调制解调电路
射频通信电路- 调制与解调电路
乘法器输出为:
vo Kvivr KVimVrm cos Wt coswct cos[(wc w )t ]
1 2
KVimVrm
cos Wt{cos(wt
)cos[(2wc来自w )t]}经滤波器后得到:
vo
1 2
KVimVrm
cos Wt
cos(wt
)
从上式可以看出,若要从输出中得到调制信号cosWt,就必 须要求w0,0 =>参考信号必须与发端载波同频同相。若接收信号为单边带 信号,也可以得出完全相同的结论。
第九章 调制与解调电路
调幅-平衡调制与相干解调、包络检波 调频-直接调频与间接调频、鉴频电路
其他-载波提取、正交信号形成
第九章 内容目录
9·1 调制与解调器
平衡调制器、相干解调器
9·2 载波提取 9·3 正交信号形成电路 9·4 调幅波的包络检波电路
包络检波电路、同步检波
9·5 调频电路
相干解调适用于所有的调幅信号;非相干解调 则只能用于AM信号。
2020/7/28
Information&Communication Engineering Dept. XJTU
9
9·2 包络检波电路
对检波器的要求通常有:
检波效率: 无源检波器Kd小于1,越大越好。 检波失真:用解调输出中的高次谐波分量之和
5
9·1 调制与解调器
2、双平衡调制器
vD1 vc vW , iD1 gD (vc vW )s(wct) vD2 vc vW , iD2 gD (vc vW )s(wct) vD3 vc vW , iD3 gD (vc vW )s(wct ) vD4 vc vW , iD4 gD (vc vW )s(wct )
第四章 信号调制解调电路
+ + N1
R3 uA us
N+ uo=-us + 2
∞
c) 负输入等效电路
第二节 调幅式测量电路
4.2.3相敏检波电路 一、相敏检波的功用和原理 1、相敏检波电路 相敏检波电路是具有鉴别调制信号相位和 选频能力的检波电路。
第二节 调幅式测量电路
2、相敏检波 包络检波有两个问题:一是解调的主要过程是 对调幅信号进行半波或全波整流,无法从检波器的 输出鉴别调制信号的相位。第二,包络检波电路本 身不具有区分不同载波频率的信号的能力。对于不 同载波频率的信号它都以同样方式对它们整流,以 恢复调制信号,这就是说它不具有鉴别信号的能力。 为了使检波电路具有判别信号相位和频率的能力, 提高抗干扰能力,需采用相敏检波电路。
O u A, u o O t
第二节 调幅式测量电路
三、相敏检波电路的选频与鉴相特性 1、相敏检波电路的选频特性 相敏检波电路的选频特性是指它对不同频率的输 入信号有不同的传递特性。以参考信号为基波, 所有偶次谐波在载波信号的一个周期内平均输出 为零,即它有抑制偶次谐波的功能。对于n=1,3,5 等各奇次谐波,输出信号的幅值相应衰减为基波 的1/ n,即信号的传递系数随谐波次数增高而衰减, 对高次谐波有一定抑制作用。
第二节 调幅式测量电路
4、相敏检波电路与调幅电路在结构上相似之处及区 别 将调制信号ux乘以幅值为1的载波信号就可以得 到双边带调幅信号us,将双边带调幅信号us再乘以 载波信号,经低通滤波后就可以得到调制信号ux。 这就是相敏检波电路在结构上与调制电路相似的原 因。 二者主要区别是调幅电路实现低频调制信号与 高频载波信号相乘,输出为高频调幅信号;而相敏 检波器实现高频调幅信号与高频载波信号相乘,经 滤波后输出低频解调信号。这使它们的输入、输出 耦合回路与滤波器的结构和参数不同。
第7章信号调制解调电路
少要求ωc>10Ω。这样,解调时滤波器能较好地将调
制信号与载波信号分开,检出调制信号。若被测信号 的变化频率为0~100Hz,则载波信号的频率ωc>1000 Hz。调幅信号放大器的通频带应为900~1100 Hz。
测控电路
2020/7/19 13
3. 信号调制解调电路
(1) 什么是调幅?写出调幅信号的数学表达式,画 出其波形。 调幅就是用调制信号x去控制高频载波信号的幅值。 常用的是线性调幅,即让调幅信号的幅值按调制 信号x的线性函数变化。 调幅信号的一般表达式可写为:
Us=(Um+mx)cosωct
测控电路
2020/7/19 10
3. 信号调制解调电路
3.1 调幅式测量电路
2020/7/19 8
3. 信号调制解调电路
调制解调的功用与类型
(6) 在测控系统中常用的调制方法有哪几种?
在信号调制中常以一个高频正弦信号作为载波信 号。一个正弦信号Asin(ωt+φ)有幅值、频率、相位 三个参数,可以对这三个参数进行调制,分别称为 调幅(Amplitude modulation)、调频(Frequency modulation)和调相(Phase modulation) 。
测控电路
2020/7/19 4
3. 信号调制解调电路
调制解调的功用与类型
理论基础:傅里叶变换的频移特性(调制定理)
若 f (t) F ( j) 则 f (t) ej0t F[ j( 0 )]
F[ f (t) cos0t] 1 F[ f (t)e j0t ] 1 F[ f (t)e-j0t ]
测控电路
2020/7/19 3
调制电路与解调电路
调制电路与解调电路一、调幅电路调幅电路是把调制信号和载波信号同时加在一个非线性元件上(例如晶体二极管或三极管)经非线性变换成新的频率分量,再利用谐振回路选出所需的频率成分。
调幅电路分为二极管调幅电路和晶体管基极调幅、发射极调幅及集电极调幅电路等。
通常,多采用三极管调幅电路,被调放大器如果使用小功率小信号调谐放大器,称为低电平调幅;反之,如果使用大功率大信号调谐放大器,称为高电平调幅。
在实际中,多采用高电平调幅,对它的要求是:(1)要求调制特性(调制电压与输出幅度的关系特性)的线性良好;(2)集电极效率高;(3)要求低放级电路简单。
1、基极调幅电路图1是晶体管基极调幅电路,载波信号经过高频变压器T1加到BG的基极上,低频调制信号通过一个电感线圈L与高频载波串联,C2为高频旁路电容器,C1为低频旁路电容器,R1与R2为偏置的分压器,由于晶体管的ic=f(ube)关系曲线的非线性作用,集电极电流ic含有各种谐波分量,通过集电极调谐回路把其中调幅波选取出来,基极调幅电路的优点是要求低频调制信号功率小,因而低频放大器比较简单。
其缺点是工作于欠压状态,集电极效率较低,不能充分利用直流电源的能量。
2、发射极调幅电路图2是发射极调幅电路,其原理与基极调幅类似,因为加到基极和发射极之间的电压为1伏左右,而集电极电源电压有十几伏至几十伏,调制电压对集电极电路的影响可忽略不计,因此射极调幅与基极调幅的工作原理和特性相似。
3、集电极调幅电路图3是集电极调幅电路,低频调制信号从集电极引入,由于它工作于过压状态下,故效率较高但调制特性的非线性失真较严重,为了改善调制特性,可在电路中引入非线性补尝措施,使输入端激励电压随集电极电源电压而变化,例如当集电极电源电压降低时,激励电压幅度随之减小,不会进入强压状态;反之,当集电极电源电压提高时,它又随之增加,不会进入欠压区,因此,调幅器始终工作在弱过压或临界状态,既可以改善调制特性,又可以有较高的效率,实现这一措施的电路称为双重集电极调幅电路。
第三章 信号调制解调电路4
3.3.1 调相原理与方法 3.3.1.1调相信号的一般表达式
调相就是用调制信号x去控制高频载波信号的相位。 常用的是线性调相,即让调相信号的相位按调制信号x的线 性函数变化。 调相信号us的一般表达式可写为:
us=Umcos(wc t +mx)
调频信号us的一般表达式可写为:
x O U O
x B T
t a) 调制信号 t b) 脉冲调宽信号
19
3.4.1.1 传感器调制
4 5 6 7 8 9 10 11
3
M θ
2
1
用激光扫描的方法测量工件直径
20
3.4.1.2 电路调制
1、参量调宽
两个半周期通过不同的电阻通道向电容充电,输出信号的占 空比随两充电回路的阻值而变化
R 10k R1 10k C RP 5k ∞ R2 uo VS u +Ur +FUr
B
t N,uo t uo t -2 - 0 d) 2
13
2、RS触发器鉴相
Uc S R a) N,uo t t 0 B t uo t c)
14
Q Q
Uc O Us O Uc O Us O Q O b)
t
Us
1 2 π
2π
φ
3.3.2.4脉冲采样式鉴相
Uc 单稳 锯 齿 uj Uc′ 波 发 生 器 采样 保持 Us′ u′ 滤波器 uo
Uc
载波 频率
锯齿波 发生器
uj
+ ux
门限检 测电路
脉冲发 生器
输出调 相脉冲
us
a)
U0
Uc O uj O ux+uj U0 O us O uj=kΨ t c) t b)
《数字调制解调电路》课件
数字解调的分类
同步解调
接收端和发送端的时钟同步,解调的过程中需要使 用发送端的时钟信号。
异步解调
接收端和发送端的时钟没有同步,解调的过程中不 需要使用发送端的时钟信号。
数字调制解调电路的设计要点
1
抗噪声性能
降低输入信号与噪声的干扰。
2
频率响应
保证信号的带宽和频率范围。
《数字调制解调电路》 PPT课件
数字调制解调电路的定义,基本原理和分类,涵盖幅度调制(ASK),频率调 制(FSK),相位调制(PSK)以及数字解调的分类,包括同步解调和异步解 调。同时还介绍了数字调制解调电路的设计要点和应用领域。最后,总结了 课件的主要内容。
数字调制解调电路的定义
数字调制解调电路是一种用来将模拟信号转换为数字信号或将数字信号转换为模拟信号的电路。它是数字通信 系统中的率和能量利用率。
数字调制解调电路的应用领域
数字通信
应用于现代通信系统,如手机、互联网等。
无线传输
用于卫星通信、无线电和电视广播等领域。
医疗设备
用于数字医疗设备,如心脏监护仪、血压仪等。
物联网
用于智能家居、智能城市、智能交通等。
课件结论和总结
数字调制解调电路是数字通信系统中不可或缺的部分。通过了解数字调制解 调电路的基本原理、分类、设计要点和应用领域,可以更好地理解和应用于 实际工程中,推动通信技术的发展。
数字调制解调电路的基本原理
1 调制(Modulation)
将低频信号(信息信号)嵌入到高频载波中,以便传输。
2 解调(Demodulation)
从调制信号中恢复原始的低频信号。
数字调制的分类
幅度调制(ASK)
信号与系统 信号调制解调电路
信号调制解调电路的设计1.实验原理、实验电路图及实验说明1.1 调制电路调制信号x 可以按任意规律变化,为方便起见,我们假设调制信号x 为角频率为Ω的余弦信号x=X m cos Ωt 。
当调制信号x 不符合余弦规律时,可以将它分解为一些不同频率的余弦信号之和。
在信号调制中必须要求载波信号的频率远高于调制信号的变化频率。
设载波信号为u c =U m cos w c t ,则调幅信号可写为u s =(U m +mx )cos w c t= U m cos w c t + mX m cos Ωt cos w c t=U m cos w c t + [m X m cos (w c +Ω)t + m X m cos (w c -Ω)t ]/2m 为调幅系数它包含三个不同频率的信号::角频率为w c 的载波信号和角频率分别为w c ±Ω的上下边频信号。
载波信号中不含调制信号x 的信息,因此可以取U m =0,只保留两个边频信号。
这种调制称为双边带调制。
其数学表达式为:u s =U xm cos Ωt cos w c t乘法器调幅电路见图1,高频载波信号由信号发生器产生,从IN1输入;低频调制信号由电路图2的文氏桥振荡电路产生,从IN2输入,图3是-8V 电压产生电路。
设定低频调制信号的频率为500Hz ,由文氏桥振荡电路中的R 、C 确定。
由于电容C 的可选值较少,故先设定C=0.047uf ,然后根据公式f=1/(2πRC),可得R=6.8k Ω,振荡频率计算如下:Hz RC f 50010*047.0*10*8.6*212163≈==-ππ图1 乘法器调幅电路进行调幅前,首先要调节输入脚之间的直流平衡。
方法如下,①调8、10脚间的平衡:IN1接地,IN2输入高频信号,调Rp2,使输出最小;②调1、4脚间的平衡:IN2接地,IN1输入低频信号,调Rp1,使输出最小。
然后,同时接好IN1和IN2,观察输出波形。
调制解调电路设计
调制解调电路设计
调制解调电路是一种用于传输和接收信号的电子设备。
它的设计和实现旨在将信息从一个地方传输到另一个地方,同时确保信息的准确性和完整性。
在调制解调电路中,调制是将原始信号转换为适合传输的信号形式的过程。
解调则是将传输过来的信号恢复为原始信号的过程。
这两个过程是电信系统中非常重要的环节。
在调制过程中,我们通常使用载波信号来传输原始信号。
载波信号的频率通常比原始信号高得多,这样可以更好地传输信号。
调制的目的是将原始信号的信息嵌入到载波信号中,以便在传输过程中保持信号的完整性。
调制的方式有很多种,常见的有幅度调制(AM)、频率调制(FM)和相位调制(PM)。
每种调制方式都有其特定的应用场景和优势。
选择合适的调制方式取决于信号的特性以及传输的要求。
解调的过程与调制相反,它的目的是从传输过来的信号中恢复出原始信号。
解调电路的设计要根据实际应用场景来确定,不同的解调方式有不同的电路设计要求。
在调制解调电路的设计中,需要考虑的因素有很多。
首先是信号的带宽和频率范围,这决定了选择合适的调制方式。
其次是电路的稳定性和可靠性,这对于长时间的传输非常重要。
还需要考虑功耗和
成本等因素,以便设计出满足实际需求的电路。
调制解调电路是现代通信系统中不可或缺的一部分。
它的设计和实现需要考虑多个因素,以保证信号的准确传输和恢复。
通过合理的电路设计和优化,可以实现高质量的信号传输和接收,为人们的通信提供更好的体验。
测控电路(第5版) 第3章 信号调制解调电路
高频正弦信号 频率f →→调频
载波信号
相位φ→→调相
高频脉冲信号— 脉冲宽度B →脉冲调宽 什么是调制信号、载波信号、已调信号?
调制信号——原被测信号 载波信号——高频信号 已调信号——调制后的信号
调幅信号 调频信号 调相信号
调宽信号
第3章 信号调制解调电路
4
3第 章
信号调制解调电路
3.1 调幅式测量电路 3.2 调频式测量电路 3.3 调相式测量电路 3.4 脉冲调制式测量电路
15
1、二极管检波-峰值检波
输入调幅波
二极管VD正半周导通, 经二极管检波后的电流
iD
us(t)
O
t
T + VD
us C1
us i _
RL C2
谐 振 非线性 低通 回路 器件 滤波器
(a) 二极管检波电路
调幅信号us通过由C1和变压 器T的一次侧谐振回路输入,
3第 章
信号调制解调电路
3.1 调幅式测量电路 3.2 调频式测量电路 3.3 调相式测量电路 3.4 脉冲调制式测量电路
信号调制解调电路
在测控系统中为什么要采用信号调制?
• 在测控系统中,进入测控电路的除了传感器输出的测量信号外,还往往有各种噪声。 而传感器的输出信号一般又很微弱,将测量信号从含有噪声的信号中分离出来是测控 电路的一项重要任务。为了便于区别信号与噪声,往往给测量信号赋予一定特征,这 就是调制的主要功用。
ωc——载波信号角频率; Um0——载波信号的幅值; m——调制的灵敏度; x—调制信号。
第3章 信号调制解调电路
6
1、调幅原理
调制信号x(t)是角频率为Ω的余弦信号: x(t)=XmcosΩt
什么是解调电路它在电子电路中的作用是什么
什么是解调电路它在电子电路中的作用是什么解调电路是一种用于将调制信号还原为原始信号的电路。
在电子电路中,解调电路主要用于从调制信号中提取出原始信号,以便进行进一步的处理或分析。
一、解调电路的原理解调电路的原理基于调制信号可以通过调制器来叠加到载波信号上进行传输的特性。
在传输过程中,调制信号会被融合到载波信号的振幅、频率或相位上。
因此,解调电路需要识别并分离出这些调制信号。
二、解调电路的分类根据调制方式的不同,解调电路可以分为以下几种类型:1. 振幅解调电路:用于从幅度调制(AM)信号中提取出原始信号,常见的振幅解调电路包括二极管检波电路和同步检波电路。
2. 频率解调电路:用于从频率调制(FM)信号中提取出原始信号,常见的频率解调电路是锁相环(PLL)电路和鉴频器。
3. 相位解调电路:用于从相位调制(PM)信号中提取出原始信号,常见的相位解调电路是相移锁定环(PSK)电路和差分解调电路。
三、解调电路的作用解调电路在电子电路中起着至关重要的作用:1. 信息还原:解调电路能够将调制信号中蕴含的原始信号还原出来,使其可以被后续电路进行处理或分析。
2. 信号传输:解调电路可以将调制信号中的信息传递给接收器,以实现信号的传输与接收。
3. 通信系统:解调电路是通信系统中必不可少的组成部分,通过它可以实现信号的调制与解调,保证信号的传输质量和可靠性。
4. 数据处理:解调电路能够帮助将数字信号还原为原始数据,使其能够被数字系统进行处理和分析。
总结:解调电路是一种用于从调制信号中提取原始信号的电路。
根据调制方式的不同,解调电路可以分为振幅解调、频率解调和相位解调电路。
它在电子电路中起着重要的作用,包括信息还原、信号传输、通信系统和数据处理等方面。
只有通过解调电路,我们才能够将调制信号中的有用信息还原出来,并进行进一步的处理和分析。
测控电路信号调制解调电路
PART 03
解调基本原理
解调定义及类型
解调定义
解调是从已调信号中恢复出调制 信号的过程。
解调类型
模拟解调和数字解调,根据调制 方式可分为调频解调、调相解调 和调幅解调。
解调过程
频率解调
01
通过改变电路参数,使回授信号的频率与调制信号一致,从而
恢复出调制信号。
相位解调
02
通过比较输入信号与回授信号的相位差,恢复出调制信号的相
多模式多频段支持
随着通信标准和频段的不同,调制解调电路需要支持多种标准和频 段,需要采用更灵活的软件可配置技术。
低功耗设计
在便携式和嵌入式应用中,低功耗设计是调制解调技术的关键挑战之 一,需要采用更有效的电源管理技术和低功耗设计方法。
技术前景展望
01
5G通信技术
随着5G通信技术的推广和应用,调制解调技术将发挥更加重要的作用,
PART 02
调制基本原理
调制定义
调制定义:调制是一种将低频信号(如声音、图像等)加载 到高频载波信号(如无线电波、光波等)上的过程,以便于 传输和接收。
调制定义调制是将低频信号转换为高频载波信号的过程,通 过改变载波信号的某些参数(如振幅、频率或相位),将低 频信号的信息加载到载波信号上,实现信息的传输和接收。
调制类型(如:
通过改变载波信号的振幅来加载 低频信号,接收端通过检测载波 信号的振幅变化来还原低频信号。
FM(调频)
通过改变载波信号的频率来加载低 频信号,接收端通过检测载波信号 的频率变化来还原低频信号。
PM(调相)
通过改变载波信号的相位来加载低 频信号,接收端通过检测载波信号 的相位变化来还原低频信号。
测控电路中的调制技术
ASK调制与解调电路设计及仿真
ASK调制与解调电路设计及仿真在通信系统中,调制和解调电路是至关重要的组成部分。
调制是将信息信号转换成适合在通信信道中传输的信号的过程,而解调则是将传输过来的信号恢复成原始信号的过程。
下面将详细介绍调制与解调电路的设计及仿真。
1.调制电路设计和仿真:调制电路的设计目标是将原始信息信号转换成适合在通信信道中传输的信号。
常见的调制方式包括频率调制(FM)、相位调制(PM)和振幅调制(AM)。
调制电路的设计应考虑如下因素:(1)信号源:需确定原始信息信号的频率范围、幅度以及波形特征。
(2)载波信号源:选择适合的载波频率和波形。
(3)调制电路:根据调制方式选取合适的调制电路,如较简单的RC电路或相移电路等。
(4)调制参数调整:通过改变调制电路的参数,可以对调制信号的频率、相位和幅度进行调节。
(5) 仿真验证:利用电路仿真软件(如Multisim、LTspice等)对设计的调制电路进行仿真、调试和验证。
2.解调电路设计和仿真:解调电路的设计目标是将经过调制的信号恢复成原始信息信号。
解调电路的设计应考虑如下因素:(1)调制方式和参数:了解调制信号的调制方式和参数,确定解调电路的工作方式。
(2)解调电路选型:选择合适的解调电路,如包络检波电路、鉴频器等。
(3)解调参数调整:通过调整解调电路的参数,对解调信号的频率、相位和幅度进行调节。
(4)仿真验证:利用电路仿真软件对设计的解调电路进行仿真、调试和验证。
(5)信号恢复质量评估:通过仿真结果评估解调电路对原始信息信号的恢复质量,包括信噪比、失真度等。
3.综合设计和仿真:在设计调制和解调电路时,需要充分考虑信号传输的特性、噪声干扰、抗干扰性能等因素。
通过电路仿真软件,可以进行综合设计和仿真,优化调制和解调电路的性能。
此外,还可考虑以下因素:(1)双向通信:在调制和解调电路设计中,需要考虑双向通信的情况,即在同一通信链路上实现信号的传输和接收。
(2)多路复用:有时需要将多个信号在同一通信信道中传输,此时需要设计相应的多路复用电路,实现信号的分离和恢复。
第4章幅度调制与解调电路
4. 3幅度解调电路
4.负峰切割失真 为把检波器的输出电压藕合到下一级电路.需要有一个容量较大
的电容C与下级电路相连。下级电路的输入电阻作为检波器的负载.电 路如图4-23(a)所示。负峰切割失真指藕合电容公通过电阻R放电.对二 极管引入一个附加偏置电压.导致二极管截止而引入的失真。失真波 形如图4-23(b)、图4-23(c)所示。
可得实现普通调幅的电路模型如图4-4所示.关键在于用模拟乘法 器实现调制信号与载波的相乘。
上一页 下一页 返回
4.1概述
2.双边带调幅(DSB) 1)双边带调幅信号数学表达式
上一页 下一页 返回
4.1概述
2)双边带调幅信号波形与频谱 图4-5所示为双边带调幅信号的波形与频谱图。双边带信号的包
络仍然是随调制信号变化的.但它的包络已不能完全准确地反映低频 调制信号的变化规律。双边带信号在调制信号的负半周.已调波高频 与原载频反相;调制信号的正半周.已调波高频与原载频同相。也就是 双边带信号的高频相位在调制电压零交点处要突变180°
混频后.产生近似中频的组合频率.进入中放通带内形成干扰。 减小互调干扰的方法与抑制交叉调制干扰的措施相同。
上一页 返回
4. 5幅度调制和解调电路的制作、 调试及检测
4. 5. 1低电平振幅调制器(利用乘法器)
幅度调制就是载波的振幅受调制信号的控制作周期性的变化。 变化的周期与调制信号周期相同.即振幅变化与调制信号的振幅成正 比。通常称高频信号为载波信号.低频信号为调制信号.调幅器即为产 生调幅信号的装置。
上一页 下一页 返回
4.1概述
3)调幅信号的功率分配 由式(4-3)知.普通调幅信号uAM(t)<C)在负载电阻RL上产生的功率
ASK调制解调电路设计
ASK调制解调电路设计调制解调电路是通信系统中的关键组成部分,它负责将原始信号转换成适合传输的模拟或数字信号,并在接收端将其恢复原始形式。
在本文中,将介绍调制解调电路的设计原理、常见的调制解调技术以及一些实际设计中的考虑因素。
调制解调电路的设计原理:调制的目的是将原始信号与载波信号进行合并,以便在传输过程中提高信号的传输效率。
调制技术主要分为模拟调制和数字调制两种类型。
模拟调制是将原始信号通过其中一种调制方式,将其频率、振幅或相位与载波信号进行调制,生成调制信号。
常见的模拟调制技术有幅度调制(AM)、频率调制(FM)、相位调制(PM)等。
对于模拟调制,常用的调制解调电路包括运算放大器、功率放大器、滤波器等。
数字调制则是通过将原始信号转换为数字形式,以便在数字通信系统中传输和处理。
常见的数字调制技术有振幅移键(ASK)、频率移键(FSK)、相位移键(PSK)和正交振幅移键(QAM)等。
常见的调制解调技术:1.ASK调制解调电路设计:ASK是一种简单的数字调制技术,它将二进制信号转换为有限数量的离散振幅级别。
在调制端,二进制信号通过将载波的振幅进行调制。
在解调端,使用信号检波器将调制信号转换为原始二进制信号。
2.FSK调制解调电路设计:FSK是一种将二进制信号转换为不同频率的数字调制技术。
调制端通过控制两个频率,将二进制信号转换成相应频率的调制信号。
解调端通过对不同频率信号的检测,将调制信号恢复为原始二进制信号。
3.PSK调制解调电路设计:PSK是一种将二进制信号转换为不同相位的数字调制技术。
调制端通过控制载波的相位,将二进制信号转换成相应相位的调制信号。
解调端通过相位解调器将调制信号恢复为原始二进制信号。
考虑因素:在设计调制解调电路时1.带宽和数据率:调制解调电路的带宽需要与传输信号的带宽相匹配,以确保传输的完整性。
2.抗噪性能:调制解调电路需要在有噪声存在的环境中工作,并恢复原始信号的准确性。
3.功耗:调制解调电路在设计中应尽可能降低功耗,以提高系统的效率和延长电池寿命。
psk调制解调电路的新原理和过程
Psk调制解调电路的新原理和过程目录: 1. 引言 2. Psk调制原理 3. Psk解调原理 4. Psk调制解调电路的实现5. 新原理和过程6. 总结1. 引言Psk(相位偏移键控)调制和解调技术是无线通信中常用的调制解调方式之一。
它通过改变载波信号的相位,来传输数字信号。
本文将介绍Psk调制解调电路的基本原理和传统实现方式,同时探讨一些新的原理和过程,以拓宽对这一主题的理解。
2. Psk调制原理Psk调制的基本原理是根据数字信号的码元来调整载波信号的相位。
具体来说,假设二进制数字信号的两种状态为0和1,将0映射到一个特定的相位,如0°,将1映射到另一个相位,如180°。
这样,在传输过程中,根据数字信号的变化,载波信号的相位会相应地改变,从而传输数字信息。
这种方式使得信号在频谱中具有良好的集中性,能够有效地传输数据。
3. Psk解调原理Psk解调的过程是将调制后的Psk信号转换为可供数字系统处理的基带信号。
解调电路需要对Psk信号的相位进行检测,判断每个码元所对应的相位,并将其转化为数字信号。
常见的解调方式有包络检波、相干解调等。
包络检波方法通过检测Psk信号的幅度变化来确定相位,而相干解调则是通过将Psk信号与本地参考信号相乘,再通过低通滤波得到基带信号。
4. Psk调制解调电路的实现传统上,Psk调制解调电路的实现主要基于模拟电路。
调制电路通常由载波产生器和相位调制电路组成,而解调电路则需要相位解调器和解调滤波器。
这些电路在实现上较为复杂,不仅需要精确的设计,而且在制造过程中也容易受到各种噪声和失真的影响。
模拟电路的性能通常会受到工艺、温度等因素的影响,可能无法满足高精度和高速传输的需求。
5. 新原理和过程随着数字电路和信号处理技术的发展,Psk调制解调电路的实现方式也在不断创新。
一种新的原理是将Psk调制解调电路实现在数字领域中,利用现代的低功耗、高速度的数字集成电路,以及数字信号处理器(DSP)的算法。
ASK调制与解调电路设计
ASK调制与解调电路设计调制与解调电路是无线通信中的重要组成部分,用于将信息信号转换为适合传输的高频信号,并在接收端将高频信号还原为原始信息信号。
接下来将详细介绍调制与解调电路的设计。
一、调制电路设计:调制电路主要用于将低频信息信号调制到高频载波上进行传输,常见的调制方式有幅度调制(AM)、频率调制(FM)和相位调制(PM)。
1.AM调制电路设计:AM调制主要包括信号放大、频率变换、调幅和输出滤波等环节。
具体设计步骤如下:(1)信号放大:将输入的低频信号经过放大电路进行放大,一般使用运放进行放大。
(2)频率变换:将放大后的信号通过频率变换电路转换为所需的高频信号,常见的频率变换方式有上、下变频和乘法变频等。
(3)调幅:将频率变换后的高频信号经过调幅电路进行调幅,常用的调幅电路有晶体二极管调制器和集成电路调制器等。
(4)输出滤波:将调幅后的信号通过低通滤波器进行滤波,去除高频噪声和杂波。
2.FM调制电路设计:FM调制是将信息信号的频率变化转换为载波频率的变化,并将其用于传输。
FM调制电路的设计步骤如下:(1)信号放大:将输入的低频信号经过放大电路进行放大,使用运放或差动放大电路进行放大。
(2)频率变换:将放大后的信号通过频率变换电路转换为所需的高频信号,常见的频率变换方式有上、下变频和乘法变频等。
(3)调频:将频率变换后的高频信号进行调频,一般采用三角调制电路进行调频。
(4)输出滤波:将调频后的信号经过低通滤波器进行滤波,去除高频噪声和杂波。
3.PM调制电路设计:PM调制是将信息信号的相位变化转换为载波相位的变化,并将其用于传输。
PM调制电路的设计步骤如下:(1)信号放大:将输入的低频信号经过放大电路进行放大,使用运放或差动放大电路进行放大。
(2)频率变换:将放大后的信号通过频率变换电路转换为所需的高频信号,常见的频率变换方式有上、下变频和乘法变频等。
(3)调相:将频率变换后的高频信号进行调相,一般采用集成电路调相器进行调相。
简述psk调制解调电路的工作原理及工作过程
简述psk调制解调电路的工作原理及工作过程一、前言PSK调制解调电路是一种常见的数字信号处理电路,它能够将数字信号转换为模拟信号进行传输,并在接收端将模拟信号还原为数字信号。
本文将详细介绍PSK调制解调电路的工作原理及工作过程。
二、PSK调制原理1. PSK调制概述PSK调制是指通过改变载波相位来传输数字信息的一种数字调制方式。
在PSK调制中,基带数字信号经过编码后与载波相位进行相乘,形成一个PSK信号。
对于二进制数据而言,当数据位为0时,载波不改变相位;当数据位为1时,载波相位发生180度的变化。
2. PSK调制电路PSK调制电路主要由以下几个部分组成:(1) 预处理电路:用于对基带数字信号进行预处理,如滤波、增益等。
(2) 码元生成器:用于产生基带数字信号的二进制码元序列。
(3) 相位编码器:用于将码元序列转换为相应的相位信息。
(4) 模拟乘法器:用于将相位信息与载波进行乘积运算。
(5) 滤波器:用于滤除多余频率成分,保留所需频率成分。
3. PSK调制过程(1) 码元生成器产生二进制码元序列,经过相位编码器转换为相应的相位信息。
(2) 相位信息经过模拟乘法器与载波进行乘积运算,形成一个PSK信号。
(3) PSK信号经过滤波器滤除多余频率成分,保留所需频率成分。
三、PSK解调原理1. PSK解调概述PSK解调是指通过检测接收到的载波相位来还原数字信息的一种数字解调方式。
在PSK解调中,接收端通过检测接收到的载波相位来判断传输的是0还是1。
2. PSK解调电路PSK解调电路主要由以下几个部分组成:(1) 滤波器:用于滤除多余频率成分,保留所需频率成分。
(2) 相移网络:用于将接收到的信号进行相移操作,以便进行比较。
(3) 相位比较器:用于比较接收到的信号与参考信号之间的相位差异,并输出对应的数字信息。
3. PSK解调过程(1) 接收到的信号经过滤波器滤除多余频率成分,保留所需频率成分。
(2) 经过相移网络将接收到的信号进行相移操作,以便进行比较。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 频谱变换电路⎩⎨⎧非线性:调频、限幅频线性:调幅、混频、倍6.1概述频谱变换电路:频谱搬移,使之适合于传输.具备将输入信号频谱进行频谱变换,以获取具有所需频谱的输出信号这种功能的电路就叫做频谱变换电路。
6.2乘法器变跨导式模拟乘法器是以恒流源式差动放大电路为基础,并采用变换跨导的原理而形成的。
变跨导式模拟乘法器(恒流源式差分放大器)双入双出()()EQT EQT b b be i beco I U I U r r u r R u βββ+≈++=⋅-='111()21I U Tβ+= ∴I u U R u i TCo ⨯⋅-≈12若I u i ∞2成正比,则21i i o u u u ⨯∞ei e BE i e R u R u u I I 232≈-==∴21212i i e i i TC o U U R R u u U R u ⋅⋅=⋅⋅-=跨导222121i eI T T TEQ m u R UU U IU I g ∞⋅===∴称为变跨导乘法器.6.3调幅波一、幅度调制(AM )()t u Ω-低频 ()t u c -高频定义:用()t u Ω去控制()t u c 的幅度,使幅度()t u Ω∞,称为调制称()t u Ω为调制信号,()t u c 为载波信号.1、 调幅特性.令()t U t u m Ω=ΩΩcos ()t w U t u c cm c cos = 则)()t w t M U t u c a cm AM cos cos 1⋅Ω+=其中cmm a U U k M Ω⋅=称为调制指数.(k 由电路决定的一个常数)()t w t M U t w U t u c a cm c cm AM cos cos cos ⋅Ω⋅⋅+⋅=()()[]t w t w M U t w U c c a cm c cm Ω-+Ω+⋅⋅+⋅=cos cos 21cos∴调幅波有3个频率分量c w 、Ω+c w 、Ω-c w .称Ω+c w 为上边频,Ω-c w 为下边频m AM B Ω=2载波不携带()t u Ω的信息,而且占用较大的发射功率,可以只发射边带。
(1)双边带.()()()()[]t w t w U t w t U t w t u t u c c m c m c DSB Ω-+Ω+=⋅Ω⋅=⋅=ΩΩΩcos cos 21cos cos cos无载波频率.特点:①频谱搬移特性②相位突变(根据上式)()0=Ωt u 处③m DSB B Ω=2(2)单边带:用滤波器将上边带或下边带滤除. 二、AM 的电路令 ()t w U t u c cm c cos =()t U E t u m Ω+=ΩΩcos则 ()()t w U t U E t u c cm m AM cos cos ⋅⋅Ω+=Ω()tw t m U t w t U E U U E c a s c cm mcm cos cos 1cos cos 1Ω⋅+=⋅⎪⎪⎭⎫ ⎝⎛Ω⋅+⋅⋅=Ω1、 低电平调幅.如上,通过调节直流E 的大小来调节a m . 2、 高电平调幅.①集电极调幅.(通过改变集电极馈电电压).L 、C 谐振回路调谐在载频()t U V t u V V m cc cc ccΩ+=+='ΩΩcos ()t m V a cc Ω+=cos 1注:见书p109图4.10 :放大器要工作在过压区.∴()t m V V u V I a cc cc AM ccc Ω+='∞'∞cos 1,即 ②基极调幅(原理类似)三、解调电路.(检波) 利用乘法器+低通滤波器 1、二极管(包络检波)充电时间C R D 放电时间C R ()C R D >>2、乘法器()t u y 近似为频率为c w 的方波.∴()()t nw aa t u c n no y cos 21∑∞=+=∴()()t u t u k u y x o ⋅⋅=()()⎥⎦⎤⎢⎣⎡+⋅⋅Ω+⋅=∑t nw a a t w t m u k c n o c a s cos 2cos cos 1取n=1,()⎥⎦⎤⎢⎣⎡⋅⋅Ω+⋅=t w t w t m u k u c c a s o cos 4cos cos 1π 6.4抑制载波的AM 的调制与解调电路. SCDSB一、调制电路()t w U t u c cm c cos = ()t U t u m Ω=ΩΩcos()()()t u t u k t u c Ω⋅⋅=()()[]t w t w U U k t U t w U k c c m cm m c cm Ω-+Ω+⋅⋅=Ω⋅⋅=ΩΩcos cos 21cos cos图203P三、解调电路()[]()[]t w t u U k t w t w t u k t w u u c cm c c c i o 2cos 121cos cos cos +⋅⋅=⋅⋅⋅=⋅=ΩΩ说明:导频.若无导频,则接收端需产生载波.6.5混频电路I s w w 中频载波→()t w U t u L Lm L cos =设L w >s w ,()()[]t w U t w t u m U t u L Lm s a sm p cos cos 1⋅+=Ω ()[]()()[]t w w t w w t u m U U s L s L a Lm sm ++-+⋅=Ωcos cos 1216.6倍频器()()()t w U t w U t w U t u t u s sm s sm s sm s o 2cos 121cos cos 22+=⋅⋅==注:谐振功放也可实现倍频104P6.7调角波⎩⎨⎧PM FM非线性 调相调频一、瞬时相位和瞬时角频率.()()()()⎰⎰+''=⎥⎦⎤⎢⎣⎡+''=toto m t d t w t t d t w A t a 00cos ϕϕϕ ()()dtt d t w ϕ=若()()()o wt t w t w ϕϕ+==',则常量 二、调相波和调频波1、调相:相位变化量与调制信号成正比.()[]t t w U u p c cm PM ϕ∆+=cos()[]()t U t u k t w U cm p c cm ϕcos cos =⋅+=Ω调制指数()max t u k m p p Ω= 瞬时角频率()()()dtt du k w dtt d t w p c Ω⋅+==ϕ()()dtt du k t w p p Ω⋅=∆ ——瞬时角频率偏移()p p w t w ∆=∆max称为频偏2、调频:频率变化量与调制信号成正比.()⎥⎦⎤⎢⎣⎡''+=⎰Ωtfc cmFM t d t u k t w U u 0cos瞬时相位()()⎰''+=Ωtf c t d t u k t w t 0ϕ瞬时角频率()()()t u k w dtt d t w f c Ω⋅+==ϕ()()maxmaxt u k t w f f Ω⋅=∆ 称为频偏.调频指数()max⎰''=Ωtff t d t u k m总结:()t w t c =ϕ)()()t w A t A t a c m m cos cos ⋅=⋅=ϕ调相()()()()t u k t w t u k t t c ΩΩ⋅+=⋅+='→ϕϕ 调频()t u k w c Ω⋅+→∴()()()t d t u k t w dt t w t tc t''+='='⎰⎰Ω0ϕ例:调制信号 ()t U t u m Ω=ΩΩcos ,则 i) 调相()()t u k t w U u p c cm PM Ω⋅+=cos()()t m t w U t U k t w U p c cm m p c cm Ω+=Ω⋅+=Ωcos cos cos cos ()m p p U k m Ω⋅=频偏()()t m dtt du k t w p p Ω⋅Ω-=⋅=∆Ωsin∴Ω⋅⋅=Ω⋅=∆Ωm p p U k m wmaxii) 调频()()t U k w t u k w t w m f c f c Ω⋅+=⋅+=ΩΩcos ∴()()t d t U k t w t d t w t tm f c t''Ω⋅⋅+=''=⎰⎰Ω0cos ϕtm t w t U k t w f c m f c Ω⋅+=Ω⋅+=Ωsin sin∴()t m t w U u f c cm FM Ω⋅+=sin cos 三、调角波的频谱和带宽.1、 频谱. 从上可以看出,FM 、PM 波。
类似.2、 统一写为()()t m t w U t u c cm Ω⋅+=sin cos()[][]tjw tjm ecmt m t w j e cm c c eeR U e R U ⋅⋅=⋅=ΩΩ⋅+sin sin傅立叶级数.周期函数()t f T 可以展开成傅立叶级数.()()⎪⎪⎩⎪⎪⎨⎧⋅⋅=⋅=⎰∑--+∞-∞=dt e t f T C e C t f T T tjnw T n tjnw n n T o o 221 ()......2,1,0±±=n代入上两式,得:的周期Ω=Ω=Ωo tjm w T e,2sin π∴tjn n t jn tjm tjnw n n tjm e dt eeeC eo Ω+∞-∞=-Ω-Ω+∞-∞=Ω⋅⎥⎦⎤⎢⎣⎡⋅Ω=⋅=∑⎰∑πππsin sin 2记:()⎰+-Ω-ΩΩ⋅==πππt d eeC m J tjn t jm n n sin 21()()()⎩⎨⎧-=--m J m J m J n n n为奇数为偶数n n 贝赛尔函数()()[]t n t w m J U t u cn ncmΩ+=∑+∞-∞=cos()()()()()()()()()()()()()⎥⎦⎤⎢⎣⎡+Ω--Ω++Ω-+Ω++Ω--Ω++= t w m J t w m J t w m J t w m J t w m J t w m J t w m J U c c c c c c c o cm3cos 3cos 2cos 2cos cos cos cos 332211说明:与调幅信号不同,不是调制信号频谱的简单搬移,而是由载频()c w 分量和无数对边频分量组成。
贝赛尔曲线当m=2.40,5.52,8.65…时,载波分量振幅等于0;而当m 为某些其它特定值时,又可使某些边频分量振幅等于0。
选取载波矢量为参考矢量,则()t u 中各个分量的矢量图如下:说明:(a )引起相位(频率)和幅度变化.(b )只引起幅度变化.N 为奇数的分量,维持()t u 的幅度不变,而使瞬时角频率不失真地按调制信号规律变化。