包括乙酰化、甲基化、磷酸化等,这些修饰可以改变染色质的结构,影响基因的转录水平。
非编码RNA是一类不编码蛋白质的RNA分子,它可以通过与染色质相互作用来调控基因的表达。
二、转录水平调控:转录水平调控是指在转录过程中对RNA合成的调控。
转录调控涉及到转录因子的结合、启动子的可访问性以及转录复合物的组装等。
转录因子是一类蛋白质,它们可以通过与DNA结合来调控基因的转录。
转录因子的结合位点通常位于启动子区域,它们可以通过激活或抑制转录的方式来调控基因的表达。
启动子的可访问性是指转录复合物能否顺利结合到启动子上,这涉及到染色质的开放程度以及转录因子的作用。
转录复合物的组装包括RNA聚合酶与转录因子的结合以及其他辅助因子的参与,这些因子的作用可以影响基因的转录速度和效率。
三、RNA加工和转运调控:RNA加工和转运调控是指在RNA合成后对RNA分子的修饰和定位调控。
RNA加工包括剪接、剪切和多聚腺苷酸化等过程,这些过程可以改变RNA的结构和功能。
剪接是指将RNA前体分子中的内含子剪切掉,从而形成成熟的mRNA分子。
剪切的方式和位置不同,可以产生不同的转录产物。
真核基因表达调控的五个水平
真核基因表达调控的五个水平真核基因表达调控是指在真核生物中,通过一系列的调控机制来控制基因的表达。
这些调控机制可以分为五个水平:染色质水平、转录水平、RNA加工水平、转运水平和翻译水平。
染色质水平是指通过改变染色质的结构和状态来调控基因表达。
在真核生物中,染色质通常会以一种紧密的形式存在,称为紧密染色质。
这种紧密染色质不容易被转录因子识别和结合,从而抑制基因的转录。
而在某些特定的时机,染色质会发生松弛,使得转录因子能够更容易地与基因的启动子结合,从而促进基因的转录。
这种染色质的结构和状态的改变可以通过DNA甲基化、组蛋白修饰和非编码RNA等机制来实现。
转录水平是指通过调控转录过程来控制基因表达。
转录是指将DNA 中的基因信息转录成RNA的过程。
在转录过程中,转录因子会结合到基因的启动子区域,通过与RNA聚合酶的相互作用来启动和调节转录过程。
转录因子的结合位置和数量可以影响基因的转录水平。
此外,还有一些转录调控因子可以通过与转录因子相互作用,调节其活性和稳定性,从而进一步调控基因的转录。
RNA加工水平是指通过对转录后的RNA分子进行剪接、修饰和降解等加工过程来调控基因表达。
在转录后,RNA分子需要经过剪接来去除其中的内含子序列,形成成熟的mRNA分子。
剪接的方式和位置可以影响基因的表达模式。
此外,还有一些修饰酶可以对RNA 分子进行修饰,如加上甲基或磷酸基团,从而影响其稳定性和功能。
另外,RNA分子还会受到RNA降解酶的作用,从而降解掉一部分RNA分子,进一步调控基因的表达水平。
转运水平是指通过调控RNA分子的运输和定位来调控基因表达。
在真核生物中,RNA分子需要通过核孔复合体来从细胞核转运到细胞质,然后再到达特定的亚细胞位置。
在细胞质中,RNA分子可以与翻译机器相互作用,从而进一步调控基因的翻译。
此外,还有一些RNA分子可以通过与RNA结合蛋白相互作用,形成RNA颗粒体或RNA复合体,从而影响RNA的稳定性和功能。
分子遗传学4章真核生物基因的表达调控
基因剪接调控
预mRNA剪接
预mRNA剪接是基因表达的重 要调控过程,通过剪接酶体复 合物对转录产物进行剪接去除 内含子。
可变剪接
可变剪接是在剪接过程中选择 性地包含或排除外显子,产生 不同的mRNA剪接异构体,从 而调控基因表达。
RNA编辑调控
RNA编辑是通过改变RNA分子 中的碱基序列,例如腺嘌呤去 氨酶(ADAR)对腺嘌呤进行 去氨基反应。
分子遗传学4章真核生物基因 的表达调控
本章将探讨真核生物基因的表达调控机制,从转录调控到表观遗传调控,深 入了解生物基因活性的细节。
分子遗传学简介
分子遗传学研究基因如何传递、表达和调控。它涉及DNA、RNA和蛋白质的 相互作用,以及遗传信息的复制和遗传变异。
真核生物基因的表达调控概述
真核生物的基因表达调控机制非常复杂而多样化,包括转录调控、基因剪接调控、RNA后转录调控、表 观遗传调控和激素调控。
RNA后转录调控
非编码RNA
非编码RNA在转录后起重要作用,如长链非 编码RNA(lncRNA)和小核RNA (snRNA)。
RNA降解和稳定性
RNA的降解和稳定性受多种因素调控,确保 RNA分子在合适的时机和地点进行降解和稳 定。
RNA剪切调控
RNA剪切调控是RNA后转录调控的一种重要 机制,通过调整可剪切RNA的相对剪切位点 来调控基因表达。
RNA编辑调整
通过RNA编辑,已转录的RNA分子的核苷酸 序列可以发生改变,扩大RNA的多样性。
表观遗传调控
表观遗传调控通过改变染色质结构和DNA甲基化状态,调节基因的可及性和 表达。
激素调控
激素在基因表达调控中起着至关重要的作用,通过与核受体结合来调节基因 表达。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、真核基因组的复杂性与原核生物比较,真核生物的基因组更为复杂,可列举如下。
1. 真核基因组比原核基因组大得多,大肠杆菌基因组约4×106bp,哺乳类基因组在109bp数量级,比细菌大千倍;大肠杆菌约有4000个基因,人则约有10万个基因。
2. 真核生物主要的遗传物质与组蛋白等构成染色质,被包裹在核膜内,核外还有遗传成分(如线粒体DNA等),这就增加了基因表达调控的层次和复杂性。
3. 原核生物的基因组基本上是单倍体,而真核基因组是二倍体。
4. 如前所述,细菌多数基因按功能相关成串排列,组成操纵元的基因表达调控的单元,共同开启或关闭,转录出多顺反子(polycistron)的mRNA;真核生物则是一个结构基因转录生成一条mRNA,即mRNA是单顺反子(monocistron),基本上没有操纵元的结构,而真核细胞的许多活性蛋白是由相同和不同的多肽形成的亚基构成的,这就涉及到多个基因协调表达的问题,真核生物基因协调表达要比原核生物复杂得多。
5. 原核基因组的大部分序列都为基因编码,而核酸杂交等实验表明:哺乳类基因组中仅约10%的序列为蛋白质、rRNA、tRNA等编码,其余约90%的序列功能至今还不清楚。
6. 原核生物的基因为蛋白质编码的序列绝大多数是连续的,而真核生物为蛋白质编码的基因绝大多数是不连续的,即有外显子(exon)和内含子(intron),转录后需经剪接(splicing)去除内含子,才能翻译获得完整的蛋白质,这就增加了基因表达调控的环节。
7. 原核基因组中除rRNA、tRNA基因有多个拷贝外,重复序列不多。
哺乳动物基因组中则存在大量重复序列(repetitive sequences)。
用复性动力学等实验表明有三类重复序列:1)高度重复序列(highly repetitive sequences),这类序列一般较短,长10-300bp,在哺乳类基因组中重复106次左右,占基因组DNA序列总量的10-60%,人的基因组中这类序列约占20%,功能还不明了。
2)中度重复序列(moderately repetitive sequences),这类序列多数长100-500bp,重复101-105次,占基因组10-40%。
例如哺乳类中含量最多的一种称为Alu的序列,长约300bp,在哺乳类不同种属间相似,在基因组中重复3×105次,在人的基因组中约占7%,功能也还不很清楚。
在人的基因组中18S/28SrRNA基因重复280次,5SrRNA基因重复2000次,tRNA基因重复1300次,5种组蛋白的基因串连成簇重复30-40次,这些基因都可归入中度重复序列范围。
3)单拷贝序列(single copy sequences)。
这类序列基本上不重复,占哺乳类基因组的50-80%,在人基因组中约占65%。
绝大多数真核生物为蛋白质编码的基因在单倍体基因组中都不重复,是单拷贝的基因。
从上述可见真核基因组比原核基因组复杂得多,至今人类对真核基因组的认识还很有限,使现在国际上制订的人基因组研究计划(human gene project)完成,绘出人全部基因的染色体定位图,测出人基因组109bp全部DNA序列后,要搞清楚人全部基因的功能及其相互关系,特别是要明了基因表达调控的全部规律,还需要经历很长期艰巨的研究过程。
二、真核基因表达调控的特点尽管我们现在对真核基因表达调控知道还不多,但与原核生物比较它具有一些明显的特点。
(一)真核基因表达调控的环节更多如前所述,基因表达是基因经过转录、翻译、产生有生物活性的蛋白质的整个过程。
同原核生物一样,转录依然是真核生物基因表达调控的主要环节。
但真核基因转录发生在细胞核(线粒体基因的转录在线粒体内),翻译则多在胞浆,两个过程是分开的,因此其调控增加了更多的环节和复杂性,转录后的调控占有了更多的分量。
右图总结了以前章节叙述过的基因表达过程,并作了一些新补充。
图中标出了真核细胞在分化过程中会发生基因重排(gene rearrangement),即胚原性基因组中某些基因会再组合变化形成第二级基因。
例如编码完整抗体蛋白的基因是在淋巴细胞分化发育过程中,由原来分开的几百个不同的可变区基因经选择、组合、变化,与恒定区基因一起构成稳定的、为特定的完整抗体蛋白编码的可表达的基因。
这种基因重排使细胞可能利用几百个抗体基因的片段,组合变化而产生能编码达108种不同抗体的基因,其中就有复杂的基因表达调控机理。
此外,真核细胞中还会发生基因扩增(gene amplification),即基因组中的特定段落在某些情况下会复制产生许多拷贝。
最早发现的是蛙的成熟卵细胞在受精后的发育过程中其rRNA基因(可称为rDNA)可扩增2000倍,以后发现其他动物的卵细胞也有同样的情况,这很显然适合了受精后迅速发育分裂要合成大量蛋白质,需要有大量核糖体。
又如MTX(methotrexate)是叶酸的结构类似物,一些哺乳类细胞会对含有利用叶酸所必需的二氢叶酸还原酶(dihydrofolate reductase, DHFR)基因的DNA区段扩增40-100倍,使DHFR的表达量显著增加,从而提高对MTX的抗性。
基因的扩增无疑能够大幅度提高基因表达产物的量,但这种调控机理至今还不清楚。
(二)真核基因的转录与染色质的结构变化相关真核基因组DNA绝大部分都在细胞核内与组蛋白等结合成染色质,染色质的结构、染色质中NA和组蛋白的结构状态都影响转录,至少有以下现象:1. 染色质结构影响基因转录细胞分裂时染色体的大部分到间期时松开分散在核内,称为常染色质(euchromatin),松散的染色质中的基因可以转录。
染色体中的某些区段到分裂期后不像其他部分解旋松开,仍保持紧凑折叠的结构,在间期核中可以看到其浓集的斑块,称为异染色质(heterochromatin),其中从未见有基因转录表达;原本在常染色质中表达的基因如移到异染色质内也会停止表达;哺乳类雌体细胞2条X染色体,到间期一条变成异染色质者,这条X染色体上的基因就全部失活。
可见紧密的染色质结构阻止基因表达。
2. 组蛋白的作用早期体外实验观察到组蛋白与DNA结合阻止DNA上基因的转录,去除组蛋基因又能够转录。
组蛋白是碱性蛋白质,带正电荷,可与DNA链上带负电荷的磷酸基相结合,从而遮蔽了DNA分子,妨碍了转录,可能扮演了非特异性阻遏蛋白的作用;染色质中的非组蛋白成分具有组织细胞特异性,可能消除组蛋白的阻遏,起到特异性的去阻遏促转录作用。
发现核小体后,进一步观察核小体结构与基因转录的关系,发现活跃转录的染色质区段,有富含赖氨酸的组蛋白(H1组蛋白)水平降低,H2A·H2B组蛋白二聚体不稳定性增加、组蛋白乙酰化(acetylation)和泛素化(ubiquitination),以及H3组蛋白巯基化等现象,这些都是核小体不稳定或解体的因素或指征。
转录活跃的区域也常缺乏核小体的结构。
这些都表明核小体结构影响基因转录。
3. 转录活跃区域对核酸酶作用敏感度增加染色质DNA受DNase Ⅰ作用通常会被降解成100、400……bp的片段,反映了完整的核小体规则的重复结构。
但活跃进行转录的染色质区域受DNase Ⅰ消化常出现100-200bp 的DNA片段,且长短不均一,说明其DNA受组蛋白掩盖的结构有变化,出现了对DNase Ⅰ高敏感点(hypersensitive site)。
这种高敏感点常出现在转录基因的5′侧区(5′ flanking region)、3′末端或在基因上,多在调控蛋白结合位点的附近,分析该区域核小体的结构发生变化,可能有利于调控蛋白结合而促进转录4. DNA拓扑结构变化天然双链DNA的构象大多是负性超螺旋。
当基因活跃转录时,RNA聚合酶转录方向前方DNA的构象是正性超螺旋,其后面的DNA为负性超螺旋。
正性超螺旋会拆散核小体,有利于RNA聚合酶向前移动转录;而负性超螺旋则有利于核小体的再形成。
5. DNA碱基修饰变化真核DNA中的胞嘧啶约有5%被甲基化为5-甲基胞嘧啶(5-methylcytidine,m5C),而活跃转录的DNA段落中胞嘧啶甲基化程度常较低。
这种甲基化最常发生在某些基因5’侧区的CpG 序列中,实验表明这段序列甲基化可使其后的基因不能转录,甲基化可能阻碍转录因子与DNA特定部位的结合从而影响转录。
如果用基因打靶的方法除去主要的DNA甲基化酶,小鼠的胚胎就不能正常发育而死亡,可见DNA的甲基化对基因表达调控是重要的。
由此可见,染色质中的基因转录前先要有一个被激活的过程,但目前对激活机制还缺乏认识。
(三)真核基因表达以正性调控为主真核RNA聚合酶对启动子的亲和力很低,基本上不依靠自身来起始转录,需要依赖多种激活蛋白的协同作用。
真核基因调控中虽然也发现有负性调控元件,但其存在并不普遍;真核基因转录表达的调控蛋白也有起阻遏和激活作用或兼有两种作用者,但总的是以激活蛋白的作用为主。
即多数真核基因在没有调控蛋白作用时是不转录的,需要表达时就要有激活的蛋白质来促进转录。
换言之:真核基因表达以正性调控为主导。
三、真核基因转录水平的调控真核细胞的三种RNA聚合酶(Ⅰ、Ⅱ和Ⅲ)中,只有RNA聚合酶Ⅱ能转录生成mRNA,以下主要讨论RNA聚合酶Ⅱ的转录调控。
(一)顺式作用元件(cis acting elements)真核基因的顺式调控元件是基因周围能与特异转录因子结合而影响转录的DNA序列。
其中主要是起正性调控作用的顺式作用元件,包括启动子(promoter)、增强子(enhancer);近年又发现起负性调控作用的元件棗沉寂子(silencer)。
1.启动子与原核启动子的含义相同,是指RNA聚合酶结合并起动转录的DNA序列。
但真核同启动子间不像原核那样有明显共同一致的序列,而且单靠RNA聚合酶难以结合DNA而起动转录,而是需要多种蛋白质因子的相互协调作用,不同蛋白质因子又能与不同DNA序列相互作用,不同基因转录起始及其调控所需的蛋白因子也不完全相同,因而不同启动子序列也很不相同,要比原核更复杂、序列也更长。
真核启动子一般包括转录起始点及其上游约100-200bp序列,包含有若干具有独立功能的DNA序列元件,每个元件约长7-30bp。
以上所述是典型的启动子上转录复合体的形成,但有的真核启动子不含TATA盒或不通过TATA盒开始转录。
例如有的无TATA盒的启动子是靠TFⅡ-I和TFⅡ-D共同组成稳定的转录起始复合体开始转录的。
由此可以看到真核转录起始的复杂性。
不同基因由不同的上游启动子元件组成,能与不同的转录因子结合,这些转录因子通过与基础的转录复合体作用而影响转录的效率。
现在已经发现有许多不同的转录因子,看到的现象是:同一DNA序列可被不同的蛋白因子所识别;能直接结合DNA序列的蛋白因子是少数,但不同的蛋白因子间可以相互作用,因而多数转录因子是通过蛋白质-蛋白质间作用与DNA序列联系并影响转录效率的。