概率统计的数学计算解析
概率与统计的基本概念及计算方法
概率与统计的基本概念及计算方法概率与统计是数学中的两个重要分支,它们在各个领域中都有着广泛的应用。
概率与统计的基本概念及计算方法是我们理解和运用这两个概念的基础。
本文将从概率与统计的基本概念入手,深入探讨其计算方法,并结合实际案例进行说明。
一、概率的基本概念概率是研究随机现象的可能性的数学工具。
它描述了某一事件发生的可能性大小。
概率的基本概念包括样本空间、事件和概率的定义。
样本空间是指一个随机试验所有可能结果的集合。
例如,掷一枚骰子的样本空间为{1, 2, 3, 4, 5, 6}。
事件是样本空间的一个子集,它表示我们感兴趣的结果。
例如,掷一枚骰子得到奇数的事件可以表示为{1, 3, 5}。
概率的定义是指一个事件发生的可能性大小,它的取值范围在0到1之间,其中0表示不可能事件,1表示必然事件。
计算概率的方法有频率法和古典概型法。
频率法是通过实验的频率来估计概率。
例如,我们可以通过多次掷骰子的实验,统计出掷出奇数的频率,从而估计出掷出奇数的概率。
古典概型法是指在样本空间中,每个结果发生的可能性相等。
例如,掷一枚均匀的骰子,每个数字出现的可能性相等,所以每个数字的概率为1/6。
二、统计的基本概念统计是研究数据的收集、分析和解释的一门学科。
它通过对一定数量的数据进行分析,推断出总体的特征。
统计的基本概念包括总体和样本、参数和统计量、抽样和抽样误差。
总体是指研究对象的全体,它包含了我们感兴趣的所有个体。
例如,我们想研究全国人口的平均身高,那么全国所有人口就是我们的总体。
样本是从总体中选取的一部分个体,它是总体的一个子集。
参数是用来描述总体特征的数值,例如总体的平均值、方差等。
统计量是用来描述样本特征的数值,例如样本的平均值、方差等。
抽样是从总体中选取样本的过程。
为了保证抽样的公正性和代表性,我们通常采用随机抽样的方法。
抽样误差是指样本统计量与总体参数之间的差异。
由于样本是从总体中选取的一部分,所以样本统计量与总体参数之间存在一定的误差。
高中数学中的概率统计计算期望与方差的技巧
高中数学中的概率统计计算期望与方差的技巧概率统计是高中数学中的重要内容,计算期望与方差是其中的关键技巧。
本文将介绍几种常见的计算期望与方差的技巧,以帮助读者更好地理解和应用这些知识。
一、离散型随机变量的期望与方差计算对于离散型随机变量X,其概率分布列为P(X=x),而期望和方差的计算公式如下:1. 期望计算期望E(X)表示随机变量X的平均值,计算公式为:E(X) = Σ[x * P(X=x)]其中,Σ表示对所有可能取值的求和。
通过遍历所有可能取值,将取值与其对应的概率相乘,再求和,即可得到期望值。
2. 方差计算方差Var(X)表示随机变量X的离散程度,计算公式为:Var(X) = Σ[(x - E(X))^2 * P(X=x)]同样,通过遍历所有可能取值,将每个取值减去期望值,再平方,再与其对应的概率相乘,最后再求和,即可得到方差值。
这种计算方法适用于离散型随机变量的期望和方差计算,例如投掷一枚骰子的结果、抽取一副扑克牌的点数等情况。
二、连续型随机变量的期望与方差计算对于连续型随机变量X,其概率密度函数为f(x),而期望和方差的计算公式如下:1. 期望计算期望E(X)的计算公式为:E(X) = ∫(x * f(x))dx其中,∫表示对整个定义域的积分。
通过对概率密度函数乘以x后再积分,即可得到期望值。
2. 方差计算方差Var(X)的计算公式为:Var(X) = ∫[(x - E(X))^2 * f(x)]dx同样,通过对概率密度函数乘以(x - E(X))的平方后再积分,即可得到方差值。
这种计算方法适用于连续型随机变量的期望和方差计算,例如正态分布、指数分布等情况。
三、应用技巧下面将介绍一些计算期望与方差时的常用技巧:1. 期望的线性性质如果X和Y是两个随机变量,a和b为常数,则有:E(aX + bY) = aE(X) + bE(Y)这是期望的线性性质,利用这个性质可以简化复杂随机变量的期望计算。
初二数学中常见的概率统计问题解析
初二数学中常见的概率统计问题解析概率统计是初中数学中的一个重要部分,也是现实生活中经常出现的问题。
通过概率统计的学习,我们可以了解到一些日常生活中的规律,并且可以帮助我们更好地理解世界。
本文将对初二数学中常见的概率统计问题进行解析,帮助读者更好地掌握相关知识。
一、随机事件及其概率在概率统计中,随机事件是一个非确定性事件,即其结果不仅仅由自身的性质决定,还受到一些概率因素的影响。
我们可以通过概率的方法来描述随机事件的可能性大小。
概率的大小用一个介于0和1之间的数来表示,其中0表示不可能发生,1表示必然发生。
例如,掷一枚骰子,随机事件A为掷出的点数为奇数。
在一次掷骰子的过程中,点数为奇数的可能结果有3个,即1、3、5,共有6个可能结果。
所以事件A发生的概率为3/6,即1/2。
二、排列与组合在概率统计中,排列与组合是常见的问题。
排列是指从一堆元素中选取若干个元素进行排序,而组合则是从一堆元素中选取若干个元素,不考虑其顺序。
这两种方法在解决问题时很常见。
例如,有5个不同的水果,想选取3个水果放在一个篮子里。
如果考虑顺序,即认为放入篮子的顺序是不同的,那么总共有5*4*3=60种可能性。
如果不考虑顺序,即认为放入篮子的顺序是相同的,那么总共有5(C)3=10种可能性。
三、事件间的关系在概率统计中,我们经常需要考虑事件间的关系。
常见的事件关系包括:互斥事件、独立事件和相互依赖事件。
互斥事件是指两个事件不可能同时发生。
例如,抛掷一枚硬币,事件A为正面朝上,事件B为反面朝上。
显然,事件A与事件B是互斥事件,它们不能同时发生。
独立事件是指两个事件之间没有任何关系。
例如,抛掷一枚硬币两次,第一次正面朝上的概率和第二次正面朝上的概率是相互独立的,它们之间没有任何关系。
相互依赖事件是指两个事件之间存在某种联系。
例如,抽取一张红色或者黑色的扑克牌,事件A为抽到红色牌,事件B为抽到黑色牌。
显然,事件A与事件B是相互依赖的,因为它们是互斥的。
概率与统计的计算方法
概率与统计的计算方法概率与统计是数学中一门重要的学科,它探讨了随机事件的结果以及如何通过数据进行统计分析的方法。
计算概率和统计数据是概率与统计学习的基础,本文将介绍一些常见的概率与统计计算方法。
一、概率计算方法概率计算是研究随机试验中事件发生可能性的方法,常用的概率计算方法有以下几种:1. 古典概率计算方法古典概率计算方法适用于试验结果有限且等可能出现的情况。
古典概率计算公式为:P(A) = m/n,其中A为事件,m为事件A发生的可能结果数,n为试验的总结果数。
通过古典概率计算方法,我们可以简单地计算出某个事件发生的概率。
2. 条件概率计算方法条件概率计算方法是研究在已知某一事件已经发生的条件下,另一事件发生的可能性。
条件概率计算公式为:P(B|A) = P(A∩B)/P(A),其中P(A∩B)为事件A和事件B同时发生的概率,P(A)为事件A发生的概率。
拥有条件概率计算方法,我们可以更加准确地计算出两个事件相关性的概率。
3. 边缘概率计算方法边缘概率计算方法是研究多个事件之间的概率关系的方法。
边缘概率计算公式为:P(A) = ΣP(A∩B),其中B为一个事件的可能取值集合。
通过边缘概率计算方法,我们可以计算出多个事件的概率。
二、统计计算方法统计计算是通过对数据的收集、整理和分析来获得有关经验的数字结果的方法,常用的统计计算方法有以下几种:1. 数据收集和整理方法数据收集和整理是统计分析的基础,常用的数据收集和整理方法有问卷调查、实验观察、抽样调查等。
在统计计算中,我们需要确保数据的准确性和完整性,以便进行后续的分析。
2. 描述统计计算方法描述统计计算方法是对数据进行总结和描述的方法。
常用的描述统计计算方法有中心趋势测度(如平均值、中位数、众数)、离散趋势测度(如方差、标准差)和数据的分布特征(如频率分布表、直方图)。
通过描述统计计算方法,我们可以对数据进行概括性的分析。
3. 推断统计计算方法推断统计计算方法是通过样本数据来进行总体数据的推断的方法。
初中数学解题技巧之概率与统计问题的解析思路
初中数学解题技巧之概率与统计问题的解析思路概率与统计是数学中的一门重要的分支,也是初中数学中的一项重要内容。
在初中阶段,学生们需要掌握解决概率与统计问题的技巧和思路。
本文将对初中数学解题技巧之概率与统计问题的解析思路进行探讨,帮助学生们更好地理解和解决该类问题。
一、概率问题的解析思路概率问题常常涉及到对事件发生的可能性作出估计,需要通过计算得出准确的概率值。
解决概率问题的思路大致如下:1. 理解问题:首先要理解题目中所给出的条件和待求解的问题。
需要确定问题中所涉及的事件和样本空间,并明确求解的具体内容。
2. 列举样本空间:根据问题中所给出的条件,列举可能出现的所有情况,形成样本空间。
样本空间应该包含所有可能的结果,且每个结果应该是互不相同的。
3. 计算事件发生的可能性:计算事件发生的可能性时,可以利用概率的定义,即某个事件发生的次数除以样本空间的总个数。
通过计算可以得出事件发生的概率。
4. 分析结果:对得出的结果进行分析,与实际情况相结合,看是否符合预期。
同时,需要根据问题的要求,进行进一步的推理和计算。
二、统计问题的解析思路统计问题是通过收集、整理和分析数据,从而得出结论的一种方法。
解决统计问题的思路大致如下:1. 收集数据:收集所需要的数据,可以通过调查问卷、实地观察、实验记录等方式得到数据。
2. 整理数据:将收集到的数据进行整理,可以采用表格、图表或者统计图等形式进行展示,以便更好地理解和分析数据。
3. 分析数据:根据问题所给出的条件和要求,对数据进行分析。
可以通过计算平均值、众数、中位数等统计指标,来揭示数据的特征和规律。
4. 得出结论:通过对数据的分析和计算,得出结论并进行解释。
结论应该能够回答问题,并且符合实际情况。
三、概率与统计问题的练习技巧为了更好地掌握概率与统计问题的解题方法,以下是一些练习技巧供参考:1. 多做题目:通过大量的练习题目,可以熟悉各种类型的概率与统计问题,提高对问题的理解和解决能力。
高中数学中的概率统计应用概率分布计算期望与方差的技巧
高中数学中的概率统计应用概率分布计算期望与方差的技巧概率统计是高中数学的重要内容之一,其应用广泛且重要。
在概率统计中,我们经常遇到需要计算随机变量的期望和方差的问题。
概率分布是解决这些问题的关键工具之一。
在本文中,我们将介绍一些高中数学中常见的概率分布,以及计算期望和方差的技巧。
1. 离散概率分布离散概率分布指的是随机变量只能取有限个或可列个值的概率分布。
其中,最常见的离散概率分布有二项分布、泊松分布和几何分布。
1.1 二项分布二项分布在实际问题中经常出现,特别是在重复试验的情况下。
假设有n个独立的重复试验,每次试验有成功和失败两种可能结果。
如果成功的概率为p,失败的概率为q=1-p,则随机变量X表示n次试验中成功的次数。
二项分布的概率密度函数为:P(X=k) = C(n,k) * p^k * q^(n-k)其中,C(n,k)表示组合数。
二项分布的期望和方差的计算公式如下:E(X) = npVar(X) = npq1.2 泊松分布泊松分布适用于描述单位时间或空间内随机事件发生的次数。
例如,某地区每小时的交通事故数、每天接到的电话数等。
泊松分布的概率密度函数为:P(X=k) = (λ^k * e^(-λ)) / k!其中,λ代表单位时间或单位空间内平均发生的次数。
泊松分布的期望和方差的计算公式如下:E(X) = Var(X) = λ1.3 几何分布几何分布用于描述一系列独立重复试验中,首次成功所需的试验次数。
例如,投掷一枚硬币直到首次出现正面的次数等。
几何分布的概率密度函数为:P(X=k) = q^(k-1) * p其中,p表示成功的概率,q=1-p表示失败的概率。
几何分布的期望和方差的计算公式如下:E(X) = 1/pVar(X) = q/(p^2)2. 连续概率分布连续概率分布指的是随机变量可以取某个区间内的任意值的概率分布。
最常见的连续概率分布有均匀分布、正态分布和指数分布。
2.1 均匀分布在均匀分布中,随机变量在某一区间内的取值是等可能的。
高中数学概率与统计的常见题型解析
高中数学概率与统计的常见题型解析概率与统计是高中数学中的一门重要课程,也是学生们普遍感觉较难的一部分内容。
在考试中,概率与统计题型占比较大,因此对于这部分知识的掌握至关重要。
本文将结合常见的概率与统计题型,进行解析和说明,帮助高中学生和他们的父母更好地理解和应对这些题目。
一、事件概率计算题事件概率计算题是概率与统计中的基础题型,也是最常见的题型之一。
这类题目要求计算某个事件发生的概率。
例如:【例题】已知一副扑克牌中有52张牌,其中红心牌有13张。
从中随机抽取一张牌,求抽到红心牌的概率。
解析:这是一个典型的事件概率计算题。
根据题目所给的信息,我们知道红心牌有13张,总共有52张牌,因此红心牌的概率为13/52,即1/4。
这类题目的考点在于理解概率的定义,并且能够根据题目给出的条件计算出事件发生的概率。
在解题过程中,可以通过简化分数、约分等方法,使计算更加简便。
二、排列组合题排列组合题是概率与统计中的另一类常见题型,也是较为复杂的题目之一。
这类题目要求计算事件的排列或组合方式。
例如:【例题】某班有10个学生,要从中选出3个学生组成一支篮球队,求不考虑位置的情况下,有多少种不同的组合方式。
解析:这是一个排列组合题。
我们需要从10个学生中选出3个学生,不考虑位置的情况下,即选出的学生是无序的。
根据组合的定义,我们可以使用组合公式C(n,m) = n!/(m!(n-m)!)进行计算。
代入题目的数据,即C(10,3) = 10!/(3!(10-3)!)=120种不同的组合方式。
这类题目的考点在于理解排列和组合的概念,并且能够根据题目给出的条件进行计算。
在解题过程中,可以使用排列组合公式简化计算,同时注意分子和分母的阶乘运算。
三、事件独立性题事件独立性题是概率与统计中的另一个重要题型,也是较为复杂的题目之一。
这类题目要求判断多个事件之间是否独立。
例如:【例题】甲、乙、丙三个人独立地进行一项考试,他们的及格率分别为0.8、0.9和0.7。
高中数学公式大全概率计算与统计分析的公式推导
高中数学公式大全概率计算与统计分析的公式推导高中数学公式大全——概率计算与统计分析的公式推导概率计算是数学中一个重要的分支,而统计分析则是应用数学在实际问题中进行数据处理和推断的过程。
本文将介绍一些在高中数学中常用的概率计算与统计分析的公式,并给出其推导过程。
一、概率计算公式1.1 事件的概率计算公式在概率论中,我们用P(A)表示事件A发生的概率,事件A的概率可以通过以下公式计算:P(A) = 事件A的发生数 / 样本空间的元素数1.2 条件概率公式条件概率是指在已知事件B发生的条件下,事件A发生的概率。
条件概率可以通过以下公式计算:P(A|B) = P(A∩B) / P(B)其中,P(A∩B)表示事件A与事件B同时发生的概率,P(B)表示事件B发生的概率。
1.3 独立事件的乘法公式当两个事件A和B相互独立时,事件A与事件B同时发生的概率等于事件A发生的概率乘以事件B发生的概率。
数学上可以表示为:P(A∩B) = P(A) * P(B)二、统计分析公式2.1 样本均值的计算公式在统计学中,样本均值是用来度量一组数据的集中程度的重要指标。
对于n个样本数据X₁, X₂, ... , Xn,样本均值可以通过以下公式计算:x = (X₁ + X₂ + ... + Xn) / n其中,x表示样本均值。
2.2 样本方差的计算公式样本方差是用来度量一组数据的离散程度的指标。
对于n个样本数据X₁, X₂, ... , Xn,样本方差可以通过以下公式计算:S² = [(X₁ - x)² + (X₂ - x)² + ... + (Xn - x)²] / (n-1)其中,S²表示样本方差,x表示样本均值。
2.3 假设检验中的t检验公式t检验是一种常用的假设检验方法,用于判断两组或多组数据之间差异的显著性。
对于两个独立样本的t检验,可以使用以下公式计算t 值:t = (x₁ - x₂) / sqrt(S₁²/n₁ + S₂²/n₂)其中,x₁和x₂分别表示两个样本的均值,S₁²和S₂²分别表示两个样本的方差,n₁和n₂分别表示两个样本的样本容量。
概率与统计 高中数学讲义解析版
第九章概率与统计9.1 两个计数原理、排列与组合1.通过实例,了解分类加法计数原理、分步乘法计数原理及其意义.2.通过实例,理解排列、组合的概念;能利用计数原理推导排列数公式、组合数公式.【教材梳理】1.分类加法计数原理与分步乘法计数原理(1)分类加法计数原理①定义:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法.②拓展:完成一件事,如果有n类方案,且:第1类方案中有m1种不同的方法,第2类方案中有m2种不同的方法,… ,第n类方案中有m n种不同的方法,那么完成这件事共有N=m1+m2+⋯+m n种不同的方法.(2)分步乘法计数原理①定义:完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.②拓展:完成一件事,如果需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,… ,做第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×…×m n种不同的方法.2.排列与组合(1)排列:一般地,从n个不同元素中取出m(m≤n)个元素,并按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.两个排列相同的充要条件是:两个排列的元素完全相同,且元素的排列顺序也相同.(2)排列数做从n 个不同元素中取出m 个元素的一个组合.(4)组合数3.A n m =(n −m +1)A n m−1=nA n−1m−1 ;(n +1)!−n!=n ⋅n! .4.kC n k =nC n−1k−1 ;C n m =C n−1m−1+C n−2m−1+⋯+C m−1m−1 .1. 判断下列命题是否正确,正确的在括号内画“√”,错误的画“×”.(1) 在分类加法计数原理中,每类方案中的方法都能直接完成这件事.( √ ) (2) 在分步乘法计数原理中,事情是分两步完成的,其中任何一个单独的步骤都能完成这件事.( × )(3) 所有元素完全相同的两个排列为相同排列.( × )(4) (n +1)!−n !=n ⋅n ! .( √ )(5) kC n k =nC n−1k−1 .( √ )2. 公共汽车上有10位乘客,沿途5个车站,所有乘客下车的可能方式有( D )A. A 105 种B. C 105 种C. 105 种D. 510 种[解析]解:所有乘客下车的可能方式有510 种.故选D.3. (教材改编题)已知集合M ={1,−2,3} ,N ={−4,5,6,−7} ,从M ,N 这两个集合中各选一个元素分别作为点的横坐标、纵坐标,则这样的坐标在直角坐标系中可表示第一、第二象限内不同的点的个数是( C )A. 12B. 8C. 6D. 4[解析]解:分两步:第一步先确定横坐标,有3种情况,第二步再确定纵坐标,有2种情况,因此第一、二象限内不同点的个数是3×2=6 .故选C.4. 已知n ,m 为正整数,且n ≥m ,则下列各式中正确的个数是( C )①A 63=120 ;②A 127=C 127A 77 ;③C n m +C n+1m =C n+1m+1 ;④C n m =C n n−m .A. 1B. 2C. 3D. 4[解析]解:对于①,A 63=6×5×4=120 ,故①正确;对于②,因为C 127=A 127A 77 ,所以A 127=C 127A 77 ,故②正确;对于③,因为C n m +C n m−1=C n+1m ,所以C n m+1+C n m =C n+1m+1 ,故③错误;对于④,C n m =C n n−m ,故④正确.故选C.考点一 分类加法计数原理与分步乘法计数原理例1 (1) 满足a ,b ∈{−1,0,1,2} ,且关于x 的方程ax 2+2x +b =0 有实数解的有序数对(a,b) 的个数为13.[解析]解:当a =0 时,b 的值可以是−1 ,0 ,1 ,2 ,故(a,b) 的个数为4;当a ≠0 时,要使方程ax 2+2x +b =0 有实数解,需使Δ=4−4ab ≥0 ,即ab ≤1 .若a =−1 ,则b 的值可以是−1 ,0 ,1 ,2 ,(a,b) 的个数为4;若a =1 ,则b 的值可以是−1 ,0 ,1 ,(a,b) 的个数为3;若a =2 ,则b 的值可以是−1 ,0 ,(a,b) 的个数为2.由分类加法计数原理可知,(a,b) 的个数为4+4+3+2=13 .故填13.(2) 某旅游景区有如图所示A 至H 共8个停车位,现有2辆不同的白色车和2辆不同的黑色车,要求相同颜色的车不停在同一行也不停在同一列,则不同的停车方法总数为( B )A. 288B. 336C. 576D. 1 680[解析]解:第一步:排白车,第一行选一个位置,则第二行有三个位置可选,由于车是不相同的,故白车的停法有4×3×2=24(种).第二步:排黑车,若白车选AF,则黑车有BE,BG,BH,CE,CH,DE,DG共7种选择,黑车是不相同的,故黑车的停法有2×7=14(种).根据分步计数原理,共有24×14=336(种),故选B.(3)(教材改编题)某儿童游乐园有5个区域要涂上颜色,现有四种不同颜色的油漆可供选择,要求相邻区域不能涂同一种颜色,则符合条件的涂色方案种数为( D )A. 36B. 48C. 54D. 72[解析]解:如图,将五个区域分别记为①,②,③,④,⑤.涂色分为5步完成,前三步涂区域①②③,有4×3×2=24(种)方法.后两步涂区域④⑤,可分为两类:区域②④涂色相同,有1×2种方案;区域②,④涂色不相同,有1×1种方案.所以不同的涂色方案共有24×(1×2+1×1)=72(种).故选D.【点拨】解答计数应用问题的总体思路:根据完成事件所需的过程,对事件进行整体分类,确定可分为几大类,整体分类以后,再确定在每类中完成事件要分几个步骤,这些问题都弄清楚了,就可以根据两个基本原理解决问题了.此外,还要掌握一些非常规计数方法,如:①枚举法:将各种情况一一列举出来,它适用于种数较少且计数对象不规律的情况;②转换法:转换问题的角度或转换成其他已知问题;③间接法:若用直接法比较复杂,难以计数,则可考虑利用正难则反的策略,先计算其反面情形,再用总数减去即得.变式1.(1)从2,3,4,5,6,7,8,9这8个数中任取2个不同的数分别作为一个对数的底数和真数,则可以组成不同对数值的个数为( D )A. 56B. 54C. 53D. 52[解析]解:在8个数中任取2个不同的数共有8×7=56个对数值,但在这56个数值中,log24=log39,log42=log93,log23=log49,log32=log94,即满足条件的对数值共有56−4=52(个).故选D.(2)某学校有东、南、西、北四个校门.翻新改造期间,学校对进入四个校门做出如下规定:学生只能从东门或西门进入校园,教师只能从南门或北门进入校园.现有3名教师和4名学生要进入校园(不分先后顺序),请问进入校园的方式共有128种.(用数字作答)[解析]解:因为学生只能从东门或西门进入校园,所以4名学生进入校园的方式共24=16种.因为教师只能从南门或北门进入校园,所以3名教师进入校园的方式共有23=8种.所以3名教师和4名学生要进入校园的方式共有16×8= 128种.故填128.(3) [2023届湖南长郡中学高三入学考试]某城市在中心广场建造一个花圃,花圃分为6个部分,如图所示.现要栽种4种不同颜色的花,每部分栽种一种,且相邻部分不能栽种同样颜色的花,则不同的栽种方法有( B )A. 80种B. 120种C. 160种D. 240种[解析]解:第一步,对1号区域栽种,有4种选择.第二步,对2号区域栽种,有3种选择.第三步,对3号区域栽种,有2种选择.第四步,对5号区域栽种,分为三种情况:①5号与2号颜色相同,则4号仅有1种选择,6号有2种选择;②5号与3号颜色相同,情况与①类似;③5号与2,3号颜色都不同,则4,6号只有1种选择.所以共有4×3×2×(1×2×2+1×1)=120(种).故选B.考点二排列、组合的基本问题命题角度1 排列的基本问题例2 有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数. (1)选其中5人排成一排;[答案]解:从7个人中选5个人排,排法总数有A75=7×6×5×4×3=2 520(种).(2)排成前后两排,前排3人,后排4人;[答案]分两步完成,先选3人排在前排,有A73种方法,余下4人排在后排,有A44种方法,故共有A73A44=5 040(种).另解:本题即为7人排成一排的全排列.(3)全体排成一排,甲不站排头也不站排尾;[答案](优先法)(方法一)甲为特殊元素.先排甲,有5种方法,其余6人有A66种方法,故共有5×A66=3 600(种).(方法二)排头与排尾为特殊位置.排头与排尾从除甲的其余6个人中选2个排列,有A62种方法,中间5个位置由余下4人和甲进行全排列,有A55种方法,共有A62×A55=3 600(种).(4)全体排成一排,女生必须站在一起;[答案](捆绑法)将女生看成一个整体,与3名男生一起全排列,有A44种方法,再将4名女生进行全排列,也有A44种方法,故共有A44A44=576(种).(5)全体排成一排,男生互不相邻;[答案](插空法)男生不相邻,而女生不作要求,所以应先排女生,有A44种方法,再在女生之间及首尾空出的5个空位中任选3个空位排男生,有A53种方法,故共有A44A53=1 440(种).(6)全体排成一排,甲、乙两人中间恰好有3人;[答案](捆绑法)把甲、乙及中间3人看作一个整体,第一步:先排甲乙两人,有A22种方法;第二步:从余下5人中选3人排在甲乙中间,有A53种;第三步:把这个整体与余下2人进行全排列,有A 33 种方法.故共有A 22A 53A 33=720(种).(7) 全体排成一排,甲必须排在乙前面(可不相邻);[答案](消序法)7人的全排列有A 77 种,其中甲在乙前面与乙在甲前面各占12 ,故共有A 772=2 520 (种).另解:7个位置中任选5个排除甲、乙外的5人,余下的两个位置甲、乙的排法即定,故有A 75=2 520 (种).(8) 全部排成一排,甲不排在左端,乙不排在右端.[答案]甲、乙为特殊元素,左、右两端为特殊位置.(方法一)(特殊元素法)甲在最右端时,其他的可全排,有A 66 种;甲不在最右端时,可从余下5个位置中任选一个,有A 51 种,而乙可排在除去最右端位置后剩余的5个中的任意一个上,有A 51 种,其余人全排列,共有A 51A 51A 55 种.由分类加法计数原理,共有A 66+A 51A 51A 55=3 720 (种).(方法二)(特殊位置法)先排最左端,除去甲外,有A 61 种,余下6个位置全排,有A 66 种,但应剔除乙在最右端时的排法A 51A 55 种,因此共有A 61A 66−A 51A 55=3 720 (种).方法三(间接法):7个人全排,共A 77 种,其中,不合条件的有甲在最左端时,有A 66 种,乙在最右端时,有A 66 种,其中都包含了甲在最左端,同时乙在最右端的情形,有A 55 种.因此共有A 77−2A 66+A 55=3 720 (种).【点拨】有约束条件的排列问题一般有以下几种基本类型与方法:①特殊元素优先考虑;②对于相邻问题采用“捆绑法”,整体参与排序后,再考虑“捆绑”部分的排序;③对于不相邻问题,采用“插空”法,先排其他元素,再将不相邻元素插入空档;④对于定序问题,可先不考虑顺序限制,排列后再除以定序元素的全排列数.变式2. 【多选题】某学院学生会的3名男生和2名女生在社区参加志愿者活动,结束后这5名同学排成一排合影留念,则下列说法正确的是( BCD )A. 若让其中的男生甲排在两端,则这5名同学共有24种不同的排法B. 若要求其中的2名女生相邻,则这5名同学共有48种不同的排法C. 若要求其中的2名女生不相邻,则这5名同学共有72种不同的排法D. 若要求其中的1名男生排在中间,则这5名同学共有72种不同的排法[解析]解:对于A,男生甲排在两端,共有2A44=48(种)不同的排法,A错误.对于B,2名女生相邻,共有A22A44=48(种)不同的排法,B正确.对于C,2名女生不相邻,共有A33A42=72(种)不同的排法,C正确;对于D,要求1名男生排在中间,则这5名同学共有3A44=72(种)不同的排法,D正确.故选BCD.命题角度2 组合的基本问题例3 课外活动小组共13人,其中男生8人,女生5人,并且男、女生各指定一名队长.现从中选5人主持某种活动,依下列条件各有多少种选法?(1)只有1名女生;[答案]解:1名女生,4名男生,故共有C51C84=350(种).(2)两队长当选;[答案]将两队长作为一类,其他11个作为一类,故共有C22C113=165(种).(3)至少有1名队长当选;[答案]至少有1名队长当选含有两类:只有1名队长和2名队长.故共有C21C114+ C22C113=825(种).或采用间接法:C135−C115=825(种).(4)至多有2名女生当选;[答案]至多有2名女生含有三类:有2名女生、只有1名女生、没有女生,故选法有C52C83+C51C84+C85=966(种).(5)既要有队长,又要有女生当选.[答案]分两类:第一类女队长当选,有C124种选法;第二类女队长不当选,有C41C73+C42C72+C43C71+C44种选法.故选法共有C124+C41C73+C42C72+C43C71+C44=790(种).【点拨】解组合问题时要注意:①分类时不重不漏;②注意间接法的使用,在涉及“至多”“至少”等问题时,多考虑用间接法(排除法);③应防止出现如下常见错误:如第3小题,先选1名队长,再从剩下的人中选4人得C21C124≠825,请同学们自己找错因.变式3. 【多选题】为响应政府部门号召,某红十字会安排甲、乙、丙、丁四名志愿者奔赴A,B,C三地参加健康教育工作,则下列说法正确的是( BCD )A. 不同的安排方法共有64种B. 若恰有一地无人去,则不同的安排方法共有42种C. 若甲必须去A地,且每地均有人去,则不同的安排方法共有12种D. 若甲、乙两人都不能去A地,且每地均有人去,则不同的安排方法共有14种[解析]解:四人到三地去,一人只能去一地,方法数为34=81,A错误.若恰有一地无人去,则不同的安排方法数是C31(C41+C42+C43)=42,B正确.若甲必须去A地,且每地均有人去,则不同的安排方法数为A33+C31+C32= 12,C正确.若甲、乙两人都不能去A地,且每地均有人去,分甲、乙去同一个地方和不去同一个地方,则不同的安排方法数为2×5+2A22=14,D正确.故选BCD.考点三排列、组合的综合问题命题角度1 分堆与分配问题例4 按下列要求分配6本不同的书,各有多少种不同的分配方式?(1)分成三份,1份1本,1份2本,1份3本;[答案]解:无序不均匀分组问题.先选1本,有C61种选法;再从余下的5本中选2本,有C52种选法;最后余下3本全选,有C33种选法.故共有C61C52C33=60(种).(2)甲、乙、丙三人中,一人得1本,一人得2本,一人得3本;[答案]有序不均匀分组问题.由于甲、乙、丙是不同的三人,在(1)题基础上,还应考虑再分配,共有C 61C 52C 33A 33=360 (种).(3) 平均分成三份,每份2本;[答案]无序均匀分组问题.先分三步,则应是C 62C 42C 22 种方法,但是这里出现了重复.不妨记六本书为A ,B ,C ,D ,E ,F ,若第一步取了AB ,第二步取了CD ,第三步取了EF ,记该种分法为(AB,CD,EF) ,则C 62C 42C 22 种分法中还有(AB,EF,CD) ,(CD,AB,EF) ,(CD,EF,AB) ,(EF,CD,AB) ,(EF,AB,CD) ,共有A 33 种情况,而这A 33 种情况仅是AB ,CD ,EF 的顺序不同,因此只能作为一种分法,故分配方式有C 62C 42C 22A 33=15 (种).(4) 平均分配给甲、乙、丙三人,每人2本;[答案]有序均匀分组问题.在(3)的基础上再分配给3个人,共有分配方式C 62C 42C 22A 33⋅A 33=C 62C 42C 22=90 (种).(5) 分成三份,1份4本,另外两份每份1本;[答案]无序部分均匀分组问题.共有C 64C 21C 11A 22=15 (种).(6) 甲、乙、丙三人中,一人得4本,另外两人每人得1本;[答案]有序部分均匀分组问题.在(5)的基础上再分配给3个人,共有分配方式C 62C 21C 11A 22⋅A 33=90 (种).(7) 甲得1本,乙得1本,丙得4本.[答案]直接分配问题.甲选1本,有C 61 种方法;乙从余下的5本中选1本,有C 51 种方法,余下4本留给丙,有C 44 种方法,故共有分配方式C 61C 51C 44=30 (种).【点拨】平均分配给不同人的分法等于平均分堆的分法乘以堆数的全排列.分堆到位相当于分堆后各堆再全排列,平均分堆不到指定位置,其分法数为:平均分堆到指定位置.对于分堆与分配问题应注意:①处理分配问题要注意先分堆再堆数的阶乘分配;②被分配的元素是不同的(如“名额”等则是相同元素,不适用),位置也应是不同的(如不同的“盒子”);③分堆时要注意是否均匀,如6分成(2,2,2)为均匀分组,分成(1,2,3)为非均匀分组,分成(4,1,1)为部分均匀分组.变式4.(1) [2020年新高考Ⅰ卷]6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( C )A. 120种B. 90种C. 60种D. 30种[解析]解:首先从6名同学中选1名去甲场馆,方法数为C61;然后从其余5名同学中选2名去乙场馆,方法数为C52;最后剩下的3名同学去丙场馆.故不同的安排方法共有C61C52=6×10=60种.故选C.(2)【多选题】2022年北京冬奥会吉祥物“冰墩墩”有着可爱的外表和丰富的寓意,现有5个不同造型的“冰墩墩”,则下列说法正确的是( BCD )A. 把这5个“冰墩墩”装入3个不同的盒内,共有129种不同的装法B. 从这5个“冰墩墩”中选出3个分别送给3位志愿者,每人1个,共有60种选法C. 从这5个“冰墩墩”中随机取出3个,共有10种不同的取法D. 把这5个“冰墩墩”装入3个不同的盒内,每盒至少装一个,共有150种不同的装法[解析]解:对于A,每个“冰墩墩”可选择3个盒子中的任意一个,根据分步乘法原理共有35=243(种)不同的装法,故A错误.对于B,共有C53A33=60(种)选法,故B正确.对于C,共有C53=10(种)不同的取法,故C正确.对于D,若3个盒子中“冰墩墩”的数量为1,1,3,则有C53C31A22=60(种)不同的装法;若3个盒子中“冰墩墩”的数量为1,2,2,则有C51C31C42=90(种).共有60+90=150(种),故D正确.故选BCD.命题角度2 数字排列问题例5 用0,1,2,3,4,5这六个数字:(1)能组成多少个无重复数字的四位奇数?[答案]解:先排个位数,有C31种方法,然后排千位数,有C41种方法,剩下百位和十位任意排,有A42种方法,故所求为C41C31A42=144个.(2)能组成多少个无重复数字且比1 325大的四位数?[答案]分为三类,第一类是千位是2,3,4,5中任意一个,有A41A53个数;第二类是千位是1,且百位是4,5中的一个,有A21A42个数;第三类是千位是1,且百位是3和十位是4,5中的一个,有A21A31个数.故所求为A41A53+A21A42+A21A31=270个.【点拨】对于有限制条件的数字排列问题,先满足特殊元素或特殊位置的要求,再考虑其他元素或位置,同时注意隐含条件:0不能在首位.变式5.(1)设集合A={0,2,4} ,B={1,3,6} .现分别从A,B中任取2个元素组成无重复数字的四位数,其中不能被5整除的数共有( C )A. 64个B. 96个C. 144个D. 152个[解析]解:所求的四位数中,数字含0的数有C21C32C21A33=72个,数字不含0的数有C22C32A44=72个,共有72+72=144个.故选C.(2)用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2不相邻,这样的六位数的个数是32.(用数字作答)[解析]解:任何相邻两个数字的奇偶性不同,且1和2相邻,可分三步:第一步:先将3,5排列,共有A22种排法;第二步:再将4,6插空排列,共有2A22种排法;第三步:将1,2捆绑放到3,5,4,6形成的空中,共有C51种排法.共有A222A22C51=40(种)排法.又任何相邻两个数字的奇偶性不同,共有2A33A33=72(种)排法,所以所求为72−40=32.故填32.【巩固强化】1. 体育场南侧有3个大门,北侧有2个大门,某学生到该体育场练跑步,每个门都可进出,则他进出体育场的方案共有( D )A. 6种B. 10种C. 5种D. 25种[解析]解:该学生进出体育场都有5种可能,故他进出体育场的方案共有5×5=25(种).故选D.2. 某学校为落实“双减政策”,在每天放学后开设拓展课程供学生自愿选择,开学第一周的安排如下表.周内选择编程、书法、足球三门课,则不同的选课方案共有( A )A. 15种B. 10种C. 8种D. 5种[解析]解:若周二选编程,则选课方案有C31C31=9(种);若周三选编程,则选课方案有C21C31=6(种).综上,不同的选课方案共有9+6=15(种).故选A.3. [2023届安徽高三开学考试]如图,“天宫空间站”是我国自主建设的大型空间站,其基本结构包括天和核心舱、问天实验舱和梦天实验舱三个部分. 假设有6名航天员(4男2女)在天宫空间站开展实验,其中天和核心舱安排4人,问天实验舱与梦天实验舱各安排1人,且两名女航天员不在一个舱内,则不同的安排方案种数为( B )A. 14B. 18C. 30D. 36[解析]解:将6名航天员安排在3个实验舱的方案种数为C64C21C11=30(种),其中两名女航天员在一个舱内的方案种数为C42C21C11=12(种).所求为30−12=18(种).故选B.4. 给如图所示的5块区域A,B,C,D,E涂色,要求同一区域用同一种颜色,有公共边的区域使用不同的颜色,现有红、黄、蓝、绿、橙5种颜色可供选择,则不同的涂色方法有( D )A. 120种B. 720种C. 840种D. 960种[解析]解:A有5种颜色可选,B有4种颜色可选,D有3种颜色可选,C,E 均可涂除D的涂色外的其它颜色,均有4种可选.故共有5×4×3×4×4= 960(种)不同的涂色方法.故选D.5. 语文里流行一种特别的句子,正和反读起来都一样的,比如:“清水池里池水清”“中山自鸣钟鸣自山中”,那么在所有的四位数中符合这个规律且四个数字不能都相同的四位数有( A )A. 81个B. 90个C. 100个D. 729个[解析]解:设符合题意的四位数为xyyx,则当x=1时,y=0,2,3,…,9,共9个;当x=2时,y=0,1,3,…,9,共9个;…当x=9时,y=0,1,2,…,8,共9个.由分类加法计数原理可知满足条件的四位数有9×9=81(个).故选A.6. 某校选定甲、乙、丙、丁、戊共5名教师去3个边远地区支教(每地至少1人),其中甲和乙一定不同地,甲和丙必须同地,则不同的选派方案共有( D ) A. 27种 B. 36种 C. 33种 D. 30种[解析]解:因为甲和乙一定不同地,甲和丙必须同地,所以有(2,2,1)和(3,1,1)两种分配方案:①分成(2,2,1)三组,其中甲和丙为一组,从余下3人选出2人组成一组,然后排列,有C32A33=3×3×2=18(种);②分成(3,1,1)三组,在丁、戊中选出1人,与甲丙组成一组,然后排列,有C21A33=2×3×2=12(种).共有18+12=30(种).故选D.7.(1)若C n4>C n6,则n的取值集合是{6,7,8,9} .[解析]解:因为C n4>C n6,所以n≥6,且n!4!(n−4)!>n!6!(n−6)!,所以30>(n−4)(n−5),即(n−10)(n+1)<0,解得−1<n<10.综上,6≤n<10.故n 的取值集合是{6,7,8,9}.(2)C22+C32+C42+⋯+C102=165 .[解析]解:C22+C32+C42+⋯+C102=C33+C32+C42+⋯+C102=C43+C42+⋯+ C102=⋯=C102+C103=C113=165.8. 【多选题】上海某校举办了主题为“党在我心中”的诗歌朗诵比赛.该校高三年级准备从包括甲、乙、丙在内的7名学生中选派4名学生参加,要求甲、乙、丙这3名同学中至少有1人参加,且当这3名同学都参加时,甲和乙的朗诵顺序不能相邻,则下列结论正确的是( BCD )A. 若甲、乙、丙三名同学全参加,则不同的朗诵排列顺序有36种B. 若甲、乙、丙三名同学恰有一人参加,则不同的朗诵排列顺序有288种C. 若甲、乙、丙三名同学恰有二人参加,则不同的朗诵排列顺序有432种D. 选派的4名学生不同的朗诵排列顺序有768种[解析]解:对于A,甲、乙、丙三名同学全参加,有C41A44=96(种)情况,由捆绑法易得其中甲、乙相邻的有C41A22A33=48(种)情况.所以甲、乙、丙三名同学全参加时,甲和乙的朗诵排列顺序不能相邻有96−48=48(种)情况,故A错误.对于B,甲、乙、丙三名同学恰有一人参加,不同的朗诵排列顺序有C43C31A44= 288(种)情况,故B正确.对于C,甲、乙、丙三名同学恰有二人参加时,不同的朗诵排列顺序有C42C32A44=432(种)情况,故C正确.对于D,选派的4名学生不同的朗诵排列顺序有288+432+48=768(种)情况,故D正确.故选BCD.【综合运用】9. 直线l:xa +yb=1,a∈{1,3,5,7},b∈{2,4,6,8} .若l与坐标轴围成的三角形的面积不小于10,则这样的直线的条数为( B )A. 6B. 7C. 8D. 16[解析]解:l与坐标轴围成的三角形的面积为S=12ab≥10,即ab≥20.当a= 1时,不满足;当a=3时,b=8,即1条;当a∈{5,7}时,b∈{4,6,8},此时a的取法有2种,b的取法有3种,则直线l的条数为2×3=6.故满足条件的直线的条数为1+6=7.故选B.10. 洛书,古称龟书,是阴阳五行术数之源,在古代传说中有神龟出于洛水,其甲壳上有此图象(如图),结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四隅黑点为阴数(图中白圈表示的数为阳数,黑点表示的数为阴数).现利用阴数和阳数构成一个四位数,规则如下:(从左往右数)第一位数是阳数,第二位数是阴数,第三位数和第四位数一阴一阳和为7,则这样的四位数的个数有( A )A. 120个B. 90个C. 48个D. 12个[解析]解:根据题意,阳数为1,3,5,7,9,阴数为2,4,6,8.第一位数的选择有5种,第二位数的选择有4种,第三位数和第四位数的组合可以为(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)共6种选择,根据分步乘法计数原理,这样的四位数共有5×4×6=120(个).故选A.11. 如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是( D )A. 48B. 18C. 24D. 36[解析]解:第1类,对于每一条棱,都可以与两个面构成“正交线面对”,这样的“正交线面对”有2×12=24(个);第2类,对于每一条面对角线,都可以与一个对角面构成“正交线面对”,这样的“正交线面对”有12个.所以正方体中“正交线面对”共有24+12=36(个).故选D.12. 【多选题】从1,2,3,4,5,6中任取三个不同的数组成一个三位数,则在所组成的数中( ACD )A. 偶数有60个B. 比300大的奇数有48个C. 个位和百位数字之和为7的数有24个D. 能被3整除的数有48个[解析]解:对于A,先从2,4,6中任取一个数放在个位,再任取两个数放在十位和百位,共有3A52=60(个),故A正确.对于B,若百位数字为3或5,有2×2×4=16(个)三位奇数;若百位数字为4或6,有2×3×4=24(个)三位奇数.则符合题意的三位数有16+24=40(个),故B错误.对于C,个位和百位的数可以是{1,6},{2,5},{3,4}顺序可以交换,再从剩下的数中任选一个放在十位上,共有A22C31C41=24(个),故C正确.对于D,要使组成的数能被3整除,则各位数之和为3的倍数,取出的数有{1,2,3},{1,2,6},{1,3,5},{1,5,6},{2,3,4},{2,4,6},{3,4,5},{4,5,6},共8种情况,所以组成的能被3整除的数有8A33=48(个),故D正确.故选ACD.13. 中国古代十进制的算筹计数法,在数学史上是一个伟大的创造,算筹实际上是一根根同长短的小木棍.如图是利用算筹表示数1-9的一种方法.例如:3可以表示为“”,26可以表示为“”.现有6根算筹,据此表示方法,若算筹不能剩余,则可以用1-9这9个数字表示两位数的个数为16. [解析]解:根据题意,6根算筹可以表示的数字组合为15,19,24,28,33,37,46,68,77.数字组合15,19,24,28,37,46,68中,每组可以表示2个两位数,则可以表示2×7=14(个)两位数;数字组合33,77共可表示2个两位数.则共可表示14+2=16(个)两位数.故填16.【拓广探索】。
高中数学概率与统计的常见题型解析
高中数学概率与统计的常见题型解析随着高中数学课程的深入,概率与统计成为了学生们必修的重要内容之一。
在这个领域里,有许多常见的题型需要我们掌握和熟练运用。
本文将对高中数学概率与统计的常见题型进行解析,帮助同学们更好地理解和应用。
一、概率计算题1.基本原理概率计算题是考察学生对基本原理的理解与运用能力。
基本原理包括“分子数/总数”和“事件发生的次数/总次数”等计算方法。
通常,这类题目要求计算某一事件发生的概率。
2.排列组合排列组合也是概率计算中重要的一部分,常见的排列组合题型有“抽签问题”和“求解概率的可能性”等。
解决这类题目,需要熟悉排列组合的计算方法,并注意根据题目要求确定计算的范围和顺序。
3.条件概率条件概率是指在已知某一条件下发生某一事件的可能性。
解决条件概率题型,需要根据条件和事件的关系确定计算的方法,并利用已知信息进行计算。
二、统计分析题1.数据收集统计分析题通常给出一组数据,要求学生进行整理和计算。
在解决这类题目时,需要注意数据的归类和整理,以及正确选择和运用统计方法。
2.频数分布表频数分布表是将一组数据按照区间进行分类和统计后所得到的表格。
在解答频数分布表的题目时,需要根据给出的条件计算出各个区间的频数和频率,并进行适当的分析和解释。
3.统计图表常见的统计图表有柱状图、折线图、饼图等。
解决统计图表题目时,需要对图表进行仔细观察和理解,计算出各个数据的相关指标,并进行适当的比较和分析。
三、综合题综合题是将概率计算和统计分析相结合,考察学生对概率与统计知识的综合运用能力。
解决综合题的关键在于分析题干给出的条件和要求,运用合适的方法进行计算和分析。
高中数学概率与统计的常见题型解析至此结束。
通过对这些题型的解析和学习,相信同学们对于高中数学概率与统计的应用能力会有很大的提升。
希望同学们能够认真对待这一领域,做好充分的准备,取得优秀的成绩!。
高中数学概率与统计的常见问题解析与实例
高中数学概率与统计的常见问题解析与实例概率与统计是高中数学中的一门重要的数学分支,也是我们日常生活中经常遇到的问题。
在学习概率与统计时,同学们常常会遇到一些困惑和难题。
本文将针对高中数学概率与统计中的常见问题进行解析,并通过实例来说明解题的方法和技巧。
一、概率问题1. 事件的概率计算概率是指某个事件发生的可能性大小。
在计算事件的概率时,我们需要考虑事件的样本空间和事件的发生数。
例如,某班级有30名学生,其中10名男生和20名女生。
现从中随机抽取一名学生,求该学生是男生的概率。
解析:该问题中的样本空间为该班级的所有学生,共30个人。
事件A为该学生是男生,发生数为10。
因此,事件A的概率为10/30=1/3。
2. 多个事件的概率计算当涉及多个事件时,我们需要考虑这些事件之间的关系,如并、或、互斥等。
例如,某班级有30名学生,其中10名男生和20名女生。
现从中随机抽取两名学生,求这两名学生都是男生的概率。
解析:该问题中的样本空间为该班级的所有学生,共30个人。
事件A为第一名学生是男生,事件B为第二名学生是男生。
由于事件A和事件B是相互独立的,所以这两个事件同时发生的概率为事件A的概率乘以事件B的概率,即10/30 *9/29 = 3/29。
二、统计问题1. 数据的收集和整理在统计问题中,数据的收集和整理是非常重要的。
例如,某班级的学生进行了一次数学测验,得分如下:80,85,90,75,95,85,80,70,90,85。
现在需要计算这组数据的平均分。
解析:首先,我们需要将这组数据按照从小到大的顺序进行排列:70,75,80,80,85,85,85,90,90,95。
然后,将这些数据相加并除以数据的个数,即可得到平均分:(70+75+80+80+85+85+85+90+90+95)/10 = 845/10 = 84.5。
2. 数据的分析和解读在统计问题中,我们经常需要对数据进行分析和解读。
例如,某班级进行了一次数学测验,得分如下:80,85,90,75,95,85,80,70,90,85。
概率与统计的基本概念和计算方法
概率与统计的基本概念和计算方法概率与统计是一门研究随机现象规律的数学学科,它在科学研究、工程技术和社会经济等领域起到重要的作用。
本文将介绍概率与统计的基本概念和计算方法,帮助读者更好地理解和应用这门学科。
一、概率的基本概念及其计算方法概率是描述随机事件发生可能性的数值,一般用百分比、分数或小数表示。
在概率理论中,有三种常见的概率计算方法:古典概率、几何概率和统计概率。
1. 古典概率古典概率又称为理论概率,是基于等可能性假设进行计算的概率。
当随机事件的样本空间中的所有基本事件等可能发生时,可以使用古典概率进行计算。
计算公式为:事件A发生的概率P(A) = A的基本事件数/样本空间中的基本事件总数。
2. 几何概率几何概率是根据几何形状和空间位置关系计算的概率。
它常用于描述连续随机变量的概率。
几何概率的计算方法是通过计算事件A在样本空间中的面积或体积与样本空间总面积或总体积之比得到。
计算公式为:事件A发生的概率P(A) = A的几何形状的面积或体积/样本空间的几何形状的面积或体积。
3. 统计概率统计概率是根据实际观察到的频率计算的概率。
当无法直接使用古典概率或几何概率进行计算时,可以通过实际观测数据进行统计概率的计算。
统计概率的计算方法是事件A的发生频数除以样本空间试验次数的比值。
计算公式为:事件A发生的概率P(A) = 频数A/n。
二、统计的基本概念及其计算方法统计是通过收集、整理、分析数据并进行推断和预测的一门学科。
在统计学中,有两种常见的统计算法:描述统计和推断统计。
1. 描述统计描述统计是通过对已有数据进行总结和描述来了解数据分布和变化规律的统计方法。
常用的描述统计指标包括均值、中位数、众数、标准差等。
计算描述统计指标时,需要先收集数据,然后对数据进行计算和分析。
2. 推断统计推断统计是通过对样本数据进行推断和预测来做出总体特征的统计方法。
推断统计的核心思想是基于样本数据对总体进行推断。
常用的推断统计方法包括假设检验、置信区间估计和回归分析等。
高中数学概率与统计的常见题型及解题思路
高中数学概率与统计的常见题型及解题思路数学是一门精确的科学,而概率与统计则是数学中的一个重要分支。
在高中阶段,学生将学习到许多与概率与统计相关的常见题型,本文将介绍这些题型以及解题的思路。
一、概率题型1. 事件的概率计算概率计算是概率论的基本概念之一。
当我们面对一个事件时,首先需要明确事件的样本空间以及事件本身的可能性。
以掷硬币为例,样本空间为{正面,反面},而事件“掷出正面”有一半的可能性。
解题时,可以使用计数原理或者几何概型来计算概率。
2. 独立事件的概率计算当两个或多个事件相互独立时,可以使用乘法法则来计算它们同时发生的概率。
例如,从一副扑克牌中同时抽出两张牌,求两张牌都是红心的概率。
解题时,需要考虑每个事件的概率,并将它们相乘。
3. 互斥事件的概率计算互斥事件指的是两个事件不可能同时发生。
当两个事件互斥时,可以使用加法法则来计算它们发生的概率。
例如,从一副扑克牌中抽出一张牌,求该牌是红心或者是黑桃的概率。
解题时,需要考虑每个事件的概率,并将它们相加。
4. 条件概率计算条件概率是在已知一定条件下某个事件发生的概率。
例如,某城市早高峰时段交通事故的概率。
解题时,需要将已知条件与事件的概率结合起来计算。
二、统计题型1. 样本调查与数据分析在统计学中,常常需要进行样本调查以获取数据。
例如,假设我们要调查全校学生的身高分布,可以通过随机抽样的方式获得样本数据,并进行统计分析。
解题时,需要了解样本调查的方法和数据分析的技巧。
2. 统计指标计算常见的统计指标包括平均数、中位数、众数、方差等。
解决统计题目时,需要根据给定的数据计算相应的统计指标。
例如,求一组数据的平均值或者方差。
3. 概率分布计算概率分布是指随机变量取各个值的概率。
在统计学中,常见的概率分布包括二项分布、正态分布等。
解决概率分布相关的题目时,需要了解不同概率分布的特点,并运用相应的公式来计算。
4. 假设检验与置信区间假设检验和置信区间是统计学中的两个重要概念。
概率统计的解题技巧
概率统计的解题技巧【例题解析】考点1. 求等可能性事件、互斥事件和相互独立事件的概率解此类题目常应用以下知识:(1)等可能性事件(古典概型)的概率:P (A )=)()(I card A card =n m ;等可能事件概率的计算步骤:① 计算一次试验的基本事件总数n;② 设所求事件A ,并计算事件A 包含的基本事件的个数m ;③ 依公式()m P A n 求值; ④ 答,即给问题一个明确的答复.(2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B );特例:对立事件的概率:P (A )+P (A )=P (A +A )=1.(3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B );(4)解决概率问题要注意“四个步骤,一个结合”:①求概率的步骤是:第一步,确定事件性质⎧⎪⎪⎨⎪⎪⎩等可能事件 互斥事件 独立事件 n次独立重复试验即所给的问题归结为四类事件中的某一种.第二步,判断事件的运算⎧⎨⎩和事件积事件即是至少有一个发生,还是同时发生,分别运用相加或相乘事件.第三步,运用公式()()()()()()()()(1)k k n kn nmP AnP A B P A P BP A B P A P BP k C p p-⎧=⎪⎪⎪+=+⎨⎪⋅=⋅⎪=-⎪⎩等可能事件:互斥事件:独立事件:n次独立重复试验:求解第四步,答,即给提出的问题有一个明确的答复.例1.在五个数字12345,,,,中,若随机取出三个数字,则剩下两个数字都是奇数的概率是(结果用数值表示).[解答过程]0.3提示:1335C33.54C102P===⨯例2.一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为.[解答过程]1.20提示:51.10020P==例3从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):492 496 494 495 498 497 501 502 504 496 497 503 506 508 507 492 496 500 501 499根据的原理,该自动包装机包装的袋装食盐质量在497.5g~501.5g之间的概率约为__________.[解答过程]在497.5g~501.5内的数共有5个,而总数是20个,所以有51. 204=例4.接种某疫苗后,出现发热反应的概率为0.80.现有5人接种该疫苗,至少有3人出现发热反应的概率为__________.(精确到0.01)[解答提示]至少有3人出现发热反应的概率为33244555550.800.200.800.200.800.94C C C ⋅⋅+⋅⋅+⋅=故填0.94.+++例5.右图中有一个信号源和五个接收器.接收器与信号源在同一个串联线路中时,就能接收到信号,否则就不能接收到信号.若将图中左端的六个接线点随机地平均分成三组,将右端的六个接线点也随机地平均分成三组,再把所有六组中每组的两个接线点用导线连接,则这五个接收器能同时接收到信号的概率是( ) (A )454(B )361 (C )154(D )158[解答提示]由题意,左端的六个接线点随机地平均分成三组有2226423315C C C A =种分法,同理右端的六个接线点也随机地平均分成三组有2226423315C C C A =种分法;要五个接收器能同时接收到信号,则需五个接收器与信号源串联在同一个线路中,即五个接收器的一个全排列,再将排列后的第一个元素与信号源左端连接,最后一个元素与信号源右端连接,所以符合条件的连接方式共有55120A =种,所求的概率是120822515P ==,所以选D.例6.从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件:A “取出的2件产品中至多有1件是二等品”的概率()0.96P A =.(1)求从该批产品中任取1件是二等品的概率p ;(2)若该批产品共100件,从中任意抽取2件,求事件B :“取出的2件产品中至少有一件二等品”的概率()P B .[解答过程](1)记0A 表示事件“取出的2件产品中无二等品”,1A 表示事件“取出的2件产品中恰有1件二等品”. 则01A A ,互斥,且01A A A =+,故01()()P A P A A =+212012()()(1)C (1)1.P A P A p p p p =+=-+-=-于是20.961p =-. 解得120.20.2p p ==-,(舍去).(2)记0B 表示事件“取出的2件产品中无二等品”,则若该批产品共100件,由(1)知其中二等品有1000.220⨯=件,故28002100C 316()C 495P B ==. 00316179()()1()1.495495P B P B P B ==-=-=例7.两部不同的长篇小说各由第一、二、三、四卷组成,每卷1本,共8本.将它们任意地排成一排,左边4本恰好都属于同一部小说的概率是 (结果用分数表示).[解答提示]从两部不同的长篇小说8本书的排列方法有88A 种,左边4本恰好都属于同一部小说的的排列方法有442442A A A 种.所以, 将符合条件的长篇小说任意地排成一排,左边4本恰好都属于同一部小说的概率是 44244288135A A A P A ==种.所以,填135.例8.甲、乙两袋装有大小相同的红球和白球,甲袋装有2个红球,2个白球;乙袋装有2个红球,n 个白球.由甲,乙两袋中各任取2个球.(Ⅰ)若n=3,求取到的4个球全是红球的概率;(Ⅱ)若取到的4个球中至少有2个红球的概率为43,求n.[标准解答](I )记“取到的4个球全是红球”为事件A .22222245111().61060C C P A C C =⋅=⋅= (II )记“取到的4个球至多有1个红球”为事件B ,“取到的4个球只有1个红球”为事件1B ,“取到的4个球全是白球”为事件. 2B 由题意,得31()1.44P B =-=2111122222122224242()n n n n C C C C C C P B C CC C ++⋅⋅=⋅+⋅22;3(2)(1)n n n =++22222242()n n C C P B C C +=⋅(1);6(2)(1)n n n n -=++ 所以,12()()()P B P B P B =+22(1)3(2)(1)6(2)(1)n n n n n n n -=+++++14=, 化简,得271160,n n --=解得2n =,或37n =-(舍去),故 2n =.例9.某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元.(Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率;(Ⅱ)求3位顾客每人购买1件该商品,商场获得利润不超过650元的概率.[解答过程](Ⅰ)记A 表示事件:“3位顾客中至少1位采用一次性付款”,23()(10.6)0.064P A =-=, ()1()10.0640.936P A P A =-=-=.(Ⅱ)记B 表示事件:“3位顾客每人购买1件该商品,商场获得利润不超过650元”.0B 表示事件:“购买该商品的3位顾客中无人采用分期付款”.1B 表示事件:“购买该商品的3位顾客中恰有1位采用分期付款”.则01B B B =+.30()0.60.216P B ==,1213()0.60.40.432P B C =⨯⨯=. 01()()P B P B B =+01()()P B P B =+0.2160.432=+ 0.648=.例10.某公司招聘员工,指定三门考试课程,有两种考试方案.方案一:考试三门课程,至少有两门及格为考试通过;方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.假设某应聘者对三门指定课程考试及格的概率分别是,,a b c ,且三门课程考试是否及格相互之间没有影响.(Ⅰ)分别求该应聘者用方案一和方案二时考试通过的概率;(Ⅱ)试比较该应聘者在上述两种方案下考试通过的概率的大小.(说明理由)[标准解答]记该应聘者对三门指定课程考试及格的事件分别为A ,B,C ,则P (A )=a ,P (B )=b ,P (C )=c.(Ⅰ) 应聘者用方案一考试通过的概率p 1=P (A ·B ·C )+P (A ·B ·C )+P (A ·B ·C )+P (A ·B ·C )=a ×b ×(1-c)+(1-a)×b ×c+a ×(1-b)×c+a ×b ×c =ab+bc+ca-2abc.应聘者用方案二考试通过的概率p 2=31P (A ·B )+31P (B ·C )+ 31P (A ·C )= 31×(a ×b+b ×c+c ×a)= 31(ab+bc+ca)(Ⅱ) p 1--- p 2= ab+bc+ca-2abc-31 (ab+bc+ca)=23( ab+bc+ca-3abc)≥23]3abc -=0-≥. ∴p 1≥p 2例11.某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为54、53、52、51,且各轮问题能否正确回答互不影响.(Ⅰ)求该选手进入第四轮才被淘汰的概率; (Ⅱ)求该选手至多进入第三轮考核的概率. [解答过程](Ⅰ)记“该选手能正确回答第i 轮的问题”的事件为(1234)i A i =,,,,则14()5P A =,23()5P A =,32()5P A =,41()5P A =, ∴该选手进入第四轮才被淘汰的概率412341234432496()()()()()5555625P P A A A A P A P A P A P P ===⨯⨯⨯=.(Ⅱ)该选手至多进入第三轮考核的概率 3112123()P P A A A A A A =++112123()()()()()()P A P A P A P A P A P A =++142433101555555125=+⨯+⨯⨯=.考点2离散型随机变量的分布列 1.随机变量及相关概念①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示.②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量. 2.离散型随机变量的分布列①离散型随机变量的分布列的概念和性质一般地,设离散型随机变量ξ可能取的值为1x ,2x ,……,ix ,……,ξ取每一个值ix (=i 1,2,……)的概率P (ix =ξ)=iP ,则称下表.为随机变量ξ的概率分布,简称ξ的分布列.由概率的性质可知,任一离散型随机变量的分布列都具有下述两个性质:(1)0≥iP ,=i 1,2,…;(2)++21P P …=1. ②常见的离散型随机变量的分布列: (1)二项分布n 次独立重复试验中,事件A 发生的次数ξ是一个随机变量,其所有可能的取值为0,1,2,…n ,并且kn k k nkq p C k P P -===)(ξ,其中n k ≤≤0,p q -=1,随机变量ξ的分布列如下:称这样随机变量ξ服从二项分布,记作),(~p n B ξ,其中n 、p 为参数,并记:),;(p n k b q p C kn k k n=- . (2) 几何分布 在独立重复试验中,某事件第一次发生时所作的试验的次数ξ是一个取值为正整数的离散型随机变量,“k ξ=”表示在第k 次独立重复试验时事件第一次发生. 随机变量ξ的概率分布为:例12.厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.(Ⅰ)若厂家库房中的每件产品合格的概率为0.8,从中任意取出4件进行检验,求至少有1件是合格的概率;(Ⅱ)若厂家发给商家20件产品中,其中有3件不合格,按合同规定该商家从中任取2件.都进行检验,只有2件都合格时才接收这批产品.否则拒收,求出该商家检验出不合格产品数ξ的分布列及期望ξE ,并求出该商家拒收这批产品的概率.[考查目的]本题考查相互独立事件、互斥事件等的概率计算,考察随机事件的分布列,数学期望等,考察运用所学知识与方法解决实际问题的能力.[解答过程](Ⅰ)记“厂家任取4件产品检验,其中至少有1件是合格品”为事件A用对立事件A 来算,有()()4110.20.9984P A P A =-=-= (Ⅱ)ξ可能的取值为0,1,2.()2172201360190C P C ξ===,()11317220511190C CP C ξ===,()2322032190C P Cξ===136513301219019019010E ξ=⨯+⨯+⨯=.记“商家任取2件产品检验,都合格”为事件B ,则商家拒收这批产品的概率()136271119095P P B =-=-=.所以商家拒收这批产品的概率为2795. 例13.某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰. 已知某选手能正确回答第一、二、三轮的问题的概率分别为54、53、52,且各轮问题能否正确回答互不影响. (Ⅰ)求该选手被淘汰的概率;(Ⅱ)该选手在选拔中回答问题的个数记为ξ,求随机变量ξ的分布列与数学期望.(注:本小题结果可用分数表示)[考查目的]本题考查相互独立事件、互斥事件等的概率计算,考察随机事件的分布列,数学期望等,考察运用所学知识与方法解决实际问题的能力.[解答过程]解法一:(Ⅰ)记“该选手能正确回答第i 轮的问题”的事件为(123)iA i =,,,则14()5P A =,23()5P A =,32()5P A =, ∴该选手被淘汰的概率112223112123()()()()()()()P P A A A A A A P A P A P A P A P A P A =++=++142433101555555125=+⨯+⨯⨯=.(Ⅱ)ξ的可能值为123,,,11(1)()5P P A ξ===, 1212428(2)()()()5525P P A A P A P A ξ====⨯=,12124312(3)()()()5525P P A A P A P A ξ====⨯=. ξ∴的分布列为1812571235252525E ξ∴=⨯+⨯+⨯=.解法二:(Ⅰ)记“该选手能正确回答第i 轮的问题”的事件为(123)iA i =,,,则14()5P A =,23()5P A =,32()5P A =. ∴该选手被淘汰的概率1231231()1()()()P P A A A P A P A P A =-=-4321011555125=-⨯⨯=. (Ⅱ)同解法一.考点3 离散型随机变量的期望与方差 随机变量的数学期望和方差 (1)离散型随机变量的数学期望:++=2211p x p x E ξ…;期望反映随机变量取值的平均水平.⑵离散型随机变量的方差:+-+-=222121)()(p E x p E x D ξξξ…+-+nn p E x 2)(ξ…;方差反映随机变量取值的稳定与波动,集中与离散的程度.⑶基本性质:b aE b a E +=+ξξ)(;ξξD a b a D 2)(=+. (4)若ξ~B(n ,p),则 np E =ξ ; D ξ =npq (这里q=1-p ) ;如果随机变量ξ服从几何分布,),()(p k g k P ==ξ,则p E 1=ξ,D ξ =2p q 其中q=1-p.例14.甲、乙两名工人加工同一种零件,两人每天加工的零件数相等,所得次品数分别为ε、η,ε和η的分布列如下:则比较两名工人的技术水平的高低为 .思路启迪:一是要比较两名工人在加工零件数相等的条件下出次品数的平均值,即期望;二是要看出次品数的波动情况,即方差值的大小.解答过程:工人甲生产出次品数ε的期望和方差分别为:7.0103210111060=⨯+⨯+⨯=εE ,891.0103)7.02(101)7.01(106)7.00(222=⨯-+⨯-+⨯-=εD ;工人乙生产出次品数η的期望和方差分别为:7.0102210311050=⨯+⨯+⨯=ηE ,664.0102)7.02(103)7.01(105)7.00(222=⨯-+⨯-+⨯-=ηD 由E ε=E η知,两人出次品的平均数相同,技术水平相当,但D ε>D η,可见乙的技术比较稳定. 小结:期望反映随机变量取值的平均水平;方差反映随机变量取值的稳定与波动,集中与离散的程度. 例15.某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润.(Ⅰ)求事件A :“购买该商品的3位顾客中,至少有1位采用1期付款”的概率()P A ; (Ⅱ)求η的分布列及期望E η.[考查目的] 本小题主要考查概率和离散型随机变量分布列和数学期望等知识.考查运用概率知识解决实际问题的能力.[解答过程](Ⅰ)由A 表示事件“购买该商品的3位顾客中至少有1位采用1期付款”.知A 表示事件“购买该商品的3位顾客中无人采用1期付款”2()(10.4)0.216P A =-=, ()1()10.2160.784P A P A =-=-=.(Ⅱ)η的可能取值为200元,250元,300元. (200)(1)0.4P P ηξ====,(250)(2)(3)0.20.20.4P P P ηξξ===+==+=,(300)1(200)(250)10.40.40.2P P P ηηη==-=-==--=. η的分布列为=(元).Eη=⨯+⨯+⨯2402000.42500.43000.2小结:离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.本题考查离散型随机变量分布列和数学期望等概念,考查运用概率知识解决实际问题的能力.例16.某班有48名学生,在一次考试中统计出平均分为70分,方差为75,后来发现有2名同学的成绩有误,甲实得80分却记为50分,乙实得70分却记为100分,更正后平均分和方差分别是A.70,25B.70,50C.70,1.04D.65,25解答过程:易得x没有改变,x=70,而s2=1[(x12+x22+…+502+1002+…+x482)-48x2]=75,48s′2=1[(x12+x22+…+802+702+…+x482)-48x2]48=1[(75×48+48x2-12500+11300)-48x2]48=75-1200=75-25=50.48答案:B考点4 抽样方法与总体分布的估计抽样方法1.简单随机抽样:设一个总体的个数为N,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.常用抽签法和随机数表法.2.系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样).3.分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样.总体分布的估计由于总体分布通常不易知道,我们往往用样本的频率分布去估计总体的分布,一般地,样本容量越大,这种估计就越精确.总体分布:总体取值的概率分布规律通常称为总体分布.当总体中的个体取不同数值很少时,其频率分布表由所取样本的不同数值及相应的频率表示,几何表示就是相应的条形图.当总体中的个体取值在某个区间上时用频率分布直方图来表示相应样本的频率分布.总体密度曲线:当样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,即总体密度曲线.典型例题例17.某工厂生产A、B、C三种不同型号的产品,产品数量之比依次为2:3:5.现用分层抽样方法抽出一个容量为n的样本,样本中A种型号产品有16件.那么此样本的容量n= .解答过程:A种型号的总体是210,则样本容量n=1016802⨯=.例18.一个总体中有100个个体,随机编号0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m k +的个位数字相同,若6m =,则在第7组中抽取的号码是 . 解答过程:第K 组的号码为(1)10k - ,(1)101k -+,…,(1)109k -+,当m=6时,第k 组抽取的号的个位数字为m+k 的个位数字,所以第7组中抽取的号码的个位数字为3 ,所以抽取号码为63.例19.考查某校高三年级男生的身高,随机抽取40名高三男生,实测身高数据(单位:cm )如下: 171 163 163 166 166 168 168 160 168 165 171 169 167 169 151 168 170 160 168 174 165 168 174 159 167 156 157 164 169 180 176 157 162 161 158 164 163 163 167 161 ⑴作出频率分布表;⑵画出频率分布直方图. 思路启迪:确定组距与组数是解决“总体中的个体取不同值较多”这类问题的出发点.解答过程:⑴最低身高为151,最高身高180,其差为180-151=29。
概率统计的8种计算方法专题讲解
概率统计的8种计算方法专题讲解
一、概率的基本概念
- 定义:某一事件发生的可能性大小。
- 表述:一般用P(A)表示。
二、概率的计算方法
1. 数学概率法
- 公式:P(A) = n(A) / n(S)
- P(A):事件A发生的概率
- n(A):事件A发生的样本点数
- n(S):样本空间中所有样本点的个数
2. 几何概率法
- 公式:P(A) = S(A) / S(S)
- P(A):事件A发生的概率
- S(A):与事件A有关的图形面积或长度等
- S(S):样本空间内所对应的图形面积或长度等
3. 频率概率法
- 公式:P(A)=发生事件A的次数 / 总实验次数
三、条件概率
- 定义:在另一事件B已经发生的条件下,事件A发生的概率。
- 公式:P(A|B) = P(AB) / P(B)
四、乘法公式
- 定义:事件A和事件B同时发生的概率。
- 公式:P(AB) = P(A) * P(B|A)
五、加法公式
- 定义:事件A或B发生的概率。
- 公式:P(A ∪ B) = P(A) + P(B) - P(AB)
六、全概率公式
- 定义:在几个互不相容事件之中,任何一个都可能发生,求
事件A发生的概率。
- 公式:P(A) = ∑P(Bi)P(A|Bi)
七、贝叶斯公式
- 定义:在一事实的证据下,要求另一假设成立的概率。
- 公式:P(Bi|A) = P(Bi)P(A|Bi) / ∑P(Bi)P(A|Bi)
八、大数定律
- 定义:在独立重复的实验中,随着实验次数的增加,事件发生的频率趋近于概率。
高中数学概率与统计的常见题型及解题思路
高中数学概率与统计的常见题型及解题思路概率与统计是高中数学中的重要内容,也是学生们普遍感到困惑的一部分。
在考试中,概率与统计题型常常出现,因此掌握解题思路和技巧对于学生们来说非常重要。
本文将介绍一些常见的概率与统计题型,并给出相应的解题思路和方法。
一、排列组合类题型排列组合类题型是概率与统计中的基础题型,也是其他题型的基础。
例如:例1:从1、2、3、4、5这5个数字中选取3个数字,组成一个无重复的三位数,求所能组成的三位数的个数。
解析:这是一个典型的排列问题。
我们可以先确定百位上的数字,有5种选择;然后确定十位上的数字,有4种选择;最后确定个位上的数字,有3种选择。
根据乘法原理,所能组成的三位数的个数为5×4×3=60个。
类似的题型还有从n个数字中选取m个数字,求所能组成的m位数的个数等。
二、事件的概率类题型事件的概率类题型是概率与统计中的重点和难点。
例如:例2:一枚硬币抛掷3次,求抛掷结果中至少出现两次正面的概率。
解析:这是一个典型的事件的概率问题。
我们可以列出所有可能的结果:正正正、正正反、正反正、正反反、反正正、反正反、反反正、反反反。
其中,至少出现两次正面的结果有6种,所以所求的概率为6/8=3/4。
类似的题型还有从一副扑克牌中抽取一张牌,求抽到红桃的概率等。
三、频率与统计量类题型频率与统计量类题型是概率与统计中的实际应用题型。
例如:例3:某班级有60名学生,其中30名男生、30名女生。
从中随机抽取5名学生,求抽到女生人数的概率。
解析:这是一个典型的频率与统计量问题。
我们可以使用组合数的知识来解决。
从30名女生中选取0名女生的组合数为C(30, 0),从30名男生中选取5名男生的组合数为C(30, 5)。
所以所求的概率为C(30, 0) / C(60, 5)。
类似的题型还有某城市每天的降雨量数据,求降雨量超过某个值的概率等。
总结起来,掌握排列组合的基本原理、事件的概率计算方法以及频率与统计量的计算方法是解决概率与统计题型的关键。
高中数学中的概率与统计
高中数学中的概率与统计概率和统计是高中数学中非常重要的两个概念。
概率是用来描述事件发生的可能性,而统计则是通过对数据的收集、整理和分析来得出结论。
本文将从概率和统计的基本概念、应用以及解决实际问题等方面进行论述。
一、概率的基本概念概率是指事件发生的可能性。
在高中数学中,我们常用“P(A)”来表示事件A发生的概率。
概率的取值范围在0到1之间,其中0代表不可能事件,1代表必然事件。
1.1 事件的分类在概率中,事件可以分为互斥事件和非互斥事件。
互斥事件是指两个事件不能同时发生,而非互斥事件则可以同时发生。
1.2 概率的计算对于互斥事件,可以通过求和法则来计算概率。
若事件A和事件B 互斥,则P(A或B) = P(A) + P(B)。
而对于非互斥事件,可以通过减法法则来计算概率。
若事件A和事件B非互斥,则P(A或B) = P(A) + P(B) - P(A和B)。
二、统计的基本概念统计是指通过对数据的收集、整理和分析来得出结论的过程。
在高中数学中,我们主要学习的是统计中的平均数、频率分布和抽样等概念。
2.1 平均数平均数是统计中最常见的概念之一。
我们可以通过求和然后除以总个数来计算平均数。
例如,对于一组数据x1, x2, ..., xn,其平均数可以表示为:(x1 + x2 + ... + xn) / n。
2.2 频率分布频率分布是将数据按照不同数值进行分类,并统计各个类别的个数。
通过绘制频率分布表或直方图,我们可以更直观地了解数据的分布状况。
2.3 抽样抽样是统计中常用的一种方法,它通过从总体中选择一部分样本进行调查和分析。
合理的抽样方法可以保证所得到的结论具有代表性。
三、概率与统计的应用概率和统计在现实生活中有着广泛的应用,以下通过几个具体的例子来说明。
3.1 古典概率的应用古典概率是一种基于样本空间和事件发生数的概率计算方法。
例如,在一组均匀的骰子中,计算掷出的点数为偶数的概率就是一个古典概率的应用。
高中数学公式大全概率计算与统计分析的实例公式
高中数学公式大全概率计算与统计分析的实例公式高中数学公式大全:概率计算与统计分析的实例公式一、概率计算公式1. 事件的概率计算公式:P(A) = (事件A的样本点数) / (样本空间的样本点数)2. 加法法则:对于两个互斥事件A和B,有P(A或B) = P(A) + P(B)3. 减法法则:对于事件A和B,有P(A且B的补集) = P(A的补集) - P(A且B)4. 乘法法则:对于两个独立事件A和B,有P(A且B) = P(A) × P(B)5. 条件概率公式:对于事件A和B,有P(A|B) = P(A且B) / P(B)6. 全概率公式:对于事件A和B1、B2、...、Bn构成的样本空间分割,有P(A) = P(A|B1)P(B1) + P(A|B2)P(B2) + ... + P(A|Bn)P(Bn)二、统计分析的实例公式1. 平均数(均值)公式:对于一组数据x1、x2、...、xn,均值(平均数)为平均数 = (x1 + x2 + ... + xn) / n2. 加权平均数公式:对于一组数据x1、x2、...、xn及其对应的权重w1、w2、...、wn,加权平均数为加权平均数 = (x1w1 + x2w2 + ... + xnwn) / (w1 + w2 + ... + wn)3. 中位数公式:对于一组有序数据,中位数为若数据个数为奇数,中位数为第(n+1)/2个数据;若数据个数为偶数,中位数为第n/2个数据和第(n/2+1)个数据的平均数。
4. 众数公式:对于一组数据,众数为数据中出现次数最多的值。
5. 方差公式:对于一组数据x1、x2、...、xn,均值为μ,方差为方差 = ( (x1 - μ)^2 + (x2 - μ)^2 + ... + (xn - μ)^2 ) / n6. 标准差公式:对于一组数据x1、x2、...、xn,均值为μ,标准差为标准差= √方差7. 相关系数公式:对于两组数据x1、x2、...、xn和y1、y2、...、yn,其相关系数为相关系数 = (协方差) / (x的标准差 × y的标准差)其中,协方差的计算公式为协方差 = ( (x1 - μx)(y1 - μy) + ... + (xn - μx)(yn - μy) ) / n8. 样本方差公式:对于一组数据x1、x2、...、xn,样本均值为x,样本方差为样本方差 = ( (x1 - x)^2 + (x2 - x)^2 + ... + (xn - x)^2 ) / (n - 1)9. 样本标准差公式:对于一组数据x1、x2、...、xn,样本均值为x,样本标准差为样本标准差= √样本方差综上所述,以上是高中数学中概率计算和统计分析的常用公式。
概率与统计的运算法则
概率与统计的运算法则概率和统计是数学中的重要分支,它们研究了随机事件的发生规律以及对于数据的收集、分析和解释。
概率与统计的运算法则是指在概率和统计问题中常用的一些运算规则和方法。
本文将详细介绍概率与统计的运算法则,帮助读者更好地理解和应用这些方法。
一、概率的运算法则在概率论中,我们常常需要计算并描述随机事件发生的可能性。
以下是概率的运算法则的介绍。
1. 加法法则加法法则是指在两个事件发生的情况下,计算这两个事件中至少发生一个的概率。
设事件A和事件B是两个互不相容的事件,即事件A 和事件B不能同时发生。
那么,事件A或事件B发生的概率等于事件A发生的概率与事件B发生的概率的和。
用数学表示为:P(A或B) = P(A) + P(B)2. 乘法法则乘法法则是指在两个事件相继发生的情况下,计算这两个事件同时发生的概率。
设事件A和事件B是两个相继发生的事件,那么事件A 和事件B同时发生的概率等于事件A发生的概率与在事件A发生的条件下事件B发生的概率的乘积。
用数学表示为:P(A且B) = P(A) × P(B|A)3. 减法法则减法法则是指从总体概率中减去特定条件下的概率,从而计算出不符合特定条件的概率。
设事件A和事件B是两个互不相容的事件,那么事件A不发生的概率等于1减去事件A发生的概率。
用数学表示为:P(非A) = 1 - P(A)二、统计的运算法则统计学是研究大量数据的收集、分析和解释的学科,用于描述和推断总体特征,并进行决策和预测。
以下是统计的运算法则的介绍。
1. 样本均值样本均值是指在统计样本中,各个观测值的总和除以样本容量。
用数学表示为:样本均值 = (观测值1 + 观测值2 + ... + 观测值n) / 样本容量2. 样本方差样本方差是用来衡量统计样本中各个观测值与均值的离散程度。
用数学表示为:样本方差 = [(观测值1 - 样本均值)² + (观测值2 - 样本均值)² + ... + (观测值n - 样本均值)²] / (样本容量 - 1)3. 标准差标准差是样本方差的平方根,用于度量数据的离散程度。
高中数学的解析概率与统计中的贝叶斯定理
高中数学的解析概率与统计中的贝叶斯定理解析概率与统计是高中数学中的一个重要内容,其中涉及了许多概率和统计的概念和方法。
而在解析概率与统计的学习中,贝叶斯定理是一个非常关键的概念。
本文将对贝叶斯定理的原理和应用进行详细阐述。
一、贝叶斯定理的基本概念与原理贝叶斯定理是基于条件概率的一种计算方法,其基本概念和原理可以通过以下公式来表示:P(A|B) = P(B|A) * P(A) / P(B)其中,P(A|B)表示在事件B发生的条件下,事件A发生的概率;P(B|A)表示在事件A发生的条件下,事件B发生的概率;P(A)和P(B)分别表示事件A和事件B的概率。
贝叶斯定理的原理可以通过以下推导来理解:假设已知事件A发生的情况下,事件B发生的概率为P(B|A),而事件A发生的概率为P(A);同时,根据全概率公式,事件B的概率可以表示为P(B) = P(A) * P(B|A) + P(A') * P(B|A'),其中A'表示事件A不发生的情况下;那么,根据条件概率的定义,可以得到P(A|B) = P(B|A) * P(A) / P(B)。
二、贝叶斯定理的应用举例贝叶斯定理在实际问题中有着广泛的应用,下面将通过一个实例来说明其应用过程。
假设某地区的患某种疾病的发病率为1%,并且医生利用一种新的检测方法对该疾病进行检测。
据统计,如果一个人患该疾病,那么该检测方法能够正确识别的概率为99%;而对于一个健康人来说,该检测方法误判为患病的概率为5%。
现在有一个人通过该检测方法得出阳性结果,请问这个人患该疾病的概率是多少?解答:设事件A表示该人患该疾病,事件B表示该人通过检测方法得到阳性结果。
已知P(A) = 1%,P(B|A) = 99%,P(B|A') = 5%。
根据贝叶斯定理,可以计算该人患该病的概率P(A|B) = P(B|A) *P(A) / (P(B|A) * P(A) + P(B|A') * P(A'))= 0.99 * 0.01 / (0.99 * 0.01 + 0.05 * 0.99)≈ 0.99 * 0.01 / (0.99 * 0.01 + 0.05 * 0.99)≈ 0.99 * 0.01 / (0.99 * 0.01 + 0.0495)≈ 0.99 * 0.01 / 0.0995≈ 0.0099 / 0.0995≈ 0.099≈ 9.90%因此,通过该检测方法得到阳性结果的人患该疾病的概率约为9.90%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率流程图的数学计算:瀑布算法、圆桌算法、混合算法概率流程图的数学计算:瀑布算法、圆桌算法、混合算法解析攻击判定流程研究:瀑布算法、圆桌算法、混合算法解析攻击判定流程几乎是所有包含战斗玩法的游戏都无法绕过的一块内容,常见的攻击判定流程有瀑布算法、圆桌算法以及混合算法三种。
本文简述了这三种判定流程的特征,以实例对比分析了瀑布算法与圆桌算法各自的优点,以期为后续其他战斗数值设计内容的论述提供一定的基础。
攻击判定流程概述自此开始正文内容的叙述——让我们直接代入一个实例:在一款游戏中,攻击方有命中率和暴击率两个攻击属性,而防守方有闪避率、招架率和格挡率三个防御属性。
于是相应的,一次攻击有可能产生6种判定结果:未命中、普通命中、闪避、招架、格挡和暴击。
当采用不同的判定流程进行攻击结算时,6种判定结果出现的频率会截然不同。
1. 瀑布算法顾名思义,在瀑布算法中,各事件的判定顺序如同瀑布一般自上而下。
如果“水流”在某个位置被截断,则后面的流程都将不再继续进行。
据我所知,瀑布算法是大多数游戏所采用的攻击判定算法。
上述实例若采用瀑布算法,则会以如下方式进行判定:瀑布算法流程图由此我们可以得出:先判定攻方是否命中再判定是否被守方闪避再判定是否被守方招架再判断是否被守方格挡最后判定该次攻击是否为暴击瀑布算法特征1:多次掷骰,一次掷骰只判定单个事件的发生与否瀑布算法特征2:后置判定依赖于前置判定的通过注:有的游戏会将命中和闪避合并在一次掷骰中判定,这意味着将攻方命中率与守方闪避率合并计算出实际击中概率后再进行掷骰判定,仍是瀑布算法我们再代入一些具体的数值,设攻守双方角色的面板属性如下:攻方命中率=90%攻方暴击率=25%守方闪避率=20%守方招架率=15%守方格挡率=30%按照上述的流程判定,6种判定结果将会按如下的概率分布:实际未命中概率=1-命中率=1-90%=10%实际闪避概率=命中率*闪避率=90%*20%=18%实际招架概率=命中率*(1-闪避率)*招架率=90%*(1-20%)*15%=10.8%实际格挡概率=命中率*(1-闪避率)*(1-招架率)*格挡率=90%*(1-20%)*(1-15%)*30%=18.36%实际暴击概率=命中率*(1-闪避率)*(1-招架率)*(1-格挡率)*暴击率=90%*(1-20%)*(1-15%)*(1-30%)*25%=10.71%实际普通命中概率=命中率*(1-闪避率)*(1-招架率)*(1-格挡率)*(1-暴击率)=90%*(1-20%)*(1-15%)*(1-30%)*(1-25%)=32.13%瀑布算法的判定结果分布由此我们可以得出:l 瀑布算法特征3:各事件出现的概率符合经典的概率计算方法l 瀑布算法特征4:掷骰轮次越偏后的属性衰减程度越大,但不会出现无效的属性2.圆桌算法将所有可能出现的事件集合抽象成一个圆桌桌面,便是圆桌算法这一称呼的由来。
圆桌算法的实质,是将所有可能发生的事件状态按优先级依次放上桌面,直至所有事件被放完或桌面被填满。
圆桌算法正是史诗级巨作魔兽世界中所采用的算法。
据笔者了解,使用该算法的游戏并不多见,但即便仅魔兽世界这一款,已足以使这种算法成为永恒的经典~ 上述实例若采用圆桌算法,则会用一次掷骰判定该次攻击的结果。
圆桌算法流程图圆桌算法的操作步骤可以归纳为:(1)攻方角色的命中率决定圆桌桌面的大小(2)将各个事件状态按优先级依次放上桌面,直至所有的事件均放置完或桌面被填满(3)若桌面还未填满,则用普通命中填满空桌面将先前设定的数值代入,6种判定结果将会按如下的概率分布:实际未命中概率=10%实际闪避概率=20%实际招架概率=15%实际格挡概率=30%实际暴击概率=25%实际普通命中概率=90%-实际闪避概率-实际招架概率-实际格挡概率-实际暴击概率=90%-20%-15%-30%-25%=0%注:在上述计算中,优先级按如下排序:闪避>招架>格挡>暴击>普通命中圆桌算法的判定结果分布可以看出,由于普通命中的优先级最低,所以它被完全挤出了桌面。
这意味着,若攻守双方以此数值模型进行对决,则攻击方的攻击结果中将不存在普通命中。
由此我们可以得出:圆桌算法特征1:一次掷骰即得出该次攻击的判定结果圆桌算法特征2:事件有优先级,圆桌放满后优先级低的事件将被挤出桌面。
这意味着那部分溢出的属性将不再生效圆桌算法特征3:圆桌内的各事件出现概率不会衰减,只要优先级低的属性没有被挤出圆桌,各种事件的实际发生概率就与面板属性数值吻合3. 混合算法这是一种先判定攻方事件,再判定守方事件的判定流程。
笔者曾在一篇帖子中看到过这样判定流程,不确定是否有实际的游戏应用,故仅在此做一些简单的理论分析。
混合算法在单方事件的判定中采用圆桌算法,即:攻方判定结果:普通命中OR未命中OR暴击守方判定结果:闪避OR招架OR格挡OR被命中混合算法流程图注:上面这个图仅作示意之用,从流程图的角度来看可能不太严谨将先前设定的数值代入,6种判定结果将会按如下的概率分布:实际未命中概率=10%实际闪避概率=攻方命中率*闪避率=90%*20%=18%实际招架概率=攻方命中率*招架率=90%*15%=13.5%实际格挡概率=攻方命中率*格挡率=90%*30%=27%实际暴击概率=攻方暴击率*敌方被命中概率=25%*(1-20%-15%-30%)=8.75%实际普通命中概率=攻方普通命中概率*敌方被命中概率=(90%-25%)*(1-20%-15%-30%)=22.75%混合算法的判定结果分布由此我们可以得出:混合算法特征1:先判定攻方事件,再判定守方事件,共进行两次掷骰混合算法特征2:先在单方事件的判定中采用圆桌算法,再用瀑布算法串联攻守双方事件混合算法特征3:会产生并发动作,例如暴击被闪避等注:这也正是实际暴击率较低原因所在瀑布算法与圆桌算法的特性对比在上一块内容的铺垫之下,我们不妨继续以魔兽世界中的攻击判定流程设计实例作为切入点,对比分析一下圆桌算法与瀑布算法各自的特性。
(1)面板属性传递信息的直观性瀑布:由于各属性在判定流程上的生效时间有先后之分,所以各属性的实际效用与面板显示的不符。
圆桌:由于属性的判定没有先后之分,只要没有属性被挤出圆桌,则所有属性的实际效用与面板显示的相当。
这里可以看出圆桌算法的优点:属性的实际效用与面板显示相符显然更易于普通玩家的理解,便于玩家掌握自身的战力情况。
(2)属性的价值瀑布:掷骰轮次越偏后的属性衰减程度越大,但所有的属性均会生效。
圆桌:只要没有属性被挤出圆桌,则不存在属性效用的衰减。
这里可以看出圆桌算法的优点:由于不存在判定流程上的先后,所以各属性的实际价值会比较接近,一般不会出现玩家堆了某个判定流程靠后的属性结果很废的情况。
同样也可以看出其缺点:一旦有属性溢出,则该部分属性的效用为0,完全没有价值。
(3)相同面板数值下的生存能力圆桌:在面板数值相同的情况下,魔兽世界用圆桌算法大大提高了坦克角色的生存能力,使得他们可以应对来自首领怪的超高攻击,匹配大型团队副本的玩法设计。
瀑布算法下,免伤概率=18%+10.8%+18.36%=47.16%圆桌算法下,免伤概率=20%+15%+30%=65%传统的概率为相乘关系,圆桌为相加关系,后者的概率总和要大的多并且,当防御职业将三维堆至一个阈值(70%)后,配合技能可达100%的免伤覆盖,将命中和暴击全部挤出桌面,从而衍生出特定的玩法(70级年代伊利丹的剪切技能)。
瀑布:相同的面板数值在瀑布算法的框架下,免伤概率相较于圆桌算法要低得多。
换言之,角色达到相同的有效生命值,所需的免伤属性要高得多。
这里可以看出:在圆桌算法的框架之下,属性投放若是脱离了控制超过了阈值,将对平衡性产生较大的冲击(70级的盗贼单刷格鲁尔——当然在暴雪光环的作用下,玩家会认为这是精妙的设计~)。
在国产游戏收入导向的大环境下,设计者是否能顶住收入压力,严守属性投放的极值不越界,是值得慎思的问题。
采用瀑布算法,能有更大的数值空间用于能力投放,更为适合现阶段的市场环境。
(4)运算量瀑布:多次掷骰圆桌:单次掷骰显而易见:掷骰次数越多,运算量越大。
圆桌相较于瀑布,有着相对较小的运算量。
简单即是美。
注:除魔兽世界外,《冒险与挖矿》的技能施放也采用了圆桌算法,大大简化了技能施放的判定流程。
可以想象一下,一次攻击至多发动一个技能。
而每一次攻击,一个队伍中有几十个角色的技能施放需要判定,如果采用瀑布算法,将产生多大的运算量。
思考与总结对战斗数值的研究,应该基于理论推导而归于实践应用。
毕竟游戏数值设计不是做数学研究,其本质应是一种体验设计。
最后希望交流的是笔者个人对于这两种算法的一些理解。
(1)不同的攻击判定流程会向玩家传达不同的战斗感受究其本质,不同的攻击判定流程,影响着一场战斗中的各种攻击判定结果将以何种概率分布出现。
假设在一款游戏中,闪避率的投放上限是30%,暴击率的投放上限是40%,命中率的投放上限是100%。
瀑布算法下,出现闪避、暴击和普通命中的概率是30%、28%和42%;圆桌算法下,则为30%、40%和30%。
这两种不同的概率分布,必然会带给玩家不同的战斗体验,但在缺少其他条件的情况下,并不能判断孰优孰劣。
使战斗体验匹配游戏的核心玩法,使属性投放的极限值能满足游戏的商业化需要,是设计攻击判定流程时首先要考虑的。
注:甚至于部分竞技游戏强调公平性,将暴击做成了伪随机。
使用瀑布算法,则不应该设计种类繁多的事件状态若是仿照魔兽世界的做法设计一连串的事件状态(未命中、闪避、招架、格挡、暴击、普通命中、偏斜、碾压),非但运算繁杂,而且后置判定的属性衰减幅度较大,效果极不明显。
这种隐晦的设计将不易传达,同时还会影响玩家的游戏感受(某个判定流程靠后的属性堆得很高结果却没用)。
使用圆桌算法,则应该严守属性投放的上限,防止平衡崩坏的情况发生需要澄清的是,并不是说使用瀑布算法就可以无限投放数值,而是说,相较于瀑布算法,圆桌算法的属性投放上限会低很多(免伤概率的相加与相乘)(2)不同的攻击判定流程将影响有效生命EHP和有效攻击EDPS的表达式几乎每个数值策划都会将角色的属性转化为EHP和EDPS以衡量其的战斗能力,但曾见过不少人对所有的游戏都用统一的EHP、EDPS表达式进行分析模拟。
这种偏差较大的模拟方式必然会影响体验设计的精准性。
在不同的攻击判定流程之下,EHP与EDPS有着截然不同的表达式,举例说明如下。
瀑布算法下:若命中闪避分两次判定:EHP=HP/(1-免伤率)/(1-闪避率)/(1-招架率)EDPS=DPS*命中率*[1+暴击率*(暴击伤害倍率-1)]若命中闪避合并判定:EHP=HP/(1-免伤率)/(命中率-闪避率)/(1-招架率)EDPS=DPS*(1+暴击率*(暴击伤害倍率-1))圆桌算法下:EHP=HP/(1-免伤率)/(1-闪避率-招架率)EDPS=DPS*[命中率-敌方闪避率-敌方招架率+暴击率*(暴击伤害倍率-1)]注:闪避、招架>暴击>普通命中,且各状态发生概率之和未超过圆桌大小混合算法下:EHP=HP/(1-免伤率)/(1-闪避率-招架率)EDPS=DPS*[命中率+暴击率*(暴击伤害倍率-1)]可能有人会觉得:模拟得这么准又有什么卵用,数值平衡最后还不是靠调?诚然,在数值设计领域,确实有名言曰:数值平衡是调出来的。