定积分单元测试题

合集下载

定积分练习题精品文档10页

定积分练习题精品文档10页

第九章 定 积 分练 习 题 §1定积分概念习 题1.按定积分定义证明:⎰-=ba ab k kdx ).(2.通过对积分区间作等分分割,并取适当的点集{}i ξ,把定积分看作是对应的积分和的极限,来计算下列定积分: (1)⎰∑=+=112233)1(41:;ni n n i dx x 提示 (2)⎰10;dx e x(3)⎰bax dx e ; (4)2(0).(:bi adxa b xξ<<=⎰提示取 §2 牛顿一菜布尼茨公式1.计算下列定积分:(1)⎰+10)32(dx x ; (2)⎰+-102211dx x x ; (3)⎰2ln e e x x dx ;(4)⎰--102dx e e x x ; (5)⎰302tan πxdx (6)⎰+94;)1(dx xx (7)⎰+40;1x dx(8)⎰eedx x x 12)(ln 1 2.利用定积分求极限:(1));21(1334lim n nn +++∞→Λ (2);)(1)2(1)1(1222lim ⎥⎦⎤⎢⎣⎡++++++∞→n n n n n n Λ (3));21)2(111(222lim nn n n n +++++∞→Λ(4))1sin 2sin (sin 1lim n n n n nn -+++∞→Λππ 3.证明:若f 在[a,b]上可积,F 在[a,b]上连续,且除有限个点外有F '(x )=f (x),则有()()().ba f x dx Fb F a =-⎰§3 可积条件1.证明:若T ˊ是T 增加若干个分点后所得的分割,则∑∑∆≤∆'.''T Ti i i iχωχω2.证明:若f 在[a,b]上可积,[][][]上也可积在则ββ,,,,a f b a a ⊂.3.设f ﹑g 均为定义在[a,b]上的有界函数。

证明:若仅在[a,b]中有限个点处()(),χχg f ≠则当f 在[a,b]上可积时,g 在[a,b]上也可积,且()().χχχχd g a bd f a b ⎰⎰=3.设f 在[a,b]上有界,{}[],,b a a n ⊂.lim c ann =∞→证明:在[a,b]上只有()Λ,2,1=n a n 为其间断点,则f 在[a,b]上可积。

(完整版)定积分练习题

(完整版)定积分练习题

一、选择题1. 设连续函数f (x )>0,则当a <b 时,定积分⎠⎛a bf (x )d x 的符号( ) A .一定是正的 B .一定是负的C .当0<a <b 时是正的,当a <b <0时是负的D .以上结论都不对解析: 由⎠⎛a bf (x )d x 的几何意义及f (x )>0,可知⎠⎛a b f (x )d x 表示x =a ,x =b ,y =0与y =f (x )围成的曲边梯形的面积.∴⎠⎛ab f (x )d x >0.答案:A 2. 若22223,,sin a x dx b x dx c xdx ===⎰⎰⎰,则a ,b ,c 的大小关系是( )A .a <c <bB .a <b <cC .c <b <aD .c <a <b解析:a =13x 3 |20=83,b =14x 4 |20=4,c =-cos x |20=1-cos2,∴c <a <b . 答案:D3. 求曲线y =x 2与y =x 所围成图形的面积,其中正确的是( )A .S =⎠⎛01(x 2-x )d xB .S =⎠⎛01(x -x 2)d xC .S =⎠⎛01(y 2-y )d yD .S =⎠⎛01(y -y )d y[答案] B[解析] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x 2,故函数y =x 2与y =x 所围成图形的面积S =⎠⎛01(x -x 2)d x .4.11(sin 1)x dx -+⎰的值为( )A. 2B.0C.22cos1+D. 22cos1- 【答案】A 【解析】[][]1111(sin 1)cos (cos11)cos(1)12x dx x x --+=-+=-+----=⎰5. 由曲线22y x x =+与直线y x =所围成的封闭图形的面积为 ( )A .16B .13C .56D .23【答案】 A由22,x x x +=解得两个交点坐标为(-1,0)和(0,0), 利用微积分的几何含义可得封闭图形的面积为:23201111111((2)()|().32326S x x x dx x x --=-+=--=--=⎰ 二、填空题6. 已知f (x )=⎠⎛0x(2t -4)d t ,则当x ∈[-1,3]时,f (x )的最小值为________.解析: f (x )=⎠⎛0x(2t -4)d t =(t 2-4t )| x 0=x 2-4x =(x -2)2-4(-1≤x ≤3),∴当x =2时,f (x )min =-4.答案: -47. 一物体以v (t )=t 2-3t +8(m/s)的速度运动,在前30 s 内的平均速度为________. 解析:由定积分的物理意义有:s =3020(38)t t dt -+⎰=(13t 3-32t 2+8t )|300=7890(m).∴v =s t =789030=263(m/s).答案:263 m/s 三、解答题8.求下列定积分:(1)⎠⎛12⎝⎛⎭⎫x -x 2+1x d x ;(2)(cos e )d x x x π-⎰+;(3)⎠⎛49x (1+x )d x ;(4)⎠⎛0πcos 2x 2d x .解析: (1)⎠⎛12⎝⎛⎭⎫x -x 2+1x d x =⎠⎛12x d x -⎠⎛12x 2d x +⎠⎛121x d x =x 22| 21-x 33| 21+ln x |21=32-73+ln 2=ln 2-56. (2)(cos e )d x x x π-⎰+=00cosxd e d x x x ππ--+⎰⎰=sin x ||0-π+e x 0-π=1-1eπ. (3)⎠⎛49x (1+x )d x =⎠⎛49(x 12+x )d x =⎪⎪⎝⎛⎭⎫23x 32+12x 249=23×932-23×432+12×92-12×42=4516. (4)⎠⎛πcos 2x 2d x =⎠⎛0π1+cos x 2d x =12x |0π+12sin x |0π=π2.9. 已知函数f (x )=x 3+ax 2+bx +c 的图象如图:直线y =0在原点处与函数图象相切,且此切线与函数图象所围成的区域(阴影)面积为274,求f (x ).解:由f (0)=0得c =0, f ′(x )=3x 2+2ax +b . 由f ′(0)=0得b =0, ∴f (x )=x 3+ax 2=x 2(x +a ),由∫-a 0[-f (x )]d x =274得a =-3. ∴f (x )=x 3-3x 2.10.已知f (x )为二次函数,且f (-1)=2,f ′(0)=0,⎠⎛01f (x )d x =-2. (1)求f (x )的解析式;(2)求f (x )在[-1,1]上的最大值与最小值. 解析: (1)设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b .由f (-1)=2,f ′(0)=0,得⎩⎪⎨⎪⎧ a -b +c =2b =0,即⎩⎪⎨⎪⎧c =2-ab =0.∴f (x )=ax 2+(2-a ).又⎠⎛01f (x )d x =⎠⎛01[ax 2+(2-a )]d x=⎣⎡⎦⎤13ax 3+(2-a )x | 10=2-23a =-2, ∴a =6,∴c =-4. 从而f (x )=6x 2-4.(2)∵f (x )=6x 2-4,x ∈[-1,1], 所以当x =0时,f (x )min =-4; 当x =±1时,f (x )max =2.B 卷:5+2+2一、选择题1. 已知f (x )为偶函数且61(),2f x dx =⎰则66()f x dx -⎰等于( )A .2B .4C .1D .-1解析:∵f (x )为偶函数,∴661()(),2f x dx f x dx -==⎰⎰∴6660()2() 1.f x dx f x dx -==⎰⎰答案:C2. (改编题)A . 3 B. 4 C. 3.5 D. 4.5 【答案】C【解析】2220202101102,0()2,()(2)(2)(2)|(2)|2,02232 3.5.2x x x x f x x f x dx x dx x dx x x x x ----≥⎧=-=∴=++-=++-⎨+<⎩=+=⎰⎰⎰3. 已知函数y =x 2与y =kx (k >0)的图象所围成的阴影部分的面积为92,则k 等于( )A .2B .1C .3D .4答案:C解析:由⎩⎪⎨⎪⎧y =x2y =kx 消去y 得x 2-kx =0,所以x =0或x =k ,则阴影部分的面积为 ∫k 0(kx -x 2)d x =(12kx 2-13x 3) |k 0=92. 即12k 3-13k 3=92,解得k =3. 4. 一物体在力F (x )=⎩⎪⎨⎪⎧10 (0≤x ≤2)3x +4 (x >2)(单位:N)的作用下沿与力F 相同的方向,从x=0处运动到x =4(单位:m)处,则力F (x )作的功为( )A .44B .46C .48D .50解析: W =⎠⎛04F (x )d x =⎠⎛0210d x +⎠⎛24(3x +4)d x =10x | 20+⎝⎛⎭⎫32x 2+4x | 42=46.答案:B5. 函数()x f 满足()00=f ,其导函数()x f '的图象如下图,则()x f 的图象与x 轴所围成的A .31 B .34 C .2 D .38 【答案】B【解析】由导函数()x f '的图像可知,函数()x f 为二次函数,且对称轴为1,x =-开口方向向上,设函数2()(0),(0)0,0.()2,f x ax bx c a f c f x ax b '=++>=∴==+因过点(-1,0)与(0,2),则有2(1)0,202,1, 2.a b a b a b ⨯-+=⨯+=∴==2()2f x x x ∴=+, 则()x f 的图象与x 轴所围成的封闭图形的面积为232032-22114(2)()|=2)(2).333S x x dx x x -=--=--⨯+-=⎰(- 二、填空题6.(改编题)设20lg ,0(),3,0ax x f x x t dt x >⎧⎪=⎨+≤⎪⎩⎰若((1))1,f f =则a 为 。

定积分练习题+答案

定积分练习题+答案

x
arctan(cos x) 2
04
27
8.
1 x5e x2 dx =
1
答案: 0 .
由于被积函数是奇函数.
9.设 f ( x) 是连续奇函数,且
1 f ( x)dx 1,则
0
f ( x)dx =
0
1
答案: 1
1
0
因为 f ( x) 是连续奇函数, 则 f ( x)dx f ( x)dx 0
ln(1 t)dt
9. lim 0
=(
x0 1 cos x
(A) 1
(B) 2
).
(C ) 4
(D) 8
答案: C.
sin2 x
因为 lim 0 ln(1 t)dt lim ln(1 sin2x) 2cos 2x
x 0 1 cos x
x 0
sin x
lim 2cos 2x lim ln(1 sin2x) sin2x
x 0
x 0 sin2x
sin x
2 lim sin2x 2sin x cos x 4
x 0 sin2x
sin x
18
10.设 F( x)
x 0
1 1 t2
dt
1 x 0
1 1 t2
dt
,则Biblioteka ().( A ) F(x) 0
( B ) F(x)
2
( C ) F( x) arctan x ( D ) F( x) 2arctan x
0
0
(C ) 0
( D ) 以上都不正确
二、填空题
1. lim 1 xndx = n 0
b
a
2. f ( x)dx f ( x)dx =

(完整版)定积分习题及答案

(完整版)定积分习题及答案

第五章 定积分(A 层次)1.⎰203cos sin πxdx x ; 2.⎰-adx x a x222; 3.⎰+31221xxdx ;4.⎰--1145x xdx ; 5.⎰+411x dx ; 6.⎰--14311x dx ;7.⎰+21ln 1e xx dx; 8.⎰-++02222x x dx; 9.dx x ⎰+π02cos 1; 10.dx x x ⎰-ππsin 4; 11.dx x ⎰-224cos 4ππ; 12.⎰-++55242312sin dx x x xx ;13.⎰342sin ππdx x x; 14.⎰41ln dx x x ; 15.⎰10xarctgxdx ; 16.⎰202cos πxdx e x ; 17.()dx x x ⎰π2sin ; 18.()dx x e⎰1ln sin ;19.⎰--243cos cos ππdx x x ; 20.⎰+4sin 1sin πdx xx ; 21.dx x xx ⎰+π02cos 1sin ;22.⎰-+2111ln dx xxx ; 23.⎰∞+∞-++dx x x 4211; 24.⎰20sin ln πxdx ; 25.()()⎰∞+++0211dx x x dxα()0≥α。

(B 层次)1.求由0cos 0=+⎰⎰xyttdt dt e 所决定的隐函数y 对x 的导数dxdy 。

2.当x 为何值时,函数()⎰-=xt dt te x I 02有极值?3.()⎰x x dt t dxd cos sin 2cos π。

4.设()⎪⎩⎪⎨⎧>≤+=1,211,12x x x x x f ,求()⎰20dx x f 。

5.()1lim22+⎰+∞→x dt arctgt xx 。

6.设()⎪⎩⎪⎨⎧≤≤=其它,00,sin 21πx x x f ,求()()⎰=x dt t f x 0ϕ。

7.设()⎪⎪⎩⎪⎪⎨⎧<+≥+=时当时当0,110,11x e x xx f x,求()⎰-21dx x f 。

定积分单元测试题

定积分单元测试题

一、、填空题(1)定积分的值只与_______及_______有关,而与积分变量的符号无关. (2)设()()()1132001,______1f x x f x dx f x dx x=+=+⎰⎰则. (3)⎰+badx x g x f x f )()()(1=,则⎰+badxx g x f x g )()()(= ;(4)(121sin ________x x dx -=⎰(5)设()()()()2_______xx e f x f dt -'=⎰连续,F x =t ,则F x(6)设()()220_______xd f x tf x t dt dx -=⎰连续,则. (7)设()()1ln 1,______1x t f x dt f x f t x ⎛⎫=+= ⎪+⎝⎭⎰则。

二、选择题(1) 设[]上连续在区间b a x f ,)(,则⎰⎰-babadt t f dx x f )()(的值为( )A .大于零B .小于零 C.等于零 D.以上都不对(2)dx x xx ⎰-+ππ1cos 23=( ) A .-2 B .-1C .0D .1(3)定积分dx x f ba⎰)(是( )A .的一个原函数)(x fB .确定的函数 C.的全体原函数)(x fD .任意常数()()()()()()000______xxf x x x x f x x x f t t t dt φφφ=→→⎰⎰0(4)设、在点的某邻域内连续且时,是的高阶无穷小,则时,sintdt 是的无穷小。

A. B. C.D 低阶高阶同阶非等价 .等价三、用定积分的定义计算(1)∑=∞→+ni n n in111lim;(2))0( 21lim 1>++++∞→p nn p p p p n 四、利用定积分求下图阴影部分面积,并求其绕X 、Y 轴旋转所形成的旋转体体积。

yx)(ayy2xxx22=y2-2+ π(b )(c) 五、计算1、设()⎪⎪⎩⎪⎪⎨⎧<+≥+=., x e,, x xx f x 011011,求⎰-2)1(dx x f . 2、求极限⎰⎰⎪⎭⎫ ⎝⎛∞→x x xx x dxe dx e 0220 22lim 3、求⎰1)(dx x f ,设()⎪⎩⎪⎨⎧≤<--⋅≤≤=.1 ,11,0 , x t t x t t x x x f 4、 ⎰--1145xxdx ; 5、⎰--223cos cos ππdx x x ;6、 ⎰exdx x 1ln ; 7、⎰π2)sin (dx x x ;8、⎰exdx 0ln ; 9、 ⎰-1131dx x 10、计算⎰∞+∞-++ 222x x dx六、证明;若函数)(x f 在],[b a 上连续,则⎰⎰-+-=1])([)()(dx x a b a f a b dx x f ba七、设)(x f 为连续正值函数,证明当0≥x 时,函数⎰⎰=x xdtt f dt t tf x 00 )()()( φ单调增加. 八设函数)(x f 连续,=)(x ϕ,)(1dt xt f ⎰且A xx f x =→)(lim(A 为常数),求)(x ϕ'并讨论)(x ϕ'在0=x 处的连续性.答案:一、1、被积函数 积分区间2、/3π 3、b-a-1 4、/2π 5、()()22x xxf x e f e --+6、()2xf x 7、21ln 2x 二、1、C 2、C 3、B 4、B 三、(1)∑=∞→+ni n n in111limnn i ni n 11lim1⋅+=∑=∞→⎰+=11dx x)1()1(121⎰++=x d x 1023)1(32⎥⎥⎦⎤⎢⎢⎣⎡+=x )122(32-=(2) 21lim1+∞→+++p pp p n n n 1lim 1n n i ni pn ⋅⎪⎭⎫ ⎝⎛=∑=∞→⎰=10 dx x p1111⎥⎦⎤⎢⎣⎡+=+p x p 11+=p 四、a 、311dx x ⎰332211112x y V dxV xdx xxππ==⎰⎰ b、1202)x dx ⎰())1324201222x y V x x dxV xx dx ππ=--=-⎰⎰c、222cos cos xdx xdx ππππ--⎰⎰222022cos2cos 2(cos )xy V xdxV x xdx x x dx ππππππππ-==+-⎰⎰⎰五、1、令t x =-1,则⎰-2)1(dx x f ⎰-=11)(dt t f ⎰-=1)(dt t f ⎰+1)(dt t f⎰-+=01 11dt e t⎰++1 0 11dt t ()⎰-+=1 1dt e ee ttt()[]10 1ln t ++⎰-⎪⎭⎫ ⎝⎛+-=01 111ttt de e e 2ln +2ln 1ln 01+⎥⎦⎤⎢⎣⎡+=-t t e e ()1ln +=e 2、0 3、t/2 4、 61;5、 34;6、 )1(412+e ;7、 463ππ-;8、 0;9、 发散.10、π; 六、令()x a b a x =+- 七、()0x φ'≥八、分析 当0≠x 时,将,)(1dt xt f ⎰通过变量代换,把被积函数中的x 转化到积分限上,再求)(x ϕ'.当0=x 时,由)(x ϕ的定义知=)0(ϕ()0)0(10 f dt f =⎰.根据A xx f x =→)(lim0知0)0(=f .由导数定义求出)0(ϕ'.再根据函数连续性的定义判断)(x ϕ'在0=x 处的连续性.解 令u xt =,则=)(x ϕ)()(11 0 xt d xt f x ⎰du u f x x⎰= 0)(1 )0(≠x)(x ϕ'=)(1x f x du u f xx ⎰- 0 2)(1 )0(≠x由A x x f x =→)(lim0及)(x f 的连续性知:)0(f )(lim 0x f x →=0)(lim 0=⋅=→x xx f x ,从而0)0(=ϕ.由导数定义得)0(ϕ'xx x )0()(limϕϕ-=→2)(limx du u f xx ⎰→=x x f x 2)(lim→= 2A= 故 )(x ϕ'⎪⎪⎩⎪⎪⎨⎧=≠-=⎰.0 ,2,0 ,)(1)( 0 2x A x du u f x x x f x又 )(lim 0x x ϕ'→⎥⎦⎤⎢⎣⎡-=⎰→du u f xx x f xx 020)(1)(lim 22A A A =-=)0(ϕ'=所以)(x ϕ'在0=x 处连续.。

(完整版)定积分的简单应用测试题

(完整版)定积分的简单应用测试题

一、选择题1.如图所示,阴影部分的面积为( )A.⎠⎛ab f (x )d xB.⎠⎛ab g (x )d xC.⎠⎛ab [f (x )-g (x )]d xD.⎠⎛ab [g (x )-f (x )]d x2.如图所示,阴影部分的面积是( )A .2 3B .2- 3 C.323D.3533.由曲线y =x 2-1、直线x =0、x =2和x 轴围成的封闭图形的面积(如图)是( )A.⎠⎛02(x 2-1)d xB .|⎠⎛02(x 2-1)d x |C.⎠⎛02|x 2-1|d xD.⎠⎛01(x 2-1)d x +⎠⎛12(x 2-1)d x4.设f (x )在[a ,b ]上连续,则曲线f (x )与直线x =a ,x =b ,y =0围成图形的面积为( )A.⎠⎛ab f (x )d xB .|⎠⎛ab f (x )d x |C.⎠⎛ab |f (x )|d xD .以上都不对5.曲线y =1-1681x 2与x 轴所围图形的面积是( ) A .4 B .3 C .2D.526.比较积分值dx x e ⎰102和dx ex⎰1的大小( )A .dx x e ⎰102大于dx ex⎰1B .dx x e⎰102小于dx ex⎰1C .dx x e⎰102等于dx ex⎰1D .dx x e ⎰102和dx ex⎰1不能比较7.由曲线y =x 2,y =x 3围成的封闭图形面积为( ) A.112 B.14 C.13D.7128.求⎰-11xdx 的解( ) A .0 B .1 C .-1D .2 9.求dx x ⎰212的解() A.12 B .31 C .32D .3710.过原点的直线l 与抛物线y =x 2-2ax (a >0)所围成的图形面积为92a 3,则直线l 的方程为( )A .y =±axB .y =axC .y =-axD .y =-5ax二、填空题11.由曲线y 2=2x ,y =x -4所围图形的面积是________.12.求函数y=f(x)=x 2+1在区间[0,1]上的平均值y -________.13.由两条曲线y =x 2,y =14x 2与直线y =1围成平面区域的面积是________.14.求经过点(0,1),并且在每一点P (x,y )处的切线的斜率为2x 的曲线方程__三、计算题 15.dxdy +x 32y=x 626x 2的通解16.dx e x x⎰+104)(5 17.⎰+102)1(x x dx18.dt te t⎰-20 三、解答题 19.求方程xxy x ysin 1/=+的通解 20.计算曲线y =x 2-2x +3与直线y =x +3所围图形的面积. 21.验证:函数x x y 21+=是方程x y dx dy -=1和y(2)=23的解 22.计算曲线f(x)=4-x 2与直线g(x)=-x+2所围成图形的面积 一、 选择题(每题3分,共30分) 1、()dx x ⎰+201的定积分是 ( )A 、1B 、2C 、3D 、4 2、已知圆r y x 222=+,则圆的面积是( )A 、πrB 、πr 2C 、2πrD 、2πr 2 3、底面积为S,高为h 的棱锥的体积是( )A 、shB 、sh 21 C 、sh 31 D 、sh 41 4、曲线()x x 24-=⎰与直线g ()2+-=x x 所围图形的面积是( )A 、29 B 、 27 C 、 23D 、 255、微分方程xy dxdy2=的通解是( )A 、 exc B 、 e x c 2C 、e xD 、x e 26、dx x⎰+∞131的极限值是( )A 、1B 、2C 、3D 、4 7、反常积分⎰-axa dx22的值是( )A 、-1B 、πC 、21π D 、π23 8、如果函数)(x f 在区间[b a ,]上连续,)(x F 是)(x f 在区间[b a ,]上的任意一个原函数,那么( )A 、⎰-=ba a Fb F dx x f )()()( B 、⎰=ba a F dx x f )()( C 、⎰=ba b F dx x f )()( D 、⎰+=ba a Fb F dx x f )()()( 9、求微分方程x x y dxdy 2263=+的通解是( )A 、e x c 2B 、x e 2C 、e x c 31-+D 、e x c 32-+10、如果函数)(x f 在区间[b a ,]上连续,则)(x f 在区间[b a ,]上的积分是( )A 、⎰b a dx x f )(B 、⎰b a dy x f )(C 、⎰b a dy y f )(D 、⎰ba dx y f )( 二、填空题。

定积分练习题

定积分练习题

定积分练习题一、基本概念题1. 计算定积分 $\int_{0}^{1} (3x^2 + 4) \, dx$。

2. 计算定积分 $\int_{1}^{2} (x^3 2x) \, dx$。

3. 设函数 $f(x) = x^2 3x + 2$,求 $\int_{1}^{3} f(x) \,dx$。

4. 已知函数 $g(x) = \sqrt{1 x^2}$,求 $\int_{1}^{1} g(x) \, dx$。

5. 计算 $\int_{0}^{\pi} \sin x \, dx$。

二、定积分的性质题6. 利用定积分的性质,计算 $\int_{0}^{2} (3x^2 + 4x) \,dx$。

7. 已知 $\int_{0}^{1} f(x) \, dx = 2$,求 $\int_{1}^{2}f(x) \, dx$。

8. 设 $f(x)$ 是奇函数,证明 $\int_{a}^{a} f(x) \, dx = 0$。

9. 已知 $\int_{0}^{1} (f(x) + g(x)) \, dx = 5$,$\int_{0}^{1} (f(x) g(x)) \, dx = 3$,求 $\int_{0}^{1} f(x) \, dx$ 和 $\int_{0}^{1} g(x) \, dx$。

三、定积分的计算题10. 计算 $\int_{0}^{\pi} x \cos x \, dx$。

11. 计算 $\int_{0}^{\frac{\pi}{2}} \ln(\sin x) \, dx$。

12. 计算 $\int_{1}^{e} \frac{1}{x} \, dx$。

13. 计算 $\int_{0}^{1} \frac{1}{\sqrt{1 x^2}} \, dx$。

14. 计算 $\int_{0}^{2} |x 1| \, dx$。

四、定积分的应用题15. 计算由曲线 $y = x^2$,直线 $x = 2$ 和 $y = 0$ 所围成的图形的面积。

定积分习题二

定积分习题二

定积分习题二填空题1、______________ln 1312值的符号是积分⎰xdx x 。

2、________________)sin (sin 254值的符号是定积分⎰π-dx x x 。

3、________________ln ln 2121 221的大小关系是与积分⎰⎰==dx I xdx I x 。

4、_________________ln ln 4 3224 31的大小关系是和积分dx x I xdx I ⎰⎰==。

5、[][][]()f x a b c d a b ⊂设在,上是非负连续函数,若区间,,1212()()________b dacI f x dx I f x dx I I ==⎰⎰,,则,的大小关系是。

6、[] ()()0()()___abf x a b f x a b f x dx ><⎰设在,上连续,且,,则值的符号是。

7、[]12()()()bb aaf x a b I f x dx I f x dx ==⎰⎰设在,上连续,定积分与值的大小关系____________是。

8、[][]()()()____.xaf x a b f t dt f x a b ⎰若为,上的连续函数,则为在,上的一个9、[]()()()___.baF x f x a b f x dx =⎰设是连续函数在区间,上任一个原函数,则10、[]()()__________aaf x a a f x dx --=⎰设为,上连续的奇函数,则。

11、[]_______________)()(=-⎰-aadx x f a a x f 上连续的偶函数,则,为设。

12、[]()()(0)f x T f x a a T a +≠设为以为周期的连续周期函数,则在,上的定积分与[]______________0)(是上的定积分的大小关系,在T x f 。

13、120________I I ==⎰⎰定积分和的大小关系是。

定积分习题——精选推荐

定积分习题——精选推荐

定积分习题第九章定积分练习题§1定积分概念习题1.按定积分定义证明:?-=ba ab k kdx ).(2.通过对积分区间作等分分割,并取适当的点集{}i ξ,把定积分看作是对应的积分和的极限,来计算下列定积分:(1)?∑=+=112233)1(41:;ni n n i dx x 提⽰(2)?10;dx e x(3)?ba x dx e ; (4)2(0).(:bi adxa b xξ<<=?提⽰取§2 ⽜顿⼀菜布尼茨公式1.计算下列定积分:(1)?+10)32(dx x ;(2)?+-102211dx x x ;(3)?2ln e e x x dx ;(4)?--1;)1(dx xx (7)?+40;1x dx(8)?eedx x x 12)(ln 1 2.利⽤定积分求极限:(1));21(1334lim n nn +++∞→Λ(2);)(1)2(1)1(1222lim ++++++∞→n n n n n n Λ(3));21)2(111(222lim nn n n n +++++∞→Λ(4))1sin 2sin (sin 1lim n n n n nn -+++∞→Λππ3.证明:若f 在[a,b]上可积,F 在[a,b]上连续,且除有限个点外有F '(x )=f (x),则有()()().ba f x dx Fb F a =-?§3 可积条件1.证明:若T ˊ是T 增加若⼲个分点后所得的分割,则∑∑?≤?'.''T Ti i i i χωχω2.证明:若f 在[a,b]上可积,[][][]上也可积在则ββ,,,,a f b a a ?.3.设f ﹑g 均为定义在[a,b]上的有界函数。

证明:若仅在[a,b]中有限个点处()(),χχg f ≠则当f 在[a,b]上可积时,g 在[a,b]上也可积,且()().χχχχd g a bd f a b ??=3.设f 在[a,b]上有界,{}[],,b a a n ?.lim c ann =∞→证明:在[a,b]上只有()()()()"','".sup sup inf f f f f χχχχχχχχ∈?∈?∈?-=-。

第六章 定积分的应用 单元测试

第六章 定积分的应用 单元测试

第六章、定积分的应用 单元测试题(一)选择题(每小题4分,共40分)1. 曲线r ae θ=及直线θπ=-,θπ=所围图形的面积为( ) A.22012a e d πθθ⎰ B. 22202a e d πθθ⎰ C.22a ed πθπθ-⎰ D. 222a e d πθπθ-⎰2. 心形线4(1cos )r θ=+,直线0θ=,2πθ=所围图形绕极轴旋转而成旋转体的体积为( )A. 22016(1cos )d ππθθ+⎰B. 222016(1cos )sin d ππθθθ+⎰C. 222016(1cos )sin [4(1cos )cos ]d ππθθθθ++⎰D.022216(1cos )sin [4(1cos )cos ]d ππθθθθ++⎰3. 横断面积为s 、深为h 的水池中装满了水,把池中的水全部抽到距地面高为H 的水塔中所作的功W =( ) A.()hs H h y dy ++⎰B. 0()Hs H h y dy +-⎰C.()hs H y dy +⎰D. 0()h Hs H h y dy ++-⎰4. 曲线(0)r ae λθλ=>,从0θ=到θα=一段的弧长s =( )A.aaeλθθ⎰B. 0θ⎰C.θ⎰D. 0θ⎰5. 矩形闸门的一边恰与水面相齐,且此闸门垂直于水面,过闸门的中心作水平线将矩形分为面积相等的上、下两部分,设上部所受的压力为1P (吨),下部所受压力为2P (吨),则12P P =( ) A.12 B.1 C.13 D.236. 曲线1y x=,y x =,2x =所围成的图形面积为A ,则A =( )A.211()x dx x -⎰B. 211()x dx x-⎰C.21101(2)(2)dy y dy y-+-⎰⎰ D. 22111(2)(2)dx x dx x -+-⎰⎰7. 曲线22x y =在[0,1]之间的一段绕x 轴旋转一周所得旋转曲面的面积为( )A. 12⎰ B. 1202x dx π⎰C.12x π⎰D. 10x π⎰8. 设(),()f x g x 在区间[,]a b 上连续,且()()g x f x m <<(m 为常数),则曲线()y g x =,()y f x =,x a =及x b =所围平面图形绕直线y m =旋转而成的旋转体积为( )A.[2()()][()()]bam f x g x f x g x dx π-+-⎰B. [2()()][()()]bam f x g x f x g x dx π---⎰C. [()()][()()]bam f x g x f x g x dx π-+-⎰D.[()()][()()]bam f x g x f x g x dx π---⎰9. 设在区间[,]a b 上,()0f x >,()0f x '<,()0f x ''>,令1()baS f x dx =⎰,2()()S f b b a =-,31[()()]()2S f b f a b a =+-,则A. 123S S S <<B. 213S S S <<C. 312S S S <<D. 231S S S << 10. 两个半径为a 的直交圆柱体公共部分的体积V =( ) A. 224()aa x dx -⎰B. 2208()aa x dx -⎰C. 2216()aa x dx -⎰D. 2202()aa x dx -⎰(二)填空题(每小题4分,共60分)1. 抛物线()(0)y x x a a =->与直线y x =所围图形的面积为__。

(易错题)高中数学高中数学选修2-2第四章《定积分》测试(有答案解析)

(易错题)高中数学高中数学选修2-2第四章《定积分》测试(有答案解析)

一、选择题1.12201x dx -=⎰( )A .12πB.3128π+ C .368π+ D .364π+2.已知函数sin (11)()1(12)x x f x x x-≤≤⎧⎪=⎨<≤⎪⎩,则21()f x dx -=⎰( )A .ln 2B .ln 2-C .12-D .3cos 1-3.222024xdx x dx +-=⎰⎰( )A .2π B .12π+ C .4π D .π4.若2(sin cos )2x a x dx π-=⎰,则实数a 等于( )A .1-B .1C .3-D .35.设函数()f x 是R 上的奇函数, ()()f x f x π+=-,当02x π≤≤时,()cos 1f x x =-,则22x ππ-≤≤时, ()f x 的图象与x 轴所围成图形的面积为( )A .48π-B .24π-C .2π-D .36π-6.如图,矩形ABCD 的四个顶点()(0,1),(,1),(,1),0,1A B C D ππ--,正弦曲线f xsinx 和余弦曲线()g x cosx =在矩形ABCD 内交于点F ,向矩形ABCD 区域内随机投掷一点,则该点落在阴影区域内的概率是( )A .B .C .D .7.11)x dx -=⎰( )A .1π+B .1π-C .πD .2π 8.函数()325f x x x x =+-的单调递增区间为( ) A .5,3⎛⎫-∞- ⎪⎝⎭和1,B .5,3⎛⎫-∞-⋃ ⎪⎝⎭1,C .(),1-∞-和5,3⎛⎫+∞ ⎪⎝⎭D .(),1-∞-⋃5,3⎛⎫+∞ ⎪⎝⎭9.若向区域(){},|0101x y x y Ω=≤≤≤≤,内投点,则该点落在由直线y x =与曲线y = )A .18B .16C .13D .1210.20ln 1()231mx x f x x t dt x >⎧⎪=⎨+≤⎪⎩⎰,,,且()()10f f e =,则m 的值为( ) A .1B .2C .1-D .2-11.计算()122x x dx -⎰的结果为( )A .0B .1C .23D .5312.下列积分值最大的是( ) A .222sin +1x x dx -⎰()B .()22cos x dx ππ--⎰C.-⎰D .11edx x二、填空题13.若2211S x dx =⎰,2211S dx x =⎰,231x S e dx =⎰,则1S ,2S ,3S 的大小关系为___.14.计算()0cos 1x dx π⎰+=_________.15.由直线2y x =+与曲线2y x 围成的封闭图形的面积是__________.16.若二项式261()5x x +的展开式中的常数项为m ,则21(2)d mx x x -=⎰_________.17.计算()2224x x dx -+-⎰得__________.18.定积分2sin cos t tdt π=⎰________.19.如图,两曲线2y x =,2y x 围成图面积__________.20.设曲线cos y x =与x 轴、y 轴、直线6x π=围成的封闭图形的面积为b ,若2()2ln 2g x x bx kx =--在[1,)+∞上单调递减,则实数k 的取值范围是__________. 三、解答题21.已知函数f (x )=x 3-3ax+e ,g (x )=1-lnx ,其中e 为自然对数的底数.(I )若曲线y=f (x )在点(1,f (1))处的切线与直线l :x+2y=0垂直,求实数a 的值; (II )设函数F (x )=-x[g (x )+12x-2],若F (x )在区间(m,m+1)(m ∈Z )内存在唯一的极值点,求m 的值;(III )用max{m ,n}表示m ,n 中的较大者,记函数h (x )=max{f (x ),g (x )}(x>0). 若函数h (x )在(0,+∞)上恰有2个零点,求实数a 的取值范围.22.根据《山东省全民健身实施计划(2016-2020年)》,到2020年乡镇(街道)普遍建有“两个一”工程,即一个全民健身活动中心或灯光篮球场、一个多功能运动场.某市把甲、乙、丙、丁四个多功能运动场全部免费为市民开放.(1)在一次全民健身活动中,四个多功能运动场的使用场数如图,用分层抽样的方法从甲、乙、丙、丁四场馆的使用场数中依次抽取a ,b ,c ,d 共25场,在a ,b ,c ,d 中随机取两数,求这两数和ξ的分布列和数学期望;(2)设四个多功能运动场一个月内各场使用次数之和为x ,其相应维修费用为y 元,根据统计,得到如下表的y 与x 数据:x10 15 20 25 3035 40 y23022708 2996 3219 3401 3555 3689 10013102y z e =+ 2.49 2.993.554.004.494.995.49(i )用最小二乘法求z 与x 之间的回归直线方程; (ii )40yx +叫做运动场月惠值,根据(i )的结论,试估计这四个多功能运动场月惠值最大时x 的值.参考数据和公式:4z =,()721700ii x x =-=∑,()()7170i i i x x z z =--=∑,320e =,()()()71721ˆiii ii x x z z bx x ==--=-∑∑,a y bx =-.23.为了净化广州水系,拟在小清河建一座平面图(如图所示)为矩形且面积为200 m 2的三级污水处理池,由于地形限制,长、宽都不能超过16 m ,如果池外壁建造单价为400元/m 2,中间两条隔墙建造单价为248元/m 2,池底建造单价为80元/m 2(池壁厚度忽略不计,且池无盖).(1)写出总造价y (元)与x 的函数关系式,并指出定义域;(2)求污水处理池的长和宽各为多少时,污水处理池的总造价最低,并求最低造价.24.已知函数2()ln 1a f x x x +=++,其中a ∈R. (1)当a =4时,求f (x )的极值点;(2)讨论并求出f (x )在其定义域内的单调区间. 25.计算下列定积分 (1) ()12xx e dx +⎰(2)2442cos tan 2x x dx ππ-⎛⎫+ ⎪⎝⎭⎰ (3)214x dx --26.已知函数()sin cos ,f x x x a x =+且()f x 在3x π=处的切线的斜率为6π.(1)求a 的值,并讨论()f x 在,22ππ⎡⎤-⎢⎥⎣⎦上的单调性; (2)设1()ln(1),0,01x g x mx x m x -=++≥>+,若对任意[)10,x ∈+∞,总存在20,2x π⎡⎤∈⎢⎥⎣⎦,使得12()()g x f x ≥成立,求m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】令21y x =-,则()2210x y y +=≥,点(),x y 的轨迹表示半圆,则该积分表示该半圆与y 轴,12x =,x 轴围成的曲边梯形的面积,求出面积即可. 【详解】解:令21y x =-,则()2210x y y +=≥,点(),x y 的轨迹表示半圆,12201x dx -⎰表示以原点为圆心,2为半径的圆的上半圆与y 轴,12x =,x 轴围成的曲边梯形的面积,如图:故12201131311222612OAB BOCx dx SS ππ-=+=⨯⨯⨯=+扇形. 故选:B. 【点睛】本题考查定积分的几何意义,属基础题.2.A解析:A 【分析】将所求积分分成两段来进行求解,根据积分运算法则可求得结果.()21212111111sin cos ln cos1cos1ln 2ln1ln 2f x dx xdx dx x x x ---=+=-+=-++-=⎰⎰⎰ 故选:A 【点睛】本题考查积分的计算问题,关键是能够按照分段函数的形式将所求积分进行分段求解.3.A解析:A 【分析】分别根据积分的运算法则和几何意义求得两个积分的值,进而得到结果. 【详解】22200112x == 2224x dx -⎰表示下图所示的阴影部分的面积S2OA =,2OC =4AOC π∴∠=12221422S ππ∴=⨯-=- 2220241122x dx ππ+-∴=+-=⎰故选:A 【点睛】本题考查积分的求解问题,涉及到积分的运算法则和几何意义的应用.4.A解析:A 【解析】试题分析:解:因为()()()2200sin cos cos sin |cossincos0sin 022x a x dx x a x a a ππππ-=--=-----⎰=()010a ----=1a -,所以12a -=,所以, 1.a =-故选A. 考点:定积分.5.A【解析】由题设()()()()2f x f x f x f x ππ+=-⇒+=,则函数()y f x =是周期为2π的奇函数,画出函数()[],0,2y f x x π=∈的图像,结合函数的图像可知:只要求出该函数(),0,2y f x x π⎡⎤=∈⎢⎥⎣⎦的图像与x 轴所围成的面积即可。

定积分练习题及答案

定积分练习题及答案

第五章 定积分(A 层次)1.⎰203cos sin πxdx x ; 2.⎰-adx x a x222; 3.⎰+31221xxdx ;4.⎰--1145x xdx ; 5.⎰+411x dx ; 6.⎰--14311x dx ;7.⎰+21ln 1e xx dx; 8.⎰-++02222x x dx; 9.dx x ⎰+π02cos 1;10.dx x x ⎰-ππsin 4; 11.dx x ⎰-224cos 4ππ; 12.⎰-++55242312sin dx x x xx ;13.⎰342sin ππdx x x; 14.⎰41ln dx x x ; 15.⎰10xarctgxdx ; 16.⎰202cos πxdx e x ; 17.()dx x x ⎰π2sin ; 18.()dx x e⎰1ln sin ;19.⎰--243cos cos ππdx x x ; 20.⎰+4sin 1sin πdx xx ; 21.dx x xx ⎰+π02cos 1sin ;22.⎰-+2111ln dx xxx ; 23.⎰∞+∞-++dx x x 4211; 24.⎰20sin ln πxdx ; 25.()()⎰∞+++0211dx x x dxα()0≥α。

(B 层次)1.求由0cos 0=+⎰⎰xyttdt dt e 所决定的隐函数y 对x 的导数dxdy 。

2.当x 为何值时,函数()⎰-=xt dt te x I 02有极值?3.()⎰x x dt t dxd cos sin 2cos π。

4.设()⎪⎩⎪⎨⎧>≤+=1,211,12x x x x x f ,求()⎰20dx x f 。

5.()1lim22+⎰+∞→x dt arctgt xx 。

6.设()⎪⎩⎪⎨⎧≤≤=其它,00,sin 21πx x x f ,求()()⎰=x dt t f x 0ϕ。

7.设()⎪⎪⎩⎪⎪⎨⎧<+≥+=时当时当0,110,11x e x xx f x,求()⎰-21dx x f 。

(完整版)定积分测试题及答案

(完整版)定积分测试题及答案

定积分测试题及答案班级: 姓名: 分数:一、选择题:(每小题5分)1.0=⎰( )A.0B.1C.π D 4π2(2010·山东日照模考)a =⎠⎛02x d x ,b =⎠⎛02e x d x ,c =⎠⎛02sin x d x ,则a 、b 、c的大小关系是( )A .a <c <bB .a <b <cC .c <b <aD .c <a <b3.(2010·山东理,7)由曲线y =x 2,y =x 3围成的封闭图形面积为( )A.112 B.14 C.13 D.7124.由三条直线x =0、x =2、y =0和曲线y =x 3所围成的图形的面积为( )A .4 B.43 C.185D .65.(2010·湖南师大附中)设点P 在曲线y =x 2上从原点到A (2,4)移动,如果把由直线OP ,直线y =x 2及直线x =2所围成的面积分别记作S 1,S 2.如图所示,当S 1=S 2时,点P 的坐标是( )A.⎝ ⎛⎭⎪⎫43,169B.⎝ ⎛⎭⎪⎫45,169C.⎝ ⎛⎭⎪⎫43,157D.⎝ ⎛⎭⎪⎫45,1376.(2010·湖南省考试院调研)1-1⎰ (sin x +1)d x 的值为( )A .0B .2C .2+2cos1D .2-2cos17.曲线y =cos x (0≤x ≤2π)与直线y =1所围成的图形面积是( )A .2πB .3π C.3π2D .π8.函数F (x )=⎠⎛0x t (t -4)d t 在[-1,5]上( )A .有最大值0,无最小值B .有最大值0和最小值-323 C .有最小值-323,无最大值 D .既无最大值也无最小值9.已知等差数列{a n }的前n 项和S n =2n 2+n ,函数f (x )=⎠⎛1x 1t d t ,若f (x )<a 3,则x 的取值范围是( )A.⎝ ⎛⎭⎪⎫36,+∞ B .(0,e 21) C .(e -11,e ) D .(0,e 11)10.(2010·福建厦门一中)如图所示,在一个长为π,宽为2的矩形OABC 内,曲线y =sin x (0≤x ≤π)与x 轴围成如图所示的阴影部分,向矩形OABC 内随机投一点(该点落在矩形OABC 内任何一点是等可能的),则所投的点落在阴影部分的概率是( )A.1πB.2πC.3πD.π411.(2010·吉林质检)函数f (x )=⎩⎨⎧x +2(-2≤x <0)2cos x (0≤x ≤π2)的图象与x 轴所围成的图形面积S 为( )A.32 B .1C .4D.1212.(2010·吉林省调研)已知正方形四个顶点分别为O (0,0),A (1,0),B (1,1),C (0,1),曲线y =x 2(x ≥0)与x 轴,直线x =1构成区域M ,现将一个质点随机地投入正方形中,则质点落在区域M 内的概率是( )A.12B.14C.13D.25二、填空题:(每小题5分) 13. 0π⎰sin x d x =______________14.物体在力F(x)=3x+4的作用下,沿着与F 相同的方向,从x=0处运动到x=4处,力F 所做的功为______________15.211()x x dx +=⎰______________16.10()x x e e dx -+=⎰______________17.(2010·芜湖十二中)已知函数f (x )=3x 2+2x +1,若1-1⎰f (x )d x =2f (a )成立,则a =________.18.(2010·安徽合肥质检)抛物线y 2=ax (a >0)与直线x =1围成的封闭图形的面积为43,若直线l 与抛物线相切且平行于直线2x -y +6=0,则l 的方程为______.19.(2010·福建福州市)已知函数f (x )=-x 3+ax 2+bx (a ,b ∈R )的图象如图所示,它与x 轴在原点处相切,且x 轴与函数图象所围成区域(图中阴影部分)的面积为112,则a 的值为________.20.如图所示,在区间[0,1]上给定曲线y =x 2,试在此区间内确定t 的值,使图中阴影部分的面积S 1+S 2最小为________.答案1.D 2D 3A 4A 5A 6B 7A 8B 9D 10 A 11C 12 C13.2 14.40 1532+ln 2 16.e-1e 17.-1或13 18.16x-8y+1=019.-1 20.14。

(必考题)高中数学高中数学选修2-2第四章《定积分》测试题(有答案解析)(1)

(必考题)高中数学高中数学选修2-2第四章《定积分》测试题(有答案解析)(1)

一、选择题1.在1100x y x y ==-=,,,围成的正方形中随机投掷10000个点,则落入曲线20x y -=,1y =和y 轴围成的区域的点的个数的估计值为( )A .5000B .6667C .7500D .78542.如图,由曲线21y x =-直线0,2x x ==和x 轴围成的封闭图形的面积是( )A .1B .23C .43D .23.若连续可导函数()F x 的导函数()()'F x f x =,则称()F x 为()f x 的一个原函数.现给出以下函数()F x 与其导函数()f x :①()2cos F x x x =+, ()2sin f x x x =-;②()3sin F x x x =+, ()23cos f x x x =+,则以下说法不正确...的是( ) A .奇函数的导函数一定是偶函数 B .偶函数的导函数一定是奇函数 C .奇函数的原函数一定是偶函数 D .偶函数的原函数一定是奇函数4.已知函数()2ln 2f x mx x x =+-在定义域内存在单调递减区间,则实数m 的取值范围是( ) A .12m ≥B .12m < C .1m ≥ D .1m < 5.曲线x y e =,x y e -=和直线1x =围成的图形面积是( ) A .1e e --B .1e e -+C .12e e ---D .12e e -+-6.已知二次函数()y f x =的图像如图所示 ,则它与x 轴所围图形的面积为( )A .25π B .43C .32D .2π 7.定积分()1e2xx dx -⎰的值为( )A .e 2-B .e 1-C .eD .e 1+8.函数()325f x x x x =+-的单调递增区间为( )A .5,3⎛⎫-∞- ⎪⎝⎭和1,B .5,3⎛⎫-∞-⋃ ⎪⎝⎭1,C .(),1-∞-和5,3⎛⎫+∞ ⎪⎝⎭D .(),1-∞-⋃5,3⎛⎫+∞ ⎪⎝⎭9.已知幂函数a y x =图像的一部分如下图,且过点(2,4)P ,则图中阴影部分的面积等于( )A .163B .83C .43D .2310.曲线()sin 0πy x x =≤≤与直线12y =围成的封闭图形的面积是 A .3B .23-C .π23-D .π33-11.1204x dx -=⎰( )A .4B .1C .4πD .332π+12.某几何体的三视图如图所示,则该几何体的体积为( )A .4B .2C .43D .23二、填空题13.232319x x dx -⎫-=⎪⎪⎭⎰____________________.14.已知曲线与直线所围图形的面积______.15.424(16)x x dx --+=⎰__________.16.已知曲线y x =,2y x =-,与x 轴所围成的图形的面积为S ,则S =__________.17.定积分()102xx e dx +=⎰__________.18.已知()12111,a x dx -=+-⎰则932a x x π⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭展开式中的各项系数和为________19.若,则的值是__________.20.定积分120124x x dx π⎫--⎪⎭⎰的值______. 三、解答题21.已知函数2()ln f x x a x =-(a R ∈),()F x bx =(b R ∈). (1)讨论()f x 的单调性;(2)设2a =,()()()g x f x F x =+,若12,x x (120x x <<)是()g x 的两个零点,且1202x x x +=, 试问曲线()y g x =在点0x 处的切线能否与x 轴平行?请说明理由. 22.已知函数()ln 3mf x x x x=++. (1)求函数()f x 的单调区间;(2)若对任意的[]0,2m ∈,不等式()()1f x k x ≤+,对[]1,x e ∈恒成立,求实数k 的取值范围.23.求由抛物线28(0)y x y =>与直线60x y +-=及0y =所围成图形的面积. 24.设()y f x =是二次函数,方程()0f x =有两个相等的实根,且()22f x x '=+. (1)求()y f x =的表达式;(2)若直线(01)x t t =-<<把()y f x =的图象与两坐标轴所围成图形的面积二等分,求t 的值.25.已知函数1211()(1)x f x adt x t+=++⎰()1x >-. (1)若()f x 在1x =处有极值,问是否存在实数m ,使得不等式2214()m tm e f x ++-≤对任意[]1,x e e ∈-及[]1,1t ∈-恒成立?若存在,求出m 的取值范围;若不存在,请说明理由.()2.71828e =;(2)若1a =,设2()()(1)F x f x x x =-+-.①求证:当0x >时,()0F x <; ②设*111()12(1)n a n N n n n n =++⋅⋅⋅+∈++++,求证:ln 2n a > 26.计算由直线4,y x =-曲线2y x =以及x 轴所围图形的面积S 。

定积分练习题

定积分练习题

定积分
一、 想一想
计算定积分有哪些方法 定积分的应用
二、 做一做
1. 计算下列定积分的值 1)2
0(23)x dx +⎰
2)2211
()x dx x -⎰
3)2
31
(1)x dx -⎰
4)2
01x dx -⎰
5)2
20
sin 2
x dx π
⎰ 6
)1-⎰
2. 求由抛物线28(0)y x y =>与直线
60x y +-=及0y =围成图形的面积。

3.求由曲线223y x x =-+与直线3y x =+所围成图形的面积。

4.求由抛物线24y x =-与直线2y x =-+所围成图形的面积。

5. 求由曲线1
xy=与直线,2
y x y
==所围成图形的面积。

6. 求由曲线2
2
y x x
=-与直线2
24
y x x
=-所围成图形的面积。

7. 在曲线2(0)
y x x
=≥上某一点处作一切线使之与曲线以及x轴所围的面积为
1
12。

试求:(1)切点A的坐标;
(2)过切点A的切线方程
8. 设()
y f x
=是二次函数,方程()0
f x=有两个相等的实数根,且()22
f x x
'=+。

(1)求()
f x的表达式;
(2)求()
y f x
=的图像与坐标轴所围成的图形的面积;
(3)若直线(01)
x t t
=-<<把()
y f x
=的图像与两坐标轴所围成的图形面积二等分,求t的值。

反思:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定积分单元测试题
一、填空题 1、
dx x ⎰
+4
1
1=___________。

2、广义积分43
x dx -
+∞
=⎰
3、________1
1
02=+⎰dx x x 。

4、()________1202
=-⎰dx x 。

5、设
()32
1
2-=⎰
-x dt t f x ,则()=2f 。

6、=+⎰
3
1
ln 1e x
x dx。

7、()=⎥⎦
⎤⎢⎣⎡++++⋅⎰-dx x x x x x π
πcos 113sin 222
4。

8、x dt t x
x ⎰→0
20cos lim =____________ 9、12
12||
1x x dx x -+=+⎰ 。

10、=
-⎰dx x 201. 11、2
22sin 1cos x x dx xdx π
π-+=+⎰ 12、已知()2
cos ,x F x t dt =⎰则()F x '= 13、已知()2
x t x
F
x te dt -=⎰,则()F x '=
二、单项选择 1、若连续函数
()x f 满足关系式()2ln 220+⎪⎭

⎝⎛=⎰x dt t f x f ,则()x f 等于( )。

(A )2ln x
e ; (B ) 2ln 2x e ; (C ) 2ln +x e ; (D ) 2ln 2+x e 。

2、设
)(x f 连续,则=-⎰x
dt t x tf dx d 0
22)(( )
(A ))(2x xf ; (B ))(2x xf -; (C ))(22x xf ; (D ))(22x xf -。

3、设
)(x f 是连续函数,且⎰+=10
)(2)(dt t f x x f ,则)(x f =( )
(A )1-x ; (B )1+x ; (C)1+-x ; (D )1--x 。

4、设()()x a x
F x f t dt x a
=
-⎰,其中()f x 为连续函数,则lim ()x a F x →=( ) (A )a (B ))(a af (C ))(a f (D )0
5、
=⎰dt e dx d b x
t 2( ) (A)2x e (B)2x e - (C)22x b e e - (D)2
2x xe -
6、=-+⎰→x
dt
t x x cos 1)1ln(lim
2sin 0
( ) (A)8 (B)4 (C)2 (D)1
7、反常积分收敛的是( )
(A)

+∞
e
dx x x ln (B)⎰+∞e dx x
x ln 1
(C)⎰+∞e x x dx 2)(ln (D)

+∞
e
x
x dx ln
8、下列广义积分收敛的是( ) (A

1
+∞

(B )11dx x +∞⎰ (C )211dx x +∞⎰ (D
)1⎰ 三、计算题
1、计算 (1)3
20
sin lim
x
tdt x
x ⎰→; (2)2
)1ln(lim
x
dt t x
x ⎰+→。

2、设连续函数()f x 满足条件:0
()sin x
t f x t e dt x -=⎰,求()f x 。

3、

+2
1
ln 11
e dx x
x 4、.求⎰++1
02
13
2dx x x 5、⎰-+10x x e e dx 6、 .求

ππ
2
12
1
cos 1dx x x
7、

+-5
ln 0
31dx e e e x x x 8、已知()101
ln 1x x f x x x e x
⎧+≤≤⎪
=⎨<≤⎪
⎩,求()0e f x dx ⎰
8

1
-⎰
9
、1
e ⎰ 10、10arctan xdx ⎰
11、求下列曲线围成图形的面积(1) x
y 1=
,2x = 和 4y x = (2) x y 22
=, 4y x =-
13、证明 (1)
2
20
(sin )(cos )f x dx f x dx π
π
=⎰

(2)20
(sin )2(sin )f x dx f x dx π
π
=⎰⎰。

相关文档
最新文档