初中数学-实数(第1课时)导学案

合集下载

实数第1课时导学案

实数第1课时导学案

实数第1课时导学案
一、导学
1.导入课题:
(1)用计算器把下面的有理数化为小数的形式,你有什么发现?
3, 25, -53, 427, 911, 11
9. (2)还有一些数如,5,3,2π等这些数有什么特征呢?这些数如何分类呢?这节课我们就来学习6.3 实数.
2.学习目标:
(1)知道什么叫无理数?什么叫实数?
(2)会给实数进行分类.
3.学习重、难点:
重点:无理数和实数的概念;实数的分类; 难点:无理数和实数的概念.
4.自学指导:
(1)自学内容:P53
(2)自学时间:8分钟.
(3)自学要求:认真阅读课文,将重要的概念做上记号;弄清实数的两种分类方法.
(4)自学参考提纲:
①任何一个有理数都可以写成一个什么样的小数?
②什么样的数叫无理数?什么样的数叫实数?
③你能将实数用两种方法分类吗?
④说出下列各数哪些是有理数?哪些是无理数?哪些是实数? -2, 16, π, 3.14159, 37,0.1717717771…(以后每两个1之间多一个7).
二、自学:同学们可结合自学指导进行自学.
三、助学:
(1)明了学情:
(2)差异指导:
四、 强化:
(1)无理数和实数的概念;实数的分类方法.
(2)练习:把下列各数进行分类:
,之间依次多一个每两个)01(010010001.1....,11111.0,16,8,5,3
8,0,53,23- 有理数集合{ }; 无理数集合{ } 实数集合{ }
五、评价:
1.学生学习的自我评价:
2.教师对学生的评价:
(1)表现性评价;
(2)纸笔评价:课堂评价检测
3.教师的自我评价(教学反思)。

课时导学案数学七年级上册配人教版答案

课时导学案数学七年级上册配人教版答案

课时导学案数学七年级上册配人教版答案一、教材版本:人教版数学七年级上册二、课时导学案配套答案Unit 1 有理数课时1 实数1. 实数是数字的总称,包括有理数和无理数。

2. 有理数是能写成分数形式的数,即可以表示为$\fracab(a,b∈Z,b≠0)$的数,如:$3,\frac{5}{7},-1$等。

3. 无理数是不能表示为分数形式的数,如$\pi,\sqrt{2}$等。

课时2 有理数的运算1. 加减法:同号两数相加或异号两数相减,绝对值较大的数减去绝对值较小的数,符号与绝对值较大的数相同。

2. 乘法:正数相乘得正数,负数相乘得负数。

3. 除法:符号相同的两数相除得正数,符号不同的两数相除得负数。

课时3 消元法解简单方程1. 消元法是指通过相反运算把一个方程中的某个未知数消去,使得方程只含一个未知数,从而求出这个未知数的值。

2. 消元法的基本步骤:①移项:将含未知数的项移到等号另一侧;②合并同类项:将同类项合并;③通分化简:将方程中分数化简为整数。

3. 注意:在方程两边乘、除同一个数时,要分情况讨论。

Unit 2 图形的认识课时1 直线与角1. 直线是指没有端点且无限延伸的线,它由无数个点组成。

2. 角是由两条有共同端点的线段组成的图形。

3. 角的种类:(1)锐角:角的度数小于90°。

(2)直角:角的度数为90°。

(3)钝角:角的度数大于90°。

(4)平角:角的度数为180°。

课时2 角的度量和度数1. 角的度量是指表示角大小的数值,通常用度、分、秒等单位表示。

2. 角的度数是指表示角的大小,以度为单位表示,一个圆周角的度数为360°。

3. 角度转换:(1)1°=60′ 。

(2)1′=60″ 。

课时3 图形的分类1. 点、线、面是几何图形的基本元素。

2. 几何图形按照不同的标准可分类为:(1)按照形状分类,如圆形、三角形、四边形等。

(2)按照角度分类,如等角形、直角形、等边三角形等。

七数导学案 平方根

七数导学案 平方根

七年级数学下册第六章《实数》导学案第1课时 6.1平方根(1) 3、12【学习目标】1.了解数的算术平方根的定义,会用根号表示一个数的算术平方根,并理解算术平方根的双重非负性2.能利用算术平方根的定义求一个非负数的算术平方根 【学习重点】了解算术平方根的概念、性质、会用根号表示一个正数的算术平方根 【学习难点】理解算术平方根的双重非负性一、自学教材40页,把书上的表格填写完整并回答下列问题:1. 一般地,如果一个___ 数x 的平方等于a ,即2x =a ,那么这个______叫做a 的_________.a 的算术平方根记为 ,读作“ ”,a 叫做 .规定:______的算术平方根是0. 记作0=2.判断下列语句是否正确?①5是25的算术平方根( ) ②-6是36的算术平方根( ) ③0.01是0.1的算术平方根( ) ④-5是-25的算术平方根( ) 3.3的算术平方根为 ,4的算术平方根为 二、自学例14、仿照例1,求下列各数的算术平方根: (1)100;(2) 2536;(3) 0.01 ;⑷ 0;三、探究 :四、1、a 可以取任何数吗? 五、2是什么数? 讨论结果:1、(1)被开方数a 是________,即____(2)是_______,即____. 练习、判断下列各式中的有理数是否有意义。

4)1(- 4)2(- 4)3(--24)4()(-- 24)5(-四、[变式训练]想一想:下列式子表示什么意思?你能求出它们的值吗?﹙1﹚25﹙2﹙3﹙4五、当堂检测1、41页练习1、2题。

2.非负数a 的算术平方根表示为___,225的算术平方根是____,0.64-的算术平方根____,0的算术平方根是_________,____,_____=== 能力提升:1.若x 是49的算术平方根,则x =( )A. 7B. -7C. 49D.-4927=,则x 的算术平方根是( )3、若一个数的算术平方根等于它本身,则这个数是((A )X ≥0 (B )X >O (C ) X >-2 (D ) X ≥-24、若X+2是一个数的算术平方根,则X 的范围是( )(A )X ≥0 (B )X >O (C ) X >-2 (D ) X ≥-25、a 的算术平方根是3,b 是16的算术平方根,a=___,b=_____则a -b =___,2.非负数a的算术平方根表示为___,225的算术平方根是____,0.64-的算术平方根____,0的算术平方根是_________,3. ____,_____===七年级数学下册第六章《实数》导学案平方根(2)一﹑学习目标1、会用计算器求数的算术平方根2、能用有理数估计一个无理数的大致范围教学重点、难点重点:用有理数估计一个无理数的大致范围。

【初中数学精品资料】中考数学总复习_全部导学案(教师版)

【初中数学精品资料】中考数学总复习_全部导学案(教师版)

第2课时 实数的运算【知识梳理】1.有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数. 2.有理数减法法则:减去一个数,等于加上这个数的相反数.3.有理数乘法法则:两个有理数相乘,同号得正,异号得负,再把绝对值相乘; 任何数与0相乘,积仍为0.4.有理数除法法则:两个有理数相除,同号得正,异号得负,并把绝对值相除; 0除以任何非0的数都得0;除以一个数等于乘以这个数的倒数. 5.有理数的混合运算法则:先算乘方,再算乘除,最后算加减; 如果有括号,先算括号里面的. 6.有理数的运算律:加法交换律:a+b=b+a(a b 、为任意有理数) 加法结合律:(a+b)+c=a+(b+c)(a, b,c 为任意有理数)【思想方法】数形结合,分类讨论【例题精讲】例1.某校认真落实苏州市教育局出台的“三项规定”,校园生活丰富多彩.星期二下午4 点至5点,初二年级240名同学分别参加了美术、音乐和体育活动,其中参加体育活动人数是参加美术活动人数的3倍,参加音乐活动人数是参加美术活动人数的2倍,那么参加美术活动的同学其有____________名.例2.下表是5个城市的国际标准时间(单位:时)那么北京时间2006年6月17日上午9时应是( )A .伦敦时间2006年6月17日凌晨1时.B .纽约时间2006年6月17日晚上22时.C .多伦多时间2006年6月16日晚上20时 .D .汉城时间2006年6月17日上午8时.例3.如图,由等圆组成的一组图中,第1个图由1个圆组成,第2个图由7个圆组成,第3个图由19个圆组成,……,按照这样的规律排列下去,则第9个图形由__________个圆组成.北京 汉城 8 9 0 伦敦 -4 多伦多纽约 国际标准时间(时) -5 例2图……例3图【例5】如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________,第n 个“广”字中的棋子个数是________【例6】给出三个多项式:21212x x +-,21412x x ++,2122x x -.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.【当堂检测】1.分解因式:39a a -= , _____________223=---x x x 2.对于任意两个实数对(a ,b )和(c ,d ),规定:当且仅当a =c 且b =d 时, (a ,b )=(c ,d ).定义运算“⊗”:(a ,b )⊗(c ,d )=(ac -bd ,ad +bc ).若(1,2)⊗(p ,q )=(5,0),则p = ,q = . 3. 已知a=1.6⨯109,b=4⨯103,则a 2÷2b=( )A. 2⨯107B. 4⨯1014C.3.2⨯105D. 3.2⨯1014 . 4.先化简,再求值:22()()(2)3a b a b a b a ++-+-,其中2332a b =--=-,.5.先化简,再求值:22()()()2a b a b a b a +-++-,其中133a b ==-,.第4课时 分式与分式方程【知识梳理】1. 分式概念:若A 、B 表示两个整式,且B 中含有字母,则代数式BA叫做分式. 2.分式的基本性质:(1)基本性质:(2)约分:(3)通分: 3.分式运算4.分式方程的意义,会把分式方程转化为一元一次方程.5.了解分式方程产生增根的原因,会判断所求得的根是否是分式方程的增根. 【思想方法】1.类比(分式类比分数)、转化(分式化为整式)2.检验【例题精讲】1.化简:2222111x x x x x x-+-÷-+2.先化简,再求值: 22224242x x x x x x --⎛⎫÷-- ⎪-+⎝⎭,其中22x =+.3.先化简11112-÷-+x xx )(,然后请你给x 选取一个合适值,再求此时原式的值.4.解下列方程(1)013522=--+x x x x (2)41622222-=-+-+-xx x x x5.一列列车自2004年全国铁路第5次大提速后,速度提高了26千米/时,现在该列车从甲站到乙站所用的时间比原来减少了1小时,已知甲、乙两站的路程是312千米,若设列车提速前的速度是x 千米,则根据题意所列方程正确的是( )A. B.C.D.【当堂检测】1.当99a =时,分式211a a --的值是.2.当x 时,分式112--x x有意义;当x 时,该式的值为0.3.计算22()ab ab 的结果为.4. .若分式方程xxk x --=+-2321有增根,则k 为( ) A. 2 B.1 C. 3 D.-25.若分式32-x 有意义,则x 满足的条件是:( ) A .0≠x B .3≥x C .3≠x D .3≤x6.已知x =2008,y =2009,求x yx 4y 5x y x 4xy5x y 2xy x 2222-+-+÷-++的值7.先化简,再求值:4xx 16x )44x x 1x 2x x 2x (2222+-÷+----+,其中22+=x8.解分式方程. (1)22011xx x -=+- (2)x 2)3(x 22x x -=--;(3) 11322xx x -=--- (4)11-x 1x 1x 22=+--第5课时 二次根式【知识梳理】 1.二次根式:(1)定义:____________________________________叫做二次根式. 2.二次根式的化简:3.最简二次根式应满足的条件:(1)被开方数中不含有能开得尽的因数或因式. (2)根号内不含分母 (3)分母上没有根号4.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式. 5.二次根式的乘法、除法公式:(1)a b=ab a 0b 0⋅≥≥(,)(2)a a=a 0b 0b b≥(,)6..二次根式运算注意事项:(1)二次根式相加减,先把各根式化为最简二次根式,再合并同类二次根式,防止:①该化简的没化简;②不该合并的合并;③化简不正确;④合并出错.(2)二次根式的乘法除法常用乘法公式或除法公式来简化计算,运算结果一定写成最简二次根式或整式. 【思想方法】 非负性的应用【例题精讲】 【例1】要使式子1x x+有意义,x 的取值范围是( ) A .1x ≠B .0x ≠C .10x x >-≠且D .10x x ≠≥-且【例2】估计132202⨯+的运算结果应在( ). A .6到7之间 B .7到8之间 C .8到9之间D .9到10之间【例3】 若实数x y ,满足22(3)0x y ++-=,则xy 的值是 .【例4】如图,A ,B ,C ,D 四张卡片上分别写有523π7-,,,四个实数,从中任取两张卡片.A B C D(1)请列举出所有可能的结果(用字母A ,B ,C ,D 表示); (2)求取到的两个数都是无理数的概率.【例5】计算:(1)103130tan 3)14.3(27-+︒---)(π(2)101(1)527232-⎛⎫π-+-+-- ⎪⎝⎭.【例6】先化简,再求值:)1()1112(2-⨯+--a a a ,其中33-=a .【当堂检测】1.计算:(1)01232tan 60(12)+--+-+. (2)cos45°·(-21)-2-(22-3)0+|-32|+121- (3)026312()cos 304sin 6022-++-+.2.如图,实数a 、b 在数轴上的位置,化简222()a b a b ---思考与收获第9课时 方程的应用(二)【知识梳理】1.一元二次方程的应用;2. 列方程解应用题的一般步骤;3. 问题中方程的解要符合实际情况.【例题精讲】 例1. 一个两位数的十位数字与个位数字和是7,把这个两位数加上45后,•结果恰好成为数字对调后组成的两位数,则这个两位数是( ) A .16 B .25 C .34 D .61例2. 如图,在宽为20米、长为30米的矩形地面上修 建两条同样宽的道路,余下部分作为耕地.若耕地面积 需要551米2,则修建的路宽应为( ) A .1米 B .1.5米 C .2米 D .2.5米 例3. 为执行“两免一补”政策,某地区2006年投入教育经费2500万元,预计2008年投入3600万元.设这两年投入教育经费的年平均增长百分率为x ,则下列方程正确的是( )A.225003600x = B.22500(1)3600x +=C.22500(1%)3600x += D.22500(1)2500(1)3600x x +++= 例4. 某地出租车的收费标准是:起步价为7元,超过3千米以后,每增加1千米,•加收2.4元.某人乘这种出租车从甲地到乙地共付车费19元,•设此人从甲地到乙地经过的路程为x 千米,那么x 的最大值是( )A .11B .8C .7D .5例5. 已知某工厂计划经过两年的时间,•把某种产品从现在的年产量100万台提高到121万台,那么每年平均增长的百分数约是________.按此年平均增长率,预计第4年该工厂的年产量应为_____万台.例6. 某商场将进货价为30元的台灯以40元售出,平均每月能售出600个.调查表明:这种台灯的售价每上涨1元,其销售量就将减少10个.为了实现平均每月10000•元的销售利润,这种台灯的售价应定为多少?这时应进台灯多少个?例7. 幼儿园有玩具若干份分给小朋友,如果每人分3件,那么还余59件.•如果每人分5件,那么最后一个人不少于3件但不足5件,试求这个幼儿园有多少件玩具,有多少个小朋友.【当堂检测】1. 某印刷厂1•月份印刷了书籍60•万册,•第一季度共印刷了200万册,问2、3月份平均每月的增长率是多少?2. 为了营造人与自然和谐共处的生态环境,某市近年加快实施城乡绿化一体化工程,创建国家城市绿化一体化城市.某校甲,乙两班师生前往郊区参加植树活动.已知甲班每天比乙班少种10棵树,甲班种150棵树所用的天数比乙班种120棵树所用的天数多2天,求甲,乙两班每天各植树多少棵?3. A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,动点P、Q分别从点A、C同时出发,点P以3 cm/s的速度向点B移动,一直到达B为止,点Q以2 cm/s 的速度向D移动.⑴ P、Q两点从出发开始到几秒时四边形PBCQ的面积为33 cm2?⑵ P、Q两点从出发开始到几秒时,点P和点Q的距离是10 cm?4. 甲、乙两班学生到集市上购买苹果,苹果的价格如下表所示.甲班分两次共购买苹果70kg(第二次多于第一次),共付出189元,而乙班则一次购买苹果70kg.(1)乙班比甲班少付出多少元?(2)甲班第一次,第二次分别购买苹果多少千克?购苹果数不超过30kg 30kg以下但不超过50kg50kg以上每千克价格3元 2.5元2元第10课时 一元一次不等式(组)【知识梳理】1.一元一次不等式(组)的概念;2.不等式的基本性质;3.不等式(组)的解集和解法. 【思想方法】1.不等式的解和解集是两个不同的概念;2.解集在数轴上的表示方法.【例题精讲】 例1.如图所示,O 是原点,实数a 、b 、c 在数轴上对应的点分别为A 、B 、C ,则下列结论错误的是( ) A. 0b a >-B. 0ab <C. 0b a <+D. 例2. 不等式112x ->的解集是( )A.12x >- B.2x >- C.2x <-D.12x <-例3. 把不等式组21123x x +>-⎧⎨+⎩≤的解集表示在数轴上,下列选项正确的是( )A .B .C .D .例4. 不等式组221x x -⎧⎨-<⎩≤的整数解共有( )A .3个B .4个C .5个D .6个例5. 小明和爸爸妈妈三人玩跷跷板,三人的体重一共为150kg ,爸爸坐在跷跷板的一端,小明体重只有妈妈一半,小明和妈妈一同坐在跷跷板的另一端,这时爸爸那端仍然着地,那么小明的体重应小于( ) A. 49kg B. 50kg C. 24kg D. 25kg 例6.若关于x 的不等式x -m ≥-1的解集如图所示,则m 等于( ) A .0 B .1 C .2D .3例7.解不等式组:(1)21113x xx +<⎧⎪⎨-≥⎪⎩ (2)⎪⎩⎪⎨⎧+<+->+)6(3)4(4,5351x x x x4321B A O C)c a (b >-1 01- 10 1- 1 0 1- 1 0 1-第12课时 一次函数图象和性质【知识梳理】1.正比例函数的一般形式是y=kx(k≠0),一次函数的一般形式是y=kx+b(k≠0). 2. 一次函数y kx b =+的图象是经过(kb-,0)和(0,b )两点的一条直线. 3. 一次函数y kx b =+的图象与性质【思想方法】数形结合【例题精讲】 例1. 已知一次函数物图象经过A(-2,-3),B(1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P(-1,1)是否在这个一次函数的图象上; (3)求此函数与x 轴、y 轴围成的三角形的面积.例2. 已知一次函数y=(3a+2)x -(4-b),求字母a 、b 为何值时: (1)y 随x 的增大而增大; (2)图象不经过第一象限;(3)图象经过原点; (4)图象平行于直线y=-4x+3; (5)图象与y 轴交点在x 轴下方.例3. 如图,直线l 1 、l 2相交于点A ,l 1与x 轴的交点坐标为(-1,0),l 2与y 轴的交点坐标为(0,-2),结合图象解答下列问题: (1)求出直线l 2表示的一次函数表达式;(2)当x 为何值时,l 1 、l 2表示的两个一次函数的函数值都大于0?k 、b 的符号k >0,b >0k >0,b <0k <0,b >0k <0,b <0图像的大致位置经过象限 第 象限 第 象限第 象限第 象限 性质y 随x 的增大 而y 随x 的增大而而y 随x 的增大 而y 随x 的增大 而xy O32y x a =+1y kx b =+yxO BA 例4.如图,反比例函数xy 2=的图像与一次函数b kx y +=的图像交于点A(m,2),点B(-2, n ),一次函数图像与y 轴的交点为C. (1)求一次函数解析式; (2)求C 点的坐标; (3)求△AOC 的面积.【当堂检测】1.直线y =2x +8与x 轴和y 轴的交点的坐标分别是_______、_______;2.一次函数1y kx b =+与2y x a =+的图象如图,则下列 结论:①0k <;②0a >;③当3x <时,12y y <中, 正确的个数是( )A .0B .1C .2D .33.一次函数(1)5y m x =++,y 值随x 增大而减小,则m 的取值范围是( ) A .1m >-B . 1m <-C .1m =-D .1m <4.一次函数23y x =-的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 5.已知函数y kx b =+的图象如图,则2y kx b =+的图象可能是( )6.已知整数x 满足-5≤x≤5,y 1=x+1,y 2=-2x+4对任意一个x ,m 都取y 1,y 2中的较小值,则m 的最大值是( ) A.1 B.2 C.24 D.-97.如图,点A 的坐标为(-1,0),点B 在直线y =x 上运动,当线段AB 最短时,点B 的坐标为 ( ) A.(0,0) B.(22,22-) C.(-21,-21) D.(-22,-22)第2题图 第5题图 第7题图第13课时 一次函数的应用【例题精讲】例题1.某地区的电力资源丰富,并且得到了较好的开发.该地区一家供电公司为了鼓励居民用电,采用分段计费的方法来计算电费.月用电量x (度)与相应电费y (元)之间的函数图像如图所示.⑴月用电量为100度时,应交电费 元; ⑵ 当x≥100时,求y 与x 之间的函数关系式; ⑶ 月用电量为260度时,应交电费多少元?例题2. 在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t (h ),两组离乙地的距离分别为S 1(km )和S 2(km),图中的折线分别表示S 1、S 2与t 之间的函数关系.(1)甲、乙两地之间的距离为 km ,乙、丙两地之间的距离为 km ; (2)求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少? (3)求图中线段AB 所表示的S 2与t 间的函数关系式,并写出t 的取值范围.例题3.某加油站五月份营销一种油品的销售利润y (万元)与销售量x (万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元.(销售利润=(售价-成本价)×销售量)请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题: (1)求销售量x 为多少时,销售利润为4万元; (2)分别求出线段AB 与BC 所对应的函数关系式;(3)我们把销售每升油所获得的利润称为利润率,那么,在O A 、AB 、BC 三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)2·4·6· 8· S(km) 2 0 t(h) A B1日:有库存6万升,成本价4元/升,售价5元/升. 13日:售价调整为5.5元/升.15日:进油4万升,成本价4.5元/升.31日:本月共销售10万升.图(1) 2 O 5 x A B C P D 图(2)第1题图 例题4.奥林玩具厂安排甲、乙两车间分别加工1000只同一型号的奥运会吉祥物,每名工人每天加工的吉祥物个数相等且保持不变,由于生产需要,其中一个车间推迟两天开始加工.开始时,甲车间有10名工人,乙车间有12名工人,图中线段OB 和折线段ACB 分别表示两车间的加工情况.依据图中提供信息,完成下列各题:(1)图中线段OB 反映的是________车间加工情况;(2)甲车间加工多少天后,两车间加工的吉祥物数相同? (3)根据折线段ACB 反映的加工情况, 请你提出一个问题,并给出解答.【当堂检测】 1.如图(1),在直角梯形ABCD 中,动点P 从点B 出发,沿BC ,CD 运动至点D 停止.设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图(2)所示,则△BCD 的面积是( )A .3B .4C .5D .6 2.如图,在中学生耐力测试比赛中,甲、乙两学生测试的路程s (米)与时间t (秒)之间的函数关系的图象分别为折线OABC 和线段OD ,下列说法正确的是( ) A .乙比甲先到终点B .乙测试的速度随时间增加而增大C .比赛到29.4秒时,两人出发后第一次相遇D .比赛全程甲测试速度始终比乙测试速度快 3.小高从家门口骑车去单位上班,先走平路到达点A ,再走上坡路到达点B ,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是( ) A .12分钟 B .15分钟C .25分钟D .27分钟4.在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发x (h)时,汽车与甲地的距离为y (km),y 与x 的函数关系如图所示.根据图像信息,解答下列问题: (1)这辆汽车的往、返速度是否相同?请说明理由;(2)求返程中y 与x 之间的函数表达式; (3)求这辆汽车从甲地出发4h 时与甲地的距离.2 B x (天) AC18 20 O 960 1000 y (只) 第2题图 第3题图 第4题图第14课时 反比例函数图象和性质【知识梳理】1.反比例函数:一般地,如果两个变量x 、y 之间的关系可以表示成y = 或 (k 为常数,k≠0)的形式,那么称y 是x 的反比例函数. 2. 反比例函数的图象和性质3.k 的几何含义:反比例函数y =kx(k≠0)中比例系数k 的几何意义,即过双曲线y =kx(k≠0)上任意一点P 作x 轴、y 轴垂线,设垂足分别为A 、B ,则所得矩形OAPB 的面积为 . 【思想方法】 数形结合【例题精讲】例1 某汽车的功率P 为一定值,汽车行驶时的速度v (米/秒)与它所受的牵引力F (牛)之间的函数关系如右图所示:(1)这辆汽车的功率是多少?请写出这一函数的表达式;(2)当它所受牵引力为1200牛时,汽车的速度为多少千米/时? (3)如果限定汽车的速度不超过30米/秒,则F 在什么范围内?例2如图,一次函数y kx b =+的图象与反比例函数my x=的图象交于(21)(1)A B n -,,,两点. (1)试确定上述反比例函数和一次函数的表达式; (2)求AOB △的面积;(3)x 为何值时,一次函数值大于反比例函数值. k 的符号k >0 k <0 图像的大致位置经过象限 第 象限 第 象限 性质在每一象限内,y 随x 的增大而在每一象限内,y 随x 的增大而oy xy xoOyxBA【当堂检测】1. (2008年河南)已知反比例函数的图象经过点(m ,2)和(-2,3),则m 的值为 .2.(2008年宜宾)若正方形AOBC 的边OA 、OB 在坐标轴上,顶点C 在第一象限且在反比例函数y =x1的图像上,则点C 的坐标是 . 3.在反比例函数3k y x-=图象的每一支曲线上,y 都随x 的增大而减小,则k 的取值范围是 ( )A .k >3B .k >0C .k <3D . k <0 4. (2008年广东)如图,反比例函数图象过点P,则它的解析式为( )A.y =1x (x>0) B.y =-1x (x>0) C.y =1x (x<0) D.y =-1x(x<0)5.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P ( kPa ) 是气体体积V ( m 3 ) 的反比例函数,其图象如图所示.当气球内的气压大于120 kPa 时,气球将爆炸.为了安全起见,气球的体积应( )A .不小于54m 3B .小于54m 3C .不小于45m 3D .小于45m 36.(2008巴中)如图,若点A 在反比例函数(0)ky k x=≠的图象上,AM x ⊥轴于点M ,AMO △的面积为3,则k = . 7.对于反比例函数2y x=,下列说法不正确...的是( ) A .点(21)--,在它图象上B .图象在第一、三象限C .当0x >时,y 随x 的增大而增大D .当0x <时,y 随x 的增大而减小 8.(2008年乌鲁木齐)反比例函数6y x=-的图象位于( ) A .第一、三象限 B .第二、四象限 C .第二、三象限 D .第一、二象限 9.某空调厂装配车间原计划用2个月时间(每月以30天计算),每天组装150台空调.(1)从组装空调开始,每天组装的台数m (单位:台/天)与生产的时间t (单位:天)之间有怎样的函数关系?(2)由于气温提前升高、厂家决定这批空调提前十天上市,那么装配车间每天至少要组装多少空调?第5题图1-1yOxP第4题图第6题图y xO OyxBA第15课时 二次函数图象和性质【知识梳理】1. 二次函数2()y a x h k =-+的图像和性质a >0a <0图 象 开 口 对 称 轴 顶点坐标最 值当x = 时,y 有最 值当x = 时,y 有最 值 增减性 在对称轴左侧 y 随x 的增大而y 随x 的增大而 在对称轴右侧 y 随x 的增大而y 随x 的增大而2. 二次函数c bx ax y ++=2用配方法可化成()k h x a y +-=2的形式,其中h = , k = .3. 二次函数2()y a x h k =-+的图像和2ax y =图像的关系. 4. 二次函数c bx ax y ++=2中c b a ,,的符号的确定.【思想方法】 数形结合【例题精讲】 例1.已知二次函数24y x x =+,(1) 用配方法把该函数化为2()y a x h k =-+ (其中a 、h 、k 都是常数且a≠0)形式,并画 出这个函数的图像,根据图象指出函数的对称 轴和顶点坐标.(2) 求函数的图象与x 轴的交点坐标.例2. (2008年大连)如图,直线m x y +=和抛物线c bx x y ++=2都经过点A(1,0),B(3,2).⑴ 求m 的值和抛物线的解析式;⑵ 求不等式m x c bx x +>++2的解集.(直接写出答案)【当堂检测】1. 抛物线()22-=x y 的顶点坐标是 .2.将抛物线23y x =-向上平移一个单位后,得到的抛物线解析式是 . 3. 如图所示的抛物线是二次函数2231y ax x a =-+- 的图象,那么a 的值是 .4.二次函数2(1)2y x =-+的最小值是( )A.-2B.2C.-1D.15. 请写出一个开口向上,对称轴为直线x =2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 .6.已知二次函数22y x x m =-++的部分图象如右图所示,则关于x 的一元二次方程220x x m -++=的解为 .7.已知函数y=x 2-2x-2的图象如图所示,根据其中提供的信息,可求得使y≥1成立的x 的取值范围是( )A .-1≤x≤3B .-3≤x≤1C .x≥-3D .x≤-1或x≥3 8. 二次函数c bx ax y ++=2(0≠a )的图象如图所示,则下列结论: ①a >0; ②c >0; ③ b 2-4a c >0,其中正确的个数是( ) A. 0个 B. 1个 C. 2个 D. 3个第7题图 第8题图9. 已知二次函数243y ax x =-+的图象经过点(-1,8).(1)求此二次函数的解析式;(2)根据(1)填写下表.在直角坐标系中描点,并画出函数的图象;x 0 1 2 3 4 y(3)根据图象回答:当函数值y<0时,x 的取值范围是什么?第3题图第6题图第16课时 二次函数应用【知识梳理】1. 二次函数的解析式:(1)一般式: ;(2)顶点式:2. 顶点式的几种特殊形式.⑴ , ⑵ , ⑶ ,(4) .3.二次函数c bx ax y ++=2通过配方可得224()24b ac b y a x a a-=++,其抛物线关于直线x = 对称,顶点坐标为( , ).⑴ 当0a >时,抛物线开口向 ,有最 (填“高”或“低”)点, 当x = 时,y 有最 (“大”或“小”)值是 ;⑵ 当0a <时,抛物线开口向 ,有最 (填“高”或“低”)点, 当x = 时,y 有最 (“大”或“小”)值是 .【思想方法】 数形结合【例题精讲】例1. 橘子洲头要建造一个圆形的喷水池,并在水池中央垂直安装一个柱子OP ,柱子顶端P 处装上喷头,由P 处向外喷出的水流(在各个方向上)沿形状相同的抛物线路径落下(如图所示).若已知OP =3米,喷出的水流的最高点A 距水平面的高度是4米,离柱子OP 的距离为1米. (1)求这条抛物线的解析式;(2)若不计其它因素,水池的半径至少要多少米, 才能使喷出的水流不至于落在池外?例2.随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高.某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润1y 与投资量x 成正比例关系,如图(1)所示;种植花卉的利润2y 与投资量x 成二次函数关系,如图(2)所示(注:利润与投资量的单位:万元) ⑴ 分别求出利润1y 与2y 关于投资量x 的函数关系式; ⑵ 如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?(1) (2)【当堂检测】1. 有一个抛物线形桥拱,其最大高度为16米,跨度为40米,现在它的示意图放在平面直角坐标系中如图,则此抛物线的解析式为 .2. 某公司的生产利润原来是a 元,经过连续两年的增长达到了y 万元,如果每年增长的百分数都是x ,那么y 与x 的函数关系是( ) A .y =x 2+a B .y = a (x -1)2 C .y =a (1-x )2 D .y =a (l +x )2 3.如图,用长为18 m 的篱笆(虚线部分),两面靠墙围成矩形的苗圃.⑴ 设矩形的一边为()m x 面积为y (m 2),求y 关于x 的函数关系式,并写出自变量x 的取值范围;⑵ 当x 为何值时,所围苗圃的面积最大,最大面积是多少?4.体育测试时,初三一名高个学生推铅球,已知铅球所经过的路线为抛物线35321212++-=x x y 的一部分,根据关系式回答:⑴ 该同学的出手最大高度是多少?⑵ 铅球在运行过程中离地面的最大高度是多少? ⑶ 该同学的成绩是多少?5.某企业信息部进行市场调研发现:信息一:如果单独投资A 种产品,则所获利润A y (万元)与投资金额x (万元)之间存在正比例函数关系:A y kx =,并且当投资5万元时,可获利润2万元; 信息二:如果单独投资B 种产品,则所获利润B y (万元)与投资金额x (万元)之间存在二次函数关系:2B y ax bx =+,并且当投资2万元时,可获利润2.4万元;当投资4万元,可获利润3.2万元.(1) 请分别求出上述的正比例函数表达式与二次函数表达式;(2) 如果企业同时对A 、B 两种产品共投资10万元,请你设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少.第1题图第17课时 数据的描述、分析(一)【知识梳理】1.掌握总体、个体、样本、样本容量四个基本概念;2.理解样本平均数、极差、方差、 标准差、中位数、众数. 【思想方法】1. 会运用样本估计总体的思想【例题精讲】 例1.某校高一新生参加军训,一学生进行五次实弹射击的成绩(单位:环) 如下:8,6,10,7,9,则这五次射击的平均成绩是 环,中位数 环,极差是 环,方差是 环2.例2.已知样本x 1、x 2、x 3、x 4的平均数是2,则x 1+3、x 2+3、x 3+3、x 4+3的平均 数为 ; .已知样本x 1,x 2,x 3,…,x n 的方差是1,那么样本2x 1+3, 2x 2+3,2x 3+3,…,2x n +3的方差是 , 标准差是 .例3.小明上学期六门科目的期末考试成绩(单位:分)分别是:120,115,x ,60,85,80.若平均分是93分,则x=_________,一组数据2,4,x ,2, 3,4的众数是2,则x = .例4.为了了解我市九年级学生中考数学成绩,从所有考生的试卷中抽取1000 份试卷进行统计分析,在这个问题中,样本是被抽取的1000名学生,则总体 是 ,个体是 , 样本是 ,样本容量是 .例5.某校九年级(1)班积极响应校团委的号召, 每位同学都向“希望工程” 捐献图书,全班40名同学共捐图书320册.特别值得一提的是李扬、王州两 位同学在父母的支持下各捐献了50册图书. 班长统计了全班捐书情况如下 表(被粗心的马小虎用墨水污染了一部分):⑴ 分别求出该班级捐献7册图书和8册图书的人数;⑵ 请算出捐书册数的平均数、中位数和众数, 并判断其中哪些统计量不能 反映该班同学捐书册数的一般状况,说明理由.册数 4 5 6 7 850 人数 6 8 15 2第18课时数据的描述、分析(二)【知识梳理】1. 明确扇形图、条形图、折线统计图的区别与联系.【思想方法】1. 基本图形的识别.【例题精讲】例1.下面是两户居民家庭全年各项支出的统计图.根据统计图,下列对两户教育支出占全年总支出的百分比作出的判断中,正确的是()A.甲户比乙户大 B.乙户比甲户大C.甲、乙两户一样大 D.无法确定哪一户大例1图例2.在“不闯红灯,珍惜生命”活动中,文明中学的关欣和李好两位同学某天来到城区中心的十字路口,观察、统计上午7:00~12:00中闯红灯的人次.制作了如下的两个数据统计图.(1)求图(一)提供的五个数据(各时段闯红灯人次)的众数和平均数.(2)估计一个月(按30天计算)上午7:00~12:00在该十字路口闯红灯的未成年人约有________人次.(3)请你根据统计图提供的信息向交通管理部门提出一条合理化建议.例2图例3.数学课上,年轻的刘老师在讲授“轴对称”时,设计了如下四种教学方法:①教师讲,学生听;②教师让学生自己做;③教师引导学生画图,发现规律;④教师让学生对折纸,观察发现规律,然后画图.数学教研组长将上述教学方法作为调研内容发到全年级8个班420名同学手中,。

《实数》全章导学案45-54

《实数》全章导学案45-54

情境导入明晰目标任务驱动学习目标:1.理解算术平方根的意义,会用根号表示正数的算术平方根,会求一个非负数的算术平方根,掌握算术平方根的非负性。

2. 培养逆向思维能力。

学习重点:理解算术平方根的意义,学习难点:理解算术平方根的意义,学法指导:1、学生独立阅读课本P68—P69,探究课本基础知识,提升自己的阅读理解能力。

2、完成导学案设置的问题,由组长组织对学与群学,进行知识汇报,展示讨论。

3、教师巡视,及时指导、帮助学生解决疑难问题。

导学流程:一、旧知回顾1、有理数的分类。

2、有理数与数轴的对应关系二、基础知识探究1.计算:=21,=2)21(,=20,=23.0,=2)43(,=-2)51(。

2.填一填:25(____)2=,36(____)2=,256(____)2=,196144(____)2=3.若a是有理数,则2a一定是数。

4.学校要举行美术作品比赛,小鸥很高兴。

他想裁出一块面积为252dm的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?5.什么是算术平方根?任何一个数都有算术平方根吗?若不是,那哪些数有,哪些数没有呢?(一)算术平方根的定义1.填表:正方形面积 1 9 16 36254边长表中的问题,实际上是已知一个正数的,求的问题。

2. 算术平方根的定义一般的,如果一个正数..x的等于a,即ax=2,那么这个正数....x叫做算术平方根.....。

a的算术平方根记为,读作“”,a叫做。

规定:0的算术平方根是 .(二)算术平方根的性质=2)4(=2)91(;2)2(= ;=2)31(。

一个非负数的算术平方根一定是,一个非负数的算术平方根的平方一定等于。

a要有意义,a的取值范围是。

三、综合应用探究25的算术平方根是;8116的算术平方根是;的算术平方根是1;的算术平方根是0;四、达标反馈1、3的算术平方根是;2)32(-的算术平方根是;9表示,9= ;971= ;2)2.0(-。

初中数学实数教案模板

初中数学实数教案模板

初中数学实数教案模板一、教学目标1. 知识与技能:使学生了解实数的定义和性质,能够运用实数解决一些简单的问题。

2. 过程与方法:通过学生自主探究、合作交流,培养学生推理、概括的能力。

3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的耐心和自信心。

二、教学重点与难点1. 重点:实数的定义和性质。

2. 难点:实数的运算和应用。

三、教学过程1. 复习提问:复习有关有理数的相关知识,提问学生有理数的运算规则。

2. 引入新课:讲解实数的定义和性质,通过实例让学生理解实数的概念。

3. 自主探究:让学生自主探究实数的性质,如加法、减法、乘法、除法的运算规则。

4. 合作交流:学生分组讨论,分享自己探究的结果,教师给予指导和点评。

5. 巩固练习:给出一些练习题,让学生运用实数的知识解决问题,教师及时给予反馈和讲解。

6. 课堂小结:让学生总结实数的定义和性质,以及运算规则。

7. 课后作业:布置一些相关的作业题,让学生巩固所学知识。

四、教学策略1. 情境教学:通过生活实例引入实数的概念,让学生感受数学与实际的联系。

2. 启发式教学:引导学生自主探究实数的性质,培养学生的推理能力。

3. 合作学习:鼓励学生分组讨论,培养学生的合作意识和沟通能力。

4. 及时反馈:教师在学生练习时及时给予反馈,帮助学生纠正错误,提高正确率。

五、教学评价1. 课堂参与度:观察学生在课堂上的积极参与情况,提问和回答问题的积极性。

2. 作业完成情况:检查学生作业的完成质量,包括答案的正确性和解题过程的清晰度。

3. 自主学习能力:评价学生在自主探究过程中的表现,如独立思考、解决问题的能力。

4. 合作交流能力:评价学生在合作交流中的表现,如沟通、协调、合作的能力。

六、教学资源1. 教材:使用符合课程标准的数学教材,提供丰富的学习材料。

2. 课件:制作多媒体课件,生动展示实数的定义和性质。

3. 练习题:准备一些实数相关的练习题,包括基础题和拓展题。

第十三章实数全章导学案

第十三章实数全章导学案

第十三章 实数课题:平方根(1)主备人: 初审人: 终审人:中学理科教研组【导学目标】1、理解数的算术平方根的概念,并会用符号表示。

2、理解平方与开平方是互为逆运算。

3、会求一些非负数的算术平方根。

【导学重点】理解算术平方根的概念。

【导学难点】会求简单平方数的算术平方根。

【导学过程】 一、检查预习1、a 中被开方数a 的范围怎样。

0的算术平方根的意义。

2、完成例1,注意例1的书写格式。

3、学习例3的内容,注意50与7是怎样比较的。

4、自学后完成展示内容,20分钟后进行展示。

二、交流展示1、∵22 = ∴4的算术平方根是 即∵2)43( = ∴169的算术平方根是 即 2、∵正数a 的算术平方根是a ,∴2的算术平方根是 ∵4的算术平方根是2, ∴4 = 3、求下列各数的算术平方根:⑴ 0.0025 ⑵ 121 ⑶ 23 ⑷ 2(3)- ⑸ 7三、当堂达标1、计算下列各式: (1)1 (2)259(3)()2-2、计算下列各式: (1)49 — 49 (2)1691—144 + 81(3)25×361五、拓展训练1、求下列各等式中的正数x(1)2x= 169 (2)42x— 121 = 0 2、比较下列各组数的大小。

(1)140与12 (2)215—与0.5六、预习指向预习下一节,完成后面练习题。

课题:平方根(2)主备人:初审人:终审人:中学理科教研组【导学目标】1、理解数的算术平方根的概念,并会用符号表示。

2、理解平方与开平方是互为逆运算。

3、会求一些非负数的算术平方根。

【导学重点】理解算术平方根的概念。

【导学难点】会求简单平方数的算术平方根。

【导学过程】一、检查预习1、说明:一个正数a的算术平方根有个,平方根有个,并且互为,0的平方根是。

2、负数有没有平方根,为什么?3、注意根号前的符号4、自学20分钟后,进行展示活动一、展示内容1-2、计算下列各式的值:(1)(2)-(3)±(4)-平方根起源于正方形的面积,若一个正方形的面积为A,那么这个正方形的边长为多少?3、判断下列说法是否正确(1)5是25的算术平方根( ) (2)65是3625的一个平方根( ) (3)()42-的平方根是-4( ) (4)0的平方根与算术平方根都是0( ) 二、当堂达标1、下列各式是否有意义,为什么?(1)-3(2)3-(3)()22-(4)10212、求下列各式的x 的值:(1)2x =25 (2)2x -81=0 (3)252x =36 (4)22x -18=0 三、拓展训练1、完成《配套练习》35页6题。

一元二次方程复习(练习)免费下载

一元二次方程复习(练习)免费下载

《实数》学习任务单(导学案)【学习目标】1.理解无理数、实数的概念.2.会对实数进行分类,会比较实数的大小.3.理解实数范围内的相反数、倒数、绝对值等有关概念.4.能在实数范围内进行加、行加、减、乘、除、乘方和开方运算.【课前学习任务】预习新课:实数【课上学习任务】【学习任务一】无理数、实数概念及其分类无限叫做无理数.无理数可分为无理数与无理数.实数的概念:和统称为实数.实数的分类:(1)按定义分:实数⎩⎪⎨⎪⎧有理数⎩⎨⎧⎭⎬⎫正有理数零负有理数有限小数或无限循环小数无理数⎩⎨⎧⎭⎬⎫正无理数负无理数无限不循环小数 (2)按正、负性分: 实数⎩⎪⎪⎨⎪⎪⎧正实数⎩⎨⎧正有理数⎩⎨⎧正整数正分数正无理数零负实数⎩⎨⎧负有理数⎩⎨⎧负整数负分数负无理数当堂练习:1.下列说法正确的是( )A .无理数包括纯循环小数和混循环小数B .无理数是用根号形式表示的数C .无理数是开方开不尽的数D .无理数是无限不循环小数 2.下列实数中,为无理数的是( )A .0.2B .12 C . √2 D .-5 3.下列实数中,是有理数的为( )A .√2B .√43C .πD .0 4.下列说法正确的是( )A .正实数和负实数统称实数B .正数、零和负数统称有理数C .带根号的数和分数统称实数D .无理数和有理数统称实数 5.如图,已知数轴上的点A ,B ,C ,D 分别表示数−2,1,2,3,则表示数3−√5的点P 应落在线段 ( )A .AO 上B .OB 上C .BC 上D .CD 上【学习任务二】实数的有关概念、实数的大小比较、实数的运算在实数范围内,相反数、倒数、绝对值的意义与在有理数范围内完全一样. 相反数:实数a 的相反数为 ,若a 、b 互为相反数,则a +b = . 非零实数a 的倒数为 ,若a 、b 互为倒数,则ab = .绝对值:|a|=实数与数轴间的关系:实数和数轴上的点 . 在实数范围内,进行加、减、乘、除、乘方和开方运算时,有理数的运算法则和运算律仍然适用;实数混合运算的运算顺序与有理数的混合运算顺序一样,先算 、开方,再算乘除,最后算 ,同级运算按照 的顺序进行,有括号先算括号里面的.在实数范围内,在数轴上表示的数,右边的数总比 边的数大.正数大于 ,负数小于零,正数大于负数.两个正数,绝对值大的数较 .两个负数,绝对值大的数反而 .当堂练习:1.2的相反数是( )A .−√2B .√2C .√2D .22.在实数范围内,下列判断正确的是( )A .若|x |=|y|,则x =yB .若x > y ,则x 2> y 2C .若|x |=(√y)2,则x =y D .若√x 3=√y 3,则x =y 3.如图,数轴上的A ,B ,C ,D 四点中,与表示数−√3的点最接近的是( )A .点AB .点BC .点CD .点D 4.两个数-2,0,2,√3中,最大的数是( ) A .√3 B .2 C .0 D .-2 5.若k −1< 80 < k (k 是整数),则k 等于( ) A .6 B .7 C .8 D .9【课后学习任务】1.把下列各数填入相应的大括号内:-7,0.32,13,3.14,0,√8,√12,0.1010010001…(相邻两个1之间0的个数逐次加1),√93,−π2.有理数:{ }; 无理数:{ }; 正实数:{ }; 实数:{ }.2.√3−√2的相反数是 ,|1-√3|= . 3.已知a 是28的整数部分,b 是28的小数部分,求2a +b 的值.4.计算: (−3)2−|−12|+12−√9;5.已知实数a ,b ,c 在数轴上对应的点的位置如图, 化简:√a 2-|a -b|+|c -a|+√(b −a )2参考答案【课上学习任务】【学习任务一】不循环小数;正;负 有理数;无理数 1. D 2. C 3. D 4. D 5. B【学习任务二】−a ;0;1a ;1;{a (a ≥0)−a (a <0);一 一对应;乘方;加减;自左向右;左;零;大;小 1. A 2. D 3. B 4. B 5. B【课后学习任务】1.有理数:{-7,0.32,13,3.14,0,…};无理数:{√8,√12,0.1010010001…(相邻两个1之间0的个数逐次加1),√93,−π2,…};正实数:{ 0.32,13,3.14,√8,√12,0.1010010001…(相邻两个1之间0的个数逐次加1),√93,…};实数:{ -7,0.32,3.14,0,√8,√12,0.1010010001…(相邻两个1之间0的个数逐次加1),√93,−π2 ,…}.2. √2−√3; √3−1.7.因为25 < 28 < 36,即5 < 28 < 6,所以a =5,b =28-5.所以2a +b =2×5+28−5=5+28. 7.原式=9−12+12−3=6. 8.由数轴可知a < b < 0 < c .所以a < 0,a -b < 0,c -a > 0,b -a > 0, 所以原式=|a |−[−(a −b )]+c −a +|b -a|=−a +(a −b )+c −a +b −a =c −2a .。

2014年中考备考一轮复习导学案第1章实数

2014年中考备考一轮复习导学案第1章实数

第1课 实数【课标要求】1.有理数①理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小。

②借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母)。

③理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主)。

④理解有理数的运算律,并能运用运算律简化运算。

⑤能运用有理数的运算解决简单的问题。

2.实数①了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根。

②了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根。

③了解无理数和实数的概念,知道实数与数轴上的点一一对应。

④能用有理数估计一个无理数的大致范围。

⑤了解近似数的概念;解决实际问题中,能用计算器进行近似计算,并按问题要求对结果取近似值。

【知识要点】1.实数的分类:实数可分为: 和 ;也可以分为: 、 和 。

◆数轴上的点和 一一对应。

2.有理数: 和 统称有理数。

3.无理数: 叫做无理数。

◆常见的几种无理数: ①根号型:如35,2等开方开不尽的数。

②三角函数型:如sin60°,cos45°等。

③圆周率π型:如2π,π-1等。

④构造型:如1.121121112…等无限不循环小数。

4.相反数、倒数和绝对值:(1)若a a =, 则:a 0; (2)若a a -=,则:a 0。

5.负指数幂、零指数幂: p p aa 1=-, ()010≠=a a 6.平方根、算术平方根和立方根:(1)3的平方根表示为: ;(2)3的算术平方根表示为: ;(3)3的立方根表示为: 。

◆正数有两个平方根,这两个平方根互为相反数;0的平方根是它本身;负数没有平方根。

◆正数、0、负数都只有一个立方根,正数的立方根是正数;0的立方根是它本身;负数的立方根是负数。

◆a a =2(0≥a ),a a -=2(0≤a ), ()a a =2(0≥a ),()a a =337.对无理数的估算:◆记住常用的:414.12≈,732.13≈,236.25≈。

人教版八年级上第十三章_实数_导学案集(精品)[1]1

人教版八年级上第十三章_实数_导学案集(精品)[1]1

13.1平方根(第1课时)主备赵晗审核吕元群时间 2011 10一、教学目标1.经历算术平方根概念的形成过程,了解算术平方根的概念.2.会求某些正数(完全平方数)的算术平方根并会用符号表示.二、重点和难点1.重点:算术平方根的概念.2.难点:算术平方根的概念.(本节课需要的各种图表要提前画好)三、合作探究请看下面的例子.学校要举行美术作品比赛,扎西很高兴.他想裁出一块面积为25平方分米的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少分米?(师演示一张面积为25平方分米的纸)(一)谁来说这块正方形画布的边长应取多少分米?你是怎么算出来的?答:因为52=25(板书:因为52=25),所以这个正方形画布的边长应取5分米(板书:所以边长=5分米).(二)(完成下表)正方形的面积9 16 36 14 25边长这个实例中的问题、填表中的问题实际上是一个问题,什么问题?它们都是已知正方形面积求边长的问题.通过解决这个问题,我们就有了算术平方根的概念.正数3的平方等于9,我们把正数3叫做9的算术平方根.请大家把算术平方根概念默读两遍.(生默读)(师让学生拿出提前准备好这样的10张卡片,一面写1-10,另一面写1-10的平方.生正数4的平方等于16,我们把正数4叫做16的算术平方根.说说6和36这两个数?……(多让几位同学说,学生说得不正确的地方教师随即纠正)说说1和1这两个数?同桌之间互相说一说5和25这两个数.(同桌互相说)说了这么多,同学们大概已经知道了算术平方根的意思.那么什么是算术平方根呢?还是先在小组里讨论讨论,说说自己的看法.(三)什么是算术平方根呢?如果一个正数的平方等于a,那么这个正数叫做a的算术平方根任意抽一张卡片,让其他学生回答平方或算术平方根。

(按以上过程抽完所有卡片)如果一个正数的平方等于a,那么这个正数叫做a 的算术平方根.为了书写方便,我们把a的算术平方根记作a(板书:a的算术平方根记作a).(指准上图)看到没有?这根钓鱼杆似的符号叫做根号,a叫做被开方数,a表示a的算术平方根.四、精讲精练精讲例:求下列各数的算术平方根:(1)4964; (2)0.0001.(要注意解题格式,解题格式要与课本第68页上的相同)精练1.填空:(1)因为_____2=64,所以64的算术平方根是______,即64=______;根号被开方数a(2)因为_____2=0.25,所以0.25的算术平方根是______,即0.25=______;(3)因为_____2=1649,所以1649的算术平方根是______,即1649=______.2.求下列各式的值:(1)81=______; (2)100=______; (3)1=______;(4)925=______; (5)0.01=______; (6)23=______.3.根据112=121,122=144,132=169,142=196,152=225,162=256,172=289,182=324,192=361,填空并记住下列各式:121=_______,144=_______,169=_______,196=_______,225=_______,256=_______,289=_______,324=_______,361=_______.(学生记住没有,教师可以利用卡片进行检查,并要求学生课后记熟)4.辨析题:卓玛认为,因为(-4)2=16,所以16的算术平方根是-4.你认为卓玛的看法对吗?为什么?五课堂小结,a 的算术平方根记作a,像钓鱼杆似的东西叫做根号,a叫做被开方数.六、作业 P75习题13.1平方根(第2课时)一、教学目标1.通过由正方形面积求边长,让学生经历2的估值过程,加深对算术平方根概念的理解,感受无理数,初步了解无限不循环小数的特点.2.会用计算器求算术平方根.二、重点和难点1.重点:感受无理数.2.难点:感受无理数.(本节课使用计算器,最好每个同学都要有计算器)三、合作探究1.填空:如果一个正数的平方等于a,那么这个正数叫做a的_______________,记作_______.2.填空:(1)因为_____2=36,所以36的算术平方根是_______,即36=_____;(2)因为(____)2=964,所以964的算术平方根是_______,即964=_____;(3)因为_____2=0.81,所以0.81的算术平方根是_______,即0.81=_____;(4)因为_____2=0.572,所以0.572的算术平方根是_______,即20.57=_____.3.师抽卡片生口答.(课前制作若干张卡片,一面是a的形式,一面是算术平方根的值,卡片中要包括121到361,还要包括被开方数是分数、小数、a2等形式)(二)(看下图)这个正方形的面积等于4,它的边长等于多少?谁会用算术平方根来说这个正方形边长和面积的关系?面积=4这个正方形的面积等于1,它的边长等于多少? 用算术平方根来说这个正方形边长和面积的关系?(指准图)这个正方形的边长等于面积1的算术平方根,也就是边长=1(边讲边板书:边长=1).1等于多少? 生:等于1.(师板书:=1)(看下图)这个正方形的面积等于2,它的边长等于什么?(稍停) 因为边长等于面积的算术平方根,所以边长等于2 (板书:边长=2).(上面三个图的位置如下所示)4=2,1=1,那么2等于多少呢?(在2后板书:=?)求2等于多少,怎么求?在1和2之间的数有很多,到底哪个数等于2呢?我们怎么才能找到这个数呢?我们可以这样来考虑问题,等于2的那个数,它的平方等于多少?第一条线索是那个数在1和2之间,第二条线索是那个数的平方恰好等于2.根据这两条线索,我们来找等于2的那个数.我们在1和2之间找一个数,譬如找1.3,(板书:1.32=)1.3的平方等于多少?(师生共同用计算器计算)1.69不到2,说明1.3比我们要找的那个数小.1.3小了,那我们找1.5,1.5的平方等于多少?(师生共同用计算器计算)2.25超过2,说明1.5比我们要找的那个数大.找1.3小了,找1.5又大了,下面怎么找呢?大家用计算器,算一算,找一找,哪个数的平方恰好等于2?2等于1.41421356点点点,可见是一个小数,这个小数与我们以前学过的小数相比有点不同,有什么不同呢?第一,这个小数是无限小数(板书:无限). 2是无限小数,又是不循环小数,所以2是一个无限不循环小数.除了2,还有别的无限不循环小数吗?无限不循环小数还有很多很多,3、5、6、7都是无限不循环小数(板书:3、5、6、7都是无限不循环小数).那怎么求3、5、6、7这些无限不循环小数的值呢?我们可以利用计算器来求.四、精讲精练例 用计算器求下列各式的值:(1)3(精确到0.001); (2)3136.(按键时,教师要领着学生做;解题格式要与课本上的相同) 练习 1.填空:(1)面积为9的正方形,边长== ;(2)面积为7的正方形,边长=≈ (利用计算器求值,精确到0.001).2.用计算器求值:(1)1849= ; (2)86.8624= ; (3)6≈ (精确到0.01). 3.选做题:(1)用计算器计算,并将计算结果填入下表:… 0.6256.2562.5625062500 ……25…面积=1面积=2边长=4=2边长=2边长=1=1面积=2面积=1面积=4(2)观察上表,你发现规律了吗?根据你发现的规律,不用计算器,直接写出下列各式的值:62500=,6250000=,0.0625=,0.000625= .五、课堂小结无理数六、作业:P721.13.2立方根(1)主备赵晗审核吕元群时间 2011 10一、学习目标:1、了解立方根的概念,初步学会用根号表示一个数的立方根.2、了解开立方与立方互为逆运算,会用立方运算求某些数的立方根.3、体会一个数的立方根的惟一性,分清一个数的立方根与平方根的区别。

SX-7-023第六章实数复习课第一课时导学案附教学反思

SX-7-023第六章实数复习课第一课时导学案附教学反思
9.若m<0,则m的立方根是
(A) (B)- (C)± (D)
10.下列语句不正确的是()
(A) 没意义(B) 没意义
(C)-(a2+1)的立方根是 (D)-(a2+1)的立方根是一个负数
11.若a是(-3)2的平方根,则 等于()
(A)-3(B) (C) 或- (D)3或-3
12.若1<a<3,化简 -
解决问题:
1式子 有意义,x的取值范围
2已知:y= + +3,求xy的值
㈡平方根
1. 49的平方根是,算术平方根是,它的平方根可表示为
2.快速地表示并求出下列各式的平方根
⑴1 ⑵|-5|⑶0.81⑷(-9)2
平方根的定义:
平方根的表示方法(用含a的式子表示)
3.判断下列各数是否有平方根,并说明理由
①(-4)2②0③x2+1④-a2⑤
⑴(x-2)3=27⑵[2(x+3)3]=512
[归纳几种运算规律]
㈠∵ = = =
= = =
∴ =
有关练习:
1. = =
2.如果 =a-3,则a;
如果 =3-a,则a
3.数a,b在数轴上的位置如图:
-1
a
1
2
0
b
化简式子: +|8-b|
∵( )2=( )2=( )2=
∴ =(a≥0)
由上述计算可知,当满足条件时, =
2:注重数行结合。对于一些概念,一定要找到与之对应的数量关系。
如:互为相反数3:例题的设计由易到难,符合学生接受知识的顺序。本节设置了四个例题,四个题都与绝对值,更进一步为突破难点作了一定的铺垫作用,第一题是纯瘁的绝对值化简;第二题是有关非负数的应用:第三题是数行结合的题,直接利用数轴,进行绝对值的化简;第四题是相反数,倒数与绝对值的综合应用,达到本节课知识的引申与升华。

《实数》第一课时 导学案模版

《实数》第一课时 导学案模版

《6.3 实数》集体备课导学案
一、学习目标:
(1)无理数和实数的概念
(2)实数的分类
(3)知道实数与数轴上的点具有一一对应关系,初步体会“数形结合”的数学思想.
二、自主学习:
1.把下列数写成小数的形式 =-53 , =847 ,3= , =911 , 7
22= . 2. 我们把无限不循环小数称为 ;有理数和无理数统称为 。

3.有理数和无理数统称为 。

三、合作探究:
1.你能对实数进行分类吗?说说你的分类依据?
实数的分类(一)
实数的分类(二)
四、达标测评:(测评习题)
把下列各数分别填入相应的集合里:
38,3,4.13-,3π,722,87-,2-,0.101001000…,-0.020020202…,.32.0 (注意:对有理数和无理数进行区分时,应先对数进行计算或化简,然后根据结果进行分类)
正有理数{ } 负有理数{ }
正无理数{ } 负无理数{ }
2.判断下列说法是否正确;
(1)无限小数都是无理数.()
(2)无理数都是无限小数.()
(3)带根号的数都是无理数.()。

苏科版八年级上册数学实数1导学案

苏科版八年级上册数学实数1导学案

2.5 实数(1)备课时间:10月7日上课时间:10月日主备人:蔡伟【学习目标】1、了解无理数和实数的概念,会判断一个数是有理数还是无理数;2、知道实数和数轴上的点一一对应。

【学习重、难点】会判断一个数是有理数还是无理数【学习过程】一、自主学习1、有理数是和的统称,一切有理数都可以化成分数的形式;2、2是一个有理数,它的算术平方根为二、合作探究3、2是一个分数吗?4、2是一个有理数吗?归纳:叫做无理数,如2,3, ,0.101001000…5、实数的概念:和统称为实数。

注意:凡是分数都是有理数,如6172231,,它们都是无限循环小数。

6、2有多大呢?你能在数轴上找到表示2的点吗?每一个实数都可以用数轴上的一个点来表示,反之,数轴上的每一个点都表示实数,实数与数轴上的点是一一对应的。

三、达标反馈1、把下列各数填入相应的集合内:31、38-、0、27、π、—5.0、3.14159、0.12121121112…(1)有理数集合{ }(2)无理数集合{ }(3)正实数集合{ }(4)负实数集合{ }2、下列说法中正确的是()A.有理数和数轴上的点一一对应B.不带根号的数是有理数C.无理数就是开方开不尽的数D.实数与数轴上的点一一对应3、判断:(1)有理数与无理数的差都是有理数()(2)无限小数都是无理数. ()(3)无理数都是无限小数. ()(4)两个无理数的和不一定是无理数. ()四、课后学习4、在长方形ABCD中,∠DAE=∠CBE=45°,AD=1,求△ABE的面积和周长.5、在数轴上画出表示3和5的点:【学习反思】专项训练二概率初步一、选择题1.(徐州中考)下列事件中的不可能事件是( )A.通常加热到100℃时,水沸腾B.抛掷2枚正方体骰子,都是6点朝上C.经过有交通信号灯的路口,遇到红灯D.任意画一个三角形,其内角和是360°2.小张抛一枚质地均匀的硬币,出现正面朝上的可能性是( )A.25% B.50% C.75% D.85%3.(2016·贵阳中考)2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是( )A.110B.15C.310D.254.(金华中考)小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )A.14B.13C.12D.345.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )A.12B.13C.14D.166.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( )A.13B.16C.19D.1127.分别转动图中两个转盘一次,当转盘停止转动时,两个指针分别落在某个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于( )A.316B.38C.58D.1316第7题图第8题图8.(2016·呼和浩特中考)如图,△ABC是一块绿化带,将阴影部分修建为花圃,已知AB=15,AC=9,BC=12,阴影部分是△ABC的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A.16B.π6C.π8D.π5二、填空题9.已知四个点的坐标分别是(-1,1),(2,2),⎝ ⎛⎭⎪⎫23,32,⎝⎛⎭⎪⎫-5,-15,从中随机选取一个点,在反比例函数y =1x图象上的概率是________. 10.(黄石中考)如图所示,一只蚂蚁从A 点出发到D ,E ,F 处寻觅食物.假定蚂蚁在每个岔路口都可能随机选择一条向左下或右下的路径(比如A 岔路口可以向左下到达B 处,也可以向右下到达C 处,其中A ,B ,C 都是岔路口).那么,蚂蚁从A 出发到达E 处的概率是________.11.(贵阳中考)现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为________.12.(荆门中考)荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是________.13.(重庆中考)点P的坐标是(a,b),从-2,-1,0,1,2这五个数中任取一个数作为a的值,再从余下的四个数中任取一个数作为b的值,则点P(a,b)在平面直角坐标系中第二象限内的概率是________.14.★从-1,1,2这三个数字中,随机抽取一个数记为a,那么,使关于x的一次函数y=2x+a的图象与x轴、y轴围成的三角形的面积为14,且使关于x的不等式组⎩⎪⎨⎪⎧x+2≤a,1-x≤2a有解的概率为________.三、解答题15.(南昌中考)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,请完成下列表格:(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于45,求m的值.16.(菏泽中考)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是________;(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是________;(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.17.(丹东中考)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字之和为2的倍数,则甲获胜;若抽取的数字之和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.18.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,3,5,x,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和,记录后将小球放回袋中搅匀,进行重复实验.实验数据如下表:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x的值可以取4吗?请用列表法或画树状图法说明理由;如果x的值不可以取4,请写出一个符合要求的x的值.参考答案与解析1.D 2.B 3.C 4.A 5.A 6.C 7.C8.B 解析:∵AB =15,BC =12,AC =9,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径为12+9-152=3,∴S △ABC =12AC ·BC =12×12×9=54,S 圆=9π,∴小鸟落在花圃上的概率为9π54=π6. 9.12 10.12 11.15 12.35 13.15 14.13 15.解:(1)4 2或3(2)根据题意得6+m 10=45,解得m =2,所以m 的值为2.16.解:(1)14 解析:第一道肯定能对,第二道对的概率为14,所以锐锐通关的概率为14;(2)16 解析:锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为13,第二道题对的概率为12,所以锐锐能通关的概率为12×13=16;(3)锐锐将每道题各用一次“求助”,分别用A ,B 表示剩下的第一道单选题的2个选项,a ,b ,c 表示剩下的第二道单选题的3个选项,树状图如图所示.共有6种等可能的结果,锐锐顺利通关的只有1种情况,∴锐锐顺利通关的概率为16.17.解:(1)所有可能出现的结果如下表,从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为13;(2)不公平.从表格可以看出,两人抽取数字之和为2的倍数有5种,两人抽取数字之和为5的倍数有3种,所以甲获胜的概率为59,乙获胜的概率为13.∵59>13,∴甲获胜的概率大,游戏不公平.18.解:(1)0.33(2)当x 为4时,数字和为9的概率为212=16≠13,所以x 不能取4;当x =6时,摸出的两个小球上数字之和为9的概率是13.。

实数第一课时教案

实数第一课时教案

第1课时 实数班级 姓名【学习目标】1.了解实数的有关概念,知道实数与数轴上的点一一对应,有序实数对与坐标平面上的点一一对应,能用有理数估计一个无理数的大致范围;2.了解近似数、有效数字和科学计数法的概念,会运用科学计数法表示一个数;3.掌握实数的有关运算.【学习重、难点】重点:相关概念的理解与运用实数的一些运算法则进行简单的计算;难点:有理数与无理数之间的区别,“数形结合”思想方法在解决绝对值问题中的应用.【课前研习】一、自主尝试1. |-2|的相反数是 .2. 有下列说法:(1)有理数与数轴上的点一一对应;(2)当a 为实数时,|a |=a ;(3)当a 为实数时,a 的倒数是a1;(4)-14=1,其中正确说法的序号是 . 3. 在实数2,22,21π中,分数是 . 4. 计算:|-2|-161+(-2)-2-(0)23- 二、建构知识体系⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≠⎪⎪⎩⎪⎪⎨⎧=>=⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎭⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎩⎨⎧⎪⎩⎪⎨⎧近似数与有效数字 )的倒数是(倒数:  绝对值: 的相反数是相反数: 数轴:三要素是基本概念小数 负无理数正无理数无理数小数 负分数正分数 整数有理数分类实数概念0)0()0(||a a a a a a【课堂研习】一、交流展示小结:二、典型例题例1 在实数-7,tan45°,sin60°,π,9,25,722,0,0.5858858885…(每两个5之间一次增加1个8)中,分数集合{ …} 有理数集合{ …} 例2 若2)2(a -与4+b 互为相反数,求(1)a 、b 的值;(2)b a 的值.例3 计算:(1)sin45°-3821+ (2)(2)5+102)13(1231-++⨯-⎪⎭⎫ ⎝⎛-例4 (1)数轴上表示-2和-5的两点的距离是 ,数轴上表示1和-3的两点之间的距离是 ;(2)数轴上表示x 和-1的两点A 和B 之间的距离是 ,如果AB =2,那么x = ;拓展:(3)如果代数式|x +1|+|x -2|取最小值时,相应x 的取值范围是 .小结:三、自主测疑(10分钟)《中考指南》P 11-12 1-12【课后研习】一、巩固练习《中考指南》P 12-13 13(必做) 14(选做)二、自我反思。

初中数学_【课堂实录】实数(一)教学设计学情分析教材分析课后反思

初中数学_【课堂实录】实数(一)教学设计学情分析教材分析课后反思

《实数(一)》教学设计课题实数(一)课型新授课主备人地点录播教室教材分析这一章是初中阶段代数运算的重要章节,是对小学数学知识的发展,又是初中代数知识的基础,本节课是在有理数和无理数的基础上引进的概念,并将数从有理数范围扩充到实数范围。

在中学阶段,大多数问题是在实数的范围内研究的,它也是进一步二次根式、一元二次方程以及函数等知识的基础。

因此,让学生正确而深刻地理解实数是非常重要的实数的引入,数系的扩展充满着对立和统一的辩证关系及分类思想,所以这节课不仅仅是完善学生的知识结构,而且还是培养学生想象能力,渗透数学思想,感受数美的有效载体,也是发展学生逻辑思维能力的重要内容,因而具有重要地位。

教学目标知识与技能目标1、了解实数的概念和意义,经历探索实数分类的过程,引领学生领会分类思想。

2、了解实数范围内,相反数、倒数、绝对值的意义,了解有理数的运算法则在实数范围内仍然适用,渗透类比思想。

3、了解数轴上的点与实数一一对应,能用数轴上的点来表示无理数,形成初步的数形结合意识。

过程与方法目标1、经历借助小游戏引入新课,引发学生思考,渗透分类思想,进一步发展学生的数形结合意识。

2、让学生用类比方法获取新知,发展有条理思考和语言表达能力。

情感与态度目标1、在学习的过程中,使学生感受丰富的数学文化,让学生感受数学,激发兴趣,引发数学思考。

2、在运用数学表述和解决问题的过程中,敢于发表自己的想法,敢于质疑,敢于创新,养成独立思考,合作交流等学习习惯,体会数学的价值。

教学重点: 1.了解实数的意义,能对实数进行分类,2.明确数轴上的点与实数一一对应。

教学难点:用数轴上的点来表示无理数。

教学方法:自学探究,合作交流教学用具:游戏用的数字卡片、音频、微视频、投影仪、多媒体电教平台等。

教学过程:教学环节教师引导活动学生活动设计理念一、创设游戏情景,引入实数概念!1.把下列各数分别填入相应的集合内。

,,,,,,,,,1、学生积极参与小游戏。

初中教案数学实数

初中教案数学实数

初中教案数学实数一、教学目标:1. 知识与技能目标:理解平方根的概念,掌握求一个数的平方根的方法,会求一些数的平方根。

2. 过程与方法目标:通过观察、分析、归纳等数学活动,培养学生的逻辑思维能力和数学素养。

3. 情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自主学习能力,使学生感受数学与生活的紧密联系。

二、教学重点与难点:重点:平方根的概念及求法。

难点:理解平方根的性质,求一个数的平方根。

三、教学过程:1. 导入新课:教师通过提问方式引导学生回顾上节课学习的内容,如算术平方根、立方根等,为新课的学习做好铺垫。

2. 自主学习:学生自主阅读教材,理解平方根的概念,观察平方根的性质,教师巡回指导,解答学生的疑问。

3. 课堂讲解:教师讲解平方根的概念,引导学生通过观察、分析、归纳等方法,总结平方根的性质。

如:一个正数的平方根有两个,互为相反数;0的平方根是0;负数没有平方根。

4. 例题解析:教师选取典型例题,引导学生分组讨论、探究,共同得出求一个数的平方根的方法。

如:求16的平方根。

5. 巩固练习:学生独立完成课后练习题,教师巡回指导,解答学生的疑问,及时纠正学生的错误。

6. 课堂小结:教师引导学生总结本节课所学内容,加深学生对平方根概念和求法的学习。

7. 课后作业:教师布置课后作业,巩固学生对平方根的知识掌握。

四、教学反思:本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高教学质量。

同时,关注学生的个体差异,针对不同学生制定合适的教学方法,使全体学生都能在课堂上得到充分的发展。

五、教学评价:通过课堂讲解、练习题、课后作业等方式,评价学生对平方根知识的掌握程度,及时发现并解决教学中存在的问题,提高教学质量。

同时,关注学生在课堂上的表现,鼓励学生积极参与、主动探究,培养学生的数学素养。

初一下册数学实数教案

初一下册数学实数教案

初一下册数学实数教案(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、文案策划、工作计划、作文大全、教案大全、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, copywriting planning, work plans, essay summaries, lesson plans, speeches, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!初一下册数学实数教案教案一、实数的概念和表示一、教学目标:1.了解实数的概念和特征;2.能够用数轴表示实数;3.能够正确区分整数、有理数和无理数。

《实数的运算》 导学案

《实数的运算》 导学案

《实数的运算》导学案一、学习目标1、理解实数的加、减、乘、除、乘方、开方运算的法则。

2、掌握实数运算的顺序,能正确进行实数的运算。

3、能运用实数的运算解决简单的实际问题。

二、学习重难点1、重点(1)实数的加、减、乘、除、乘方、开方运算的法则。

(2)实数运算的顺序。

2、难点(1)实数运算中符号的确定。

(2)运用实数的运算解决实际问题。

三、知识回顾1、有理数的运算(1)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为 0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同 0 相加,仍得这个数。

(2)有理数的减法法则:减去一个数,等于加上这个数的相反数。

(3)有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同 0 相乘,都得 0。

(4)有理数的除法法则:除以一个不等于 0 的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0 除以任何一个不等于 0 的数,都得 0。

(5)有理数的乘方:求 n 个相同因数 a 的积的运算叫做乘方,乘方的结果叫做幂。

正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数。

(6)有理数的混合运算顺序:先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的。

2、无理数无限不循环小数叫做无理数。

常见的无理数有:π,开方开不尽的数,如\(\sqrt{2}\),\(\sqrt{3}\)等,以及有特定规律但不循环的数,如***********…四、新课讲解1、实数的概念有理数和无理数统称为实数。

实数可以分为正实数、0、负实数。

2、实数的运算(1)实数的加法法则同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为 0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同 0 相加,仍得这个数。

例如:\(2 + 3 = 5\),\(-2 +(-3) =-5\),\(2 +(-3) =-1\)(2)实数的减法法则减去一个数,等于加上这个数的相反数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学-实数(第1课时)导学案
学习目标
1.知道什么叫无理数、实数,并能对实数进行分类.
2.感受数系的扩充,通过自主探究,感受实数与数轴上点的一一对应关系,体验数形结合的优越性,发展类比和归纳能力.
自主学习
1.把下列各数写成小数的形式,你有什么发现?
2,-5,0,14,-,,-911.
2.有理数分类:
有理数{
整数{正整数 零
负整数分数{正分数负分数 合作探究
合作探究一
1.你能举出几个无理数吗?
2.请同学们思考,无理数的常见形式有哪些?
合作探究二
实数的分类:
深化探究
1.下列说法正确的有( )
A.带根号的数都是无理数
B.无限小数是无理数
C.无限不循环小数是无理数
D.有理数只包括无限循环小数
2.12
3.032 032 032是( )
A.无限循环小数
B.无限不循环小数
C.无理数
D.有理数
3.下列说法中正确的有( )
①无理数都是实数 ②实数都是无理数 ③无限小数都是有理数 ④带根号的数都是无理数 ⑤除了π之外不带根号的数都是有理数
A.1个
B.2个
C.3个
D.4个
4.把下列各数填在相应的大括号内:
0,√8,-,,-√27,-2,,,1.,,0.101 001 000 1…
自然数集合{ };
有理数集合{ };
正数集合{ };
整数集合{ };
无理数集合{ };
分数集合{ };
5.√32
分数.(填“是”或“不是”)
6.比较大小:√140 12.(填“<”或“>”或“=”) 课堂练习
1.下列各数0.515 153 54…,0,0.2·,3π,227,6.101 001 000 1…,,中,无理数的个数是( )
A.1
B.2
C.3
D.4 2.实数-23,0,-π ,3.141 592 6,,中无理数,m 个,则m 等于( )
A.1
B.2
C.3
D.4
3. 面积为10的正方形的边长为x ,那么x 的取值范围是( )
A.1<x<3
B.3<x<4
C.5<x<10
D.10<x<100
4.下列各式估算正确的是( )
A.√90≈30
B.√600≈250
C.√18≈5.2
D.√26≈5.1
5.,中最接,4的数是, )
A.√5
B.√7
C.√11
D.√17
6.满足-√2<x<√5的整数x 是 .
7.若无理数a 满足:1<a<4,请写出两个你熟悉的无理数 .
8.大于-√17且小于√11的所有整数的和为 .
参考答案
合作探究
合作探究一
1. 无理数也有正负之分,如,,π是正无理数,-√2,-√3,-π是负无理数.
2.常见无理数一般有三类:
(1)带根号且开方开不尽的数.
(2)与π有关又不能把π化去的数.
(3)无限不循环小数,特别是具有规律但不循环.如0.202 002 000 200 002…. 合作探究二
实数的分类:
{
有理数{
正有理数0负有理数}可化为有限小数和无限循环小数无理数{正无理数负无理数}无限不循环小数 (2)实数{
正实数{正有理数
正无理数
0负实数{负有理数负无理数 深化探究
1.C
2.D
3.A
4.自然数集合,;有理数集合,;,正数集合
,;
整数,合,;,理,集合,;,分数,合,.,5.,是,.,
,堂练习
1.D
2.C
3.B
4.D
5.D
6.-1,0,1,2
7.√11,π8. -4。

相关文档
最新文档