预混燃烧

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、预混燃烧的基本介绍

1.贫燃预混燃烧的介绍

贫燃预混燃烧是在保证燃料充分燃烧的情况下,增大空气的供给量,从而降低燃烧

室的温度,满足较低的污染物排放标准(可以做到低NOx的排放)。但是与常规的扩散燃烧技术相比,贫燃预混燃烧是在偏离正常化学当量比下进行的,这就会产生燃烧的不稳定性(主要包括回火以及振荡燃烧),严重阻碍了贫燃预混燃烧技术的发展。

维持贫燃预混燃烧室内的正常燃烧,其关键就在于避免火焰的吹熄与振荡燃烧。

火焰吹熄现象是因为燃烧室内当量比被控制在接近贫燃熄火极限,以便尽量降低火焰温度以及的排放,而在这种燃烧状况下,火焰传播速度很低,在相对高速的火焰流场中,会导致火焰的熄灭现象,这种现象发生的时间很短,被称为静态不稳定。

因此要避免火焰吹熄,维持预混火焰的稳定燃烧,关键就在于保持火焰燃烧速度与流场速度的平衡,可从以下两种方法着手:①提高燃烧速度;②降低燃气供给速度。提高燃烧速度可使用端流产生器提高火焰瑞流强度,而降低燃气平均速度可以通过减少燃气供给做到,但是燃机的总效率也会下降,通常采用在燃烧室内安装钝体稳焰器或在燃烧室避免加工凹槽形成局部低速区域,使火焰燃烧速率与流场速率均衡,以便维持火焰的燃烧。另外除上述方法外,旋流因为其特殊的流动特性,也常用于稳定湍流火焰。

预混燃烧的不稳定受燃料种类、进气温度、燃料一空气过量空气系数、燃烧室几何参数、燃烧室温度以及压力等众多参数的影响。

按压力振荡频率可将燃烧不稳定分为:低频振荡、中频振荡、高频振荡。按照压力振荡涉及的燃烧系统部件可以将其定义为三类:燃烧系统不稳定、燃烧室腔体不稳定以及固有燃烧不稳定。根据燃烧系统内不同扰动间的相互关系,可将燃烧不稳定分为受迫燃烧不稳

定和自激燃烧不稳定,也可称为受迫振荡和自激振荡。

二、国内外研究现状及进展

Lieuwen等人对预混燃烧室内的燃烧不稳定性进行了理论和实验研宄,将预混燃烧室分为进口区域、燃烧区域以及燃烧产物区域三个部分,用“完全撞拌反应器”模型(WSR)对当量比波动引起燃烧热释放波动的机理进行了描述和分析。

Hirsch等人对旋流预混燃烧进行了研究并建立了火焰模型,流场模型结果如图1所示,将涡方程加入到火焰模型中,提出了一种新的预混旋流火焰的火焰传递函数描述方法,可以描述不同类型旋流燃烧室传热规律,并解释了热释放脉动与速度脉动间的关系。

Russ等人对预混旋流燃烧的火焰模型进行了研究,分析了燃气温度、燃气混合当量比波动以及燃烧室压力脉动等因素与燃烧热释放脉动之间的关系,提出了稳定燃烧的范围。Cohen和Anderson以贫燃预混燃烧室为对象进行了实验研究。研究发现:预混气体当量比

接近贫燃熄火极限时容易产生燃烧不稳定现象,对火焰的纹影图像发现此时火焰出现间歇性脉动,且脉动尺度较大。另外还发现,流场中旋润会在轴向发生周期性脱落,导致燃烧不稳定的产生,且随当量比的减小,燃烧不稳定性加剧。

KT Kim研究了贫燃预混旋流燃烧室(如图2所示)中瑞流火焰对进气速度的动态响应,建立火焰模型对不稳定燃烧进行了分析,预测了对应燃烧室热声振荡频率范围为220Hz和350Hz。

图2 贫燃预混旋流燃烧室示意图

Lee HJ等人分别研究了燃烧室长度、当量比燃料喷射位置等对热声振荡特性的影响规律,研宄表明预混段长度对燃烧热释放强度影响很大,但是对声压脉动与速度脉动之间的相位关系影响不大,对压力信号及CH信号的分析处理确认了不稳定性机理的耦合。

J.C.Broda,S.Seo等人对预混旋流燃烧器(如图3所示)进行了不同条件下的实验研究,研究表明燃烧热释放脉动与压力振荡存在某种联系,可能是导致燃烧不稳定的原因。

图3 实验装置示意图

Hardalupas等研究了预混气当量比以及预混效果对燃烧不稳定性的影响规律,实验发现火焰基部化学当量比波动幅度很大,范围从0.2-1.8波动。

Meier和Stopper等采用天然气为燃料对贫燃预混燃烧进行了实验研究,从不同当量比、燃烧热功率、燃烧室压力等条件进行研究,通过PIV技术观测到在剪切层层存在有不同尺寸的旋祸,并通过OH-PLIF手段对火焰面形状、位置进行分析,研究表明燃烧中主要过程在

剪切层进行,反应区域受流场参数的影响,表明热声振荡燃烧时燃烧热释放脉动与预混气当量比、燃烧室压力、进气速度等参数的脉动有一定联系。

Barlow等对贫燃料预混条件下的燃烧特性进行了研究,研究表明控制空气与燃料的掺混比例可以有效调节燃烧温度,从而可以控制热力型NOx的形成,但是降低温度的同时又会增加CO的产生,温度控制1670K-1900K在左右时,NOx和CO的排放都比较低。

O Tuncer等人以常压下的预混旋流燃烧室为研究对象,对冷态流场与火焰稳定间的关系以及贫燃媳火极限与当量比之间的关系进行了实验研宄,实验过程旋流数为0.74,研究发现,冷态流场也出现了中心回流区,表明反应流场与非反应流场具有相似性。另外在接近贫燃极限,熄火-再燃的过程持续发生。

曹红加对预混火焰燃烧不稳定特性及其控制技术进行了研究(如图4),研究表明燃烧不稳定特性与预混燃气当量比有相当大的关系压力振荡的特征频率随当量比的增大而减小;而燃烧不稳定特性与进气流量的关系较为复杂,燃烧室内的平均压力对压力振荡的特征频率也有较大大的影响其特征频率随燃烧室平均压力的增大而减小。

图4 实验装置和测量系统简图

李国能以Rijke预混燃烧器为实验研究对象进行了实验研究,研究表明预混气当量比对热声不稳定特性有重要影响,表明贫氧条件条更容易激发燃烧不稳定问题。

赵震等人对模型燃烧室在贫油预混条件下的燃烧不稳定性进行了实验研究。实验主要研究了预混气当量比、喷射速度及燃烧室出口面积等因素对不稳定燃烧的频率和幅值的影响。实验表明:在很宽的当量比和速度范围内,均出现了燃烧不稳定现象,压力振荡的频率集中在之间;且随着预混气速度的增加,频率和幅值都随之增加;而随燃烧室出口面积的减小,压力振荡幅值增加而频率却随之减小。

郭志辉,王帅等人研究了常温和常压条件下贫燃预混燃烧的不稳定性,研究表明,随当量比的提高,燃烧经历了从稳定到不稳定的状态,并达到有限循环脉动状态。流动脉动和火焰的相互稱合作用是激发和维持自激振荡燃烧的主要原因。

相关文档
最新文档