高一物理运动学公式整理(默写部分) - 副本
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一部分:运动学公式
第一章
1、平均速度定义式:
① 当式中t ∆取无限小时,υ就相当于瞬时速度。
② 如果是求平均速率,应该是路程除以时间。请注意平均速率是标量;平均速
度是矢量。
2、两种平均速率表达式(以下两个表达式在计算题中不可直接应用)
③ 如果物体在前一半时间内的平均速率为1υ,后一半时间内的平均速率为2υ,
则整个过程中的平均速率为
④ 如果物体在前一半路程内的平均速率为1υ,后一半路程内的平均速率为2υ,
则整个过程中的平均速率为
⑤ ⎪⎪⎩
⎪⎪⎨⎧====t x t x 路
位时间路程平均速率时间位移大小平均速度大小
3、加速度的定义式:
⑥ 在物理学中,变化量一般是用变化后的物理量减去变化前的物理量。 ⑦ 应用该式时尤其要注意初速度与末速度方向的关系。
⑧ a 与υ同向, ;a 与υ反向, 。 ⑨ a 与υ没有必然的大小关系。
第二章
1、匀变速直线运动的三个基本关系式
⑩ 速度与时间的关系 ⑪ 位移与时间的关系 (涉及时间优先选择,必须注意
对于匀减速问题中给出的时间不一定就是公式中的时间,首先运用at +=0υυ,判断出物体真正的运动时间)
⑫ 位移与速度的关系 (不涉及时间,而涉及速度) 一般规定0v 为正,a 与v 0同向,a >0(取正);a 与v 0反向,a <0(取负)
同时注意位移的矢量性,抓住初、末位置,由初指向末,涉及到x 的正负问题。
注意运用逆向思维: 当物体做
(1)深刻理解:
⎩⎨
⎧要是直线均可。运动还是往返运动,只轨迹为直线,无论单向
指大小方向都不变加速度是矢量,不变是
加速度不变的直线运动
(2)公式 (会“串”起来)
故有,下列常用推论:
a ,平均速度公式:
b ,一段时间中间时刻的瞬时速度等于这段时间内的平均速度:
c ,一段位移的中间位置的瞬时速度:
d ,任意两个连续相等的时间间隔(T )内位移之差为常数(逐差相等):
关系:不管是匀加速还是匀减速,都有:
中间位移的速度大于中间时刻的速度 。
以上公式或推论,适用于一切匀变速直线运动,记住一定要规定正方向!选定参照物!
注意:上述公式都只适用于匀变速直线运动,即:加速度大小、方向不变的运动。
注意,在求解加速度时,若计数点间间距不满足“任意两个连续相等的时间间隔(T )内位移之差为常数”,一般用逐差法求加速度比较精确。 2、2
aT x =∆和逐差法求加速度应用分析
(1)、由于匀变速直线运动的特点是:物体做匀变速直线运动时,若加速度为a ,在各个连续相等的时间T 内发生的位移依次为X 1、X 2、X 3、……X n ,则有X 2-X 1=X 3-X 2=X 4-X 3=……
=X n -X n-1=
即 ,可以依据这个特点,判断原物体是否做匀变速直线运动或已知物体做匀变速直线运动,求它的加速度。
例4:某同学在研究小车的运动的实验中,获得一条点迹清楚的纸带,已知打点计时器每隔0.02s 打一个计时点,该同学选A 、B 、C 、D 、E 、F 六个计数点,对计数点进行测量的结果记录在下图中,单位是cm 。
试计算小车的加速度为多大? 解:由图知:x 1=AB=1.50cm , x 2=BC=1.82cm , x 3=CD=2.14cm , x 4=DE=2.46cm , x 5=EF=2.78cm 则: x 2-x 1=0.32cm x 3-x 2=0.32cm x 4-x 3=0.32cm x 5-x 4=0.32cm 小车在任意两个连续相等的时间里的位移之差相等,小车的运动是匀加速直线运
动。 即:cm x 32.0=∆ 又2
aT x =∆ 22
2
2/0.2)
02.02(1032.0s m T x a =⨯⨯=∆=- 说明:该题提供的数据可以说是理想化了,实际中很难出现x 2-x 1= x 3-x 2=
x 4-x 3= x 5-x 4,因为实验总是有误差的。
例5:如下图所示,是某同学测量匀变速直线运动的加速度时,从若干纸带中选出的一条纸带的一部分,他每隔4个点取一个计数点,图上注明了他对各计算点间距离的测量结果。试验证小车的运动是否是匀变速运动?
解:x 2-x 1=1.60 x 3-x 2=1.55 x 4-x 3=1.62 x 5-x 4=1.53 x 6-x 5=1.63
故可以得出结论:小车在任意两个连续相等的时间里的位移之差不相等,但是在实验误差允许的范围内相等,小车的运动可认为是匀加速直线运动。
上面的例2只是要求我们判断小车在实验误差内做什么运动。若进一步要我们求出该小车运动的加速度,应怎样处理呢?此时,应用逐差法处理数据。
由于题中条件是已知x 1、x 2、x 3、x 4、x 5、x 6共六个数据,应分为3组
21
413T x x a -= , 22523T x x a -= , 2
3
633T
x x a -=
即)333(31)(31236225214321T x x T x
x T x x a a a a -+-+-=++=
2
1236
5433)
()(T
x x x x x x a ⨯++-++=
即全部数据都用上,这样相当于把2n 个间隔分成n 个为第一组,后n 个为第二组,这样起到了减小误差的目的。而如若不用逐差法而是用:
25652454234322322121,,,,T
x x a T x x a T x x a T x x a T x
x a -=-=-=-=-=
再求加速度有:2
1
621654321551)(51T
x x T x x a a a a a a -=-=++++= 相当于只用了S 6与S 1两个数据,这样起不到用多组数据减小误差的目的。很显然,若题目给出的条件是偶数段。
都要分组进行求解,分别对应:
(即:大段之和减去小段之和)