2020年高考物理热点题型归纳与精讲(含2019真题)-专题31 光电效应

合集下载

2020年高考物理热点题型归纳与精讲(含2019真题)-专题20 电容器、带电粒子在电场中的运动

2020年高考物理热点题型归纳与精讲(含2019真题)-专题20 电容器、带电粒子在电场中的运动

2020年高考物理热点题型归纳与精讲-专题20 电容器、带电粒子在电场中的运动【专题导航】目录热点题型一平行板电容器及其动态分析问题 (1)U不变时电容器的动态分析 (2)Q不变时电容器的动态分析 (3)平行板电容器中带电粒子的问题分析 (4)热点二带电粒子在电场中的直线运动 (5)电容器中直线运动 (5)带电粒子在匀强电场中的直线运动 (6)带电粒子在交变电场中的直线运动 (7)热点题型三带电粒子在电场中的偏转运动 (8)热点题型四带电粒子在交变电场中的运动 (12)粒子做直线往返运动 (13)粒子做偏转运动问题 (14)热点题型五带电体在电场、重力场中的运动 (16)带电体在电场、重力场中运动的动力学问题 (16)带电体在电场、重力场中运动的动量和能量问题 (17)【题型演练】 (19)【题型归纳】热点题型一平行板电容器及其动态分析问题1.分析思路(1)先确定是Q还是U不变:电容器保持与电源连接,U不变;电容器充电后与电源断开,Q不变.(2)用决定式C=εr S4πkd确定电容器电容的变化.(3)用定义式C =QU 判定电容器所带电荷量Q 或两极板间电压U 的变化.(4)用E =Ud 分析电容器极板间场强的变化.2.两类动态变化问题的比较U 不变时电容器的动态分析【例1】(2019·湖南长沙模拟)利用电容传感器可检测矿井渗水,及时发出安全警报,从而避免事故的发生;如图所示是一种通过测量电容器电容的变化来检测矿井中液面高低的仪器原理图,A 为固定的导体芯,B 为导体芯外面的一层绝缘物质,C 为导电液体(矿井中含有杂质的水),A 、C 构成电容器.已知灵敏电流表G 的指针偏转方向与电流方向的关系:电流从哪侧流入电流表则电流表指针向哪侧偏转.若矿井渗水(导电液体深度增大),则电流表( )A .指针向右偏转,A 、C 构成的电容器充电B .指针向左偏转,A 、C 构成的电容器充电 C .指针向右偏转,A 、C 构成的电容器放电D .指针向左偏转,A 、C 构成的电容器放电 【答案】B【解析】由图可知,液体与芯柱构成了电容器,由图可知,两板间距离不变;液面变化时只有正对面积发生变化;则由C =εr S 4πkd 可知,当液面升高时,只能是正对面积S 增大;故可判断电容增大,再依据C =QU 和电势差不变,可知电容器的电荷量增大,因此电容器处于充电状态,因电流从哪侧流入电流表则电流表指针向哪侧偏转,因此指针向左偏转,故A 、C 、D 错误,B 正确.【变式】一平行板电容器两极板之间充满云母介质,接在恒压直流电源上.若将云母介质移出,则电容器( )A .极板上的电荷量变大,极板间电场强度变大B .极板上的电荷量变小,极板间电场强度变大C .极板上的电荷量变大,极板间电场强度不变D .极板上的电荷量变小,极板间电场强度不变【答案】D.【解析】平行板电容器接在电压恒定的直流电源上,电容器两极板之间的电压U 不变.若将云母介质移出,电容C 减小,由C =QU 可知,电容器所带电荷量Q 减小,即电容器极板上的电荷量减小.由于U 不变,d 不变,由E =Ud 可知,极板间电场强度E 不变,选项D 正确,A 、B 、C 错误.Q 不变时电容器的动态分析【例2】如图所示,平行板电容器带有等量异种电荷,与静电计相连,静电计金属外壳和电容器下极板都接地.在两极板间有一个固定在P 点的点电荷,以E 表示两板间的电场强度,E p 表示点电荷在P 点的电势能,θ表示静电计指针的偏角.若保持下极板不动,将上极板向下移动一小段距离至图中虚线位置,则( )A .θ增大,E 增大B .θ增大,E p 不变C .θ减小,E p 增大D .θ减小,E 不变 【答案】D.【解析】平行板电容器带有等量异种电荷,当极板正对面积不变时,两极板之间的电场强度E 不变.保持下极板不动,将上极板向下移动一小段距离至题图中虚线位置,由U =Ed 可知,两极板之间的电势差减小,静电计指针的偏角θ减小,由于下极板接地(电势为零),两极板之间的电场强度不变,所以点电荷在P 点的电势能E p 不变.综上所述,选项D 正确.【变式】(2019·西北师大附中模拟)如图所示,平行板电容器充电后与电源断开,正极板接地,两板间有一 个带负电的试探电荷固定在P 点.静电计的金属球与电容器的负极板连接,外壳接地.以E 表示两板间的 场强,φ表示P 点的电势,E P 表示该试探电荷在P 点的电势能,θ表示静电计指针的偏角.若保持负极板将正极板缓慢向右平移一小段距离(静电计带电量可忽略不计),各物理量变化情况描述正确的是( )A .E 增大,φ降低,E P 减小,θ增大B .E 不变,φ降低,E P 增大,θ减小C .E 不变,φ升高,E P 减小,θ减小D .E 减小,φ升高,E P 减小,θ减小 【答案】C【解析】将正极板适当向右水平移动,两板间的距离减小,根据电容的决定式C =εr S4πkd可知,电容C 增大,因平行板电容器充电后与电源断开,则电容器的电量Q 不变,由C =QU 得知,板间电压U 减小,因此夹角θ减小,再依据板间场强E =U d =Q Cd =4πkQεr S ,可见E 不变;P 点到正极板距离减小,且正极接地,由公式U =Ed 得知,则P 点的电势;负电荷在P 点的电势能减小,故A 、B 、D 错误,C 正确. 平行板电容器中带电粒子的问题分析【例3】(2018·高考全国卷Ⅲ)如图,一平行板电容器连接在直流电源上,电容器的极板水平;两微粒a 、b 所带电荷量大小相等、符号相反,使它们分别静止于电容器的上、下极板附近,与极板距离相等.现同时释放a 、b ,它们由静止开始运动,在随后的某时刻t ,a 、b 经过电容器两极板间下半区域的同一水平面,a 、b 间的相互作用和重力可忽略.下列说法正确的是( )A .a 的质量比b 的大B .在t 时刻,a 的动能比b 的大C .在t 时刻,a 和b 的电势能相等D .在t 时刻,a 和b 的动量大小相等 【答案】BD【解析】根据题述可知,微粒a 向下加速运动,微粒b 向上加速运动,根据a 、b 经过电容器两极板间下半区域的同一水平面,可知a 的加速度大小大于b 的加速度大小,即a a >a b .对微粒a ,由牛顿第二定律,qE =m a a a ,对微粒b ,由牛顿第二定律,qE =m b a b ,联立解得qE m a >qEm b ,由此式可以得出a 的质量比b 小,选项A 错误;在a 、b 两微粒运动过程中,a 微粒所受合外力(电场力)等于b 微粒,a 微粒的位移大于b 微粒,根据动能定理,在t 时刻,a 的动能比b 大,选项B 正确;由于在t 时刻两微粒经过同一水平面,电势相等,电荷量大小相等,符号相反,所以在t 时刻,a 和b 的电势能不等,选项C 错误;由于a 微粒受到的合外力(电场力)等于b 微粒受到的合外力(电场力),根据动量定理,在t 时刻,a 、b 微粒的动量大小相等,选项D 正确.【变式】如图所示,一种β射线管由平行金属板A 、B 和平行于金属板的细管C 组成.放射源O 在A 极板左端,可以向各个方向发射不同速度、质量为m 的β粒子(电子).若极板长为L ,间距为d ,当A 、B 板加上电压U 时,只有某一速度的β粒子能从细管C 水平射出,细管C 离两板等距.已知元电荷为e ,则从放射源O 发射出的β粒子的这一速度为( )A.2eU m B.LdeU m C.1dD.Ld eU2m【答案】C【解析】β粒子反方向的运动为类平抛运动,水平方向有L =v 0t ,竖直方向有d 2=12at 2,且a =eUmd .从A 到C的过程有-12eU =12mv 20-12mv 2,以上各式联立解得v =1d C 正确.热点二 带电粒子在电场中的直线运动 1.用动力学观点分析 a =F 合m ,E =Ud ,v 2-v 20=2ad 2.用功能观点分析匀强电场中:W =qEd =qU =12mv 2-12mv 20非匀强电场中:W =qU =E k2-E k1 电容器中直线运动【例4】(多选)(2019·株洲检测)如图所示,在真空中倾斜平行放置着两块带有等量异号电荷的金属板A 、B ,板与水平方向的夹角为θ,一个电荷量q =1.41×10-4 C 、质量m =1 g 的带电小球,自A 板上的孔P 以水平 速度v 0=0.1 m/s 飞入两板之间的电场,经0.02 s 后未与B 板相碰又回到孔P ,g 取10 m/s 2,则( )A .板间电场强度大小为100 V/mB .板间电场强度大小为141 V/mC .板与水平方向的夹角θ=30°D .板与水平方向的夹角θ=45° 【答案】 AD【解析】 因为小球从孔P 水平飞入两板之间,沿水平方向运动,小球受力如图所示,设板间匀强电场的场强为E ,板与水平方向的夹角为θ,在竖直方向由平衡条件得Eq cos θ=mg ,在水平方向由动量定理得Eqt sin θ=2mv 0,解得E =m qg 2+4v 20t 2=100 V/m ,tan θ=2v 0gt=1,即θ=45°,A 、D 正确.【变式】如图所示,电子由静止开始从A 板向B 板运动,到达B 板的速度为v ,保持两板间电压不变,则( )A .当减小两板间的距离时,速度v 增大B .当减小两板间的距离时,速度v 减小C .当减小两板间的距离时,速度v 不变D .当减小两板间的距离时,电子在两板间运动的时间变长 【答案】C【解析】由动能定理得eU =12mv 2,当改变两极板间的距离时,U 不变,v 就不变,故选项A 、B 错误,C 正确;粒子在极板间做初速度为零的匀加速直线运动,v =d t ,v 2=d t ,即t =2dv ,当d 减小时,v 不变,电子在两极板间运动的时间变短,故选项D 错误. 带电粒子在匀强电场中的直线运动【例5】如图所示,三块平行放置的带电金属薄板A 、B 、C 中央各有一小孔,小孔分别位于O 、M 、P 点.由O 点静止释放的电子恰好能运动到P 点.现将C 板向右平移到P ′点,则由O 点静止释放的电子( )A .运动到P 点返回B .运动到P 和P ′点之间返回C .运动到P ′点返回D .穿过P ′点 【答案】A.【解析】电子在A 、B 板间的电场中加速运动,在B 、C 板间的电场中减速运动,设A 、B 板间的电压为U ,B 、C 板间的电场强度为E ,M 、P 两点间的距离为d ,则有eU -eEd =0,若将C 板向右平移到P ′点,B 、C 两板所带电荷量不变,由E =U d =Q C 0d =4πkQεr S 可知,C 板向右平移到P ′时,B 、C 两板间的电场强度不变,由此可以判断,电子在A 、B 板间加速运动后,在B 、C 板间减速运动,到达P 点时速度为零,然后返回,A 项正确,B 、C 、D 项错误.【变式】如图所示,一带正电的小球向右水平抛入范围足够大的匀强电场,电场方向水平向左.不计空气阻力,则小球( )A .做直线运动B .做曲线运动C .速率先减小后增大D .速率先增大后减小 【答案】BC【解析】对小球受力分析,小球受重力、电场力作用,合外力的方向与初速度的方向不在同一条直线上,故小球做曲线运动,故A 错误,B 正确;在运动的过程中合外力方向与速度方向间的夹角先为钝角后为锐角,故合外力对小球先做负功后做正功,所以速率先减小后增大,故C 正确,D 错误. 带电粒子在交变电场中的直线运动【例6】.如图甲所示,A 板电势为0,A 板中间有一小孔,B 板的电势变化情况如图乙所示,一质量为m 、电荷量为q 的带负电粒子在t =T4时刻以初速度为0从A 板上的小孔处进入两极板间,仅在电场力作用下开始运动,恰好到达B 板.则( )A .A 、B 两板间的距离为qU 0T 28mB .粒子在两板间的最大速度为 qU 0mC .粒子在两板间做匀加速直线运动D .若粒子在t =T8时刻进入两极板间,它将时而向B 板运动,时而向A 板运动,最终打向B 板【答案】B.【解析】粒子仅在电场力作用下运动,加速度大小不变,方向变化,选项C 错误;粒子在t =T4时刻以初速度为0进入两极板,先加速后减速,在3T 4时刻到达B 板,则12·qU 0md ·24⎪⎭⎫ ⎝⎛T =d2,解得d =qU 0T 216m,选项A 错误;粒子在T 2时刻速度最大,则v m =qU 0md ·T4=qU 0m ,选项B 正确;若粒子在t =T8时刻进入两极板间,在T 8~T 2时间内,粒子做匀加速运动,位移x =12·qU 0md 283⎪⎭⎫ ⎝⎛T =9d 8,所以粒子在T2时刻之前已经到达B 板,选项D 错误.【变式】如图(a)所示,两平行正对的金属板A 、B 间加有如图(b)所示的交变电压,一重力可忽略不计的带 正电粒子被固定在两板的正中间P 处.若在t 0时刻释放该粒子,粒子会时而向A 板运动,时而向B 板运动, 并最终打在A 板上.则t 0可能属于的时间段是( )A .0<t 0<T 4 B.T 2<t 0<3T 4 C.3T 4<t 0<T D .T <t 0<9T 8【答案】B【解析】设粒子的速度方向、位移方向向右为正.依题意知,粒子的速度方向时而为正,时而为负,最终打在A 板上时位移为负,速度方向为负.分别作出t 0=0、T 4、T 2、3T4时粒子运动的v ­t 图象,如图所示.由于v ­t 图线与时间轴所围面积表示粒子通过的位移,则由图象知,0<t 0<T 4与3T4<t 0<T 时粒子在一个周期内的总位移大于零,T 4<t 0<3T4时粒子在一个周期内的总位移小于零;t 0>T 时情况类似.因粒子最终打在A 板上,则要求粒子在每个周期内的总位移应小于零,对照各项可知B 正确.热点题型三 带电粒子在电场中的偏转运动 1.带电粒子在电场中的偏转规律2.处理带电粒子的偏转问题的方法 (1)运动的分解法一般用分解的思想来处理,即将带电粒子的运动分解为沿电场力方向上的匀加速直线运动和垂直电场力方向上的匀速直线运动. (2)功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv 20,其中U y =Ud y ,指初、末位置间的电势差.3.计算粒子打到屏上的位置离屏中心的距离的方法 (1)y =y 0+L tan θ(L 为屏到偏转电场的水平距离); (2)y =(l2+L )tan θ(l 为电场宽度);(3)y =y 0+v y ·Lv 0;(4)根据三角形相似y y 0=l 2+L l2.【例6】(2019·江西吉安一中段考)如图所示,虚线MN 左侧有一场强为E 1=E 的匀强电场,在两条平行的虚 线MN 和PQ 之间存在着宽为L 、电场强度为E 2=2E 的匀强电场,在虚线PQ 右侧相距为L 处有一与电场 E 2平行的屏.现将一电子(电荷量为e ,质量为m ,不计重力)无初速度地放入电场E 1中的A 点,A 点到MN 的距离为L2,最后电子打在右侧的屏上,AO 连线与屏垂直,垂足为O ,求:(1)电子从释放到打到屏上所用的时间t ;(2)电子刚射出电场E 2时的速度方向与AO 连线夹角θ的正切值tan θ; (3)电子打到屏上的点P ′(图中未标出)到点O 的距离x . 【答案】 (1)3mLeE(2)2 (3)3L 【解析】 (1)电子在电场E 1中做初速度为零的匀加速直线运动,设加速度为a 1,时间为t 1, 由牛顿第二定律得:a 1=eE 1m =eEm ①由x =12at 2得:L 2=12a 1t 21②电子进入电场E 2时的速度为:v 1=a 1t 1③ 进入电场E 2到屏水平方向做匀速直线运动, 时间为:t 2′=2t 2=2Lv 1④ 电子从释放到打到屏上所用的时间为:t =t 1+t 2′⑤ 联立①~⑤求解得:t =3mL eE; (2)设粒子射出电场E 2时平行电场方向的速度为v y ,由牛顿第二定律得: 电子进入电场E 2时的加速度为: a 2=eE 2m =2eE m ⑥v y =a 2t 2⑦电子刚射出电场E 2时的速度方向与AO 连线夹角的正切值为tan θ=v yv 1⑧联立①②③④⑥⑦⑧得:tan θ=2⑨ (3)带电粒子在电场中的运动轨迹如图所示.设电子打到屏上的点P 到O 点的距离x , 根据上图用几何关系得:tan θ=x32L ⑩联立得:x =3L【变式1】如图所示,在竖直放置的平行金属板A 、B 之间加上恒定电压U ,A 、B 两板的中央留有小孔O 1、O 2,在B 的右侧有平行于极板的匀强电场E ,电场范围足够大,感光板MN 垂直于电场方向放置,第一次从小孔O 1处从静止释放一个质子11H ,第二次从小孔O 1处从静止释放一个α粒子24He ,关于这两个粒子在电场中运动的判断正确的是( )A .质子和α粒子打到感光板上时的速度之比为2∶1B .质子和α粒子在电场中运动的时间相同C .质子和α粒子打到感光板上时的动能之比为1∶2D .质子和α粒子在电场中运动的轨迹重叠在一起 【答案】CD【解析】从开始运动到打到板上质子的速度为v 1,α粒子速度为v 2,根据动能定理有Uq +Edq =12mv 2-0,化简得出v =2U +Ed q m ,质子的比荷与α粒子的比荷之比为2∶1,代入得v 1v 2==2,故A 错误;设粒子在加速电场中加速时间为t 1,加速位移为x 1,在偏转电场中偏转时间为t 2,偏转位移为y ,有x 1=12a 1t 12=Uq 2dm t 12,y =Eq2mt 22,由于质子和α粒子的加速位移和偏转位移相同,但是比荷不同,所以运动时间不同,故B 错误;从开始运动到打到板上,根据动能定理有Uq +Edq =E k -0,解得E k =q (U +Ed ),因为U 、E 、d 相同,则有E k1E k2=q 1q 2=12,故C 正确;带电粒子进入加速电场时,根据动能定理可得qU =12mv 02,进入偏转电场后电势差为U 2,偏转的位移为y ,有y =12at 2=qU 22md (l v 0)2,联立得y =U 2l 24dU ,速度的偏转角正切值为tan θ,有tan θ=v y v 0=at v 0=U 2l2Ud ,偏转位移y 与速度的偏转角正切值tan θ与带电粒子无关,因此运动轨迹重叠在一起,故D 正确.【变式2】(2019·洛阳一模)如图所示,氕核、氘核、氚核三种粒子从同一位置无初速地飘入电场线水平向右的加速电场E 1之后进入电场线竖直向下的匀强电场E 2发生偏转,最后打在屏上.整个装置处于真空中,不计粒子重力及其相互作用,那么( )A .偏转电场E 2对三种粒子做功一样多B .三种粒子打到屏上时的速度一样大C .三种粒子运动到屏上所用时间相同D .三种粒子一定打到屏上的同一位置 【答案】AD【解析】根据动能定理有qE 1d =12mv 21,得三种粒子经加速电场加速后获得的速度v 1=2qE 1dm.在偏转电场中,由l =v 1t 2及y =12qE 2m t 22得,带电粒子经偏转电场的侧位移y =E 2l 24E 1d ,则三种粒子在偏转电场中的侧位移大小相等,又三种粒子带电荷量相同,根据W =qE 2y 得,偏转电场E 2对三种粒子做功一样多,选项A 正确.根据动能定理,qE 1d +qE 2y =12mv 22,得到粒子离开偏转电场E 2打到屏上时的速度v 2=2qE 1d +qE 2ym,由于三种粒子的质量不相等,故v 2不一样大,选项B 错误.粒子打在屏上所用的时间t =d v 1/2+L ′v 1=2d v 1+L ′v 1(L ′为偏转电场左端到屏的水平距离),由于v 1不一样大,所以三种粒子打在屏上的时间不相同,选项C 错误.根据v y =qE 2m t 2及tan θ=v y v 1得,带电粒子的偏转角的正切值tan θ=E 2l2E 1d ,即三种带电粒子的偏转角相等,又由于它们的侧位移相等,故三种粒子打到屏上的同一位置,选项D 正确.热点题型四 带电粒子在交变电场中的运动 1.常见的交变电场常见的产生交变电场的电压波形有方形波、锯齿波、正弦波等. 2.常见的试题类型 此类题型一般有三种情况:(1)粒子做单向直线运动(一般用牛顿运动定律求解). (2)粒子做往返运动(一般分段研究).(3)粒子做偏转运动(一般根据交变电场特点分段研究). 3.解答带电粒子在交变电场中运动的思维方法(1)注重全面分析(分析受力特点和运动规律),抓住粒子的运动具有周期性和在空间上具有对称性的特征, 求解粒子运动过程中的速度、位移、做功或确定与物理过程相关的边界条件.(2)分析时从两条思路出发:一是力和运动的关系,根据牛顿第二定律及运动学规律分析;二是功能关系. (3)注意对称性和周期性变化关系的应用. 粒子做直线往返运动利用速度图象分析带电粒子的运动过程时的注意事项 (1)带电粒子进入电场的时刻; (2)速度图象的切线斜率表示加速度;(3)图线与坐标轴围成的面积表示位移,且在横轴上方所围成的面积为正,在横轴下方所围成的面积为负; (4)注意对称性和周期性变化关系的应用;(5)图线与横轴有交点,表示此时速度改变方向,对运动很复杂、不容易画出速度图象的问题,还应逐段分析求解.【例7】如图(a)所示,两平行正对的金属板A 、B 间加有如图(b)所示的交变电压,一重力可忽略不计的带 正电粒子被固定在两板的正中间P 处.若在t 0时刻释放该粒子,粒子会时而向A 板运动,时而向B 板运动, 并最终打在A 板上.则t 0可能属于的时间段是( )A .0<t 0<T 4 B.T 2<t 0<3T 4 C.3T 4<t 0<T D .T <t 0<9T 8【答案】B【解析】设粒子的速度方向、位移方向向右为正.依题意知,粒子的速度方向时而为正,时而为负,最终打在A 板上时位移为负,速度方向为负.分别作出t 0=0、T 4、T 2、3T4时粒子运动的v ­t 图象,如图所示.由于v ­t 图线与时间轴所围面积表示粒子通过的位移,则由图象知,0<t 0<T 4与3T4<t 0<T 时粒子在一个周期内的总位移大于零,T 4<t 0<3T4时粒子在一个周期内的总位移小于零;t 0>T 时情况类似.因粒子最终打在A 板上,则要求粒子在每个周期内的总位移应小于零,对照各项可知B 正确.【变式】制备纳米薄膜装置的工作电极可简化为真空中间距为d 的两平行极板,如图甲所示.加在极板A 、 B 间的电压U AB 做周期性变化,其正向电压为U 0,反向电压为-kU 0(k >1),电压变化的周期为2τ,如图乙所示.在t =0时,极板B 附近的一个电子,质量为m 、电荷量为e ,受电场作用由静止开始运动.若整个运 动过程中,电子未碰到极板A ,且不考虑重力作用.若k =54,电子在0~2τ时间内不能到达极板A ,求d 应满足的条件.【答案】 d >9eU 0τ210m【解析】 电子在0~τ时间内做匀加速运动 加速度的大小a 1=eU 0md位移x 1=12a 1τ2在τ~2τ时间内先做匀减速运动,后反向做匀加速运动 加速度的大小a 2=keU 0md初速度的大小v 1=a 1τ匀减速运动阶段的位移x 2=v 212a 2由题知d >x 1+x 2,解得d >9eU 0τ210m. 粒子做偏转运动问题交变电压的周期性变化,势必会引起带电粒子的某个运动过程和某些物理量的周期性变化,所以应注意: (1)分过程解决.“一个周期”往往是我们的最佳选择.(2)建立模型.带电粒子的运动过程往往能在力学中找到它的类似模型.(3)正确的运动分析和受力分析:合力的变化影响粒子的加速度(大小、方向)变化,而物体的运动性质则由加速度和速度的方向关系确定.【例8】(2019·福建厦门一中期中)相距很近的平行板电容器,在两板中心各开有一个小孔,如图甲所示,靠 近A 板的小孔处有一电子枪,能够持续均匀地发射出电子,电子的初速度为v 0,质量为m ,电荷量为-e , 在A 、B 两板之间加上如图乙所示的交变电压,其中0<k <1,U 0=mv 206e ;紧靠B 板的偏转电压也等于U 0,板长为L ,两极板间距为d ,距偏转极板右端L2处垂直放置很大的荧光屏PQ ,不计电子的重力和它们之间的相互作用,电子在电容器中的运动时间可以忽略不计.(1)试求在0~kT 与kT ~T 时间内射出B 板电子的速度各是多大?(2)在0~T 时间内,荧光屏上有两个位置会发光,试求这两个发光点之间的距离.(结果用L 、d 表示) 【答案】(1)63v 0 233v 0 (2)L 28d【解析】 (1)电子经过电容器内的电场后,速度要发生变化,设在0~kT 时间内,穿出B 板的电子速度为v 1,kT ~T 时间内射出B 板的电子速度为v 2据动能定理有:-eU 0=12mv 21-12mv 20,eU 0=12mv 22-12mv 20 将U 0=mv 206e 代入上式,得:v 1=63v 0,v 2=233v 0(2)在0~kT 时间内射出B 板的电子在偏转电场中,电子的运动时间:t 1=Lv 1侧移量:y 1=12at 21=eU 0L 22mdv 21,得y 1=L 28d打在荧光屏上的坐标为y 1′,则:y 1′=2y 1=L 24d同理可得在kT ~T 时间内穿出B 板后电子的侧移量: y 2=L 216d打在荧光屏上的坐标:y 2′=2y 2=L 28d故两个发光点之间的距离:Δy =y 1′-y 2′=L 28d.【变式】如图甲所示,两水平金属板间距为d ,板间电场强度的变化规律如图乙所示.t =0时刻,质量为m 的带电微粒以初速度v 0沿中线射入两板间,0~T3时间内微粒匀速运动,T 时刻微粒恰好经金属板边缘飞出.微粒运动过程中未与金属板接触.重力加速度的大小为g .关于微粒在0~T 时间内运动的描述,正确的是( )甲 乙 A .末速度大小为 2v 0 B .末速度沿水平方向 C .重力势能减少了12mgdD .克服电场力做功为mgd【答案】BC【解析】.0~T3时间内微粒匀速运动,有mg =qE 0.把微粒的运动分解,水平方向:做速度为v 0的匀速直线运动;竖直方向:T 3~2T 3时间内,只受重力,做自由落体运动,2T 3时刻,v 1y =g T 3;2T3~T 时间内,a =2qE 0-mg m =g ,做匀减速直线运动,T 时刻,v 2y =v 1y -a ·T3=0,所以末速度v =v 0,方向沿水平方向,选项A 错误,B正确;重力势能的减少量ΔE p =mg ·d 2=12mgd ,所以选项C 正确;根据动能定理:12mgd -W 克电=0,得W 克电=12mgd ,所以选项D 错误.热点题型五 带电体在电场、重力场中的运动 带电体在电场、重力场中运动的动力学问题 1.等效重力法将重力与电场力进行合成,如图所示,则F 合为等效重力场中的“重力”,g ′=F 合m 为等效重力场中的“等效重力加速度”,F 合的方向等效为“重力”的方向,即在等效重力场中的竖直向下方向. 2.物理最高点与几何最高点在“等效力场”中做圆周运动的小球,经常遇到小球在竖直平面内做圆周运动的临界速度问题.小球能维持圆周运动的条件是能过最高点,而这里的最高点不一定是几何最高点,而应是物理最高点.几何最高点是图形中所画圆的最上端,是符合人眼视觉习惯的最高点.而物理最高点是物体在圆周运动过程中速度最小(称为临界速度)的点.【例9】(2019·福建厦门一中期中)如图,光滑斜面倾角为37°,一质量m =10 g 、电荷量q =+1×10-6 C 的 小物块置于斜面上,当加上水平向右的匀强电场时,该物体恰能静止在斜面上,g 取10 m/s 2,求:(1)该电场的电场强度;(2)若电场强度变为原来的12,小物块运动的加速度大小;(3)在(2)前提下,当小物块沿斜面下滑L =23 m 时,机械能的改变量.【答案】(1)7.5×104 N/C ,方向水平向右 (2)3 m/s 2 (3)-0.02 J【解析】(1)如图所示,小物块受重力、斜面支持力和电场力三个力作用,受力平衡,则有在x 轴方向:F cos 37°-mg sin 37°=0 在y 轴方向:F N -mg cos 37°-F sin 37°=0得:qE =mg tan 37°,故有E =3mg4q =7.5×104 N/C ,方向水平向右.(2)场强变化后物块所受合力为: F =mg sin 37°-12qE cos 37°根据牛顿第二定律得:F =ma故代入解得a =0.3g =3 m/s 2,方向沿斜面向下. (3)机械能的改变量等于电场力做的功, 故ΔE =-12qEL cos 37°,解得ΔE =-0.02 J.带电体在电场、重力场中运动的动量和能量问题。

高中物理现代物理光电效应题详解

高中物理现代物理光电效应题详解

高中物理现代物理光电效应题详解在高中物理学习中,现代物理是一个重要的内容,其中光电效应作为其中的一部分,在考试中也是经常出现的题型。

本文将详细解析光电效应的相关题目,包括考点、解题技巧以及一些典型示例,帮助高中学生更好地理解和应对这一题型。

一、基本概念光电效应是指当光照射到金属表面时,金属表面会发射出电子的现象。

光电效应的关键是光子的能量,当光子的能量大于或等于金属的逸出功时,光电效应才会发生。

逸出功是指金属表面的电子脱离金属所需的最小能量。

二、考点分析1. 光电效应的基本原理:光照射到金属表面,光子的能量被金属吸收,电子脱离金属表面。

2. 光电效应的影响因素:光的频率、光的强度、金属的逸出功。

3. 光电效应的应用:光电池、光电管等。

三、解题技巧1. 注意光子能量与光的频率的关系:光子能量E与光的频率f成正比,E = hf,其中h为普朗克常数。

2. 判断光电效应是否发生:比较光子能量与金属逸出功的大小关系,若光子能量大于等于逸出功,则光电效应发生。

3. 注意光电效应的影响因素:光的频率决定光子能量,光的强度影响光子的数量,金属的逸出功决定电子脱离金属的难易程度。

四、典型示例1. 问题:某金属的逸出功为2eV,一束光照射到该金属表面,光的频率为5×10^14 Hz,求光子的能量。

解析:根据光子能量与光的频率的关系,E = hf,代入已知数据,可得E = 6.63×10^-34 J·s × 5×10^14 Hz = 3.32×10^-19 J。

将能量转换为电子伏特,1 eV = 1.6×10^-19 J,所以光子的能量为3.32×10^-19 J / 1.6×10^-19 J/eV = 2.075 eV。

考点:光子能量与光的频率的关系,能量单位转换。

2. 问题:某金属的逸出功为3 eV,一束光照射到该金属表面,光的频率为4×10^14 Hz,光的强度为100 W/m^2,求光电效应是否发生。

(完整版)高中物理光电效应知识点

(完整版)高中物理光电效应知识点

―、光电效应和氢原子光谱知识点一:光电效应现象1.光电效应的实验规律(1)任何一种金属都有一个极限频率,入射光的频率必须大于这个极限频率才能发生光电效应,低于这个极限频率则不能发生光电效应.(2)光电子的最大初动能与入射光的强度无关,其随入射光频率的增大而增大—(3)大于极限频率的光照射金属时,光电流强度(反映单位时间内发射出的光电子数的多少)与入射光强度成正比.(4)金属受到光照,光电子的发射一般不超过10-9s.2.光子说爱因斯坦提出:空间传播的光不是连续的,而是一份一份的,每一份称为一个光子,光子具有的能量与光的频率成正比,即:£=hv,其中h=6.63X10-34J・s.3.光电效应方程(1)表达式:hv=E k+W0或E k=hv-W Q.(2)物理意义:金属中的电子吸收一个光子获得的能量是hv,这些能量的一部分用来克服金属的逸出功W0,剩下的表现为逸出后电子的最大初动能E k=2m v2.知识点二:a粒子散射实验与核式结构模型1.卢瑟福的a粒子散射实验装置(如图13-2-1所示)2.实验现象绝大多数a粒子穿过金箔后,基本上仍沿原来的方向前进,但少数a粒子发生了大角度偏转,极少数a粒子甚至被撞了回来.如图13-2-2所示.--'■樓a粒子散射实验的分析图3.原子的核式结构模型在原子中心有一个很小的核,原子全部的正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转.知识点三:氢原子光谱和玻尔理论1光谱(1)光谱:用光栅或棱镜可以把光按波长展开,获得光的波长(频率)和强度分布的记录,即光谱.(2)光谱分类有些光谱是一条条的亮线,这样的光谱叫做线状谱.有的光谱是连在一起的光带,这样的光谱叫做连续谱.(3)氢原子光谱的实验规律.巴耳末线系是氢原子光谱在可见光区的谱线,其波长公式+=R(±—n^)(n=3,4,5,…),R是里德伯常量,R=1.10X107m-1,n为量子数.2.玻尔理论(1)定态:原子只能处于一系列不连续的能量状态中,在这些能量状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量.(2)跃迁:原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即hv=E—E.(h是普朗克常量,h=6.63X10-34J・s)ymn(3)轨道:原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对应.原子的定态是不连续的,因此电子的可能轨道也是不连续的.点拨:易错提醒(1)一群氢原子跃迁发出可能的光谱线数为N=C2=n€n2—,一个氢原子跃迁发出可能的光谱线数最多为(n—1).(2)由能级图可知,由于电子的轨道半径不同,氢原子的能级不连续,这种现象叫能量量子化.考点一:对光电效应的理解1•光电效应的实质光子照射到金属表面,某个电子吸收光子的能量使其动能变大,当电子的动能增大到足以克服原子核的引力时,便飞出金属表面成为光电子.2.极限频率的实质光子的能量和频率有关,而金属中电子克服原子核引力需要的能量是一定的,光子的能量必须大于金属的逸出功才能发生光电效应.这个能量的最小值等于这种金属对应的逸出功,所以每种金属都有一定的极限频率.3.对光电效应瞬时性的理解光照射到金属上时,电子吸收光子的能量不需要积累,吸收的能量立即转化为电子的能量,因此电子对光子的吸收十分迅速.4.光电效应方程电子吸收光子能量后从金属表面逸出,其中只有直接从金属表面飞出的光电子才具有最大初动能,根据能量守恒定律,E k=hv—W Q.如图13—2—4所示.5.用光电管研究光电效应(1)常见电路(如图13—2—5所示)——11__/图13-2-5(2)两条线索①通过频率分析:光子频率高一光子能量大一产生光电子的最大初动能大.②通过光的强度分析:入射光强度大一光子数目多一产生的光电子多一光电流大.(3)常见概念辨析NM543[强度一一决定着每秒钟光源发射的光子数昭射光』八[频率——决定着每个光子的能量8=hv'每秒钟逸出的光电子数一一决定着光电光电子,流的强度规律总结:(1) 光电子也是电子,光子的本质是光,注意两者的区别.(2) 在发生光电效应的过程中,并非所有光电子都具有最大初动能,只有从金属表面直接发出的光电子初动能才最大.考点二:氢原子能级和能级跃迁1•氢原子的能级图能级图如图13—2—6所示.-3.4[13.6 图13—2—62.能级图中相关量意义的说明相关量意义能级图中的横线表示氢原子可能的能量状态定态横线左端的数字“1,2,3…”表示量子数横线右端的数字“一13.6,—3.4…”表示氢原子的能量相邻横线间的距离表示相邻的能量差,量子数越大相邻的能量差越小,距离越小带箭头的竖线表示原子由较高能级向较低能级跃迁,原子跃迁的条件为hv =E —E 3•关于光谱线条数的两点说明(1) 一群氢原子跃迁发出可能的光谱线条数为N =c n =n …n 2~^. (2) 一个氢原子跃迁发出可能的光谱线条数最多为(n —1).二、核反应和核能知识点一:天然放射现象和衰变1.天然放射现象(1)天然放射现象.元素自发地放出射线的现象,首先由贝可勒尔发现.天然放射现象的发现,说明原子核具有复杂的结构.(2)放射性和放射性元素.物质发射某种看不见的射线的性质叫放射性•具有放射性的元素叫放射性元素.(3)三种射线:放射性元素放射出的射线共有三种,分别是a射线、B射线、Y射线.(4)放射性同位素的应用与防护.①放射性同位素:有天然放射性同位素和人工放射性同位素两类,放射性同位素的化学性质相同.②应用:消除静电、工业探伤、作示踪原子等.③防护:防止放射性对人体组织的伤害.2.原子核的衰变(1)原子核放出a粒子或卩粒子,变成另一种原子核的变化称为原子核的衰变.(2)分类a衰变:A X^A Z4Y+4He卩衰变:A X-zli Y+^e(3)半衰期:放射性元素的原子核有半数发生衰变所需的时间.半衰期由原子核内部的因素决定,跟原子所处的物理、化学状态无关.点拨:易错提醒(1)半衰期是大量原子核衰变时的统计规律,对个别或少数原子核,无半衰期可言.(2)原子核衰变时质量数守恒,核反应过程前、后质量发生变化(质量亏损)而释放出核能.知识点二:核反应和核能1.核反应在核物理学中,原子核在其他粒子的轰击下产生新原子核的过程.在核反应中,质量数守恒,电荷数守恒.2.核力核子间的作用力.核力是短程力,作用范围在1.5X10-15m之内,只在相邻的核子间发生作用.3.核能核子结合为原子核时释放的能量或原子核分解为核子时吸收的能量,叫做原子核的结合能,亦称核能.4.质能方程、质量亏损爱因斯坦质能方程E=mc2,原子核的质量必然比组成它的核子的质量和要小Am,这就是质量亏损•由质量亏损可求出释放的核能AE=Amc2.【考点解析:重点突破】考点一:衰变和半衰期2.对半衰期的理解(1)根据半衰期的概念,可总结出公式N严原(2)以,m余=加原(2)以式中N原、m原表示衰变前的放射性元素的原子核数和质量,N余、m余表示衰变后尚未发生衰变的放射性元素的原子核数和质量,t表示衰变时间,T表示半衰期(2)影响因素:放射性元素衰变的快慢是由原子核内部因素决定的,跟原子所处的物理状态(如温度、压强)或化学状态(如单质、化合物)无关.考点二:核反应方程的书写(1)核反应过程一般都是不可逆的,所以核反应方程只能用单向箭头表示反应方向,不能用等号连接(2)核反应的生成物一定要以实验为基础,不能凭空只依据两个守恒规律杜撰出生成物来写核反应方程.(3)核反应遵循质量数守恒而不是质量守恒;遵循电荷数守恒.考点三:核能的产生和计算1.获得核能的途径(1)重核裂变:重核俘获一个中子后分裂成为两个中等质量的核的反应过程.重核裂变的同时放出几个中子,并释放出大量核能.为了使铀235裂变时发生链式反应,铀块的体积应大于它的临界体积.(2)轻核聚变:某些轻核结合成质量较大的核的反应过程,同时释放出大量的核能,要想使氘核和氚核合成氦核,必须达到几百万度以上的高温,因此聚变反应又叫热核反应.2.核能的计算方法(1)应用AE=Amc2:先计算质量亏损Am,注意Am的单位1u=1.66X10-27kg,1u相当于931.5MeV 的能量,u是原子质量单位.(2)核反应遵守动量守恒和能量守恒定律,因此我们可以结合动量守恒和能量守恒定律来计算核能.规律总结根据A E=A mc2计算核能时,若Am以千克为单位,“c”代入3X108m/s,AE的单位为“J”;若Am以“u”为单位,则由1u c2=931.5MeV得AE=Am X931.5MeV.。

2020年高考物理一轮复习热点题型专题31 光电效应(解析版)

2020年高考物理一轮复习热点题型专题31 光电效应(解析版)

2020届高考物理一轮复习热点题型归纳与变式演练专题31 光电效应【专题导航】目录热点题型一光电效应现象和光电效应方程的应用 (1)热点题型二光电效应的图象问题 (3)(一)对E k-ν图象的理解 (4)(二)对I-U图象的理解 (5)(三)对Uc-ν图象的理解 (7)热点题型三对光的波粒二象性的理解 (8)【题型演练】 (9)【题型归纳】热点题型一光电效应现象和光电效应方程的应用1.对光电效应的四点提醒(1)能否发生光电效应,不取决于光的强度而取决于光的频率.(2)光电效应中的“光”不是特指可见光,也包括不可见光.(3)逸出功的大小由金属本身决定,与入射光无关.(4)光电子不是光子,而是电子.2.两条对应关系(1)光强大→光子数目多→发射光电子多→光电流大;(2)光子频率高→光子能量大→光电子的最大初动能大.3.定量分析时应抓住三个关系式(1)爱因斯坦光电效应方程:E k=hν-W0.(2)最大初动能与遏止电压的关系:E k=eU c.(3)逸出功与极限频率的关系:W0=hνc.4.区分光电效应中的四组概念(1)光子与光电子:光子指光在空间传播时的每一份能量,光子不带电;光电子是金属表面受到光照射时发射出来的电子,其本质是电子.(2)光电子的动能与光电子的最大初动能:电子吸收光子能量后,一部分克服阻碍作用做功,剩余部分转化为光电子的初动能,只有直接从金属表面飞出的光电子才具有最大初动能.(3)光电流和饱和光电流:金属板飞出的光电子到达阳极,回路中便产生光电流,随着所加正向电压的增大,光电流趋于一个饱和值,这个饱和值是饱和光电流,在一定的光照条件下,饱和光电流与所加电压大小无关.(4)入射光强度与光子能量:入射光强度指单位时间内照射到金属表面单位面积上的总能量.【例1】(2018·高考全国卷Ⅱ)用波长为300 nm 的光照射锌板,电子逸出锌板表面的最大初动能为1.28×10-19 J .已知普朗克常量为6.63×10-34J·s ,真空中的光速为3.00×108 m·s -1.能使锌产生光电效应的单色光的最低频率约为( ) A .1×1014 Hz B .8×1014 Hz C .2×1015 Hz D .8×1015 Hz【答案】B【解析】设单色光的最低频率为v 0,由E k =hv -W 0知E k =hv 1-W 0,0=hv 0-W 0,又知v 1=c λ,整理得v 0=c λ-E kh,代入数据解得v 0≈8×1014 Hz. 【变式1】.(2019·山东泰安检测)如图所示是光电管的原理图,已知当有波长为λ0的光照到阴极K 上时,电 路中有光电流,则( )A .若增加电路中电源电压,电路中光电流一定增大B .若将电源极性反接,电路中一定没有光电流产生C .若换用波长为λ1(λ1>λ0)的光照射阴极K 时,电路中一定没有光电流D .若换用波长为λ2(λ2<λ0)的光照射阴极K 时,电路中一定有光电流 【答案】D【解析】光电流的强度与入射光的强度有关,当光越强时,光电子数目会增多,初始时电压增加光电流可能会增加,当达到饱和光电流后,再增大电压,光电流不会增大,故A 错误;将电路中电源的极性反接,电子受到电场阻力,到达A极的数目会减小,则电路中电流会减小,甚至没有电流,故B错误;波长为λ1(λ1>λ0)的光的频率有可能大于极限频率,电路中可能有光电流,故C错误;波长为λ2(λ2<λ0)的光的频率一定大于极限频率,电路中一定有光电流,故D正确.【变式2】(2017·高考全国卷Ⅲ)在光电效应实验中,分别用频率为νa、νb的单色光a、b照射到同种金属上,测得相应的遏止电压分别为U a和U b、光电子的最大初动能分别为E k a和E k b.h为普朗克常量.下列说法正确的是()A.若νa>νb,则一定有U a<U b B.若νa>νb,则一定有E k a>E k bC.若U a<U b,则一定有E k a<E k b D.若νa>νb,则一定有hνa-E k a>hνb-E k b【答案】BC【解析】由爱因斯坦光电效应方程E km=hν-W0,又由动能定理有E km=eU c,当νa>νb时,E k a>E k b,U a>U b,A错误,B正确;若U a<U b,则有E k a<E k b,C正确;同种金属的逸出功不变,则W0=hν-E km不变,D错误.热点题型二光电效应的图象问题图象名称图线形状由图线直接(间接)得到的物理量最大初动能E k与入射光频率ν的关系图线①极限频率:图线与ν轴交点的横坐标νc②逸出功:图线与E k轴交点的纵坐标的值W0=|-E|=E③普朗克常量:图线的斜率k=h颜色相同、强度不同的光,光电流与电压的关系②饱和光电流I m:电流的最大值③最大初动能:E km=eU c颜色不同时,光电流与电压的关系①遏止电压U c1、U c2②饱和光电流③最大初动能E k1=eU c1,E k2=eU c2遏止电压U c与入射光频率ν的关系图线①截止频率νc:图线与横轴的交点②遏止电压U c:随入射光频率的增大而增大③普朗克常量h:等于图线的斜率与电子电量的乘积,即h=ke.(注:此时两极之间接反向电压)(一)对E k-ν图象的理解由E k-ν图象可以得到的信息(1)极限频率:图线与ν轴交点的横坐标νc.(2)逸出功:图线与E k轴交点的纵坐标的绝对值E=W0.(3)普朗克常量:图线的斜率k=h.【例2】.(2019·南平市检测)用如图甲所示的装置研究光电效应现象.闭合电键S,用频率为ν的光照射光电管时发生了光电效应.图乙是该光电管发生光电效应时光电子的最大初动能E k与入射光频率ν的关系图象,图线与横轴的交点坐标为(a,0),与纵轴的交点坐标为(0,-b),下列说法中正确的是()A.普朗克常量为h=abB.断开电键S后,电流表G的示数不为零C.仅增加照射光的强度,光电子的最大初动能将增大D.保持照射光强度不变,仅提高照射光频率,电流表G的示数保持不变【答案】 B【解析】由hν=W0+E k,变形得E k=hν-W0,可知图线的斜率为普朗克常量,即h=ba,故A错误;断开电键S后,仍有光电子产生,所以电流表G的示数不为零,故B正确;只有增大入射光的频率,才能增大光电子的最大初动能,与光的强度无关,故C错误;保持照射光强度不变,仅提高照射光频率,单个光子的能量增大,而光的强度不变,那么光子数一定减少,发出的光子数也减少,电流表G的示数要减小,故D错误.【变式1】(多选)如图所示是用光照射某种金属时逸出的光电子的最大初动能随入射光频率的变化图线(直线与横轴的交点坐标4.27,与纵轴交点坐标0.5).由图可知()A.该金属的截止频率为4.27×1014 Hz B.该金属的截止频率为5.5×1014 HzC.该图线的斜率表示普朗克常量D.该金属的逸出功为0.5 eV【答案】AC【解析】图线在横轴上的截距为截止频率,A正确、B错误;由光电效应方程E k=hν-W0,可知图线的斜率为普朗克常量,C正确;金属的逸出功为:W0=hν0=6.63×10-34×4.27×10141.6×10-19eV≈1.77 eV,D错误.【变式2】.(多选)(2019·山东天成大联考)某种金属发生光电效应时,光电子的最大初动能E k与入射光频率ν的关系如图所示,E、ν0为已知量,由图线信息可知()A.逸出功W0=E B.图象的斜率表示普朗克常量的倒数C.图中E与ν0的值与入射光的强度、频率均无关D.若入射光频率为3ν0,则光电子的最大初动能为3E 【答案】AC【解析】根据光电效应方程有E k=hν-W0,根据数学函数知图象与纵坐标的交点表示逸出功,所以逸出功W0=E,图象的斜率表示普朗克常量,故A正确,故B错误;逸出功和极限频率的大小与入射光的强度、频率均无关,由金属本身决定,故C正确;根据光电效应方程:E k=hν-W0,当入射光频率为3ν0,则光电子的最大初动能为2E,故D错误.(二)对I-U图象的理解由I-U图象可以得到的信息(1)遏止电压U c :图线与横轴的交点的绝对值. (2)饱和光电流I m :电流的最大值. (3)最大初动能:E km =eU c .【例2】(2019·河南新乡模拟)如图甲所示,用频率为ν0的光照射某种金属发生光电效应,测出光电流i 随电 压U 的变化图象如图乙所示,已知普朗克常量为h ,光电子带电荷量为e .下列说法中正确的是 ( )A. 入射光越强,光电子的能量越高 B .光电子的最大初动能为hν0C .该金属的逸出功为hν0—eU 0D .用频率为eU 0h 的光照射该金属时不可能发生光电效应【答案】C【解析】根据光电效应的规律可知,入射光的频率越大,则逸出光电子的能量越大,与光强无关,选项A 错误;根据光电效应的规律,光电子的最大初动能为E km =hν0-W 逸出功,选项B 错误;由图象可知E km = eU 0,则该金属的逸出功为hν0-eU 0,选项C 正确;频率为eU 0h 的光的能量为hν= eU 0,当大于金属的逸出功(hν0-eU 0)时,同样可发生光电效应,选项D 错误;故选C.【变式】.在光电效应实验中,某同学用同一光电管在不同实验条件下得到三条光电流与电压之间的关系曲线(甲光、乙光、丙光),如图所示.则可判断出( )A .甲光的频率大于乙光的频率B .乙光的波长大于丙光的波长C .乙光对应的截止频率大于丙光的截止频率D .甲光对应的光电子最大初动能大于丙光对应的光电子最大初动能 【答案】B【解析】由图象知,甲、乙光对应的遏止电压相等,由eU c =E k 和hν=W 0+E k 得甲、乙光频率相等,A 错误;丙光的频率大于乙光的频率,则丙光的波长小于乙光的波长,B 正确;由hνc =W 0得甲、乙、丙光对应的截止频率相同,C 错误;由光电效应方程知,甲光对应的光电子最大初动能小于丙光对应的光电子最大初动能,D 错误.(三)对Uc -ν图象的理解 由U c -ν图象可以得到的信息(1)截止频率νc :图线与横轴的交点.(2)遏止电压U c :随入射光频率的增大而增大.(3)普朗克常量h :等于图线的斜率与电子电荷量的乘积,即h =ke .(注:此时两极之间接反向电压) 【例4】.(多选)(2019·重庆万州月考)某金属在光的照射下产生光电效应,其遏止电压U c 与入射光频率ν的关系图象如图所示.则由图象可知 ( )A .该金属的逸出功等于hν0B .遏止电压是确定的,与入射光的频率无关C .入射光的频率为2ν0时,产生的光电子的最大初动能为hν0D .入射光的频率为3ν0时,产生的光电子的最大初动能为hν0 【答案】AC【解析】当遏止电压为零时,最大初动能为零,则入射光的能量等于逸出功,所以W 0=hν0,故选项A 正确;根据光电效应方程E km =hν-W 0和-eU c =0-E km 得,U c =h e ν-W 0e ,可知当入射光的频率大于极限频率时,遏止电压与入射光的频率成线性关系,故选项B 错误;从图象上可知, 逸出功W 0=hν0.根据光电效应方程E km =h ·2ν0-W 0=hν0,故选项C 正确;E km =h ·3ν0-W 0=2hν0,故选项D 错误.【变式】. 在某次光电效应实验中,得到的遏止电压U c 与入射光的频率ν的关系如图所示.若该直线的斜率和纵轴截距分别为k 和b ,电子电荷量的绝对值为e ,则普朗克常量可表示为________,所用材料的逸出功可表示为________.【答案】ek -eb【解析】根据光电效应方程E km =hν-W 0及E km =eU c 得U c =hνe -W0e ,故h e =k ,b =-W 0e ,得h =ek ,W 0=-eb .热点题型三 对光的波粒二象性的理解 对波粒二象性的理解项目 内容说明光的粒子性(1)当光同物质发生作用时,这种作用是“一份一份”进行的,表现出粒子性(2)少量或个别光子容易显示出光的粒子性 粒子的含义是“不连续的”“一份一份的”,光子不同于宏观观念的粒子光的波动性(1)足够能量的光在传播时,表现出波动的性质(2)光是一种概率波,即光子在空间各点出现的可能性大小(概率)可用波动规律来描述 光的波动性是光子本身的一种属性,不是光子之间相互作用产生的,光的波动性不同于宏观概念的波波和粒子的对立与统一宏观世界:波和粒子是相互对立的概念微观世界:波和粒子是统一的.光子说并未否定波动性,光子能量E =hν=hcλ,其中,ν和λ就是描述波的两个物理量【例5】1927年戴维逊和革末完成了电子衍射实验,该实验是荣获诺贝尔奖的重大近代物理实验之一.如图所示的是该实验装置的简化图,下列说法正确的是( )A .亮条纹是电子到达概率大的地方B .该实验说明物质波理论是正确的C .该实验再次说明光子具有波动性D .该实验说明实物粒子具有波动性 【答案】ABD.【解析】电子属于实物粒子,电子衍射实验说明电子具有波动性,说明物质波理论是正确的,与光的波动性无关,B 、D 正确,C 错误;物质波也是概率波,亮条纹是电子到达概率大的地方,A 正确. 【变式1】实物粒子和光都具有波粒二象性.下列事实中突出体现波动性的是( )A .电子束通过双缝实验装置后可以形成干涉图样B .β射线在云室中穿过会留下清晰的径迹C .人们利用慢中子衍射来研究晶体的结构D .人们利用电子显微镜观测物质的微观结构 【答案】 ACD【解析】 电子束通过双缝产生干涉图样,体现的是波动性,A 正确;β射线在云室中留下清晰的径迹,不能体现波动性,B 错误;衍射体现的是波动性,C 正确;电子显微镜利用了电子束波长短的特性,D 正确. 【变式2】关于物质的波粒二象性,下列说法正确的是 ( )A .光的波长越短,光子的能量越大,光的粒子性越明显B .不仅光子具有波粒二象性,一切运动的微粒都具有波粒二象性C .光电效应现象揭示了光的粒子性D .实物的运动有特定的轨道,所以实物不具有波粒二象性 【答案】ABC【解析】据ν=cλ可知光的波长越短则频率越大,据E =hν可知光能量越大,A 正确;波粒二象性是微观世界特有的规律,一切运动的微粒都具有波粒二象性,B 正确;光电效应现象说明光具有粒子性,C 正确;由德布罗意理论知,宏观物体的德布罗意波的波长太小,实际很难观察到波动性,但仍具有波粒二象性,D 错误. 【题型演练】1.用很弱的光做双缝干涉实验,把入射光减弱到可以认为光源和感光胶片之间不可能同时有两个光子存在, 如图所示是不同数量的光子照射到感光胶片上得到的照片.这些照片说明( )A .光只有粒子性没有波动性B .光只有波动性没有粒子性C .少量光子的运动显示波动性,大量光子的运动显示粒子性D .少量光子的运动显示粒子性,大量光子的运动显示波动性 【答案】D【解析】光具有波粒二象性,这些照片说明少量光子的运动显示粒子性,大量光子的运动显示波动性,故D正确.2.用光照射某种金属,有光电子从金属表面逸出,如果光的频率不变,而减弱光的强度,则() A.逸出的光电子数减少,光电子的最大初动能不变B.逸出的光电子数减少,光电子的最大初动能减小C.逸出的光电子数不变,光电子的最大初动能减小D.光的强度减弱到某一数值,就没有光电子逸出了【答案】A【解析】光的频率不变,表示光子能量不变,光的强度减弱,仍会有光电子从该金属表面逸出,逸出的光电子的最大初动能也不变;而减弱光的强度,逸出的光电子数就会减少,选项A正确.3.在光电效应实验中,用同一种单色光,先后照射锌和银的表面,都能发生光电效应.对于这两个过程,下列四个物理过程中,一定相同的是()A.遏止电压B.饱和光电流C.光电子的最大初动能D.逸出功【答案】B【解析】同一种单色光照射不同的金属,入射光的频率和光子能量一定相同,金属逸出功不同,根据光电效应方程E km=hν-W0知,最大初动能不同,则遏止电压不同;同一种单色光照射,入射光的强度相同,所以饱和光电流相同.故选项B正确.4.(2019·西藏拉萨中学六次月考)关于光电效应的规律,下面说法正确的是()A.当某种色光照射金属表面时,能产生光电效应,入射光的频率越高,产生的光电子最大初动能也就越大B.当某种色光照射金属表面时,能产生光电效应,如果入射光的强度减弱,从光照至金属表面上到发射出光电子之间的时间间隔将明显增加C.对某金属来说,入射光波长必须大于一极限值才能产生光电效应D.同一频率的光照射不同的金属,如果都能产生光电效应,则所有金属产生的光电子的最大初动能一定相同【答案】A【解析】根据光电效应方程E km=hν-W0,知入射光的频率越高,产生的光电子的最大初动能越大,故A 正确.光电效应具有瞬时性,入射光的强度不影响发出光电子的时间间隔,故B错误.发生光电效应的条件是入射光的频率大于金属的极限频率,即入射光的波长小于金属的极限波长,故C错误.不同的金属逸出功不同,根据光电效应方程E km=hν-W0,知同一频率的光照射不同金属,如果都能产生光电效应,光电子的最大初动能不同,故D 错误.5.(2019·北京朝阳模拟)用绿光照射一个光电管,能产生光电效应.欲使光电子从阴极逸出时最大初动能增大,可以( )A .改用红光照射B .改用紫光照射C .改用蓝光照射D .增加绿光照射时间【答案】BC.【解析】光电子的最大初动能与照射时间或照射强度无关,而与入射光子的能量有关,入射光子的能量越大,光电子从阴极逸出时最大初动能越大,所以本题中可以改用比绿光光子能量更大的紫光、蓝光照射,以增大光电子从阴极逸出时的最大初动能.6. (2019·河北保定模拟)如图所示,这是一个研究光电效应的电路图,下列叙述中正确的是( )A .只调换电源的极性,移动滑片P ,当电流表示数为零时,电压表示数为遏止电压U 0的数值B .保持光照条件不变,滑片P 向右滑动的过程中,电流表示数将一直增大C .不改变光束颜色和电路,增大入射光束强度,电流表示数会增大D .阴极K 需要预热,光束照射后需要一定的时间才会有光电流【答案】AC.【解析】只调换电源的极性,移动滑片P ,电场力对电子做负功,当电流表示数为零时,则有eU =12mv 2m,那么电压表示数为遏止电压U 0的数值,故A 项正确;当其他条件不变,P 向右滑动,加在光电管两端的电压增加,光电子运动更快,由I =q t得电流表读数变大,若电流达到饱和电流,则电流表示数不会增大,B 项错误;只增大入射光束强度时,单位时间内光电子数变多,电流表示数变大,C 项正确;因为光电效应的发生是瞬间的,阴极K 不需要预热,所以D 项错误.7.(2019·哈尔滨六中二次模拟)某半导体激光器发射波长为1.5×10-6 m ,功率为5.0×10-3 W 的连续激光.已 知可见光波长的数量级为10-7 m ,普朗克常量h =6.63×10-34 J·s ,该激光器发出的 ( ) A .是紫外线 B .是红外线C .光子能量约为1.3×10-13 JD .光子数约为每秒3.8×1016个【答案】BD【解析】波长的大小大于可见光的波长,属于红外线,故A错误,B正确.光子能量E=h cλ=6.63×10-34×3×1081.5×10-6J=1.326×10-19 J,故C错误.每秒钟发出的光子数n=PtE≈3.8×1016,故D正确.9.(2019·辽宁鞍山一中模拟)按如图的方式连接电路,当用紫光照射阴极K时,电路中的微安表有示数.则下列正确的叙述是()A. 如果仅将紫光的光强减弱一些,则微安表可能没有示数B.仅将滑动变阻器的触头向右滑动一些,则微安表的示数一定增大C.仅将滑动变阻器的触头向左滑动一些,则微安表的示数可能不变D.仅将电源的正负极对调,则微安表仍可能有示数【答案】CD【解析】如果仅将紫光的光强减弱一些,则单位时间内逸出的光电子数减小,则微安表示数减小,选项A 错误;饱和光电流与入射光的强度有关,仅将滑动变阻器的触头向右滑动,不改变光的强度,则微安表的示数不一定增大;同理仅将滑动变阻器的触头向左滑动一些,则微安表的示数可能不变,故B错误,C正确.将电路中电源的极性反接后,即加上反向电压,若光电子的动能足够大,电路中还有光电流,微安表仍可能有示数,故D正确10. (2019·河北保定模拟)如图所示,这是一个研究光电效应的电路图,下列叙述中正确的是()A.只调换电源的极性,移动滑片P,当电流表示数为零时,电压表示数为遏止电压U0的数值B.保持光照条件不变,滑片P向右滑动的过程中,电流表示数将一直增大C.不改变光束颜色和电路,增大入射光束强度,电流表示数会增大D .阴极K 需要预热,光束照射后需要一定的时间才会有光电流【答案】AC.【解析】只调换电源的极性,移动滑片P ,电场力对电子做负功,当电流表示数为零时,则有eU =12mv 2m,那么电压表示数为遏止电压U 0的数值,故A 项正确;当其他条件不变,P 向右滑动,加在光电管两端的电压增加,光电子运动更快,由I =q t得电流表读数变大,若电流达到饱和电流,则电流表示数不会增大,B 项错误;只增大入射光束强度时,单位时间内光电子数变多,电流表示数变大,C 项正确;因为光电效应的发生是瞬间的,阴极K 不需要预热,所以D 项错误.。

高三新教材物理知识点总结

高三新教材物理知识点总结

高三新教材物理知识点总结一、光电效应光电效应是指当光照射到金属上时,金属会释放出电子的现象。

光电效应是经典物理理论无法解释的现象,必须使用光的粒子性来解释。

光的粒子被称为光子,它具有能量和动量。

1. 光电效应的条件光电效应发生的条件包括光照强度、光的频率和金属的性质。

只有光照强度达到一定的阈值,光的频率大于金属的截止频率(光子能量大于金属的束缚能),金属才会发生光电效应。

2. 光电效应的公式光电效应的能量守恒公式为:光子能量 = 电子的最大动能 + 逸出功。

可以用以下公式表示:E = hf = φ + KE其中E为光子的能量,h为普朗克常数,f为光的频率,φ为金属的逸出功,KE为电子的动能。

3. 光电效应的应用光电效应在实际生活中有广泛的应用,如光电池、太阳能电池等。

光电效应还被应用于光电管、光电倍增管等装置中,用于光信号的探测和增强。

二、运动学运动学是研究物体运动规律的学科,它描述和解释物体在运动过程中的位置、速度和加速度等重要参数。

1. 匀速直线运动匀速直线运动是指物体在相等时间内位移相等的运动。

它的特点是速度大小和方向保持不变。

位移与速度之间的关系可以通过公式:位移 = 速度 ×时间来计算。

2. 平抛运动平抛运动是指物体在一个平面上做抛体运动的情况。

平抛运动可以分为水平方向和竖直方向的分解运动。

在忽略空气阻力的情况下,水平方向的速度不变,竖直方向受重力的影响而变化。

3. 自由落体运动自由落体运动是指物体在只受重力作用下的运动。

自由落体运动的特点是加速度恒定,并且方向向下。

自由落体运动可以用以下公式描述:速度 = 加速度 ×时间、位移 = 初速度 ×时间 + 1/2 ×加速度 ×时间的平方。

三、力学力学是研究物体运动和相互作用的学科,它包括质点力学和刚体力学两个方面。

1. 牛顿三定律牛顿三定律是力学的基础定律,描述了物体受力情况的规律。

第一定律是惯性定律,即物体在没有外力作用时保持静止或匀速直线运动。

高考光电效应知识点总结

高考光电效应知识点总结

高考光电效应知识点总结光电效应作为物理学中的一个重要概念,常常是高考中出现的重点内容之一。

它描述的是当光照射到金属表面时,光子的能量会使得金属表面的电子被激发并被释放出来的现象。

在这篇文章中,我将对高考光电效应的知识点进行总结,帮助读者更好地理解这一概念。

1. 光电效应的基本原理光电效应的基本原理是:当光照射到金属表面时,光子的能量会使得金属表面的束缚电子克服电场力的束缚,从而逸出金属表面,并形成电子束流。

这个现象是由爱因斯坦在1905年提出的,并对量子论的发展产生了重要影响。

通过实验,我们可以进一步了解光电效应的性质和规律。

2. 光电效应的关键参数光电效应中涉及的关键参数有光电子的最大动能、截止频率和光电子的动量。

光电子的最大动能取决于光子的能量。

当光子的能量大于等于金属的逸出功时,才可以克服金属表面对电子的束缚力,产生光电子。

而截止频率是指使光电效应达到饱和的最低频率。

当光的频率低于截止频率时,无论光的强度多大,都无法触发光电效应。

3. 光电效应的实验装置在实验中,我们可以使用光电效应的实验装置来研究光电效应。

实验装置通常包括光源、金属样品和电路部分。

光源可以是氢银光源、钠光源等,用来提供光子。

金属样品作为光电效应的目标物,可以是锌、铜、铝等金属。

电路部分用来测量光电子的最大动能和光电流。

通过调节实验装置中的不同参数,我们可以观察到光电效应的发生与变化。

4. 光电效应的应用领域光电效应不仅是一种基本的物理现象,也在各个领域中具有广泛的应用。

在太阳能领域中,我们利用光电效应来转化太阳光直接为电能。

而在光电子学领域中,我们可以利用光电效应来制造光电二极管、光电倍增管等器件。

此外,光电效应还被应用于红外线探测、光电子显微镜以及光电子材料等方面。

因此,光电效应的研究和应用对于推动科学技术的发展具有重要意义。

5. 光电效应与经典物理的矛盾光电效应的发现不仅仅是一个重要的实验结果,也对经典物理学提出了挑战。

2020年高考物理考点题型归纳与训练专题十八近代物理(含解析)

2020年高考物理考点题型归纳与训练专题十八近代物理(含解析)

2020 高考物理二轮复习题型概括与训练专题十八近代物理题型一 光电效应的实验规律【规律方法】 应用光电效应方程时的注意事项(1) 每种金属都有一个截止频次,入射光频次大于这个截止频次时才能发生光电效应。

(2) 截止频次对应着光的极限波长和金属的逸出功,即cc= W 0。

h ν= h λc(3) 应用光电效应方程 k(1 eV = 1.6 -19J)。

E =h ν- W 时,注意能量单位电子伏和焦耳的换算×10 【典例 5】.(2019 ·哈尔滨三中二模 )(多项选择 )图甲是研究光电效应的电路图,图乙是用 a 、 b 、 c光照耀光电管获得的 I -U 图线, U c1、U c2 表示制止电压,以下说法正确的选项是 ()A .在光照条件不变的状况下,跟着所加电压的增大,光电流向来会增添B . a 、 c 光的频次相等C .光电子的能量只与入射光的强弱相关,而与入射光的频次没关D . a 光的波长大于 b 光的波长【分析】在光照条件不变的状况下,跟着所加电压的增大,光电流会先增添后不变, A错误;当光电流为零时,光电管两头加的电压为制止电压,依据 eU c = h ν- W 0,入射光的频次越高,对应的制止电压U c 越大, a 、 c 两光的制止电压相等,且小于b 光的制止电压,因此 a 、c 两光的频次相等且小于b 光的频次,依据 λ= c,可知 a 光的波长大于 b 光的波长,νB 、 D 正确;光电子的能量只与入射光的频次相关,而与入射光的强弱没关,C 错误。

【答案】BD题型二、原子核的衰变与半衰期【典例 1】 (2019 ·陕西咸阳高三第二次摸底)23290Th 拥有放射性,经以下连续衰变过程,最后208232228228228208生成稳固的 82 Pb: 90 Th→88 Ra→ 89Ac→90Th→ →82 Pb.以下说法正确的选项是 ()232228A. 90Th 和90 Th 属于放射性同位素,其原子核内中子数同样,质子数不一样228Ra 发生β衰变后变为228228原子核内有β粒子B. 8889 Ac,说明 88 Ra228C. 88 Ra 的半衰期约为 6.7 年,将该元素混杂到其余稳固元素中,半衰期将增大D.整个衰变过程共发生 6 次α衰变和 4 次β衰变232228拥有同样的质子数,属于放射性同位素,其原子核内质子数同样,【分析】: 90 Th和 90 Th中子数不一样,故228228228A 错误;88 Ra 发生β衰变后变为89Ac,是88 Ra 原子核内一此中子转变为一个质子并放出电子,并不是原子核内有电子,故 B 错误;元素的半衰期不随物理和化学状态的改变而改变,故 C 错误;β衰变质量数不变,故232- 208= 4x,则 x= 6,发生 6 次α衰变,依据电荷数守恒可知90- 82=2x- y,获得 y= 4,故发生 4 次β衰变,故 D 正确.【答案】: D题型三、原子能级与跃迁【规律方法】1.氢原子的能级跃迁(1) 氢原子从低能级向高能级跃迁:汲取必定频次的光子,当光子的能量知足hν= E 末- E 初时,才能被某一个原子汲取,不然不汲取。

2020年高考物理一轮复习专题12.2 光电效应 波粒二象性(讲)(解析版)

2020年高考物理一轮复习专题12.2 光电效应 波粒二象性(讲)(解析版)

专题12.2 光电效应波粒二象性1.知道什么是光电效应,理解光电效应的实验规律.2.会利用光电效应方程计算逸出功、极限频率、最大初动能等物理量.3.知道光的波粒二象性,知道物质波的概念.知识点一光电效应波粒二象性1.光电效应(1)定义:在光的照射下从金属表面发射出电子的现象(发射出的电子称为光电子)。

(2)产生条件:入射光的频率大于金属极限频率。

(3)光电效应规律①存在着饱和电流:对于一定颜色的光,入射光越强,单位时间内发射的光电子数越多。

②存在着遏止电压和截止频率:光电子的能量只与入射光的频率有关,而与入射光的强弱无关。

当入射光的频率低于截止频率时不发生光电效应。

③光电效应具有瞬时性:当频率超过截止频率时,无论入射光怎样微弱,几乎在照到金属时立即产生光电流,时间不超过10-9 s。

2.光电效应方程(1)基本物理量①光子的能量ε=hν,其中h=6.626×10-34 J·s(称为普朗克常量)。

②逸出功:使电子脱离某种金属所做功的最小值。

③最大初动能:发生光电效应时,金属表面上的电子吸收光子后克服原子核的引力逸出时所具有动能的最大值。

(2)光电效应方程:E k=hν-W0。

【知识拓展】与光电效应有关的五组概念对比1.光子与光电子:光子指光在空间传播时的每一份能量,光子不带电;光电子是金属表面受到光照射时发射出来的电子,其本质是电子。

光子是光电效应的因,光电子是果。

2.光电子的动能与光电子的最大初动能:光照射到金属表面时,电子吸收光子的全部能量,可能向各个方向运动,需克服原子核和其他原子的阻碍而损失一部分能量,剩余部分为光电子的初动能;只有金属表面的电子直接向外飞出时,只需克服原子核的引力做功的情况,才具有最大初动能。

光电子的初动能小于或等于光电子的最大初动能。

3.光电流与饱和光电流:金属板飞出的光电子到达阳极,回路中便产生光电流,随着所加正向电压的增大,光电流趋于一个饱和值,这个饱和值是饱和光电流,在一定的光照条件下,饱和光电流与所加电压大小无关。

高考原子物理高频考点知识点题型整理

高考原子物理高频考点知识点题型整理

高考原子物理高频考点题型整理一、概念考查1.(人教版选修3-5 P36·T2改编)(多选)在光电效应实验中,用频率为ν的光照射光电管阴极,发生了光电效应,下列说法正确的是( )A.增大入射光的强度,光电流增大B.减小入射光的强度,光电效应现象消失C.改用频率小于ν的光照射,一定不发生光电效应D.改用频率大于ν的光照射,光电子的最大初动能变大答案AD解析增大入射光强度,单位时间内照射到单位面积上的光子数增加,逸出的光电子数也增加,则光电流将增大,A正确;光电效应是否发生取决于入射光的频率,而与入射光强度无关,B错误;用频率为ν的光照射光电管阴极,发生光电效应,用频率较小的光照射时,若光的频率仍大于极限频率,则仍会发生光电效应,C错误;根据hν-W0=12mv2可知,增大入射光频率,光电子的最大初动能也增大,D正确。

2.下列有关光的波粒二象性的说法中,正确的是( )A.有的光是波,有的光是粒子B.光子与电子是同样的一种粒子C.光的波长越长,其波动性越显著;波长越短,其粒子性越显著D.大量光子的行为往往显示出粒子性答案 C解析光具有波粒二象性,故A错误;电子是组成原子的基本粒子,有确定的静止质量,是一种物质实体,速度可以低于光速;光子代表着一份能量,没有静止质量,速度永远是光速,故B 错误;光的波长越长,波动性越明显,波长越短,其粒子性越显著,故C 正确;大量光子运动的规律表现出光的波动性,故D 错误。

3.光具有波粒二象性,那么能够证明光具有波粒二象性的现象是( )A .光的反射及小孔成像B .光的干涉、光的衍射、光的色散C .光的折射及透镜成像D .光的干涉、光的衍射和光电效应答案 D解析 表明光具有波动性的典型现象是光的干涉和衍射现象,表明光具有粒子性的典型现象是光电效应和康普顿效应。

故选D 。

4.(2018·天津红桥区期末)(多选)下列说法正确的是( )A .动量相同的电子和质子,其德布罗意波长相同B .光电效应现象说明光具有粒子性,光子具有能量C .康普顿效应说明光具有粒子性,光子具有动量D .黑体辐射的实验规律说明在宏观世界里能量是连续的答案 ABC解析 根据物质波波长公式λ=h p可知,当质子和电子动量相同时,则德布罗意波长相同,A 正确;光电效应现象说明光具有粒子性,光子具有能量,光子的能量ε=hν,B 正确;康普顿效应说明光具有粒子性和光子具有动量,光子的动量p =h λ,C 正确;黑体辐射的实验规律说明在宏观世界里能量是分立的,D 错误。

(2019版)高考物理光电效应

(2019版)高考物理光电效应
是一份一份的,每一份叫做一个光量子,简称光子;光
子的h
h=6.63×10 – 34 J.s——普朗克恒量
4. 爱因斯坦光电效应方程
1 2
m
vm2
爱因斯坦光电效应方程的图象

h
W
Ek
爱因斯坦光电效应方程是能量守恒
定律在光电效应现象中的表现形式 0
光电效应
1.光电效应现象 光照使物体发射电子的现象叫光电效应现象;所发射的 电子叫光电子;光电子定向移动所形成的电流叫光电流. 2. 光电效应现象的实验规律
( 1)对于任何一种金属,入射光的频率必须大于某一 极限频率才能产生光电效应,低于这个极限频率,无论强 度如何,无论照射时间多长,也不能产生光电效应;
逸出功和极限频率的关系 W h 0 极限波长和极限频率的关系
-W
α
0

由 v f

0

c
0
;潘多拉婚纱摄影,婚纱摄影店排行,婚纱摄影图片,婚纱照系列大全: ;
豫章(今江西南昌) 季年三百乘 当此一时 大将也 白起也 不久稍微好些 ”郭子仪便要出城相见 《梁书》:初 宾客礼节都很简单 郑遇春 6级地震 群臣数论奏 ?夷负相当 有坟岿然 宿县(今安徽宿县) 并将他的画像挂在凌烟阁上 韦睿把车辆串起来连结成阵 9. 不但不前往 祝寿 千古无二;[5] [2] 实在没有能力 河东节度使邓景山相继被杀 轶事典故 请韦睿奏请增兵 作将军应该有胆小的时候 禄承母弟之基 周瑜对曹仁“所杀伤甚众” 中兴获进网许可证 我大行皇帝抚军巩洛 骑五十匹 郢州刺史 大历十四年(779年) 颜师古注:孙武 《幼学琼林》:“孙膑吴起 ”虏以为然 而虏骑已合 田单乃起 帝召子仪问御戎之计 于禁 歌曲等文艺作品 第一是制靴业 网球名人堂 贼军齐进 王思礼 李娜 主

高考物理光电效应知识点总结归纳

高考物理光电效应知识点总结归纳

高考物理光电效应知识点总结归纳光电效应作为物理学中的重要概念,是高考物理考试中的常见考点之一。

本文将对光电效应的基本概念、实验现象、解释理论以及相关应用进行总结归纳,以帮助同学们更好地掌握光电效应知识,为高考考试做好准备。

一、光电效应的基本概念光电效应是指当光照射到金属表面时,金属会发生电子的发射现象。

这种现象是通过光的能量转化为电子的动能实现的。

光电效应通常发生在紫外线或更短波长的光线照射下,产生的电子被称为光电子。

二、光电效应的实验现象当光线照射到金属表面时,可观察到以下实验现象:1. 光电流现象:当金属表面被光照射时,会在电路中形成光电流。

2. 光电发射现象:光照射到金属表面,会发射出光电子。

光电子的动能与光的频率有关,与光的强度无关。

三、光电效应的解释理论光电效应的解释理论主要有以下两个方面:1. 波动说(经典理论):根据经典物理学理论,将光看作是波动性的电磁波,当光线照射到金属表面时,电子被激发并获得足够的能量,从而脱离金属形成电子流。

2. 粒子说(量子理论):量子理论认为光具有粒子性,即光子。

当光子的能量大于光电子的逸出功时,光子被吸收,电子被激发并发射出去。

四、光电效应的相关参数光电效应的研究中常用的相关参数包括:1. 逸出功(或称光电发射功函数):指的是当光的频率为零时,金属表面上最小的能量,其值与金属种类相关。

2. 阈值频率:当光的频率超过阈值频率时,金属才会发生光电效应。

阈值频率与金属的逸出功有关。

3. 剩余动能(或称动能最大值):指的是光电子逃离金属表面后剩余的动能,与光的频率和金属种类有关。

五、光电效应的应用光电效应在现实生活中有许多应用,其中包括:1. 光电池:利用光电效应将光能转化为电能,广泛应用于太阳能电池板等方面。

2. 光电倍增管:利用光电效应实现光信号到电信号的转换,用于增强弱光信号的检测和放大。

3. 光电探测器:基于光电效应原理,研制各种光电传感器,用于测量光强、光功率等。

2020--2022年全国高考物理三年真题汇编:光电效应

2020--2022年全国高考物理三年真题汇编:光电效应

2020--2022年全国高考物理三年真题汇编:光电效应一、单选题(共10题;共20分)1.(2分)(2022·河北)如图是密立根于1916年发表的纳金属光电效应的遏止电压U c与入射光频率ν的实验曲线,该实验直接证明了爱因斯坦光电效应方程,并且第一次利用光电效应实验测定了普朗克常量h。

由图像可知()A.钠的逸出功为ℎνcB.钠的截止频率为8.5×1014HzC.图中直线的斜率为普朗克常量hD.遏止电压U c与入射光频率ν成正比【答案】A【解析】【解答】遏制电压为0,对应最大初动能为0。

光子能量等于逸出功。

逸出功为ℎνc。

A对。

由图可知图像与横坐标交点值即为截止频率,约为5.5×1014ℎz,B错。

结合遏止电压与光电效应方程可解得U c e=ℎν−W逸,Uc =ℎν−W逸e,图像斜率为ℎe,C错误。

U c=ℎν−W逸e,遏止电压与入射光频率成一次函数关系,而不是正比例关系。

D错误。

综选A【分析】图像与横坐标交点值即为截止频率。

结合遏止电压与光电效应方程,得出图像关系式。

2.(2分)(2022·全国乙卷)一点光源以113W的功率向周围所有方向均匀地辐射波长约为6×10−7m的光,在离点光源距离为R处每秒垂直通过每平方米的光子数为3×1014个。

普朗克常量为ℎ=6.63×10−34J⋅s。

R约为()A.1×102m B.3×102m C.6×102m D.9×102m【答案】B【解析】【解答】每个光子的能量为E=ℎν,光的光速与频率的关系为c=λν,光源每秒发出的光子数为n=Pℎν=Pλℎc,半径为R处的面的面积为S=4πR2,所以nS=3×1014解得R≈3×102m,故选B。

【分析】首先写出每个光子能量及光速与频率波长关系,然后表达出每秒发出的光子数合面积,最后联立进行求解。

高考物理光电效应知识归纳

高考物理光电效应知识归纳

光、核物理、振动和波1、光学:光学中的一个现象一串结论红光波长长全反射的条件:光密到光疏;入射角等于或大于临界角应用:光纤通信、海市蜃楼、沙膜蜃景、炎热夏天柏油路面上的蜃景水中或玻璃中的气泡看起来很亮.电磁波谱:小波动性:明显粒子性:不明显几个结论:同一色光在不同介质中折射率不同。

双缝干涉条纹间距:薄膜干涉:由膜的前后两表面反射的两列光叠加,实例:肥皂膜、空气膜、油膜、牛顿环、光器件增透膜衍射:条件:单缝圆孔柏松亮斑爱因斯坦光电效应方程:mV m2/2=hf-W0一个光子的能量E=hf (决定了能否发生光电效应)光电效应规律:①任何一种金属都有一个极限频率,入射光的频率必须大于极限频率,才能产生光电效应。

②光电子的最大初动能只随入射光频率的增大而增大。

③入射光照到金属上时,光子的发射几乎是瞬时的④当入射光的频率大于极限频率时,光电流强度与入射光强度成正比。

原子、原子核知识归类1、汤姆生----枣糕模型、发现电子2、卢瑟福----α粒子散射实验----核式结构----质子的发现3、玻 尔----轨道量子化----氢原子光谱4、麦克斯韦----预言了电磁波的存在 赫兹----证实了电磁波的存在5、爱因斯坦---光电效应规律光子说 ---相对论6、麦克斯韦---预测光的电磁说, 赫兹---用实验证明了光的电磁说的正确性。

光子的发射与吸收(特别注意跃迁条件):原子发生定态跃迁时,要辐射(吸收)一定频率的光子:hf =E 初-E 末⑵从高能级向低能级跃迁时放出光子; 从低能级向高能级跃迁时可能是吸收光子,原子从低能级向高能级跃迁时只能吸收一定频率的光子; 2.四种核反应类型(衰变,人工核转变,重核裂变,轻核骤变)⑴衰变: α衰变:e 422349023892H Th U +→(实质:核内Hen 2H 2421011→+)α衰变形成外切(同方向旋), β衰变:e Pa Th 012349123490-+→(实质:核内的中子转变成了质子和中子e H n 011110-+→)+β衰变:e Si P 0130143015+→(核内e n H 011011+→)γ衰变:原子核处于较高能级,辐射光子后跃迁到低能级。

2020年高考物理热点题型归纳与精讲(含2019真题)-专题21 电学基本规律的应用

2020年高考物理热点题型归纳与精讲(含2019真题)-专题21 电学基本规律的应用

2020年高考物理热点题型归纳与精讲-专题21 电学基本规律的应用【专题导航】目录热点题型一电路的动态分析 (1)阻值变化下的动态分析 (2)电路结构变化下的动态分析 (4)含容电路的动态分析 (4)电路故障的分析 (6)热点题型二对闭合电路欧姆定律的理解和应用 (7)闭合电路欧姆定律的计算 (7)电源与电阻U-I图象的对比 (8)热点三电功电功率电热热功率 (9)热点题型四电源的功率和效率 (11)电源输出功率的极值问题的处理方法 (12)【题型演练】 (14)【题型归纳】热点题型一电路的动态分析1.解决电路动态变化的基本思路“先总后分”——先判断总电阻和总电流如何变化.“先干后支”——先分析干路部分,再分析支路部分.“先定后变”——先分析定值电阻所在支路,再分析阻值变化的支路.2.电路动态分析的方法(1)程序法:基本思路是“部分→整体→部分”.即(2)极限法:因滑动变阻器滑片滑动引起的电路变化问题,可将滑动变阻器的滑动端分别滑至两个极端去讨论.(3)串反并同法:“串反”是指某一电阻增大(或减小)时,与它串联或间接串联的电阻中的电流、两端电压、电功率都将减小(或增大).“并同”是指某一电阻增大(或减小)时,与它并联或间接并联的电阻中的电流、两端电压、电功率都将增大(或减小).3.分析含容电路应注意的两点(1)电路稳定后,电容器所在支路电阻无电压降,因此电容器两极板间的电压就等于该支路两端的电压.在电路稳定后,与电容器串联的电阻阻值变化,不影响电路中其他电表示数和灯泡亮度.(2)电路中的电流、电压变化时,将会引起电容器的充、放电.如果电容器两端电压升高,电容器将充电,电荷量增大;如果电容器两端电压降低,电容器将通过与它连接的电路放电,电荷量减小.4.电路故障问题的分析方法与技巧(1)故障特点①断路特点:表现为电路中的两点间电压不为零而电流为零,并且这两点与电源的连接部分没有断点.②短路特点:用电器或电阻发生短路,表现为有电流通过电路但其两端电压为零.(2)检查方法①电压表检测:如果电压表示数为零,则说明可能在并联路段之外有断路,或并联路段短路.②欧姆表检测:当测量值很大时,表示该处是断路,当测量值很小或为零时,表示该处是短路.在运用欧姆表检测时,电路一定要切断电源.③电流表检测:当电路中接有电源时,可用电流表测量各部分电路上的电流,通过对电流值的分析,可以确定故障的位置.在运用电流表检测时,要注意电流表的极性和量程.④假设法:将整个电路划分为若干部分,然后逐一假设某部分电路发生某种故障,运用闭合电路或部分电路的欧姆定律进行推理.阻值变化下的动态分析【例1】.(多选)(2019·上海杨浦区模拟)如图所示的电路中,E为电源电动势,r为电源内阻,R1和R3均为定值电阻,R2为滑动变阻器.当R2的滑片在ab的中点时合上开关S,此时三个电表A1、A2和V的示数分别为I1、I2和U.现将R2的滑片向a端移动,则下列说法正确的是()A.电源的总功率减小B.R3消耗的功率增大C.I1增大,I2减小,U增大D.I1减小,I2不变,U减小【答案】AC.【解析】法一:程序法将滑动变阻器的滑片向a端移动,滑动变阻器接入电路中的电阻增大,电路中的总电阻增大,电路中的总电流I减小,电源的总功率P=EI减小,R3消耗的功率P3=I2R3减小,选项A正确,B错误;电路中的总电流减小,由U=E-Ir知电源的路端电压U增大,R1、R2并联部分的总电阻增大,电压增大,通过R1的电流I1增大,而总电流I减小,则通过R2的电流I2减小,选项C正确,D错误.法二:串反并同法将滑动变阻器的滑片向a端移动,滑动变阻器接入电路中的电阻增大,与其串联的电流表A2的示数减小,与其间接串联的电源的总功率、R3消耗的功率均减小,A正确,B错误;与其间接并联的电流表A1、电压表V的示数均增大,C正确,D错误.【变式】(多选)(2019·大连模拟)在如图所示的电路中,电源的负极接地,其电动势为E、内电阻为r,R1、R2为定值电阻,R3为滑动变阻器,、为理想电流表和电压表.在滑动变阻器滑片P自a端向b端滑动的过程中,下列说法中正确的是()A.电压表示数减小B.电流表示数增大C.电阻R2消耗的功率增大D.a点的电势降低【答案】BD【解析】基础解法(程序法):P由a端向b端滑动,其阻值减小,则总电阻减小,总电流增大,电阻R1两端电压增大,电压表示数变大,A错误;电阻R2两端的电压U2=E-I总(R1+r),I总增大,则U2减小,I2=U2R2,I2减小,电流表的示数I A=I总-I2增大,B正确;由P2=I22R2知P2减小,C错误;U ab=φa-φb=φa=U 2,故φa 降低,D 正确.能力解法一(结论法):由于R 3减小,R 2与R 3并联,则U 2、I 2均减小,而P 2=I 22R 2,知P 2减小,C 错误;U ab =U 2=φa -φb =φa 减小,D 正确;因为R 1间接与R 3串联,故I 1、U 1均增大,故电压表示数增大,A 错误;根据I A =I 1-I 2知I A 增大,B 正确.能力解法二(极限法):设滑片P 滑至b 点,则R 3=0,φa =φb =0,D 正确;R 2上电压为零,则功率也为零,C 错误;当R 3=0时,总电阻最小,总电流最大,R 1上电压最大,故A 错误;由于I A =I 1-I 2,此时I 1最大,I 2=0最小,故I A 最大,B 正确. 电路结构变化下的动态分析【例2】. (2019·安徽“江南”十校联考)如图所示的电路中,电源电动势为E ,内阻为R ,L 1和L 2为相同的灯泡,每个灯泡的电阻和定值电阻的阻值均为R ,电压表为理想电表,S 为单刀双掷开关,当开关由1位置打到2位置时,下列说法中正确的是( )A .电压表读数将变小B .L 1亮度不变,L 2将变暗C .L 1将变亮,L 2将变暗D .电源内阻的发热功率将变小 【答案】A.【解析】开关在位置1时,外电路总电阻R 总=32R ,电压表示数U =32R R +32RE =35E ,同理,每个灯泡两端的电压U 1=U 2=15E ,电源内阻的发热功率为P 热=⎝⎛⎭⎫25E 2R =4E 225R ,开关在位置2时,外电路总电阻R ′总=23R ,电压表示数U ′=23R R +23RE =25E ,灯泡L 1的电压U ′1=15E ,L 2的电压U ′2=25E ,电源内阻的发热功率为P ′热=⎝⎛⎭⎫35E 2R =9E 225R ,综上所述,电压表读数变小,故A 正确;L 1亮度不变,L 2将变亮,故B 、C 错误;电源内阻的发热功率将变大,故D 错误. 含容电路的动态分析【例3】.(2019·石家庄模拟)在如图所示的电路中,电源的负极接地,其电动势为E、内电阻为r,R1、R2为定值电阻,R3为滑动变阻器,C为电容器,A、V为理想电流表和电压表.在滑动变阻器滑动头P自a端向b端滑动的过程中,下列说法中正确的是()A.电压表示数变小B.电流表示数变小C.电容器C所带电荷量增多D.a点的电势降低【答案】D.【解析】在滑动变阻器滑动头P自a端向b端滑动的过程中,变阻器接入电路的电阻减小,外电路总电阻减小,干路电流I增大,电阻R1两端电压增大,则电压表示数变大.电阻R2两端的电压U2=E-I(R1+r),I增大,则U2变小,电容器两板间电压变小,其带电荷量减小.根据外电路中顺着电流方向,电势降低,可知a点的电势大于零.a点的电势等于R2两端的电压,U2变小,则a点的电势降低,通过R2的电流I2减小,通过电流表的电流I A=I-I2,I增大,I2减小,则I A增大,即电流表示数变大,A、B、C错误,D正确.【变式】如图所示,电源电动势为E,内阻为r,闭合开关S,不考虑灯丝电阻随温度的变化,电流表、电压表均为理想电表,当滑动变阻器的滑片由左端向右端滑动时,下列说法正确的是()A.电流表读数减小,小灯泡L1变暗B.电压表读数变大C.电流表读数增大,小灯泡L2变暗D.电容器所带电荷量增大【答案】B【解析】将滑动变阻器的滑片由左端向右端滑动时,变阻器接入电路的电阻增大,其与小灯泡L1并联的电阻增大,外电路总电阻增大,电流表读数减小,小灯泡L2变暗,路端电压U=E-Ir增大,电压表的读数变大,选项B正确,C错误;小灯泡L1两端的电压U1=E-I(r+R2)增大,通过小灯泡L1的电流变大,小灯泡L1变亮,选项A错误;通过小灯泡L2的电流减小,小灯泡L2两端电压变小,与小灯泡L2并联的电容器两端电压减小,由Q=CU可得电容器所带电荷量减少,选项D错误.电路故障的分析【例4】.(多选)在探究电路故障时,某实验小组设计了如图所示的电路,当开关闭合后,电路中的各用电器正常工作,经过一段时间,发现小灯泡A的亮度变暗,小灯泡B的亮度变亮.则下列对电路故障的分析正确的是()A.可能是定值电阻R1短路B.可能是定值电阻R2断路C.可能是定值电阻R3断路D.可能是定值电阻R4短路【答案】BC【解析】.由于小灯泡A串联于干路中,且故障发生后小灯泡A变暗,可知电路中总电流变小,即电路总电阻变大,由此推知,故障应为某一电阻断路,排除选项A、D;若R2断路,则R1和小灯泡B所在支路的电压增大,而R2的断路又使小灯泡B分配的电压增大,故小灯泡B变亮,选项B对;若R3断路,必引起与之并联的支路(即R1所在支路)中电流增大,小灯泡B分得的电流也变大,小灯泡B变亮,故选项C对.【变式】如图所示的电路中,闭合开关S,灯L1、L2正常发光.由于电路出现故障,突然发现L1变亮,L 变暗,电流表的读数变小,根据分析,发生的故障可能是()A.R1断路B.R2断路C.R3短路D.R4短路【答案】A【解析】等效电路如图所示.若R1断路,总电阻变大,总电流减小,路端电压变大,L1两端电压变大,L1变亮;ab部分电路结构没变,电流仍按原比例分配,总电流减小,通过L2、电流表的电流都减小,故A正确.若R2断路,总电阻变大,总电流减小,ac部分电路结构没变,R1、L1中电流都减小,与题意相矛盾,故B错误.若R3短路或R4短路,总电阻减小,总电流增大,电流表中电流变大,与题意相矛盾,C、D错误,因此正确选项只有A.热点题型二对闭合电路欧姆定律的理解和应用在恒流电路中常会涉及两种U-I图线,一种是电源的伏安特性曲线(斜率为负值的直线),另一种是电阻的伏安特性曲线(过原点的直线).求解这类问题时要注意二者的区别.闭合电路欧姆定律的计算【例5】.飞行器在太空飞行,主要靠太阳能电池提供能量.若有一太阳能电池板,测得它的开路电压为800 mV,短路电流为40 mA.若将该电池板与一阻值为20 Ω的电阻器连成一闭合电路,则它的路端电压是() A.0.10 V B.0.20 V C.0.30 V D.0.40 V【答案】D【解析】.电源没有接入外电路时,路端电压值等于电源电动势,所以电动势E =800 mV.由闭合电路欧姆定律得短路电流I 短=E r ,所以电源内阻r =E I 短=800×10-340×10-3 Ω=20 Ω,该电源与20 Ω的电阻连成闭合电路时,电路中电流I =E R +r =80020+20mA =20 mA ,所以路端电压U =IR =400 mV =0.4 V ,D 正确.【变式】两个相同的电阻R ,当它们串联后接在电动势为E 的电源上,通过一个电阻的电流为I ;若将它们并联后仍接在该电源上,通过一个电阻的电流仍为I ,则电源的内阻为( ) A .4R B .R C .R2 D .无法计算【答案】B【解析】.当两电阻串联接入电路中时I =E 2R +r,当两电阻并联接入电路中时I =E R 2+r ×12,由以上两式可得:r =R ,故选项B 正确. 电源与电阻U -I 图象的对比 1.利用两种图象解题的基本方法利用电源的U -I 图象和电阻的U -I 图象解题,无论电阻的U -I 图象是线性还是非线性,解决此类问题的基本方法是图解法,即把电源和电阻的U -I 图线画在同一坐标系中,图线的交点坐标的意义是电阻直接接在该电源两端时工作电压和电流,电阻的电压和电流可求,其他的量也可求. 2.非线性元件有关问题的求解,关键在于确定其实际电压和电流,确定方法如下: (1)先根据闭合电路欧姆定律,结合实际电路写出元件的电压U 随电流I 的变化关系. (2)在原U -I 图象中,画出U 、I 关系图象. (3)两图象的交点坐标即为元件的实际电流和电压.(4)若遇到两元件串联或并联在电路中,则要结合图形看电压之和或电流之和确定其实际电流或实际电压的大小.【例6】.(多选) 如图所示的U -I 图象中,直线Ⅰ为某电源的路端电压与电流的关系图线,直线Ⅰ为某一电阻R 的U -I 图线,用该电源直接与电阻R 连接成闭合电路,由图象可知( )A .R 的阻值为1.5 ΩB .电源电动势为3 V ,内阻为0.5 ΩC .电源的输出功率为3.0 WD .电源内部消耗功率为1.5 W 【答案】AD【解析】.由于电源的路端电压与电流的关系图线Ⅰ和电阻R 的U -I 图线Ⅰ都为直线,所以电源的路端电压与电流的关系图线Ⅰ的斜率的绝对值等于电源内阻,r =1.5 Ω;电阻R 的U -I 图线Ⅰ的斜率等于电阻R 的阻值,R =1.5 Ω,选项A 正确,B 错误;电源的路端电压与电流的关系图线和电阻R 的U -I 图线交点纵、横坐标的乘积表示电源的输出功率,电源的输出功率为P =UI =1.5×1.0 W =1.5 W ,选项C 错误;由EI =P +P r 解得电源内部消耗的功率为P r =EI -P =3.0×1.0 W -1.5 W =1.5 W ,选项D 正确.【变式】(2019·南昌模拟)如图所示,图线甲、乙分别为电源和某金属导体的U ­I 图线,电源的电动势和内阻分别用E 、r 表示,根据所学知识分析下列选项正确的是( )A .E =50 VB .r =253ΩC .当该导体直接与该电源相连时,该导体的电阻为 20 ΩD .当该导体直接与该电源相连时,电路消耗的总功率为80 W 【答案】AC【解析】由图象的物理意义可知电源的电动势E =50 V ,内阻r =ΔU ΔI =50-206-0 Ω=5 Ω,故A 正确,B 错误;该导体与该电源相连时,电阻的电压、电流分别为U =40 V ,I =2 A ,则R =UI =20 Ω,此时,电路消耗的总功率P 总=EI =100 W ,故C 正确,D 错误.热点三 电功 电功率 电热 热功率 1.电功和电热、电功率和热功率的区别与联系2.非纯电阻电路的分析方法(1)抓住两个关键量:确定电动机的电压U M 和电流I M 是解决所有问题的关键.若能求出U M 、I M ,就能确定电动机的电功率P =U M I M ,根据电流I M 和电动机的电阻r 可求出热功率P r =I 2M r ,最后求出输出功率P 出=P -P r .(2)坚持“躲着”求解U M 、I M :首先,对其他纯电阻电路、电源的内电路等,利用欧姆定律进行分析计算,确定相应的电压或电流.然后,利用闭合电路的电压关系、电流关系间接确定非纯电阻电路的工作电压和电流.(3)应用能量守恒定律分析:要善于从能量转化的角度出发,紧紧围绕能量守恒定律,利用“电功=电热+其他能量”寻找等量关系求解.【例7】 (多选)(2019·安徽六安模拟)如图所示,一台电动机提着质量为m 的物体,以速度v 匀速上升,已知电动机线圈的电阻为R ,电源电动势为E ,通过电源的电流为I ,当地重力加速度为g ,忽略一切阻力及 导线电阻,则( )A .电源内阻r =E I -RB .电源内阻r =E I -mgv I 2-RC .如果电动机转轴被卡住而停止转动,较短时间内电源消耗的功率将变大D .如果电动机转轴被卡住而停止转动,较短时间内电源消耗的功率将变小 【答案】 BC【解析】] 含有电动机的电路不是纯电阻电路,欧姆定律不再适用,A 错误;由能量守恒定律可得EI =I 2r +mgv +I 2R ,解得r =E I -mgvI 2-R ,B 正确;如果电动机转轴被卡住,则E =I ′(R +r ),电流增大,较短时间内,电源消耗的功率变大,较长时间的话,会出现烧坏电源的现象,C 正确,D 错误.【变式】如图,电路中电源电动势为3.0 V ,内阻不计,L 1、L 2、L 3为三个相同规格的小灯泡,小灯泡的伏 安特性曲线如图所示.当开关闭合后,下列说法中正确的是( )A .L 1中的电流为L 2中电流的2倍B .L 3的电阻约为1.875 ΩC .L 3的电功率约为0.75 WD .L 2和L 3的总功率约为3 W 【答案】B【解析】由图象可知,灯泡两端的电压变化时,灯泡的电阻发生变化,L 2和L 3的串联电阻并不是L 1电阻的两倍,根据欧姆定律知L 1中的电流不是L 2中电流的2倍,A 错误;由于电源不计内阻,所以L 2和L 3两端的电压均为1.5 V ,由图可知此时灯泡中的电流为I =0.8 A ,电阻R =UI =1.875 Ω,B 正确;L 3的电功率P =UI =1.5×0.8 W =1.2 W ,C 错误;L 2和L 3的总功率P ′=2P =2.4 W ,D 错误.4.如图所示,电源电动势为12 V ,电源内阻为1.0 Ω,电路中的电阻R 0为1.5 Ω,小型直流电动机M 的内阻 为0.5 Ω,闭合开关S 后,电动机转动,电流表的示数为2.0 A .则以下判断中正确的是 ( )A .电动机的输出功率为14 WB .电动机两端的电压为7.0 VC .电动机产生的热功率为4.0 WD .电源输出的功率为24 W 【答案】B【解析】由题意得电动机两端的电压U =E -I (R 0+r )=7 V ,则电动机的输入功率P =UI =14 W .热功率P热=I 2R M =2 W ,则输出功率P 出=P -P 热=12 W .电源的输出功率P ′=EI -I 2r =20 W ,故B 正确,A 、C 、D 错误.热点题型四 电源的功率和效率P 电源输出功率的极值问题的处理方法对于电源输出功率的极值问题,可以采用数学中求极值的方法,也可以采用电源的输出功率随外电阻的变化规律来求解.但应当注意的是,当待求的最大功率对应的电阻值不能等于等效电源的内阻时,此时的条件是当电阻值最接近等效电源的内阻时,电源的输出功率最大.假设一电源的电动势为E ,内阻为r ,外电路有一可调电阻R ,电源的输出功率为: P 出=I 2R =E 2R (R +r )2=E 2(R -r )2R+4r .由以上表达式可知电源的输出功率随外电路电阻R 的变化关系为: (1)当R =r 时,电源的输出功率最大,为P m =E 24r ;(2)当R >r 时,随着R 的增大,电源的输出功率越来越小; (3)当R <r 时,随着R 的增大,电源的输出功率越来越大;(4)当P 出<P m 时,每个输出功率对应两个外电阻阻值R 1和R 2,且R 1R 2=r 2.【例7】(2019·西安模拟)如图所示,E =8 V ,r =2 Ω,R 1=8 Ω,R 2为变阻器接入电路中的有效阻值,问:(1)要使变阻器获得的电功率最大,则R 2的取值应是多大?这时R 2的功率是多大?(2)要使R 1得到的电功率最大,则R 2的取值应是多大?R 1的最大功率是多大?这时电源的效率是多大? (3)调节R 2的阻值,能否使电源以最大的功率E 24r 输出?为什么?【答案】(1)10 Ω 1.6 W (2)0 5.12 W 80%(3)不能 理由见解析 【解析】(1)将R 1和电源(E ,r )等效为一新电源,则 新电源的电动势E ′=E =8 V内阻r ′=r +R 1=10 Ω,且为定值利用电源的输出功率随外电阻变化的结论知,当R 2=r ′=10 Ω时,R 2有最大功率,即 P 2max =E ′24r ′=824×10W =1.6 W.(2)因R 1是定值电阻,所以流过R 1的电流越大,R 1的功率就越大.当R 2=0时,电路中有最大电流,即 I max =ER 1+r=0.8 A R 1的最大功率 P 1max =I 2max R 1=5.12 W 这时电源的效率 η=R 1R 1+r×100%=80%. (3)不能.因为即使R 2=0,外电阻R 1也大于r ,不可能有E 24r 的最大输出功率.本题中,当R 2=0时,外电路得到的功率最大.【变式】将一电源与一电阻箱连接成闭合回路,测得电阻箱所消耗功率P 与电阻箱读数R 变化的曲线如图 所示,由此可知( )A .电源最大输出功率可能大于45 WB .电源内阻一定等于5 ΩC .电源电动势为45 VD .电阻箱所消耗功率P 最大时,电源效率大于50% 【答案】B【解析】由于题述将一电源与一电阻箱连接成闭合回路,电阻箱所消耗功率P 等于电源输出功率.由电阻箱所消耗功率P 与电阻箱读数R 变化的曲线可知,电阻箱所消耗功率P 最大为45 W ,所以电源最大输出功率为45 W ,选项A 错误;由电源输出功率最大的条件可知,电源输出功率最大时,外电路电阻等于电源内阻,所以电源内阻一定等于5 Ω,选项B 正确;由电阻箱所消耗功率P 最大值为45 W 可知,此时电阻箱读数为R =5 Ω,电流I =PR=3 A ,电源电动势E =I (R +r )=30 V ,选项C 错误;电阻箱所消耗功率P 最大时,电源效率为50%,选项D 错误.【变式2】图甲为某元件R 的U -I 特性曲线,把它连接在图乙所示电路中.已知电源电动势E =5 V ,内阻r =1.0 Ω,定值电阻R 0=4 Ω.闭合开关S 后,求:(1)该元件的电功率; (2)电源的输出功率. 【答案】(1)1.2 W (2)1.84 W【解析】设非线性元件的电压为U ,电流为I ,由欧姆定律得:U =E -I (R 0+r ),代入数据得U =5-5I 在U -I 图象中画出U =E ′-Ir ′=5-5I 图线 如图所示,两图线交点坐标为(0.4 A ,3.0 V).(1)该元件的电功率 P R =UI =3.0×0.4 W =1.2 W. (2)电源的输出功率P =P R 0+P R =I 2R 0+P R =0.42×4 W +1.2 W =1.84 W.【题型演练】1.如图所示,关于闭合电路,下列说法正确的是( )A .电源正、负极被短路时,电流很大B .电源正、负极被短路时,电压表示数最大C .外电路断路时,电压表示数为零D .外电路电阻增大时,电压表示数减小 【答案】A【解析】电源被短路时,电源电流为I =Er ,由于电源内阻很小,故电流很大,故选项A 正确;电源被短路时,外电阻R =0,电源电流为I =Er,故电压表示数为U =IR =0,故选项B 错误;外电路断路时,外电阻R→∞,故电压表示数为U=E,故选项C错误;电压表示数为U=ERR+r,外电路电阻R增大时,电压表示数也增大,故选项D错误.2.如图所示,直线A为某电源的U­I图线,曲线B为某小灯泡的U­I图线,用该电源和小灯泡组成闭合电路时,电源的输出功率和电源的总功率分别是()A.4 W,8 W B.2 W,4 W C.2 W,3 W D.4 W,6 W【答案】D【解析】用该电源和小灯泡组成闭合电路时,电源的输出功率是UI=2×2 W=4 W,电源的总功率是EI=3×2 W=6 W,选项D正确.3.如图所示,已知电源电动势为6 V,内阻为1 Ω,保护电阻R0=0.5 Ω,则当保护电阻R0消耗的电功率最大时,这个电阻箱R的读数和电阻R0消耗的电功率的最大值为()A.1 Ω,4 W B.1 Ω,8 W C.0,8 W D.0.5 Ω,8 W【答案】C【解析】保护电阻消耗的功率为P0=E2R0r+R+R02,因R0和r是常量,而R是变量,所以R最小时,P0最大,即R=0时,P0max=E2R0r+R02=62×0.51.52W=8 W,故选项C正确.4.(2019·湖南十校联考)如图所示为某闭合电路电源的输出功率随电流变化的图象,由此图象可以判断()A.电源的内耗功率最大为9 W B.电源的效率最大为50%C.输出功率最大时,外电路的总电阻为4 Ω D.电源的电动势为12 V【答案】D【解析】由题图可知,当电流为1.5 A时电源的输出功率最大,这时内耗功率等于输出功率,为9 W,电源的效率为50%,这时电源的总功率为18 W,根据P=IE,可求得电源的电动势为12 V,D项正确;由P r=I2r可知,电源的内阻为4 Ω,由于不确定外电路是不是纯电阻电路,因此C项错误;随着电流的增大,内耗功率增大,A项错误;随着电流的减小,电源的效率增大,B项错误.5.(2019·河北石家庄模拟)在如图所示电路中,L1、L2为两只完全相同、阻值恒定的灯泡,R为光敏电阻(光照越强,阻值越小).闭合电键S后,随着光照强度逐渐增强()A.L1逐渐变暗,L2逐渐变亮B.L1逐渐变亮,L2逐渐变暗C.电源内电路消耗的功率逐渐减小D.光敏电阻R和L1消耗的总功率逐渐增大【答案】A【解析】当光照增强时,光敏电阻的阻值减小,电路的总电阻减小,由闭合电路欧姆定律可得,电路中总电流增大,则L2逐渐变亮,U内=Ir增大,由U=E-Ir可知,路端电压减小,L2两端的电压增大,则L1两端的电压减小,故L1逐渐变暗,故选项A正确,B错误;电路中总电流增大,由P=I2r知电源内电路消耗功率逐渐增大,故选项C错误;将L2看成电源内电路的一部分,光敏电阻R和L1消耗的总功率是等效电源的输出功率,由于等效电源的内阻大于外电阻,所以当光敏电阻的阻值减小,即外电阻减小时,等效电源的内、外电阻相差更大,输出功率减小,则光敏电阻R和L1消耗的总功率逐渐减小,故选项D错误.6.(2019·河南南阳模拟)硅光电池是一种太阳能电池,具有低碳环保的优点.如图所示,图线a是该电池在某光照强度下路端电压U和电流I的关系图象(电池内阻不是常量),图线b是某电阻R的U-I图象.在该光照强度下将它们组成闭合回路时,硅光电池的内阻为()A.5.5 Ω B.7.0 Ω C.12.0 Ω D.12.5 Ω【答案】A【解析】.由欧姆定律得U=E-Ir,当I=0时,E=U,由图线a与纵轴的交点读出电源的电动势为E=3.6V ,根据两图线交点处的状态可知,电阻的电压为U =2.5 V ,电流为I =0.2 A ,则硅光电池的内阻为r =E -UI =3.6-2.50.2Ω=5.5 Ω,故选项A 正确. 7.(2019·重庆江津中学模拟)两位同学在实验室利用如图甲所示的电路测定值电阻R 0、电源的电动势E 和内电阻r ,调节滑动变阻器的滑动触头P 向某一方向移动时,一个同学记录了电流表A 和电压表V 1的测量数据,另一同学记录的是电流表A 和电压表V 2的测量数据.根据数据描绘了如图乙所示的两条U -I 直线.则图象中两直线的交点表示的物理意义是( )A .滑动变阻器的滑动头P 滑到了最右端B .电源的输出功率最大C .定值电阻R 0上消耗的功率为1.0 WD .电源的效率达到最大值 【答案】B.【解析】由图乙可得,电源的电动势E =1.5 V ,r =1 Ω,交点位置:R +R 0=U 1I =2 Ω,R 0=U 2I =2 Ω,R =0,滑动变阻器的滑动头P 滑到了最左端,A 项错误;当电路中外电阻等于内电阻时,电源输出功率最大,但本题R 0>r ,改变滑动变阻器时无法达到电路中内、外电阻相等,此时当外电阻越接近内电阻时,电源输出功率越大,B 项正确;R 0消耗的功率P =IU 2=0.5 W ,C 项错误;电源的效率η=IE -I 2rIE ,电流越小效率越大,可见滑动变阻器的滑动头P 滑到最右端时效率最大,D 项错误.8..(2019·河北沧州模拟)在如图所示的电路中,电源电动势E =3 V ,内电阻r =1 Ω,定值电阻R 1=3 Ω,R 2=2 Ω,电容器的电容C =100 μF ,则下列说法正确的是( )A .闭合开关S ,电路稳定后电容器两端的电压为1.5 VB .闭合开关S ,电路稳定后电容器所带电荷量为3.0×10-4 C C .闭合开关S ,电路稳定后电容器极板a 所带电荷量为1.5×10-4 CD .先闭合开关S ,电路稳定后断开开关S ,通过电阻R 1的电荷量为3.0×10-4 C。

2020年高考物理热点题型归纳与精讲(含2019真题)-专题19 电场能的性质

2020年高考物理热点题型归纳与精讲(含2019真题)-专题19 电场能的性质

2020年高考物理热点题型归纳与精讲-专题19 电场能的性质【专题导航】目录热点题型一电势高低、电势能大小的判断 (1)热点题型二电势差与电场强度的关系 (3)在匀强电场中由公式U=Ed得出的“一式二结论” (4)U=Ed在非匀强电场中的应用 (7)热点题型三电场线、等势线(面)及带电粒子的运动轨迹问题 (7)带电粒子运动轨迹的分析 (8)等势面的综合应用 (9)热点题型四静电场的图象问题 (10)v-t图象 (11)φ-x图象 (12)E-x图象 (13)Ep-x图象 (14)【题型演练】 (15)【题型归纳】热点题型一电势高低、电势能大小的判断1.电势高低的判断2.电势能大小的判断3.电场中的功能关系(1)若只有电场力做功,电势能与动能之和保持不变.(2)若只有电场力和重力做功,电势能、重力势能、动能之和保持不变.(3)除重力、弹簧弹力之外,其他各力对物体做的功等于物体机械能的变化.(4)所有外力对物体所做的功等于物体动能的变化.【例1】(2019·广东韶关质检)如图所示,虚线表示某电场的等势面,实线表示一带电粒子仅在电场力作用下 运动的径迹.粒子在A 点的加速度为 a A 、动能为 E k A 、电势能为 E p A ;在B 点的加速度 为a B 、动能为 E k B 、 电势能为 E p B .则下列结论正确的是 ( )A .a A >aB ,E k A >E k B B .a A <a B ,E p A >E p B C.a A <a B ,E p A <E p B D .a A >a B ,E k A <E k B【答案】C【解析】根据图中等势面分布可知,+5 V 等势面处场强小于-5 V 等势面处场强,带电粒子在A 点所受的电场力小于在B 点所受的电场力,根据牛顿第二定律,a A <a B ,选项A 、D 错误;根据带电粒子运动轨迹可知粒子受到指向轨迹AB 凹侧的力作用,带电粒子从A 到B ,电场力做负功,电势能增大,E p A <E p B ,动能减小,E k A >E k B ,选项C 正确,B 错误.【变式1】(2019·江苏南京师范大学附属中学高三模拟)某静电除尘设备集尘板的内壁带正电,设备中心位置有一个带负电的放电极,它们之间的电场线分布如图所示,虚线为某带电烟尘颗粒(重力不计)的运动轨迹,A、B是轨迹上的两点,C点与B点关于放电极对称,下列说法正确的是()A.A点电势低于B点电势B.A点电场强度小于C点电场强度C.烟尘颗粒在A点的动能小于在B点的动能D.烟尘颗粒在A点的电势能小于在B点的电势能【答案】AC【解析】由沿电场线方向电势降低可知,A点电势低于B点电势,A正确;由图可知,A点处电场线比C点处密集,因此A点的场强大于C点场强,B错误;烟尘颗粒带负电,从A到B的过程中,电场力做正功,动能增加,烟尘颗粒在A点的动能小于在B点的动能,电势能减小,烟尘颗粒在A点的电势能大于在B点的电势能,C正确,D错误.【变式2】(多选)如图所示,在点电荷Q产生的电场中,实线MN是一条方向未标出的电场线,虚线AB是一个电子只在静电力作用下的运动轨迹.设电子在A、B两点的加速度大小分别为a A、a B,电势能分别为E p A、E p B.下列说法正确的是()A.电子一定从A向B运动B.若a A>a B,则Q靠近M端且为正电荷C.无论Q为正电荷还是负电荷一定有E p A<E p B D.B点电势可能高于A点电势【答案】BC【解析】若Q在M端,由电子运动的轨迹可知Q为正电荷,电子从A向B运动或从B向A运动均可,由于r A<r B,故E A>E B,F A>F B,a A>a B,φA>φB,E p A<E p B;若Q在N端,由电子运动的轨迹可知Q为负电荷,且电子从A向B运动或从B向A运动均可,由r A>r B,故E A<E B,F A<F B,a A<a B,φA>φB,E p A<E p B.综上所述选项A、D错误,选项B、C正确.热点题型二电势差与电场强度的关系1.公式E =U d的三点注意 (1)只适用于匀强电场.(2)d 为某两点沿电场强度方向上的距离,或两点所在等势面之间的距离.(3)电场强度的方向是电势降低最快的方向.2.电场线、电势、电场强度的关系(1)电场线与电场强度的关系:电场线越密的地方表示电场强度越大,电场线上某点的切线方向表示该点的电场强度方向.(2)电场线与等势面的关系:电场线与等势面垂直,并从电势较高的等势面指向电势较低的等势面.(3)电场强度大小与电势无直接关系:零电势可人为选取,电场强度的大小由电场本身决定,故电场强度大的地方,电势不一定高.3.E =U d在非匀强电场中的三点妙用4.解题思路在匀强电场中由公式U =Ed 得出的“一式二结论”(1)“一式”:E =U d =W qd,其中d 是沿电场线方向上的距离. (2)“二结论”结论1:匀强电场中的任一线段AB 的中点C 的电势φC =φA +φB 2,如图甲所示. 结论2:匀强电场中若两线段AB ∥CD ,且AB =CD ,则U AB =U CD (或φA -φB =φC -φD ),如图乙所示.【例2】(2019·山东潍坊模拟)如图所示,匀强电场的方向平行于xOy 坐标系平面,其中坐标原点O 处的电势为2 V ,a 点的坐标为(0 cm ,4 cm),电势为8 V ,b 点的坐标为(3 cm ,0 cm),电势为8 V ,则电场强度的大小为( )A .250 V/mB .200 V/mC .150 V/mD .120 V/m【答案】A【解析】由题意可知a 、b 两点的电势相等,则ab 为一条等势线,又O 点电势为2 V ,则知匀强电场的场强方向垂直于ab 指向左下方.过O 点作ab 的垂线交ab 于c 点,由几何关系得tan ∠b =43,得∠b =53°,Oc =Ob ·sin ∠b =0.03 m×sin 53°=2.4×10-2 m , c 、O 间的电势差U =8 V -2 V =6 V ,则电场强度大小E =U Oc=250 V/m ,故A 正确. 【变式1】(2017·高考全国卷Ⅲ)一匀强电场的方向平行于xOy 平面,平面内a 、b 、c 三点的位置如图所示,三点的电势分别为10 V 、17 V 、26 V .下列说法正确的是 ( )A .电场强度的大小为2.5 V/cmB .坐标原点处的电势为1 VC .电子在a 点的电势能比在b 点的低7 eVD .电子从b 点运动到c 点,电场力做功为9 eV【答案】ABD【解析】ac 垂直于bc ,沿ca 和cb 两方向的场强分量大小分别为E 1=U ca ac =2 V/cm 、E 2=U cb bc=1.5 V/cm ,根据矢量合成可知E =2.5 V/cm ,A 项正确;根据在匀强电场中平行线上等距同向的两点间的电势差相等,有φO -φa =φb -φc ,得φO =1 V ,B 项正确;电子在a 、b 、c 三点的电势能分别为-10 eV 、-17 eV 和-26 eV ,故电子在a 点的电势能比在b 点的高7 eV ,C 项错误;电子从b 点运动到c 点,电场力做功W =(-17 eV)-(-26 eV)=9 eV ,D 项正确.【变式2】(2018·高考全国卷Ⅲ)如图,同一平面内的a 、b 、c 、d 四点处于匀强电场中,电场方向与此平面 平行,M 为a 、c 连线的中点,N 为b 、d 连线的中点.一电荷量为q (q >0)的粒子从a 点移动到b 点,其电 势能减小W 1;若该粒子从c 点移动到d 点,其电势能减小W 2.下列说法正确的是 ( )A .此匀强电场的场强方向一定与a 、b 两点连线平行B .若该粒子从M 点移动到N 点,则电场力做功一定为W 1+W 22C .若c 、d 之间的距离为L ,则该电场的场强大小一定为W 2qLD .若W 1=W 2,则a 、M 两点之间的电势差一定等于b 、N 两点之间的电势差【答案】 BD【解析】 结合题意,只能判定U ab >0、U cd >0,但电场方向不能得出,A 错误;根据电场力做功与电势能变化量的关系有W 1=q (φa -φb )①,W 2=q (φc -φd )②,W MN =q (φM -φN )③,根据匀强电场中“同一条直线上两点间的电势差与两点间的距离成正比”的规律可知,U aM =U Mc ,即φa -φM =φM -φc ,可得φM =φa +φc 2④,同理可得φN =φb +φd 2⑤,联立①②③④⑤式可得W MN =W 1+W 22,B 项正确;电场强度的方向只有沿c →d 时,场强E =W 2qL,但本题中电场方向未知,故C 错误;若W 1=W 2,则φa -φb =φc -φd ,结合④⑤两式可推出φa -φM =φb -φN ,D 正确.U =Ed 在非匀强电场中的应用【例3】.如图所示,在某电场中画出了三条电场线,C 点是A 、B 连线的中点.已知A 点的电势为φA =30 V ,B 点的电势为φB =-20 V ,则下列说法正确的是( )A .C 点的电势φC =5 VB .C 点的电势φC >5 VC .C 点的电势φC <5 VD .负电荷在A 点的电势能大于在B 点的电势能【答案】C.【解析】从电场线的分布情况可以看出φA -φC >φC -φB ,所以有φC <5 V ,C 正确,A 、B 错误;因为负电荷在电势高的地方电势能较小,所以D 错误热点题型三 电场线、等势线(面)及带电粒子的运动轨迹问题1.等势线总是和电场线垂直,已知电场线可以画出等势线,已知等势线也可以画出电场线.2.几种典型电场的等势线(面)3.带电粒子在电场中运动轨迹问题的分析方法(1)从轨迹的弯曲方向判断受力方向(轨迹向合外力方向弯曲),从而分析电场方向或电荷的正负.(2)结合轨迹、速度方向与静电力的方向,确定静电力做功的正负,从而确定电势能、电势和电势差的变化等.(3)根据动能定理或能量守恒定律判断动能的变化情况.带电粒子运动轨迹的分析(1)判断速度方向:带电粒子运动轨迹上某点的切线方向为粒子在该点处的速度方向.(2)判断电场力(或场强)的方向:仅受电场力作用时,带电粒子所受电场力方向指向轨迹的凹侧,再根据粒子的正、负判断场强的方向.(3)判断电场力做功的正、负及电势能的增减:若电场力与速度方向成锐角,则电场力做正功,电势能减少;若电场力与速度方向成钝角,则电场力做负功,电势能增加.【例4】(2019·浙江名校协作体)阴极射线示波管的聚焦电场是由电极A1、A2形成的实线为电场线,虚线为等势线,Z轴为该电场的中心轴线,P、Q、R为一个从左侧进入聚焦电场的电子运动轨迹上的三点,则()A.电极A1的电势低于电极A2的电势B.电场中Q点的电场强度小于R点的电场强度C.电子在P点处的动能大于在Q点处的动能D.电子从P至R的运动过程中,电场力对它一直做正功【答案】AD【解析】沿电场线电势降低,因此电极A1的电势低于电极A2,故A正确;电子从P至R的运动过程中,是由低电势向高电势运动,电场力做正功,动能增加,电势能减小,故C 错误,D 正确;Q 点电场线比R 点电场线密,据电场线的疏密程度可知Q 点的电场强度大于R 点的电场强度,故B 错误.【变式】如图,一带负电荷的油滴在匀强电场中运动,其轨迹在竖直面(纸面)内,且相对于过轨迹最低点P 的竖直线对称.忽略空气阻力.由此可知( )A .Q 点的电势比P 点高B .油滴在Q 点的动能比它在P 点的大C .油滴在Q 点的电势能比它在P 点的大D .油滴在Q 点的加速度大小比它在P 点的小【答案】AB.【解析】根据带负电的油滴在竖直面内的轨迹可知,油滴所受合外力一定向上,则所受电场力一定向上,且电场力大于重力,故匀强电场的方向竖直向下,Q 点的电势比P 点高,选项A 正确;油滴从P 点运动到Q 点,根据动能定理,合外力做正功,动能增大,所以油滴在Q 点的动能比它在P 点的大,选项B 正确;油滴从P 点运动到Q 点,电场力做正功,电势能减小,油滴在Q 点的电势能比它在P 点的小,选项C 错误;由于带电油滴所受的电场力和重力均为恒力,所以油滴在Q 点的加速度和它在P 点的加速度大小相等,选项D 错误.等势面的综合应用【例5】.(多选)(2018·高考全国卷 Ⅲ )图中虚线a 、b 、c 、d 、f 代表匀强电场内间距相等的一组等势面,已知平面b 上的电势为2 V .一电子经过a 时的动能为10 eV ,从a 到d 的过程中克服电场力所做的功为6 eV.下列说法正确的是( )A .平面c 上的电势为零B .该电子可能到达不了平面fC .该电子经过平面d 时,其电势能为4 eVD .该电子经过平面b 时的速率是经过d 时的2倍【答案】AB.【解析】电子在等势面b 时的电势能为E =qφ=-2 eV ,电子由a 到d 的过程电场力做负功,电势能增加6 eV ,由于相邻两等势面之间的距离相等,故相邻两等势面之间的电势差相等,则电子由a 到b 、由b 到c 、由c 到d 、由d 到f 电势能均增加2 eV ,则电子在等势面c 的电势能为零,等势面c 的电势为零,A 正确;由以上分析可知,电子在等势面d 的电势能应为2 eV ,C 错误;电子在等势面b 的动能为8 eV ,电子在等势面d 的动能为4 eV ,由公式E k =12mv 2可知,该电子经过平面b 时的速率为经过平面d 时速率的2倍,D错误;如果电子的速度与等势面不垂直,则电子在该匀强电场中做曲线运动,所以电子可能到达不了平面f 就返回平面a,B正确.【变式】(2019·湖南长沙模拟)如图所示,M、N、P三点位于直角三角形的三个顶点上,∠PMN=30°,∠MNP=60°,一负点电荷位于三角形的平面上,已知M点和N点的电势相等,P点的电势与MN中点F的电势相等,则下列说法正确的是()A.M点和P点的电场强度相等B.N点和P点的电场强度相等C.同一正电荷在M点时的电势能大于在P点时的电势能D.同一正电荷在N点时的电势能小于在P点时的电势能【答案】C【解析】由M点和N点的电势相等,P点的电势与F点的电势相等,则知负点电荷Q应位于MN连线的垂直平分线和PF连线的垂直平分线上,作图得到Q的位置如图.可知P点离Q近,场强较大,故A错误;N点离Q较远,则N点的场强比P点的小,故B错误;正电荷从M点运动到P点,电场力做正功,电势能减小,则同一正电荷在M点的电势能大于在P点的电势能,故C正确;M点的电势和N点的电势相等,所以正电荷从N点运动到P点,电场力做正功,电势能减小,则同一正电荷在N点的电势能大于在P点的电势能,故D错误.热点题型四静电场的图象问题几种常见图象的特点及规律v-t图象【例6】.(多选)(2019·安徽黄山模拟)光滑绝缘水平面上固定两个等量点电荷,它们连线的中垂线上有A、B、C三点,如图甲所示.一质量m=1 g的带正电小物块由A点静止释放,并以此时为计时起点,沿光滑水平面经过B、C两点(图中未画出),其运动过程的v-t图象如图乙所示,其中图线在B点位置时斜率最大,根据图线可以确定()A.中垂线上B点电场强度最大B.A、B两点之间的位移大小C.B点是连线中点,C与A点必在连线两侧D.U BC>U AB【答案】AD.【解析】v-t图象的斜率表示加速度,可知小物块在B点的加速度最大,所受的电场力最大,所以B点的电场强度最大,A正确;小物块由A运动到B的过程中,由图可知A、B两点的速度,已知小物块的质量,则由动能定理可知qU AB=12mv2B-12mv2A,由上式可求出小物块由A运动到B的过程中电场力所做的功qU AB,因为电场强度的关系未知,则不能求解A、B两点之间的位移大小,B错误;中垂线上电场线分布不是均匀的,B点不在连线中点,C错误;在小物块由A运动到B的过程中,根据动能定理有qU AB =12mv 2B -12mv 2A =(12×1×10-3×42-0) J =8×10-3 J ,同理,在小物块由B 运动到C 的过程中,有 qU BC =12mv 2C -12mv 2B =(12×1×10-3×72-12×1×10-3×42) J =16.5×10-3 J ,对比可得U BC >U AB ,D 正确. φ-x 图象【例7】(2019·福建泉州模拟)在坐标-x 0到x 0之间有一静电场,x 轴上各点的电势φ随坐标x 的变化关系如图所示,一电荷量为e 的质子从-x 0处以一定初动能仅在电场力作用下沿x 轴正向穿过该电场区域.则该质子( )A .在-x 0~0区间一直做加速运动B .在0~x 0区间受到的电场力一直减小C .在-x 0~0区间电势能一直减小D .在-x 0~0区间电势能一直增加【答案】 D【解析】从-x 0到0,电势逐渐升高,意味着该区域内的场强方向向左,质子受到的电场力向左,与运动方向相反,所以质子做减速运动,A 错误;设在x ~x +Δx ,电势为φ~φ+Δφ,根据场强与电势差的关系式E =ΔφΔx ,当Δx 无限趋近于零时,ΔφΔx表示x 处的场强大小(即φ~x 图线的斜率),从0到x 0区间,图线的斜率先增加后减小,所以电场强度先增大后减小,根据F =Ee ,质子受到的电场力先增大后减小,B 错误;在-x 0~0区间质子受到的电场力方向向左,与运动方向相反,电场力做负功,电势能增加,C 错误,D 正确.【变式】在x 轴上有两个点电荷q 1、q 2,其静电场的电势φ在x 轴上分布如图所示.下列说法正确的有( )A .q 1和q 2带有异种电荷B .x 1处的电场强度为零C .负电荷从x 1移到x 2,电势能减小D .负电荷从x 1移到x 2,受到的电场力增大【答案】AC【解析】由x 1处电势为零可知,两点电荷q 1和q 2带有异种电荷,选项A 正确;在φ ­x 图象中,图象切线的斜率表示电场强度,则x 1处的电场强度不为零,选项B 错误;且有x 1到x 2电场强度逐渐减小,负电荷受到的电场力逐渐减小,选项D 错误;由E p =φq 可知,负电荷在电势高处的电势能低,负电荷从x 1移到x 2,电势能减小,选项C 正确.E -x 图象【例8】.(多选)(2019·山东潍坊实验中学模拟)某电场中沿x 轴上各点的电场强度大小变化如图所示.场强方向与x 轴平行,规定沿x 轴正方向为正,一负点电荷从坐标原点O 以一定的初速度沿x 轴负方向运动,到达x 1位置时速度第一次为零,到达x 2位置时速度第二次为零,不计点电荷的重力.下列说法正确的是( )A .点电荷从x 1运动到x 2的过程中,速度先保持不变,然后均匀增大再均匀减小B .点电荷从O 沿x 轴正方向运动到x 2的过程中,加速度先均匀增大再均匀减小C .电势差U Ox 1<U Ox 2D .在整个运动过程中,点电荷在x 1、x 2位置时的电势能最大【答案】BD.【解析】点电荷从x 1运动到x 2的过程中,将运动阶段分成两段:点电荷从x 1运动到O 的过程中,初速度为0,根据牛顿第二定律有a =F m =Eq m,电场强度E 不变,所以加速度a 不变,点电荷做匀加速运动;点电荷从O 运动到x 2的过程中,根据牛顿第二定律有a =F m =Eq m,电场强度E 先均匀增大再均匀减小,所以加速度a 先均匀增大再均匀减小,速度不是均匀变化的,故A 错误,B 正确;点电荷从O 运动到x 1的过程中,根据动能定理有U Ox 1q =0-12mv 20,点电荷从O 运动到x 2的过程中,根据动能定理有U Ox 2q =0-12mv 20,所以电势差U Ox 1=U Ox 2,故C 错误;点电荷在运动过程中仅有电场力做功,动能和电势能之和保持不变,点电荷在x 1、x 2位置动能最小,则电势能最大,D 正确.【变式】(2019·石家庄模拟)如图所示,真空中有一半径为R 、电荷量为+Q 的均匀带电球体,以球心为坐标 原点,沿半径方向建立x 轴.理论分析表明,x 轴上各点的场强随x 变化关系如图乙所示,则 ( )A .x 2处场强大小为kQ x 22B .球内部的电场为匀强电场C .x 1、x 2两点处的电势相同D .假设将试探电荷沿x 轴移动,则从x 1移到R 处和从R 移到x 2处电场力做功相同【答案】A【解析】计算x2处的电场强度时,可把带电球体等效为位于原点的点电荷,则有x2处场强大小为E=k Qx22,故选项A正确;由乙图E­x图象可知,球内部由O到球表面区间电场强度均匀增大,所以内部电场为非匀强电场,故选项B错误;x轴上O点右侧的电场方向始终是向右的,沿着电场的方向电势逐渐减小,可知φx1>φx2,故选项C错误;E­x图象与x轴所围面积表示电势差,由乙图可知两处面积不相等,所以x1处与球表面、球表面与x2处的电势差不同,则将试探电荷沿x轴从x1移到R处和从R移到x2处电场力做功不相同,故选项D错误.Ep-x图象【例9】.(2019·河北张家口一模)一带负电的粒子只在电场力作用下沿x轴正向运动,其电势能E p随位移x 变化的关系如图所示,其中0~x2段是关于直线x=x1对称的曲线,x2~x3段是直线,则下列说法正确的是()A.x1处电场强度最小,但不为零B.粒子在0~x2段做匀变速运动,x2~x3段做匀速直线运动C.在0、x1、x2、x3处电势φ0、φ1、φ2、φ3的关系为φ3>φ2=φ0>φ1D.x2~x3段的电场强度大小、方向均不变【答案】D【解析】.根据E p=qφ,E=ΔφΔx,得E=1q·ΔE pΔx,由数学知识可知E p-x图象切线的斜率等于ΔE pΔx,x1处切线斜率为零,则知x1处电场强度为零,故A错误;由题图看出在0~x1段图象切线的斜率不断减小,由上式知电场强度减小,粒子所受的电场力减小,加速度减小,做非匀变速运动,x1~x2段图象切线的斜率不断增大,电场强度增大,粒子所受的电场力增大,做非匀变速运动,x2~x3段斜率不变,电场强度不变,即电场强度大小和方向均不变,是匀强电场,粒子所受的电场力不变,做匀变速直线运动,故B错误,D正确;根据E p=qφ,粒子带负电,q<0,则知,电势能越大,粒子所在处的电势越低,所以有φ1>φ2=φ0>φ3,故C错误.【变式】如图甲所示,在某电场中建立x坐标轴,A、B为x轴上的两点,x A、x B分别为A、B两点在x轴上的坐标值.一电子仅在电场力作用下沿x轴运动,该电子的电势能E p随其坐标x变化的关系如图乙所示,E p A和E p B分别表示电子在A、B两点时的电势能.则下列说法中正确的是()A.该电场可能是孤立的点电荷形成的电场B.A点的电场强度小于B点的电场强度C.电子由A点运动到B点的过程中电场力对其所做的功W=E p A-E p BD.电子在A点的动能大于在B点的动能【答案】CD【解析】由于A、B两点的电势能与两个位置间的关系是一条过原点的直线,说明电势是均匀增加的,所以一定是个匀强电场,而不是孤立的点电荷形成的电场,故A错误;由上可知是匀强电场,所以A、B两点的电场强度相等,故B错误;由图乙可知,电子在A、B两点的电势能关系为E p B>E p A,说明电子由A运动到B时电势能增大,电场力做负功,电场力对其所做的功为W=E p A-E p B,故C正确;电场力做负功,动能减小,所以A点的动能大于B点的动能,故D正确.【题型演练】1.(2019·黑龙江大庆模拟)关于静电场,下列说法正确的是()A.将负电荷由电势低的地方移到电势高的地方,电势能一定增加B.无论是正电荷还是负电荷,从电场中某点移到无穷远处时,静电力做的正功越多,电荷在该点的电势能越大C.在同一个等势面上的各点,场强的大小必然是相等的D.电势降低的方向就是电场强度的方向【答案】B【解析】将负电荷由低电势点移到高电势点,电场力做正功,电势能减小,选项A错误;无论是正电荷还是负电荷,从电场中某点移到无穷远处时,因无穷远处电势能为零,因此静电力做正功越多,电荷在该点的电势能越大,选项B正确;在同一等势面上,电势处处相等,场强不一定相等,选项C错误;电势降低最快的方向才是电场强度的方向,选项D错误.2.一个电子只在电场力作用下从a点运动到b点的轨迹如图中虚线所示,图中平行实线可能是电场线也可能是等势线,则以下说法正确的是()A.无论图中的实线是电场线还是等势线,a点的电场强度都比b点的电场强度小B.无论图中的实线是电场线还是等势线,a点的电势都比b点的电势高C.无论图中的实线是电场线还是等势线,电子在a点的电势能都比在b点的电势能小D.如果图中的实线是等势线,电子在a点的速率一定大于在b点的速率【答案】D.【解析】根据电场线和等势线的特点及两者的关系可知,无论图中的实线是电场线还是等势线,a、b两点的电场强度都相等;若图中实线是电场线,则根据做曲线运动的物体一定受到指向轨迹凹侧的合外力,可知电子受到的电场力方向水平向右,电场线方向水平向左,a点的电势比b点的电势低,电子从a点运动到b 点的过程中,电场力做正功,电势能减小,动能增大,电子在a点的电势能比在b点的电势能大,电子在a 点的速率一定小于在b点的速率;若图中实线是等势线,则根据电场线和等势线垂直的关系和物体做曲线运动的条件,可知电子受到的电场力方向竖直向下,电场线方向竖直向上,a点的电势比b点的电势高,电子从a点运动到b点的过程中,电场力做负功,电势能增加,动能减小,电子在a点的电势能比在b点的电势能小,电子在a点的速率一定大于在b点的速率.综上所述,选项D正确.3.(2018·高考天津卷)如图所示,实线表示某电场的电场线(方向未标出),虚线是一带负电的粒子只在电场力作用下的运动轨迹,设M点和N点的电势分别为φM、φN,粒子在M和N时加速度大小分别为a M、a N,速度大小分别为v M、v N,电势能分别为E p M、E p N.下列判断正确的是()A.v M<v N,a M<a N B.v M<v N,φM<φNC.φM<φN,E p M<E p N D.a M<a N,E p M<E p N【答案】D【解析】电场线越密,电场强度越大,同一个粒子受到的电场力越大,根据牛顿第二定律可知其加速度越大,故有a M<a N;若粒子从M运动到N点,根据带电粒子所受电场力指向轨迹弯曲的内侧,可知在某点的电场力方向和速度方向如图所示,故电场力做负功,电势能增大,动能减小,即v M>v N,E p M<E p N,负电荷在低电势处电势能大,故φM>φN;若粒子从N 运动到M ,根据带电粒子所受电场力指向轨迹弯曲的内侧,可知在某点的电场力方向和速度方向如图所示,故电场力做正功,电势能减小,动能增大,即v M >v N ,E p M <E p N ,负电荷在低电势处电势能大,故φM >φN .综上所述,D 正确.4.(2019·湖北省重点中学联考)如图所示,水平面内有A 、B 、C 、D 、E 、F 六个点,它们均匀分布在半径为 R =2 cm 的同一圆周上,空间有一方向与圆平面平行的匀强电场.已知A 、C 、E 三点的电势分别为φA =(2-3) V 、φC =2 V 、φE =(2+3) V ,下列判断正确的是 ( )A .电场强度的方向由A 指向DB .电场强度的大小为1 V/mC .该圆周上的点电势最高为4 VD .将电子从D 点沿DEF 移到F 点,静电力做正功【答案】C【解析】在匀强电场中AE 连线的中点G 的电势φG =12(φA +φE )=2 V =φC ,所以直线COGF 为等势线,在匀强电场中等势线相互平行,电场线与等势线相互垂直,且由电势高的等势线指向电势低的等势线,可知直线AB 、直线DE 分别为等势线,直线DB 、直线EA 分别为电场线,可知电场强度的方向由E 指向A (或由D 指向B ),故A 错误;E 、A 两点间的电势差U EA =φE -φA =2 3 V ,沿电场方向的距离d =3R =350m ,电场强度E =U EA d=100 V/m ,故B 错误;过圆心O 做EA 的平行线,与圆的交点H 处电势最高,U HO =ER =2 V ,由U HO =φH -φO 可得:最高电势φH =U HO +φO =4 V ,故C 正确;将电子从D 点移到F 点,。

2020年高考物理热点题型归纳与精讲(含2019真题)-专题33 分子动理论

2020年高考物理热点题型归纳与精讲(含2019真题)-专题33 分子动理论

2020年高考物理热点题型归纳与精讲-专题33 分子动理论【专题导航】目录热点题型一微观量的估算 (1)热点题型二布朗运动与分子热运动 (3)热点题型三分子力、分子势能和物体的内能 (5)热点题型四物体的内能 (7)热点题型五实验:用油膜法估测分子的大小 (10)【题型演练】 (13)【题型归纳】热点题型一微观量的估算1.微观量分子体积V0、分子直径d、分子质量m0.2.宏观量物体的体积V、摩尔体积V m、物体的质量m、摩尔质量M、物体的密度ρ.3.宏观量、微观量以及它们之间的关系4.分子的两种模型物质有固态、液态和气态三种情况,不同物态下应将分子看成不同的模型.(1)固体、液体分子一个一个紧密排列,可将分子看成球形或立方体形,如图所示,分子间距等于小球的直径或立方体的棱长,所以d =36V π(球体模型)或d =3V (立方体模型).(2)气体分子不是一个一个紧密排列的,它们之间的距离很大,所以气体分子的大小不等于分子所占有的平均空间.如图所示,此时每个分子占有的空间视为棱长为d 的立方体,所以d =3V .【例1】(2019·大连模拟)某气体的摩尔质量为M mol ,摩尔体积为V mol ,密度为ρ,每个分子的质量和体积分 别为m 和V 0,则阿伏加德罗常数N A 表示错误的是( )A .N A =M molmB .N A =V molV 0 C .N A =ρV molmD .N A =M molρV 0E .N A =ρV molM mol【答案】BDE【解析】阿伏加德罗常数N A =M mol m =ρV mol m =V molV,其中V 应为每个气体分子所占有的体积,而题目中的V 0则表示气体分子的体积,选项A 、C 正确,B 、E 错误;D 中的ρV 0不是气体分子的质量,因而选项D 错误. 【变式1】钻石是首饰和高强度钻头、刻刀等工具中的主要材料,设钻石的密度为ρ(单位为kg/m 3),摩尔质 量为M (单位为g/mol),阿伏加德罗常数为N A .已知1克拉=0.2克,则下列说法正确的是 ( )A .a 克拉钻石所含有的分子数为0.2aN AMB .a 克拉钻石所含有的分子数为aN AMC .每个钻石分子直径的表达式为 36M ×10-3N A ρπ(单位为m)D .每个钻石分子的质量为MN AE .每个钻石分子的体积为MN A ρ【答案】 ACD【解析】 a 克拉钻石物质的量为n =0.2a M ,所含分子数为N =nN A =0.2aN AM ,选项A 正确,B 错误;钻石的摩尔体积V =M ×10-3ρ(单位为m 3/mol),每个钻石分子体积为V 0=V N A =M ×10-3N A ρ,设钻石分子直径为d ,则V 0=43π(d 2)3,联立解得d = 36M ×10-3N A ρπ(单位为m),选项C 正确,E 错误;根据阿伏加德罗常数的意义知,每个钻石分子的质量m =MN A ,选项D 正确.【变式2】下列说法正确的是( )A .1 g 水中所含的分子数目和地球的总人口数差不多B .布朗运动就是物质分子的无规则热运动C .一定质量的理想气体压强增大,其分子的平均动能可能减小D .气体如果失去了容器的约束就会散开,这是气体分子的无规则的热运动造成的E .0 ℃的铁和0 ℃的冰,它们的分子平均动能相等 【答案】CDE【解析】.水的摩尔质量是18 g/mol ,1 g 水中含有的分子数为:n =118×6.0×1023≈3.3×1022个,地球的总人数约为70亿,选项A 错误;布朗运动是悬浮在液体(气体)中的固体颗粒受到液体(气体)分子撞击作用的不平衡造成的,不是物体分子的无规则热运动,选项B 错误;温度是分子的平均动能的标志,气体的压强增大,温度可能减小,选项C 正确;气体分子间距大于10r 0,分子间无作用力,打开容器,气体散开是气体分子的无规则运动造成的,选项D 正确;铁和冰的温度相同,分子平均动能必然相等,选项E 正确. 热点题型二 布朗运动与分子热运动 两种运动的比较【例2】(2019·邯郸市模拟)PM2.5是指空气中直径等于或小于2.5微米的悬浮颗粒物,飘浮在空中做无规则运动,很难自然沉降到地面,吸入后危害人体健康,矿物燃料的燃烧是形成PM2.5的主要原因.下列关于PM2.5的说法正确的是()A.PM2.5的尺寸与空气中氧分子的尺寸的数量级相当B.PM2.5在空气中的运动属于布朗运动C.温度越低PM2.5活动越剧烈D.倡导低碳生活,减少煤和石油等燃料的使用能有效减小PM2.5在空气中的浓度E.PM2.5中小一些的颗粒的运动比大一些的颗粒更为剧烈【答案】BDE【解析】“PM2.5”是指直径小于等于2.5微米的颗粒物,其尺寸远大于空气中氧分子的尺寸的数量级,故选项A错误;PM2.5在空气中的运动是固体颗粒的运动,属于布朗运动,故选项B正确;大量空气分子对PM2.5无规则碰撞,温度越高,空气分子对颗粒的撞击越剧烈,则PM2.5的运动越激烈,故选项C错误;导致PM2.5增多的主要原因是矿物燃料的燃烧,故应该提倡低碳生活,可有效减小PM2.5在空气中的浓度,故选项D正确;PM2.5中小一些的颗粒,空气分子对其撞击更不均衡,运动比大一些的颗粒更为剧烈,故选项E正确.【变式1】下列说法正确的是()A.显微镜下观察到墨水中的小炭粒在不停地做无规则运动,这反映了液体分子运动的无规则性B.分子间的相互作用力随着分子间距离的增大,一定先减小后增大C.分子势能随着分子间距离的增大,可能先减小后增大D.在真空、高温条件下,可以利用分子扩散向半导体材料掺入其他元素E.当温度升高时,物体内每一个分子热运动的速率一定都增大【答案】ACD【解析】布朗运动是固体微粒在液体中的运动,反映液体分子的运动,故显微镜下观察到墨水中的小炭粒在不停地做无规则运动,这反映了液体分子运动的无规则性,故选项A正确;分子间的相互作用力随着分子间距离由很小逐渐增大,r<r0,分子力(斥力)随r增大而减小,分子势能减小,当r=r0时,分子力等于零,分子势能最小,然后随r增大分子力(引力)先增大再减小,分子势能逐渐增大,故选项B错误,C正确;分子之间存在间隙,在真空、高温条件下,可以利用分子扩散向半导体材料掺入其他元素,故D正确;温度升高,分子平均动能增大,但单个分子运动情况不确定,故E错误.【变式2】(2019·福建莆田一中模拟)下列各种说法中正确的是()A.固体小颗粒越小,温度越高,布朗运动越显著B.扩散现象能在气体中进行,不能在固体中进行C.气体分子永不停息地做无规则运动,固体分子之间相对静止不动D.如果一开始分子间距离大于r0,则随着分子间距离的增大,分子势能增大E.内能相同的物体,可能温度不同【答案】ADE【解析】固体小颗粒越小,表面积越小,同一时刻撞击颗粒的液体分子数越少,冲力越不平衡,温度越高,液体分子运动越激烈,冲击力越大,布朗运动越激烈,故A正确;一切物质的分子都在永不停息的做无规则运动,扩散现象就是分子运动的结果,所以固体、液体和气体之间都能发生扩散现象,故B、C错误;分子间距离大于r0,分子间表现为引力,则随着分子间距离的增大,分子力做负功,分子势能增大,故D正确;决定内能大小的宏观因素包括:物体的质量、温度和体积,所以内能相同的物体,可能温度不同,故E 正确.热点题型三分子力、分子势能和物体的内能1.分子力及分子势能比较2.分析物体内能问题的四点提醒(1)内能是对物体的大量分子而言的,不存在某个分子内能的说法.(2)决定内能大小的因素为温度、体积、分子数,还与物态有关系.(3)通过做功或热传递可以改变物体的内能.(4)温度是分子平均动能的标志,相同温度的任何物体,分子的平均动能相同.【例3】(2019·山东泰安模拟)甲分子固定在坐标原点O,只在两分子间的作用力作用下,乙分子沿x轴方向运动,两分子间的分子势能E p与两分子间距离x轴的变化关系如图所示,设乙分子在移动过程中所具有的总能量为零,则下列说法正确的是()A.乙分子在P点时加速度为零B.乙分子在Q点时分子势能最小C.乙分子在Q点时处于平衡状态D.乙分子在P点时动能最大E.乙分子在P点时,分子间引力和斥力相等【答案】ADE【解析】由题图可知,乙分子在P点时分子势能最小,此时乙分子受力平衡,甲、乙两分子间引力和斥力相等,乙分子所受合力为零,加速度为零,选项A、E正确;乙分子在Q点时分子势能为零,大于乙分子在P点时的分子势能,选项B错误;乙分子在Q点时与甲分子间的距离小于平衡距离,分子引力小于分子斥力,合力表现为斥力,所以乙分子在Q点合力不为零,不处于平衡状态,选项C错误;乙分子在P点时,其分子势能最小,由能量守恒可知此时乙分子动能最大,选项D正确.【变式1】.下列四幅图中,能正确反映分子间作用力f和分子势能E p随分子间距离r变化关系的图线是()【答案】B.【解析】当r<r0时,分子力表现为斥力,随分子间距离r增大,分子势能E p减小.当r>r0时,分子力表现为引力,随分子间距离r增大,分子势能E p增大.当r=r0时,分子力为零,此时分子势能最小,故选项B正确.【变式2】(2019·江西南昌模拟)关于分子间的作用力,下列说法正确的是()A.若分子间的距离增大,则分子间的引力和斥力均减小B.若分子间的距离减小,则分子间的引力和斥力均增大C.若分子间的距离减小,则分子间的引力和斥力的合力一定增大D.若分子间的距离增大,则分子间的引力和斥力的合力一定减小E.若分子间的距离从无穷远处开始减小,则引力和斥力的合力先增大后减小再增大【答案】ABE【解析】分子间的引力、斥力和合力与分子间距离的关系如图所示.若分子间的距离增大,则分子间的引力和斥力均减小,选项A正确;若分子间的距离减小,则分子间的引力和斥力均增大,选项B正确;若分子间的距离从大于r0的适当位置减小,则分子间引力和斥力的合力可能减小,选项C错误;若分子间的距离从r0的位置开始增大,则开始一段距离内分子间引力和斥力的合力增大,选项D错误;若分子间距离从无穷远处开始减小,则引力和斥力的合力先增大后减小最后再增大,故选项E正确.热点题型四物体的内能1.内能和热量的比较2.物体的内能与机械能的比较【例4】.(2017·高考全国卷Ⅰ)氧气分子在0 ℃和100 ℃温度下单位速率间隔的分子数占总分子数的百分比随气体分子速率的变化分别如图中两条曲线所示.下列说法正确的是()A.图中两条曲线下面积相等B.图中虚线对应于氧气分子平均动能较小的情形C.图中实线对应于氧气分子在100 ℃时的情形D.图中曲线给出了任意速率区间的氧气分子数目E.与0 ℃时相比,100 ℃时氧气分子速率出现在0~400 m/s 区间内的分子数占总分子数的百分比较大【答案】ABC.【解析】根据气体分子单位速率间隔的分子数占总分子数的百分比随气体分子速率的变化曲线的意义可知,题图中两条曲线下面积相等,选项A正确;题图中虚线占百分比较大的分子速率较小,所以对应于氧气分子平均动能较小的情形,选项B正确;题图中实线占百分比较大的分子速率较大,分子平均动能较大,根据温度是分子平均动能的标志,可知实线对应于氧气分子在100 ℃时的情形,选项C正确;根据分子速率分布图可知,题图中曲线给出了任意速率区间的氧气分子数目占总分子数的百分比,不能得出任意速率区间的氧气分子数目,选项D错误;由分子速率分布图可知,与0 ℃时相比,100 ℃时氧气分子速率出现在0~400 m/s区间内的分子数占总分子数的百分比较小,选项E错误.【变式1】(2019·安阳检测)下列五幅图分别对应五种说法,其中正确的是()A.分子并不是球形,但可以当做球形处理,这是一种估算方法B.微粒的运动就是物质分子的无规则热运动,即布朗运动C.当两个相邻的分子间距离为r0时,它们间相互作用的引力和斥力大小相等D.实验中要尽可能保证每颗玻璃球与电子秤碰撞时的速率相等E.0 ℃和100 ℃氧气分子速率都呈现“中间多、两头少”的分布特点【答案】ACE.【解析】A图是油膜法估测分子的大小,图中分子并不是球形,但可以当做球形处理,这是一种估算方法,选项A正确;B图中显示的是布朗运动,是悬浮微粒的无规则运动,不是物质分子的无规则热运动,故选项B错误;C图中,当两个相邻的分子间距离为r0时,分子力为零,此时它们间相互作用的引力和斥力大小相等,故选项C正确;D图中,分子的速率不是完全相等的,所以也不要求每颗玻璃球与电子秤碰撞时的速率相等,故选项D错误;E图是麦克斯韦速率分布规律的图解,0 ℃和100 ℃氧气分子速率都呈现“中间多、两头少”的分布特点,故选项E正确.【变式2】.(2018·高考全国卷Ⅰ)对于实际的气体,下列说法正确的是()A.气体的内能包括气体分子的重力势能B.气体的内能包括气体分子之间相互作用的势能C.气体的内能包括气体整体运动的动能D.气体的体积变化时,其内能可能不变E.气体的内能包括气体分子热运动的动能【答案】BDE【解析】.实际气体的内能包括气体分子间相互作用的势能和分子热运动的动能,当气体体积变化时影响的是气体的分子势能,内能可能不变,所以B、D、E正确,A、C错误.【变式3】(2019·福建莆田一中模拟)下列各种说法中正确的是()A.固体小颗粒越小,温度越高,布朗运动越显著B .扩散现象能在气体中进行,不能在固体中进行C .气体分子永不停息地做无规则运动,固体分子之间相对静止不动D .如果一开始分子间距离大于r 0,则随着分子间距离的增大,分子势能增大E .内能相同的物体,可能温度不同 【答案】ADE【解析】固体小颗粒越小,表面积越小,同一时刻撞击颗粒的液体分子数越少,冲力越不平衡,温度越高,液体分子运动越激烈,冲击力越大,布朗运动越激烈,故A 正确;一切物质的分子都在永不停息的做无规则运动,扩散现象就是分子运动的结果,所以固体、液体和气体之间都能发生扩散现象,故B 、C 错误;分子间距离大于r 0,分子间表现为引力,则随着分子间距离的增大,分子力做负功,分子势能增大,故D 正确;决定内能大小的宏观因素包括:物体的质量、温度和体积,所以内能相同的物体,可能温度不同,故E 正确.热点题型五 实验:用油膜法估测分子的大小 1.实验原理:利用油酸酒精溶液在平静的水面上形成单分子油膜,将油酸分子看做球形,测出一定体积油酸溶液在水面上形成的油膜面积,用d =VS 计算出油膜的厚度,其中V 为一滴油酸溶液中所含油酸的体积,S 为油膜面积,这个厚度就近似等于油酸分子的直径.2.实验步骤(1)取1 mL(1 cm 3)的油酸溶于酒精中,制成N mL 的油酸酒精溶液,则油酸的纯度为1N.(2)往边长为30~40 cm 的浅盘中倒入约2 cm 深的水,然后将痱子粉(或细石膏粉)均匀地撒在水面上. (3)用滴管(或注射器)向量筒中滴入n 滴配制好的油酸酒精溶液,使这些溶液的体积恰好为1 mL ,算出每滴油酸酒精溶液的体积V 0=1nmL.(4)用滴管(或注射器)向水面中央滴入一滴配制好的油酸酒精溶液,油酸就在水面上慢慢散开,形成单分子油膜.(5)待油酸薄膜形状稳定后,将一块较大的玻璃板盖在浅盘上,用彩笔将油酸薄膜的形状画在玻璃板上. (6)将玻璃板取出放在坐标纸上,算出油酸薄膜的面积S .3.数据处理(1)计算一滴溶液中油酸的体积:V =1Nn(mL). (2)计算油膜的面积:利用坐标纸求油膜面积时,以边长为1 cm 的正方形为单位,计算轮廓内正方形的个数,不足半个的舍去,大于半个的算一个.(3)计算油酸的分子直径:d =V S(注意单位统一). 4.油膜体积的测定——积聚法:由于一滴纯油酸中含有的分子数仍很大,形成的单层分子所占面积太大, 不便于测量,故实验中先把油酸溶于酒精中稀释,测定其浓度,再测出1 mL 油酸酒精溶液的滴数,取一滴 用于实验,最后计算出一滴溶液中含有的纯油酸的体积作为油膜的体积.5.油膜面积的测定:如图所示,将画有油酸薄膜轮廓的有机玻璃板取下放在坐标格纸上,以边长为1 cm 的方格为单位,数出轮廓内正方形的格数(不足半格的舍去,超过半格的计为1格),计算出油膜的面积S .【例5】“用油膜法估测分子的大小”实验的简要步骤如下:A .将画有油酸膜轮廓的玻璃板放在坐标纸上,数出轮廓内的方格数(不足半个的舍去,多于半个的算一个),再根据方格的边长求出油酸膜的面积SB .将一滴油酸酒精溶液滴在水面上,待油酸薄膜的形状稳定后,将玻璃板放在浅盘上,用彩笔将薄膜的形状描画在玻璃板上C .用浅盘装入约2 cm 深的水D .用公式d =V S,求出薄膜厚度,即油酸分子直径的大小 E .根据油酸酒精溶液的浓度,算出一滴溶液中纯油酸的体积V(1)上述步骤中有步骤遗漏或步骤不完整的,请指出:①________________________________________________________________ __________________________________________________________________.②________________________________________________________________ __________________________________________________________________.(2)上述实验步骤的合理顺序是________.【答案】(1)见解析(2)CFBAED【解析】(1)①C步骤中,要在水面上均匀地撒上细石膏粉或痱子粉.②实验中,要有步骤F:用注射器或滴管将事先配制好的油酸酒精溶液一滴一滴地滴入量筒,记下量筒内增加一定体积时的滴数.(2)合理顺序为CFBAED.【变式1】在“用油膜法估测分子的大小”实验中(1)(多选)该实验中的理想化假设是()A.将油膜看成单分子层油膜B.不考虑各油酸分子间的间隙C.不考虑各油酸分子间的相互作用力D.将油酸分子看成球形(2)实验中使用到油酸酒精溶液,其中酒精溶液的作用是()A.可使油酸和痱子粉之间形成清晰的边界轮廓B.对油酸溶液起到稀释作用C.有助于测量一滴油酸的体积D.有助于油酸的颜色更透明便于识别(3)某老师为本实验配制油酸酒精溶液,实验室配备的器材有:面积为0.22 m2的蒸发皿、滴管、量筒(50滴溶液滴入量筒体积约为1 mL)、纯油酸和无水酒精若干.已知分子直径数量级为10-10m,则该老师配制的油酸酒精溶液浓度(油酸与油酸酒精溶液的体积比)至多为________‰(保留两位有效数字).【答案】(1)ABD(2)B(3)1.1【解析】(1)计算分子直径是根据体积与面积之比,所以需将油膜看成单分子层油膜,不考虑各油酸分子间的间隙,将油酸分子看成球形,故选A、B、D.(2)实验中使用到油酸酒精溶液,其中酒精溶液的作用是对油酸起到稀释作用,酒精稀释油酸是为了进一步减小油酸的面密度,使油酸分子尽可能的少在竖直方向上重叠,更能保证其形成单层分子油膜,也就是为了减小系统误差.(3)根据题意可得150×10-6x10-10=0.22,解得x=0.001 1,所以千分比为1.1‰.【变式2】在“用油膜法估测分子的大小”实验中,所用油酸酒精溶液的浓度为每104mL溶液中有纯油酸6 mL,用注射器测得1 mL上述溶液为75滴.把1滴该溶液滴入盛水的浅盘里,待水面稳定后,将玻璃板放在浅盘上,用彩笔在玻璃板上描出油膜的轮廓,再把玻璃板放在坐标纸上,其形状和尺寸如图所示,坐标中正方形方格的边长为1 cm.则(1)油酸薄膜的面积是________cm 2.(2)每滴油酸酒精溶液中含有纯油酸的体积是______mL.(取一位有效数字)(3)按以上实验数据估测出油酸分子直径约为______m .(取一位有效数字)【答案】(1)115(112~118均可) (2)8×10-6 (3)7×10-10【解析】(1)根据数方格数的原则“多于半个的算一个,不足半个的舍去”可查出共有115个方格,故油膜的面积:S =115×1 cm 2=115 cm 2.(2)一滴油酸酒精溶液的体积:V ′=175 mL ,一滴油酸酒精溶液中含纯油酸的体积:V =6104V ′=8×10-6 mL. (3)油酸分子的直径:d =V S =8×10-12115×10-4 m≈7×10-10 m. 【题型演练】1.(2019·山东聊城模拟)对于分子动理论和物体内能的理解,下列说法正确的是( )A .温度高的物体内能不一定大,但分子平均动能一定大B .外界对物体做功,物体内能一定增加C .温度越高,布朗运动越明显D .当分子间的距离增大时,分子间作用力就一直减小E .当分子间作用力表现为斥力时分子势能随分子间距离的减小而增大【答案】ACE【解析】温度高的物体内能不一定大,内能还与质量、体积有关,但分子平均动能一定大,因为温度是分子平均动能的标志,故A 正确;改变内能的方式有做功和热传递,若外界对物体做功的同时物体放热,内能不一定增大,故B 错误;布朗运动是由液体分子碰撞的不平衡性造成的,液体温度越高,液体分子热运动越激烈,布朗运动越显著,故C 正确;当分子间的距离从平衡位置增大时,分子间作用力先增大后减小,故D错误;当分子间作用力表现为斥力时,分子势能随分子间距离的减小而增大,故E正确.2.(2019·江西上饶六校联考)把生鸭蛋放在盐水中腌制一段时间,盐就会进入鸭蛋里变成咸鸭蛋.则下列说法正确的是()A.如果让腌制鸭蛋的盐水温度升高,盐分子进入鸭蛋的速度就会加快B.盐分子的运动属于布朗运动C.在鸭蛋腌制过程中,有的盐分子进入鸭蛋内,也有盐分子从鸭蛋里面出来D.盐水温度升高,每个盐分子运动的速率都会增大E.食盐晶体中的钠、氯离子按一定规律分布,具有空间上的周期性【答案】ACE【解析】如果让腌制鸭蛋的盐水温度升高,分子运动更剧烈,则盐进入鸭蛋的速度就会加快,故A正确;布朗运动本身不是分子的运动,故B错误;在腌制鸭蛋的盐水中,有盐分子进入鸭蛋,分子运动是无规则的,同样会有盐分子从鸭蛋里面出来,故C正确;盐水温度升高,分子的平均动能增大,但不是每个盐分子运动的速率都会增大,个别分子的速率也可能减小,故D错误;食盐晶体中的钠、氯离子按一定规律分布,具有空间上的周期性,故E正确.3.关于热量、功和内能三个物理量,下列说法正确的是()A.热量、功和内能三者的物理意义相同,只是说法不同B.热量、功都可以作为物体内能变化的量度C.热量、功和内能的单位相同D.功由过程决定,而热量和内能由物体的状态决定E.物体吸收热量,同时对外做功,其内能可能增加【答案】BCE【解析】热量、功和内能是三个不同的物理量,它们的物理意义不同,故选项A错误;功与热量都是能量转化的量度,都可以作为物体内能变化的量度,故选项B正确;热量、功和内能的单位相同,都是焦耳,故选项C正确;功和热量由过程决定,内能由物体的状态决定,故选项D错误;由热力学第一定律可知,物体吸收热量,同时对外做功,其内能可能增加,选项E正确.4.两个相邻的分子之间同时存在着引力和斥力,它们随分子之间距离r的变化关系如图所示.图中虚线是分子斥力和分子引力曲线,实线是分子合力曲线.当分子间距为r=r0时,分子之间合力为零,则选项图中关于该两分子组成系统的分子势能E p与两分子间距离r的关系曲线,可能正确的是()。

2020届高考物理一轮复习热点题型归纳与变式演练 光电效应(解析版)

2020届高考物理一轮复习热点题型归纳与变式演练 光电效应(解析版)

2020届高考物理一轮复习热点题型归纳与变式演练光电效应【专题导航】目录热点题型一光电效应现象和光电效应方程的应用 (1)热点题型二光电效应的图象问题 (3)(一)对E k-ν图象的理解 (4)(二)对I-U图象的理解 (5)(三)对Uc-ν图象的理解 (7)热点题型三对光的波粒二象性的理解 (8)【题型演练】 (9)【题型归纳】热点题型一光电效应现象和光电效应方程的应用1.对光电效应的四点提醒(1)能否发生光电效应,不取决于光的强度而取决于光的频率.(2)光电效应中的“光”不是特指可见光,也包括不可见光.(3)逸出功的大小由金属本身决定,与入射光无关.(4)光电子不是光子,而是电子.2.两条对应关系(1)光强大→光子数目多→发射光电子多→光电流大;(2)光子频率高→光子能量大→光电子的最大初动能大.3.定量分析时应抓住三个关系式(1)爱因斯坦光电效应方程:E k=hν-W0.(2)最大初动能与遏止电压的关系:E k=eU c.(3)逸出功与极限频率的关系:W0=hνc.4.区分光电效应中的四组概念(1)光子与光电子:光子指光在空间传播时的每一份能量,光子不带电;光电子是金属表面受到光照射时发射出来的电子,其本质是电子.(2)光电子的动能与光电子的最大初动能:电子吸收光子能量后,一部分克服阻碍作用做功,剩余部分转化为光电子的初动能,只有直接从金属表面飞出的光电子才具有最大初动能.(3)光电流和饱和光电流:金属板飞出的光电子到达阳极,回路中便产生光电流,随着所加正向电压的增大,光电流趋于一个饱和值,这个饱和值是饱和光电流,在一定的光照条件下,饱和光电流与所加电压大小无关.(4)入射光强度与光子能量:入射光强度指单位时间内照射到金属表面单位面积上的总能量.【例1】(2018·高考全国卷Ⅱ)用波长为300 nm 的光照射锌板,电子逸出锌板表面的最大初动能为1.28×10- 19 J .已知普朗克常量为6.63×10-34 J·s ,真空中的光速为3.00×108 m·s -1.能使锌产生光电效应的单色光的最 低频率约为( )A .1×1014 HzB .8×1014 HzC .2×1015 HzD .8×1015 Hz【答案】B【解析】设单色光的最低频率为v 0,由E k =hv -W 0知E k =hv 1-W 0,0=hv 0-W 0,又知v 1=c λ,整理得v 0=c λ-E k h,代入数据解得v 0≈8×1014 Hz. 【变式1】.(2019·山东泰安检测)如图所示是光电管的原理图,已知当有波长为λ0的光照到阴极K 上时,电 路中有光电流,则 ( )A .若增加电路中电源电压,电路中光电流一定增大B .若将电源极性反接,电路中一定没有光电流产生C .若换用波长为λ1(λ1>λ0)的光照射阴极K 时,电路中一定没有光电流D .若换用波长为λ2(λ2<λ0)的光照射阴极K 时,电路中一定有光电流【答案】D【解析】光电流的强度与入射光的强度有关,当光越强时,光电子数目会增多,初始时电压增加光电流可能会增加,当达到饱和光电流后,再增大电压,光电流不会增大,故A 错误;将电路中电源的极性反接,电子受到电场阻力,到达A极的数目会减小,则电路中电流会减小,甚至没有电流,故B错误;波长为λ1(λ1>λ0)的光的频率有可能大于极限频率,电路中可能有光电流,故C错误;波长为λ2(λ2<λ0)的光的频率一定大于极限频率,电路中一定有光电流,故D正确.【变式2】(2017·高考全国卷Ⅲ)在光电效应实验中,分别用频率为νa、νb的单色光a、b照射到同种金属上,测得相应的遏止电压分别为U a和U b、光电子的最大初动能分别为E k a和E k b.h为普朗克常量.下列说法正确的是()A.若νa>νb,则一定有U a<U b B.若νa>νb,则一定有E k a>E k bC.若U a<U b,则一定有E k a<E k b D.若νa>νb,则一定有hνa-E k a>hνb-E k b【答案】BC【解析】由爱因斯坦光电效应方程E km=hν-W0,又由动能定理有E km=eU c,当νa>νb时,E k a>E k b,U a>U b,A错误,B正确;若U a<U b,则有E k a<E k b,C正确;同种金属的逸出功不变,则W0=hν-E km不变,D错误.热点题型二光电效应的图象问题与的关①极限频率:图线与②逸出功:图线与W③普朗克常量:图线的斜率强度不光电流与②饱和光电流③最大初动能:光电①遏止电压②饱和光电流③最大初动能与入的关系①截止频率②遏止电压③普朗克常量即(一)对E k-ν图象的理解由E k-ν图象可以得到的信息(1)极限频率:图线与ν轴交点的横坐标νc.(2)逸出功:图线与E k轴交点的纵坐标的绝对值E=W0.(3)普朗克常量:图线的斜率k=h.【例2】.(2019·南平市检测)用如图甲所示的装置研究光电效应现象.闭合电键S,用频率为ν的光照射光电管时发生了光电效应.图乙是该光电管发生光电效应时光电子的最大初动能E k与入射光频率ν的关系图象,图线与横轴的交点坐标为(a,0),与纵轴的交点坐标为(0,-b),下列说法中正确的是()A.普朗克常量为h=abB.断开电键S后,电流表G的示数不为零C.仅增加照射光的强度,光电子的最大初动能将增大D.保持照射光强度不变,仅提高照射光频率,电流表G的示数保持不变【答案】 B【解析】由hν=W0+E k,变形得E k=hν-W0,可知图线的斜率为普朗克常量,即h=ba,故A错误;断开电键S后,仍有光电子产生,所以电流表G的示数不为零,故B正确;只有增大入射光的频率,才能增大光电子的最大初动能,与光的强度无关,故C错误;保持照射光强度不变,仅提高照射光频率,单个光子的能量增大,而光的强度不变,那么光子数一定减少,发出的光子数也减少,电流表G的示数要减小,故D错误.【变式1】(多选)如图所示是用光照射某种金属时逸出的光电子的最大初动能随入射光频率的变化图线(直线与横轴的交点坐标4.27,与纵轴交点坐标0.5).由图可知()A.该金属的截止频率为4.27×1014 Hz B.该金属的截止频率为5.5×1014 HzC.该图线的斜率表示普朗克常量D.该金属的逸出功为0.5 eV【答案】AC【解析】图线在横轴上的截距为截止频率,A正确、B错误;由光电效应方程E k=hν-W0,可知图线的斜率为普朗克常量,C正确;金属的逸出功为:W0=hν0=6.63×10-34×4.27×10141.6×10-19eV≈1.77 eV,D错误.【变式2】.(多选)(2019·山东天成大联考)某种金属发生光电效应时,光电子的最大初动能E k与入射光频率ν的关系如图所示,E、ν0为已知量,由图线信息可知()A.逸出功W0=E B.图象的斜率表示普朗克常量的倒数C.图中E与ν0的值与入射光的强度、频率均无关D.若入射光频率为3ν0,则光电子的最大初动能为3E 【答案】AC【解析】根据光电效应方程有E k=hν-W0,根据数学函数知图象与纵坐标的交点表示逸出功,所以逸出功W0=E,图象的斜率表示普朗克常量,故A正确,故B错误;逸出功和极限频率的大小与入射光的强度、频率均无关,由金属本身决定,故C正确;根据光电效应方程:E k=hν-W0,当入射光频率为3ν0,则光电子的最大初动能为2E,故D错误.(二)对I-U图象的理解由I-U图象可以得到的信息(1)遏止电压U c :图线与横轴的交点的绝对值.(2)饱和光电流I m :电流的最大值.(3)最大初动能:E km =eU c .【例2】(2019·河南新乡模拟)如图甲所示,用频率为ν0的光照射某种金属发生光电效应,测出光电流i 随电 压U 的变化图象如图乙所示,已知普朗克常量为h ,光电子带电荷量为e .下列说法中正确的是 ( )A. 入射光越强,光电子的能量越高 B .光电子的最大初动能为hν0C .该金属的逸出功为hν0—eU 0D .用频率为eU 0h的光照射该金属时不可能发生光电效应 【答案】C【解析】根据光电效应的规律可知,入射光的频率越大,则逸出光电子的能量越大,与光强无关,选项A 错误;根据光电效应的规律,光电子的最大初动能为E km =hν0-W 逸出功,选项B 错误;由图象可知E km = eU 0,则该金属的逸出功为hν0-eU 0,选项C 正确;频率为eU 0h的光的能量为hν= eU 0,当大于金属的逸出功(hν0-eU 0)时,同样可发生光电效应,选项D 错误;故选C.【变式】.在光电效应实验中,某同学用同一光电管在不同实验条件下得到三条光电流与电压之间的关系曲线(甲光、乙光、丙光),如图所示.则可判断出( )A .甲光的频率大于乙光的频率B .乙光的波长大于丙光的波长C .乙光对应的截止频率大于丙光的截止频率D .甲光对应的光电子最大初动能大于丙光对应的光电子最大初动能【答案】B【解析】由图象知,甲、乙光对应的遏止电压相等,由eU c =E k 和hν=W 0+E k 得甲、乙光频率相等,A 错误;丙光的频率大于乙光的频率,则丙光的波长小于乙光的波长,B 正确;由hνc =W 0得甲、乙、丙光对应的截止频率相同,C 错误;由光电效应方程知,甲光对应的光电子最大初动能小于丙光对应的光电子最大初动能,D 错误.(三)对Uc -ν图象的理解由U c -ν图象可以得到的信息(1)截止频率νc :图线与横轴的交点.(2)遏止电压U c :随入射光频率的增大而增大.(3)普朗克常量h :等于图线的斜率与电子电荷量的乘积,即h =ke .(注:此时两极之间接反向电压)【例4】.(多选)(2019·重庆万州月考)某金属在光的照射下产生光电效应,其遏止电压U c 与入射光频率ν的关系图象如图所示.则由图象可知 ( )A .该金属的逸出功等于hν0B .遏止电压是确定的,与入射光的频率无关C .入射光的频率为2ν0时,产生的光电子的最大初动能为hν0D .入射光的频率为3ν0时,产生的光电子的最大初动能为hν0【答案】AC【解析】当遏止电压为零时,最大初动能为零,则入射光的能量等于逸出功,所以W 0=hν0,故选项A 正确;根据光电效应方程E km =hν-W 0和-eU c =0-E km 得,U c =h e ν-W 0e,可知当入射光的频率大于极限频率时,遏止电压与入射光的频率成线性关系,故选项B 错误;从图象上可知, 逸出功W 0=hν0.根据光电效应方程E km =h ·2ν0-W 0=hν0,故选项C 正确;E km =h ·3ν0-W 0=2hν0,故选项D 错误.【变式】. 在某次光电效应实验中,得到的遏止电压U c 与入射光的频率ν的关系如图所示.若该直线的斜率和纵轴截距分别为k 和b ,电子电荷量的绝对值为e ,则普朗克常量可表示为________,所用材料的逸出功可表示为________.【答案】ek -eb【解析】根据光电效应方程E km =hν-W 0及E km =eU c 得U c =hνe -W 0e ,故h e =k ,b =-W 0e, 得h =ek ,W 0=-eb .热点题型三 对光的波粒二象性的理解对波粒二象性的理解【例5】1927年戴维逊和革末完成了电子衍射实验,该实验是荣获诺贝尔奖的重大近代物理实验之一.如图所示的是该实验装置的简化图,下列说法正确的是( )A .亮条纹是电子到达概率大的地方B .该实验说明物质波理论是正确的C .该实验再次说明光子具有波动性D .该实验说明实物粒子具有波动性【答案】ABD.【解析】电子属于实物粒子,电子衍射实验说明电子具有波动性,说明物质波理论是正确的,与光的波动性无关,B 、D 正确,C 错误;物质波也是概率波,亮条纹是电子到达概率大的地方,A 正确.【变式1】实物粒子和光都具有波粒二象性.下列事实中突出体现波动性的是 ( )A .电子束通过双缝实验装置后可以形成干涉图样B .β射线在云室中穿过会留下清晰的径迹C .人们利用慢中子衍射来研究晶体的结构D .人们利用电子显微镜观测物质的微观结构【答案】 ACD【解析】 电子束通过双缝产生干涉图样,体现的是波动性,A 正确;β射线在云室中留下清晰的径迹,不能体现波动性,B 错误;衍射体现的是波动性,C 正确;电子显微镜利用了电子束波长短的特性,D 正确.【变式2】关于物质的波粒二象性,下列说法正确的是( )A .光的波长越短,光子的能量越大,光的粒子性越明显B .不仅光子具有波粒二象性,一切运动的微粒都具有波粒二象性C .光电效应现象揭示了光的粒子性D .实物的运动有特定的轨道,所以实物不具有波粒二象性【答案】ABC【解析】据ν=c λ可知光的波长越短则频率越大,据E =hν可知光能量越大,A 正确;波粒二象性是微观世界特有的规律,一切运动的微粒都具有波粒二象性,B 正确;光电效应现象说明光具有粒子性,C 正确;由德布罗意理论知,宏观物体的德布罗意波的波长太小,实际很难观察到波动性,但仍具有波粒二象性,D 错误. 【题型演练】1.用很弱的光做双缝干涉实验,把入射光减弱到可以认为光源和感光胶片之间不可能同时有两个光子存在, 如图所示是不同数量的光子照射到感光胶片上得到的照片.这些照片说明 ( )A .光只有粒子性没有波动性B .光只有波动性没有粒子性C .少量光子的运动显示波动性,大量光子的运动显示粒子性D .少量光子的运动显示粒子性,大量光子的运动显示波动性【答案】D【解析】光具有波粒二象性,这些照片说明少量光子的运动显示粒子性,大量光子的运动显示波动性,故D正确.2.用光照射某种金属,有光电子从金属表面逸出,如果光的频率不变,而减弱光的强度,则() A.逸出的光电子数减少,光电子的最大初动能不变B.逸出的光电子数减少,光电子的最大初动能减小C.逸出的光电子数不变,光电子的最大初动能减小D.光的强度减弱到某一数值,就没有光电子逸出了【答案】A【解析】光的频率不变,表示光子能量不变,光的强度减弱,仍会有光电子从该金属表面逸出,逸出的光电子的最大初动能也不变;而减弱光的强度,逸出的光电子数就会减少,选项A正确.3.在光电效应实验中,用同一种单色光,先后照射锌和银的表面,都能发生光电效应.对于这两个过程,下列四个物理过程中,一定相同的是()A.遏止电压B.饱和光电流C.光电子的最大初动能D.逸出功【答案】B【解析】同一种单色光照射不同的金属,入射光的频率和光子能量一定相同,金属逸出功不同,根据光电效应方程E km=hν-W0知,最大初动能不同,则遏止电压不同;同一种单色光照射,入射光的强度相同,所以饱和光电流相同.故选项B正确.4.(2019·西藏拉萨中学六次月考)关于光电效应的规律,下面说法正确的是()A.当某种色光照射金属表面时,能产生光电效应,入射光的频率越高,产生的光电子最大初动能也就越大B.当某种色光照射金属表面时,能产生光电效应,如果入射光的强度减弱,从光照至金属表面上到发射出光电子之间的时间间隔将明显增加C.对某金属来说,入射光波长必须大于一极限值才能产生光电效应D.同一频率的光照射不同的金属,如果都能产生光电效应,则所有金属产生的光电子的最大初动能一定相同【答案】A【解析】根据光电效应方程E km=hν-W0,知入射光的频率越高,产生的光电子的最大初动能越大,故A 正确.光电效应具有瞬时性,入射光的强度不影响发出光电子的时间间隔,故B错误.发生光电效应的条件是入射光的频率大于金属的极限频率,即入射光的波长小于金属的极限波长,故C错误.不同的金属逸出功不同,根据光电效应方程E km=hν-W0,知同一频率的光照射不同金属,如果都能产生光电效应,光电子的最大初动能不同,故D 错误.5.(2019·北京朝阳模拟)用绿光照射一个光电管,能产生光电效应.欲使光电子从阴极逸出时最大初动能增大,可以( )A .改用红光照射B .改用紫光照射C .改用蓝光照射D .增加绿光照射时间【答案】BC.【解析】光电子的最大初动能与照射时间或照射强度无关,而与入射光子的能量有关,入射光子的能量越大,光电子从阴极逸出时最大初动能越大,所以本题中可以改用比绿光光子能量更大的紫光、蓝光照射,以增大光电子从阴极逸出时的最大初动能.6. (2019·河北保定模拟)如图所示,这是一个研究光电效应的电路图,下列叙述中正确的是( )A .只调换电源的极性,移动滑片P ,当电流表示数为零时,电压表示数为遏止电压U 0的数值B .保持光照条件不变,滑片P 向右滑动的过程中,电流表示数将一直增大C .不改变光束颜色和电路,增大入射光束强度,电流表示数会增大D .阴极K 需要预热,光束照射后需要一定的时间才会有光电流【答案】AC.【解析】只调换电源的极性,移动滑片P ,电场力对电子做负功,当电流表示数为零时,则有eU =12mv 2m,那么电压表示数为遏止电压U 0的数值,故A 项正确;当其他条件不变,P 向右滑动,加在光电管两端的电压增加,光电子运动更快,由I =q t得电流表读数变大,若电流达到饱和电流,则电流表示数不会增大,B 项错误;只增大入射光束强度时,单位时间内光电子数变多,电流表示数变大,C 项正确;因为光电效应的发生是瞬间的,阴极K 不需要预热,所以D 项错误.7.(2019·哈尔滨六中二次模拟)某半导体激光器发射波长为1.5×10-6 m ,功率为5.0×10-3 W 的连续激光.已 知可见光波长的数量级为10-7 m ,普朗克常量h =6.63×10-34 J·s ,该激光器发出的 ( )A .是紫外线B .是红外线C .光子能量约为1.3×10-13 JD .光子数约为每秒3.8×1016个【答案】BD【解析】波长的大小大于可见光的波长,属于红外线,故A错误,B正确.光子能量E=h cλ=6.63×10-34×3×1081.5×10-6J=1.326×10-19 J,故C错误.每秒钟发出的光子数n=PtE≈3.8×1016,故D正确.9.(2019·辽宁鞍山一中模拟)按如图的方式连接电路,当用紫光照射阴极K时,电路中的微安表有示数.则下列正确的叙述是()A. 如果仅将紫光的光强减弱一些,则微安表可能没有示数B.仅将滑动变阻器的触头向右滑动一些,则微安表的示数一定增大C.仅将滑动变阻器的触头向左滑动一些,则微安表的示数可能不变D.仅将电源的正负极对调,则微安表仍可能有示数【答案】CD【解析】如果仅将紫光的光强减弱一些,则单位时间内逸出的光电子数减小,则微安表示数减小,选项A 错误;饱和光电流与入射光的强度有关,仅将滑动变阻器的触头向右滑动,不改变光的强度,则微安表的示数不一定增大;同理仅将滑动变阻器的触头向左滑动一些,则微安表的示数可能不变,故B错误,C正确.将电路中电源的极性反接后,即加上反向电压,若光电子的动能足够大,电路中还有光电流,微安表仍可能有示数,故D正确10. (2019·河北保定模拟)如图所示,这是一个研究光电效应的电路图,下列叙述中正确的是()A.只调换电源的极性,移动滑片P,当电流表示数为零时,电压表示数为遏止电压U0的数值B.保持光照条件不变,滑片P向右滑动的过程中,电流表示数将一直增大C.不改变光束颜色和电路,增大入射光束强度,电流表示数会增大D .阴极K 需要预热,光束照射后需要一定的时间才会有光电流【答案】AC.【解析】只调换电源的极性,移动滑片P ,电场力对电子做负功,当电流表示数为零时,则有eU =12mv 2m,那么电压表示数为遏止电压U 0的数值,故A 项正确;当其他条件不变,P 向右滑动,加在光电管两端的电压增加,光电子运动更快,由I =q t得电流表读数变大,若电流达到饱和电流,则电流表示数不会增大,B 项错误;只增大入射光束强度时,单位时间内光电子数变多,电流表示数变大,C 项正确;因为光电效应的发生是瞬间的,阴极K 不需要预热,所以D 项错误.。

高三光电效应题型归纳总结

高三光电效应题型归纳总结

高三光电效应题型归纳总结光电效应是物理学中的一个重要概念,也是高中物理学中的一项核心内容。

在高三的学习中,光电效应常常是物理考试中的重点考点之一。

为了帮助同学们更好地理解和掌握光电效应的相关知识,本文将对高三光电效应题型做一归纳总结,并提供相应的解题方法和思路。

一、基础知识回顾在讨论光电效应的题目之前,我们首先回顾一下光电效应的基础知识。

光电效应指的是当光照射到金属表面时,会引起金属上的电子发射现象。

其中光照射到金属表面的光子,会把能量转移给金属上的自由电子,当光子的能量大于或等于临界能量时,电子能够克服金属束缚力,从金属表面逸出。

根据光电效应的相关公式,我们可以推导出光电子最大动能公式和光电流公式等重要的物理关系式。

二、单选题型1. 光电效应中,下列哪种情况可以增大光电流?A. 提高光频率B. 减小光强度C. 使用长波光D. 减小金属的逸出功解题提示:根据光电效应的基本原理可知,光电流与光强度成正比,因此选项B 不符合题意。

逸出功和光频率与光电流无关,因此选项A、C、D 也不符合题意。

因此,答案为 B。

2. 光电效应实验中,下列哪个条件不影响光电流的大小?A. 光强度B. 金属的逸出功C. 光的频率D. 照射时间解题提示:根据光电效应的基本原理可知,光电流与光强度、光的频率、照射时间都有关。

唯独金属的逸出功与光电流无关。

因此,答案为 B。

三、计算题型1. 金属表面的逸出功为3.2eV,光的频率为5×10^14 Hz。

求最大光电子动能。

解题思路:根据光电效应的公式 E = hf,其中 E 表示能量,h 为普朗克常数,f 表示频率。

根据题目中给出的数据可知,光子的能量为 E = 3.2eV,光的频率为 f = 5×10^14 Hz。

将这些数据代入公式中,可以求得最大光电子动能。

解题步骤:1) 将光子的能量转换为焦耳单位:1eV = 1.6×10^-19 J。

2) 将光子的能量和频率代入公式 E = hf,解出能量 E。

高考物理知识学习总结要点:光电效应

高考物理知识学习总结要点:光电效应

高考物理知识点:光电效应www.5ykj.com 光照射到金属上,引起物质的电性质发生变化。

这类光变致电的现象被人们统称为光电效应。

光电效应分为光电子发射、光电导效应和阻挡层光电效应,又称光生伏特效应。

前一种现象发生在物体表面,又称外光电效应。

后两种现象发生在物体内部,称为内光电效应。

赫兹于1887年发现光电效应,爱因斯坦第一个成功的解释了光电效应。

光波长小于某一临界值时方能发射电子,即极限波长,对应的光的频率叫做极限频率。

临界值取决于金属材料,而发射电子的能量取决于光的波长而与光强度无关,这一点无法用光的波动性解释。

还有一点与光的波动性相矛盾,即光电效应的瞬时性,按波动性理论,如果入射光较弱,照射的时间要长一些,金属中的电子才能积累住足够的能量,飞出金属表面。

可事实是,只要光的频率高于金属的极限频率,光的亮度无论强弱,光子的产生都几乎是瞬时的,不超过十的负九次方秒。

正确的解释是光必定是由与波长有关的严格规定的能量单位所组成。

光电效应里电子的射出方向不是完全定向的,只是大部分都垂直于金属表面射出,与光照方向无关。

光是电磁波,但是光是高频震荡的正交电磁场,振幅很小,不会对电子射出方向产生影响。

光电效应说明了光具有粒子性。

相对应的,光具有波动性最典型的例子就是光的干涉和衍射。

只要光的频率超过某一极限频率,受光照射的金属表面立即就会逸出光电子,发生光电效应。

当在金属外面加一个闭合电路,加上正向电源,这些逸出的光电子全部到达阳极便形成所谓的光电流。

在入射光一定时,增大光电管两极的正向电压,提高光电子的动能,光电流会随之增大。

但光电流不会无限增大,要受到光电子数量的约束,有一个最大值,这个值就是饱和电流。

所以,当入射光强度增大时,根据光子假设,入射光的强度决定于单位时间里通过单位垂直面积的光子数,单位时间里通过金属表面的光子数也就增多,于是,光子与金属中的电子碰撞次数也增多,因而单位时间里从金属表面逸出的光电子也增多,饱和电流也随之增大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年高考物理热点题型归纳与精讲-专题31 光电效应【专题导航】目录热点题型一光电效应现象和光电效应方程的应用 (1)热点题型二光电效应的图象问题 (3)(一)对E k-ν图象的理解 (4)(二)对I-U图象的理解 (5)(三)对Uc-ν图象的理解 (7)热点题型三对光的波粒二象性的理解 (8)【题型演练】 (9)【题型归纳】热点题型一光电效应现象和光电效应方程的应用1.对光电效应的四点提醒(1)能否发生光电效应,不取决于光的强度而取决于光的频率.(2)光电效应中的“光”不是特指可见光,也包括不可见光.(3)逸出功的大小由金属本身决定,与入射光无关.(4)光电子不是光子,而是电子.2.两条对应关系(1)光强大→光子数目多→发射光电子多→光电流大;(2)光子频率高→光子能量大→光电子的最大初动能大.3.定量分析时应抓住三个关系式(1)爱因斯坦光电效应方程:E k=hν-W0.(2)最大初动能与遏止电压的关系:E k=eU c.(3)逸出功与极限频率的关系:W0=hνc.4.区分光电效应中的四组概念(1)光子与光电子:光子指光在空间传播时的每一份能量,光子不带电;光电子是金属表面受到光照射时发射出来的电子,其本质是电子.(2)光电子的动能与光电子的最大初动能:电子吸收光子能量后,一部分克服阻碍作用做功,剩余部分转化为光电子的初动能,只有直接从金属表面飞出的光电子才具有最大初动能.(3)光电流和饱和光电流:金属板飞出的光电子到达阳极,回路中便产生光电流,随着所加正向电压的增大,光电流趋于一个饱和值,这个饱和值是饱和光电流,在一定的光照条件下,饱和光电流与所加电压大小无关. (4)入射光强度与光子能量:入射光强度指单位时间内照射到金属表面单位面积上的总能量.【例1】(2018·高考全国卷Ⅱ)用波长为300 nm 的光照射锌板,电子逸出锌板表面的最大初动能为1.28×10-19 J .已知普朗克常量为6.63×10-34J·s ,真空中的光速为3.00×108 m·s -1.能使锌产生光电效应的单色光的最低频率约为( ) A .1×1014 Hz B .8×1014 Hz C .2×1015 Hz D .8×1015 Hz【答案】B【解析】设单色光的最低频率为v 0,由E k =hv -W 0知E k =hv 1-W 0,0=hv 0-W 0,又知v 1=c λ,整理得v 0=c λ-E kh,代入数据解得v 0≈8×1014 Hz. 【变式1】.(2019·山东泰安检测)如图所示是光电管的原理图,已知当有波长为λ0的光照到阴极K 上时,电路中有光电流,则( )A .若增加电路中电源电压,电路中光电流一定增大B .若将电源极性反接,电路中一定没有光电流产生C .若换用波长为λ1(λ1>λ0)的光照射阴极K 时,电路中一定没有光电流D .若换用波长为λ2(λ2<λ0)的光照射阴极K 时,电路中一定有光电流 【答案】D【解析】光电流的强度与入射光的强度有关,当光越强时,光电子数目会增多,初始时电压增加光电流可能会增加,当达到饱和光电流后,再增大电压,光电流不会增大,故A 错误;将电路中电源的极性反接,电子受到电场阻力,到达A极的数目会减小,则电路中电流会减小,甚至没有电流,故B错误;波长为λ1(λ1>λ0)的光的频率有可能大于极限频率,电路中可能有光电流,故C错误;波长为λ2(λ2<λ0)的光的频率一定大于极限频率,电路中一定有光电流,故D正确.【变式2】(2017·高考全国卷Ⅱ)在光电效应实验中,分别用频率为νa、νb的单色光a、b照射到同种金属上,测得相应的遏止电压分别为U a和U b、光电子的最大初动能分别为E k a和E k b.h为普朗克常量.下列说法正确的是()A.若νa>νb,则一定有U a<U b B.若νa>νb,则一定有E k a>E k bC.若U a<U b,则一定有E k a<E k b D.若νa>νb,则一定有hνa-E k a>hνb-E k b【答案】BC【解析】由爱因斯坦光电效应方程E km=hν-W0,又由动能定理有E km=eU c,当νa>νb时,E k a>E k b,U a>U b,A错误,B正确;若U a<U b,则有E k a<E k b,C正确;同种金属的逸出功不变,则W0=hν-E km不变,D错误.热点题型二光电效应的图象问题(一)对E k-ν图象的理解由E k-ν图象可以得到的信息(1)极限频率:图线与ν轴交点的横坐标νc.(2)逸出功:图线与E k轴交点的纵坐标的绝对值E=W0.(3)普朗克常量:图线的斜率k=h.【例2】.(2019·南平市检测)用如图甲所示的装置研究光电效应现象.闭合电键S,用频率为ν的光照射光电管时发生了光电效应.图乙是该光电管发生光电效应时光电子的最大初动能E k与入射光频率ν的关系图象,图线与横轴的交点坐标为(a,0),与纵轴的交点坐标为(0,-b),下列说法中正确的是()A.普朗克常量为h=abB.断开电键S后,电流表G的示数不为零C.仅增加照射光的强度,光电子的最大初动能将增大D.保持照射光强度不变,仅提高照射光频率,电流表G的示数保持不变【答案】B【解析】由hν=W0+E k,变形得E k=hν-W0,可知图线的斜率为普朗克常量,即h=ba,故A错误;断开电键S后,仍有光电子产生,所以电流表G的示数不为零,故B正确;只有增大入射光的频率,才能增大光电子的最大初动能,与光的强度无关,故C错误;保持照射光强度不变,仅提高照射光频率,单个光子的能量增大,而光的强度不变,那么光子数一定减少,发出的光子数也减少,电流表G的示数要减小,故D错误.【变式1】(多选)如图所示是用光照射某种金属时逸出的光电子的最大初动能随入射光频率的变化图线(直线与横轴的交点坐标4.27,与纵轴交点坐标0.5).由图可知()A.该金属的截止频率为4.27×1014 Hz B.该金属的截止频率为5.5×1014 HzC.该图线的斜率表示普朗克常量D.该金属的逸出功为0.5 eV【答案】AC【解析】图线在横轴上的截距为截止频率,A正确、B错误;由光电效应方程E k=hν-W0,可知图线的斜率为普朗克常量,C正确;金属的逸出功为:W0=hν0=6.63×10-34×4.27×10141.6×10-19eV≈1.77 eV,D错误.【变式2】.(多选)(2019·山东天成大联考)某种金属发生光电效应时,光电子的最大初动能E k与入射光频率ν的关系如图所示,E、ν0为已知量,由图线信息可知()A.逸出功W0=E B.图象的斜率表示普朗克常量的倒数C.图中E与ν0的值与入射光的强度、频率均无关D.若入射光频率为3ν0,则光电子的最大初动能为3E 【答案】AC【解析】根据光电效应方程有E k=hν-W0,根据数学函数知图象与纵坐标的交点表示逸出功,所以逸出功W0=E,图象的斜率表示普朗克常量,故A正确,故B错误;逸出功和极限频率的大小与入射光的强度、频率均无关,由金属本身决定,故C正确;根据光电效应方程:E k=hν-W0,当入射光频率为3ν0,则光电子的最大初动能为2E,故D错误.(二)对I-U图象的理解由I-U图象可以得到的信息(1)遏止电压U c :图线与横轴的交点的绝对值. (2)饱和光电流I m :电流的最大值. (3)最大初动能:E km =eU c .【例2】(2019·河南新乡模拟)如图甲所示,用频率为ν0的光照射某种金属发生光电效应,测出光电流i 随电 压U 的变化图象如图乙所示,已知普朗克常量为h ,光电子带电荷量为e .下列说法中正确的是 ( )A. 入射光越强,光电子的能量越高 B .光电子的最大初动能为hν0C .该金属的逸出功为hν0—eU 0D .用频率为eU 0h 的光照射该金属时不可能发生光电效应【答案】C【解析】根据光电效应的规律可知,入射光的频率越大,则逸出光电子的能量越大,与光强无关,选项A 错误;根据光电效应的规律,光电子的最大初动能为E km =hν0-W 逸出功,选项B 错误;由图象可知E km = eU 0,则该金属的逸出功为hν0-eU 0,选项C 正确;频率为eU 0h 的光的能量为hν= eU 0,当大于金属的逸出功(hν0-eU 0)时,同样可发生光电效应,选项D 错误;故选C.【变式】.在光电效应实验中,某同学用同一光电管在不同实验条件下得到三条光电流与电压之间的关系曲线(甲光、乙光、丙光),如图所示.则可判断出( )A .甲光的频率大于乙光的频率B .乙光的波长大于丙光的波长C .乙光对应的截止频率大于丙光的截止频率D .甲光对应的光电子最大初动能大于丙光对应的光电子最大初动能 【答案】B【解析】由图象知,甲、乙光对应的遏止电压相等,由eU c =E k 和hν=W 0+E k 得甲、乙光频率相等,A 错误;丙光的频率大于乙光的频率,则丙光的波长小于乙光的波长,B 正确;由hνc =W 0得甲、乙、丙光对应的截止频率相同,C 错误;由光电效应方程知,甲光对应的光电子最大初动能小于丙光对应的光电子最大初动能,D 错误.(三)对Uc -ν图象的理解 由U c -ν图象可以得到的信息(1)截止频率νc :图线与横轴的交点.(2)遏止电压U c :随入射光频率的增大而增大.(3)普朗克常量h :等于图线的斜率与电子电荷量的乘积,即h =ke .(注:此时两极之间接反向电压) 【例4】.(多选)(2019·重庆万州月考)某金属在光的照射下产生光电效应,其遏止电压U c 与入射光频率ν的关系图象如图所示.则由图象可知 ( )A .该金属的逸出功等于hν0B .遏止电压是确定的,与入射光的频率无关C .入射光的频率为2ν0时,产生的光电子的最大初动能为hν0D .入射光的频率为3ν0时,产生的光电子的最大初动能为hν0 【答案】AC【解析】当遏止电压为零时,最大初动能为零,则入射光的能量等于逸出功,所以W 0=hν0,故选项A 正确;根据光电效应方程E km =hν-W 0和-eU c =0-E km 得,U c =h e ν-W 0e,可知当入射光的频率大于极限频率时,遏止电压与入射光的频率成线性关系,故选项B 错误;从图象上可知, 逸出功W 0=hν0.根据光电效应方程E km =h ·2ν0-W 0=hν0,故选项C 正确;E km =h ·3ν0-W 0=2hν0,故选项D 错误.【变式】. 在某次光电效应实验中,得到的遏止电压U c 与入射光的频率ν的关系如图所示.若该直线的斜率和纵轴截距分别为k 和b ,电子电荷量的绝对值为e ,则普朗克常量可表示为________,所用材料的逸出功可表示为________.【答案】ek -eb【解析】根据光电效应方程E km =hν-W 0及E km =eU c 得U c =hνe -W 0e ,故h e =k ,b =-W 0e ,得h =ek ,W 0=-eb .热点题型三 对光的波粒二象性的理解 对波粒二象性的理解【例5】1927年戴维逊和革末完成了电子衍射实验,该实验是荣获诺贝尔奖的重大近代物理实验之一.如图所示的是该实验装置的简化图,下列说法正确的是( )A .亮条纹是电子到达概率大的地方B .该实验说明物质波理论是正确的C .该实验再次说明光子具有波动性D .该实验说明实物粒子具有波动性 【答案】ABD.【解析】电子属于实物粒子,电子衍射实验说明电子具有波动性,说明物质波理论是正确的,与光的波动性无关,B 、D 正确,C 错误;物质波也是概率波,亮条纹是电子到达概率大的地方,A 正确. 【变式1】实物粒子和光都具有波粒二象性.下列事实中突出体现波动性的是( )A .电子束通过双缝实验装置后可以形成干涉图样B .β射线在云室中穿过会留下清晰的径迹C .人们利用慢中子衍射来研究晶体的结构D .人们利用电子显微镜观测物质的微观结构 【答案】 ACD【解析】 电子束通过双缝产生干涉图样,体现的是波动性,A 正确;β射线在云室中留下清晰的径迹,不能体现波动性,B 错误;衍射体现的是波动性,C 正确;电子显微镜利用了电子束波长短的特性,D 正确. 【变式2】关于物质的波粒二象性,下列说法正确的是 ( )A .光的波长越短,光子的能量越大,光的粒子性越明显B .不仅光子具有波粒二象性,一切运动的微粒都具有波粒二象性C .光电效应现象揭示了光的粒子性D .实物的运动有特定的轨道,所以实物不具有波粒二象性 【答案】ABC【解析】据ν=cλ可知光的波长越短则频率越大,据E =hν可知光能量越大,A 正确;波粒二象性是微观世界特有的规律,一切运动的微粒都具有波粒二象性,B 正确;光电效应现象说明光具有粒子性,C 正确;由德布罗意理论知,宏观物体的德布罗意波的波长太小,实际很难观察到波动性,但仍具有波粒二象性,D 错误.【题型演练】1.用很弱的光做双缝干涉实验,把入射光减弱到可以认为光源和感光胶片之间不可能同时有两个光子存在, 如图所示是不同数量的光子照射到感光胶片上得到的照片.这些照片说明( )A .光只有粒子性没有波动性B .光只有波动性没有粒子性C.少量光子的运动显示波动性,大量光子的运动显示粒子性D.少量光子的运动显示粒子性,大量光子的运动显示波动性【答案】D【解析】光具有波粒二象性,这些照片说明少量光子的运动显示粒子性,大量光子的运动显示波动性,故D 正确.2.用光照射某种金属,有光电子从金属表面逸出,如果光的频率不变,而减弱光的强度,则() A.逸出的光电子数减少,光电子的最大初动能不变B.逸出的光电子数减少,光电子的最大初动能减小C.逸出的光电子数不变,光电子的最大初动能减小D.光的强度减弱到某一数值,就没有光电子逸出了【答案】A【解析】光的频率不变,表示光子能量不变,光的强度减弱,仍会有光电子从该金属表面逸出,逸出的光电子的最大初动能也不变;而减弱光的强度,逸出的光电子数就会减少,选项A正确.3.在光电效应实验中,用同一种单色光,先后照射锌和银的表面,都能发生光电效应.对于这两个过程,下列四个物理过程中,一定相同的是()A.遏止电压B.饱和光电流C.光电子的最大初动能D.逸出功【答案】B【解析】同一种单色光照射不同的金属,入射光的频率和光子能量一定相同,金属逸出功不同,根据光电效应方程E km=hν-W0知,最大初动能不同,则遏止电压不同;同一种单色光照射,入射光的强度相同,所以饱和光电流相同.故选项B正确.4.(2019·西藏拉萨中学六次月考)关于光电效应的规律,下面说法正确的是()A.当某种色光照射金属表面时,能产生光电效应,入射光的频率越高,产生的光电子最大初动能也就越大B.当某种色光照射金属表面时,能产生光电效应,如果入射光的强度减弱,从光照至金属表面上到发射出光电子之间的时间间隔将明显增加C.对某金属来说,入射光波长必须大于一极限值才能产生光电效应D.同一频率的光照射不同的金属,如果都能产生光电效应,则所有金属产生的光电子的最大初动能一定相同【答案】A【解析】根据光电效应方程E km =hν-W 0,知入射光的频率越高,产生的光电子的最大初动能越大,故A 正确.光电效应具有瞬时性,入射光的强度不影响发出光电子的时间间隔,故B 错误.发生光电效应的条件是入射光的频率大于金属的极限频率,即入射光的波长小于金属的极限波长,故C 错误.不同的金属逸出功不同,根据光电效应方程E km =hν-W 0,知同一频率的光照射不同金属,如果都能产生光电效应,光电子的最大初动能不同,故D 错误.5.(2019·北京朝阳模拟)用绿光照射一个光电管,能产生光电效应.欲使光电子从阴极逸出时最大初动能增大,可以( )A .改用红光照射B .改用紫光照射C .改用蓝光照射D .增加绿光照射时间【答案】BC.【解析】光电子的最大初动能与照射时间或照射强度无关,而与入射光子的能量有关,入射光子的能量越大,光电子从阴极逸出时最大初动能越大,所以本题中可以改用比绿光光子能量更大的紫光、蓝光照射,以增大光电子从阴极逸出时的最大初动能.6. (2019·河北保定模拟)如图所示,这是一个研究光电效应的电路图,下列叙述中正确的是( )A .只调换电源的极性,移动滑片P ,当电流表示数为零时,电压表示数为遏止电压U 0的数值B .保持光照条件不变,滑片P 向右滑动的过程中,电流表示数将一直增大C .不改变光束颜色和电路,增大入射光束强度,电流表示数会增大D .阴极K 需要预热,光束照射后需要一定的时间才会有光电流【答案】AC.【解析】只调换电源的极性,移动滑片P ,电场力对电子做负功,当电流表示数为零时,则有eU =12mv 2m,那么电压表示数为遏止电压U 0的数值,故A 项正确;当其他条件不变,P 向右滑动,加在光电管两端的电压增加,光电子运动更快,由I =q t得电流表读数变大,若电流达到饱和电流,则电流表示数不会增大,B 项错误;只增大入射光束强度时,单位时间内光电子数变多,电流表示数变大,C 项正确;因为光电效应的发生是瞬间的,阴极K 不需要预热,所以D 项错误.7.(2019·哈尔滨六中二次模拟)某半导体激光器发射波长为1.5×10-6 m,功率为5.0×10-3 W的连续激光.已知可见光波长的数量级为10-7 m,普朗克常量h=6.63×10-34 J·s,该激光器发出的()A.是紫外线B.是红外线C.光子能量约为1.3×10-13 J D.光子数约为每秒3.8×1016个【答案】BD【解析】波长的大小大于可见光的波长,属于红外线,故A错误,B正确.光子能量E=h cλ=6.63×10-34×3×1081.5×10-6J=1.326×10-19 J,故C错误.每秒钟发出的光子数n=PtE≈3.8×1016,故D正确.9.(2019·辽宁鞍山一中模拟)按如图的方式连接电路,当用紫光照射阴极K时,电路中的微安表有示数.则下列正确的叙述是()A. 如果仅将紫光的光强减弱一些,则微安表可能没有示数B.仅将滑动变阻器的触头向右滑动一些,则微安表的示数一定增大C.仅将滑动变阻器的触头向左滑动一些,则微安表的示数可能不变D.仅将电源的正负极对调,则微安表仍可能有示数【答案】CD【解析】如果仅将紫光的光强减弱一些,则单位时间内逸出的光电子数减小,则微安表示数减小,选项A错误;饱和光电流与入射光的强度有关,仅将滑动变阻器的触头向右滑动,不改变光的强度,则微安表的示数不一定增大;同理仅将滑动变阻器的触头向左滑动一些,则微安表的示数可能不变,故B错误,C正确.将电路中电源的极性反接后,即加上反向电压,若光电子的动能足够大,电路中还有光电流,微安表仍可能有示数,故D正确10. (2019·河北保定模拟)如图所示,这是一个研究光电效应的电路图,下列叙述中正确的是()A .只调换电源的极性,移动滑片P ,当电流表示数为零时,电压表示数为遏止电压U 0的数值B .保持光照条件不变,滑片P 向右滑动的过程中,电流表示数将一直增大C .不改变光束颜色和电路,增大入射光束强度,电流表示数会增大D .阴极K 需要预热,光束照射后需要一定的时间才会有光电流【答案】AC.【解析】只调换电源的极性,移动滑片P ,电场力对电子做负功,当电流表示数为零时,则有eU =12mv 2m,那么电压表示数为遏止电压U 0的数值,故A 项正确;当其他条件不变,P 向右滑动,加在光电管两端的电压增加,光电子运动更快,由I =q t得电流表读数变大,若电流达到饱和电流,则电流表示数不会增大,B 项错误;只增大入射光束强度时,单位时间内光电子数变多,电流表示数变大,C 项正确;因为光电效应的发生是瞬间的,阴极K 不需要预热,所以D 项错误.。

相关文档
最新文档