数学建模中的图论方法

合集下载

数学建模的主要建模方法

数学建模的主要建模方法

数学建模的主要建模方法数学建模是指运用数学方法和技巧对复杂的实际问题进行抽象、建模、分析和求解的过程。

它是解决实际问题的一个重要工具,在科学研究、工程技术和决策管理等领域都有广泛的应用。

数学建模的主要建模方法包括数理统计法、最优化方法、方程模型法、概率论方法、图论方法等。

下面将分别介绍这些主要建模方法。

1.数理统计法:数理统计法是基于现有的数据进行概率分布的估计和参数的推断,以及对未知数据的预测。

它适用于对大量数据进行分析和归纳,提取有用的信息。

数理统计法可以通过描述统计和推断统计两种方式实现。

描述统计主要是对数据进行可视化和总结,如通过绘制直方图、散点图等图形来展示数据的分布特征;推断统计则采用统计模型对数据进行拟合,进行参数估计和假设检验等。

2.最优化方法:最优化方法是研究如何在给定的约束条件下找到一个最优解或近似最优解的方法。

它可以用来寻找最大值、最小值、使一些目标函数最优等问题。

最优化方法包括线性规划、非线性规划、整数规划、动态规划等方法。

这些方法可以通过建立数学模型来描述问题,并通过优化算法进行求解。

3.方程模型法:方程模型法是通过建立数学方程或函数来描述问题,并利用方程求解的方法进行求解。

这种方法适用于可以用一些基本的方程来描述的问题。

方程模型法可以采用微分方程、代数方程、差分方程等不同类型的方程进行建模。

通过求解这些方程,可以得到问题的解析解或数值解。

4.概率论方法:概率论方法是通过概率模型来描述和分析不确定性问题。

它可以用来处理随机变量、随机过程和随机事件等问题。

概率论方法主要包括概率分布、随机变量、概率计算、条件概率和贝叶斯推理等内容。

利用概率论的方法,可以对问题进行建模和分析,从而得到相应的结论和决策。

5.图论方法:图论方法是研究图结构的数学理论和应用方法。

它通过把问题抽象成图,利用图的性质和算法来分析和求解问题。

图论方法主要包括图的遍历、最短路径、最小生成树、网络流等内容。

数学建模-图论

数学建模-图论

如例2中球队胜了,可从v1引一条带箭头的连线到v2,每 场比赛的胜负都用带箭头的连线标出,即可反映五个球队比 赛的胜负情况。如下图
v5
v1
v2 v3
v4
Байду номын сангаас
由图可知, v1三胜一 负, v4打了三场球, 全负等等
类似胜负这种非对称性的关系,在生产和生活中也是常见 的,如交通运输中的“单行线”,部门之间的领导和被领导关 系,一项工程中各工序之间的先后关系等等。
B
哥尼斯堡七桥问题
从某点出发通过每座桥且每桥只通过一次回到起点 A B D
建模:
C
A B D C
点——陆地 岛屿 边——桥
后来,英国数学家哈密尔顿在1856年提出“周游世界”的 问题:一个正十二面体,20个顶点分别表示世界上20个大城市, 要求从某个城市出发,经过所有城市一次而不重复,最后回到出 发地.这也是图论中一个著名的问题. “四色问题”也是图论中的著名问题:地图着色时,国境 线相邻的国家需要着上不同的颜色,最少需要几种颜色?1976 年,美国人阿佩尔和哈肯用计算机运行1200个小时,证明4种颜 色就够了.但至今尚有争议.
图论起源
图论最早处理的问题是哥尼 斯堡城的七桥问题:18世纪在哥 尼斯堡城(今俄罗斯加里宁格勒) 有一条名叫普莱格尔(Pregel) 的河流横经其中,河上有7座桥, 将河中的两个岛和河岸连结。
C A D
城中的居民经常沿河过桥 散步,于是提出了一个问 题:能否一次走遍7座桥, 后来有人请教当时的大数学家 而每座桥只许通过一次, 欧拉,欧拉用图论的方法证明这个问 最后仍回到起始地点? 题无解,同时他提出并解决了更为一 般的问题,从而奠定了图论的基础, 欧拉也被誉为“图论之父”.

数学建模-图论模型

数学建模-图论模型

思路分析
• 每学期任课老师都有一定工作量的要求往往可能要上不止一门课 程。
• 每位同学需要在学期内完成若干门课程的学习。 • 某些对上课设施有特殊要求的课程,也不可以安排在同一时间。 • 为了方便开展一些全校性的活动,有些时段不安排课程。 • 受到教室数量的限制,在同一时段无法安排太多的课程。
模型建立
• 以每个课程为顶点,任何两个顶点之间连一条边当且仅当两门课 程的任课老师为同一人,或有学生同时选了这两门课或上课教室 冲突。
• 那么一个合理的课程安排就是将图中的点进行分化,使得每一个 部分里的点为一个独立集。
• 通过极小覆盖找出图中的极 大独立集,然后删去该极大 独立集,在剩下的图中找出 极大独立集,直到剩下的图 为一个独立集。
匈牙利算法
• 饱和点:M是图G的一个匹配,若G中顶点v是M中某条边的端 点,则称M饱和v,否则称v是M的非饱和点。
• 可扩路:一条连接两个非饱和点x和y的由M外的边和M的边交错 组成的路称为M的(x,y)可扩路。
• 算法基本步骤:
Kuhn-Munkres算法
1.2 图的独立集应用
• 问题描述:各大学学期临近结束时,需要根据老师任课 计划和学生选课情况,再结合教室资源情况安排下一学 期的课程及上课时间和地点。下表所示是某大学电信学 院的大三各专业部分课程情况。该学院每届学生按专业 分班,统一选课。另外,学院只有一间普通机房和一间 高级机房。那么应该如何合理地排这些课程呢?
则称其是双连通或强连通的。对于不是双连通的图,都可以分解成 若干个极大的双连通分支,且任意两分支之间的边是同向的。
举例:
• 右图所示竞赛图不是双连通的

为一条有向
的D哈密尔A顿路B。 C E

数学建模常用方法

数学建模常用方法

数学建模常用方法建模常用算法,仅供参考:1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用M a t l a b作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用L i n d o、L i n g o软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用M a t l a b进行处理)一、在数学建模中常用的方法:1.类比法2.二分法3.量纲分析法4.差分法5.变分法6.图论法7.层次分析法8.数据拟合法9.回归分析法10.数学规划(线性规划、非线性规划、整数规划、动态规划、目标规划)11.机理分析12.排队方法13.对策方法14.决策方法15.模糊评判方法、16.时间序列方法17.灰色理论方法18.现代优化算法(禁忌搜索算法、模拟退火算法、遗传算法、神经网络)二、用这些方法可以解下列一些模型:优化模型、微分方程模型、统计模型、概率模型、图论模型、决策模型。

数学建模-图论

数学建模-图论

图论导引
问题3:四色猜想 地图或地球仪上,最多用四种颜色就可把每一 国的版图染好,使得国界线两侧异色。
电子计算机问世以后,由于演算速度迅速提高,加 之人机对话的出现,大大加快了对四色猜想证明的进 程。美国伊利诺大学哈肯在1970年着手改进“放电过 程”,后与阿佩尔合作编制一个很好的程序。就在 1976年6月,他们在美国伊利诺斯大学的两台不同的电 子计算机上,用了1200个小时,作了100亿判断,终于 完成了四色定理的证明,轰动了世界。
有向图:
1, 若vi是ei的始点 aij 1, 若vi是ei的终点 0, 若v 与e 不关联 i i
无向图:
1, 若vi与v j 关联 aij 0, 若vi与v j 不关联
图的矩阵表示
例6:写出右图与其基本图 的关联矩阵 解:分别为:
图论的基本概念
几个基本定理:
1、对图G V,E ,有 d v 2 E .
vV
2、度为奇数的顶点有偶数个。
3、设G V,E 是有向图, 则 d v d v E .
vV vV
子图
定义 设图 G=(V,E, ),G1=(V1,E1, 1 )
(3)设 E1 E,且 E1 ,以 E1 为边集,E1 的端点集为顶点集的图 G 的子图, 称为 G 的由 E1 导出的子图,记为 G[E1].
G
G[{v1,v4,v5}]
G[{e1,e2,e3}]
基 本 概 念
定义1 在无向图 G=(V,E)中: (1) 顶点与边相互交错的有限非空序列 w (v0 e1v1e2 vk 1ek vk ) 称为一条从 v 0 到 v k 的通路,记为 Wv0vk (2)边不重复但顶点可重复的通路称为道路,记为 Tv0vk (3)边与顶点均不重复的通路称为路径,记为 Pv 0 v k 始点和终点相同的路称为圈或回路.

数学建模中的图论方法

数学建模中的图论方法
它们 的研 究 方法 上 又有 着 很 大 的不 同 , 如 我 们 可 以运 用 典 例
出最 少 。
使用不 同时间设备所需 的维修费分别为 56 , , 。 ,, 1 1 8 18 建立最短路模型 1 2: b表示设备在第 f 图 , ) 图 设 年年 初的购买费 , 表示设 备使用 年后 的维修 费, ={ % c
作者简介 : 艾素梅( 5 一 , 河北沧州人 , 州师范学院数学 系主任 、 。  ̄ 8 )女, 9 沧 教授
9 ・ 8

从 上 图 中 容 易 得 到 l 到 6只 有 两 条 路 : / 6和 J3 )
V” , 146而这两条路都是 l 到 6 的最短路。
2 网络流 问题
对 1 ≤m,ol 必为 G中从 。 ≤k … 到 的最短路 : 最短路
是一条路 , 且最短路 的任一段 也是最短路 。
1 例 题 . 2
例 1 ( 设备更新问题 ) 某企业使用一台设备 , 每年年初 ,
图2
收 稿 日期 : 1—1—2 20 0 5 0
基金项 目: 河北省教育厅 2O 年度科研计划项 目“ 3 9 高职 高专数学建模教学和实践 的探 索”。

G中 任 一边 野 有 流量 ,称集 合 厂=

}为 网络 G上 的
个流。
定义 4 满足下述条件的流 厂 称为可行 流 : 1( )容量限制条件) 对每一边 甜, 0 ≤ ; 有 ≤
2( )平衡条件) 于中间点 有 对 的输入量 :输出量。 如果 ,是可行 流, 则对收、 发点 、 有 2f = , = , = , 即中间点
第 2 卷第 4 I 5 期
l年 l 0 2月

数学建模图论模型

数学建模图论模型
若将图G的每一条边e都对应一个实数Fe,则称 F(e)为该边的权,并称图G为赋权图(网络), 记为 G = <V, E , F>。
任意两点均有通路的图称为连通图。
连通而无圈的图称为树,常用T=<V,E>表示树。
若图G’是图 G 的生成子图,且G’又是一棵树, 则称G’是图G 的生成树。
例 Ramsey问题
图1
图2
并且常记: V = v1, v2, … , vn, |V | = n ; E = {e1, e2, … , em}ek=vivj , |E | = m
称点vi , vj为边vivj的端点 在有向图中, 称点vi , vj分别为边vivj的 始点和终点. 该图称为n,m图
8
对于一个图G = V, E , 人们常用图形来表示它, 称其 为图解 凡是有向边, 在图解上都用箭头标明其方向.
4、P'代替P,T'代替T,重复步骤2,3
定理2 设 T为V的子集,P=V-T,设 (1)对P中的任一点p,存在一条从a到p的最短路径,这条路径仅有P中的
点构成, (2)对于每一点t,它关于P的指标为l(t),令x为最小指标所在的点, 即:
l(x)mli(tn )} t{ ,T
(3)令P’=P Ux,T’=T-{x},l’(t)表示T'中结点t关于P'的指标,则
解:用四维01向量表示人,狼,羊,菜例在过河西河岸问的题状态(在
岸则分量取1;否则取0),共有24 =16 种状态; 在河东岸 态类似记作。
由题设,状态(0,1,1,0),(0,0,1,1),(0,1,1,1)是不允许的
其对应状态:(1,0,0,1), (1,1,0,0),(1,0,0,0)也是不允许

数学建模——图论篇

数学建模——图论篇

软件学院
图论原理 一. 图的概念 一个图 G=<V(G),E(G)>, 其中结点集V(G):是G的结 点的非空集合.(V(G)≠Φ),简记成V;边集E(G):是 G的边的集合. 有时简记成E. 结点: 用 表示, 旁边标上该结点的名称. 边:有向边:带箭头的弧线.从u到v的边表示成(u,v) 无向边:不带箭头的弧线.u和v间的边表示成(u,v)
v3
软件学院
图论原理
回路:如果一条路的起点和终点是一个结点,则称此路 是一个回路. 如果一条路中所有边都不同,则称此路为迹或简单通路. 如果一条回路中所有边都不同,则称此回路为闭迹或简 单回路. 如果一条路中所有结点都不同,则称此路为基本通路. 如果一条回路中所有结点都不同,则称此路为基本回路. 一条基本通路一定是简单通路,但是一条简单通路不 一定是基本通路

图论原理
图的同构 设G=<V,E>和G’=<V’,E’>是图,如果存在双射f:VV’ 且任何 vi,vj∈V,若边(vi,vj)∈E,当且仅当 边(f(vi),f(vj))∈E’, (则称G与G’同构,记作G≌G’. (同构图要保持边的“关联”关系) 例如:右边所示的两个图: a b 1 4 G=<V,E> G’=<V’,E’> c d 3 2 构造映射f:VV’ a 1 b 2 c 3 d 4 a 1 b 2 c 3 d 4
软件学院
图论原理
2.汉密尔顿图的判定: 到目前为止并没有判定H图的充分必要条件. 定理1 (充分条件):G是完全图,则G是H图.

K2

K3

K4


K5
定理2(充分条件)设G是有n(n>2)个结点的简单图,若对G中每 对结点度数之和大于等于n,则G有一条H路(H回路)。

数学建模中的图论方法

数学建模中的图论方法

数学建模中的图论方法一、前言我们知道,数学建模比赛中有问题A和问题B。

一般而言,问题A是连续系统中的问题,问题B是失散系统中的问题。

因为我们在大学数学教育内容中,连续系统方面的知识的比率较大,而离散数学比率较小。

所以好多人有这样的感觉,A题下手快,而B题不好下手。

其他,在有限元素的失散系统中,相应的数学模型又可以区分为两类,一类是存在有效算法的所谓P类问题,即多项式时间内可以解决的问题。

但是这种问题在MCM中特别少见,事实上,由于比赛是开卷的,参照有关文件,使用现成的算法解决一个P类问题,不可以显示参赛者的建模及解决实诘问题能力之大小;还有一类所谓的NP问题,这种问题每一个都还没有成立有效的算法,或许真的就不行能有有效算法来解决。

命题经常以这种NPC问题为数学背景,找一个详细的实质模型来考验参赛者。

这样增添了成立数学模型的难度。

但是这也其实不是说没法求解。

一般来说,因为问题是详细的实例,我们可以找到特其他解法,或许可以给出一个近似解。

图论作为失散数学的一个重要分支,在工程技术、自然科学和经济管理中的好多方面都能供给有力的数学模型来解决实诘问题,所以吸引了好多研究人员去研究图论中的方法和算法。

应当说,我们对图论中的经典例子或多或少仍是有一些认识的,比方,哥尼斯堡七桥问题、中国邮递员问题、四色定理等等。

图论方法已经成为数学模型中的重要方法。

好多灾题因为归纳为图论问题被奇妙地解决。

并且,从历年的数学建模比赛看,出现图论模型的频次极大,比方:AMCM90B-扫雪问题;AMCM91B-找寻最优Steiner树;AMCM92B-紧迫修复系统的研制(最小生成树)AMCM94B-计算机传输数据的最小时间(边染色问题)CMCM93B-足球队排名(特点向量法)CMCM94B-锁具装箱问题(最大独立极点集、最小覆盖等用来证明最优性)CMCM98B-灾情巡视路线(最优回路)等等。

这里面都直接或是间接用到图论方面的知识。

数学建模十大经典算法( 数学建模必备资料)

数学建模十大经典算法(  数学建模必备资料)

建模十大经典算法1、蒙特卡罗算法。

该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时通过模拟可以来检验自己模型的正确性。

2、数据拟合、参数估计、插值等数据处理算法。

比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具。

3、线性规划、整数规划、多元规划、二次规划等规划类问题。

建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo、MATLAB软件实现。

4、图论算法。

这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。

5、动态规划、回溯搜索、分治算法、分支定界等计算机算法。

这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中。

6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法。

这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。

7、网格算法和穷举法。

网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。

8、一些连续离散化方法。

很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。

9、数值分析算法。

如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。

10、图象处理算法。

赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理。

历年全国数学建模试题及解法赛题解法93A非线性交调的频率设计拟合、规划93B足球队排名图论、层次分析、整数规划94A逢山开路图论、插值、动态规划94B锁具装箱问题图论、组合数学95A飞行管理问题非线性规划、线性规划95B天车与冶炼炉的作业调度动态规划、排队论、图论96A最优捕鱼策略微分方程、优化96B节水洗衣机非线性规划97A零件的参数设计非线性规划97B截断切割的最优排列随机模拟、图论98A一类投资组合问题多目标优化、非线性规划98B灾情巡视的最佳路线图论、组合优化99A自动化车床管理随机优化、计算机模拟99B钻井布局0-1规划、图论00A DNA序列分类模式识别、Fisher判别、人工神经网络00B钢管订购和运输组合优化、运输问题01A血管三维重建曲线拟合、曲面重建01B 公交车调度问题多目标规划02A车灯线光源的优化非线性规划02B彩票问题单目标决策03A SARS的传播微分方程、差分方程03B 露天矿生产的车辆安排整数规划、运输问题04A奥运会临时超市网点设计统计分析、数据处理、优化04B电力市场的输电阻塞管理数据拟合、优化05A长江水质的评价和预测预测评价、数据处理05B DVD在线租赁随机规划、整数规划06A 出版资源配置06B 艾滋病疗法的评价及疗效的预测 07A 中国人口增长预测 07B 乘公交,看奥运 多目标规划 数据处理 图论 08A 数码相机定位 08B 高等教育学费标准探讨09A 制动器试验台的控制方法分析 09B 眼科病床的合理安排 动态规划 10A 10B赛题发展的特点:1.对选手的计算机能力提出了更高的要求:赛题的解决依赖计算机,题目的数据较多,手工计算不能完成,如03B ,某些问题需要使用计算机软件,01A 。

数学建模各种分析方法

数学建模各种分析方法

数学建模各种分析方法数学建模是指将实际问题转化为数学问题,然后利用数学方法求解的过程。

在数学建模中,有各种各样的分析方法可以辅助研究人员进行问题分析和求解。

下面将介绍一些常用的数学建模分析方法。

1.计算方法:计算方法是数学建模中最基础也是最常用的方法之一、它可以包括求解方程组、数值积分、数值微分、插值与拟合、数值优化等。

通过这些计算方法,可以将实际问题转化为数学模型,然后利用计算机进行数值计算和模拟实验。

2.统计分析方法:统计分析在数学建模中也起着非常重要的作用。

它可以用来分析数据、建立概率模型、进行参数估计和假设检验等。

统计分析可以帮助研究人员从大量数据中提取有用的信息,深入分析问题的特征和规律,为问题解决提供参考。

3.线性规划模型:线性规划是一种优化模型,常用于解决资源分配、生产计划、物流运输等问题。

线性规划模型的目标是最大化或最小化一些线性函数,同时满足一系列线性等式或不等式约束。

通过线性规划模型,可以确定最优决策和最优解。

4.非线性规划模型:非线性规划是一种更一般的优化模型,用于解决非线性约束条件下的最优化问题。

非线性规划模型常用于经济管理、工程设计、生物医学等领域。

非线性规划模型的求解较复杂,需要借助数值计算和优化算法。

5.动态规划模型:动态规划是一种用来解决决策问题的数学方法,其特点是将问题分解为多个阶段,并利用最优子结构的性质进行递推求解。

动态规划模型常用于决策路径规划、资源调度、序列比对等问题。

它优化了逐步贪心法的局部最优解,能够得到全局最优解。

6.图论模型:图论是一种数学工具,用于研究图或网络结构及其属性。

图论模型在数学建模中可以用来分析网络拓扑、路径优化、最短路径、最小生成树等问题。

图论模型的特点是简洁明了,适用于复杂问题的分析和求解。

7.随机过程模型:随机过程是一种描述随机变量随时间变化的数学模型,常用于建立概率模型和分析具有随机性的系统。

随机过程模型常用于金融风险评估、天气预测、信号处理、优化设计等问题。

数学建模中的图论算法及其应用研究

数学建模中的图论算法及其应用研究

数学建模中的图论算法及其应用研究引言:数学建模是指利用数学方法和技巧对实际问题进行分析、抽象、描述、求解和预测的一种研究方法。

图论作为数学建模中的重要工具之一,被广泛应用于各个领域,如网络分析、交通规划、社交网络等。

本文将介绍数学建模中常用的图论算法,并探讨它们在实际问题中的应用。

一、图论基础知识1.1 图的概念图是由一些点和连接这些点的边组成的集合。

点表示图中的实体或对象,边表示实体之间的关系。

图包含了很多重要的信息,例如节点的度、连通性等。

1.2 图的表示方法图可以用邻接矩阵或邻接表来表示。

邻接矩阵是一个二维矩阵,其中的元素表示节点之间是否相连。

邻接表是一个由链表构成的数组,数组的每个元素表示一个节点,每个节点的链表存储了与该节点相连的节点列表。

二、图的遍历算法2.1 深度优先搜索(DFS)深度优先搜索是一种用于图的遍历的算法。

从一个节点出发,递归地访问它的相邻节点,直到所有可达的节点都被访问过为止。

DFS可以用于寻找连通分量、路径搜索等问题。

2.2 广度优先搜索(BFS)广度优先搜索是另一种图的遍历算法。

从一个节点出发,依次访问它的相邻节点,然后再依次访问相邻节点的相邻节点。

BFS可以用于寻找最短路径、网络分析等问题。

三、最短路径算法3.1 Dijkstra算法Dijkstra算法用于寻找图中两个节点之间的最短路径。

它基于贪心策略,从起点开始逐步扩展最短路径,直到到达终点或无法扩展为止。

Dijkstra算法在交通网络规划、电力网络优化等领域有广泛应用。

3.2 Floyd-Warshall算法Floyd-Warshall算法用于寻找图中所有节点之间的最短路径。

它通过动态规划的思想,逐步更新每对节点之间的最短路径。

Floyd-Warshall算法在地理信息系统、通信网络等领域有重要应用。

四、最小生成树算法4.1 Prim算法Prim算法用于寻找连通图的最小生成树。

它从一个起始节点开始,逐步选择与当前生成树距离最近的节点,并将其加入最小生成树中。

【数学建模】数模竞赛中的图论问题

【数学建模】数模竞赛中的图论问题

-
-
T4
-
2:3 0:1 0:5 2:1 0:1 0:1
-
-
T5
-
0:1
-
-
-
-
1:0 0:0
T6
-
-
-
-
-
-
-
T7
-
1:0 2:1 3:1 3:1 2:0
T8
-
0:1 1:1 3:1 0:0
T9
-
3:0 1:0 1:0
T10
-
1:0 2:0
T11
-
1:2
2.分析与建模
竞赛图 (tournam ent)
定理2 (Perron-Frobenius定理)本原矩阵A的最大特征
根r是一个正的实数。进而有
上例其中中,,s是A对应, 于r的正特征lki向m 量( Ar。)k J s
点数小于5或非双向连通的情况.
r 2.232 s (.238, .164, .231, .113, .150, .104 )T
• 竞赛中的其它图论问题:
• 灾情巡视路线(1998 CMCM-B)

——点的行遍性
• 钢管的订购和运输(2000 CMCM-B)

——最短路算法
• 乘公交,看奥运(2007 CMCM-B)

——最短路算法
• 交巡警服务平台的设置与调度(2011-B)

——最短路算法
三.可以用图论方法 讨论的问题
Ak 的第i,j个元素是 vi v j 的长度为k的有向路的条数。
0 0 2 1 2 3
0 0 2 0 1 2
A2
0
1
0
2
3

数学建模图论讲

数学建模图论讲
如果任两顶点间最多有一条边,且每条边的两个端点皆 不重合的图,则称为简单图。
第2页1 /共86页
2024年8月3日
数学建模-图论
一、图的基本概念
如果图的二顶点间有边相连,则称此顶点相邻,每一对顶点
都相邻的图称为完全图,否则称为非完全图,完全图记为 K V 。
若V (G) X Y, X Y , X Y 0 ,且 X 中 无相邻的顶点对,Y 中亦然,则称图 G 为二分图.
第1行 1 A1i 第i行 1
11,A1i 2
2 2
22,A1i3
4 4
4 4
其中i=2,3,4,5,显然y1=1+(4+4+4+4-1) 4=61. 同理,计算y2时应考虑槽高只有2,21,23,24,25,
26时的情形,类似计算可得 y2=1+(4+4+4+4-1)×5=76.
于是,s=61×2+76×4=426,x=6306426=5880.
计算y1可分别考虑槽高只有1,12,13,14,15的 情形.若只有1,这样的锁具效只有1个, 若只有1和i(i=2,3,4,5),这样的锁具数=G中以1和i为 顶点,长度为3的道路数,此数可通过A的子矩阵A1i计 算得到.
第18页/共86页
数学建模-图论
二、图的矩阵表示(应用实例解法分析)
事实上,因为
间最短的路线。定义T*T=(t(2)ij),
3
4
t(2)ij=min{min1<=k<=5{tik+tkj},tij}, t(2)ij表示 从站点i到站点j的至多换乘一次的最短时间。
5
第22页/共86页
数学建模-图论
二、图的矩阵表示(应用实例及解法分析)

数学建模的主要建模方法

数学建模的主要建模方法

主要建模方法1、类比法建模一般在具体分析该实际问题的各个因素的基础上,通过联想、归纳对各因素进行分析,并且与已知模型比较,把未知关系化为已知关系,在不同的对象或完全不相关的对象中找出同样的或相似的关系,用已知模型的某些结论类比得到解决该“类似”问题的数学方法,最终建立起解决问题的模型2、量纲分析是在经验和实验的基础上,利用物理定律的量纲齐次性,确定各物理量之间的关系。

它是一种数学分析方法,通过量纲分析,可以正确地分析各变量之间的关系,简化实验和便于成果整理。

在国际单位制中,有七个基本量:质量、长度、时间、电流、温度、光强度和物质的量,它们的量纲分别为M、L、T、I、H、J和N,称为基本量纲。

量纲分析法常常用于定性地研究某些关系和性质,利用量纲齐次原则寻求物理量之间的关系,在数学建模过程中常常进行无量纲化,无量纲化是根据量纲分析思想,恰当地选择特征尺度将有量纲量化为无量纲量,从而达到减少参数、简化模型的效果。

3.差分法差分法的数学思想是通过taylor级数展开等方法把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的方程组,将微分问题转化为代数问题,是建立离散动态系统数学模型的有效方法。

构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。

其基本的差分表达式主要有以下几种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。

通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。

差分法的解题步骤为:建立微分方程;构造差分格式;求解差分方程;精度分析和检验4、变分法较少5、图论法数学建模中的图论方法是一种独特的方法,图论建模是指对一些抽象事物进行抽象、化简,并用图来描述事物特征及内在联系的过程。

图论是研究由线连成的点集的理论。

一个图中的结点表示对象,两点之间的连线表示两对象之间具有某种特定关系(先后关系、胜负关系、传递关系和连接关系等)。

数学建模中的图论方法

数学建模中的图论方法

数学建模中的图论方法----图论的基础知识
哈密尔顿回路,起源于一个名叫“周游世界”的游戏, 它是由英国数学家哈密尔顿(Hamilton)于1859年提出的。 他用一个正十二面体的20个顶点代表20个大城市(图 (a)),这个正十二面体同构于一个平面图(图(b))。要 求沿着正十二面体的棱,从一个城市出发,经过每个城市 恰好一次,然后回到出发点。这个游戏曾风靡一时,它有 若干个解。图(b)给出了一个解。
A B C A
B
C
A
B
C
a
b G1
c
d
e
a
b
c G2
d
e
a
b
c G3
d
e
数学建模中的图论方法----图论中的几个实用算法
4.图论中的几个实用算法
1.加权图中的最短路径的Dijkstra算法
最短路径问题:给定连接若干城市的铁路网,寻找从 指定城市到各城市去的最短路线。 数学模型:设 G V , E,W 是一个加权图,边 u, v 的权 记为 u, v ,路径P的长度定义为路径中边的权之和,记 为 P。两结点u和v之间的距离定义为
(1)如果结点v2 , v3 , v4之间至少有一条红边,比如 v2 , v3 是 红边,则得到红色的三角形 v1v2v3; (2)如果结点v2 , v3 , v4之间的边全是蓝色的,则得到蓝色 的三角形 v2v3v4。 关于问题中的结点数,对任何n 6 ,命题都成立.但 当n 5 时,命题便不成立了。这说明:不同的六个点是保 证用两色涂染其边,存在同色三角形的最少点数。
2 15 17 18 11 10
16 1 20
14 13 12 6 7 3 4 5
19 9

数学建模常用算法

数学建模常用算法
图论方法:
最短路问题:两个指定顶点之间的最短路径—给出了一个连接若干个城镇的铁路网络,在这个网络的两个指定城镇间,找一条最短铁路线 (Dijkstra算法 )每对顶点之间的最短路径 (Dijkstra算法、Floyd算法 )。
最小生成树问题:连线问题—欲修筑连接多个城市的铁路设计一个线路图,使总造价最低(prim算法、Kruskal算法 )。
图的匹配问题:人员分派问题:n个工作人员去做件n份工作,每人适合做其中一件或几件,问能否每人都有一份适合的工作?如果不能,最多几人可以有适合的工作?(匈牙利算法)。
遍历性问题:中国邮递员问题—邮递员发送邮件时,要从邮局出发,经过他投递范围内的每条街道至少一次,然后返回邮局,但邮递员希望选择一条行程最短的路线
时间序列是按时间顺序排列的、随时间变化且相互关联的数据序列—通过对预测目标自身时间序列的处理,来研究其变化趋势(长期趋势变动、季节变动、循环变动、不规则变动)
自回归模型:一般自回归模型AR(n)—系统在时刻t的响应X(t)仅与其以前时刻的响应X(t-1),…, X(t-n)有关,而与其以前时刻进入系统的扰动无关 ;移动平均模型MA(m)—系统在时刻t的响应X(t) ,与其以前任何时刻的响应无关,而与其以前时刻进入系统的扰动a(t-1),…,a(t-m)存在着一定的相关关系 ;自回归移动平均模型 ARMA(n,m)—系统在时刻t的响应X(t),不仅与其前n个时刻的自身值有关,而且还与其前m个时刻进入系统的扰动存在一定的依存关系 。
这些方法可以解一些模型:优化模型、微分方程模型、统计模型、概率模型、图论模型、决策模型。
拟合与插值方法(给出一批数据点,确定满足特定要求的曲线或者曲面,从而反映对象整体的变化趋势): matlab可以实现一元函数,包括多项式和非线性函数的拟合以及多元函数的拟合,即回归分析,从而确定函数; 同时也可以用matlab实现分段线性、多项式、样条以及多维插值。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模中的图论方法一、引言我们知道,数学建模竞赛中有问题A和问题B。

一般而言,问题A是连续系统中的问题,问题B是离散系统中的问题。

由于我们在大学数学教育内容中,连续系统方面的知识的比例较大,而离散数学比例较小。

因此很多人有这样的感觉,A题入手快,而B题不好下手。

另外,在有限元素的离散系统中,相应的数学模型又可以划分为两类,一类是存在有效算法的所谓P类问题,即多项式时间内可以解决的问题。

但是这类问题在MCM中非常少见,事实上,由于竞赛是开卷的,参考相关文献,使用现成的算法解决一个P类问题,不能显示参赛者的建模及解决实际问题能力之大小;还有一类所谓的NP问题,这种问题每一个都尚未建立有效的算法,也许真的就不可能有有效算法来解决。

命题往往以这种NPC问题为数学背景,找一个具体的实际模型来考验参赛者。

这样增加了建立数学模型的难度。

但是这也并不是说无法求解。

一般来说,由于问题是具体的实例,我们可以找到特殊的解法,或者可以给出一个近似解。

图论作为离散数学的一个重要分支,在工程技术、自然科学和经济管理中的许多方面都能提供有力的数学模型来解决实际问题,所以吸引了很多研究人员去研究图论中的方法和算法。

应该说,我们对图论中的经典例子或多或少还是有一些了解的,比如,哥尼斯堡七桥问题、中国邮递员问题、四色定理等等。

图论方法已经成为数学模型中的重要方法。

许多难题由于归结为图论问题被巧妙地解决。

而且,从历年的数学建模竞赛看,出现图论模型的频率极大,比如:AMCM90B-扫雪问题;AMCM91B-寻找最优Steiner树;AMCM92B-紧急修复系统的研制(最小生成树)AMCM94B-计算机传输数据的最小时间(边染色问题)CMCM93B-足球队排名(特征向量法)CMCM94B-锁具装箱问题(最大独立顶点集、最小覆盖等用来证明最优性)CMCM98B-灾情巡视路线(最优回路)等等。

这里面都直接或是间接用到图论方面的知识。

要说明的是,这里图论只是解决问题的一种方法,而不是唯一的方法。

本文将从图论的角度来说明如何将一个工程问题转化为合理而且可求解的数学模型,着重介绍图论中的典型算法。

这里只是一些基础、简单的介绍,目的在于了解这方面的知识和应用,拓宽大家的思路,希望起到抛砖引玉的作用,要掌握更多还需要我们进一步的学习和实践。

二、基本概念和性质首先给出图论中的一些基本概念。

1.一个图G由一个顶点集V和一个边的集E组成。

E中每个元素e是连接顶点集V中两个顶点u和v的边,称e与u,v关联。

我们规定连接两个顶点u、v至多有一条边,且一条边的两个顶点不重合,这种图称为简单图。

2.顶点集为V,边集为E的图G通常记为G=(V,E)。

图G1=(V1,E1)称为G的子图,如果V1V,E1E。

3.顶点v的度(或“次”)是指与v相关联的边的个数。

图G的度数之和为边数的两倍。

4.若图G中任意两个顶点u、v之间都存在连接它们的路,称G为连通图。

5.W=v0e1v1e2……ekvk,其中ei∈E,vj∈V,ei与vi-1,vi关联,称W是图G的一条道路。

v0是起点,vk是终点;各边相异的道路叫做行迹,各顶点相异的道路叫做轨道;起点和终点重合的道路为回路;起点和终点重合的轨道为圈;包含图中每条边的回路称为Euler回路;含Euler回路的图称为Euler图。

6.一个无圈的连通图称为树。

树是最简单而最重要的一类图。

树有下列重要性质:性质:1)在树中去掉任意一条边,所得的图是不连通的。

2)在树中任意两个不相邻的顶点u、v之间添加一条新的边,所得的图恰有一个圈。

下述定理是树的判断定理:定理:若图G具有下列性质中的两条,则它是树,且也具有第三条性质。

(1).G是连通图;(2).G没有圈;(3).G的顶点数=G的边数+1。

7.如果图G=(V,E)的子图G t=(V t,E t)是一个树,且V t=V,称G t是G的生成树。

G连通的充要条件是G有生成树。

生成树一般而言数量很大。

8.设对图G=(V,E)的每一条边e赋予一个实数W(e),称为e的权,G称为赋权图(加权图)。

假设G是连通的赋权图,要找G的连通子图G *=(V,E*),使得W(G*)=∑∈Eee W) (为最小。

显然G*应为G的一个生成树。

G的权最小的生成树称为G的最小生成树。

三、算法介绍3.1 最短轨道问题背景:给定连接若干城市的铁路网,寻求从指定城市v0到各城v去的最短道路。

数学模型:图G为一赋权图,对任给的v∈V(G),寻求轨道P(v0,v),使得W(P(v0,v))=min{W(P),P取自所有v0到v的轨道集合}其中W(P)是轨道P上各边权之和。

这一问题可用迪克斯特拉(Dijkstra)算法解决。

基本思想:从起点v0开始,逐步寻找到达各点的最短路,在每一步都对顶点记录一个数,称之为该点的标号,它表示v0到该点的最短距离的上界,或就是v0到该点的最短距离。

实际上每一步都通过把至少一个具有T标号的点变成P标号(即把一个不是最短距离标号的顶点变成是最短距离标号的顶点),这样最多经过|V(G)|-1步就可完成。

步骤:记l(v)为v0到v的距离。

(1) l(v0)=0,l(v) = ∞,(v≠v0);S0={v0},i=0。

(2) 对v∉Si,min{l(v),l(vi)+w(viv)}代替l(v);这样找到点vi+1使得l(v)取最小值,v(i+1)∈(Si的余集)。

令S(i+1)=Si+{v(i+1)}。

(3) i=|V(G)|-1时停止,否则,i+1,转到(2)。

实例:CMCM94A-公路选址问题。

3.2 求最小生成树1.克罗斯克尔(Kruskal)算法(1956年),俗称“避圈法”背景:筑路选线问题欲修筑连接n个城市的铁路,已知i城与j城之间的铁路造价为Cij。

设计一个线路图,使总造价最低。

分析:选线问题的数学模型是在连通加权图上求权最小的连通生成子图。

显然,权最小的连通生成子图是一个生成树,即求取连通加权图上的权最小的生成树,这就归结为最小生成树问题。

这个问题可由克罗斯克尔(Kruskal)算法解决。

思路:从“边”着手选最小生成树。

步骤:设G为由m个节点组成的连通赋权图。

(1) 先把G中所有的边按权值大小由小到大重新排列,并取权最小的一条边为树T中的边。

即选e1∈E,使得w(e1)=min。

(2) 从剩下的边中按(1)中的排列取下一条边。

若该边与前面已取进T中的边构成一个回路,则舍弃该边,否则也把它取进T中。

若e1,e2,…,ei已经选好,则从E-{e1,e2,…,ei}中选取ei+1,使得G[{e1,e2,…,ei,ei+1}]中无圈,且w(ei+1)=min。

(3) 重复步骤(2),直到T中有m-1条边为止。

则T为G的最小生成树。

该算法的复杂度为O(e log e),其中e是图G中的边数。

2.普莱姆(Prim)算法思路:从点入手来选边步骤:(1) 在图G中任取一个节点vi1,并放入T中。

(2) 令S=V(G)/V(T),V(G)、V(T)分别是G、T的节点集。

(3) 在所有连接V(T)节点与S节点的边中,选出权值最小的边(u0,v0),即w(u0,v0)=min{w(u,v)|u∈V(T), v∈S}。

(4) 将边(u0,v0)放入T中。

(5) 重复步骤(2)-(4),直到G中节点全部取完。

该算法的复杂度为O(n^2),其中n为图G的节点数。

3.1975年管梅谷提出的“破圈法”3.3 Steiner生成树实际背景:在已有网络上选择连通几个城市的最廉价交通或通讯网。

数学模型:从已知的加权连通图上求取最小的树状子图,使此树包含指定的顶点子集。

第一个的边长为3,第二个的边长为1,总费用第二个更少。

分析:与传统的最小生成树相比,这里可以引入若干“虚拟站”并构造一个新的Steiner树,这样可以降低由一组站生成的传统的最小生成树所需的费用(降低的费用大概为13.4%)。

而且为构造一个有n个顶点的网络的费用,最低的Steiner树决不需要多于(n-2)个虚设站。

当然,有时最小Steiner 生成树与最小生成树相同。

寻求最小Steiner生成树的算法有Melzak算法(1961年),但是这是一个指数时间的算法,现在没有多项式时间的算法,换句话说它是一个NP问题。

而且,这里的要求是用直折线代替欧氏直线距离,因而不能利用直接的算法。

所以在解决这样的问题的时候,为减少运算的时间,理论上的分析是必要的:比如树的长度的下界,Steiner树的存在性,虚设站的位置等等。

常用的算法还包括穷举法、模拟退火法等。

Melzak算法:其基础是3点steiner树,即3点Fermat问题的几何作图法。

参考[2],Page375。

模拟退火法原理:模拟退火法(Simulated annealing, SA)是模拟热力学中经典粒子系统的降温过程,来求解极值问题。

当孤立粒子系统的温度以足够慢的速度下降时,系统近似处于热力学平衡状态,最后系统将达到本身的最低能量状态,即基态,这相当于能量函数的全局极小点。

其步骤如下(也称为Metropolis过程):(1)给定初始温度T0,及初始点,计算该点的函数值f(x)。

(2)随机产生扰动Δx,得到新点x′=x+Δx,计算新点函数值f(x′),及函数值差Δf=f(x′)-f(x)。

(3)若Δf≤0,则接受新点,作为下一次模拟的初始点;(4)若Δf>0,则计算新点接受概率:,产生[0,1]区间上均匀分布的伪随机数r,r∈[0,1],如果p(Δf)≥r,则接受新点作为下一次模拟的初始点;否则放弃新点,仍取原来的点作为下一次模拟的初始点。

模拟退火法实例:1.MCM91B(通讯网络中的极小生成树)是一个求STEINER生成树问题,参见《工科数学专辑》Page:70-78。

2、CMCM 97A题97年全国大学生数模竞赛A题“零件的参数设计”,可以归结为非线性规划模型,由于目标函数很复杂,且又是一个多维函数,因此求解比较困难,为应用模拟退火法进行求解,将7个自变量的取值范围进行离散化,取步长为0.0001,这样,所有7个变量取值就组成了一个极为庞大的离散空间, 而这个问题变成组合优化模型。

这个问题算法的状态调整规则是:每次从7个自变量中随机选取1-4个,让选取的自变量随机移动,考虑选取的自变量在两个方向移动组合,从中选取最佳的作为候选者,自变量移动的距离随着温度的降低而减少,为避免陷入局部极小,可以从多个随机选取的初始值开始计算,算法的其它步骤同上。

3、CMCM 98B题98年全国大学生数学建模竞赛B题“水灾巡视问题”,是一个推销员问题,本题有53个点,所有可能性大约为exp(53),目前没有好方法求出精确解,既然求不出精确解,我们使用模拟退火法求出一个较优解,将所有结点编号为1到53,1到53的排列就是系统的结构,结构的变化规则是:从1到53的排列中随机选取一个子排列,将其反转或将其移至另一处,能量E自然是路径总长度。

相关文档
最新文档