杂散电流的腐蚀及防护之欧阳光明创编

合集下载

燃气管道杂散电流腐蚀及防护

燃气管道杂散电流腐蚀及防护

燃气管道杂散电流腐蚀及防护在燃气管道运行过程中,由于环境条件和管道使用维护等因素的不确定性,会导致管道表面产生一些杂散电流。

这些杂散电流的存在会给燃气管道带来一定的腐蚀风险,因此在燃气管道的设计、施工及运行过程中,需要考虑采取一些有效的措施,防止杂散电流对管道产生腐蚀损害。

本文将从杂散电流的产生机制、腐蚀机理以及防护措施三个方面进行阐述。

1. 杂散电流的产生机制燃气管道的杂散电流产生与周围环境及管道自身电化学池电位有关。

当管道连通另一电化学电位较低的构件或设施时,如果电位差超过一定值,就会产生杂散电流,从而引发管道腐蚀。

杂散电流可由线性和非线性两种方式产生。

1.1 线性杂散电流线性杂散电流主要受电源电位、管道电位和电路电阻的影响。

当电路中存在电位差,管道交流电阻和电位之间的电势差会产生电流,从而产生线性杂散电流。

其他因素如水分析、电解质浓度等也会影响杂散电流的大小。

1.2 非线性杂散电流非线性杂散电流往往是由高压直流线路通过电介质引起的,比如石油和天然气管道经过高压直流输电线路时就可能产生非线性杂散电流。

非线性杂散电流的幅度较大,可以对管道产生较大的腐蚀作用。

2. 腐蚀机理燃气管道在杂散电流的作用下,可能会发生如下几种腐蚀现象:2.1 金属腐蚀金属腐蚀是最为常见的一种腐蚀现象。

电流经过原本无需溶解的金属表面后,会发生电化学反应,并导致金属表面钝化层的破坏,随后金属的一部分物质就会溶解并脱落。

这样就会导致管道内部或外部的金属腐蚀。

2.2 极化腐蚀极化腐蚀是指金属表面在某些特定情况下,电化学反应速度升高而导致腐蚀的过程。

例如,在管道表面形成漏洞时,容易引起极化腐蚀。

2.3 应力腐蚀应力腐蚀是在金属表面承受着应力的情况下依然腐蚀的过程。

燃气管道由于其长期在应力状态下运行,如果存在杂散电流,则可能在管道表面形成多种应力,这就容易引起应力腐蚀。

2.4 脱化腐蚀脱化腐蚀则是指燃气管道表面物质溶解速度在电流作用下加快,这会导致管道内部物质脱落而形成腐蚀。

地铁杂散电流腐蚀防护系统相关问题探讨

地铁杂散电流腐蚀防护系统相关问题探讨

地铁杂散电流腐蚀防护系统相关问题探讨路春莲;李锋【摘要】论述地铁牵引供电系统中的杂散电流腐蚀防护系统,讨论地铁杂散电流腐蚀产生的机理及其危害,阐述治理杂散电流所采用的方法和防治原则,简要介绍目前应用的杂散电流监测系统和排流柜之间的关系,对杂散电流腐蚀防护提出合理建议.%This article describes the principles of generation of metro stray current and its corrosion to protective systems, e-laborates the protective measures adopted to prevent the stray current, and briefly introduces the relation between stray current monitoring system and current drainage cabinet used at present, with suggestions to prevent the stray current corrosion given in the end.【期刊名称】《都市快轨交通》【年(卷),期】2013(026)001【总页数】4页(P64-67)【关键词】地铁;过渡电阻;杂散电流;监测系统;排流柜;运营维护【作者】路春莲;李锋【作者单位】西安市地下铁道有限责任公司西安710018;西安市地下铁道有限责任公司西安710018【正文语种】中文【中图分类】U231.7目前,地铁列车牵引用电一般都采用直流电,由设置在沿线的牵引变电所通过架空线或第三轨向列车馈电,利用走行轨作为回流线路。

地铁系统的走行轨本身具有电阻且对地做不到完全绝缘,所以总有一部分回流电流从走行轨泄露到大地。

这部分从走行轨泄露的电流被称为杂散电流,也叫迷流[1]。

杂散电流的腐蚀及防护之欧阳术创编

杂散电流的腐蚀及防护之欧阳术创编

一、杂散电流干扰方式杂散电流是指在地中流动的设计之外的直流电,它来自直流的接地系统,如直流电气轨道、直流供电所接地极、电解电镀设备的接地、直流电焊设备及阴极保护系统等。

其中,以城市和矿区电机车为最甚。

它的干扰途径如图10-60所示。

从图中可以划分三种情况:时间:2021.02.02 创作:欧阳术图10-60 杂散电流干扰示意图1—供电所 2—架空线 3—轨道电流 4—阳极区5—腐蚀电流6—交变区 7—阴极区1.靠近直流供电所的管道属于阳极区,杂散电流从管道上流出,造成杂散电流电解。

2. 在干扰段中间部位的管道属于极性交变区,杂散电流可能流入也可能流出。

当电流流出时,造成腐蚀。

3.在电机车附近的管道属于阴极区,杂散电流流入管道,它起着某种程度的阴极保护作用。

以上是一般规律。

实际上杂散电流干扰源是多中心的。

如矿区电机车轨道已形成网状,供电所很多,当多台机车运行时会产生杂乱无章的地下电流。

作用在管道上的杂散电流干扰电位如图10-61所示。

图10-61 杂散电流干扰电位曲线埋地钢质管道因直流杂散电流所造成的腐蚀称为干扰腐蚀。

因属电解腐蚀,所以有时也称电蚀。

这是管道腐蚀穿孔的主要原因之一。

例如:东北地区输油管道受直流干扰的约占5%,腐蚀穿孔事故原因的80%是由杂散电流引起的;北京地下铁路杂散电流腐蚀已经形成公害,引起了有关部门的重视。

随着阴极保护技术的推广应用,也会给地下带来大量的杂散电流。

如近些年来城市地下燃气管道给水管道、地下电缆等采用了外加电流保护,在它的阳极地床附近可能会造成阳极地电场干扰。

在被保护的管道(或电缆)附近可能会造成阴极电场的干扰。

其干扰形式如图10-62和图10-63所示。

其干扰范围与阳极排放电流和阴极保护电流密度成正比。

当单组牺牲阳极输出电流大于100mA时,也应注意其干扰。

二、杂散电流腐蚀的特点1.强度高、危害大埋地钢质管道在没有杂散电流时,只发生自然腐包蚀。

大部分属腐蚀原电池型。

杂散电流腐蚀防护措施

杂散电流腐蚀防护措施
杂散电流腐蚀防护措施
1) 杂散电流(“迷流”)的产生
杂散电流对金属结构的腐蚀有四个方面: 钢轨、道床结构钢筋、隧道结构钢筋、地网及地铁外部其它公共设施
堵 排 测
杂散电流腐蚀防护
采取“以堵为主,以排为辅, 防堵结合,加强监测”的设计原则:
•GB50157-2013 •CJJ49-92
Hale Waihona Puke 从源头上减少杂散电流 限制杂散电流扩散
10)应设置完善的杂散电流监测系统。
杂散电流腐蚀防护
加强金属构件腐蚀防护 杂散电流检测
1)走行钢轨和DC1500V设备采用绝缘法安装。
2)利用道床结构钢筋的可靠电气连接,形成杂散电流主收集监测网;
3)利用地下车站、明挖(或矿山法)区间隧道及U型槽、桥梁结构钢筋的可靠电气连接,形成杂散 电流辅助监测网;
4)在盾构区间采用隔离法对盾构管片结构钢筋进行防护。
5)在正线牵引变电所附近设置道床结构钢筋排流端子,以便用排流电缆将杂散电流主收集监测网 连接至牵引变电所内排流柜。
6)在正线牵引变电所内设置排流柜。排流柜应根据运营过程中对杂散电流腐蚀状况的监测结果判 断是否投入运行。 7)在车站两端、地下区间联络通道及高架区间每隔200m左右设置上、下行均流电缆;在设置牵引 变电所的车站一端不再设置均流电缆。在正线同一行的两根钢轨间每隔200m左右也设置一处均流 电缆。 8)车辆段(停车场)应根据接触网供电分段情况确定牵引回流回路,恰当的设置回流点和均流电 缆。 9)车辆段(停车场)线路与正线之间、车辆段(停车场)各电化线路的库内线路与库外线路之间 应设置绝缘轨缝并装设单向导通装置。电化股道和非电化股道之间、电化股道尽头线与车挡设备之 间应设置绝缘轨缝。

1)《人民防空工程施工及验收规范》GB50134-之欧阳光明创编

1)《人民防空工程施工及验收规范》GB50134-之欧阳光明创编

*欧阳光明*创编 2021.03.07《人民防空工程施工及验收规范》GB50134-2004欧阳光明(2021.03.07)(自2004年8月1日起实施)正文部分1 总则1.0.1为了提高人民防空工程(以下简称人防工程)的施工水平,降低工程造价,保证工程质量,制定本规范。

1.0.2本规范适用于新建、扩建和改建的各类人防工程的施工及验收。

1.0.3人防工程施工前,应具备下列文件:1 工程地质勘察报告;2 经过批准的施工图设计文件;3 施工区域内原有地下管线、地下构筑物的图纸资料;4 经过批准的施工组织设计或施工方案;5 必要的试验资料。

1.0.4工程施工应符合设计要求。

所使用的材料、构件和设备,应具有出厂合格证并符合产品质量标准;当无合格证时,应进行检验,符合质量要求方可使用。

1.0.5当工程施工影响邻近建筑物、构筑物或管线等的使用和安全时,应采取有效措施进行处理。

1.0.6工程施工中应对隐蔽工程作记录,并应进行中间或分项检验,合格后方可进行下一工序的施工。

1.0.7设备安装工程应与土建工程紧密配合,土建主体工程结束并检验合格后,方可进行设备安装。

1.0.8工程施工质量验收时,应提供下列文件和记录:1 图纸会审、设计变更、洽商记录;2 原材料质量合格证书及检(试)验报告;3 工程施工记录;4 隐蔽工程验收记录;5 混凝土试件及管道、设备系统试验报告;6 分项、分部工程质量验收记录;7 竣工图以及其他有关文件和记录。

1.0.9人防工程施工及验收,除应遵守本规范外,尚应符合国家现行有关标准规范的规定。

1.0.10人防工程施工时的安全技术、环境保护、防火措施等,必须符合有关的专门规定。

2术语2.0.1人民防空工程为保障人民防空指挥、通信、掩蔽等需要而建造的防护建筑。

人民防空工程分为单建掘开式工程、坑道工程、地道工程和防空地下室。

2.0.2单建掘开式工程单独建设的采用明挖法施工,且大部分结构处于原地表以下的工程。

杂散电流腐蚀机理及防护措施

杂散电流腐蚀机理及防护措施

杂散电流腐蚀机理及防护措施一、背景介绍在工业生产中,随着科技的进步和发展,涉及到电子器件和各种金属设备的使用越来越广泛。

然而,我们也会遇到一些意想不到的问题,比如杂散电流腐蚀现象。

杂散电流腐蚀是一种电化学腐蚀现象,由于设备中的电子学元件和电线之间的电流路径不完全主导,所以产生了这种现象。

如何减少杂散电流对设备的损害,一直是工程师们尤为关注的问题。

二、腐蚀机理1.发生杂散电流的原因在不同状态下,电子元件和金属装置之间的电位差,导致内部电流的产生,从而出现了杂散电流的产生。

并且中介物质也是电化学反应的催化剂,强化电化学反应,加速了材料的腐蚀,使设备不可避免地出现了腐蚀现象。

2.电化学反应机理杂散电流腐蚀是一种电化学反应,其机理主要有以下几个过程:1)阴阳极反应所致的腐蚀当两种不同金属的材料同时存在于同一电解质中时,其间电位差会引起电流的流动。

金属中氧化物离子的流动,有时被电位差控制,产生了腐蚀现象。

2)金属在电场作用下腐蚀当电场强度超过电解质电势时,电解质中的离子将受到电场的约束,导致发生腐蚀现象。

3)金属在呼吸的过程中腐蚀在受湿气、氧气和空气中的金属构件,经过长时间的反复潮湿和干燥的过程,加剧了腐蚀现象的发生。

三、防护措施1.设计可靠的电路我国工业生产中,设计防护电路是杂散电流腐蚀防范工作的第一步。

同时,加强电子电气设备的设计和制造工艺,防止杂散电流的发生,可以有效避免毁坏设备的情况。

2.资料选择通过电解,构建材料对抗杂散电流腐蚀的能力和耐腐蚀性能强的组合材料。

3.使用低电容端子在电子电气设备的使用中,应尽量使用低电容的端子连接。

如果端子电容过高,会导致设备的工作电压精度下降,加速杂散电流的产生。

4.防止电离击穿在电子电气设备的使用中,必须避免电离击穿的情况发生,通过选择正确的电磁材料和电容电感规格,实现平衡装置的工作状态。

四、总结杂散电流腐蚀是电子电气设备中经常出现的问题,在工业生产中会给人们带来一定的损失。

杂散电流对埋地管道的腐蚀及防护措施

杂散电流对埋地管道的腐蚀及防护措施
宜的防护结构 . 本 文 主 要 针 对 上 述 问题 对 多 年 来 的科 研 成 果 和 工 程 实 例 进 行 概 括 和 总 结 1 . 杂散 电流 的形 成
时. 管道表 面会析 出大量 的氢 . 造 成 防
腐 绝缘层 破损 、 脱落 。 从 而 加 剧 阴极 区 的腐 蚀 破 坏 对 于 长 距 离 带 覆 盖 层 的 金 属 管道 . 杂 散电流 流入管 道很大 . 电 流 只 能从 外 覆 盖 层 的 破 损 处 流 出 . 更 容 易 集 中在 管 道 局 部
混 凝 土 结 构 的破 坏 主 要 由钢 筋 锈 蚀 、 钢 筋 与 混 凝 土 粘 结 强 度 降 低 和 钢 筋 锈 蚀 产 物 造 成 混 凝 土 开 裂 等 因 素 引 起 电 流
通 过钢 筋 混 凝 土 结 构 时 . 由 于混 凝 土 内 在 设 计 和 规 定 回 路 中 意 外 流 动 的 电流 称 为 杂 散 电流 . 杂 散 电流 包 括 直 流 杂 散 电流 和 交 流 杂 散 电 流 直 流 杂 散 电
为该 管 道存 在 直 流 干 扰 : 当管 道 上 任 意 点 管 地 电 位 较 该 点 自然 电 位 正 向 偏 移 1 0 0 m V 或 该 点 管 道 临 近 土 壤 直 流 地 电
的氢 不 能 逸 出 . 则 可 能 使 钢 筋 与 混凝 土 脱开. 电流 流出点 钢筋锈 蚀 . 有 效 面 积
腐 蚀 就 越严 重 , 遵 循 法拉 第 电解 定 律 。 当
杂 散电流为 1 A时 . 一 年 内可 腐 蚀 3 6 k g 铅 、 1 l k g 铜和 1 0 k g铁 。 杂 散 电 流 强 度 评 价 指 标 主 要 为 管 地 电位 和 土 壤 电 位 梯 度 . 当处 于 直 流 电

杂散电流腐蚀与防护

杂散电流腐蚀与防护
杂散电流具有强度高、危害大、范围广、随机性强等特点,对埋地管道等设施造成严重的腐蚀威胁。因此,采取有效的防护措施至关重要。针对直流杂散电流,可以通过最大限度地减少干扰泄漏电流、符合安全距离、增加回路电阻、排流保护等措施来降低其腐蚀影响。具体来说,可以通过优化设备接地设计、采用高电阻率材料、设置排流装置等手段来实现。而对于交流杂散电流的防护,则需要根据具体情况采取相应的保护措施,例如在强电线路、输油管道等附近区域,可以采取屏蔽、接地、滤波等方法来降低交流杂散电流的影响。此外,对于已经受到杂散电流腐蚀的设施,还需要采取修复和加固措施,以确保其安全稳定运行。总之,杂散电流的防护需要综合考虑多种因素,包括电措施,才能有效地降低杂散电流对设施的腐蚀危害。

杂散电流的腐蚀及防护

杂散电流的腐蚀及防护

一、杂散电流干扰方式杂散电流是指在地中流动的设计之外的直流电,它来自直流的接地系统,如直流电气轨道、直流供电所接地极、电解电镀设备的接地、直流电焊设备及阴极保护系统等。

其中,以城市和矿区电机车为最甚。

它的干扰途径如图10-60所示。

从图中可以划分三种情况:图10-60 杂散电流干扰示意图1—供电所2—架空线3—轨道电流4—阳极区5—腐蚀电流6—交变区7—阴极区1.靠近直流供电所的管道属于阳极区,杂散电流从管道上流出,造成杂散电流电解。

2. 在干扰段中间部位的管道属于极性交变区,杂散电流可能流入也可能流出。

当电流流出时,造成腐蚀。

3.在电机车附近的管道属于阴极区,杂散电流流入管道,它起着某种程度的阴极保护作用。

以上是一般规律。

实际上杂散电流干扰源是多中心的。

如矿区电机车轨道已作用在当多台机车运行时会产生杂乱无章的地下电流。

供电所很多,形成网状,管道上的杂散电流干扰电位如图10-61所示。

图10-61 杂散电流干扰电位曲线埋地钢质管道因直流杂散电流所造成的腐蚀称为干扰腐蚀。

因属电解腐蚀,所以有时也称电蚀。

这是管道腐蚀穿孔的主要原因之一。

例如:东北地区输油管道受直流干扰的约占5%,腐蚀穿孔事故原因的80%是由杂散电流引起的;北京地下铁路杂散电流腐蚀已经形成公害,引起了有关部门的重视。

随着阴极保护技术的推广应用,也会给地下带来大量的杂散电流。

如近些年来城市地下燃气管道给水管道、地下电缆等采用了外加电流保护,在它的阳极地床附近可能会造成阳极地电场干扰。

在被保护的管道(或电缆)附近可能会造成阴极电场的干扰。

其干扰形式如图10-62和图10-63所示。

其干扰范围与阳极排放电流和阴极保护电流密度成正比。

当单组牺牲阳极输出电流大于100mA时,也应注意其干扰。

二、杂散电流腐蚀的特点1.强度高、危害大埋地钢质管道在没有杂散电流时,只发生自然腐包蚀。

大部分属腐蚀原电池型。

腐蚀电池的驱动电位只有几百毫伏,而所产生的腐蚀电流只有几.十毫安。

地铁杂散电流危害及防护范文(2篇)

地铁杂散电流危害及防护范文(2篇)

地铁杂散电流危害及防护范文地铁杂散电流是指由于地铁工程中的设计、施工和运营问题导致的电流在地铁车辆、轨道、结构和站台等金属设施上的传导,给乘客和工作人员带来的电击危险。

地铁杂散电流的危害主要包括电击伤害以及对设备设施的损坏。

因此,为了保障地铁乘客和工作人员的人身安全以及地铁设备的正常运行,必须采取一系列的防护措施。

地铁杂散电流对人体的危害主要体现在电击伤害方面。

由于地铁车辆和结构的金属部分都可能存在电路故障,当乘客接触到这些金属部分时,就有可能遭受到电击。

电击伤害的程度取决于电流的大小和电击持续的时间,严重的情况下可能导致人身伤害甚至死亡。

另外,地铁设备由于长期受到杂散电流的侵蚀,容易出现电气设备故障,导致地铁运营中断、事故发生等严重后果。

为了防止地铁杂散电流对人体的危害,首要的任务是加强对地铁工程的设计和施工过程中的监管。

地铁工程的设计应符合相关电气安全标准,确保设备设置和电路设计合理,不会产生过大的杂散电流。

施工过程中应加强对地铁结构和设备接地系统的检查和测试,确保接地电阻符合要求。

同时,应定期进行电阻测试和接地电流测量,及时发现和修复可能出现的接地故障。

在地铁运营过程中,也需要采取一系列的防护措施来降低杂散电流的危害。

首先,地铁车辆和结构的金属部分应进行电气绝缘处理,减少电流的传导。

其次,应设置地铁站台和乘车门的绝缘层,避免乘客直接接触到电流传导的金属部分。

此外,还应加强地铁车辆和设备的维护和检修,确保电气设备的正常运行,减少故障率。

同时,在地铁站台和车厢内应设置清晰可见的警示标志,提醒乘客注意电气安全。

乘客应遵守相关规定,不要随意触碰地铁车辆和结构的金属部分,不要在接地电缆上行走,避免接触到杂散电流。

地铁工作人员应定期接受电气安全培训,提高电气安全意识,掌握处理紧急电气事故的技能,确保能够及时处理地铁杂散电流引发的突发情况。

总之,地铁杂散电流是一个严重的安全隐患,危害着地铁乘客和工作人员的安全以及地铁设备的正常运行。

杂散电流地腐蚀及防护

杂散电流地腐蚀及防护

一、杂散电流干扰方式杂散电流是指在地中流动的设计之外的直流电,它来自直流的接地系统,如直流电气轨道、直流供电所接地极、电解电镀设备的接地、直流电焊设备及阴极保护系统等。

其中,以城市和矿区电机车为最甚。

它的干扰途径如图10-60所示。

从图中可以划分三种情况:图10-60 杂散电流干扰示意图1—供电所 2—架空线 3—轨道电流 4—阳极区5—腐蚀电流 6—交变区 7—阴极区1.靠近直流供电所的管道属于阳极区,杂散电流从管道上流出,造成杂散电流电解。

2. 在干扰段中间部位的管道属于极性交变区,杂散电流可能流入也可能流出。

当电流流出时,造成腐蚀。

3.在电机车附近的管道属于阴极区,杂散电流流入管道,它起着某种程度的阴极保护作用。

以上是一般规律。

实际上杂散电流干扰源是多中心的。

如矿区电机车轨道已形成网状,供电所很多,当多台机车运行时会产生杂乱无章的地下电流。

作用在管道上的杂散电流干扰电位如图10-61所示。

图10-61 杂散电流干扰电位曲线埋地钢质管道因直流杂散电流所造成的腐蚀称为干扰腐蚀。

因属电解腐蚀,所以有时也称电蚀。

这是管道腐蚀穿孔的主要原因之一。

例如:东北地区输油管道受直流干扰的约占5%,腐蚀穿孔事故原因的80%是由杂散电流引起的;北京地下铁路杂散电流腐蚀已经形成公害,引起了有关部门的重视。

随着阴极保护技术的推广应用,也会给地下带来大量的杂散电流。

如近些年来城市地下燃气管道给水管道、地下电缆等采用了外加电流保护,在它的阳极地床附近可能会造成阳极地电场干扰。

在被保护的管道(或电缆)附近可能会造成阴极电场的干扰。

其干扰形式如图10-62和图10-63所示。

其干扰范围与阳极排放电流和阴极保护电流密度成正比。

当单组牺牲阳极输出电流大于100mA时,也应注意其干扰。

二、杂散电流腐蚀的特点1.强度高、危害大埋地钢质管道在没有杂散电流时,只发生自然腐包蚀。

大部分属腐蚀原电池型。

腐蚀电池的驱动电位只有几百毫伏,而所产生的腐蚀电流只有几十毫安。

杂散电流腐蚀机理及防护措施

杂散电流腐蚀机理及防护措施

杂散电流腐蚀机理及防护措施地铁或轻轨一般采用直流电力牵引的供电方式,一般接触网(或第三轨)为正极,而走行轨兼作负回流线。

由于回流线轨存在着电气阻抗,牵引电流在回流轨中产生压降,并且回流轨对地存在着电位差,回流线对道床、周围土壤介质、地下建筑物、埋设管线存在着一定的泄漏电流,泄漏电流沿地下建筑物、埋设管线等介质至负回馈点附近重新归入钢轨,此泄漏电流即称迷流,又称地铁杂散电流。

地铁迷流主要是对地铁周围的埋地金属管道、电缆金属铠装外皮以及车站和区间隧道主体结构中的钢筋发生电化学腐蚀,它不仅能缩短金属管线的使用寿命,而且还会降低地铁钢筋混凝土主体结构的强度和耐久性,甚至酿成灾难性的事故。

如煤气管道的腐蚀穿孔造成煤气泄漏、隧道内水管腐蚀穿孔而被迫更换等。

另外,地铁迷流同时也对地铁沿线城市公用管线和结构钢筋产生“杂散电流腐蚀”,影响地铁以外沿线公共设施的安全及寿命。

本文结合我公司参与的多条地铁线施工和运营维护管理的经验,针对杂散电流腐蚀机理及防护措施方面浅谈管见。

1杂散电流腐蚀机理1.1杂散电流腐蚀机理地铁迷流对埋地金属管线和混凝土主体结构中钢筋的腐蚀在本质上是电化学腐蚀,属于局部腐蚀,其原理与钢铁在大气条件下或在水溶液及土壤电解质中发生的自然腐蚀一样,都是具有阳极过程和阴极过程的氧化还原反应。

即电极电位较低的金属铁失去电子被氧化而变成金属离子,同时金属周围介质中电极电位较高的去极化剂,如金属离子或非金属离子得到电子被还原。

地铁直流牵引供电方式形成的迷流及其腐蚀部位如图1所示。

图中,I为牵引电流,Ix、Iy分别为走行轨回流和泄漏的迷流。

由图1可得地铁迷流所经过的路径可概括为两个串联的腐蚀电池,即电池I:A钢轨(阳极区)+B道床、土壤+C金属管线(阴极区);电池II:D金属管线(阳极区)+E土壤、道床+F钢轨(阴极区)。

当地铁迷流由图1中A、D(阳极区)的钢轨和金属管线部位流出时,该部位的金属铁便与其周围电解质发生阳极过程的电解作用,此处的金属随即遭到腐蚀。

杂散电流的腐蚀与防护

杂散电流的腐蚀与防护
Key words: stray current; corrosion; protection
技 术
0 前言
随着国民经济的持续发展,我国各大城市为了 缓解日趋严重的城市交通压力,纷纷加快了城市轨 道交通的建设。地铁和轻轨作为城市轨道交通的重 要组成正在迅速发展,它们多采用直流电力牵引系 统并把走行轨作为回流线。在列车运行的不同过程 (启动、加速、匀速、滑行、减速、制动、倒车、 停止等)中以及不同负载(空载、轻载、重载) 下,走行轨中的工作电流差别很大。该电流绝大部 分能经过走行轨流回到电源负极,但还有一小部分 从轨道与地面绝缘不良的位置泄漏到道床及周围土 壤介质中,形成杂散电流,俗称迷流。杂散电流经 过在地下无规律地流动,最后绝大部分还是流回供 电系统的负极。当然也存在极少的杂散电流无法流
Barlo .T .J 等人认为杂散电流的腐蚀特性具有以 下特点: ( 1 )腐蚀强度大,埋地钢质管道中无杂散电 流时,自然腐蚀电流只有几十毫安,而有杂散电流 时,最大电流能达上百安培,如此大的电流通过管道 表面流向土壤,在一年内将腐蚀掉近1 t 的钢铁量; (2)腐蚀集中于局部位置,由于杂散电流一般 都选择管道接地阻抗较小的部位流入土壤,所以, 杂散电流腐蚀也大都集中在这些局部位置。当埋地 管道有防腐层时,防腐层破损处的接地阻抗急剧减 小,杂散电流腐蚀加剧,因此,杂散电流腐蚀也常 集中在防腐层有缺陷的部位; (3)范围广、随机性强,杂散电流的作用范围 很广, 其影响可达几千米、几十千米, 这与引起杂散 电流的外部电流源密切相关。杂散电流腐蚀的发生 又常常是随机而变的, 其电流方向和电流强度都随外 界电力设施的负载情况、轨道的连接与绝缘状况、 管道的绝缘层状况而变化。因此, 也常将杂散电流的 干扰称之为动态干扰。这给杂散电流的测量、排除 带来了很大的困难[5]。表1为杂散电流腐蚀与自然腐 蚀的区别。

浅谈地铁杂散电流如何防腐

浅谈地铁杂散电流如何防腐

排入至钢轨 中 ,进而避免对 阳极造成腐蚀 。
[3]陈志光,秦朝葵,唐继旭 .城 市轨道 交通 动态杂散 电
第二 ,所谓 的隔离法指 的是利 用 电缆沟布线 ,在 固 流理 论分析及 计算[J].城 市轨道 交通研 究,2014,1 7(O3):
第二 ,对杂散 电流收集 网进行检测 ,降低杂散 电流
通 常来说 ,在 地铁线路 中有机 电车运行 的过程 中 ,
向外界 的扩展程度 。在开展 地铁施工工作 的过程 中 ,通 会产生杂散 电流 ,在该时间 中,工作人员很难进 ,进而生成 杂散 开展监测工作 ,因此 ,通常会通过监测系统对信号开展
蚀 ,致使钢筋 与混凝 土脱 离开来 ,一旦流 出钢筋 ,就会 被保 护的金 属物处于 阴极 电位集 中。
加大钢筋 自身 的体积 ,由于混凝土 内部强大 的压力 ,就
(三 )杂散 电流的监测
会产生开裂情况 ;在 杂散电流 比较严重 的地段 ,可能会
由于对 杂散电流监测工作难度 系数 比较高 ,因此 ,
[2]蔡 力,王建 国。樊 亚 东,周蜜,龚孟 荣,刘 思雯 .地铁
线将被保护 的管线 与轨道的 阳极区连接起来 ,整个管线 走行轨对地过 渡 电阻杂散 电流分布 的影 响[J].高 电压技
就会转变成 阴极性 ,利用 导线流入管线 的杂散 电流就会 术,201 5,41(1 1):3604—361 0.
流 的 危 害性 ,做 好 防腐 工作 就 显 得 尤 为 重要 。 关键词 :地 铁 运 行 ;杂散 电 流 ;防 腐措 施
一 、 地 铁 杂 散 电流 腐 蚀 危 害
缘涂料进行外刷 。关 于绝缘 涂层 方面 ,经常运用 的是煤
现 阶段 , 自来水 管 、供 暖管道 、石油管道 、天然气 焦油磁 漆 、挤 压 聚 乙烯 、沥青 等 。该方 法施 工 比较简

3.第8章 杂散电流腐蚀防护(备注-20140213修改)

3.第8章  杂散电流腐蚀防护(备注-20140213修改)
第第88章章杂散电流腐蚀防护杂散电流腐蚀防护电气工程系电气工程系黄小红黄小红20122012年年33月月峨眉校区电气工程系杂散电流腐蚀防护对专业的要求三三杂散电流腐蚀防护措施和监测手段二二一一杂散电流产生腐蚀机理及危害杂散电流收集网截面计算四四88峨眉校区电气工程系以走行轨为回流通路的直流牵引供电系统由于走行轨不可能完全绝缘于道床结构钢轨不可避免地向道床及其它结构泄漏电流这种电流就是杂散电流也称为地杂散电流对土建结构钢筋设备金属外壳及其它地下金属管线产生的电化学腐蚀即杂散电流腐蚀也叫做迷流腐蚀
峨眉校区
电气工程系
§8-1 杂散电流产生、腐蚀机理及危害
三. 杂散电流的腐蚀机理
2. 杂散电流的危害
① 走行轨及其附件的腐蚀。 ② 钢筋混凝土金属结构物的腐蚀。 ③ 周围埋地管线的腐蚀。 ④ 杂散电流流入电气接地装置,引起某些设备无法正常工 作。
峨眉校区
电气工程系
§8-1 杂散电流产生、腐蚀机理及危害
峨眉校区 电气工程系

§8-1 杂散电流产生、腐蚀机理及危害
三. 杂散电流的腐蚀机理
2. 城轨杂散电流腐蚀机理
走行轨和金属管线均为电子导体,地面为离子导体,电 子在A和D点流出,金属导体与地面组成e-i界面为阳 极。电流在C点和F点流入,则地面与金属导体组成的ie界面为阴极。 A、B、C和D、E、F分别构成了两个串联的电解电池。
峨眉校区
电气工程系
§8-1 杂散电流产生、腐蚀机理及危害
四. 杂散电流的分布规律
3. 双边供电杂散电流分布
I1
I1
I2
iT1 ( x )
I1
I I 2
L2 I1 I L
x = L1 x
is1 ( x )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、杂散电流干扰方式杂散电流是指在地中流动的设计之外的直流电,它来自直流的接地系统,如直流电气轨道、直流供电所接地极、电解电镀设备的接地、直流电焊设备及阴极保护系统等。

其中,以城市和矿区电机车为最甚。

它的干扰途径如图10-60所示。

从图中可以划分三种情况:欧阳光明(2021.03.07)图10-60 杂散电流干扰示意图1—供电所 2—架空线 3—轨道电流 4—阳极区5—腐蚀电流 6—交变区 7—阴极区1.靠近直流供电所的管道属于阳极区,杂散电流从管道上流出,造成杂散电流电解。

2. 在干扰段中间部位的管道属于极性交变区,杂散电流可能流入也可能流出。

当电流流出时,造成腐蚀。

3.在电机车附近的管道属于阴极区,杂散电流流入管道,它起着某种程度的阴极保护作用。

以上是一般规律。

实际上杂散电流干扰源是多中心的。

如矿区电机车轨道已形成网状,供电所很多,当多台机车运行时会产生杂乱无章的地下电流。

作用在管道上的杂散电流干扰电位如图10-61所示。

图10-61 杂散电流干扰电位曲线埋地钢质管道因直流杂散电流所造成的腐蚀称为干扰腐蚀。

因属电解腐蚀,所以有时也称电蚀。

这是管道腐蚀穿孔的主要原因之一。

例如:东北地区输油管道受直流干扰的约占5%,腐蚀穿孔事故原因的80%是由杂散电流引起的;北京地下铁路杂散电流腐蚀已经形成公害,引起了有关部门的重视。

随着阴极保护技术的推广应用,也会给地下带来大量的杂散电流。

如近些年来城市地下燃气管道给水管道、地下电缆等采用了外加电流保护,在它的阳极地床附近可能会造成阳极地电场干扰。

在被保护的管道(或电缆)附近可能会造成阴极电场的干扰。

其干扰形式如图10-62和图10-63所示。

其干扰范围与阳极排放电流和阴极保护电流密度成正比。

当单组牺牲阳极输出电流大于100mA时,也应注意其干扰。

二、杂散电流腐蚀的特点1.强度高、危害大埋地钢质管道在没有杂散电流时,只发生自然腐包蚀。

大部分属腐蚀原电池型。

腐蚀电池的驱动电位只有几百毫伏,而所产生的腐蚀电流只有几十毫安。

在土壤中的杂散电流腐蚀,则是电解电池原理。

即外来的直流电流或电位差,造成了土壤溶液中金属腐蚀。

其腐蚀量与杂散电流强度成正比,服从法拉第电解定律。

也就是说,假如有1A的电流通过钢管表面,流向土壤溶液,那么1a的直流杂散电流1年的时间会溶解钢铁9kg。

实际上,土壤中发生的杂散电流强度是很大的,管道上管地电位可能高达8~9V,通过的电流量最大能达几百安。

因此,壁厚为7~8mm的钢管,在杂散电流作用下,4~5个月即可能发生腐蚀穿孔。

所以,杂散电流的腐蚀强度是一般腐蚀不能与之相比的。

它是管道腐蚀穿孔的主要原因。

2.范围广随机性强杂散电流的作用范围很大,其影响可达几千米、几十千米,这与引起杂散电流的外部电流源密切相关。

杂散电源腐蚀的发生又常常是随机而变的。

无论从电流方向上,还是电流强度上,都是随外界电力设施的负载情况、轨道的连接与绝缘状况、管道的绝缘状况而变化。

因此,常将杂散电流的干扰称为动态干扰。

这也给杂散电流的测量、排除带来了困难。

图10-62 阳极地床周围的杂散电流干扰1—测电位曲线 2—测电流(东) 3—被干扰管道 4—测电流(西) 5—整流器6—被保护的管道 7—被干扰管道电位曲线 8—电流干扰区 9—电流泄漏直流腐蚀是引起管道泄漏的最大隐患。

近年来,对杂散电流的腐蚀已引起人们的普遍关注。

图10-63 阴极保护管道的干扰a)交叉 b)平行三、杂散电流干扰的判断标准地下杂散电流可以根据管一地电位偏移和地电位梯度来判断。

对于此判断。

各国根据国情都有自己的指标。

例如,英国国家标准规定,以管道对地电位正向偏移20mV为判断指标;德国以+100mV为标准;日本的标准是+50mV。

原石油工业部编制的《埋地钢质管道直流排流保护技术标准》。

(SYJ17—1986),把判定标准分为两个台阶:一是确认干扰的存在,二是在确认干扰存在的前提下必须采取措施的临界指标。

这一指标是:处于直流电气化铁路、阴极保护系统及其他直流干扰附近的管道,当管道任意点上管—地电位较自然电位正向偏移20mV时,或管道附近土壤中的电位梯度大于0.5mV/m时,确认为有直流干扰;当管道上任意点管一地电位较自然电位正向偏移lOOmV或管道附近土壤中的电位梯度大于2.5mV/m时,管道应及时采取直流排流保护或其他防护措施。

日本<电蚀土壤腐蚀手册》推荐的地电位梯度与杂散电流干扰关系,见表10-69。

表10-69 地电位梯度与杂散电流干扰四、直流干扰腐蚀的防护(一)减少干扰源电流的泄漏直流干扰腐蚀的产生是源于各种电气设备的电流泄漏。

因此,直流干扰的防护首先应减少这些电气设备的电流的泄漏。

为此,对直流电气化铁路作如下限制:1.铁轨导电性能必须良好通过铁轨的平均电流产生的电位差不得大于3V/km。

2.铁轨接头增加电阻各区段铁轨接头增加的电阻,不得大于该区段铁轨电阻的20%。

3.铁辄与大地绝缘电气化铁轨应采取与大地绝缘的措施。

对于供电方式,应采用减小供电范围,增加足够的供电所的原则,保证在供电范围内接地装置只接地一次等,来减少杂散电流源。

(二)避开干扰源的设计原则由于干扰源的情况错综复杂,在管道设计时又不可能完全避开,为保证管道安全,应遵循下列设计原则:1.管道走向的选择合理选择埋地管道的走向,尽量远离干扰源。

当埋地管道与直流电气化铁路的铁轨接近或交叉时,相互间的距离不得小于1m,且尽量缩短与之平行的管线的长度。

2.被保护管道与非保护管道的间距,应保持足够大的距离。

非联合保护的平行管道,二者间距不宜小于10m。

被保护管道与其他管道交叉时,二者间的净垂直距离不应小于0.3m;当小于0.3m 时,中间必须设有坚固的绝缘隔离物,确保其不接触。

双方管道在交叉点两侧10m以上的管段上,应作特加强防腐。

管道与电缆交叉时,相互间净垂直距离不应小于0.5m,交叉点两侧也各延伸10m作加强防腐。

3.对受杂散电流干扰管段的保护措施在受到杂散电流干扰的管段,可增设绝缘法兰,将被干扰管道分成若干段,以减轻干扰,把干扰限制在一定范围内。

4.在被干扰管道与干扰源之间,可埋设金属屏蔽体,以减轻干扰。

(三)增加回路电阻1.对可能受到杂散电流腐蚀的管道,其表面的防腐层等级采用加强级或特加强级。

2.对已遭受杂散电流腐蚀的管道,可通过修补或更换防腐层,来消除或减弱杂散电流的腐蚀。

(四)排流保护技术1.排流方法杂散电流干扰本身是一害,但掌握其本质、因势利导,就可以化害为利。

排流保护就是把杂散电流变为管道阴极保护的电流,所以排流保护也属于阴极保护的方法之一。

排流方式有直接排流、极性排流、强制排流和接地排流,这些排流方法及其优缺点和适用条件,见表10-70。

表10-70 排流方式的选择在同一管道或同一系统的管道中,根据实际情况可以采用一种或几种排流方式。

排流点的选择应以最佳排流效果为标准,往往要通过排流实验确定。

一般情况下,可根据下列原则选定:(1)管道上排流点的选定1)管一地电位为正且管一轨电位差最大的点;2)管一地电位为正且持续时间最长的点;3)管道与铁轨(或管道)间距最小的点;4)便于排流设备安装与维修的地点。

(2)铁轨上排流点的选定1)扼流线圈中点或交叉跨线处;2)直流供电所负极或负回归线。

(3)接地排流的接地地床,应选择在土壤电阻率较低的地方。

2.排流方式的结构(1)直流排流直接排流结构如图10-64所示。

直接排流用于极性不变的阳极区,可调电阻和控制开关及熔断器的使用可用来控制流量的大小和管道的相对电位,以防排流量过大时造成防腐层的老化和剥离。

(2)极性排流极性排流的结构如图10-65所示。

极性排流是目前广泛使用的排流方法之一。

它具有单向导电性,只允许杂散电流管道排出,而不允许杂散电流进入管道,它是比较安全的排流方式。

图10-64 直接排流保护电路1—被保护的金属管道 2—铁轨 3、4—排流电缆 5—可变电阻 6—控制开关7—熔断器 8—电流表上述两种排流方式都是借助于管道和铁轨之间的电位差来排流,当两个连接点的电位差较小时,所能排除的电流量很小,故保护段落很短,排流效果不佳。

此时,应选择其他形式的排流方式。

(3)接地排流接地排流结构如图10-66所示。

接地排流电缆不连接到铁轨上,而是连接到一个埋在地下的辅助阳极(或牺牲阳极材料)上。

将杂散电流从管道排到阳极上,经过土壤再返回铁轨。

图10-65 极性排流保护电路1—管道 2—铁轨 3—电缆 4—可变电阻 5—整流器 6—电流表 7—控制开关 8—熔断器图10-66 接地式排流接地排流保护在国外应用较少,但在我国应用较多。

这是因为我国对于干扰源泄漏入地的杂散电流限制不力,造成干扰范围很大,不利于极性排流的应用;当采用极性排流时,排流连接变得十分困难。

接地排流的效果要比极性排流差,排流量不易调节。

还需定期更换阳极。

但接地排流的适应性强、施工简单,同时又比较安全,可以完全避免将杂散电流导入管道。

因此,接地排流是使用较多的排流方式。

接地排流的地床接地电阻要做得尽可能的小。

采用牺牲阳极时仍需填包料。

(4)强制排流当地下金属管道处于杂散电流干扰极性交变区,用直接或极性排流都无法将杂散电流排出时,需使用强制排流。

强制排流的原理类似于阴极保护,它在管道与接地阳极或铁轨之间,接一可逆的恒电位仪,在外加电位差下强制排流。

其电路结构如图10—67所示。

由于强制排流兼有排流和阴极保护的作用。

同时其设施费用节省一半,故使用此排流方式也较多。

例如,在日本东京的煤气管线上就使用得比较普遍。

图10—67 强制排流电路对同一条管道或一系统中,可根据实际情况的需要采用一种或几种排流方式,选择一点或多点进行排流。

3.排流计算排流电流量可根据欧姆定律的原理来计算:式中 I——排除电流量(A);V——管一轨电位差(V);R1——排流线电阻(Ω);R2——排流器内阻(Ω);R3——管道接地过渡电阻(Ω);R4——铁轨接地电阻(Ω)。

其中,式中γ3——管道纵向电阻(Ω);ω3——管道泄漏电阻(Ω);γ4——铁轨纵向电阻(Ω);ω4——铁轨泄漏电阻(Ω)。

当采用接地排流时,R4为接地地床的接地电阻,其值应小于0.5Ω。

排流量过大会造成管~地电位过负。

为保证管道排流处在最佳状态,也就是正电位得到较好的缓解,负电位又不致于过高。

可以在排流电路中中入电阻,限制排流量。

串入的电阻值可按下式计算:式中 R——串入电阻(Ω);I——原排流量(A);I′——拟定排流量(A);V——管/轨电压(V)。

电阻器的选择,要注意具有足够的功率,以防排流量大时烧毁。

排流器、排流导线的额定电流应为计算排流量的1.5~2倍。

排流用的接地地床电位梯度,在水中时不大于10V/m,在土壤中不大于5V/m。

4.排流器功能的要求(1)在管轨电位差或管地电位波动的范围内,均能正常工作。

相关文档
最新文档