高中物理带电粒子在复合场中的运动试题经典及解析
高考物理带电粒子在复合场中的运动题20套(带答案)及解析
![高考物理带电粒子在复合场中的运动题20套(带答案)及解析](https://img.taocdn.com/s3/m/2b25714a551810a6f52486ce.png)
一、带电粒子在复合场中的运动专项训练1.下图为某种离子加速器的设计方案.两个半圆形金属盒内存在相同的垂直于纸面向外的匀强磁场.其中MN 和M N ''是间距为h 的两平行极板,其上分别有正对的两个小孔O 和O ',O N ON d ''==,P 为靶点,O P kd '=(k 为大于1的整数)。
极板间存在方向向上的匀强电场,两极板间电压为U 。
质量为m 、带电量为q 的正离子从O 点由静止开始加速,经O '进入磁场区域.当离子打到极板上O N ''区域(含N '点)或外壳上时将会被吸收。
两虚线之间的区域无电场和磁场存在,离子可匀速穿过。
忽略相对论效应和离子所受的重力。
求:(1)离子经过电场仅加速一次后能打到P 点所需的磁感应强度大小; (2)能使离子打到P 点的磁感应强度的所有可能值;(3)打到P 点的能量最大的离子在磁场中运动的时间和在电场中运动的时间。
【来源】2015年全国普通高等学校招生统一考试物理(重庆卷带解析) 【答案】(1)22qUm B =(2)22nqUmB =,2(1,2,3,,1)n k =-(3)2222(1)t qum k -磁,22(1)=k m t h qU-电 【解析】 【分析】带电粒子在电场和磁场中的运动、牛顿第二定律、运动学公式。
【详解】(1)离子经电场加速,由动能定理:212qU mv =可得2qUv m=磁场中做匀速圆周运动:2v qvB m r=刚好打在P 点,轨迹为半圆,由几何关系可知:2kd r =联立解得B =; (2)若磁感应强度较大,设离子经过一次加速后若速度较小,圆周运动半径较小,不能直接打在P 点,而做圆周运动到达N '右端,再匀速直线到下端磁场,将重新回到O 点重新加速,直到打在P 点。
设共加速了n 次,有:212n nqU mv =2nn nv qv B m r =且:2n kd r =解得:B =,要求离子第一次加速后不能打在板上,有12d r >且:2112qU mv =2111v qv B m r =解得:2n k <,故加速次数n 为正整数最大取21n k =- 即:B =2(1,2,3,,1)n k =-;(3)加速次数最多的离子速度最大,取21n k =-,离子在磁场中做n -1个完整的匀速圆周运动和半个圆周打到P 点。
高考物理带电粒子在复合场中的运动试题经典及解析
![高考物理带电粒子在复合场中的运动试题经典及解析](https://img.taocdn.com/s3/m/7e37c9182b160b4e767fcfbb.png)
一、带电粒子在复合场中的运动专项训练1.在xOy平面的第一象限有一匀强电磁,电场的方向平行于y轴向下,在x轴和第四象限的射线OC之间有一匀强电场,磁感应强度为B,方向垂直于纸面向里,有一质量为m,带有电荷量+q的质点由电场左侧平行于x轴射入电场,质点到达x轴上A点,速度方向与x 轴的夹角为φ,A点与原点O的距离为d,接着,质点进入磁场,并垂直与OC飞离磁场,不计重力影响,若OC与x轴的夹角为φ.求:⑴粒子在磁场中运动速度的大小;⑵匀强电场的场强大小.【来源】带电粒子在复合场中的运动计算题【答案】(1) (2)【解析】【分析】【详解】试题分析:(1)由几何关系得:R=dsinφ由洛仑兹力公式和牛顿第二定律得解得:(2)质点在电场中的运动为类平抛运动.设质点射入电场的速度为v0,在电场中的加速度为a,运动时间为t,则有:v0=vcosφvsinφ=atd=v0t设电场强度的大小为E,由牛顿第二定律得qE=ma解得:2.对铀235的进一步研究在核能的开发和利用中具有重要意义.如图所示,质量为m、电荷量为q的铀235离子,从容器A下方的小孔S1不断飘入加速电场,其初速度可视为零,然后经过小孔S2垂直于磁场方向进入磁感应强度为B的匀强磁场中,做半径为R的匀速圆周运动.离子行进半个圆周后离开磁场并被收集,离开磁场时离子束的等效电流为I.不考虑离子重力及离子间的相互作用.(1)求加速电场的电压U;(2)求出在离子被收集的过程中任意时间t内收集到离子的质量M;(3)实际上加速电压的大小会在U+ΔU范围内微小变化.若容器A中有电荷量相同的铀235和铀238两种离子,如前述情况它们经电场加速后进入磁场中会发生分离,为使这两种离子在磁场中运动的轨迹不发生交叠,应小于多少?(结果用百分数表示,保留两位有效数字)【来源】2012年普通高等学校招生全国统一考试理综物理(天津卷)【答案】(1)(2)(3)0.63%【解析】解:(1)设离子经电场加速后进入磁场时的速度为v,由动能定理得:qU =mv2离子在磁场中做匀速圆周运动,由牛顿第二定律得:qvB=解得:U =(2)设在t 时间内收集到的离子个数为N ,总电荷量Q = It Q = Nq M =" Nm" =(3)由以上分析可得:R =设m /为铀238离子质量,由于电压在U±ΔU 之间有微小变化,铀235离子在磁场中最大半径为:R max =铀238离子在磁场中最小半径为:R min =这两种离子在磁场中运动的轨迹不发生交叠的条件为:R max <R min 即:< 得:<<其中铀235离子的质量m = 235u (u 为原子质量单位),铀238离子的质量m ,= 238u 则:<解得:<0.63%3.小明受回旋加速器的启发,设计了如图1所示的“回旋变速装置”.两相距为d 的平行金属栅极板M 、N ,板M 位于x 轴上,板N 在它的正下方.两板间加上如图2所示的幅值为U 0的交变电压,周期02mT qBπ=.板M 上方和板N 下方有磁感应强度大小均为B 、方向相反的匀强磁场.粒子探测器位于y 轴处,仅能探测到垂直射入的带电粒子.有一沿x 轴可移动、粒子出射初动能可调节的粒子发射源,沿y 轴正方向射出质量为m 、电荷量为q (q >0)的粒子.t =0时刻,发射源在(x ,0)位置发射一带电粒子.忽略粒子的重力和其它阻力,粒子在电场中运动的时间不计.(1)若粒子只经磁场偏转并在y =y 0处被探测到,求发射源的位置和粒子的初动能; (2)若粒子两次进出电场区域后被探测到,求粒子发射源的位置x 与被探测到的位置y 之间的关系【来源】【省级联考】浙江省2019届高三上学期11月选考科目考试物理试题【答案】(1)00x y = ,()202qBy m(2)见解析【解析】 【详解】(1)发射源的位置00x y =, 粒子的初动能:()2002k qBy Em=;(2)分下面三种情况讨论: (i )如图1,002k E qU >由02101mv mv mvy R R Bq Bq Bq===、、, 和221001122mv mv qU =-,222101122mv mv qU =-, 及()012x y R R =++, 得()()22002224x y yqB mqU yqB mqU qBqB=++(ii )如图2,0002k qU E qU <<由020mv mv y d R Bq Bq--==、, 和220201122mv mv qU =+, 及()032x y d R =--+,得()222023)2x y d y d q B mqU qB=-++++(;(iii )如图3,00k E qU <由020mv mv y d R Bq Bq--==、, 和220201122mv mv qU =-, 及()04x y d R =--+, 得()222042x y d y d q B mqU qB=--+-4.如图甲所示,在直角坐标系中的0≤x≤L 区域内有沿y 轴正方向的匀强电场,右侧有以点(2L ,0)为圆心、半径为L 的圆形区域,与x 轴的交点分别为M 、N ,在xOy 平面内,从电离室产生的质量为m 、带电荷量为e 的电子以几乎为零的初速度从P 点飘入电势差为U 的加速电场中,加速后经过右侧极板上的小孔Q 点沿x 轴正方向进入匀强电场,已知O 、Q 两点之间的距离为2L,飞出电场后从M 点进入圆形区域,不考虑电子所受的重力。
高考物理带电粒子在复合场中的运动题20套(带答案)含解析
![高考物理带电粒子在复合场中的运动题20套(带答案)含解析](https://img.taocdn.com/s3/m/db2d624ec281e53a5802ffd5.png)
一、带电粒子在复合场中的运动专项训练1.在xOy平面的第一象限有一匀强电磁,电场的方向平行于y轴向下,在x轴和第四象限的射线OC之间有一匀强电场,磁感应强度为B,方向垂直于纸面向里,有一质量为m,带有电荷量+q的质点由电场左侧平行于x轴射入电场,质点到达x轴上A点,速度方向与x 轴的夹角为φ,A点与原点O的距离为d,接着,质点进入磁场,并垂直与OC飞离磁场,不计重力影响,若OC与x轴的夹角为φ.求:⑴粒子在磁场中运动速度的大小;⑵匀强电场的场强大小.【来源】带电粒子在复合场中的运动计算题【答案】(1) (2)【解析】【分析】【详解】试题分析:(1)由几何关系得:R=dsinφ由洛仑兹力公式和牛顿第二定律得解得:(2)质点在电场中的运动为类平抛运动.设质点射入电场的速度为v0,在电场中的加速度为a,运动时间为t,则有:v 0=vcosφ vsinφ=at d=v 0t设电场强度的大小为E ,由牛顿第二定律得 qE=ma 解得:2.如图所示,以两虚线为边界,中间存在平行纸面且与边界垂直的水平电场,宽度为d ,两侧为相同的匀强磁场,方向垂直纸面向里.一质量为m 、带电量q +、重力不计的带电粒子,以初速度1v 垂直边界射入磁场做匀速圆周运动,后进入电场做匀加速运动,然后第二次进入磁场中运动,此后粒子在电场和磁场中交替运动.已知粒子第二次在磁场中运动的半径是第一次的二倍,第三次是第一次的三倍,以此类推.求:(1)粒子第一次经过电场的过程中电场力所做的功1W (2)粒子第n 次经过电场时电场强度的大小n E (3)粒子第n 次经过电场所用的时间n t(4)假设粒子在磁场中运动时,电场区域场强为零.请画出从粒子第一次射入磁场至第三次离开电场的过程中,电场强度随时间变化的关系图线(不要求写出推导过程,不要求标明坐标刻度值).【来源】河北省衡水中学滁州分校2018届高三上学期全真模拟物理试题【答案】(1)21132mv W =(2)21(21)2n n mv E qd +=(3)12(21)n d t n v =+ (4)如图;【解析】 (1)根据mv r qB =,因为212r r =,所以212v v =,所以221211122W mv mv =-, (2)=,,所以.(3),,所以.(4)3.如图所示,x轴正方向水平向右,y轴正方向竖直向上.在xOy平面内有与y轴平行的匀强电场,在半径为R的圆内还有与xOy平面垂直的匀强磁场.在圆的左边放置一带电微粒发射装置,它沿x轴正方向发射出一束具有相同质量m、电荷量q(q>0)和初速度v的带电微粒.发射时,这束带电微粒分布在0<y<2R的区间内.已知重力加速度大小为g.(1)从A点射出的带电微粒平行于x轴从C点进入有磁场区域,并从坐标原点O沿y轴负方向离开,求电场强度和磁感应强度的大小与方向.(2)请指出这束带电微粒与x轴相交的区域,并说明理由.(3)若这束带电微粒初速度变为2v,那么它们与x轴相交的区域又在哪里?并说明理由.【来源】带电粒子在电场中运动压轴大题【答案】(1)mgEq=,方向沿y轴正方向;mvBqR=,方向垂直xOy平面向外(2)通过坐标原点后离开;理由见解析(3)范围是x>0;理由见解析【解析】【详解】(1)带电微粒平行于x 轴从C 点进入磁场,说明带电微粒所受重力和电场力的大小相等,方向相反.设电场强度大小为E ,由:mg qE =可得电场强度大小:mg qE =方向沿y 轴正方向;带电微粒进入磁场后受到重力、电场力和洛伦兹力的作用.由于电场力和重力相互抵消,它将做匀速圆周运动.如图(a )所示:考虑到带电微粒是从C 点水平进入磁场,过O 点后沿y 轴负方向离开磁场,可得圆周运动半径r R =;设磁感应强度大小为B ,由:2v qvB m R=可得磁感应强度大小:mv B qR=根据左手定则可知方向垂直xOy 平面向外;(2)从任一点P 水平进入磁场的带电微粒在磁场中做半径为R 的匀速圆周运动,如图(b )所示,设P 点与O '点的连线与y 轴的夹角为θ,其圆周运动的圆心Q 的坐标为(sin ,cos )R R θθ-,圆周运动轨迹方程为:222(sin )(cos )x R y R R θθ++-=而磁场边界是圆心坐标为(0,R )的圆周,其方程为:22()x y R R +-=解上述两式,可得带电微粒做圆周运动的轨迹与磁场边界的交点为0x y =⎧⎨=⎩或:sin {(1cos )x R y R θθ=-=+坐标为[sin ,(1cos )]R R θθ-+的点就是P 点,须舍去.由此可见,这束带电微粒都是通过坐标原点后离开磁场的;(3)带电微粒初速度大小变为2v ,则从任一点P 水平进入磁场的带电微粒在磁场中做匀速圆周运动的半径r '为:(2)2m v r R qB'== 带电微粒在磁场中经过一段半径为r '的圆弧运动后,将在y 轴的右方(x >0区域)离开磁场并做匀速直线运动,如图(c )所示.靠近M 点发射出来的带电微粒在穿出磁场后会射向x 轴正方向的无穷远处;靠近N 点发射出来的带电微粒会在靠近原点之处穿出磁场 所以,这束带电微粒与x 轴相交的区域范围是x >0.答:(1)电场强度mg qE = ,方向沿y 轴正方向和磁感应强度mvB qR=,方向垂直xOy 平面向外.(2)这束带电微粒都是通过坐标原点后离开磁场的;(3)若这束带电微粒初速度变为2v ,这束带电微粒与x 轴相交的区域范围是x >0。
(物理)带电粒子在复合场中的运动练习题含答案及解析
![(物理)带电粒子在复合场中的运动练习题含答案及解析](https://img.taocdn.com/s3/m/3cec44ee7fd5360cba1adbe8.png)
解得: <0.63%
5.如图所示,以两虚线为边界,中间存在平行纸面且与边界垂直的水平电场,宽度为
d ,两侧为相同的匀强磁场,方向垂直纸面向里.一质量为 m 、带电量 q 、重力不计的 带电粒子,以初速度 v1 垂直边界射入磁场做匀速圆周运动,后进入电场做匀加速运动,然
后第二次进入磁场中运动,此后粒子在电场和磁场中交替运动.已知粒子第二次在磁场中 运动的半径是第一次的二倍,第三次是第一次的三倍,以此类推.求:
由题知 vm=kym
若 E=0 时,粒子以初速度 v0 沿 y 轴正向入射,有 qv0B=m v02 R0
在最高处有 v0=kR0
联立解得 vm
E B
(
E B
)2
v02
考点:带电粒子在符合场中的运动;动能定理.
2.在 xOy 平面的第一象限有一匀强电磁,电场的方向平行于 y 轴向下,在 x 轴和第四象限 的射线 OC 之间有一匀强电场,磁感应强度为 B,方向垂直于纸面向里,有一质量为 m,带 有电荷量+q 的质点由电场左侧平行于 x 轴射入电场,质点到达 x 轴上 A 点,速度方向与 x 轴的夹角为 φ,A 点与原点 O 的距离为 d,接着,质点进入磁场,并垂直与 OC 飞离磁场, 不计重力影响,若 OC 与 x 轴的夹角为 φ.求:
(3)由以上分析可得:R = 设 m/为铀 238 离子质量,由于电压在 U±ΔU 之间有微小变化,铀 235 离子在磁场中最大半 径为:Rmax=
铀 238 离子在磁场中最小半径为:Rmin=
这两种离子在磁场中运动的轨迹不发生交叠的条件为:Rmax<Rmin
即:
<
得:
<
< 其中铀 235 离子的质量 m = 235u(u 为原子质量单位),铀 238 离子的质量 m,= 238u 则: <
带电粒子在复合场中的运动大题专题(详细解答)
![带电粒子在复合场中的运动大题专题(详细解答)](https://img.taocdn.com/s3/m/18e5893a83c4bb4cf7ecd150.png)
专题二:带电粒子在复合场中的运动(1)姓名______________1.如图所示,在x轴上方有匀强电场,场强为E;在x轴下方有匀强磁场,磁感应强度为B,方向如图,在x轴上有一点M,离O点距离为L.现有一带电量为十q的粒子,使其从静止开始释放后能经过M点.如果把此粒子放在y轴上,其坐标应满足什么关系?(重力忽略不计)2.如图所示,在宽l的范围内有方向如图的匀强电场,场强为E,一带电粒子以速度v垂直于电场方向、也垂直于场区边界射入电场,不计重力,射出场区时,粒子速度方向偏转了θ角,去掉电场,改换成方向垂直纸面向外的匀强磁场,此粒子若原样射入磁场,它从场区的另一侧射出时,也偏转了θ角,求此磁场的磁感强度B.3.如图所示,在直角坐标系的第Ⅱ象限和第Ⅳ象限中的直角三角形区域内,分布着磁感应强度均为B=5.0×10-3T的匀强磁场,方向分别垂直纸面向外和向里.质量为m=6.64×10-27㎏、电荷量为q=+3.2×10-19C的α粒子(不计α粒子重力),由静止开始经加速电压为U=1205V的电场(图中未画出)加速后,从坐标点M(-4,2)处平行于x轴向右运动,并先后通过两个匀强磁场区域.(1)请你求出α粒子在磁场中的运动半径;(2)你在图中画出α粒子从直线x=-4到直线x=4之间的运动轨迹,并在图中标明轨迹与直线x=4交点的坐标;(3)求出α粒子在两个磁场区域偏转所用的总时间.专题二:带电粒子在复合场中的运动(4)姓名______________1.如图所示,竖直平面xOy 内存在水平向右的匀强电场,场强大小E=10N/c ,在y ≥0的区域内还存在垂直于坐标平面向里的匀强磁场,磁感应强度大小B=0.5T 一带电量0.2C q =+、质量0.4kg m =的小球由长0.4m l =的细线悬挂于P 点小球可视为质点,现将小球拉至水平位置A 无初速释放,小球运动到悬点P 正下方的坐标原点O 时,悬线突然断裂,此后小球又恰好能通过O 点正下方的N 点.(g=10m /s 2),求: (1)小球运动到O 点时的速度大小;(2)悬线断裂前瞬间拉力的大小; (3)ON 间的距离2.两块平行金属板MN 、PQ 水平放置,两板间距为d 、板长为l ,在紧靠平行板右侧的正三角形区域内存在着垂直纸面的匀强磁场,三角形底边BC 与PQ 在同一水平线上,顶点A 与MN 在同一水平线上,如图所示.一个质量为m 、电量为+q 的粒子沿两板中心线以初速度v 0水平射入,若在两板间加某一恒定电压,粒子离开电场后垂直AB 边从D 点进入磁场,BD=41AB ,并垂直AC 边射出(不计粒子的重力).求: (1)两极板间电压;(2)三角形区域内磁感应强度; (3)若两板间不加电压,三角形区域内的磁场方向垂直纸面向外.要使粒子进入磁场区域后能从AB 边射出,试求所加磁场的磁感应强度最小值.专题二:带电粒子在复合场中的运动——参考答案(1)1、解析:由于此带电粒子是从静止开始释放的,要能经过M点,其起始位置只能在匀强电场区域.物理过程是:静止电荷位于匀强电场区域的y轴上,受电场力作用而加速,以速度v进入磁场,在磁场中受洛仑兹力作用作匀速圆周运动,向x轴偏转.回转半周期过x轴重新进入电场,在电场中经减速、加速后仍以原速率从距O点2R处再次超过x轴,在磁场回转半周后又从距O点4R处飞越x轴如图所示(图中电场与磁场均未画出)故有L=2R,L=2×2R,L=3×2R即 R=L/2n,(n=1、2、3……)……………①设粒子静止于y轴正半轴上,和原点距离为h,由能量守恒得mv2/2=qEh……②对粒子在磁场中只受洛仑兹力作用而作匀速圆周运动有:R=mv/qB………③解①②③式得:h=B2qL2/8n2mE (n=l、2、3……)2、解析:粒子在电场中运行的时间t= l/v;加速度 a=qE/m;它作类平抛的运动.有tgθ=at/v=qEl/mv2………①粒子在磁场中作匀速圆周运动由牛顿第二定律得:qvB=mv2/r,所以r=mv/qB 又:sinθ=l/r=lqB/mv………②由①②两式得:B=Ecosθ/v 3、解析:(1)粒子在电场中被加速,由动能定理得221mvqU=α粒子在磁场中偏转,则牛顿第二定律得rvmqvB2=联立解得2102.312051064.62005.01211927=⨯⨯⨯⨯==--qmUBr(m)(2)由几何关系可得,α粒子恰好垂直穿过分界线,故正确图象为(3)带电粒子在磁场中的运动周期qBmvrTππ22==α粒子在两个磁场中分别偏转的弧度为4π,在磁场中的运动总时间631927105.6105102.321064.614.3241----⨯=⨯⨯⨯⨯⨯⨯===qBmTtπ(s)OM2-22-4 4 x/my/m-2vBB (4,2-)(4) 1、解:(1)小球从A 运到O 的过程中,根据动能定理:212mv mgl qEl =- ① 则得小球在O 点速度为:2/s v m == ② (2)小球运到O 点绳子断裂前瞬间,对小球应用牛顿第二定律:2v F T mg f m l=-==向洛 ③f Bvq =洛 ④由③、④得:28.2mv T mg Bvq N l=++= ⑤ (3)绳断后,小球水平方向加速度25/s x F Eq a m m===电 ⑥ 小球从O 点运动至N 点所用时间0.8t s aυ∆== ⑦ON 间距离21 3.2m 2h gt == ⑧2、 解:⑴垂直AB 边进入磁场,由几何知识得:粒子离开电场时偏转角为30°∵0.v lmd qu v y =0v v tg y=θ ∴qlmdv u 332= 由几何关系得:030cos dl AB =在磁场中运动半径d l r AB 23431==∴ 121r mv qv B = ︒=30cos 0v v∴qdmv B 3401= 方向垂直纸面向里⑶当粒子刚好与BC 边相切时,磁感应强度最小,由几何知识知粒子的运动半径r 2为:42d r = ………( 2分 ) 2202r mv qv B = ∴qd mv B 024=即:磁感应强度的最小值为qdmv 0422(12分)如图所示的坐标系,x轴沿水平方向,y轴沿竖直方向。
带电粒子在复合场中运动的17个经典例题
![带电粒子在复合场中运动的17个经典例题](https://img.taocdn.com/s3/m/6a780f04ccbff121dd3683fa.png)
经典习题1、(15分)如图所示,MN、PQ是平行金属板,板长为L,两板间距离为d,在PQ板的上方有垂直纸面向里的匀强磁场。
一个电荷量为q、质量为m的带负电粒子以速度v0从MN板边缘沿平行于板的方向射入两板间,结果粒子恰好从PQ板左边缘飞进磁场,然后又恰好从PQ板的右边缘飞进电场。
不计粒子重力。
试求:(1)两金属板间所加电压U的大小;(2)匀强磁场的磁感应强度B的大小;(3)在图中画出粒子再次进入电场的运动轨迹,并标出粒子再次从电场中飞出的位置与速度方向。
B2.(16分)如图,在x oy平面内,MN和x轴之间有平行于y轴的匀强电场和垂直于x oy 平面的匀强磁场,y轴上离坐标原点4 L的A点处有一电子枪,可以沿+x方向射出速度为v0的电子(质量为m,电量为e)。
如果电场和磁场同时存在,电子将做匀速直线运动.如果撤去电场,只保留磁场,电子将从x轴上距坐标原点3L的C点离开磁场.不计重力的影响,求:(1)磁感应强度B和电场强度E的大小和方向;(2)如果撤去磁场,只保留电场,电子将从D点(图中未标出)离开电场,求D点的坐标;(3)电子通过D点时的动能。
3.(12分)如图所示,在y>0的空间中,存在沿y轴正方向的匀强电场E;在y<0的空间中,存在沿y轴负方向的匀强电场,场强大小也为E,一电子(电量为-e,质量为m)在y 轴上的P(0,d)点以沿x轴正方向的初速度v0开始运动,不计电子重力,求:(1)电子第一次经过x轴的坐标值(2)电子在y方向上运动的周期(3)电子运动的轨迹与x轴的各个交点中,任意两个相邻交点间的距离(4)在图上画出电子在一个周期内的大致运动轨迹4.(16分)如图所示,一个质量为m=2.0×10-11kg,电荷量q=+1.0×10-5C的带电微粒(重力忽略不计),从静止开始经U=100V电压加速后,水平进入两平行金属板间的偏转电场中。
金属板长L=20cm,两板间距d=103cm。
带电粒子在复合场中的运动(含详细解析过程)
![带电粒子在复合场中的运动(含详细解析过程)](https://img.taocdn.com/s3/m/2a5c63230066f5335a812195.png)
带电粒子在复合场中的运动1、如图所示,在y > 0的空间中存在匀强电场,场强沿y 轴负方向;在y < 0的空间中,存在匀强磁场,磁场方向垂直xy 平面(纸面)向外.一电量为q 、质量为m 的带正电的运动粒子,经过y 轴上y = h 处的点P1时速率为v0,方向沿x 轴正方向,然后经过x 轴上x = 2h 处的P2点进入磁场,并经过y 轴上y = – 2h 处的P3点.不计粒子的重力,求 (1)电场强度的大小;(2)粒子到达P2时速度的大小和方向; (3)磁感应强度的大小. 2、如图所示的区域中,第二象限为垂直纸面向外的匀强磁场,磁感应强度为B ,第一、第四象限是一个电场强度大小未知的匀强电场,其方向如图。
一个质量为m ,电荷量为+q 的带电粒子从P 孔以初速度v0沿垂直于磁场方向进入匀强磁场中,初速度方向与边界线的夹角θ=30°,粒子恰好从y 轴上的C孔垂直于匀强电场射入匀强电场,经过x 轴的Q 点,已知OQ=OP ,不计粒子的重力,求:(1)粒子从P 运动到C 所用的时间t ; (2)电场强度E 的大小;(3)粒子到达Q 点的动能Ek 。
3、如图所示,半径分别为a 、b 的两同心虚线圆所围空间分别存在电场和磁场,中心O 处固定一个半径很小(可忽略)的金属球,在小圆空间内存在沿半径向内的辐向电场,小圆周与金属球间电势差为U ,两圆之间的空间存在垂直于纸面向里的匀强磁场,设有一个带负电的粒子从金属球表面沿+x 轴方向以很小的初速度逸出,粒子质量为m ,电量为q ,(不计粒子重力,忽略粒子初速度)求:(1)粒子到达小圆周上时的速度为多大?(2)粒子以(1)中的速度进入两圆间的磁场中,当磁感应强度超过某一临界值时,粒子将不能到达大圆周,求此最小值B 。
(3)若磁感应强度取(2)中最小值,且b =(2+1)a ,要粒子恰好第一次沿逸出方向的反方向回到原出发点,粒子需经过多少次回旋?并求粒子在磁场中运动的时间。
高考复习(物理)专项练习:带电粒子在复合场中的运动【含答案及解析】
![高考复习(物理)专项练习:带电粒子在复合场中的运动【含答案及解析】](https://img.taocdn.com/s3/m/b064191f2bf90242a8956bec0975f46527d3a7cc.png)
专题分层突破练9带电粒子在复合场中的运动A组1.(2021湖南邵阳高三一模)如图所示,有一混合正离子束从静止通过同一加速电场后,进入相互正交的匀强电场和匀强磁场区域Ⅰ。
如果这束正离子束在区域Ⅰ中不偏转,不计离子的重力,则说明这些正离子在区域Ⅰ中运动时一定相同的物理量是()A.动能B.质量C.电荷D.比荷2.(多选)(2021辽宁高三一模)劳伦斯和利文斯设计的回旋加速器如图所示,真空中的两个D形金属盒间留有平行的狭缝,粒子通过狭缝的时间可忽略。
匀强磁场与盒面垂直,加速器接在交流电源上,A处粒子源产生的质子可在盒间被正常加速。
下列说法正确的是()A.虽然逐渐被加速,质子每运动半周的时间不变B.只增大交流电压,质子在盒中运行总时间变短C.只增大磁感应强度,仍可能使质子被正常加速D.只增大交流电压,质子可获得更大的出口速度3.(2021四川成都高三二模)如图所示,在第一、第四象限的y≤0.8 m区域内存在沿y轴正方向的匀强电场,电场强度大小E=4×103 N/C;在第一象限的0.8 m<y≤1.0 m区域内存在垂直于坐标平面向外的匀强磁场。
一个质量m=1×10-10 kg、电荷量q=1×10-6 C的带正电粒子,以v0=6×103 m/s的速率从坐标原点O沿x轴正方向进入电场。
不计粒子的重力。
(1)求粒子第一次离开电场时的速度。
(2)为使粒子能再次进入电场,求磁感应强度B的最小值。
4.(2021河南高三二模)如图所示,在平面直角坐标系xOy内有一直角三角形,其顶点坐标分别为d),(d,0),三角形区域内有垂直于纸面向里的匀强磁场,磁感应强度大小为B,x轴下方有沿(0,0),(0,√33着y轴负方向的匀强电场,电场强度大小为E。
一质量为m、电荷量为-q的粒子从y轴上的某点M 由静止释放,粒子第一次进入磁场后恰好不能从直角三角形的斜边射出,不计粒子重力。
(1)求M点到O点的距离。
高中物理带电粒子在复合场中的运动试题(有答案和解析)含解析
![高中物理带电粒子在复合场中的运动试题(有答案和解析)含解析](https://img.taocdn.com/s3/m/12a520a20740be1e640e9a41.png)
一、带电粒子在复合场中的运动专项训练1.如图,ABD 为竖直平面内的光滑绝缘轨道,其中AB 段是水平的,BD 段为半径R =0.25m 的半圆,两段轨道相切于B 点,整个轨道处在竖直向下的匀强电场中,场强大小E =5.0×103V/m 。
一不带电的绝缘小球甲,以速度v 0沿水平轨道向右运动,与静止在B 点带正电的小球乙发生弹性碰撞。
已知甲、乙两球的质量均为m =1.0×10-2kg ,乙所带电荷量q =2.0×10-5C ,g 取10m/s 2。
(水平轨道足够长,甲、乙两球可视为质点,整个运动过程无电荷转移)(1)甲乙两球碰撞后,乙恰能通过轨道的最高点D ,求乙球在B 点被碰后的瞬时速度大小;(2)在满足1的条件下,求甲的速度v 0;(3)甲仍以中的速度v 0向右运动,增大甲的质量,保持乙的质量不变,求乙在轨道上的首次落点到B 点的距离范围。
【来源】四川省资阳市高中(2018届)2015级高三课改实验班12月月考理综物理试题 【答案】(1)5m/s ;(2)5m/s ;(3)32m 3m 2x '≤<。
【解析】 【分析】 【详解】(1)对球乙从B 运动到D 的过程运用动能定理可得22112222D B mg R qE R mv mv --=- 乙恰能通过轨道的最高点D ,根据牛顿第二定律可得2Dv mg qE mR+=联立并代入题给数据可得B v =5m/s(2)设向右为正方向,对两球发生弹性碰撞的过程运用动量守恒定律可得00B mv mv mv '=+ 根据机械能守恒可得22200111222B mv mv mv '=+联立解得0v '=,05v =m/s (3)设甲的质量为M ,碰撞后甲、乙的速度分别为M v 、m v ,根据动量守恒和机械能守恒定律有0M m Mv Mv mv =+2220111222M m Mv Mv mv =+ 联立得2m Mv v M m=+ 分析可知:当M =m 时,v m 取最小值v 0;当M ≫m 时,v m 取最大值2v 0 可得B 球被撞后的速度范围为002m v v v <<设乙球过D 点的速度为Dv ',由动能定理得 22112222D m mg R qE R mv mv --='- 联立以上两个方程可得/s</s Dv '> 设乙在水平轨道上的落点到B 点的距离为x ',则有2122D x v t R gt ''==, 所以可得首次落点到B 点的距离范围2x '≤<2.小明受回旋加速器的启发,设计了如图1所示的“回旋变速装置”.两相距为d 的平行金属栅极板M 、N ,板M 位于x 轴上,板N 在它的正下方.两板间加上如图2所示的幅值为U 0的交变电压,周期02mT qBπ=.板M 上方和板N 下方有磁感应强度大小均为B 、方向相反的匀强磁场.粒子探测器位于y 轴处,仅能探测到垂直射入的带电粒子.有一沿x 轴可移动、粒子出射初动能可调节的粒子发射源,沿y 轴正方向射出质量为m 、电荷量为q (q >0)的粒子.t =0时刻,发射源在(x ,0)位置发射一带电粒子.忽略粒子的重力和其它阻力,粒子在电场中运动的时间不计.(1)若粒子只经磁场偏转并在y =y 0处被探测到,求发射源的位置和粒子的初动能; (2)若粒子两次进出电场区域后被探测到,求粒子发射源的位置x 与被探测到的位置y 之间的关系【来源】【省级联考】浙江省2019届高三上学期11月选考科目考试物理试题【答案】(1)00x y = ,()202qBy m(2)见解析【解析】 【详解】(1)发射源的位置00x y =, 粒子的初动能:()2002k qBy Em=;(2)分下面三种情况讨论: (i )如图1,002k E qU >由02101mv mv mvy R R Bq Bq Bq===、、, 和221001122mv mv qU =-,222101122mv mv qU =-, 及()012x y R R =++, 得()()22002224x y yqB mqU yqB mqU qBqB=++(ii )如图2,0002k qU E qU <<由020mv mv y d R Bq Bq--==、, 和220201122mv mv qU =+, 及()032x y d R =--+,得()222023)2x y d y d q B mqU qB=-++++(;(iii )如图3,00k E qU <由020mv mv y d R Bq Bq--==、, 和220201122mv mv qU =-, 及()04x y d R =--+, 得()222042x y d y d q B mqU qB=--+-3.如图所示,x 轴正方向水平向右,y 轴正方向竖直向上.在xOy 平面内有与y 轴平行的匀强电场,在半径为R 的圆内还有与xOy 平面垂直的匀强磁场.在圆的左边放置一带电微粒发射装置,它沿x 轴正方向发射出一束具有相同质量m 、电荷量q (q >0)和初速度v 的带电微粒.发射时,这束带电微粒分布在0<y <2R 的区间内.已知重力加速度大小为g . (1)从A 点射出的带电微粒平行于x 轴从C 点进入有磁场区域,并从坐标原点O 沿y 轴负方向离开,求电场强度和磁感应强度的大小与方向. (2)请指出这束带电微粒与x 轴相交的区域,并说明理由.(3)若这束带电微粒初速度变为2v ,那么它们与x 轴相交的区域又在哪里?并说明理由.【来源】带电粒子在电场中运动压轴大题【答案】(1)mgEq=,方向沿y轴正方向;mvBqR=,方向垂直xOy平面向外(2)通过坐标原点后离开;理由见解析(3)范围是x>0;理由见解析【解析】【详解】(1)带电微粒平行于x轴从C点进入磁场,说明带电微粒所受重力和电场力的大小相等,方向相反.设电场强度大小为E,由:mg qE=可得电场强度大小:mgqE=方向沿y轴正方向;带电微粒进入磁场后受到重力、电场力和洛伦兹力的作用.由于电场力和重力相互抵消,它将做匀速圆周运动.如图(a)所示:考虑到带电微粒是从C点水平进入磁场,过O点后沿y轴负方向离开磁场,可得圆周运动半径r R=;设磁感应强度大小为B,由:2vqvB mR=可得磁感应强度大小:mvBqR=根据左手定则可知方向垂直xOy 平面向外;(2)从任一点P 水平进入磁场的带电微粒在磁场中做半径为R 的匀速圆周运动,如图(b )所示,设P 点与O '点的连线与y 轴的夹角为θ,其圆周运动的圆心Q 的坐标为(sin ,cos )R R θθ-,圆周运动轨迹方程为:222(sin )(cos )x R y R R θθ++-=而磁场边界是圆心坐标为(0,R )的圆周,其方程为:22()x y R R +-=解上述两式,可得带电微粒做圆周运动的轨迹与磁场边界的交点为x y =⎧⎨=⎩ 或:sin {(1cos )x R y R θθ=-=+坐标为[sin ,(1cos )]R R θθ-+的点就是P 点,须舍去.由此可见,这束带电微粒都是通过坐标原点后离开磁场的;(3)带电微粒初速度大小变为2v ,则从任一点P 水平进入磁场的带电微粒在磁场中做匀速圆周运动的半径r '为:(2)2m v r R qB'== 带电微粒在磁场中经过一段半径为r '的圆弧运动后,将在y 轴的右方(x >0区域)离开磁场并做匀速直线运动,如图(c )所示.靠近M 点发射出来的带电微粒在穿出磁场后会射向x 轴正方向的无穷远处;靠近N 点发射出来的带电微粒会在靠近原点之处穿出磁场 所以,这束带电微粒与x 轴相交的区域范围是x >0.答:(1)电场强度mgqE=,方向沿y轴正方向和磁感应强度mvBqR=,方向垂直xOy平面向外.(2)这束带电微粒都是通过坐标原点后离开磁场的;(3)若这束带电微粒初速度变为2v,这束带电微粒与x轴相交的区域范围是x>0。
带电粒子在复合场中的运动(经典题例)
![带电粒子在复合场中的运动(经典题例)](https://img.taocdn.com/s3/m/2dddacc0050876323112127d.png)
带电粒子在复合场中的运动一、带电粒子在复合场中运动的轨迹欣赏例1、如图所示,两个共轴的圆筒形金属电极,外电极接地,其上均匀分布着平行于轴线的四条狭缝a、b、c和d,外筒的外半径为r,在圆筒之外的足够大区域中有平行于轴线方向的均匀磁场,磁感强度的大小为B。
在两极间加上电压,使两圆筒之间的区域内有沿半径向外的电场。
一质量为m、带电量为+q的粒子,从紧靠内筒且正对狭缝a的S点出发,初速为零。
如果该粒子经过一段时间的运动之后恰好又回到出发点S,则两电极之间的电压U应是多少?(不计重力,整个装置在真空中)例2、如图所示,在x轴上方有垂直于xy平面的匀强磁场,磁感应强度为B,在x 轴下方有沿y轴负方向的匀强电场,场强为E,一质量为m,电量为-q的粒子从坐标原点O沿着y轴正方向射出,射出之后,第三次到达x轴时,它与O点的距离为L,求此时粒子射出时的速度和运动的总路程(重力不记)例3、据有关资料介绍,受控热核聚变反应装置中有极高的温度,因而带电粒子将没有通常意义上的容器可装,而是由磁场约束带电粒子运动将其束缚在某个区域内,现按下面的简化条件来讨论这个问题,如图所示,有一个环形区域,其截面内半径为R1=√33m,外半径为R2=1.0m,区域内有垂直纸面向外的匀强磁场,已知磁感应强度B=1.0 T,被束缚粒子的比荷qm=4×107C/kg。
(1)若中空区域中的带电粒子沿环的半径方向射入磁场,求带电粒子不能穿越磁场外边界的最大速度V0.(2)若中空区域中的带电粒子以(1)中的最大速度V0沿圆环半径方向射入磁场,求带电粒子从进入磁场开始到第一次回到该点所需要的时间t。
例4、据有关资料介绍,受控热核聚变反应装置中有极高的温度,因而带电粒子将没有通常意义上的容器可装,托卡马克装置是一种利用磁约束来实现受控核聚变的环形容器,由磁场将高温、高密等离子体约束在有限的范围内,现按下面的简化条件来讨论这个问题,如图所示,有一个环形区域,其截面内半径为R1=a,外半径为R2=(2√2−1)a,环形区域内有垂直纸面向外的匀强磁场,磁感应强度为B。
高考物理带电粒子在复合场中的运动题20套(带答案)含解析
![高考物理带电粒子在复合场中的运动题20套(带答案)含解析](https://img.taocdn.com/s3/m/c7c0ae14be1e650e53ea9912.png)
一、带电粒子在复合场中的运动专项训练1.如图所示,一半径为R 的光滑绝缘半球面开口向下,固定在水平面上.整个空间存在磁感应强度为B 、方向竖直向下的匀强磁场.一电荷量为q (q >0)、质量为m 的小球P 在球面上做水平的匀速圆周运动,圆心为O ′.球心O 到该圆周上任一点的连线与竖直方向的夹角为θ(02πθ<<).为了使小球能够在该圆周上运动,求磁感应强度B 的最小值及小球P相应的速率.(已知重力加速度为g )【来源】带电粒子在磁场中的运动 【答案】min 2cos m g B q R θ=cos gRv θθ=【解析】 【分析】 【详解】据题意,小球P 在球面上做水平的匀速圆周运动,该圆周的圆心为O’.P 受到向下的重力mg 、球面对它沿OP 方向的支持力N 和磁场的洛仑兹力f =qvB ①式中v 为小球运动的速率.洛仑兹力f 的方向指向O’.根据牛顿第二定律cos 0N mg θ-= ②2sin sin v f N mR θθ-= ③ 由①②③式得22sin sin 0cos qBR qR v v m θθθ-+=④由于v 是实数,必须满足222sin 4sin ()0cos qBR qR m θθθ∆=-≥ ⑤由此得2cos m gB q R θ≥⑥可见,为了使小球能够在该圆周上运动,磁感应强度大小的最小值为min 2cos m gB q R θ=⑦此时,带电小球做匀速圆周运动的速率为min sin 2qB R v m θ=⑧由⑦⑧式得sin cos gRv θθ=⑨2.如图所示,在无限长的竖直边界NS 和MT 间充满匀强电场,同时该区域上、下部分分别充满方向垂直于NSTM 平面向外和向内的匀强磁场,磁感应强度大小分别为B 和2B ,KL 为上下磁场的水平分界线,在NS 和MT 边界上,距KL 高h 处分别有P 、Q 两点,NS 和MT 间距为1.8h ,质量为m ,带电荷量为+q 的粒子从P 点垂直于NS 边界射入该区域,在两边界之间做圆周运动,重力加速度为g .(1)求电场强度的大小和方向;(2)要使粒子不从NS 边界飞出,求粒子入射速度的最小值;(3)若粒子能经过Q 点从MT 边界飞出,求粒子入射速度的所有可能值.【来源】【全国百强校】2017届浙江省温州中学高三3月高考模拟物理试卷(带解析) 【答案】(1)mg qE =,方向竖直向上 (2)min (962)qBhv -=(3)0.68qBh v m =;0.545qBh v m =;0.52qBhv m= 【解析】 【分析】(1)粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,电场力与重力合力为零; (2)作出粒子的运动轨迹,由牛顿第二定律与数学知识求出粒子的速度; (3)作出粒子运动轨迹,应用几何知识求出粒子的速度. 【详解】(1)粒子在磁场中做匀速圆周运动, 电场力与重力合力为零,即mg =qE , 解得:mg qE =,电场力方向竖直向上,电场方向竖直向上;(2)粒子运动轨迹如图所示:设粒子不从NS边飞出的入射速度最小值为v min,对应的粒子在上、下区域的轨道半径分别为r1、r2,圆心的连线与NS的夹角为φ,粒子在磁场中做匀速圆周运动,由牛顿第二定律得:2vqvB mr=,解得,粒子轨道半径:vrqBπ=,min1vrqBπ=,2112r r=,由几何知识得:(r1+r2)sinφ=r2,r1+r1cosφ=h,解得:min 962)qBhvm=(﹣;(3)粒子运动轨迹如图所示,设粒子入射速度为v ,粒子在上、下区域的轨道半径分别为r 1、r 2, 粒子第一次通过KL 时距离K 点为x , 由题意可知:3nx =1.8h (n =1、2、3…)3(922h x -≥,x = 解得:120.361)2hr n =+(,n <3.5, 即:n =1时, 0.68qBhv m=, n =2时,0.545qBhv m =, n =3时,0.52qBhv m=; 答:(1)电场强度的大小为mg qE =,电场方向竖直向上;(2)要使粒子不从NS 边界飞出,粒子入射速度的最小值为min 9qBhv m=. (3)若粒子经过Q 点从MT 边界飞出,粒子入射速度的所有可能值为:0.68qBhv m=、或0.545qBh v m =、或0.52qBhv m=. 【点睛】本题考查了粒子在磁场中的运动,分析清楚粒子运动过程、作出粒子运动轨迹是正确解题的前提与关键,应用平衡条件、牛顿第二定律即可正确解题,解题时注意数学知识的应用.3.如图1所示,宽度为d 的竖直狭长区域内(边界为12L L 、),存在垂直纸面向里的匀强磁场和竖直方向上的周期性变化的电场(如图2所示),电场强度的大小为0E ,0E >表示电场方向竖直向上。
带电粒子在复合场中的运动典型例题解析
![带电粒子在复合场中的运动典型例题解析](https://img.taocdn.com/s3/m/3a0b4083551810a6f524866b.png)
带电粒子在复合场中的运动·典型例题解析【例1】一带电量为+q、质量为m的小球从倾角为θ的光滑的斜面上由静止开始下滑.斜面处于磁感应强度为B的匀强磁场中,磁场方向如图16-83所示,求小球在斜面上滑行的速度范围和滑行的最大距离.【例2】空气电离后形成正负离子数相等、电性相反、呈现中性状态的等离子体,现有如图16-84所示的装置:P和Q为一对平行金属板,两板距离为d,内有磁感应强度为B的匀强磁场.此装置叫磁流体发电机.设等离子体垂直进入磁场,速度为v,电量为q,气体通过的横截面积(即PQ两板正对空间的横截面积)为S,等效内阻为r,负载电阻为R,求(1)磁流体发电机的电动势ε;(2)磁流体发电机的总功率P.【例3】如图16-85所示,在x轴上方有水平向左的匀强电场,电场强度为E,在x轴下方有垂直纸面向里的匀强磁场,磁感应强度为B.正离子从M 点垂直磁场方向,以速度v射入磁场区域,从N点以垂直于x轴的方向进入电场区域,然后到达y轴上P点,若OP=ON,则入射速度应多大?若正离子在磁场中运动时间为t1,在电场中运动时间为t2,则t1∶t2多大?【例4】如图16-86所示,套在很长的绝缘直棒上的小球,其质量为m、带电量是+q,小球可在棒上滑动,将此棒竖直放在互相垂直,且沿水平方向的匀强电场和匀强磁场中,电场强度是E,磁感强度是B,小球与棒的摩擦系数为μ,求小球由静止沿棒下落的最大加速度和最大速度.(设小球带电量不变)跟踪反馈1.如图16-87所示,一质量为m的带电液滴在相互垂直的匀强电场和匀强磁场中(电场竖直向下,磁场在水平方向)的竖直平面内作半径为R的匀速圆周运动,则这个液滴[ ] A.一定带正电,而且沿逆时针方向运动B.一定带负电,而且沿顺时针方向运动C.一定带负电,但绕行方向不能确定D.不能确定带电性质,也不能确定绕行方向2.图16-88中虚线所围的区域内,存在电场强度为E的匀强电场和磁感应强度为B的匀强磁场.已知从左方P点处以v水平射入的电子,穿过此区域未发生偏转,设重力可忽略不计,则在这区域中的E和B的方向可能是[ ] A.E和B都沿水平方向,并与v方向相同B.E和B都沿水平方向,并与v方向相反C.E竖直向上,B垂直纸面向外D.E竖直向上,B垂直纸面向里3.如图16-89所示,光滑的半圆形绝缘曲面半径为R,有一质量为m,带电量为q的带正电小球从与圆心等高的A位置由静止沿曲面下滑,整个装置处于匀强电场和匀强磁场中,磁场的磁感应强度为B,电场强度为E=mg/q.则小球第二次经过最低点时对曲面的压力为多大?4.如图16-90所示,相互垂直的匀强电场和匀强磁场,其电场强度和磁感应强度分别为E 和B ,一个质量为m ,带正电量为q 的油滴,以水平速度v 0从a 点射入,经一段时间后运动到b ,试计算(1)油滴刚进入叠加场a 点时的加速度.(2)若到达b 点时,偏离入射方向的距离为d ,此时速度大小为多大?参考答案[]1 B 2ABC 36mg 2Bq Rg 4跟踪反馈...-.①-+②+a Bqv mg Eq m v v Eq mg dm==+00202()()。
高中物理带电粒子在复合场中的运动题20套(带答案)及解析
![高中物理带电粒子在复合场中的运动题20套(带答案)及解析](https://img.taocdn.com/s3/m/23778aeba417866fb84a8efc.png)
一、带电粒子在复合场中的运动专项训练1.下图为某种离子加速器的设计方案.两个半圆形金属盒内存在相同的垂直于纸面向外的匀强磁场.其中MN 和M N ''是间距为h 的两平行极板,其上分别有正对的两个小孔O 和O ',O N ON d ''==,P 为靶点,O P kd '=(k 为大于1的整数)。
极板间存在方向向上的匀强电场,两极板间电压为U 。
质量为m 、带电量为q 的正离子从O 点由静止开始加速,经O '进入磁场区域.当离子打到极板上O N ''区域(含N '点)或外壳上时将会被吸收。
两虚线之间的区域无电场和磁场存在,离子可匀速穿过。
忽略相对论效应和离子所受的重力。
求:(1)离子经过电场仅加速一次后能打到P 点所需的磁感应强度大小; (2)能使离子打到P 点的磁感应强度的所有可能值;(3)打到P 点的能量最大的离子在磁场中运动的时间和在电场中运动的时间。
【来源】2015年全国普通高等学校招生统一考试物理(重庆卷带解析) 【答案】(1)22qUm B =(2)22nqUm B =,2(1,2,3,,1)n k =-L (3)2222(1)t qum k -磁,22(1)=k m t h qU-电 【解析】 【分析】带电粒子在电场和磁场中的运动、牛顿第二定律、运动学公式。
【详解】(1)离子经电场加速,由动能定理:212qU mv =可得2qUv m=磁场中做匀速圆周运动:2v qvB m r=刚好打在P 点,轨迹为半圆,由几何关系可知:2kd r =联立解得B =; (2)若磁感应强度较大,设离子经过一次加速后若速度较小,圆周运动半径较小,不能直接打在P 点,而做圆周运动到达N '右端,再匀速直线到下端磁场,将重新回到O 点重新加速,直到打在P 点。
设共加速了n 次,有:212n nqU mv =2nn nv qv B m r =且:2n kd r =解得:B =,要求离子第一次加速后不能打在板上,有12d r >且:2112qU mv =2111v qv B m r =解得:2n k <,故加速次数n 为正整数最大取21n k =- 即:B =2(1,2,3,,1)n k =-L ;(3)加速次数最多的离子速度最大,取21n k =-,离子在磁场中做n -1个完整的匀速圆周运动和半个圆周打到P 点。
(物理) 高考物理带电粒子在复合场中的运动试题(有答案和解析)及解析
![(物理) 高考物理带电粒子在复合场中的运动试题(有答案和解析)及解析](https://img.taocdn.com/s3/m/2d867eb29b89680203d82571.png)
一、带电粒子在复合场中的运动专项训练1.如图所示,待测区域中存在匀强电场和匀强磁场,根据带电粒子射入时的受力情况可推测其电场和磁场. 图中装置由加速器和平移器组成,平移器由两对水平放置、相距为l 的相同平行金属板构成,极板长度为l 、间距为d,两对极板间偏转电压大小相等、电场方向相反. 质量为m 、电荷量为+q 的粒子经加速电压U0 加速后,水平射入偏转电压为U1 的平移器,最终从A 点水平射入待测区域. 不考虑粒子受到的重力.(1)求粒子射出平移器时的速度大小v1;(2)当加速电压变为4U0 时,欲使粒子仍从A 点射入待测区域,求此时的偏转电压U; (3)已知粒子以不同速度水平向右射入待测区域,刚进入时的受力大小均为F. 现取水平向右为x 轴正方向,建立如图所示的直角坐标系Oxyz. 保持加速电压为U0 不变,移动装置使粒子沿不同的坐标轴方向射入待测区域,粒子刚射入时的受力大小如下表所示.请推测该区域中电场强度和磁感应强度的大小及可能的方向. 【来源】2012年普通高等学校招生全国统一考试理综物理(江苏卷) 【答案】(1)012qU v m=1U?4U = (3)E 与Oxy 平面平行且与x 轴方向的夹角为30°或150°,若B 沿-x 轴方向,E 与Oxy 平面平行且与x 轴方向的夹角为-30°或-150°. 【解析】(1)设粒子射出加速器的速度为0v 动能定理20012qU mv =由题意得10v v =,即012qU v m=(2)在第一个偏转电场中,设粒子的运动时间为t 加速度的大小1qU a md=在离开时,竖直分速度yv at =竖直位移2112y at =水平位移1l v t = 粒子在两偏转电场间做匀速直线运动,经历时间也为t 竖直位移2y y v t =由题意知,粒子竖直总位移12y?2y y =+ 解得210U l y U d=则当加速电压为04U 时,1U?4U =(3)(a)由沿x 轴方向射入时的受力情况可知:B 平行于x 轴. 且FE q= (b)由沿y +-轴方向射入时的受力情况可知:E 与Oxy 平面平行.222F f (5F)+=,则f?2F =且1f?qv B =解得02F mB BqU =(c)设电场方向与x 轴方向夹角为.若B 沿x 轴方向,由沿z 轴方向射入时的受力情况得222sin )(cos )(7)f F F F αα++=( 解得=30°,或=150°即E 与Oxy 平面平行且与x 轴方向的夹角为30°或150°. 同理,若B 沿-x 轴方向E 与Oxy 平面平行且与x 轴方向的夹角为-30°或-150°.2.在场强为B 的水平匀强磁场中,一质量为m 、带正电q 的小球在O 静止释放,小球的运动曲线如图所示.已知此曲线在最低点的曲率半径为该点到z 轴距离的2倍,重力加速度为g .求:(1)小球运动到任意位置P (x ,y)的速率v ; (2)小球在运动过程中第一次下降的最大距离y m ; (3)当在上述磁场中加一竖直向上场强为E (mgE q>)的匀强电场时,小球从O 静止释放后获得的最大速率m v 。
高考物理带电粒子在复合场中的运动题20套(带答案)及解析
![高考物理带电粒子在复合场中的运动题20套(带答案)及解析](https://img.taocdn.com/s3/m/3d832fee767f5acfa0c7cd30.png)
一、带电粒子在复合场中的运动专项训练1.如图所示,直径分别为D 和2D 的同心圆处于同一竖直面内,O 为圆心,GH 为大圆的水平直径。
两圆之间的环形区域(Ⅰ区)和小圆内部(Ⅱ区)均存在垂直圆面向里的匀强磁场.间距为d 的两平行金属极板间有一匀强电场,上极板开有一小孔.一质量为m 、电量为+q 的粒子由小孔下方2d处静止释放,加速后粒子以竖直向上的速度v 射出电场,由H 点紧靠大圆内侧射入磁场。
不计粒子的重力。
(1)求极板间电场强度的大小;(2)若粒子运动轨迹与小圆相切,求Ⅰ区磁感应强度的大小; (3)若Ⅰ区、Ⅱ区磁感应强度的大小分别为2mv qD 、4mvqD,粒子运动一段时间后再次经过H 点,求这段时间粒子运动的路程.【来源】2015年全国普通高等学校招生统一考试物理(山东卷带解析)【答案】(1)2mv qd(2)4mv qD 或43mv qD (3)5.5πD【解析】 【分析】 【详解】(1)粒子在电场中,根据动能定理2122d Eq mv ⋅=,解得2mv E qd =(2)若粒子的运动轨迹与小圆相切,则当内切时,半径为/2E R 由211v qvB m r =,解得4mv B qD = 则当外切时,半径为e R由212v qvB m r =,解得43mv B qD =(2)若Ⅰ区域的磁感应强度为220932qB L m U =,则粒子运动的半径为0010016819U U U ≤≤;Ⅱ区域的磁感应强度为2012qU mv =,则粒子运动的半径为2v qvB m r=;设粒子在Ⅰ区和Ⅱ区做圆周运动的周期分别为T 1、T 2,由运动公式可得:1112R T v π=;034r L =据题意分析,粒子两次与大圆相切的时间间隔内,运动轨迹如图所示,根据对称性可知,Ⅰ区两段圆弧所对的圆心角相同,设为1θ,Ⅱ区内圆弧所对圆心角为2θ,圆弧和大圆的两个切点与圆心O 连线间的夹角设为α,由几何关系可得:1120θ=;2180θ=;60α=粒子重复上述交替运动回到H 点,轨迹如图所示,设粒子在Ⅰ区和Ⅱ区做圆周运动的时间分别为t 1、t 2,可得:r U ∝;1056U LU L=设粒子运动的路程为s ,由运动公式可知:s=v(t 1+t 2) 联立上述各式可得:s=5.5πD2.如图甲所示,空间存在一范围足够大的垂直于xOy 平面向外的匀强磁场,磁感应强度大小为B .让质量为m ,电荷量为q (q >0)的粒子从坐标原点O 沿xOy 平面以不同的初速度大小和方向入射到磁场中.不计重力和粒子间的影响.(1)若粒子以初速度v 1沿y 轴正向入射,恰好能经过x 轴上的A (a ,0)点,求v 1的大小;(2)已知一粒子的初速度大小为v (v >v 1),为使该粒子能经过A (a ,0)点,其入射角θ(粒子初速度与x 轴正向的夹角)有几个?并求出对应的sin θ值;(3)如图乙,若在此空间再加入沿y 轴正向、大小为E 的匀强电场,一粒子从O 点以初速度v 0沿y 轴正向发射.研究表明:粒子在xOy 平面内做周期性运动,且在任一时刻,粒子速度的x 分量v x 与其所在位置的y 坐标成正比,比例系数与场强大小E 无关.求该粒子运动过程中的最大速度值v m .【来源】2013年全国普通高等学校招生统一考试理科综合能力测试物理(福建卷带解析) 【答案】⑴;⑵两个 sin θ=;⑶+.【解析】试题分析:(1)当粒子沿y 轴正向入射,转过半个圆周至A 点,半径R 1=a/2由运动定律有2111v Bqv m R =解得12Bqav m=(2)如右图所示,O 、A 两点处于同一圆周上,且圆心在x =2a的直线上,半径为R ,当给定一个初速率v 时, 有2个入射角,分别在第1、2象限.即 sinθ′=sinθ=2a R另有2v Bqv m R=解得 sinθ′=sinθ=2aqBmv(3)粒子在运动过程中仅电场力做功,因而在轨道的最高点处速率最大,用y m 表示其y 坐标,由动能定理有 qEy m =12mv 2m -12mv 20 由题知 v m =ky m若E =0时,粒子以初速度v 0沿y 轴正向入射,有 qv 0B =m 20v R在最高处有 v 0=kR 0联立解得22()m E E v v B B=++考点:带电粒子在符合场中的运动;动能定理.3.如图,绝缘粗糙的竖直平面MN 左侧同时存在相互垂直的匀强电场和匀强磁场,电场方向水平向右,电场强度大小为E ,磁场方向垂直纸面向外,磁感应强度大小为B .一质量为m 、电荷量为q 的带正电的小滑块从A 点由静止开始沿MN 下滑,到达C 点时离开MN 做曲线运动.A 、C 两点间距离为h ,重力加速度为g .(1)求小滑块运动到C 点时的速度大小v c ;(2)求小滑块从A 点运动到C 点过程中克服摩擦力做的功W f ;(3)若D 点为小滑块在电场力、洛伦兹力及重力作用下运动过程中速度最大的位置,当小滑块运动到D 点时撤去磁场,此后小滑块继续运动到水平地面上的P 点.已知小滑块在D 点时的速度大小为v D ,从D 点运动到P 点的时间为t ,求小滑块运动到P 点时速度的大小v p .【来源】2015年全国普通高等学校招生统一考试物理(福建卷带解析) 【答案】(1)E/B (2)(3)【解析】 【分析】 【详解】小滑块到达C 点时离开MN ,此时与MN 间的作用力为零,对小滑块受力分析计算此时的速度的大小;由动能定理直接计算摩擦力做的功W f ;撤去磁场后小滑块将做类平抛运动,根据分运动计算最后的合速度的大小;(1)由题意知,根据左手定则可判断,滑块在下滑的过程中受水平向左的洛伦兹力,当洛伦兹力等于电场力qE 时滑块离开MN 开始做曲线运动,即Bqv qE = 解得:E v B=(2)从A 到C 根据动能定理:2102f mgh W mv -=- 解得:2212f E W mgh m B=-(3)设重力与电场力的合力为F ,由图意知,在D 点速度v D 的方向与F 地方向垂直,从D 到P 做类平抛运动,在F 方向做匀加速运动a=F /m ,t 时间内在F 方向的位移为212x at = 从D 到P ,根据动能定理:150a a +=,其中2114mv 联立解得:()22222()P Dmg qE v t v m +=+ 【点睛】解决本题的关键是分析清楚小滑块的运动过程,在与MN 分离时,小滑块与MN 间的作用力为零,在撤去磁场后小滑块将做类平抛运动,根据滑块的不同的运动过程逐步求解即可.4.对铀235的进一步研究在核能的开发和利用中具有重要意义.如图所示,质量为m 、电荷量为q 的铀235离子,从容器A 下方的小孔S 1不断飘入加速电场,其初速度可视为零,然后经过小孔S 2垂直于磁场方向进入磁感应强度为B 的匀强磁场中,做半径为R 的匀速圆周运动.离子行进半个圆周后离开磁场并被收集,离开磁场时离子束的等效电流为I .不考虑离子重力及离子间的相互作用.(1)求加速电场的电压U ;(2)求出在离子被收集的过程中任意时间t 内收集到离子的质量M ;(3)实际上加速电压的大小会在U+ΔU 范围内微小变化.若容器A 中有电荷量相同的铀235和铀238两种离子,如前述情况它们经电场加速后进入磁场中会发生分离,为使这两种离子在磁场中运动的轨迹不发生交叠,应小于多少?(结果用百分数表示,保留两位有效数字)【来源】2012年普通高等学校招生全国统一考试理综物理(天津卷)【答案】(1)(2)(3)0.63%【解析】解:(1)设离子经电场加速后进入磁场时的速度为v,由动能定理得:qU =mv2离子在磁场中做匀速圆周运动,由牛顿第二定律得:qvB=解得:U =(2)设在t时间内收集到的离子个数为N,总电荷量Q = ItQ = NqM =" Nm" =(3)由以上分析可得:R =设m/为铀238离子质量,由于电压在U±ΔU之间有微小变化,铀235离子在磁场中最大半径为:R max=铀238离子在磁场中最小半径为:R min=这两种离子在磁场中运动的轨迹不发生交叠的条件为:R max<R min即:<得:<<其中铀235离子的质量m = 235u(u为原子质量单位),铀238离子的质量m,= 238u 则:<解得:<0.63%5.如图所示,在xOy 平面直角坐标系中,直角三角形ACD 内存在垂直平面向里磁感应强度为B 的匀强磁场,线段CO=OD=L ,CD 边在x 轴上,∠ADC=30°。
带电粒子在复合场中运动的17个经典例题
![带电粒子在复合场中运动的17个经典例题](https://img.taocdn.com/s3/m/780b530027d3240c8447efe1.png)
经典习题1、(15分)如图所示,MN、PQ是平行金属板,板长为L,两板间距离为d,在PQ板的上方有垂直纸面向里的匀强磁场。
一个电荷量为q、质量为m的带负电粒子以速度v0从MN 板边缘沿平行于板的方向射入两板间,结果粒子恰好从PQ板左边缘飞进磁场,然后又恰好从PQ板的右边缘飞进电场。
不计粒子重力。
试求:(1)两金属板间所加电压U的大小;(2)匀强磁场的磁感应强度B的大小;(3)在图中画出粒子再次进入电场的运动轨迹,并标出粒子再次从电场中飞出的位置与速度方向。
B2.(16分)如图,在x oy平面内,MN和x轴之间有平行于y轴的匀强电场和垂直于x oy平面的匀强磁场,y轴上离坐标原点4 L的A点处有一电子枪,可以沿+x方向射出速度为v0的电子(质量为m,电量为e)。
如果电场和磁场同时存在,电子将做匀速直线运动.如果撤去电场,只保留磁场,电子将从x轴上距坐标原点3L的C点离开磁场.不计重力的影响,求:(1)磁感应强度B和电场强度E的大小和方向;(2)如果撤去磁场,只保留电场,电子将从D点(图中未标出)离开电场,求D点的坐标;(3)电子通过D点时的动能。
3.(12分)如图所示,在y>0的空间中,存在沿y轴正方向的匀强电场E;在y<0的空间中,存在沿y轴负方向的匀强电场,场强大小也为E,一电子(电量为-e,质量为m)在y 轴上的P(0,d)点以沿x轴正方向的初速度v0开始运动,不计电子重力,求:(1)电子第一次经过x轴的坐标值(2)电子在y方向上运动的周期(3)电子运动的轨迹与x轴的各个交点中,任意两个相邻交点间的距离(4)在图上画出电子在一个周期内的大致运动轨迹4.(16分)如图所示,一个质量为m=2.0×10-11kg,电荷量q=+1.0×10-5C的带电微粒(重力忽略不计),从静止开始经U=100V电压加速后,水平进入两平行金属板间的偏转电场中。
金属板长L=20cm,两板间距d=103cm。
高中物理带电粒子在复合场中的运动试题(有答案和解析)含解析
![高中物理带电粒子在复合场中的运动试题(有答案和解析)含解析](https://img.taocdn.com/s3/m/3c811cc4783e0912a3162a4d.png)
一、带电粒子在复合场中的运动专项训练1.离子推进器是太空飞行器常用的动力系统,某种推进器设计的简化原理如图所示,截面半径为R 的圆柱腔分为两个工作区.I 为电离区,将氙气电离获得1价正离子;II 为加速区,长度为L ,两端加有电压,形成轴向的匀强电场.I 区产生的正离子以接近0的初速度进入II 区,被加速后以速度v M 从右侧喷出.I 区内有轴向的匀强磁场,磁感应强度大小为B ,在离轴线R /2处的C 点持续射出一定速度范围的电子.假设射出的电子仅在垂直于轴线的截面上运动,截面如图所示(从左向右看).电子的初速度方向与中心O 点和C 点的连线成α角(0<α<90◦).推进器工作时,向I 区注入稀薄的氙气.电子使氙气电离的最小速度为v 0,电子在I 区内不与器壁相碰且能到达的区域越大,电离效果越好.......................已知离子质量为M ;电子质量为m ,电量为e .(电子碰到器壁即被吸收,不考虑电子间的碰撞).(1)求II 区的加速电压及离子的加速度大小;(2)为取得好的电离效果,请判断I 区中的磁场方向(按图2说明是“垂直纸面向里”或“垂直纸面向外”);(3)α为90°时,要取得好的电离效果,求射出的电子速率v 的范围; (4)要取得好的电离效果,求射出的电子最大速率v max 与α角的关系.【来源】2014年全国普通高等学校招生统一考试理科综合能力测试物理(浙江卷带解析)【答案】(1)22Mv L(2)垂直于纸面向外(3)043mv B eR >(4)()max 342sin eRB v m α=-【解析】 【分析】 【详解】(1)离子在电场中加速,由动能定理得:212M eU Mv =,得:22M Mv U e =.离子做匀加速直线运动,由运动学关系得:22Mv aL =,得:22Mv a L=.(2)要取得较好的电离效果,电子须在出射方向左边做匀速圆周运动,即为按逆时针方向旋转,根据左手定则可知,此刻Ⅰ区磁场应该是垂直纸面向外.(3)当90α=︒时,最大速度对应的轨迹圆如图一所示,与Ⅰ区相切,此时圆周运动的半径为34r R =洛伦兹力提供向心力,有2maxmaxv Bev m r= 得34max BeRv m=即速度小于等于34BeRm 此刻必须保证043mv B BR>. (4)当电子以α角入射时,最大速度对应轨迹如图二所示,轨迹圆与圆柱腔相切,此时有:90OCO α∠'=︒﹣2ROC =,OC r '=,OO R r '=﹣ 由余弦定理有222(29022R R R r r r cos α⎛⎫=+⨯⨯︒ ⎪⎝⎭﹣)﹣(﹣),90cos sin αα︒-=() 联立解得:()342Rr sin α=⨯-再由:maxmv r Be=,得 ()342max eBRv m sin α=-.考点:带电粒子在匀强磁场中的运动、带电粒子在匀强电场中的运动 【名师点睛】该题的文字叙述较长,要求要快速的从中找出物理信息,创设物理情境;平时要注意读图能力的培养,以及几何知识在物理学中的应用,解答此类问题要有画草图的习惯,以便有助于对问题的分析和理解;再者就是要熟练的掌握带电粒子在磁场中做匀速圆周运动的周期和半径公式的应用.2.如图甲所示,空间存在一范围足够大的垂直于xOy 平面向外的匀强磁场,磁感应强度大小为B .让质量为m ,电荷量为q (q >0)的粒子从坐标原点O 沿xOy 平面以不同的初速度大小和方向入射到磁场中.不计重力和粒子间的影响.(1)若粒子以初速度v 1沿y 轴正向入射,恰好能经过x 轴上的A (a ,0)点,求v 1的大小;(2)已知一粒子的初速度大小为v (v >v 1),为使该粒子能经过A (a ,0)点,其入射角θ(粒子初速度与x 轴正向的夹角)有几个?并求出对应的sin θ值;(3)如图乙,若在此空间再加入沿y 轴正向、大小为E 的匀强电场,一粒子从O 点以初速度v 0沿y 轴正向发射.研究表明:粒子在xOy 平面内做周期性运动,且在任一时刻,粒子速度的x 分量v x 与其所在位置的y 坐标成正比,比例系数与场强大小E 无关.求该粒子运动过程中的最大速度值v m .【来源】2013年全国普通高等学校招生统一考试理科综合能力测试物理(福建卷带解析) 【答案】⑴;⑵两个 sin θ=;⑶+.【解析】试题分析:(1)当粒子沿y 轴正向入射,转过半个圆周至A 点,半径R 1=a/2由运动定律有2111v Bqv m R =解得12Bqav m=(2)如右图所示,O 、A 两点处于同一圆周上,且圆心在x =2a的直线上,半径为R ,当给定一个初速率v 时, 有2个入射角,分别在第1、2象限.即 sinθ′=sinθ=2a R另有2v Bqv m R=解得 sinθ′=sinθ=2aqBmv(3)粒子在运动过程中仅电场力做功,因而在轨道的最高点处速率最大,用y m 表示其y 坐标,由动能定理有 qEy m=12 mv2m-12mv2由题知 v m=ky m若E=0时,粒子以初速度v0沿y轴正向入射,有 qv0B=m2vR在最高处有 v0=kR0联立解得22()mEEv vB B=++考点:带电粒子在符合场中的运动;动能定理.3.如图所示,在坐标系Oxy的第一象限中存在沿y轴正方向的匀强电场,场强大小为E.在其它象限中存在匀强磁场,磁场方向垂直于纸面向里.A是y轴上的一点,它到坐标原点O的距离为h;C是x轴上的一点,到O的距离为L.一质量为m,电荷量为q的带负电的粒子以某一初速度沿x轴方向从A点进入电场区域,继而通过C点进入磁场区域.并再次通过A点,此时速度方向与y轴正方向成锐角.不计重力作用.试求:(1)粒子经过C点速度的大小和方向;(2)磁感应强度的大小B.【来源】2007普通高等学校招生全国统一考试(全国卷Ⅱ)理综物理部分【答案】(1)α=arctan2hl(2)B =2212mhEh lq+ 【解析】 【分析】 【详解】试题分析:(1)以a 表示粒子在电场作用下的加速度,有qE ma =①加速度沿y 轴负方向.设粒子从A 点进入电场时的初速度为0v ,由A 点运动到C 点经历的时间为t , 则有:212h at =② 0l v t =③由②③式得02a v lh=④ 设粒子从C 点进入磁场时的速度为v ,v 垂直于x 轴的分量12v ah =⑤ 由①④⑤式得:22101v v v +==()2242qE h l mh+⑥设粒子经过C 点时的速度方向与x 轴的夹角为α,则有1v tan v α=⑦ 由④⑤⑦式得2h arctanlα=⑧(2)粒子从C 点进入磁场后在磁场中作速率为v 的圆周运动.若圆周的半径为R ,则有qvB =m 2v R⑨设圆心为P ,则PC 必与过C 点的速度垂直,且有PC =PA R =.用β表示PA 与y 轴的夹角,由几何关系得:Rcos Rcos h βα=+⑩Rsin l Rsin βα=-解得222242h l R h l hl++=由⑥⑨式得:B =2212mhEh l q+4.在平面直角坐标系xOy 中,第Ⅰ象限存在沿y 轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B .一质量为m 、电荷量为q 的带正电的粒子从y 轴正半轴上的M 点以速度v 0垂直于y 轴射入电场,经x 轴上的N 点与x 轴正方向成θ=60°角射入磁场,最后从y 轴负半轴上的P 点垂直于y 轴射出磁场,如图所示.不计粒子重力,求(1)M 、N 两点间的电势差U MN ; (2)粒子在磁场中运动的轨道半径r ; (3)粒子从M 点运动到P 点的总时间t . 【来源】带电粒子在电场、磁场中的运动 【答案】1)U MN = (2)r =(3) t =【解析】 【分析】 【详解】(1)设粒子过N 点时的速度为v ,有:解得:粒子从M 点运动到N 点的过程,有:解得:(2)粒子在磁场中以O′为圆心做匀速圆周运动,半径为r ,有:解得:(3)由几何关系得:设粒子在电场中运动的时间为t 1,有:粒子在磁场中做匀速圆周运动的周期:设粒子在磁场中运动的时间为t 2,有:5.如图所示,在平面直角坐标系xOy 中的第一象限内存在磁感应强度大小为B 、方向垂直于坐标平面向里的有界矩形匀强磁场区域(图中未画出);在第二象限内存在沿x 轴负方向的匀强电场。
高中物理带电粒子在复合场中的运动题20套(带答案)及解析
![高中物理带电粒子在复合场中的运动题20套(带答案)及解析](https://img.taocdn.com/s3/m/e38f5d5616fc700aba68fc0c.png)
一、带电粒子在复合场中的运动专项训练1.离子推进器是太空飞行器常用的动力系统,某种推进器设计的简化原理如图所示,截面半径为R 的圆柱腔分为两个工作区.I 为电离区,将氙气电离获得1价正离子;II 为加速区,长度为L ,两端加有电压,形成轴向的匀强电场.I 区产生的正离子以接近0的初速度进入II 区,被加速后以速度v M 从右侧喷出.I 区内有轴向的匀强磁场,磁感应强度大小为B ,在离轴线R /2处的C 点持续射出一定速度范围的电子.假设射出的电子仅在垂直于轴线的截面上运动,截面如图所示(从左向右看).电子的初速度方向与中心O 点和C 点的连线成α角(0<α<90◦).推进器工作时,向I 区注入稀薄的氙气.电子使氙气电离的最小速度为v 0,电子在I 区内不与器壁相碰且能到达的区域越大,电离效果越好.......................已知离子质量为M ;电子质量为m ,电量为e .(电子碰到器壁即被吸收,不考虑电子间的碰撞).(1)求II 区的加速电压及离子的加速度大小;(2)为取得好的电离效果,请判断I 区中的磁场方向(按图2说明是“垂直纸面向里”或“垂直纸面向外”);(3)α为90°时,要取得好的电离效果,求射出的电子速率v 的范围; (4)要取得好的电离效果,求射出的电子最大速率v max 与α角的关系.【来源】2014年全国普通高等学校招生统一考试理科综合能力测试物理(浙江卷带解析)【答案】(1)22Mv L(2)垂直于纸面向外(3)043mv B eR >(4)()max 342sin eRB v m α=-【解析】 【分析】 【详解】(1)离子在电场中加速,由动能定理得:212M eU Mv =,得:22M Mv U e =.离子做匀加速直线运动,由运动学关系得:22Mv aL =,得:22Mv a L=.(2)要取得较好的电离效果,电子须在出射方向左边做匀速圆周运动,即为按逆时针方向旋转,根据左手定则可知,此刻Ⅰ区磁场应该是垂直纸面向外.(3)当90α=︒时,最大速度对应的轨迹圆如图一所示,与Ⅰ区相切,此时圆周运动的半径为34r R =洛伦兹力提供向心力,有2maxmaxv Bev m r= 得34max BeRv m=即速度小于等于34BeRm 此刻必须保证043mv B BR>. (4)当电子以α角入射时,最大速度对应轨迹如图二所示,轨迹圆与圆柱腔相切,此时有:90OCO α∠'=︒﹣2ROC =,OC r '=,OO R r '=﹣ 由余弦定理有222(29022R R R r r r cos α⎛⎫=+⨯⨯︒ ⎪⎝⎭﹣)﹣(﹣),90cos sin αα︒-=() 联立解得:()342Rr sin α=⨯-再由:maxmv r Be=,得 ()342max eBRv m sin α=-.考点:带电粒子在匀强磁场中的运动、带电粒子在匀强电场中的运动 【名师点睛】该题的文字叙述较长,要求要快速的从中找出物理信息,创设物理情境;平时要注意读图能力的培养,以及几何知识在物理学中的应用,解答此类问题要有画草图的习惯,以便有助于对问题的分析和理解;再者就是要熟练的掌握带电粒子在磁场中做匀速圆周运动的周期和半径公式的应用.2.如图所不,在x轴的上方存在垂直纸面向里,磁感应强度大小为B0的匀强磁场.位于x 轴下方的离子源C发射质量为m、电荷量为g的一束负离子,其初速度大小范围0〜,这束离子经电势差的电场加速后,从小孔O(坐标原点)垂直x轴并垂直磁场射入磁场区域,最后打到x轴上.在x轴上2a〜3a区间水平固定放置一探测板(),假设每秒射入磁场的离子总数为N0,打到x轴上的离子数均匀分布(离子重力不计).(1)求离子束从小孔O射入磁场后打到x轴的区间;(2)调整磁感应强度的大小,可使速度最大的离子恰好打在探测板右端,求此时的磁感应强度大小B1;(3)保持磁感应强度B1不变,求每秒打在探测板上的离子数N;若打在板上的离子80%被吸收,20%被反向弹回,弹回速度大小为打板前速度大小的0.6倍,求探测板受到的作用力大小.【来源】浙江省2018版选考物理考前特训(2017年10月)加试30分特训:特训7 带电粒子在场中的运动试题【答案】(1);(2)(3)【解析】(1)对于初速度为0的离子,根据动能定理::qU=mv在磁场中洛仑兹力提供向心力:,所以半径:r1==a恰好打在x=2a的位置;对于初速度为v0的离子,qU=mv-m(v0)2r2==2a,恰好打在x=4a的位置故离子束从小孔O射入磁场打在x轴上的区间为[2a,4a](2)由动能定理qU=mv-m(v0)2r3=r3=a解得B1=B0(3)对速度为0的离子qU=mvr4==a2r4=1.5a离子打在x轴上的区间为[1.5a,3a]N=N0=N0对打在x=2a处的离子qv3B1=对打在x=3a处的离子qv4B1=打到x轴上的离子均匀分布,所以=由动量定理-Ft=-0.8Nm+0.2N(-0.6m-m)解得F=N0mv0.【名师点睛】初速度不同的粒子被同一加速电场加速后,进入磁场的速度也不同,做匀速圆周运动的半径不同,转半圈后打在x轴上的位置不同.分别求出最大和最小速度,从而求出最大半径和最小半径,也就知道打在x轴上的区间;打在探测板最右端的粒子其做匀速圆周运动的半径为1.5a,由半径公式也就能求出磁感应强度;取时间t=1s,分两部分据动量定理求作用力.两者之和就是探测板受到的作用力.3.如图所示,在无限长的竖直边界NS和MT间充满匀强电场,同时该区域上、下部分分别充满方向垂直于NSTM平面向外和向内的匀强磁场,磁感应强度大小分别为B和2B,KL为上下磁场的水平分界线,在NS和MT边界上,距KL高h处分别有P、Q两点,NS和MT间距为1.8h ,质量为m,带电荷量为+q的粒子从P点垂直于NS边界射入该区域,在两边界之间做圆周运动,重力加速度为g.(1)求电场强度的大小和方向;(2)要使粒子不从NS边界飞出,求粒子入射速度的最小值;(3)若粒子能经过Q点从MT边界飞出,求粒子入射速度的所有可能值.【来源】【全国百强校】2017届浙江省温州中学高三3月高考模拟物理试卷(带解析)【答案】(1)mgqE=,方向竖直向上(2)min(962)qBhvm-=(3)0.68qBhvm=;0.545qBhvm=;0.52qBhvm=【解析】【分析】(1)粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,电场力与重力合力为零;(2)作出粒子的运动轨迹,由牛顿第二定律与数学知识求出粒子的速度;(3)作出粒子运动轨迹,应用几何知识求出粒子的速度.【详解】(1)粒子在磁场中做匀速圆周运动,电场力与重力合力为零,即mg=qE,解得:mgqE=,电场力方向竖直向上,电场方向竖直向上;(2)粒子运动轨迹如图所示:设粒子不从NS边飞出的入射速度最小值为v min,对应的粒子在上、下区域的轨道半径分别为r1、r2,圆心的连线与NS 的夹角为φ,粒子在磁场中做匀速圆周运动,由牛顿第二定律得:2v qvB m r=,解得,粒子轨道半径:v r qBπ=, min1v r qBπ=,2112r r =, 由几何知识得:(r 1+r 2)sin φ=r 2,r 1+r 1cos φ=h ,解得:min 962)qBhv m=(﹣; (3)粒子运动轨迹如图所示,设粒子入射速度为v ,粒子在上、下区域的轨道半径分别为r 1、r 2, 粒子第一次通过KL 时距离K 点为x , 由题意可知:3nx =1.8h (n =1、2、3…)3(92)22h x -≥,()2211x r h r =-- 解得:120.361)2hr n =+(,n <3.5, 即:n =1时, 0.68qBhv m=, n =2时,0.545qBhv m=,n =3时,0.52qBhv m=; 答:(1)电场强度的大小为mg qE =,电场方向竖直向上;(2)要使粒子不从NS 边界飞出,粒子入射速度的最小值为min 962)qBhv m=(﹣. (3)若粒子经过Q 点从MT 边界飞出,粒子入射速度的所有可能值为:0.68qBhv m=、或0.545qBh v m =、或0.52qBhv m=. 【点睛】本题考查了粒子在磁场中的运动,分析清楚粒子运动过程、作出粒子运动轨迹是正确解题的前提与关键,应用平衡条件、牛顿第二定律即可正确解题,解题时注意数学知识的应用.4.如图所示,待测区域中存在匀强电场和匀强磁场,根据带电粒子射入时的受力情况可推测其电场和磁场. 图中装置由加速器和平移器组成,平移器由两对水平放置、相距为l 的相同平行金属板构成,极板长度为l 、间距为d,两对极板间偏转电压大小相等、电场方向相反. 质量为m 、电荷量为+q 的粒子经加速电压U0 加速后,水平射入偏转电压为U1 的平移器,最终从A 点水平射入待测区域. 不考虑粒子受到的重力.(1)求粒子射出平移器时的速度大小v1;(2)当加速电压变为4U0 时,欲使粒子仍从A 点射入待测区域,求此时的偏转电压U; (3)已知粒子以不同速度水平向右射入待测区域,刚进入时的受力大小均为F. 现取水平向右为x 轴正方向,建立如图所示的直角坐标系Oxyz. 保持加速电压为U0 不变,移动装置使粒子沿不同的坐标轴方向射入待测区域,粒子刚射入时的受力大小如下表所示.请推测该区域中电场强度和磁感应强度的大小及可能的方向. 【来源】2012年普通高等学校招生全国统一考试理综物理(江苏卷) 【答案】(1)012qU v m=1U?4U =(3)E 与Oxy 平面平行且与x 轴方向的夹角为30°或150°,若B 沿-x 轴方向,E 与Oxy 平面平行且与x 轴方向的夹角为-30°或-150°. 【解析】(1)设粒子射出加速器的速度为0v 动能定理20012qU mv =由题意得10v v =,即012qU v m=(2)在第一个偏转电场中,设粒子的运动时间为t 加速度的大小1qU a md=在离开时,竖直分速度yv at = 竖直位移2112y at =水平位移1l v t = 粒子在两偏转电场间做匀速直线运动,经历时间也为t 竖直位移2y y v t =由题意知,粒子竖直总位移12y?2y y =+ 解得210U l y U d=则当加速电压为04U 时,1U?4U =(3)(a)由沿x 轴方向射入时的受力情况可知:B 平行于x 轴. 且FE q= (b)由沿y +-轴方向射入时的受力情况可知:E 与Oxy 平面平行.222F f (5F)+=,则f?2F =且1f?qv B =解得02F mB BqU =(c)设电场方向与x 轴方向夹角为.若B 沿x 轴方向,由沿z 轴方向射入时的受力情况得222sin )(cos )(7)f F F F αα++=( 解得=30°,或=150°即E 与Oxy 平面平行且与x 轴方向的夹角为30°或150°. 同理,若B 沿-x 轴方向E 与Oxy 平面平行且与x 轴方向的夹角为-30°或-150°.5.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB ∥CD 、AD ∥BC ,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为 B .一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为 θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d ,带电粒子的质量为 m ,带电量为 q ,不计粒子的重力.求:(1)带电粒子入射速度的大小;(2)带电粒子在矩形区域内作直线运动的时间; (3)匀强电场的电场强度大小.【来源】【市级联考】广东省广州市2019届高三12月调研测试理科综合试题物理试题【答案】(1)cos qBd m θ(2)cos sin m qB θθ (3)2cos qB dm θ【解析】 【分析】画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强. 【详解】(1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R ,画出运动轨迹如图所示,轨迹圆心为O .由几何关系可知:cos d Rθ=洛伦兹力做向心力:200v qv B m R= 解得0cos qBdv m θ=(2)设带电粒子在矩形区域内作直线运动的位移为x ,有sin d xθ= 粒子作匀速运动:x=v 0t 联立解得cos sin m t qB θθ=(3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv 0B解得2qB dE mcos θ=【点睛】此题关键是能根据粒子的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理量;知道粒子作直线运动的条件是洛伦兹力等于电场力.6.在如图甲所示的直角坐标系中,两平行极板MN 垂直于y 轴,N 板在x 轴上且其左端与坐标原点O 重合,极板长度l =0.08m ,板间距离d =0.09m ,两板间加上如图乙所示的周期性变化电压,两板间电场可看作匀强电场.在y 轴上(0,d /2)处有一粒子源,垂直于y 轴连续不断向x 轴正方向发射相同的带正电的粒子,粒子比荷为qm=5×107C /kg ,速度为v 0=8×105m/s .t =0时刻射入板间的粒子恰好经N 板右边缘打在x 轴上.不计粒子重力及粒子间的相互作用,求:(1)电压U 0的大小;(2)若沿x 轴水平放置一荧光屏,要使粒子全部打在荧光屏上,求荧光屏的最小长度; (3)若在第四象限加一个与x 轴相切的圆形匀强磁场,半径为r =0.03m ,切点A 的坐标为(0.12m ,0),磁场的磁感应强度大小B =23T ,方向垂直于坐标平面向里.求粒子出磁场后与x 轴交点坐标的范围.【来源】【市级联考】山东省济南市2019届高三第三次模拟考试理综物理试题【答案】(1)40 2.1610V U =⨯ (2)0.04m x ∆= (3)0.1425m x ≥【解析】 【分析】 【详解】(1)对于t =0时刻射入极板间的粒子:0l v T = 7110T s -=⨯211()22T y a =2y T v a= 22yT y v = 122dy y =+ Eq ma =U E d=解得:40 2.1610V U =⨯(2)2Tt nT =+时刻射出的粒子打在x 轴上水平位移最大:032A T x v = 所放荧光屏的最小长度A x x l ∆=-即:0.04x m ∆= (3)不同时刻射出极板的粒子沿垂直于极板方向的速度均为v y . 速度偏转角的正切值均为:0tan y v v β=37β=ocos37v v=o 6110m/s v =⨯即:所有的粒子射出极板时速度的大小和方向均相同.2v qvB m R=0.03m R r ==由分析得,如图所示,所有粒子在磁场中运动后发生磁聚焦由磁场中的一点B 离开磁场.由几何关系,恰好经N 板右边缘的粒子经x 轴后沿磁场圆半径方向射入磁场,一定沿磁场圆半径方向射出磁场;从x 轴射出点的横坐标:tan 53C A Rx x ︒=+0.1425m C x =.由几何关系,过A 点的粒子经x 轴后进入磁场由B 点沿x 轴正向运动. 综上所述,粒子经过磁场后第二次打在x 轴上的范围为:0.1425m x ≥7.如图所示,空间存在方向垂直于xOy 平面向里的匀强磁场,在0<y<d 的区域Ⅰ内的磁感应强度大小为B ,在y>d 的区域Ⅱ内的磁感应强度大小为2B .一个质量为m 、电荷量为-q 的粒子以速度qBdm从O 点沿y 轴正方向射入区域Ⅰ.不计粒子重力.(1) 求粒子在区域Ⅰ中运动的轨道半径: (2) 若粒子射入区域Ⅰ时的速度为2qBdv m= ,求粒子打在x 轴上的位置坐标,并求出此过程中带电粒子运动的时间;(3) 若此粒子射入区域Ⅰ的速度qBdv m>,求该粒子打在x 轴上位置坐标的最小值. 【来源】江苏省苏锡常镇四市2019届高三第二次模拟考试物理试题【答案】(1)R d =(2) (43OP d = 23mt qBπ=(3)min 3x d = 【解析】 【分析】【详解】(1)带电粒子在磁场中运动,洛仑磁力提供向心力:201v qv B m r =把0qBdv m=,代入上式,解得:R d = (2) 当粒子射入区域Ⅰ时的速度为02v v =时,如图所示在OA 段圆周运动的圆心在O 1,半径为12R d = 在AB 段圆周运动的圆心在O 2,半径为R d = 在BP 段圆周运动的圆心在O 3,半径为12R d =可以证明ABPO 3为矩形,则图中30θ=o ,由几何知识可得:132cos303OO d d ==o所以:323OO d d =-所以粒子打在x 轴上的位置坐标()133243OP O O OO d =+=-粒子在OA 段运动的时间为:13023606m mt qB qB ππ==o og 粒子在AB 段运动的时间为2120236023m m t q B qB ππ==o o g g 粒子在BP 段运动的时间为313023606m mt t qB qBππ===o o g 在此过程中粒子的运动时间:12223mt t t qBπ=+=(3)设粒子在区域Ⅰ中轨道半径为R ,轨迹由图可得粒子打在x 轴上位置坐标:(22222x R R dR d =--化简得:222340R Rx x d -++=把上式配方:222213033R x x d ⎛⎫--+= ⎪⎝⎭ 化简为:222213033R x x d ⎛⎫-=-≥ ⎪⎝⎭ 则当23R x =时,位置坐标x 取最小值:min 3x d =8.如图,为一除尘装置的截面图,塑料平板M .N 的长度及它们间距离均为d .大量均匀分布的带电尘埃以相同的速度v o 进入两板间,速度方向与板平行,每颗尘埃的质量均为m ,带电量均为-q .当两板间同时存在垂直纸面向外的匀强磁场和垂直板向上的匀强电场时,尘埃恰好匀速穿过两板间;若撤去板间电场,并保持板间磁场不变,尘埃恰好全部被平板吸附,即除尘效率为100%;若撤去两板间电场和磁场,建立如图所示的平面直角坐标系xoy ,y 轴垂直于板并紧靠板右端,x 轴与两板中轴线共线,要把尘埃全部收集到位于P (2d ,-1.5d)处的条状容器中,需在y 轴右侧加一垂直于纸面向里的圆形匀强磁场区域.尘埃颗粒重力、颗粒间作用及对板间电场磁场的影响均不计,求: (1)两板间磁场磁感应强度B i 的大小;(2)若撤去板间磁场,保持板间匀强电场不变,除尘效率为多少; (3)y 轴右侧所加圆形匀强磁场区域磁感应强度B 2大小的取值范围.【来源】【市级联考】山东省青岛市2019届高三下学期5月第二次模考理综物理试题 【答案】(1)0i mv B qd =;(2)除尘效率为50%;(3)0022mv mv B qd qd≤≤ 【解析】 【详解】(1)沿N 极板射入的尘埃恰好不从极板射出时尘埃的运动轨迹如图所示,由几何知识可知,尘埃在磁场中的半径:r=d,尘埃在磁场中做匀速圆周运动,洛伦兹力提供向心力,由牛顿第二定律得:2mv qvBr=,解得:0imvBqd=;(2)电场、磁场同时存在时,尘埃匀速直线,满足:0qE qv B=,撤去磁场以后粒子在电场作用下平抛,假设距离N极板y的粒子恰好离开电场:水平方向:0d v t=竖直方向:212y at=加速度:qEam=解得:0.5y d=当0.5y d>时,时间更长,水平位移x d>,即0.5d到d这段距离的粒子会射出电场,则从平行金属板出射的尘埃占总数的百分比:0.5100%50%d dd-⨯=;(3)设圆形磁场区域的半径为R0,尘埃颗粒在圆形磁场中做圆周运动的半径为R2,要把尘埃全部收集到位于P处的条状容器中,就必须满足20R R=另2022vqv B mR=如图,当圆形磁场区域过P点且与M板的延长线相切时,圆形磁场区域的半径R0最小,磁感应强度B2最大,有0R d=小解得:02mv B qd大=如图,当圆形磁场区域过P 点且与y 轴在M 板的右端相切时,圆形磁场区域的半径R 0最大,磁感应强度B 2最小,有02R d =大解得:022mv B qd=小 所以圆形磁场区域磁感应强度B 2的大小须满足的条件为0022mv mvB qd qd≤≤.9.如图甲所示,两平行金属板接有如图乙所示随时间t 变化的电压U ,两板间电场可看作均匀的,且两金属板外无电场,两金属板长L =0.2 m ,两板间距离d =0.2 m .在金属板右侧边界MN 的区域有一足够大的匀强磁场,MN 与两板中线OO ′垂直,磁感应强度为B ,方向垂直纸面向里.现有带正电的粒子流沿两板中线OO ′连续射入电场中,已知每个粒子速度v 0=105 m/s ,比荷qm=108 C/kg ,重力忽略不计,在每个粒子通过电场区域的极短时间内,电场可视作是恒定不变的.(1)试求带电粒子射出电场时的最大速度;(2)任意时刻从电场射出的带电粒子,进入磁场时在MN 上的入射点和在MN 上出射点的距离是一确定的值s ,试通过计算写出s 的表达式(用字母m 、v 0、q 、B 表示).【来源】【市级联考】肇庆市2019届高三第三次统一检测理综物理试题【答案】(1)55210/ 1.4110/m v m s m s =⨯.方向:斜向右上方或斜向右下方,与初速度方向成45°夹角;(2)s 022mv Rsin qBθ==,距离s 与粒子在磁场中运行速度的大小无关,s 为定值.【解析】 【分析】 【详解】(1)偏转电压由0到200V 的变化中,粒子流可能都能射出电场,也可能只有部分粒子能射出电场,设偏转的电压为U 0时,粒子刚好能经过极板的右边缘射出,则:2001()22Uq d L md v = 解得U 0=100V知偏转电压为100V 时,粒子恰好能射出电场,且速度最大. 根据动能定理得,220011222m U mv mv q -= 55210/ 1.4110/m v m s m s =⨯=⨯.方向:斜向右上方或斜向右下方,与初速度方向成45°夹角.(2)设粒子射出电场速度方向与MN 间夹角为θ.粒子射出电场时速度大小为:0v v sin θ=在磁场中,2v qvB m R= 解得R 0mv mv qB qBsin θ== 因此粒子射进磁场点与射出磁场点间距离为:s 022mv Rsin qBθ==. 由此可看出,距离s 与粒子在磁场中运行速度的大小无关,s 为定值.10.如图所示,半径为r 的圆形匀强磁场区域Ⅰ与x 轴相切于坐标系的原点O ,磁感应强度为B 0,方向垂直于纸面向外.磁场区域Ⅰ右侧有一长方体加速管,加速管底面宽度为2r ,轴线与x 轴平行且过磁场区域Ⅰ的圆心,左侧的电势比右侧高.在加速管出口下侧距离2r 处放置一宽度为2r 的荧光屏.加速管右侧存在方向垂直于纸面向外磁感应强度也为B 0的匀强磁场区域Ⅱ.在O 点处有一个粒子源,能沿纸面向y >0的各个方向均匀地发射大量质量为m 、带电荷量为q 且速率相同的粒子,其中沿y 轴正方向射入磁场的粒子,恰能沿轴线进入长方形加速管并打在荧光屏的中心位置.(不计粒子重力及其相互作用)(1)求粒子刚进入加速管时的速度大小v 0; (2)求加速电压U ;(3)若保持加速电压U不变,磁场Ⅱ的磁感应强度B=0.9 B0,求荧光屏上有粒子到达的范围?【来源】江苏省扬州市高邮市2018-2019学年度第二学期高三年级阶段性物理调研试题【答案】(1)(2)(3)【解析】【分析】由运动方向通过几何关系求得半径,进而由洛伦兹力作向心力求得速度;再由几何关系求得半径,由洛伦兹力作向心力联立两式求得粒子速度,应用动能定理求得加速电压;先通过几何关系求得粒子在加速管中的分布,然后由粒子运动的半径及几何关系求得可打在荧光屏上的粒子范围;【详解】解:(1)磁场区域Ⅰ内粒子运动轨道半径为:(2)粒子在磁场区域Ⅱ的轨道半径为:又由动能定理得:解得:(3)粒子经磁场区域Ⅰ后,其速度方向均与x轴平行;经证明可知: OO1CO2是菱形,所以CO2和y轴平行,v和x轴平行磁场Ⅱ的磁感应强度B 2减小10%,即 ,荧光屏上方没有粒子到达的长度为:即荧光屏上有粒子到达的范围是:距上端处到下端,总长度11.在空间中存在垂直于纸面向里的匀强磁场,其竖直边界AB 、CD 的宽度为d ,在边界AB 左侧是竖直向下、场强为E 的匀强电场,现有质量为m 、带电量为+q 的粒子(不计重力)从P 点以大小为v 0的水平初速度射入电场,随后与边界AB 成45°射入磁场,若粒子能垂直CD 边界飞出磁场,试求: (1)匀强磁场的磁感应强度B ; (2)从进入电场到穿出磁场的总时间。
带电粒子在复合场中的运动(含答案)
![带电粒子在复合场中的运动(含答案)](https://img.taocdn.com/s3/m/d360fa67c950ad02de80d4d8d15abe23482f03be.png)
带电粒子在复合场中的运动1、 如图,在平面直角坐标系xOy 内,第1象限存在沿y 轴负方向的匀强电场,第Ⅳ象限以ON 为直径的半圆形区域内,存在垂直于坐标平面向外的匀强磁场,磁感应强度为B .一质量为m 、电荷量为q 的带正电的粒子,从y 轴正半轴上y =h 处的M 点,以速度v 0垂直于y 轴射入电场,经x 轴上x =2h 处的P 点进入磁场,最后以速度v 垂直于y 轴射出磁场。
不计粒子重力。
求:(1)电场强度大小E ;(2)粒子在磁场中运动的轨道半径; (3)粒子离开磁场时的位置坐标。
2、 如图所示,在xoy 平面的第一象限内,分布有沿x 轴负方向的场强4410/3E N C =⨯的匀强电场,第四象限内分布有垂直纸面向里的磁感应强度10.2B T =的匀强磁场,第二、三象限内分布有垂直纸面向里的磁感应强度2B 的匀强磁场。
在x 轴上有一个垂直于y 轴的挡板OM ,挡板上开有一个小孔P ,P 处连接有一段长度2110d m -=⨯内径不计的准直管,管内由于静电屏蔽没有电场。
y 轴负方向上距O 点210h m -的粒子源S 可以向第四象限平面内各个方向发射带正电的粒子,粒子速度大小均为50210/v m s =⨯,粒子的比荷7510/qC kg m=⨯,不计粒子重力和粒子间的相互作用,求:(1)粒子在第四象限的磁场中运动时的轨道半径r ; (2)粒子第一次到达y 轴的位置与O 点的距离H ;(3)要使离开电场的粒子只经过第二、三象限回到S 处,磁感应强度2B 应为多大。
3、 如图所示,空间存在方向与xoy 平面垂直,范围足够大的匀强磁场。
在0x ≥区域,磁感应强度大小为B 0,方向向里;x <0区域,磁感应强度大小为2B 0,方向向外。
某时刻,一个质量为m 、电荷量为q (q >0)的带电粒子从x 轴上P (L ,0)点以速度02qB Lv m=垂直x 轴射入第一象限磁场,不计粒子的重力。
求:(1)粒子在两个磁场中运动的轨道半径;(2)粒子离开P 点后经过多长时间第二次到达y 轴。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、带电粒子在复合场中的运动专项训练1.如图所示,以两虚线为边界,中间存在平行纸面且与边界垂直的水平电场,宽度为d ,两侧为相同的匀强磁场,方向垂直纸面向里.一质量为m 、带电量q +、重力不计的带电粒子,以初速度1v 垂直边界射入磁场做匀速圆周运动,后进入电场做匀加速运动,然后第二次进入磁场中运动,此后粒子在电场和磁场中交替运动.已知粒子第二次在磁场中运动的半径是第一次的二倍,第三次是第一次的三倍,以此类推.求:(1)粒子第一次经过电场的过程中电场力所做的功1W (2)粒子第n 次经过电场时电场强度的大小n E (3)粒子第n 次经过电场所用的时间n t(4)假设粒子在磁场中运动时,电场区域场强为零.请画出从粒子第一次射入磁场至第三次离开电场的过程中,电场强度随时间变化的关系图线(不要求写出推导过程,不要求标明坐标刻度值).【来源】河北省衡水中学滁州分校2018届高三上学期全真模拟物理试题【答案】(1)21132mv W =(2)21(21)2n n mv E qd +=(3)12(21)n d t n v =+ (4)如图;【解析】 (1)根据mv r qB =,因为212r r =,所以212v v =,所以221211122W mv mv =-, (2)=,,所以.(3),,所以.(4)2.如图,空间存在匀强电场和匀强磁场,电场方向为y 轴正方向,磁场方向垂直于xy 平面(纸面)向外,电场和磁场都可以随意加上或撤除,重新加上的电场或磁场与撤除前的一样.一带正电荷的粒子从P (x =0,y =h )点以一定的速度平行于x 轴正向入射.这时若只有磁场,粒子将做半径为R 0的圆周运动;若同时存在电场和磁场,粒子恰好做直线运动.现在,只加电场,当粒子从P 点运动到x =R 0平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,其轨迹与x 轴交于M 点.不计重力.求: (1)粒子到达x =R 0平面时速度方向与x 轴的夹角以及粒子到x 轴的距离; (2)M 点的横坐标x M .【来源】磁场 【答案】(1)20122R H h at h =+=+;(2)22000724M x R R R h h =++- 【解析】 【详解】(1)做直线运动有,根据平衡条件有:0qE qB =v ①做圆周运动有:200qB m R =v v ②只有电场时,粒子做类平抛,有:qE ma =③00R t =v ④y v at =⑤解得:0y v v =⑥ 粒子速度大小为:22002y v v v v =+=⑦速度方向与x 轴夹角为:π4θ=⑧ 粒子与x 轴的距离为:20122R H h at h =+=+⑨(2)撤电场加上磁场后,有:2v qBv m R=⑩解得:02R R =⑾. 粒子运动轨迹如图所示圆心C 位于与速度v 方向垂直的直线上,该直线与x 轴和y 轴的夹角均为4π,有几何关系得C 点坐标为:02C x R =⑿02C R y H R h =-=-⒀ 过C 作x 轴的垂线,在ΔCDM 中:02CM R R ==⒁2C R CD y h ==-⒂) 解得:22220074DM CM CD R R h h =-=+- M 点横坐标为:22000724M x R R R h h =+-3.在场强为B 的水平匀强磁场中,一质量为m 、带正电q 的小球在O 静止释放,小球的运动曲线如图所示.已知此曲线在最低点的曲率半径为该点到z 轴距离的2倍,重力加速度为g .求:(1)小球运动到任意位置P (x ,y)的速率v ; (2)小球在运动过程中第一次下降的最大距离y m ; (3)当在上述磁场中加一竖直向上场强为E (mgE q>)的匀强电场时,小球从O 静止释放后获得的最大速率m v 。
【来源】江苏高考物理试题复习【答案】(1)2v gy =;(2)2222m m gy q B= ;(3)()2m v qE mg qB =-。
【解析】 【详解】⑴洛伦兹力不做功,由动能定理得2102mgy mv =- ① 解得2v gy = ②⑵设在最大距离m y 处的速率为m v ,根据圆周运动有2mm v qv B mg m R-= ③且由②知2m m v gy = ④由③④及2m R y =,得2222m m gy q B= ⑤⑶小球运动如图所示,由动能定理得21()2mm qE mg y mv -= ⑥由圆周运动得2mm v qv B mg qE m R+-= ⑦且由⑥⑦及2m R y =,解得:()2m v qE mg qB=-4.如图,区域I 内有与水平方向成45°角的匀强电场1E ,区域宽度为1d ,区域Ⅱ内有正交的有界匀强磁场B 和匀强电场2E ,区域宽度为2d ,磁场方向垂直纸面向里,电场方向竖直向下.一质量为m 、电量大小为q 的微粒在区域I 左边界的P 点,由静止释放后水平向右做直线运动,进入区域Ⅱ后做匀速圆周运动,从区域Ⅱ右边界上的Q 点穿出,其速度方向改变了30,重力加速度为g ,求:(1)区域I 和区域Ⅱ内匀强电场的电场强度12E E 、的大小. (2)区域Ⅱ内匀强磁场的磁感应强度B 的大小. (3)微粒从P 运动到Q 的时间有多长.【来源】【市级联考】陕西省咸阳市2019届高三模拟检测(三)理综物理试题 【答案】(1)12mg E q=,2mgE q =122m gd 121626d d gd gd π+ 【解析】 【详解】(1)微粒在区域I 内水平向右做直线运动,则在竖直方向上有:1sin45qE mg ︒= 求得:12mgE q=微粒在区域II 内做匀速圆周运动,则重力和电场力平衡,有:2mg qE = 求得:2mgE q=(2)粒子进入磁场区域时满足:2111cos452qE d mv ︒=2v qvB m R=根据几何关系,分析可知:222sin30d R d ==︒整理得:122m gd B =(3)微粒从P 到Q 的时间包括在区域I 内的运动时间t 1和在区域II 内的运动时间t 2,并满足:211112a t d = 1tan45mg ma ︒=2302360Rt vπ︒=⨯︒ 经整理得:112121222612126gd d d d t t t gd g gd ππ+=+=+⨯=5.如图甲所示,在xOy 平面内有足够大的匀强电场E ,在y 轴左侧平面内有足够大的磁场,磁感应强度B 1随时间t 变化的规律如图乙所示,选定磁场垂直纸面向里为正方向。
在y 轴右侧平面内还有方向垂直纸面向外的恒定的匀强磁场,分布在一个半径为r=0.3m 的圆形区域(图中未画出)且圆的左侧与y 轴相切,磁感应强度B 2=0.8T ,t=0时刻,一质量m=8×10-4kg 、电荷量q=+2×10-4C 的微粒从x 轴上x p =-0.8m 处的P 点以速度v=0.12m/s 向x 轴正方向入射。
已知该带电微粒在电磁场区域做匀速圆周运动。
(g 取10m/s 2)(1)求电场强度。
(2)若磁场15πs 后消失,求微粒在第二象限运动过程中离x 轴的最大距离;(3)若微粒穿过y 轴右侧圆形磁场时速度方向的偏转角最大,求此圆形磁场的圆心坐标(x ,y)。
【来源】陕西榆林市2019届高考模拟第三次测试理科综合物理试题【答案】(1) 40/E N C =,方向竖直向上 (2) 2.4m (3)(0.302.25),【解析】 【详解】(1)因为微粒射入电磁场后做匀速圆周运动受到的电场力和重力大小相等,则:qE mg = 解得:40/E N C =,方向竖直向上(2)由牛顿第二定律有:211v qvB mR =所以110.6mvR m qB == 1210mT s qB ππ== 从图乙可知在05s π~内微粒做匀速圆周运动,在510s ππ~内微粒向左做匀速直线运动.在1015s ππ~内微粒又做匀速圆周运动,在15s π内微粒向右做匀速直线运动,之后穿过y 轴.离x 轴的最大距离11'224 2.4s R R m =⨯==(3)如图,微粒穿过圆形磁场要求偏转角最大,入射点A 与出射点B 的连线必须为磁场圆的直径.由牛顿第二定律,有222v qvB m R =所以220.62mvR m r qB === 所以最大偏转角为60° 所以圆心坐标0.30x m =1'60 2.40.3 2.252y s rcos m m =-︒=-⨯=即磁场的圆心坐标为()0.302.25,.6.在如图甲所示的直角坐标系中,两平行极板MN 垂直于y 轴,N 板在x 轴上且其左端与坐标原点O 重合,极板长度l =0.08m ,板间距离d =0.09m ,两板间加上如图乙所示的周期性变化电压,两板间电场可看作匀强电场.在y 轴上(0,d /2)处有一粒子源,垂直于y 轴连续不断向x 轴正方向发射相同的带正电的粒子,粒子比荷为qm=5×107C /kg ,速度为v 0=8×105m/s .t =0时刻射入板间的粒子恰好经N 板右边缘打在x 轴上.不计粒子重力及粒子间的相互作用,求:(1)电压U 0的大小;(2)若沿x 轴水平放置一荧光屏,要使粒子全部打在荧光屏上,求荧光屏的最小长度; (3)若在第四象限加一个与x 轴相切的圆形匀强磁场,半径为r =0.03m ,切点A 的坐标为(0.12m ,0),磁场的磁感应强度大小B =23T ,方向垂直于坐标平面向里.求粒子出磁场后与x 轴交点坐标的范围.【来源】【市级联考】山东省济南市2019届高三第三次模拟考试理综物理试题【答案】(1)40 2.1610V U =⨯ (2)0.04m x ∆= (3)0.1425m x ≥【解析】 【分析】 【详解】(1)对于t =0时刻射入极板间的粒子:0l v T = 7110T s -=⨯211()22T y a =2y T v a= 22yT y v = 122dy y =+ Eq ma =U E d=解得:40 2.1610V U =⨯(2)2Tt nT =+时刻射出的粒子打在x 轴上水平位移最大:032A T x v = 所放荧光屏的最小长度A x x l ∆=-即:0.04x m ∆= (3)不同时刻射出极板的粒子沿垂直于极板方向的速度均为v y .速度偏转角的正切值均为:0tan y v v β=37β=cos37v v=6110m/s v =⨯即:所有的粒子射出极板时速度的大小和方向均相同.2v qvB m R=0.03m R r ==由分析得,如图所示,所有粒子在磁场中运动后发生磁聚焦由磁场中的一点B 离开磁场.由几何关系,恰好经N 板右边缘的粒子经x 轴后沿磁场圆半径方向射入磁场,一定沿磁场圆半径方向射出磁场;从x 轴射出点的横坐标:tan 53C A Rx x ︒=+0.1425m C x =.由几何关系,过A 点的粒子经x 轴后进入磁场由B 点沿x 轴正向运动. 综上所述,粒子经过磁场后第二次打在x 轴上的范围为:0.1425m x ≥7.在平面直角坐标系xOy 中,第Ⅱ、Ⅲ象限y 轴到直线PQ 范围内存在沿x 轴正方向的匀强电场,电场强度大小500N/C E =,第I 、Ⅳ象限以()0.4,0为圆心,半径为的圆形范围内,存在垂直于坐标平面向外的匀强磁场,磁感应强度0.5T B =.大量质量为10110kg m -=⨯,电荷量6110C q -=⨯的带正电的粒子从PQ 上任意位置由静止进入电场.已知直线PQ 到y 轴的距离也等于R .不计粒子重力,求:(1)粒子进入磁场时的速度大小;(2)若某个粒子出磁场时速度偏转了120,则该粒子进入电场时到y 轴的距离h 多大? (3)粒子在磁场中运动的最长时间.【来源】天津市耀华中学2019届高三高考二模物理试题 【答案】(1)2000m/s (2)0.2m (3)4210s π-⨯ 【解析】 【详解】(1)粒子在电场中加速,则有:212EqR mv = 解得:2000m/s v =(2)在磁场中,有:2v qvB m r=解得: 0.4m r R ==即正好等于磁场半径,如图,轨迹圆半径与磁场圆半径正好组成一个菱形由此可得sin300.2h R m =︒=(3)无论粒子从何处进入磁场,(2)中菱形特点均成立,所有粒子均从同一位置射出磁场,故4max 210s 2T m t Bqππ-===⨯8.如图所示,直线y =x 与y 轴之间有垂直于xOy 平面向外的匀强磁场1B ,直线x =d 与y =x间有沿y 轴负方向的匀强电场,电场强度41.010V/m E =⨯,另有一半径R =1.0m 的圆形匀强磁场区域,磁感应强度20.20T B =,方向垂直坐标平面向外,该圆与直线x =d 和x 轴均相切,且与x 轴相切于S 点.一带负电的粒子从S 点沿y 轴的正方形以速度0v 进入圆形磁场区域,经过一段时间进入磁场区域1B ,且第一次进入磁场1B 时的速度方向与直线y =x垂直.粒子速度大小50 1.010m/s v =⨯,粒子的比荷为5/ 5.010C/kg q m =⨯,粒子重力不计.求:(1)粒子在匀强磁场2B 中运动的半径r ; (2)坐标d 的值;(3)要使粒子无法运动到x 轴的负半轴,则磁感应强度1B 应满足的条件; (4)在(2)问的基础上,粒子从开始进入圆形磁场至第二次到达直线y =x 上的最长时间( 3.14π=,结果保留两位有效数字).【来源】天津市滨海新区2019届高三毕业班质量监测理科综合能力测试物理试题 【答案】(1)r =1m (2)4m d = (3)10.1B T ≤或10.24B T ≥ (4)56.210t s -≈⨯ 【解析】 【详解】解:(1) 由带电粒子在匀强磁场中运动可得:2020v B qv m r= 解得粒子运动的半径:1r m =(2) 粒子进入匀强电场以后,做类平抛运动,设粒子运动的水平位移为x ,竖直位移为y 水平方向:0x v t = 竖直方向:212y at =Eq a m=tan 45v at︒=联立解得:2x m =,1y m = 由图示几何关系得:d x y R =++ 解得:4d m =(3)若所加磁场的磁感应强度为1B ',粒子恰好垂直打在y 轴上,粒子在磁场运动半径为1r 由如图所示几何关系得:()12r y R =+02v v =由带电粒子在匀强磁场中运动可得:211vB qv m r '=解得:10.1B T '=若所加磁场的磁感应强度为1B '',粒子运动轨迹与轴相切,粒子在磁场中运动半径为2r 由如图所示几何关系得:()2222r r y R +=+由带电粒子在匀强磁场中运动可得:212vB qv m r ''=解得1210.2410B T T +''=≈ 综上,磁感应强度应满足的条件为10.1B T ≤或10.24B T ≥(4)设粒子在磁场2B 中运动的时间为1t ,在电场中运动的时间为2t ,在磁场1B 中运动的时间为3t ,则有:1114t T =102RT v π=20x t v=3212t T =222r T vπ=解得:()551232 1.52210 6.210t t t t s s ππ--=++=-+⨯≈⨯9.如图,在同时存在匀强电场和匀强磁场的空间中取正交坐标系O-xyz(x 轴正方向水平向右,y 轴正方向竖直向上)。