20181213小学奥数练习卷(知识点:完全平方数性质)含答案解析

合集下载

小学奥数完全平方数练习题及答案【三篇】

小学奥数完全平方数练习题及答案【三篇】

小学奥数完全平方数练习题及答案【三篇】
导读:本文小学奥数完全平方数练习题及答案【三篇】,仅供参考,如果觉得很不错,欢迎点评和分享。

【第一篇】一个自然数减去45及加上44都仍是完全平方数,求此数。

解答:设此自然数为x,依题意可得
x-45=m^2; (1)
x+44=n^2 (2)
(m,n为自然数)
(2)-(1)可得:
n^2-m^2=89或:(n-m)(n+m)=89
因为n+m>n-m
又因为89为质数,
所以:n+m=89; n-m=1
解之,得n=45。

代入(2)得。

故所求的自然数是1981。

【第二篇】求证:四个连续的整数的积加上1,等于一个奇数的平方解答:设四个连续的整数为,其中n为整数。

欲证
是一奇数的平方,只需将它通过因式分解而变成一个奇数的平方即可。

证明设这四个整数之积加上1为m,则
m为平方数
而n(n+1)是两个连续整数的积,所以是偶数;又因为2n+1是奇
数,因而n(n+1)+2n+1是奇数。

这就证明了m是一个奇数的平方。

【第三篇】求满足下列条件的所有自然数:
(1)它是四位数。

(2)被22除余数为5。

(3)它是完全平方数解答:设,其中n,N为自然数,可知N为奇数。

11|N - 4或11|N + 4

k = 1
k = 2
k = 3
k = 4
k = 5
所以此自然数为1369, 2601, 3481, 5329, 6561, 9025。

20181213小学奥数练习卷(知识点:数列分组)含答案解析.doc

20181213小学奥数练习卷(知识点:数列分组)含答案解析.doc

20181213小学奥数练习卷(知识点:数列分组)含答案解析小学奥数练习卷(知识点:数列分组)题号一二总分得分注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)评卷人得分一.填空题(共 11 小题) 1.表中上一行的一个字与下一行对应的一个字作为一组,如第一组是(数,我),第二组是(学,们).数学是思维的体操数学是思维的体操数学我们参加希望杯竞赛我们参加希望杯竞赛那么第 2005 组是. 2.将下列 10 个数分成两组,每组 5 个,要求两组中各数的乘积相等: 6,8,9,13,21,26,35,44,50,55 请在下面写出你的思考过程.. 3.把自然数 1、2、3、4、按照下面的顺序排列(横排叫行,竖排叫列).1995这个数排在第行第列. 4.一列数,前 3 个是 1,9,9,以后的每个数都是它前面相邻 3 个数的和除以 3所得的余数,这列数中的第 2005 个数是. 5.右图是著名德国数学家莱布尼茨给出的三角形:则排在由上而下的第 10 行中从右边数第三个位置的数是. 6.观察三角形数阵:那么,由上而下的第22行中由左向右的第21个数是,2010 是第行第个数. 7.自然数列 1,2,3,,n,,它的第 n 组含有 2n﹣1 个数,第 10 组中各数的和是. 8.设自然数按下图的格式排列: 1 2 5 10 17 4 3 6 11 18 98 7 12 19 16 15 14 13 20 25 24 23 22 21 (1)200 所在的位置是第行,第列;(2)第 10 行第 10 个数是. 9.将奇数按下列方式分组:(1),(3,5),(7,9,11),(13,15,17,19),.(1)第 15 组中第一个数是;(2)第 15 组中所有数的和是;(3)999 位于第组第号. 10.给定以下数列:,,,,,,,,,,,(1)是第项;(2)第 244 项是;(3)前 30 项之和是. 11.将自然数按下面的规律分组:(1,2),(3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18,19, 20),,第 1991 组的第一个数和最后一个数各是.第Ⅱ卷(非选择题)评卷人得分二.解答题(共 13 小题) 12.在下面的一列数中,只有一个九位数,它是.1234,5678,9101112,13141516,13.甲、乙两包糖的重量比是 4:1,如果从甲包取出 10 克放入乙包后,甲、乙两包糖的重量比变为 7:8,那么两包糖的总重量是多少克? 14.将偶数排成下表: A B C D E 2 4 6 8 16 14 12 10 18 20 22 2432 30 28 26 那么,1998 这个数在哪个字母下面?15.在下面的数表中,第 100 行左边的第一个数是什么? 5 4 3 2 67 8 9 13 12 11 1014 15 16 17 21 20 19 18 16 .把自然数 1 ~ 200 按下面的方法分成 A 、 B 、 C 三组.试问:(1)每组各有多少个数?最后一个数各是多少?(2)C 组的第 56 个数是几?(3)172 在哪一组的第几个数? 17.自然数按下图所示的方法排列.问:(l)射线 b 上第 1995 个数是几?(2)数 1995 在哪条射线上? 18.有一数列:101,203,105,207,109,211,求这数列的前 20 项的和. 19.根据下图回答:(1)第一行的第 8 个数是几?(2)第五行第六列上的数是几?(3)200 的位置在哪一格(说出所在行和列的序号)? 20.一列数:1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,,其中自然数 n 出现 n 次.那么,这列数中的第 1999 个数除以 5 的余数是. 21.有这样一列数:123,654,789,121110,131415,181716,192021,.还有另一列数:1,2,3,6,5,4,7,8,9,1,2,1,1,1,0,1,3,1,4,1,5,1,8,1,7,1,6,1,9,2,0,2,1,,第一列数中出现的第一个九位数是,第二列数的第 1994 个数在一列数中的第个数的位上.22.1,1,2,2,3,3,1,1,2,2,3,3,1,1,其中 1,1,2,2,3,3这六个数字按此规律重复出现,问:(1)第 100 个数是什么数?(2)把第一个数至第 52 个数全部加起来,和是多少?(3)从第一个数起,顺次加起来,如果和为 304,那么共有多少个数字相加? 23.把由 1 开始的自然数依次写下来: 1 2 3 4 5 6 7 8 9 10 11 12 13 14.重新分组,按三个数字为一组: 123,456,789,101,112,131,,问第 10 个数是几? 24.有一列数:1,1993,1992,1,1991,1990,1,,从第三个数起,每一个数都是它前面两个数中大数减小数的差,求从第一个起到 1993 个数这 1993个数之和.参考答案与试题解析一.填空题(共 11 小题) 1.表中上一行的一个字与下一行对应的一个字作为一组,如第一组是(数,我),第二组是(学,们).数学是思维的体操数学是思维的体操数学我们参加希望杯竞赛我们参加希望杯竞赛那么第 2005 组是(维,杯).【分析】分别观察上下二行,上一行 8 个字是按顺序重复的,下一行的 9 个字也是按顺序重复出现的,然后分别找出每一行第 2005 组中是规律的第几个字.【解答】解:20058=250(组)5(个),在第一行规律中第 5 个字是:维; 20059=222(组)7(个),在第二行的规律中第 7 个字:杯;所以第 2005 组是:(维,杯).【点评】先观察找出规律,然后找出第 2005 组中的是规律中的第几个字即可. 2.将下列 10 个数分成两组,每组 5 个,要求两组中各数的乘积相等: 6,8,9,13,21,26,35,44,50,55 请在下面写出你的思考过程. 441321506=55263589 .【分析】将这些数分解质因数,然后根据质因数的个数进行分组.【解答】解: 6=23 8=222 9=33 13=13 21=37 26=213 35=5744=2211 50=255 55=511 从上面可以看出 44 和 55 肯定分在不同组,13 和26 分在不同组,顺着这个思路不难得出下面的两组 441321506=55263589 【点评】此题只要保证两组算式中的相同质因数的个数相同即可. 3.把自然数 1、2、3、4、按照下面的顺序排列(横排叫行,竖排叫列).1995这个数排在第五百七十行第二列.【分析】把 7 个连续的数看成一组,每组中前三个数是一行,这三个数是从左到右增大的,后 4 个数在一行,这 4 个数按照从右到左增大的;先求出 1995 里面有多少个这样的一组,还余几,再根据余数进行推算.【解答】解:19957=285;没有余数,1995 里面正好有中 285 组,是第 285 组的最后一个数,在第二列; 2852=570;所以 1995 是第五百七十行,第二列.故答案为:五百七十,二.【点评】先找出这个数阵周期性的规律,再根据规律求解. 4.一列数,前 3 个是 1,9,9,以后的每个数都是它前面相邻 3 个数的和除以 3所得的余数,这列数中的第 2005 个数是0 .【分析】根据题意,列出这个数列:1、9、9、1、1、2、1、1、1、0、2、0、2、1、0、0、1、1、2、1易见,从第四个数开始每十三个数一个循环.由于前面还有三个数,所以需用 2005 减去 3 得再除以 13,即可得出答案.【解答】解:(2005﹣3)13=154, 2005 为循环节中的最后一个,即 0;答:这列数中的第 2005 个数是 0.故答案为:0.【点评】解答此题的关键是,根据题意,找出规律,再根据规律,列式解答即可. 5.右图是著名德国数学家莱布尼茨给出的三角形:则排在由上而下的第 10 行中从右边数第三个位置的数是.【分析】通过对已知数据进行观察分析可发现各行的前后两个数分别为行数的倒数,倒数第二个数等于前一行的最后一个数与本行的最后一个数的差,倒数第三个数等于前一行的倒数第二个数与本行的倒数第二个数的差,根据此规律解题即可.【解答】解:因为第 10 行最后一个数是,第 9 行最后一个数是,第 8 行最后一个数是,所以第 9 行倒数第二个数是﹣ = ,第十行倒数第二个数是﹣ = ,所以,第 10 行右数第三个数是﹣ = .故答案为:.【点评】此题主要考查学生对规律型题的掌握情况,做此类题的关键是观察分析发现规律,根据规律解题. 6.观察三角形数阵:那么,由上而下的第22行中由左向右的第21个数是 462 ,2010 是第 45 行第 74 个数.【分析】(1)仔细观察:从左到右,第几个数上的数就是几,而且第一行 1 个数,第二行 3 个数,第三 5 个数,所以行数2﹣1=个数,则第二十一行有:212﹣1=41 个数,到这一行为止,共有:1+3+5++41=441 个数,那第 22 行由左到右的第 21 个数是 441+21=462.(2)2010 应该是第 2010 个数,那么 1+3+5+加到多少大概在 2010 左右呢?由(1)可知,第22行有222﹣1=43个数字,第这一行为止,共有1+3+5++43=484个数字,离 2010 个数字很远,试下到 44 行共有多少个数字,第 44 行有 442﹣1=87 个数字,到这一行为止共有:1+3+5++87=(1+87)442=1936个数字,2010﹣1936=74,说明 2010 在第 45 行第 74 个数字.【解答】解:(1)通过分析数阵可知:行数2﹣1=该行数字个数,则第二十一行有:212﹣1=41 个数.到这一行为止,共有:1+3+5++41=441 个数,那第 22 行由左到右的第 21 个数是 441+21=462.(2)从左到右,第几个数上的数就是几,2010 应该是第 2010 个数;可先试下到 44 行共有多少个数字,第 44 行有 442﹣1=87 个数字,到这一行为止共有: 1+3+5++87=(1+87)442=1936 个数字, 2010﹣1936=74,说明 2010 在第 45 行第 74 个数字.故答案为:462、45、74.【点评】完成此类题目的关健是认真分析数阵,找出其中数据的规律特点,从而据规律进行解答. 7.自然数列 1,2,3,,n,,它的第 n 组含有 2n﹣1 个数,第 10 组中各数的和是 1729 .【分析】此题关键是读懂题意:由题意知,第 1 组有 21﹣1=1 个数,即 1.第2 组有 22﹣1=3 个数,即 1,2,3.以此类推.【解答】第 1 组到第 9 组共有自然数:1+3+5++ (29﹣1)= =81 (个).因此,第 10 组第 1 号数是 82,第 10 组有 210﹣1=19 个数,所以第 10 组各数之和为.故答案为:1729.【点评】由简单到复杂,学会从最基本的入手. 8.设自然数按下图的格式排列: 1 2 5 10 17 4 3 6 11 18 9 8 7 12 19 16 15 14 13 20 25 24 23 22 21 (1)200 所在的位置是第 4 行,第 15 列;(2)第 10 行第 10 个数是 91 .【分析】(1)我们看出:第一竖列都是行号的平方数.如 4=2 2 ,9=3 2 ,25=5 2 其数列发展也是按正方形来排列的 1234 ,正好构成一个正方形,123456789 又围成一个较大的正方形,其发展是按顺时针方向来旋转的.由此类推第 14 行第一列是 14 2 =196,此时也是此行最大.200只能在其外一圈的正方形上.200 就出现在第 15 列第 4 行.(2)第 2 题也可以得出第 10 行第 1 列为 10 2 =100,第 10 个数就得减 9 即得到91.【解答】解:(1)注意到第一列是完全平方数:1,4,9,16,25,按(1),(2,3,4),(5,6,7,8,9),分组,则 200 在 196 与 225 之间,属第 15 组,倒数第 4 个数,在第 4 行、第 15 列上.(2)第 10 行第 10 个数是位于第 10 行第 10 列上的数 91.【点评】数列题目需要看其数字发展的规律,往往从平方,加减,方形,斜线等角度来观察. 9.将奇数按下列方式分组:(1),(3,5),(7,9,11),(13,15,17,19),.(1)第 15 组中第一个数是 211 ;(2)第 15 组中所有数的和是 3375 ;(3)999 位于第 32 组第 4 号.【分析】从分组情况看第几组就有几个奇数如第 3 组就有三个奇数,第一题先看从第 1 组到第 14 组的奇数有多少个,再看下一个奇数是几,第二题利用等差数列来解题比较容易.第三题先求出大致是第几组再利用等差数列求是第几个数.【解答】解:(1)从第 1 组到第 14 组的奇数有 1+2+3++14= =105(个).因此,第 15 组最初一个数是第 106 个奇数:2106﹣1=211.(2)在第 15 组中的数是以 211 为首项,公差为 2,项数等于 15 的等差数列,其和是 15211+ 2=3375.(3)设 999 位于第 n 组,因 3132=992,3233=1056,所以 n=32,第 32 组最初一个数是:[2(1+2++31)﹣1]+2=993.因此,999 是第 32 组的第 4 号数.【点评】此题是数列的题目的典型应用,需要熟练掌握其中的方法与技巧,要用试一试的办法找其规律. 10.给定以下数列:,,,,,,,,,,,(1)是第 429 项;(2)第 244 项是;(3)前 30 项之和是 17 .【分析】从给定的数列看数列中分母是几,以此为分母的数就有几个.比如:分母是 4,则以 4 为分母的数便有 4 个.同理分母是 7 的得数有 7 个,所以第一题分母是 29 分子是 23 则前面有 28 组数加 23 个数.第二、三题需要试一试前多少组共多少个数.找到合适的组数在确定第几个数.【解答】(1)以分母相同的分数分组,并记分母为 n 的分数属于第 n 组,从而是第 29 组的第 23 号数,第 n 组由 n 个分数组成,从第 1 组到第 28 组有 1+2+3++28= =406 个分数,因此位于第 406+23=429 项.(2)因 2120=420,2221=462,2322=506,故第 244 项在第 22 组,前 21组有 =231个分数,从而第244项是居于第22组中的第13号数,是.(3)前30 项之和为 1+ (1+2)+ (1+2+3)++ (1+2++7)+ + =1 +2+ +3+ +4+ =10+=17 .故答案为:429,,17 .【点评】这类题目需要求前几项的和及其变形应用,是有一定难度的. 11.将自然数按下面的规律分组:(1,2),(3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18,19, 20),,第 1991 组的第一个数和最后一个数各是 3962091 3966072 .【分析】每一组数的个数都在增加,第 n 组数的个数为 2n 个数,这组的第一个数就是前一组数的最后一个数+1,这个数是 2+4+6++2(n﹣1)+1;当然,这组数的最后一个数是 2+4+6++2n;当 n=1991 时,代入 1991 可得解.【解答】解:2+4+6++2(1991﹣1)+1 =2(1+2+3++1990)+1 =(1+1990)1990+1 =3962091;2+4+6++21991 =2(1+2+3++1991) =(1+1991)1991 =3966072;答:第 1991组的第一个数和最后一个数各是 3962091、3966072;故答案为:3962091,3966072.【点评】此题考查了数表中的规律,每一组数的个数为组数的 2 倍,正整数依次填入,发现规律,解决问题.二.解答题(共 13 小题) 12.在下面的一列数中,只有一个九位数,它是979899100 .1234,5678,9101112,13141516,【分析】每 4 个相邻的正整数组成数列中的一个数,两位数中的前三个 10、11、12 已经和 9 组成了数列中的第三个数,余下的两位数还有 99﹣9﹣3=87,874=213,即有组成了 21 个 8位数,余下的三个两位数是 97、98、99 和 100组成第 25 个数列中的数979899100,刚好是一个九位数,从第 26 个数101102103104 开始就至少是 12位数,所以该数列只有一个九位数.【解答】解:99﹣9﹣3=87, 874=213,余下的三个两位数是 97、98、99 和 100 组成第 25 个数列中的数 979899100,刚好是一个九位数,从第 26 个数 101102103104 开始就至少是 12 位数,所以该数列只有一个九位数.故答案为:979899100.【点评】此题考查了数列中的规律. 13.甲、乙两包糖的重量比是 4:1,如果从甲包取出 10 克放入乙包后,甲、乙两包糖的重量比变为 7:8,那么两包糖的总重量是多少克?【分析】把甲、乙两包糖的重量比是 4:1理解为甲包糖是两包糖的总重量的,把后来甲、乙两包糖的重量比变为 7:8理解为后来甲包糖是两包糖的总重量的,即两包糖总重的(﹣)是10克,把两包糖的总重量看作单位1,根据对应数对应分率=单位1的量进行解答即可.【解答】解:4+1=5, 7+8=15, 10(﹣), =10 , =30(克);答:两包糖的总重量是 30 克.【点评】解答此题的关键是抓住题中两包糖的总重量不变,判断出单位1,根据对应数对应分率=单位1的量进行解答即可. 14.将偶数排成下表: AB C D E 2 4 6 8 1614 12 10 18 20 22 24 32 30 28 26 那么,1998 这个数在哪个字母下面?【分析】由图表看出:偶数依次排列,每 8 个偶数一组依次按 B、C、D、E、D、C、B、A 列顺序排.看A 列,E 列得到排列顺序是以 16 为周期来循环的.求出 1998 里面有多少个这样的周期,还余几,再根据余数判断.【解答】解:199816=12414 所以,1998 与 14 同列在 B 列.【点评】本题关键找出这个数表中数字循环的周期性规律,再根据规律求解. 15.在下面的数表中,第 100 行左边的第一个数是什么? 5 4 3 2 6 7 8 9 13 12 11 10 14 15 1617 21 20 19 18 【分析】因为每行有 4 个数,前 99 行共有 994=396(个)数;这个数表中开始的最小的一个数为 2,奇数行是从右到左的顺序依次增加的;偶数行的数是从左到右依次增加的;整个数表可以看成是以 2 开始的自然数列,第 100 行的第一个数是第 397 个数,由此求解.【解答】解:994=396(个);又因为这个数表中开始的最小的一个数为 2,所以,依数列的排列规律可知,第100 行的左边第 1 个数为: 396+1+1=398;答:第 100 行左边的第一个数是 398.【点评】解决本题关键是找出这些数的排列规律,然后根据规律求解. 16 .把自然数 1 ~ 200 按下面的方法分成 A 、 B 、 C 三组.试问:(1)每组各有多少个数?最后一个数各是多少?(2)C 组的第 56 个数是几?(3)172 在哪一组的第几个数?【分析】完成本题目要根据数列的组数、数横排及竖排的排列特点及规律,结合高斯求和的有关知识进行解答.【解答】解:各组中偶数项中的数据及奇数项中的数据有以下特点:奇数项:A 组:6n﹣5,B 组:6n﹣4,C 组:6n﹣3,按竖列递增 k=2n﹣1,偶数项:A 组:6n,B 组:6n﹣1,C 组:6n﹣2,按竖列递减 k=2n;每一组的第 k 项 k=2n﹣1,k=2n,n=1,2,3据此可知:(1)200=633+2=634﹣4(属于 B 组奇数项),n=34,k=2n﹣1=67;所以:B 组有 67 项最后一个数 200,是 B 组的第 67 项;A 组有 67 项,最后一个数 199,是 A 组的第 67 项; C 组有 66 项,最后一个数 196,是 C 组的第 66 项.(2)C 组 k=56 项 n=28 是:628﹣2=166.(3)172=628+4=629﹣2 (C 组偶数项),C 组偶数项,n=29,k=229=58,所以,172 是 C 组的第 58 个数.【点评】完成此类题目要认真分析式中数据的排列特点,找出规律进行解答. 17.自然数按下图所示的方法排列.问:(l)射线 b 上第 1995 个数是几?(2)数 1995 在哪条射线上?【分析】通过观察可知,射线 b 上的数列为等差数列,公差为 3,根据高斯求和有关公式可知:末项=首项+(项数﹣1)公差,所以射线 b 上第 1995 个数是2+(1995﹣1)3;射线 c 上的数都为 3 的倍数,而 19953=665,1995为 3 的倍数,所以所以数 1995 在射线 C 上.【解答】解:(1)2+(1995﹣1)3 =2+19943, =5984;答:射线 b 上第 1995 个数是 5984.(2)因为射线c 上的数都为 3 的倍数,又 19953=665,所以数 1995 在射线 C上.答:数1995 在射线 C 上.【点评】完成本题要认真分析射上数列上数据的特点,找出其内在规律,然后据规律进行解答. 18.有一数列:101,203,105,207,109,211,求这数列的前 20 项的和.【分析】把这列数字看成两列数,奇数项一列,偶数项一列;奇数列为:101,105,109,可以看成是公差为 4 的等差数列,共 10 项;偶数项为:203,207,211,可以看成是公差为 4 的等差数列,共 10 项;根据等差数量求和公式求解.【解答】解:(1)101+(10﹣1)4=137,(101+137)102=1190, 203+(10﹣1)4=239,(203+239)102=2210,前 20 项的和是: 1190+2210=3400.答:这数列的前 20 项的和是3400.【点评】本题先把数量根据特点分组,再给各组找到规律,根据规律计算. 19.根据下图回答:(1)第一行的第 8 个数是几?(2)第五行第六列上的数是几?(3)200 的位置在哪一格(说出所在行和列的序号)?【分析】按图斜线划分分组比较容易发现(1),(2,3),(4,5,6),(7,8,9,10),也就是每组的个数分别有 1,2,3,4,5,,第一行的第 8 个数是几即求前 7 个组共有多少数?我们还发现:自上而下第 m 行,自左而右第 n 列上的数在第(m+n﹣1)组中,照此可以解决第 2 题.先算出 200 在哪一组?再算出所在组的第一个数.【解答】解:(1)如图,所有自然数按自右上至左下以斜线分组:(1),(2,3),(4,5,6),(7,8,9,10),第 n 组第 1 号数是第一行的第 n 个数.从第 1 组到第(n﹣1)组有: 1+2+3++(n﹣1)= 个数,从而第 n 组第1 号数是 +1.因此,第 1 行第 8 个数是 +1=29.(2)一般地,自上至下第m 行,自左至右第 n 列上的数在第(m+n﹣1)组中,第五行第六列上的数在第 10 组中,第 10 组第 1 号数是 +1=46,第 10组在第五行的数是 46+5﹣1=50.(3)1920=380,2021=420,故 200 在第 20 组中,第 20 组第一个数是+1=191,因此数 200 在第 10 行第 11 列的位置上.【点评】解题关键在于斜线分组将题目化繁为简在解决比较简单. 20.一列数:1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,,其中自然数 n 出现 n 次.那么,这列数中的第1999 个数除以 5 的余数是 3 .【分析】自然数 n 出现了 n 次,这 n 个 n 中的第一个数位于这列数的 n(n+1)﹣n+1= n(n﹣1)+1,最后一个数 n 位于这列数中的第(1+2++n)= n(n+1)个数.如:2,位于这列数的第 2 位和第三位;3,位于第四位和第六位之间;以此类推,可得出是哪个数是这列数中的第 1999 个数, n(n﹣1)+11999 n (n+1),又.因此,这列数中的第 1999 个数是 63,它除以 5 的余数是 3.【解答】解:自然数 n 出现了 n 次,这 n 个 n 中的最后一个数 n 位于这列数中的第(1+2++n= n(n+1)个数.又.因此,这列数中的第 1999 个数是 63,它除以 5 的余数是 3.故答案为:3.【点评】此题考查了数列中的规律,猜测法猜出这个数是解决问题的一个方法. 21.有这样一列数:123,654,789,121110,131415,181716,192021,.还有另一列数:1,2,3,6,5,4,7,8,9,1,2,1,1,1,0,1,3,1,4,1,5,1,8,1,7,1,6,1,9,2,0,2,1,,第一列数中出现的第一个九位数是 102101100 ,第二列数的第 1994 个数在一列数中的第 234 个数的万位上.【分析】第一列数中出现的第一个九位数时应该是最小的三位数 100 出现时,此数列每 6 个数一循环,前三个正整数正着数,后三个正整数倒着数,组成两个由连续的三个正整数构成的数,1006=164,前 96 个数构成 16 个循环,32 个数字,第 33 个数是 979899,则出现最小的三位数 100 时是 100、101、102 三个正整数倒数,即 102101100;第二列数都是单个数,1﹣9 占数列的前 9 个数,从 10﹣99,把一个数 10 分成了1,0 占 2 个数,这样 10﹣99 共占了(99﹣9)2=180 个数,从 100 开始,100﹣999 是把如 100 分成 1,0,0 占 3 个数,999﹣99=900,9003=2700,显然 1994 小于(2700+180+9)即第二列的第 1994 个数应该在 100﹣999 这些三位数中间,1994﹣9﹣180=1805,这 1805 个数那么在第一列数中组成的数都是 9 位数,18059=2005;说明第二列数的第 1994 个数在第一列数中九位数中的第 201 个数的第 5 位,如:702701700 中的中间的第五位刚好是万位.这个数在第一列中是第几个数,应该再加上 9 个一位数组成的三位数 3个、90 个两位数组成的六位数 30 个.【解答】解:此数列每 6 个数一循环,前三个正整数正着数,后三个正整数倒着数,组成两个由连续的三个正整数构成的数,1006=164,前 96 个数构成16 个循环,32 个数字,第 33 个数是 979899,则出现最小的三位数 100 时是100、101、102 三个正整数倒数,即 102101100;(1994﹣9﹣180)9=2005,说明第二列数的第 1994 个数在第一列数中九位数中的第 201 个数的第 5 位,如:701702703 中的中间的第五位刚好是万位. 200+1+93+903=234,答:第一列数中出现的第一个九位数是 102101100,第二列数的第 1994 个数在一列数中的第 234 个数的万位上.故答案为:102101100,234,万.【点评】此题考查了数列中的规律.理清思路是关键. 22.1,1,2,2,3,3,1,1,2,2,3,3,1,1,其中 1,1,2,2,3,3这六个数字按此规律重复出现,问:(1)第 100 个数是什么数?(2)把第一个数至第 52 个数全部加起来,和是多少?(3)从第一个数起,顺次加起来,如果和为 304,那么共有多少个数字相加?【分析】根据题意,可知,1,1,2,2,3,3 这六个数字按此规律重复出现,可以根据有余数的除法中,余数的规律求解即可.【解答】解:(1)因为 1006=164,所以第 100 个数与第 4 个数相同,为 2.(2)因为 526=84,所以第 1 个数至第 52 个数的和为(1+1+2+2+3+3)8+(1+1+2+2)=102.(3)因为 1+1+2+2+3+3=12,30412=254,又 1+1+2=4,所以从第一个数起,顺次相加,共加到第 256+3=153 个数,其总和才恰为 304.答:(1)第 100 个数是 2 数;(2)把第一个数至第 52 个数全部加起来,和是 102;(3)从第一个数起,顺次加起来,如果和为 304,那么共有 153 个数字相加.【点评】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.23.把由 1 开始的自然数依次写下来: 1 2 3 4 5 6 7 8 9 10 11 12 13 14.重新分组,按三个数字为一组: 123,456,789,101,112,131,,问第 10 个数是几?【分析】重新分组的是一个三位数,要求第 10 个数是几,只要求出第 28、29、30 个数字是多少即可解决问题.【解答】解:从 1 到 9 有 9 个数字,10 到 19 有 20 个数字,从 1 到 19 一共由 29个数字,第 28 个数字是 1,第 29 个数字是 9,下一个数字应是 20 的第一个数字 2,所以第 10 个三位数是 192.【点评】此题主要利用数中所含数字的个数重新分组,算出数字的个数是关键,进一步找出分组的规律解决问题. 24.有一列数:1,1993,1992,1,1991,1990,1,,从第三个数起,每一个数都是它前面两个数中大数减小数的差,求从第一个起到 1993 个数这 1993个数之和.【分析】仔细观察这一数列,若把 1 抽出,则正好成为一个等差数列:1993,1992,1991,1990,;在原数列中三个数一组出现一个 1,则 1993 个数 19933=6641.可分为 664 组,最后一个也是 1,即 665 个 1,其余是 1993﹣665=1328个数,即除了 1 之外,最大是 1993,最小应是 1993﹣1328+1=666,首先算出这 1328 个数的和再加665 个 1 即可.【解答】解:1665+(666+1993)13282 =665+265913282 =665+1765576 =1766241;答:这 1993 个数的和为 1766241.【点评】此题主要通过分组发现数里面隐含的等差数列,从而找到问题的突破口,更好的解决问题.。

小学奥数 完全平方数 知识点+例题+练习 (分类全面)

小学奥数 完全平方数 知识点+例题+练习 (分类全面)
1112=12321
11112=1234321
一、“平方族”成员典型特征一:个位是0,1,4,5,6,9。
例:下面是一个算式:1 1 2 1 2 3 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6。这个算式的得数能否是某个数的平方。
巩固、一天,一个小骗子在街上招摇撞骗,声称自己是完全平方数,只见此人长得这个模样:A=1+1×2+1×2×3+…+1×2×3×…×100,小帅侠偶指奇约一眼就瞅出了这家伙的可疑之处,你发现了吗?
五、平方差公式的运用
例1、一个数减去100是一个平方数,减去63也是一个平方数,问这个数是多少?
巩固、能否找到这么一个数,它加上24,和减去30所得的两个数都是完全平方数?
1、1+1×2+1×2×3+…+1×2×3×…×50是不是一个完全平方数
2、 是由2000个“4”组成的多位数, 是不是某个自然数 的平方?如果是,写出 ;如果不是,请说明理由.
2.一个完全平方数被3除的余数是0或1.即被3除余2的数一定不是完全平方数。
3.自然数的平方末两位只有:00,01,21,41,61,81,04,24,44,64,84,25,09,29,49,69,89,16,36,56,76,96。
4.完全平方数个位数字是奇数(1,5,9)时,其十位上的数字必为偶数。
3、一个数减去14,加上17都是一个完全平方数,求这个数
4、22+42+62+82+102+122+142+……2002除以4的余数是
5、12+22+32+42+52+62+72+……2002除以3的余数是
6、1234321×81是的平方

小学奥数数论问题完全平方数练习题及答案【六篇】.doc

小学奥数数论问题完全平方数练习题及答案【六篇】.doc

小学奥数数论问题完全平方数练习题及答案【六篇】成功根本没有秘诀可言,如果有的话,就有两个:第一个就是坚持到底,永不言弃;第二个就是当你想放弃的时候,回过头来看看第一个秘诀,坚持到底,永不言弃,学习也是一样需要多做练习。

以下是***为大家整理的《小学奥数数论问题完全平方数练习题及答案【六篇】》供您查阅。

【第一篇】一个自然数减去45及加上44都仍是完全平方数,求此数。

解答:设此自然数为x,依题意可得x45=m^2; (1)x+44=n^2 (2)(m,n为自然数)(2)(1)可得 :n^2m^2=89或: (nm)(n+m)=89因为n+m>nm又因为89为质数,所以:n+m=89; nm=1解之,得n=45。

代入(2)得。

故所求的自然数是1981。

【第二篇】求证:四个连续的整数的积加上1,等于一个奇数的平方解答:设四个连续的整数为,其中n为整数。

欲证是一奇数的平方,只需将它通过因式分解而变成一个奇数的平方即可。

证明设这四个整数之积加上1为m,则m为平方数而n(n+1)是两个连续整数的积,所以是偶数;又因为2n+1是奇数,因而n(n+1)+2n+1是奇数。

这就证明了m是一个奇数的平方。

【第三篇】求证:11,111,1111,这串数中没有完全平方数解答:形如的数若是完全平方数,必是末位为1或9的数的平方,即或在两端同时减去1之后即可推出矛盾。

证明若,则因为左端为奇数,右端为偶数,所以左右两端不相等。

若,则因为左端为奇数,右端为偶数,所以左右两端不相等。

综上所述,不可能是完全平方数。

【第四篇】求满足下列条件的所有自然数:(1)它是四位数。

(2)被22除余数为5。

(3)它是完全平方数解答:设,其中n,N为自然数,可知N为奇数。

11|N4或11|N + 4或k = 1k = 2k = 3k = 4k = 5所以此自然数为1369, 2601, 3481, 5329, 6561, 9025。

【第五篇】甲、乙两人合养了n头羊,而每头羊的卖价又恰为n元,全部卖完后,两人分钱方法如下:先由甲拿十元,再由乙拿十元,如此轮流,拿到最后,剩下不足十元,轮到乙拿去。

小学奥数 完全平方数 知识点+例题+练习 (分类全面)

小学奥数 完全平方数 知识点+例题+练习 (分类全面)
巩固、8,88,888,8888…中有完全平方数吗?
二、完全平方数的等价条件:奇数个因数
注:计算一个数的因数先把这个数分解质因数,然后把不同质因数的个数加1以后再相乘所得的乘积就是因数的个数
例如:12=2×2×3
12的质因数2有2个,质因数3有1个因数个数:(2+1)×(1+1)=6个
180=2×2×3×3×5
2.完全平方数的约数一定有奇数个;有奇数个约数的数一定是完全平方数。
3. 奇数的平方是奇数,偶数的平方是偶数
完全平方数除以3的余数只可能为为0或1;
完全平方数除以4的余数只可能为为0或1;
偶数的平方是4的倍数,奇数的平方除以4余1。
(二)一些推论
1.任何偶数的平方一定能被4整除;任何奇数的平方被4(或8)除余1.即被4除余2或3的数一定不是完全平方数。
巩固、已知m,n都是自然数,且n2 126m,则n的最小值为。
四、“平方族”成员典型特征二:除以3或4只能余0或1
注:奇数的平方是奇数,偶数的平方为偶数,而奇数的平方除以4余1,偶数的平方能被4整除
例1、形如11,111,1111,11111,…的数中有没有完全平方数?
巩固、A是由2018个“4”组成的多位数,即444444……(2018个4),A是不是某个自然数B的平方?如果是,写出B;如果不是,请说明理由.
961、 3364、1111111、1521、 1234321、 1849、 89234
2.一个完全平方数被3除的余数是0或1.即被3除余2的数一定不是完全平方数。
3.自然数的平方末两位只有:00,01,21,41,61,81,04,24,44,64,84,25,09,29,49,69,89,16,36,56,76,96。

20181213小学奥数练习卷(知识点:图形划分)含答案解析

20181213小学奥数练习卷(知识点:图形划分)含答案解析

小学奥数练习卷(知识点:图形划分)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一.选择题(共1小题)1.一个三角形将平面分成2个部分,2个三角形最多将平面分成8个部分,那么5个三角形最多能将平面分成的部分数是()A.62B.92C.512D.1024第Ⅱ卷(非选择题)二.填空题(共24小题)2.在平面上,用边长为1的单位正方形构成正方形网格,顶点都落在单位正方形的顶点(又称为格点)上的简单多边形叫做格点多边形.最简单的格点多边形是格点三角形,而除去三个顶点之外,内部或边上不含格点的格点三角形称为本原格点三角形,如图所示的格点三角形MBN.每一个格点多边形都能够很容易地划分为若干个本原格点三角形.那么,图中的格点四边形的面积为,可以划分为个本原格点三角形.3.给出一个正方形,请你动手画一画,将它分为n个小正方形,那么,通过实验与思考,你认为这样的自然数n可以取的所有值应该是.4.将图分割成大小形状相似的两块,这两块图形可拼成一个正方形.用粗线条在原图上画出分割线,不必画拼合成的正方形.5.大正方形内有两个小正方形,这两个小正方形可以在大正方形内任意移动(小正方形的任何部分都不能移出大正方形,小正方形的边必须与大正方形的边平行).如果这两个小正方形的重叠面积最小为9,最大为25,并且三个正方形(一个大正方形和两个小正方形)的边长之和为23,则三个正方形的面积之和为.6.如图,6×6的表格被粗线分成了9块,若某块中恰有N个格子,则该块所填数字恰好为1~N;且任意相邻两个格子(有公共点的两个小正方形称为相邻格子)所填数字不同,那么四位数是.7.有一个等腰梯形的纸片,上底长度为2015,下底长度为2016,用该纸片剪出一些等腰梯形,要求剪出的梯形的两个底边分别在原来梯形的底边上,剪出的梯形的两个锐角等于原来梯形的锐角,则最多可以剪出个同样的等腰梯形.8.如图,用一条线段把一个周长是30cm的长方形分割成一个正方形和一个小的长方形.如果小长方形的周长是16cm,则原来长方形的面积是cm2.9.如图,一个正方形,与4个等腰直角三角形,恰好拼成一个长方形,如果正方形的面积是16,那么,长方形的面积是.10.在空格中填入数字1﹣5使得每行、每列和每宫(在数独中被粗线分割开的每块称为宫)数字都不重复,斜线相邻的数字也不能相同.那么,第一行从左至右5个数字依次组成的五位数是.11.把一张边长为11厘米的正方形纸片,剪成若干边长小于11的整数厘米的正方形纸片(不必全相同,允许重复剪成同一种尺寸,纸片没有浪费),最少能剪成片.12.如图是长方形,将它分成7部分,至少要画条直线.13.把一张l6cm×32cm的纸裁去一半,再将其中一张裁去一半…继续这样裁下去,直到得到一张lcm×2cm的纸为止,那么一共需裁次.14.如图是一个正方形,请你用直线将它划分成11个互不重叠的小正方形(大小不一定相同).15.将下图中的正方形分割成形状和大小一样的四块,并且每一块恰好都有四种不同的图案.在图中用不同的色笔把它们区分开.16.有一块花格布,如图.请你把它沿格线剪成四块,然后制成一大一小两个正方形的坐垫,相邻小格的图案不同.在图上用粗线画出分割线.17.一个角可以将平面分成2部分.3个角最多可以将平面分成个部分.18.如图,大等边三角形中放了三个面积都是30平方厘米的小正六边形.大三角形的面积是平方厘米.19.在一个长方形内,任意画一条直线,长方形被分成两部分(如图),如果画三条互不重合的直线,那么长方形至少被分成部分,最多被分成部分.20.将一个正六边形切割成三个完全相同的小正六边形和三个完全相同的菱形.如果大正六边形的面积为360平方厘米,那么每个菱形的面积是平方厘米.21.切一个蛋糕,切1刀最多切成2块,切2刀最多切成4块,切3刀最多切成7块,照这样切下去,切5刀最多切成块.22.请把下面的图形分成形状、大小都相同的4块,使每一块里面都有“春蕾杯赛”4个字.23.一块底面为正方形的奶油蛋糕,上面、底面和四周都均匀的涂着奶油,如果我们想将它分给4个小朋友,使得每个小朋友分得的蛋糕和奶油都一样多,我们可以用图1的方法,将它分成4等分,现在要将它切成3块,分给3个小朋友,使得每个小朋友分得的蛋糕和奶油都一样多,请在图2中给出你的方法.24.一个等腰直角三角形和一个正方形如图摆放,①、②、③这三块的面积分别是2、8、58,则④、⑤这两块的面积差是.25.一个圆最多可以将平面分成两部分,两个圆最多可以将平面分成4部分,10个圆最多可以将平面分成部分.三.解答题(共25小题)26.把任意三角形分成三个小三角形,使它们的面积的比是2:3:5.27.图中由10个相同的小正方形组成,请用三种方法把它分割成两个大小相等、形状相同的部分(沿图中的线分割).28.数一数,在图1中的不同位置可以画出多少个图2所示的图形?(方向可以旋转)29.如图是一个由36块1×1的小正方形组成的图形.(1)能不能将这个图形剪成三块后拼成一个6×6的正方形?并说明理由.(2)能不能将这个图形剪成18个2×1的长方形?并说明理由.30.请将如图所示的正方形分成两块,使得这两块的形状和大小都相同.并且每一块中都含有A、B、C、D、E五个字母,在图中用斜线或不同色笔区分.31.如图正方形的边长是2米,在其四个角落各放一盆花,若想把正方形面积扩大为原来的2倍,又不移动花的位置,使得花在正方形的边上,可能吗?请在原图上画出示意图.32.将边长是7的大正方形分割为边长分别是1,或2,或3的小正方形,其中至少有多少个边长是1的正方形?在图中画出你的分割方法.答:至少有个边长是1的正方形.33.图1是一个5×5的数字方阵,正中一个小正方形被挖去.请将它划分成8个部分,每个部分的形状是图2中的一种,并且每个部分中的三个数字和相等.请在图1中用粗线表示出划分的方法.34.如图,圆形靶纸上有两个弹孔,一个在内圈,一个在外圈,请将这张靶纸剪成两部分,使得这两部份的形状大小完全相同,并且各有一个弹孔.(请在图上划出剪线即可)35.把如图分割成形状、大小完全一样的8个部分.请在图中画出你的分法.36.在3×3方格中(如图),画一条直线最多可穿过几个方格?(请画图表示)37.在下面的直角梯形中画两条线,分成三个三角形,使它们的面积比为1:2:3.38.如图是某个图形的,你能画出这个图吗?至少想出两种方案,并保留作图痕迹.39.把卡纸上6×6的方格沿格线剪成4块形状相同,大小相等的图形,使得每一块上都有“新”、“年”、“好”三个字.(1)将剪下的4块图形分开粘贴在下面的答题区内.(2)设每个1×1的小方格的边长为1,求每块图形的周长.40.如图,有9只小猴住在同一个正方形卧室中.现在,小猴们都想单独住.猴妈妈只要再砌两个正方形墙,就能让每只小猴都单独住了.你知道怎么砌吗?请直接画在图中.41.将图分割成两部分,两部分恰好能拼成一个正方形.(1)若图中每个小正方形的边长是1,拼成的正方形的边长是多少?(2)用粗线表示分割的路线.42.[构造平行四边形].如图,图中的三条横线互相平行,三条斜线也互相平行,怎样画一条直线,把这个图形分成面积相等的两部分呢?43.如图1所示,在正方形点阵的某些方格中标上数字,然后按如下规则连线:(1)沿虚线连出一条封闭折线;(2)方格中的数字表示封闭折线经过该方格的边数;例如右下角的数字3就表示封闭折线经过了该方格的3条边,左下角的数字0表示就表示封闭折线不经过该方格的边;(3)对于没有数字的方格,折线在经过它时没有边数限制,折线也可以选择不经过没有数字的方格;(4)封闭折线上的每个格点都恰好与另外两个格点相连,其它格点一律不与任何格点相连.依据上述四条规则,图1的答案就是图2.请依据上述四条规则,在图3中画出正确的连线方法.44.某城市准备举行书画展览,为了保证展品安全,展览的保卫部门准备安排保安员值班.情况如下:①展览大厅是长方形,内设均匀分布的3×4个长方形展区,如图1所示.在展厅中,展览的书画被挂在每个展区的外墙上,参观者在通道上浏览书画.②保安员站在固定的位置上,不允许转身,只能监视他的左右两侧和正前方,形如一个“T”形的区域.③展品的安全意味着每一个展区的四面外墙都在保安员的监视范围内.对于如图所示的展示中,最少需要几个保安员能使展品安全?为什么?并在图中标明这些保安员的位置(如图2,要在A处安排一个保安员,就在A处画一个“T”字).45.在一个正六边形中,找出一个三角形,使这个三角形的面积等于正六边形面积的.(直接在图4中画出,并说明理由)46.张家和李家共同拥有一块如图的平行四边形的田地,田地的中间有一用于灌溉的圆形池塘,点O为圆心,现在他们两家想用一条直线把这块田平均分配,并且中间的池塘也要平均分配,你能为他们设计一个分配方案吗?把你的设计图画在原图上,如有必要,请作简要文字说明.47.图中有5个小正方形,请你在图中画一条直线,将这5个小正方形平均分成两部分,每部分所包含的图形两两相同,且面积相等.并请简要说明作图步骤.48.把一个正方形,分别分成7,8个小正方形(画出图形)49.如图是一个正方形,请你将它划分成10个小正方形.50.请将下图分割成大小、形状都相同的4块,每一块中都要带有白子、黑子各一个.参考答案与试题解析一.选择题(共1小题)1.一个三角形将平面分成2个部分,2个三角形最多将平面分成8个部分,那么5个三角形最多能将平面分成的部分数是()A.62B.92C.512D.1024【分析】一个三角形可分内外两部分,第2个三角形有三条边,每条边都可以挂一下原三角形的每个角,这样就产生2×3=6个交点,根据植树间隔问题,这6个交点自然把第2个三角形这样一个封闭图形分成6段(有直有弯),每段穿过一个部分一分为2,新增6个,所以2+6=8部分;第3个三角形的每条边现在可以挂到原有2个三角形的2个角,得到4个点,3条边最多可产生4×3=12个交点,同理这12个交点把第三个三角形本身分成12段,每段穿过一个部分,又新增加12个,共2+6+12=20个;同理,第4个三角形共分成:2+6+12+18;…;所以n个三角形分部分数可总结出一个规律:部分数=2+6+12+18+24+…=2+n×(n﹣1)×3;据此解答.【解答】解:2+5×(5﹣1)×3=2+60=62(个)答:5个三角形最多能把平面分成62部分.故选:A.【点评】像这种长方形、直线、圆、三角形等分平面部分数的问题,对于比较复杂的问题,可以先观察其简单情况,利用等差数列归纳出其中带规律性的东西,然后再来解决较复杂的问题.二.填空题(共24小题)2.在平面上,用边长为1的单位正方形构成正方形网格,顶点都落在单位正方形的顶点(又称为格点)上的简单多边形叫做格点多边形.最简单的格点多边形是格点三角形,而除去三个顶点之外,内部或边上不含格点的格点三角形称为本原格点三角形,如图所示的格点三角形MBN.每一个格点多边形都能够很容易地划分为若干个本原格点三角形.那么,图中的格点四边形的面积为7.5,可以划分为15个本原格点三角形.【分析】根据皮克公式:设格点多边形的面积是S,该多边形各边上的格点个数为a个,内部格点个数为b个,则S=a+b﹣1,即可求出图中的格点四边形的面积.【解答】解:皮克公式:S=a+b﹣1图中的格点四边形中,各边上的格点数a=5,内部的格点数b=6,所以格点四边形的面积是:×5+6﹣1=7.5根据题意,本原格点三角形内部没有格点,那么S=×3+0﹣1=0.5,所以7.5÷0.5=15(个),故答案为7.5,15.【点评】本题考查皮克公式的灵活运用.3.给出一个正方形,请你动手画一画,将它分为n个小正方形,那么,通过实验与思考,你认为这样的自然数n可以取的所有值应该是非零自然数的平方.【分析】由于正方形的边长相等,面积等于边长的平方,要实现将其剖分成n 个正方形,自然数n应该是非零自然数的平方.【解答】解:因为大正方形的边长分成相等份的边长,均可以得到正方形,则这样的自然数n可以取的所有值应该是非零自然数的平方,故答案为非零自然数的平方.【点评】完成本题可实际操作一下,只需要每次均分一个小正方形,依次推出即可.4.将图分割成大小形状相似的两块,这两块图形可拼成一个正方形.用粗线条在原图上画出分割线,不必画拼合成的正方形.【分析】由题意正方形的面积为16,推出正方形的边长为4,由此即可解决问题.【解答】解:因为正方形的面积为16,推出正方形的边长为4.分割线如图所示,①与②相似,①放入③位置即可.【点评】本题考查图形的划分,解题的关键是利用数形结合的思想解决问题求出正方形的边长是关键.5.大正方形内有两个小正方形,这两个小正方形可以在大正方形内任意移动(小正方形的任何部分都不能移出大正方形,小正方形的边必须与大正方形的边平行).如果这两个小正方形的重叠面积最小为9,最大为25,并且三个正方形(一个大正方形和两个小正方形)的边长之和为23,则三个正方形的面积之和为189.【分析】利用两个小正方形的重叠面积最大为25,可得最小正方形的面积为25.设另一个小正方形的边长为x,则大正方形的边长为x+5﹣3=x+2,根据三个正方形(一个大正方形和两个小正方形)的边长之和为23,建立方程,可得三个正方形(一个大正方形和两个小正方形)的边长,即可求出三个正方形的面积之和.【解答】解:两个小正方形的重叠面积最大为25,可得最小正方形的面积为25,边长为5.大正方形内有两个小正方形,则设另一个小正方形的边长为x,则大正方形的边长为x+5﹣3=x+2,所以根据三种边长的和得出5+x+x+2=23,解得x=8,所以三个正方形的面积的和为52+82+102=189,故答案为189.【点评】本题考查图形划分,考查最大与最小问题,考查学生分析解决问题的能力,正确求出三个正方形(一个大正方形和两个小正方形)的边长是关键.6.如图,6×6的表格被粗线分成了9块,若某块中恰有N个格子,则该块所填数字恰好为1~N;且任意相邻两个格子(有公共点的两个小正方形称为相邻格子)所填数字不同,那么四位数是4252.【分析】按题意,首先可以确定是只有一个方格的位置H处,只能填1;而B所在的那块只有2个方格,只能填1和2,而B与1相邻,故只能填2;A处只能填3或4,而B下面的三个方格只能填1、2、3,A处只能填4,因为E处的方格只能填1,而I处只能填3,则C处填5,D处填2.【解答】解:根据分析,首先可以确定是只有一个方格的位置H处,只能填1;而B所在的那块只有2个方格,只能填1和2,而B与1相邻,故只能填2;A处只能填3或4,而B下面的三个方格只能填1、2、3,A处只能填4,因为E处的方格只能填1,而I处只能填3,则C处填5,D处填2.填法如下图:综上,A:4,B:2,C:5,D:2故答案是:4252.【点评】本题考查图形划分,突破点是:根据每个区域数字的特征,判断每个方格的数字.7.有一个等腰梯形的纸片,上底长度为2015,下底长度为2016,用该纸片剪出一些等腰梯形,要求剪出的梯形的两个底边分别在原来梯形的底边上,剪出的梯形的两个锐角等于原来梯形的锐角,则最多可以剪出4029个同样的等腰梯形.【分析】由于等腰梯形的纸片,上底长度为2015,下底长度为2016,它们上下底的长度相差1,要求剪出的梯形的两个底边分别在原来梯形的底边上,剪出的梯形的两个锐角等于原来梯形的锐角,则剪出的梯形的下底长度约大于2016﹣2015=1,依此即可求解.【解答】解:(2015﹣1)×2+1=2014×2+1=4028+1=4029(个)答:最多可以剪出4029个同样的等腰梯形.故答案为:4029.【点评】考查了图形划分,本题理解剪出的梯形的下底长度约大于2016﹣2015=1是解题的关键.8.如图,用一条线段把一个周长是30cm的长方形分割成一个正方形和一个小的长方形.如果小长方形的周长是16cm,则原来长方形的面积是56cm2.【分析】由大长方形到小长方形周长减少了:30﹣16=14(厘米),相当于减少了两条正方形的边长,所以正方形的边长是:14÷2=7(厘米),也就是原来长方形的宽是7厘米;那么原来长方形的长为:16÷2﹣7+7=8(厘米),面积是:8×7=56cm2.【解答】解:根据分析可得,30﹣16=14(厘米),正方形的边长:14÷2=7(厘米),原来长方形长:16÷2﹣7+7=8(厘米),面积:8×7=56(平方厘米);答:原来长方形的面积是56cm2.故答案为:56.【点评】本题是比较复杂的求面积问题,关键是利用类似“差不变”原理求得正方形的边长也就是原来长方形的宽.9.如图,一个正方形,与4个等腰直角三角形,恰好拼成一个长方形,如果正方形的面积是16,那么,长方形的面积是192.【分析】图中的三角形都是等腰直角三角形,所以将图形分割,利用正方形的面积是16,可得结论.【解答】解:图中的三角形都是等腰直角三角形,所以将图形分割,如图所示,由于正方形的面积是16,所以长方形的面积是16+4×(4×6×2)=192,故答案为192.【点评】本题考查图形划分,考查学生的动手能力,正确分割图形是关键.10.在空格中填入数字1﹣5使得每行、每列和每宫(在数独中被粗线分割开的每块称为宫)数字都不重复,斜线相邻的数字也不能相同.那么,第一行从左至右5个数字依次组成的五位数是53124.【分析】按题意,L、H与4相邻,故不能为4,第二列中只有能是D为4;L、H 处只能是1和5,由于H与5在一条斜线上,故不能为5,所以L为5,H为1;而F与5同列,故不能为5,而E、F与1、2同行,只能是3和5,故F 为3,E为5;在第一宫中,D为4,A、B只能是1和5,因B与5相邻,故B不能是5,故B是1,A是5;在第一行中,只剩下C必为4.【解答】解:根据分析,L、H与4斜线相邻,故不能为4,第二列中只有能是D 为4;L、H处只能是1和5,由于H与5在一条斜线上,故不能为5,所以L为5,H 为1;而F与5同列,故不能为5,而E、F与1、2同行,只能是3和5,故F为3,E 为5;在第一宫中,D为4,A、B只能是1和5,因B与5相邻,故B不能是5,故B 是1,A是5;在第一行中,只剩下C必为4.综上,第一行从左至右5个数字依次组成的五位数是:53124.故答案是:53124.【点评】本题考查图形划分,突破点是:根据每行每列的数字不能重复,可以推测出第一行的数字.11.把一张边长为11厘米的正方形纸片,剪成若干边长小于11的整数厘米的正方形纸片(不必全相同,允许重复剪成同一种尺寸,纸片没有浪费),最少能剪成11片.【分析】可以将整个边长为11厘米的正方形纸片分割成边长为1厘米的小正方形,然后再分,11厘米若分成两个边长一样的正方形,则无法保证边长为整数,故只能一个是6厘米,另一个为5厘米,故可以分成一个6厘米的正方形,两个边长为5厘米的正方形,剩下的再细分,直至分完.【解答】解:根据分析,如图;11厘米若分成两个边长一样的正方形,则无法保证边长为整数,故只能一个是6厘米,另一个为5厘米,故可以分成一个6厘米的正方形,两个边长为5厘米的正方形,剩下的还至少可以分成三个边长为3的正方形,最后剩下中间的8个小方格,再分,至少可以分成一个边长为2的小正方形,和4个边长为1的小正方形.综上,共可以分成:1+2+3+1+4=11个正方形.故答案是:11.【点评】本题考查图形划分,突破点是:将图形先划分成面积较大的正方形,然后再分,最后即可求得正方形的最少个数.12.如图是长方形,将它分成7部分,至少要画3条直线.【分析】两条直线把正方形分成4部分,第三条直线与前两条直线相交多出3部分,共分成7部分;第四条直线与前3条直线相交,又多出4部分.共11部分,第五条直线与前4条直线相交,又多出5部分,如下图所示.【解答】解:1+1+2+3=7答:在一个长方形上画上3条直线,最多能把长方形分成7部分.故答案为:3.【点评】此题考查了图形的拆拼.使直线间相互交叉,交点越多,则分割的空间越多.每多第几条直线,就加几个部分.13.把一张l6cm×32cm的纸裁去一半,再将其中一张裁去一半…继续这样裁下去,直到得到一张lcm×2cm的纸为止,那么一共需裁8次.【分析】根据图形的拆拼(切拼)方法可知,每次裁去一半,纸的一条边是原来的一半,依此计算即可求解.【解答】解:因为16÷2÷2÷2÷2=1(厘米),32÷2÷2÷2÷2=2(厘米),所以一共需要裁4+4=8(次).答:一共需要裁8次.故答案为:8.【点评】此题属于操作题,做题时最好是先结合实物进行分割,进行观察,然后得出答案.14.如图是一个正方形,请你用直线将它划分成11个互不重叠的小正方形(大小不一定相同).【分析】先把正方形的相邻的两条边都4等分,然后以每份的长度作为小正方形的边长,做出7个小正方形(如下图),同理,然后再把剩下的部分边长2等分,做出4个小正方形即可.【解答】解:根据分析画图如下:【点评】本题考查了图形的划分,关键是结合图形的特点和需要画的小正方形的个数,确定把边长几等分.15.将下图中的正方形分割成形状和大小一样的四块,并且每一块恰好都有四种不同的图案.在图中用不同的色笔把它们区分开.【分析】首先以这个8×8方格的中心作为对照,然后再用粗线按照要求把正方形平分,使每一部分都有这四个图形,即可得解.【解答】解:根据题干分析可得:【点评】解答此类问题的关键是先确定方格的中心,再根据各个图形的分布特点,画图分析即可解答,锻炼了学生的几何直观和抽象思维能力.16.有一块花格布,如图.请你把它沿格线剪成四块,然后制成一大一小两个正方形的坐垫,相邻小格的图案不同.在图上用粗线画出分割线.【分析】因为制成一大一小两个正方形的坐垫,又要求相邻小格的图案不同,根据这块花格布的特点,可分成4×4和3×3的正方形,如图所示(见解答部分).【解答】解:【点评】此题考查了学生对图形的识别,以及分析判断和操作能力.17.一个角可以将平面分成2部分.3个角最多可以将平面分成16个部分.【分析】先作一个角A,再作角B使B的每边都与A的两边相交,这时平面已被分为7部分;再作一个角C,使C的每边都与图中已有的4条边相交,这样就把平面分为了16部分,据此即可解答.【解答】解:根据题干分析画图如下:。

20181213小学奥数练习卷(知识点:竖式数字谜)含答案解析

20181213小学奥数练习卷(知识点:竖式数字谜)含答案解析

小学奥数练习卷(知识点:竖式数字谜)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一.选择题(共1小题)1.加法算式中,七个方格中的数字和等于()A.51B.56C.49D.48第Ⅱ卷(非选择题)二.填空题(共44小题)2.根据下面的乘法竖式,可判断出最后的乘积是.3.如图是一个空白的除法竖式迷.要使计算成立,商最大时,被除数是.4.如图,在方框中填入适当的数字,使得竖式成立,则所得结果的各位数字和最大是.5.已知除法竖式如图:则除数是,商是.6.如图的式子中每一个中文字代表1~9中的一个数码,不同的文字代表不同的数码:则被乘数为.7.在乘法竖式的□中填入合适的数字,使竖式成立.这个乘法算式的积是.8.填入合适的数字,使如图所示乘法竖式成立.两个乘数的和是.9.请将下面的乘法竖式补充完整,那么,最后一行的五位数是.10.下面的加法竖式中,所有数字互不相同,其中,数字2、0、1、6已经填好,那么,这个加法竖式的和是.11.将下面的乘法竖式补充完整,最后一行的乘积是.12.如图是一个乘法数字谜,最后的乘积为13.图中的乘法竖式,最后结果为.14.如图,乘法竖式中已经填出了3和8,那么,乘积是.15.在如图所示除法整式的每个方框中,填入适当的数字,使算式成立.那么算式中的被除数是.16.在如图的乘法整式中,每一个“□”和英文字母都代表一个数字;其中相同的字母代表相同的数字,不同的字母代表不同的数字,而“□”中可以填写在任意的数字,已知P=6,那么五位数HAPPY是.17.如图,一道除法竖式中已经填出了“2016”和“0”,那么被除数是.18.如图乘法算式中只有四个位置上的数已知,它们分别是2,0,1,6请你在空白位置填上数字,使得算式能够成立.那么乘积为.19.如图算式中,不同的汉字代表不同的数字,那么,代表的四位数最大是.20.如图,一道乘法竖式中已经填出了2、0、1、6,那么乘数中较小的是.21.如图的乘法竖式中,相同的汉子代表相同的数字,不同的汉字代表不同的数字:乘法竖式正确填写后,“”所代表的四位数是.22.如图,一道乘法竖式已经填出了2、0、1、6,那么乘积是.23.如图,一道乘法竖式中已经填出了2、0、1、6,那么乘积是.24.如图的两个竖式中,相同汉字代表相同数字,不同汉字代表不同数字.两个△和两个□中填入的数字分别相同:那么,“花园探秘”的值是.25.如图,将竖式填写完全后,所得的乘积是.26.请把如图所示的算式谜补充完整,那么被除数为.27.在下面的空格中填入合适的数字,使得乘法竖式成立,其中的乘积为.28.在如图的方格中填入适当的数字,使乘法竖式成立,那么乘积是.29.已知图中的除法竖式成立,则被除数等于.30.在如图的方格中填入适当的数字,使乘法竖式成立,那么乘积是.31.如图,相同的汉字代表相同的数字,不同的汉字代表不同的数字.所有的汉字都不为0,也不与图中已经出现的数字相同,那么四位数“中环杯棒”=.32.已知0.+0.b=,相同的字母代表相同的数字,不同的字母也可以代表相同的数字(比如a=b=1),则=.33.将如图的乘法竖式数字填充完整,其中,两个乘数的和是.34.在如图的每个方框中填入一个数字,使得乘法竖式成立,那么,这个算式的乘积是.35.如图,一道除法竖式中已经填出了“2015”和“0”,那么被除数是36.在如图的每个方框中填入一个适当的数字,使得乘法算式成立,乘积等于.37.在图中的竖式除法中,被除数为?38.在下面算式的每个方框中填入一个适当的数字,使得乘法竖式成立,两个乘数之和是39.在下面算式的每个方框中填入一个适当的数字,使得乘法整式成立,两个乘数之和是40.如图除法竖式中的商是.41.如图的两个竖式中,相同的字母代表相同的数字,不同的字母代表不同的数字,那么四位数=.42.请在如图的每个方框中填入适当的数字,使得竖式成立(现已填入“2015”)那么竖式中乘积的最大值是.43.在每个方框中填入一个数字,使得乘法竖式成立,那么这个算式的乘积是.44.请将0~9折10个数分别填入如图的10个方框中,使得减法算式成立.如果“6”、“1”这两个数字分别填在被减数的前两个方框中,那么算式的差是.45.在如图每个方框中填入一个数字,使得乘法竖式成立.那么,两个乘数的和是.三.计算题(共1小题)46.在下面□中填入合适的数.四.解答题(共4小题)47.下面竖式中的两个乘数之和为多少.48.在如图算式中的所有空格内各填入一个数码,使得算式成立.49.a,b,c,d,e都是自然数,且0<c<b<a<d<e≤9,若如图的算式成立,求.50.如图,一个四位数加上一个三位数和为2015,这两个数的数字和等于.参考答案与试题解析一.选择题(共1小题)1.加法算式中,七个方格中的数字和等于()A.51B.56C.49D.48【分析】根据两数相加最大进位是1可知.个位数字相加结果是14,十位和百位数字相加和为18,千位有1个进位1.即可求解.【解答】解:依题意可知:根据两数相加最大进位是1可知.个位数字相加结果是14,十位和百位数字相加和为18,千位有1个进位1.14+18+18+1=51.故选:A.【点评】本题考查对竖式谜的理解和运用,关键是找到只有1的进位问题解决.二.填空题(共44小题)2.根据下面的乘法竖式,可判断出最后的乘积是9708.【分析】假设两位数为AB,三位数为8CD,由竖式中可知:该两位数与三位数相乘后,中间一行没有,故C必为0,然后再根据两位数与一位数相乘的规律即可求出A、B、D的数字.【解答】解:为方便说明,假设两位数为AB,三位数为8CD,由竖式中可知:该两位数与三位数相乘后,中间一行没有,故C必为0,由竖式可知:AB×8还是两位数,故A必为1,由于1B×D是三位数,故B必定大于1,因为1B×8是两位数,所以B不能大于2,故B只能等于2,所以两位数为12,由于12×D是三位数,故D必定为9,所以三位数为809,故最后乘积为12×809=9708,故答案为:9708.【点评】本题考查竖式数字谜,解题的关键是熟练运用两个数相乘的竖式运算规律,本题属于中等题型.3.如图是一个空白的除法竖式迷.要使计算成立,商最大时,被除数是10879.【分析】注意观察竖式可知五位数中,万位是1,千位为0,除数的十位只能是1,由于商要最大,所以商的百位最大为9,从9开始讨论即可得出答案.【解答】解:为方便说明:可用字母表示各个空格,如图所示,由于竖式除法可知:FGH减去KL后是所得的数是个位数,从而可知F=1,G=0,K=9,由于要使商最大,∴A最大为9,可从9开始尝试,由于K=9,9乘以DE后所得的两位数,十位为9,故D=1,E只能是1或0,当E=0时,所以除数为10,此时KL必定为90,由于FGH减去KL所得的数为个位数,即10H减去90所得数为个位数,由减法可知,该式不可能成立,当E=1时,所以除数为11,此时KL必定为99,由于商要最大,所以B先从9开始考虑,当B=9时,此时OP=99,由于MN减去OP所得的数为个位数,即MN减去99所得的数为个位数,由减法可知:此式不可能成立,所以B=8,此时OP=88,由于商要最大,所以C可以从9开始考虑,当C=9时,此时SM=99,由于余数为0,所以QR=SM=99,所以J=9,所以MN=88+9=97,所以H=8,I=7,所以被除数为10879,除数为11,此时商最大为989,故答案为:10879,【点评】本题考查竖式数字谜,解题的关键是根据竖式除法以及竖式减法先得出F、G、K的值,然后根据商最大判断A、B、C的情况,本题属于中等题型.4.如图,在方框中填入适当的数字,使得竖式成立,则所得结果的各位数字和最大是36.【分析】首先根据已知数字找到能确实的数字,然后根据进位和找到数字的最大和最小再排除即可.【解答】解:根据题意可知求最大:根据已知数字0判断第一个乘数的十位有可能是0或者5,再因为数字6,只能是与5的乘积加上一个进位.故第一个十位数字是5.根据乘数的乘积有数字6并且是三位数,那么首位数字乘积加上一个进位就是小于10的,那么3×2=6满足条件而且最大1×5=5满足条件而且最小;①当第一个乘数的首位数字是2,第二个乘数的首位是3.再根据含有数字1的结果是4位数,而且是偶数乘以5加上进位满足1的条件.最大是4,那么第一个乘数的个位数字就是4.即:254×342=86868(数字和为36)②当第一个乘数的首位数字是1,第二个乘数的首位数字是5时152×582=88464(数字和为30)也是满足条件的,故答案为:36【点评】本题考查对数式谜的理解和综合运用,关键在找到确定数字,再进行枚举排除.问题解决.5.已知除法竖式如图:则除数是15,商是29.【分析】根据题意,由除法竖式的计算方法进行推算即可.【解答】解:根据竖式可知,除数与商的个位数相乘的积的末尾是5,可得,除数的个位数与商的个位数必有一个是5,另一个是奇数;假设,商的个位数是5,即商是25,由135÷5=27,27×2=54,大于被除数的前两位,不符合题意,那么除数的个位数字是5;由□5×2是两位数,并且小于4□,可知除数的十位数字小于或等于2,假设是2即25×2=50>4□,不符合题意,那么除数只能是15;又因为15×9=135,所以,商是29,被除数是29×15=435.竖式是:故答案为:15,29.【点评】根据题意,由除法竖式的计算方法进行推算即可.6.如图的式子中每一个中文字代表1~9中的一个数码,不同的文字代表不同的数码:则被乘数为142857.【分析】根据汉字代表数字的特点,设出相同的文字用同一个字母代替,利用给出的算式列出等式,进一步利用数字特点解答即可.【解答】解:设“学奥林匹克“=A,“数”=B,则3×(A+100000B)=10A+B,3A+300000B=10A+B,7A=299999B,A=42857B.只可能B=1,符合题意,从而A=42857,B=1.所以被乘数是142857.故答案为:142857.【点评】考查了竖式数字谜,此题主要抓住相同的文字,设出同一个字母表示,再利用十进制列出等式,进一步利用数字特点解答即可.7.在乘法竖式的□中填入合适的数字,使竖式成立.这个乘法算式的积是8820.【分析】(1)根据两个乘数的末尾数字相乘得0,可以第一个乘数的末尾可能是0或5,在根据第一个乘数的末尾数字与第二个乘数的十位数字相乘的末尾数字是5,可以确定第一个乘数的个位就是5.(2)根据第一个乘数与第二个乘数个位6相乘得一千多,就能确定第一个数的百位数字是2或3,分别计算245÷6=1470,345×6=2070,由此断定第一个乘数就是245.(3)因为积是八千多,所以能确定第一个乘数245乘第二位乘数的十位数字积是六百多或七百多,由此确定第二个数的十位数字是3.【解答】解:245×36=8820.【点评】抓住积的特征联系乘数各位数字进行推理.8.填入合适的数字,使如图所示乘法竖式成立.两个乘数的和是925.【分析】根据第一个因数的个位与第二个因数十位乘积的末位数是1,可确定第一个因数和第二个因数的十位是1,或9,或3、7,如是1,第二个因数的十位与第一个因数相乘的积是二位数,与算式矛盾;如是9,则第一个因数应是几十九,它与2的乘积不可能得到几百零几,所以第一个因数的个位是3或7,如是7,则第一个因数应是几十七,它与2的乘积不可能得到几百零几,所以第一个因数的个位是3,第二个因数的十位是7,据此可推出第一个因数的十位是5,进而推出第二个因数的百位是8.【解答】解:53+872=925答:两个乘数的和是925.故答案为:925.【点评】本题的重点是根据第一个因数的个位与第二个因数十位乘积的末位数是1,来推出第一个因数和第二个因数十位上的数是多少.9.请将下面的乘法竖式补充完整,那么,最后一行的五位数是30975.【分析】根据竖式乘法以及乘法与加法的法则即可求出答案.【解答】解:为方便说,各空格标示字母,如图所示,由竖式可知:E=0,由于ABC×5是一个四位数,且最高为1,若A=1时,此时1BC×5不可能是四位数,故A=2,由于2BC×D=2F5,故D=1,且B=F,因为1+F=10,所以F=9,所以ABC表示三位数是295,DE5表示三位数是105,所以最后结果为30975故答案为:30975【点评】本题考查竖式数字谜,解题的关键是熟练竖式乘法,以及乘法、加法的法则,本题属于中等题型.10.下面的加法竖式中,所有数字互不相同,其中,数字2、0、1、6已经填好,那么,这个加法竖式的和是1053.【分析】此题的思路就是根据黄金三角得出C=9.知道ABDEF从3、4、5、7、9中选,再根据条件推算ADF,最后推出BE即可.【解答】解:式子中的空格用字母表示,如上图.(1)因出现黄金三角,所以C一定为9.(2)由题目要求数字互不相同,所以ABDEF只能是3、4、5、7、8.(3)A+2+D应该有的情况为:①AD取3与4、5、7、8的组合有:3+4+2=9,9已有不行;3+5+2=10,0已有不行;3+7+2=12,2已有不行;3+8+2=13,3已有不行.②AD取4与5、7、8的组合有:4+5+2=11,1已有不行;4+7+2=13,3没有可以;4+8+2=14,4已有不行.③AD取5与7、8的组合有:5+7+2=14,4没有可以;5+8+2=15,5已有不行.④AD取7、8组合,7+8+2=17,7已有不行.综上可得:AD取4与7,5与7两种组合符合条件.若AD为4、7时,F=3⇒BE为5、8.当B=5时,B+6+1=12,即E为2不是5,所以不行;当B=8时,B+6+1=15,即E=5行.若AD为5、7时,F=4⇒BE为3、8.当B=3时,B+6+1=10,即E为0不是8,所以不行;当B=8时,B+6+1=15,即E为5不是3,所以不行.故:只有E=5,F=3一种符合条件.即答案是1053.【点评】此题首先应看到黄金三角,从而确定C,然后才便于推算出结果.11.将下面的乘法竖式补充完整,最后一行的乘积是2016.【分析】观察式子的特点,得知F一定为6,AB与C积的个位是2,AB与D积的个位是6.这是此题的着手点,然后再找条件,进行逐步检验得出符合条件的式子即可.【解答】解:将题目中的空格用字母表示,如上图.(1)F+0=6⇒F=6(2)B×D积的个位是6⇒BD进行组合的数应为1与6、2与3、2与8、4与4、4与9、6与6、7与8⇒B可为1、2、3、4、6、7、8.(3)B×C积的个位是2⇒BC进行组合的数应为1与2、2与6、3与4、4与8、6与7、8与9⇒B可为1、2、3、4、6、7、8、9.(4)B可选的数有:1、2、3、4、6、7、8共7种情况.(5)AB×D积是两位数,AB×C积是三位数⇒C>D①若B=1时,则只能D=6,C=2,所以D>C不行.②若B=2时,则D可为3、8,B可为1、6.因C>D,所以只能C=6,D=3⇒A2×63,A可取2﹣﹣9.即得:22×63=1386,32×63=2016,42×63=2646,52×63=3276,62×63=3906,72×63=4536,82×63=5166,92×63=5796.这些积只有32×63的积符合G0H6的形式,其它均不行,故只有A=3,32×63行.③若B=3时,则D=2,C=4⇒A3×42,A可取3﹣﹣9.经检验(过程同上)都不行.④若B=4时,则D为4、9,C为3、8⇒D=4,C=8⇒A4×84,A可取2﹣﹣9.经检验(过程同上)只有24×84的积符合G0H6的形式,其它均不行,故A=2,24×84行.⑤若B=6时,则D为1、6,C为2、7⇒D=1,C=2或D=1,C=7或D=6,C=7三种可能,即A6×71,A6×21,A6×76三种.经检验(过程同上)A6×71和A6×76中没有符合的,只有A6×21中96×21积符合G0H6的形式,其它均不行,故只有96×21行.⑥若B=7时,则D=8,C=6,所以D>C不行.⑦若B=8时,则D为2、7,C为4、9⇒D=2,C=4或D=2,C=9或D=7,C=9三种可能,即A8×42,A8×92,A8×97三种.经检验(过程同上)A8×92和A8×97中没有符合的,只有A8×42中的48×42积符合G0H6的形式,其它均不行,故只有48×42行.综上得:32×63=2016,24×84=2016,96×21=2016,48×42=2016故:最后一行的乘积是2016.【点评】此题突破口好找,但检验麻烦,一定要认真细心才行.12.如图是一个乘法数字谜,最后的乘积为56500【分析】将此题的空用不同字母分别代替,如图.根据图形结构可得这题的着手点是题目中的出现数字多的部分,所以应从K入手,然后一步一步地去推算出来所有字母代表的数字.【解答】解:用不同字母表示不同位置的空格,如上图.(1)∵2+0+2<10,∴2+9+K和的个位数是6⇒K=5,(2)∵2+9+5=16,∴J+1=5⇒J=4,(3)∵ABC×F=22GH,ABC×D=452,452的6倍>22GH>452的4倍,∴F>4D⇒D只能是1或者2,又∵C×D积的个位是2,⇒CD可能是(1×2)、(2×1)、(3×4)…,∴CD只要两种情况C=1,D=2或C=2,D=1,①C=1,D=2时:∵ABC×D=452⇒AB1×2=452⇒2和1﹣﹣9的任意一个数相乘个位都不肯能出现5.∴这种情况不行.②C=2,D=1时:ABC×D=452⇒AB2×1=452⇒A=4,B=5,ABC×E=90S⇒452×E=90S⇒4×E<10⇒E是1,2.若E=1时,452×1积不能出现90S形式,所以E不能是1,只能是2.若E=2时,452×2=904,符合90S的形式,所以E是2,S=4.ABC×F=22GH,F>4D,D=1⇒F是5、6、7、8、9.若F=5时,452×5=2260,符合22GH的形式⇒G=6,H=0.若F=6时,452×6=2712,2712>22GH的形式,所以F=6不行.∵6与452的积大于22GH,∴7、8、9与452的积就更大于22GH⇒F是7、8、9时也不行.综上所述得:A=4,B=5,C=2,D=1,E=2,F=5,G=6,H=0,S=4,J=4,K=5.(4)H+0+0=0,N为0的个位⇒N=0(5)G+S=6+4=10,M为10的个位⇒M=0(6)2+0+2+1=5,L为5的个位⇒L=5故:452×125的积是56500.【点评】此题着手点好找,就是过程太麻烦,要求能做到耐心与细心才行.13.图中的乘法竖式,最后结果为4485.【分析】用字母代表空白的位置,如图.观察图中的情况可从AB与C、D、5三个数的乘积的数位入手,逐步推算即可.【解答】解:(1)∵AB×5=E1F是个三位数⇒AB最小是20,又∵AB×C=2H,∴A=2,C=1.(2)AB×5=2B×5=E1F⇒E=1,B×5=1F⇒B=2,F=0或B=3,F=5,∵AB×D=22×D=G0S是个三位数⇒D为5、6、7、8、9.①若B=2,F=0时,22×5=110,22×6=132,22×7=154,22×8=176,22×9=198这些积中没一个符号G0S形式的,所以此情况不行.②若B=3,F=5时,23×5=115,23×6=138,23×7=161,23×8=184,23×9=207这些积只有207符号G0S的形式,D=9.总结得:B=3,F=5,D=9.(3)23×195=4485.故:最后结果为4485.【点评】此题的入手点是积的数位,像这类题只有入手点正确就可推出结果.14.如图,乘法竖式中已经填出了3和8,那么,乘积是1843.【分析】首先根据进位分析结果的首位是1,再根据乘积的尾数是3的共有2种情况,分析排除即可.【解答】解:依题意可知:结果中有1个进位那么前两位数字是18,乘积中最大数字就是两位数乘一位数的最大99×9=891结果是800多,不会有900多.故第一个结果首位是8,第二个结果中的首位数字就是9.尾数是3的共有1×3或者7×9,再根据第二个乘积是两位数,即97×19=1843故答案为:1843【点评】本题的关键是找到结果首位是1,相加得18的只能是9和8,再加上进位,乘积尾数是3的情况可以确定2种,枚举即可问题解决.15.在如图所示除法整式的每个方框中,填入适当的数字,使算式成立.那么算式中的被除数是53036.【分析】首先根据已知数字确定尾数分别是2,1,7.根据尾数判断除数和商的数字,最后根据除数和商的乘积加上余数就是被除数.【解答】解:依题意可知乘积的结果的个位数字分别是2,1,7.根据尾数是1的共有1×1,3×7,9×9.再根据尾数是7的乘积是1×7,3×9,两次都有数字3,那么优先考虑除数的尾数是3的情况.那么商分别是4079.再根据除数与7的积是两位数,那么首位数字只能是1,即13×4079+9=53036故答案为:53036【点评】本题的关键是找到乘积的尾数是2,1,7.在根据数字的尾数判断除数的十位,被除数=除数×商+余数或者倒推填写竖式解决问题.16.在如图的乘法整式中,每一个“□”和英文字母都代表一个数字;其中相同的字母代表相同的数字,不同的字母代表不同的数字,而“□”中可以填写在任意的数字,已知P=6,那么五位数HAPPY是90662.【分析】首先根据数字1进行推理出来乘数的结果是十位数字是0+6组合,再确定第一个乘数的首位数字2,再用枚举法找出第二个乘数的个位满足题意合适的数字,接下来末尾分析即可.问题解决.【解答】解:依题意可知首先根据数字P=6,十位数字中没有进位,那么第一个结果中的四位数的十位是0.再根据乘数中的数字1和得数中的数字2判断第一个乘数的百位是2.再根据第一个结果中含有2个数字0,如果千位数字是1,那么需要乘数乘以5,经过检验不符合条件,那么四位数的千位数字或者为2.那么第二个乘数的个位数字就是6,7,8,9这四种可能性.根据尾数判断只有数字7符合.即286×7=2002.再根据结果中的百位数字P是6,得最后的三位数尾数是8,那么乘数中的百位数字就是3.故答案为:90662【点评】本题的关键是根据数字1进行推理出来乘数的结果是十位数字是0+6组合,再确定第一个乘数的首位数字2,再用枚举法找出第二个乘数的个位满足题意合适的数字,接下来末位分析即可.问题解决.17.如图,一道除法竖式中已经填出了“2016”和“0”,那么被除数是83720.【分析】根据题意可知被除数的个位是0,因被除数的十位与0与相减的差是2,所以被除数的十位上的数是2,再根据被除数的百位与6的差是1,可确定被除数的百位上的数是7,又根据除数与与商的十位数及商的个位数相乘的得数的末位数是0,可确定商的个位数或除数的个位数有一个是0或5,0不符合题意,只能是5,又除数与商的百位数相乘的结果的末尾数是6,所以只能是商的个位数是5,则除数的个位数只能是一个偶数,不能是2,如是2则与除数与5相乘的十位数上不可能是2,可以是4,不能是6,因如是6,则除数与5相乘的十位数上不可能是2,同理也不能是8,所以除数的个位数只能是4,且除数与商的个位数5相乘得数是一个三位数,所以除数的百位数只能是1,就是1几十4与5的乘积得到是几百二十,这样可确定除数的十位数是8,进而可确定除数与商的个位数相乘得数是920,再根据除数与商的十位数相乘是三位数,上面的四位数减这个三位数是92,可确定商的十位数也是5,进而再根据除数和商的百位数上的商的个位数是6,可确定商的百位数是4.据此解答.【解答】解:【点评】本题的重点是根据已知的条件,先确定商的个位数是5,进而推出除数是多少,再进一步解决问题.18.如图乘法算式中只有四个位置上的数已知,它们分别是2,0,1,6请你在空白位置填上数字,使得算式能够成立.那么乘积为2205.【分析】根据题意第一个因数是六十几,它与第二个因数相乘的十位相乘后得到的积与这个数与个位数相乘的积的和是二千几百零几,可确定第二个因数的十位数是3或4,再根据积的十位数是0,可确定第一个因数的个数与第二个因数的十位数相乘的末尾数是9,可确定第二个因数的十位数是3,因4不论和谁相乘的末尾数不能得到9,这样就可确定第一个因数的个位数是3,再根据第一个因数63与第二个因数相乘得几百一十几,可推出第二个因数的个位数是5.据此解答.【解答】解:答:乘积是2205.故答案为:2205.【点评】本题的重点是先确定第二个因数的十位数是多少,进而推理解答问题.19.如图算式中,不同的汉字代表不同的数字,那么,代表的四位数最大是1786.【分析】根据和是2016,要使代表的四位数最大,可确定“数”是1,因“探”不能为0,“学”最大是9,如是9,则“探”是1,不合题意,“学”是8,则“探”是2,“花”与“秘”的和的末尾应是1,且不能进位,不合题意,所以“学”是7,“秘”是3或2,要使“花”最大,则“探”应是2,所以“花”是9,则“秘”是2,不合题意,“花”是8“秘”是3,则“园”最大是6,“行”是0,据此解答.【解答】解:答:代表的四位数最大是1786.【点评】本题的重点是先确定中数是几,再把数从大到小进行推理,得出符合条件的数.20.如图,一道乘法竖式中已经填出了2、0、1、6,那么乘数中较小的是152.【分析】根据题意可知第一个因数与第二个因数相乘的积是一百几十几,可确定第一个因数的个位数是1,第二个因数的个位数也是1,又第一个因数与第二个因数的百位数相乘得一个四位数,所以第二个因数的百位上的数是大于5的数,又因它与2的乘积是十几,再根据第一个因数与第二个因数的百位数相乘的倒数第二位数是6,可确定第二个因数的百位数是9或7,所以乘数较小的数是152.【解答】解:答:乘数较小的数是152.故答案为:152.【点评】本题的重点是先确定第一个因数的百位数是几,进而求出第二个因数百位上的数,从面解决问题.21.如图的乘法竖式中,相同的汉子代表相同的数字,不同的汉字代表不同的数字:乘法竖式正确填写后,“”所代表的四位数是1537.【分析】根据乘法口诀可确定“学”是1、5或6,“学”如是1,则“学”与“数”的乘积应是“数”不合题意,所以“学”是5,则根据“数学”与“学”的乘积是一个两位数,可确定数只能是1,进而可得出“园”是7,再积的最高位是5,可确定“花”是3.如“学”是6,则根据则根据“数学”与“学”的乘积是一个两位数,可确定数只能是1,则“园”是9,进而推出“花”是1或6,都不符合题意.【解答】解:答:”所代表的四位数是1537.故答案为:1537.【点评】本题的重点是先确定“学”是几,进而进行推理解答.22.如图,一道乘法竖式已经填出了2、0、1、6,那么乘积是6156.【分析】首先判断根据数位相乘结果是一个四位数和一个三位数,那么两位数的乘数中的十位数字小于2只能是1,再根据个位数字是6,那么乘数的尾数是3,同时四位数的结果是1000多那么百位数字只能是5,再根据数字关系求解即可.【解答】解:依题意可知乘数中的三位数乘以2结果是一个四位数,那么百位数字是大于4的数字,再根据数字0得知结果是1000多是数字那么乘数中的百位数字是5.而且乘数的三位数的十位数字乘以2没有进位.同时这三位数乘以一个数还是结果是三位数推理出乘数中2前面的数字是1,即乘数的两位数是12.再根据结果中的尾数是6,那么三位数的乘数的个位是3.再根据数字1得0+1=1,那么这个三位乘数是513故答案为:6156【点评】本题的关键是找到结果数字中位数的关系,利用末位分析法和首位分析法再结合已知数字进行排除即可问题解决.23.如图,一道乘法竖式中已经填出了2、0、1、6,那么乘积是612.。

20181213小学奥数练习卷(知识点:重叠问题)含答案解析

20181213小学奥数练习卷(知识点:重叠问题)含答案解析

小学奥数练习卷(知识点:重叠问题)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一.选择题(共2小题)1.如图,边长分别为10厘米和7厘米的正方形部分重叠,重叠部分的面积是9平方厘米,图中两个阴影部分的面积相差()平方厘米.A.51B.60C.42D.92.六个正方形重叠(如图)连接点正好是正方形的中心.正方形边长是a,这个图形的周长是()A.24a B.14a C.12a D.18a第Ⅱ卷(非选择题)二.填空题(共29小题)3.如图的三张正方形的纸,铺在桌面上一共遮盖的面积是平方厘米.(单位:厘米)4.有红、黄、绿三块大小一样的正方形纸片,放在一个正方形盒内,它们之间互相叠合,如图所示,已知露在外的部分中,红色面积是20,黄色面积是14,绿色面积是10,那么正方形盒子的面积是.5.将4个边长为2的正方形如图放置在桌面上,则它们在桌面上所能覆盖的面积是.6.如图,将正方形纸片ABCD折叠,使点A、B重合于点O,则∠EFO=度.7.用10张同样长度的纸条粘接成一条长41厘米的纸带,如果每个接头处都重叠1厘米,那么原来的每张纸条都长厘米.8.如图,把三个面积同是S平方厘米的圆放置在桌面上,桌面被圆覆盖的面积是2S+10平方厘米,图中两圆重叠的两块(有阴影部分)的面积相等,有一直线L过A、B两圆的圆心.直线L下方被覆盖的面积是25平方厘米,那么,S=平方厘米.9.两幅图表示两个箭头画在不同的4厘米×4厘米方格内的情况.现在将这两个箭头画在同一副4厘米×4厘米的方格内,则这两个箭头的重叠部分的面积为平方厘米.10.如图,在一个长、宽分别为19厘米和11厘米的大长方形内放了四个正方形,那么没有被正方形覆盖的小长方形(图中阴影部分)的面积是平方厘米.11.如图,正方形ABCD的面积为196平方厘米,它包含了两个有部分重叠的小正方形.其中,较大的那个小正方形面积是较小的那个小正方形面积的4倍,而且两个正方形的重叠部分面积为1平方厘米.那么,阴影部分面积为平方厘米.12.有一根绳子第一次把它按下左图方式对折,在对折处标记①;第二次我们将它按下中图方式对折,在对折处分别标记②、③;第三次我们将它按下右图方式对折,如果下右图中①号点和③号点之间的距离为30厘米,那么这根绳子的总长度是厘米.(绳子之间无缝隙,绳粗以及转弯处损耗都忽略不计).13.有一根绳子,第一次把它按左图方式对折,在对折处标记①,第二次我们将它按中图方式对折,在对折处在对折处分别标记②、③;第三次我们将它按下右图方式对折,如果右图中②号点和③号点之间的距离为20厘米,那么这根绳子的总长度是厘米(绳子之间无缝隙,绳粗以及转弯处损耗都忽略不计)14.如图,已知正方形ABCD面积为2520;E、F、G、H为边上的靠近正方形顶点的四等分点,连AG、EC、HB、DF.那么图中“X”部分的面积是.15.一个长方形的相框长为40厘米,宽为32厘米,放入一张长为32厘米宽为28厘米的相片,则相框中没有被照片覆盖的部分的面积是平方厘米.16.有六根木条,各长50厘米.现要将它们依次首尾相接钉在一起,每两根木条中间钉在一起的部分长10厘米.钉好后木条总长厘米.17.如图,三角形纸板、正方形纸板、圆形纸板的面积相等,都等于60平方厘米.阴影部分的面积总和是40平方厘米,3张板盖住的总面积是100平方厘米,3张纸板重叠部分的面积是平方厘米.18.小芳和小红共重72千克,小敏和小芳共重69千克,小敏和小红共重65千克.小芳体重是千克,小红体重是千克,小敏体重是千克.19.两个长方形如图叠放,图上已标出一些线段的长.EF=.20.图中,三张大小一样的等边三角形透明玻璃纸,各被分为49个大小相同的小等边三角形,每张玻璃纸上都各有16个小等边三角形涂上了阴影,如果把这三张玻璃纸重叠在一起,看到的阴影小等边三角形共有个.21.如图所示,两个形状和大小都相同的直角△ACB和△EDF的面积都是10cm2,每个直角的直角顶点都恰好落在另一个直角三角形斜边上,这两个直角三角形的重叠部分是一个长方形.那么四边形ABEF的面积是cm2.22.如图,有6个边长是1的小正方形,一个压着一个,上面的正方形的一个顶点恰好是下一个正方形的中心,上面正方形的中心的下面恰好是下面正方形的一个顶点,那么这个图形最后所形成的多边形的周长是;如果一共有20个边长是1的正方形按上述方法叠在一起,那么最后形成的多边形的周长是.23.如图,两个正方形的边长分别为10厘米和7厘米,甲、乙两块空白区域的面积之和为87平方厘米,那么阴影部分的面积是平方厘米.24.5个相同正方形纸片按相同的方向叠放在一起(如图),相邻两个正方形的一个角都与另一个正方形的中心点重合,如果所构成图形的周长是120厘米,那么这个图形覆盖的面积是平方厘米.25.今天是12月19日,我们将由边长为1的阴影小正方形组成的数字1、2、1、9放在8×5的大长方形中,将大长方形旋转180°,就变成了“6121”,如果将这两个8×5的大长方形重叠放置.那么重叠的阴影格子共有个.26.今天是12月19日,我们将电子数字1、2、1、9放在如图中8×5的长方形中,每个阴影小格子都是边长为1的正方形,将它旋转180°,就变成了“6121”,如果将这两个8×5的长方形重叠放置,那么重叠的1×1的阴影格子共有个.27.3个相同的正方形纸片按相同的方向叠放在一起(如图),顶点A和B分别与正方形中心点重合,如果所构成图形的周长是48厘米,那么这个图形覆盖的面积是平方厘米.28.将边长为10厘米的五张正方形纸片如图那样放置,每张小正方形纸片被盖住的部分是一个较小的正方形,它的边长是原正方形边长的一半,则图3中的图形外轮廓(图中粗线条)的周长为厘米.29.如图,五个圆相交后被分成了九个区域,现在两个区域里已分别填上数字15、16,请在另外七个区域里分别填进2,3,4,5,7,8,9这七个数字,使每个圆内的数字和是20.30.如图所示,一个正方形和一个长方形有一部分重叠,阴影部分甲比阴影部分乙的面积大6平方厘米,正方形的面积是10平方厘米,长方形的长为8厘米,则长方形的宽是厘米.31.如图是同一个等腰三角形的螺旋.这个等腰三角形中的最大角是100°.灰色三角形的编号是0,余下的三角形编号分别1、2、3、4、…,后一个三角形分别与前一个三角形有一条边重合,如图所示.从图中可以看出3号三角形只是部分地覆盖了0号三角形.请问第一个完全覆盖0号三角形的是号三角形.三.解答题(共19小题)32.某校四年级四个班总共有176名学生,其中一班和二班共有87名,一班和三班共有82名,二班和三班共有85名,那么,四班有多少名学生?33.两个相同的正方形重合在一起,将上层的正方形向右移动3厘米,再向下移动5厘米,得到如图所示的图形,已知阴影部分的面积是57平方厘米,求正方形的边长.34.小丽把两根长1米的纸条粘在一起,成为一根长170厘米的纸条,中间粘贴起来的纸条长度是厘米.35.如图1,从边长是6厘米的正方形纸片的正中间挖去一个正方形,得到一个宽为1厘米的方框,将四个这样的方框如图6所示依次垂直交叉放在桌面上,求桌面被这些方框盖住的面积(图2中阴影部分的面积).36.两个相同的长方形纸片,每块面积为48平方厘米.如图所示叠放在一起盖住的面积为72平方厘米.已知重叠部分的四边形ABCD的一条对角线BD为6厘米,则每张长方形纸片的长是多少厘米?37.如图,三个一样大小的正方形放在一个长方形的盒内,A和B是两个正方形重叠部分,C,D,E是空出的部分,这些部分都是长方形,它们的面积比是A:B:C:D:E=1:2:3:4:5.那么这个长方形的长与宽之比是多少?38.三条边长分别为5厘米、12厘米、13厘米的直角三角形,如图1,将它的短直角边对折到斜边上去与斜边重合,如图2.那么图2中阴影部分(即未被盖住部分)的面积是多少平方米?39.(如图)五环图由内径为4分米,外径为5分米的5个圆环组成,其中相交的小曲边四边形的面积都相等,已知5个圆环盖住的总面积是122.5平方分米.每个小曲边四边形的面积是.40.如图,小正方形的被阴影部分覆盖,大正方形的被阴影覆盖,那么,小正方形的阴影部分与大正方形阴影部分面积之比是.41.桌子上放有甲、乙、丙三个正方形,甲、丙有部分重叠,乙、丙有部分重叠.甲、丙重叠部分占甲正方形面积的;乙、丙重叠部分占乙正方形面积的.丙正方形与甲、乙正方形重叠部分占丙正方形面积的.甲正方形和乙正方形面积的和是丙正方形面积的求:甲正方形面积与乙正方形面积的比.(要求化为最简整数比)42.桌面上放有四张大小不同的正方形纸片边长分别为2,3,4,5,若分别取走边长为2,3,4,5的正方形纸片中的一个,则剩下的三张纸片覆盖的面积分别减少2,3,4,5,那么四张纸片覆盖的面积是多少?43.城中小学四年级有四个班.已知四(1)班、四(2)班共81人,四(2)班、四(3)班共83人,四(3)班、四(4)班共86人,四(1)班比四(4)班多2人,问四个班各有多少人?(只写答案,不列式)44.将同样大小的长方形纸像如图那样重叠在一起,每个长方形的长是12厘米,每个重叠部分是2厘米.那么,10张这样的纸连接起来的长度是多少厘米?45.将等边三角形纸片按图1所示步骤折叠3次(图1中的虚线是三边的中点的连线),然后沿两边的重点的边减去一角(如图2).将剩下的纸片展开、平铺,得到的图形是46.长度为L的一条木棍,分别用红、蓝、黑线将它等分为8,12和18段,在各划分线处将木棍锯开,问一共可以得到多少段?其中最短的一段的长是多少?47.如图,两个正方形边长分别是5厘米和4厘米,图中阴影部分为重叠部分.则两个正方形的空白部分的面积相差多少平方厘米?48.五个大球与三个小球共重42克,五个小球与三个大球共重38克,则大球与小球各重多少克?49.阿明在喝茶的时候做了一个小实验.他把一根筷子笔直的插到杯底,他量了一下被水浸湿部分的长度是10厘米.他把筷子掉个头,将另一端笔直的插到杯底,这时候他发现,筷子干的部分比湿的部分短10厘米.那麽这根筷子长多少厘米?50.两块大小不同的等腰直角三角板,直角边分别是10厘米和6厘米,如图那样重合,求重合部分(阴影部分)的面积.参考答案与试题解析一.选择题(共2小题)1.如图,边长分别为10厘米和7厘米的正方形部分重叠,重叠部分的面积是9平方厘米,图中两个阴影部分的面积相差()平方厘米.A.51B.60C.42D.9【分析】大正方形的面积是10×10=100平方厘米,它的阴影部分的面积是100﹣9=91平方厘米;同理,小正方形的面积是7×7=49平方厘米,它的阴影部分的面积是49﹣9=50平方厘米;然后求两个阴影部分的面积差即可.【解答】解:(10×10﹣9)﹣(7×7﹣9)=91﹣40=51(平方厘米)答:图中两个阴影部分的面积相差51平方厘米.故选:A.【点评】本题考查了重叠问题,本题还可以这样解答:因为重叠部分的面积是9平方厘米,所以两个阴影部分的面积差,就等于两个正方形的面积差,即10×10﹣7×7=51平方厘米.2.六个正方形重叠(如图)连接点正好是正方形的中心.正方形边长是a,这个图形的周长是()A.24a B.14a C.12a D.18a【分析】这六个正方形重叠在一起,第一个和最后一个正方形的长度为3a+3a,中间4个正方形的长度是2a×4=8a,把这些长度加起来就是这个图形的周长.【解答】解:3a+3a+2a×4=14a,答:这个图形的周长是14a;故选:B.【点评】此题考查了学生空间想象力以及分析图形的能力,同时考查了图形周长的计算方法.二.填空题(共29小题)3.如图的三张正方形的纸,铺在桌面上一共遮盖的面积是14.25平方厘米.(单位:厘米)【分析】要求一共遮盖的面积,把正个图行补全为一个长1.5+2+1=4.5厘米、宽为3+1=4厘米的大长方形的面积,减去左上角、右上角、右下角的长方形的面积,长和宽的数据已经算出标在图上,然后求出面积差即可.【解答】解:1.5+2+1=4.5(厘米)3+1=4(厘米)4×4.5﹣1.5×1﹣1.5×1﹣0.5×1.5=18﹣3﹣0.75=14.25(平方厘米)故答案为:14.25.【点评】此题属于重叠问题,重点搞清重叠的是哪一部分,是解决本题的关键.4.有红、黄、绿三块大小一样的正方形纸片,放在一个正方形盒内,它们之间互相叠合,如图所示,已知露在外的部分中,红色面积是20,黄色面积是14,绿色面积是10,那么正方形盒子的面积是51.2.【分析】先作辅助线,在黄色纸片中截出面积为a的部分,又因为红色部分是正方形,所以可得等量关系式:黄色面积﹣a=绿色面积+a,由此列方程求出a 的面积;再由红黄绿的比例关系列出比例式解答即可.【解答】解:作辅助线,在黄色纸片中截出面积为a的部分,如图所示.所以14﹣a=10+a解得:a=2设空白部分面积为x,将上图转化为,14﹣2=1210+2=12所以,=解得:x=7.2正方形盒子的面积为:12+20+12+7.2=51.2答:正方形盒子的面积是51.2.故答案为:51.2.【点评】本题考查了比较复杂的重叠问题,关键是求出中间黄与绿的重叠部分.5.将4个边长为2的正方形如图放置在桌面上,则它们在桌面上所能覆盖的面积是13.【分析】重叠部分是一个边长是1小正方形,用4个大正方形的面积和减去3个小正方形的面积,就是被盖住桌面的面积.【解答】解:2×2×4﹣1×1×3=16﹣3=13答:它们在桌面上所能覆盖的面积是13.故答案为:13.【点评】本题的重点是求出每张纸覆盖的面积,再求覆盖的总面积.6.如图,将正方形纸片ABCD折叠,使点A、B重合于点O,则∠EFO=30度.【分析】根据轴对称的性质,折叠前后图形的形状和大小不变,得出△OCD是等边三角形,折叠前后角相等以及三角形的内角和定理,求出∠BFC的度数,再根据平角是180度求得∠EFO的度数.【解答】解:沿DE折叠,所以AD=OD,同理可得BC=OC,则:OD=DC=OC,△OCD是等边三角形,所以∠DCO=60°,∠OCB=90°﹣60°=30°;由于是对折,所以CF平分∠OCB,∠BCF=30°÷2=15°∠BFC=180°﹣90°﹣15°=75°所以∠EFO=180°﹣75°×2=30°.故答案为:30.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称.7.用10张同样长度的纸条粘接成一条长41厘米的纸带,如果每个接头处都重叠1厘米,那么原来的每张纸条都长5厘米.【分析】由于最后一张的末尾没有粘接,所以10张纸条粘接在一起共有9处重叠,所以用现在的总长度41厘米,加上9个1厘米求出没重叠前的总长度和,然后再除以10即可解决问题.【解答】解:(41+1×9)÷10=50÷10=5(厘米)答:原来的每张纸条都长5厘米;故答案为:5.【点评】明确10张纸条粘接在一起共有9处重叠,是解答此题的关键.8.如图,把三个面积同是S平方厘米的圆放置在桌面上,桌面被圆覆盖的面积是2S+10平方厘米,图中两圆重叠的两块(有阴影部分)的面积相等,有一直线L过A、B两圆的圆心.直线L下方被覆盖的面积是25平方厘米,那么,S=14平方厘米.【分析】由题意,3S﹣2S阴影=2S+10,2S﹣1.5S阴影=25,解方程可得S.【解答】解:由题意,3S﹣2S阴影=2S+10,2S﹣1.5S阴影=25,解得S=14.故答案为14.【点评】本题考查重叠问题,考查方程思想,正确建立方程是关键.9.两幅图表示两个箭头画在不同的4厘米×4厘米方格内的情况.现在将这两个箭头画在同一副4厘米×4厘米的方格内,则这两个箭头的重叠部分的面积为6平方厘米.【分析】将两个图形重合,可得重叠部分,即可求出重叠部分的面积.【解答】解:重叠部分如图所示,重叠部分的面积为6平方厘米.故答案为6.【点评】本题考查重叠问题,考查数形结合的数学思想,正确作出重叠部分是关键.10.如图,在一个长、宽分别为19厘米和11厘米的大长方形内放了四个正方形,那么没有被正方形覆盖的小长方形(图中阴影部分)的面积是6平方厘米.【分析】最大的正方形的边长是长方形的宽,也就是11厘米,次大的正方形的边长是19﹣11=8厘米,再小一点的正方形的边长是11﹣8=3厘米,最后剩余小长方形的长是3厘米,宽是8﹣3﹣3=2厘米,再根据长方形的面积公式求解即可.【解答】解:最大正方形的边长是11厘米,次大正方形的边长:19﹣11=8(厘米)最小正方形的边长是:11﹣8=3(厘米)阴影长方形的长是3厘米,宽是8﹣3﹣3=2(厘米)3×2=6(平方厘米)答:没有被正方形覆盖的小长方形(图中阴影部分)的面积是6平方厘米.故答案为:6.【点评】首先根据最大的正方形的边长是长方形的宽确定出最大正方形的边长,再依次找出其它正方形的边长,最后得出阴影部分的长和宽,再根据长方形的面积=长×宽求解.11.如图,正方形ABCD的面积为196平方厘米,它包含了两个有部分重叠的小正方形.其中,较大的那个小正方形面积是较小的那个小正方形面积的4倍,而且两个正方形的重叠部分面积为1平方厘米.那么,阴影部分面积为72平方厘米.【分析】求出大正方形的边长是小正方形边长的2倍,并且大正方形和小正方形的边长之和是14+1=15厘米,可得小正方形的边长为15÷3=5厘米,大正方形的边长为5×2=10厘米.进而小长方形的面积为(5﹣1 )×(10﹣1)=36(cm2),即可求出两个小长方形的面积.【解答】解:正方形的面积为196平方厘米,所以边长为14厘米.重叠面积为1平方厘米,所以边长为1厘米;较大正方形是较小正方形面积的4倍,因此大正方形的边长是小正方形边长的2倍,并且大正方形和小正方形的边长之和是14+1=15厘米所以小正方形的边长为15÷3=5厘米,大正方形的边长为5×2=10厘米.小长方形的面积为(5﹣1 )×(10﹣1)=36(cm2),所以两个小长方形的面积为36×2=72(cm2)故答案为72.【点评】本题考查面积的计算,考查重叠问题,考查学生分析解决问题的能力,求出大正方形的边长是小正方形边长的2倍,并且大正方形和小正方形的边长之和是14+1=15厘米是关键.12.有一根绳子第一次把它按下左图方式对折,在对折处标记①;第二次我们将它按下中图方式对折,在对折处分别标记②、③;第三次我们将它按下右图方式对折,如果下右图中①号点和③号点之间的距离为30厘米,那么这根绳子的总长度是360厘米.(绳子之间无缝隙,绳粗以及转弯处损耗都忽略不计).【分析】由第二幅图可知:①到②、①到③、②到端点,③到端点的距离全相等;由第三幅图可知,②到端点的绳子被平均分成3份,由于①到②,③到端点的距离相等,所以每一份的距离是30厘米,则②到端点的绳长是30×3=90厘米,绳子的全长是90×4=360厘米.【解答】解:由第二幅图可知:①到②、①到③、②到端点,③到端点的距离全相等;由第三幅图可知,②到端点的绳子被平均分成3份,由于:①到②、③到端点的距离相等,所以每一份的距离是30厘米,则②到端点的绳长是30×3=90(厘米),绳子的全长是90×4=360(厘米).答:这根绳子的总长度是360厘米.故答案为:360.【点评】解决本题注意观察图,找清楚各部分长度之间的关系是解决本题的关键.13.有一根绳子,第一次把它按左图方式对折,在对折处标记①,第二次我们将它按中图方式对折,在对折处在对折处分别标记②、③;第三次我们将它按下右图方式对折,如果右图中②号点和③号点之间的距离为20厘米,那么这根绳子的总长度是120厘米(绳子之间无缝隙,绳粗以及转弯处损耗都忽略不计)【分析】由第二幅图可知:①到②、①到③、②到端点,③到端点的距离全相等;由第三幅图可知,②到端点的绳子被平均分成3份,设每一份为x,则③到绳子末端的距离=20+x,那么3x=20+x,进而可求出x,从而求得绳子的全长.【解答】解:由第二幅图可知:①到②、①到③、②到端点,③到端点的距离全相等;由第三幅图可知,②到端点的绳子被平均分成3份设每一份为x,则③到绳子末端的距离=20+x,那么3x=20+x,x=10(厘米),则③到绳子末端的距离为30厘米,绳子的全长是30×4=120(厘米).故答案为:120.【点评】解决本题注意观察图,找清楚各部分长度之间的关系是解决本题的关键.14.如图,已知正方形ABCD面积为2520;E、F、G、H为边上的靠近正方形顶点的四等分点,连AG、EC、HB、DF.那么图中“X”部分的面积是1155.【分析】将阴影部分看成两个平行四边形重叠在一起,重叠部分是一个菱形,菱形的两条对角线长度分别是AE和,所以重叠面积是正方形面积的,两个平行四边形的面积都是正方形面积的,所以一共是正方形面积的,再根据分数乘法的意义求出阴影部分的面积.【解答】解:如图:中间菱形的两条对角线长度分别是AE和,AE=AD×÷2=所以重叠面积是正方形面积的,两个平行四边形的面积都是正方形面积的,+﹣=2520×=1155答:图中“X”部分的面积是1155.故答案为:1155.【点评】解决本题关键是得出重叠的菱形部分的面积与正方形面积的关系,从而得出阴影部分是正方形面积的几分之几,再根据分数乘法的意义求解.15.一个长方形的相框长为40厘米,宽为32厘米,放入一张长为32厘米宽为28厘米的相片,则相框中没有被照片覆盖的部分的面积是384平方厘米.【分析】放入一张长为32厘米宽为28厘米的相片,则被照片覆盖的部分的面积是这张相片的面积,分别求出相框和相片的面积,然后用相框的面积减去相片的面积即可.【解答】解:40×32﹣32×28=32×(40﹣28)=32×12=384(平方厘米)答:相框中没有被照片覆盖的部分的面积是384平方厘米.故答案为:384.【点评】此题考查了长方形面积公式的灵活运用.16.有六根木条,各长50厘米.现要将它们依次首尾相接钉在一起,每两根木条中间钉在一起的部分长10厘米.钉好后木条总长250厘米.【分析】六根木条依次首尾相接钉在一起,重叠部分有6﹣1=5(次);要减少10×5=50(厘米);所以钉好后木条总长是:50×6﹣50=250(厘米);据此解答.【解答】解:根据分析可得,50×6﹣10×5,=300﹣50,=250(厘米);答:钉好后木条总长250厘米.故答案为:250.【点评】本题可以按植树问题解答,先求出间隔数也就是重叠的次数,知识点:重叠的次数=段数﹣1.17.如图,三角形纸板、正方形纸板、圆形纸板的面积相等,都等于60平方厘米.阴影部分的面积总和是40平方厘米,3张板盖住的总面积是100平方厘米,3张纸板重叠部分的面积是20平方厘米.【分析】60×3=180,此时未重叠面积计算了一次,阴影部分面积计算了两次,3张纸板重叠部分的面积计算了三次,180﹣100=80,此时减去了3张板盖住的总面积,则阴影部分面积计算了一次,3张纸板重叠部分的面积计算了两次;80﹣40,此时减去了阴影面积,则3张纸板重叠部分的面积计算了两次;所以,三张纸板重叠部分的面积为40÷2=20平方厘米;由此解答即可.【解答】解:(60×3﹣100﹣40)÷2=40÷2=20(平方厘米);答:3张纸板重叠部分的面积是20平方厘米.故答案为:20.【点评】此题属于重叠问题,比较复杂,应认真分析题意,看清要求的是什么,必须求出什么,重叠的部分是多少,进而解答得出结论.18.小芳和小红共重72千克,小敏和小芳共重69千克,小敏和小红共重65千克.小芳体重是38千克,小红体重是34千克,小敏体重是31千克.【分析】把小芳和小红共重72千克,小敏和小芳共重69千克,小敏和小红共重65千克,这三部分体重和相加,就是这个三个小朋友体重的2倍,再除以2,求出3个小朋友的体重,然后减去72千克,就是小敏的体重,同理求出其它小朋友的体重.【解答】解:三人的体重和;(72+69+65)÷2=206÷2=103(千克)小敏:103﹣72=31(千克)小红:103﹣69=34(千克)小芳:103﹣65=38(千克)答:小芳体重是38千克,小红体重是34千克,小敏体重是31千克.故答案为:38,34,31.【点评】解决本题关键是求出这三个人体重和的2倍.19.两个长方形如图叠放,图上已标出一些线段的长.EF=32.【分析】连接ED,三角形AED的面积是:(15+25)×20÷2=400,又因为三角形AED的面积是长方形AEDG的面积的一半,所以长方形AEDG的面积是:400×2=800,所以,EF的长:800÷25=32,据此解答.。

完全平方数奥数题目

完全平方数奥数题目

完全平方数奥数题目摘要:一、完全平方数的定义和性质1.完全平方数的定义2.完全平方数的性质二、完全平方数的应用1.求解完全平方数2.完全平方数与勾股定理3.完全平方数与概率论三、完全平方数的奥数题目1.判断一个数是否为完全平方数2.求一个数的平方根3.求两个完全平方数的和正文:完全平方数是一个数学概念,它指的是一个数可以表示为某个整数的平方。

例如,4、9、16 等都是完全平方数,因为它们可以表示为2^2、3^2、4^2 的形式。

完全平方数具有一些有趣的性质,例如,如果一个数是完全平方数,那么它的因数一定是成对出现的。

在数学中,完全平方数有着广泛的应用。

例如,在求解完全平方数时,我们可以使用公式:如果一个数的平方根是整数,那么这个数就是完全平方数。

此外,完全平方数还与勾股定理有着密切的关系。

勾股定理指出,在一个直角三角形中,斜边的平方等于两直角边的平方和。

因此,如果一个数是完全平方数,那么它一定可以表示为两个整数的平方和。

在概率论中,完全平方数也有着重要的应用。

例如,假设有一个袋子,里面有若干个红球和白球,我们想要取出一个红球。

如果我们随机地从袋子中取出一个球,那么取出红球的概率就等于红球的个数除以球的总数。

如果我们想要计算这个概率的平方,那么我们就需要计算所有可能的取球方式的概率,这些概率可以表示为完全平方数。

在奥数比赛中,完全平方数也是一个常见的考点。

例如,可能会给出一个数,要求我们判断它是否为完全平方数。

或者,可能会给出两个数,要求我们求它们的平方和。

对于这类题目,我们需要熟悉完全平方数的性质,并且能够灵活运用它们来解决问题。

总的来说,完全平方数是一个有趣的数学概念,它在数学和概率论中都有着广泛的应用。

完全平方数奥数题目

完全平方数奥数题目

完全平方数奥数题目在学习数学的过程中,我们经常会遇到各种有趣的数学题目。

今天,我们将介绍一类常见的数学题目——完全平方数奥数题目。

完全平方数是指一个数的平方根是一个整数。

比如,1、4、9、16等都是完全平方数。

而2、3、5、6等则不是完全平方数。

下面,我们来看一些关于完全平方数的奥数题目示例。

题目一:从1到20中,有几个数是完全平方数?解析:根据完全平方数的定义,我们可以计算得出1、4、9、16是完全平方数,所以从1到20中,共有4个数是完全平方数。

题目二:请问100到200中有几个完全平方数?解析:我们可以将100到200逐个检查是否是完全平方数。

首先计算100的平方根,得到10,符合完全平方数的定义。

接着计算101,发现平方根是10.1,不是整数,不符合完全平方数的定义。

继续检查102,平方根为10.2,同样不符合定义。

以此类推,一直检查到200,得知200的平方根为14.14,也不是整数。

综上所述,从100到200中,共有1个完全平方数,即100。

题目三:请问25到125中的完全平方数有哪些?解析:与题目二类似,我们逐个检查25到125中的数是否是完全平方数。

首先计算25的平方根,得到5,符合完全平方数的定义。

接着计算26,平方根为5.1,不符合定义。

继续检查27,平方根为5.196,也不是整数。

一直检查到125,得知125的平方根为11.18,同样不是整数。

因此,从25到125中,共有2个完全平方数,分别是25和36。

通过以上题目的解析,我们对完全平方数的概念和计算方法有了一定的了解。

希望通过这些练习,我们能够更好地掌握和运用数学知识,提高自己的解题能力。

总结:完全平方数奥数题目涉及到对数学概念的理解和计算能力的运用。

通过熟练掌握完全平方数的性质以及计算方法,我们能够更加灵活地解决相关的奥数题目。

在学习数学的过程中,我们要善于总结和归纳,逐步提高自己的思维能力和解题技巧。

希望本文对你理解和解答完全平方数奥数题目有所帮助。

20181213小学奥数练习卷(知识点:竖式数字谜)含答案解析

20181213小学奥数练习卷(知识点:竖式数字谜)含答案解析

小学奥数练习卷(知识点:竖式数字谜)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一.选择题(共1小题)1.加法算式中,七个方格中的数字和等于()A.51B.56C.49D.48第Ⅱ卷(非选择题)二.填空题(共44小题)2.根据下面的乘法竖式,可判断出最后的乘积是.3.如图是一个空白的除法竖式迷.要使计算成立,商最大时,被除数是.4.如图,在方框中填入适当的数字,使得竖式成立,则所得结果的各位数字和最大是.5.已知除法竖式如图:则除数是,商是.6.如图的式子中每一个中文字代表1~9中的一个数码,不同的文字代表不同的数码:则被乘数为.7.在乘法竖式的□中填入合适的数字,使竖式成立.这个乘法算式的积是.8.填入合适的数字,使如图所示乘法竖式成立.两个乘数的和是.9.请将下面的乘法竖式补充完整,那么,最后一行的五位数是.10.下面的加法竖式中,所有数字互不相同,其中,数字2、0、1、6已经填好,那么,这个加法竖式的和是.11.将下面的乘法竖式补充完整,最后一行的乘积是.12.如图是一个乘法数字谜,最后的乘积为13.图中的乘法竖式,最后结果为.14.如图,乘法竖式中已经填出了3和8,那么,乘积是.15.在如图所示除法整式的每个方框中,填入适当的数字,使算式成立.那么算式中的被除数是.16.在如图的乘法整式中,每一个“□”和英文字母都代表一个数字;其中相同的字母代表相同的数字,不同的字母代表不同的数字,而“□”中可以填写在任意的数字,已知P=6,那么五位数HAPPY是.17.如图,一道除法竖式中已经填出了“2016”和“0”,那么被除数是.18.如图乘法算式中只有四个位置上的数已知,它们分别是2,0,1,6请你在空白位置填上数字,使得算式能够成立.那么乘积为.19.如图算式中,不同的汉字代表不同的数字,那么,代表的四位数最大是.20.如图,一道乘法竖式中已经填出了2、0、1、6,那么乘数中较小的是.21.如图的乘法竖式中,相同的汉子代表相同的数字,不同的汉字代表不同的数字:乘法竖式正确填写后,“”所代表的四位数是.22.如图,一道乘法竖式已经填出了2、0、1、6,那么乘积是.23.如图,一道乘法竖式中已经填出了2、0、1、6,那么乘积是.24.如图的两个竖式中,相同汉字代表相同数字,不同汉字代表不同数字.两个△和两个□中填入的数字分别相同:那么,“花园探秘”的值是.25.如图,将竖式填写完全后,所得的乘积是.26.请把如图所示的算式谜补充完整,那么被除数为.27.在下面的空格中填入合适的数字,使得乘法竖式成立,其中的乘积为.28.在如图的方格中填入适当的数字,使乘法竖式成立,那么乘积是.29.已知图中的除法竖式成立,则被除数等于.30.在如图的方格中填入适当的数字,使乘法竖式成立,那么乘积是.31.如图,相同的汉字代表相同的数字,不同的汉字代表不同的数字.所有的汉字都不为0,也不与图中已经出现的数字相同,那么四位数“中环杯棒”=.32.已知0.+0.b=,相同的字母代表相同的数字,不同的字母也可以代表相同的数字(比如a=b=1),则=.33.将如图的乘法竖式数字填充完整,其中,两个乘数的和是.34.在如图的每个方框中填入一个数字,使得乘法竖式成立,那么,这个算式的乘积是.35.如图,一道除法竖式中已经填出了“2015”和“0”,那么被除数是36.在如图的每个方框中填入一个适当的数字,使得乘法算式成立,乘积等于.37.在图中的竖式除法中,被除数为?38.在下面算式的每个方框中填入一个适当的数字,使得乘法竖式成立,两个乘数之和是39.在下面算式的每个方框中填入一个适当的数字,使得乘法整式成立,两个乘数之和是40.如图除法竖式中的商是.41.如图的两个竖式中,相同的字母代表相同的数字,不同的字母代表不同的数字,那么四位数=.42.请在如图的每个方框中填入适当的数字,使得竖式成立(现已填入“2015”)那么竖式中乘积的最大值是.43.在每个方框中填入一个数字,使得乘法竖式成立,那么这个算式的乘积是.44.请将0~9折10个数分别填入如图的10个方框中,使得减法算式成立.如果“6”、“1”这两个数字分别填在被减数的前两个方框中,那么算式的差是.45.在如图每个方框中填入一个数字,使得乘法竖式成立.那么,两个乘数的和是.三.计算题(共1小题)46.在下面□中填入合适的数.四.解答题(共4小题)47.下面竖式中的两个乘数之和为多少.48.在如图算式中的所有空格内各填入一个数码,使得算式成立.49.a,b,c,d,e都是自然数,且0<c<b<a<d<e≤9,若如图的算式成立,求.50.如图,一个四位数加上一个三位数和为2015,这两个数的数字和等于.参考答案与试题解析一.选择题(共1小题)1.加法算式中,七个方格中的数字和等于()A.51B.56C.49D.48【分析】根据两数相加最大进位是1可知.个位数字相加结果是14,十位和百位数字相加和为18,千位有1个进位1.即可求解.【解答】解:依题意可知:根据两数相加最大进位是1可知.个位数字相加结果是14,十位和百位数字相加和为18,千位有1个进位1.14+18+18+1=51.故选:A.【点评】本题考查对竖式谜的理解和运用,关键是找到只有1的进位问题解决.二.填空题(共44小题)2.根据下面的乘法竖式,可判断出最后的乘积是9708.【分析】假设两位数为AB,三位数为8CD,由竖式中可知:该两位数与三位数相乘后,中间一行没有,故C必为0,然后再根据两位数与一位数相乘的规律即可求出A、B、D的数字.【解答】解:为方便说明,假设两位数为AB,三位数为8CD,由竖式中可知:该两位数与三位数相乘后,中间一行没有,故C必为0,由竖式可知:AB×8还是两位数,故A必为1,由于1B×D是三位数,故B必定大于1,因为1B×8是两位数,所以B不能大于2,故B只能等于2,所以两位数为12,由于12×D是三位数,故D必定为9,所以三位数为809,故最后乘积为12×809=9708,故答案为:9708.【点评】本题考查竖式数字谜,解题的关键是熟练运用两个数相乘的竖式运算规律,本题属于中等题型.3.如图是一个空白的除法竖式迷.要使计算成立,商最大时,被除数是10879.【分析】注意观察竖式可知五位数中,万位是1,千位为0,除数的十位只能是1,由于商要最大,所以商的百位最大为9,从9开始讨论即可得出答案.【解答】解:为方便说明:可用字母表示各个空格,如图所示,由于竖式除法可知:FGH减去KL后是所得的数是个位数,从而可知F=1,G=0,K=9,由于要使商最大,∴A最大为9,可从9开始尝试,由于K=9,9乘以DE后所得的两位数,十位为9,故D=1,E只能是1或0,当E=0时,所以除数为10,此时KL必定为90,由于FGH减去KL所得的数为个位数,即10H减去90所得数为个位数,由减法可知,该式不可能成立,当E=1时,所以除数为11,此时KL必定为99,由于商要最大,所以B先从9开始考虑,当B=9时,此时OP=99,由于MN减去OP所得的数为个位数,即MN减去99所得的数为个位数,由减法可知:此式不可能成立,所以B=8,此时OP=88,由于商要最大,所以C可以从9开始考虑,当C=9时,此时SM=99,由于余数为0,所以QR=SM=99,所以J=9,所以MN=88+9=97,所以H=8,I=7,所以被除数为10879,除数为11,此时商最大为989,故答案为:10879,【点评】本题考查竖式数字谜,解题的关键是根据竖式除法以及竖式减法先得出F、G、K的值,然后根据商最大判断A、B、C的情况,本题属于中等题型.4.如图,在方框中填入适当的数字,使得竖式成立,则所得结果的各位数字和最大是36.【分析】首先根据已知数字找到能确实的数字,然后根据进位和找到数字的最大和最小再排除即可.【解答】解:根据题意可知求最大:根据已知数字0判断第一个乘数的十位有可能是0或者5,再因为数字6,只能是与5的乘积加上一个进位.故第一个十位数字是5.根据乘数的乘积有数字6并且是三位数,那么首位数字乘积加上一个进位就是小于10的,那么3×2=6满足条件而且最大1×5=5满足条件而且最小;①当第一个乘数的首位数字是2,第二个乘数的首位是3.再根据含有数字1的结果是4位数,而且是偶数乘以5加上进位满足1的条件.最大是4,那么第一个乘数的个位数字就是4.即:254×342=86868(数字和为36)②当第一个乘数的首位数字是1,第二个乘数的首位数字是5时152×582=88464(数字和为30)也是满足条件的,故答案为:36【点评】本题考查对数式谜的理解和综合运用,关键在找到确定数字,再进行枚举排除.问题解决.5.已知除法竖式如图:则除数是15,商是29.【分析】根据题意,由除法竖式的计算方法进行推算即可.【解答】解:根据竖式可知,除数与商的个位数相乘的积的末尾是5,可得,除数的个位数与商的个位数必有一个是5,另一个是奇数;假设,商的个位数是5,即商是25,由135÷5=27,27×2=54,大于被除数的前两位,不符合题意,那么除数的个位数字是5;由□5×2是两位数,并且小于4□,可知除数的十位数字小于或等于2,假设是2即25×2=50>4□,不符合题意,那么除数只能是15;又因为15×9=135,所以,商是29,被除数是29×15=435.竖式是:故答案为:15,29.【点评】根据题意,由除法竖式的计算方法进行推算即可.6.如图的式子中每一个中文字代表1~9中的一个数码,不同的文字代表不同的数码:则被乘数为142857.【分析】根据汉字代表数字的特点,设出相同的文字用同一个字母代替,利用给出的算式列出等式,进一步利用数字特点解答即可.【解答】解:设“学奥林匹克“=A,“数”=B,则3×(A+100000B)=10A+B,3A+300000B=10A+B,7A=299999B,A=42857B.只可能B=1,符合题意,从而A=42857,B=1.所以被乘数是142857.故答案为:142857.【点评】考查了竖式数字谜,此题主要抓住相同的文字,设出同一个字母表示,再利用十进制列出等式,进一步利用数字特点解答即可.7.在乘法竖式的□中填入合适的数字,使竖式成立.这个乘法算式的积是8820.【分析】(1)根据两个乘数的末尾数字相乘得0,可以第一个乘数的末尾可能是0或5,在根据第一个乘数的末尾数字与第二个乘数的十位数字相乘的末尾数字是5,可以确定第一个乘数的个位就是5.(2)根据第一个乘数与第二个乘数个位6相乘得一千多,就能确定第一个数的百位数字是2或3,分别计算245÷6=1470,345×6=2070,由此断定第一个乘数就是245.(3)因为积是八千多,所以能确定第一个乘数245乘第二位乘数的十位数字积是六百多或七百多,由此确定第二个数的十位数字是3.【解答】解:245×36=8820.【点评】抓住积的特征联系乘数各位数字进行推理.8.填入合适的数字,使如图所示乘法竖式成立.两个乘数的和是925.【分析】根据第一个因数的个位与第二个因数十位乘积的末位数是1,可确定第一个因数和第二个因数的十位是1,或9,或3、7,如是1,第二个因数的十位与第一个因数相乘的积是二位数,与算式矛盾;如是9,则第一个因数应是几十九,它与2的乘积不可能得到几百零几,所以第一个因数的个位是3或7,如是7,则第一个因数应是几十七,它与2的乘积不可能得到几百零几,所以第一个因数的个位是3,第二个因数的十位是7,据此可推出第一个因数的十位是5,进而推出第二个因数的百位是8.【解答】解:53+872=925答:两个乘数的和是925.故答案为:925.【点评】本题的重点是根据第一个因数的个位与第二个因数十位乘积的末位数是1,来推出第一个因数和第二个因数十位上的数是多少.9.请将下面的乘法竖式补充完整,那么,最后一行的五位数是30975.【分析】根据竖式乘法以及乘法与加法的法则即可求出答案.【解答】解:为方便说,各空格标示字母,如图所示,由竖式可知:E=0,由于ABC×5是一个四位数,且最高为1,若A=1时,此时1BC×5不可能是四位数,故A=2,由于2BC×D=2F5,故D=1,且B=F,因为1+F=10,所以F=9,所以ABC表示三位数是295,DE5表示三位数是105,所以最后结果为30975故答案为:30975【点评】本题考查竖式数字谜,解题的关键是熟练竖式乘法,以及乘法、加法的法则,本题属于中等题型.10.下面的加法竖式中,所有数字互不相同,其中,数字2、0、1、6已经填好,那么,这个加法竖式的和是1053.【分析】此题的思路就是根据黄金三角得出C=9.知道ABDEF从3、4、5、7、9中选,再根据条件推算ADF,最后推出BE即可.【解答】解:式子中的空格用字母表示,如上图.(1)因出现黄金三角,所以C一定为9.(2)由题目要求数字互不相同,所以ABDEF只能是3、4、5、7、8.(3)A+2+D应该有的情况为:①AD取3与4、5、7、8的组合有:3+4+2=9,9已有不行;3+5+2=10,0已有不行;3+7+2=12,2已有不行;3+8+2=13,3已有不行.②AD取4与5、7、8的组合有:4+5+2=11,1已有不行;4+7+2=13,3没有可以;4+8+2=14,4已有不行.③AD取5与7、8的组合有:5+7+2=14,4没有可以;5+8+2=15,5已有不行.④AD取7、8组合,7+8+2=17,7已有不行.综上可得:AD取4与7,5与7两种组合符合条件.若AD为4、7时,F=3⇒BE为5、8.当B=5时,B+6+1=12,即E为2不是5,所以不行;当B=8时,B+6+1=15,即E=5行.若AD为5、7时,F=4⇒BE为3、8.当B=3时,B+6+1=10,即E为0不是8,所以不行;当B=8时,B+6+1=15,即E为5不是3,所以不行.故:只有E=5,F=3一种符合条件.即答案是1053.【点评】此题首先应看到黄金三角,从而确定C,然后才便于推算出结果.11.将下面的乘法竖式补充完整,最后一行的乘积是2016.【分析】观察式子的特点,得知F一定为6,AB与C积的个位是2,AB与D积的个位是6.这是此题的着手点,然后再找条件,进行逐步检验得出符合条件的式子即可.【解答】解:将题目中的空格用字母表示,如上图.(1)F+0=6⇒F=6(2)B×D积的个位是6⇒BD进行组合的数应为1与6、2与3、2与8、4与4、4与9、6与6、7与8⇒B可为1、2、3、4、6、7、8.(3)B×C积的个位是2⇒BC进行组合的数应为1与2、2与6、3与4、4与8、6与7、8与9⇒B可为1、2、3、4、6、7、8、9.(4)B可选的数有:1、2、3、4、6、7、8共7种情况.(5)AB×D积是两位数,AB×C积是三位数⇒C>D①若B=1时,则只能D=6,C=2,所以D>C不行.②若B=2时,则D可为3、8,B可为1、6.因C>D,所以只能C=6,D=3⇒A2×63,A可取2﹣﹣9.即得:22×63=1386,32×63=2016,42×63=2646,52×63=3276,62×63=3906,72×63=4536,82×63=5166,92×63=5796.这些积只有32×63的积符合G0H6的形式,其它均不行,故只有A=3,32×63行.③若B=3时,则D=2,C=4⇒A3×42,A可取3﹣﹣9.经检验(过程同上)都不行.④若B=4时,则D为4、9,C为3、8⇒D=4,C=8⇒A4×84,A可取2﹣﹣9.经检验(过程同上)只有24×84的积符合G0H6的形式,其它均不行,故A=2,24×84行.⑤若B=6时,则D为1、6,C为2、7⇒D=1,C=2或D=1,C=7或D=6,C=7三种可能,即A6×71,A6×21,A6×76三种.经检验(过程同上)A6×71和A6×76中没有符合的,只有A6×21中96×21积符合G0H6的形式,其它均不行,故只有96×21行.⑥若B=7时,则D=8,C=6,所以D>C不行.⑦若B=8时,则D为2、7,C为4、9⇒D=2,C=4或D=2,C=9或D=7,C=9三种可能,即A8×42,A8×92,A8×97三种.经检验(过程同上)A8×92和A8×97中没有符合的,只有A8×42中的48×42积符合G0H6的形式,其它均不行,故只有48×42行.综上得:32×63=2016,24×84=2016,96×21=2016,48×42=2016故:最后一行的乘积是2016.【点评】此题突破口好找,但检验麻烦,一定要认真细心才行.12.如图是一个乘法数字谜,最后的乘积为56500【分析】将此题的空用不同字母分别代替,如图.根据图形结构可得这题的着手点是题目中的出现数字多的部分,所以应从K入手,然后一步一步地去推算出来所有字母代表的数字.【解答】解:用不同字母表示不同位置的空格,如上图.(1)∵2+0+2<10,∴2+9+K和的个位数是6⇒K=5,(2)∵2+9+5=16,∴J+1=5⇒J=4,(3)∵ABC×F=22GH,ABC×D=452,452的6倍>22GH>452的4倍,∴F>4D⇒D只能是1或者2,又∵C×D积的个位是2,⇒CD可能是(1×2)、(2×1)、(3×4)…,∴CD只要两种情况C=1,D=2或C=2,D=1,①C=1,D=2时:∵ABC×D=452⇒AB1×2=452⇒2和1﹣﹣9的任意一个数相乘个位都不肯能出现5.∴这种情况不行.②C=2,D=1时:ABC×D=452⇒AB2×1=452⇒A=4,B=5,ABC×E=90S⇒452×E=90S⇒4×E<10⇒E是1,2.若E=1时,452×1积不能出现90S形式,所以E不能是1,只能是2.若E=2时,452×2=904,符合90S的形式,所以E是2,S=4.ABC×F=22GH,F>4D,D=1⇒F是5、6、7、8、9.若F=5时,452×5=2260,符合22GH的形式⇒G=6,H=0.若F=6时,452×6=2712,2712>22GH的形式,所以F=6不行.∵6与452的积大于22GH,∴7、8、9与452的积就更大于22GH⇒F是7、8、9时也不行.综上所述得:A=4,B=5,C=2,D=1,E=2,F=5,G=6,H=0,S=4,J=4,K=5.(4)H+0+0=0,N为0的个位⇒N=0(5)G+S=6+4=10,M为10的个位⇒M=0(6)2+0+2+1=5,L为5的个位⇒L=5故:452×125的积是56500.【点评】此题着手点好找,就是过程太麻烦,要求能做到耐心与细心才行.13.图中的乘法竖式,最后结果为4485.【分析】用字母代表空白的位置,如图.观察图中的情况可从AB与C、D、5三个数的乘积的数位入手,逐步推算即可.【解答】解:(1)∵AB×5=E1F是个三位数⇒AB最小是20,又∵AB×C=2H,∴A=2,C=1.(2)AB×5=2B×5=E1F⇒E=1,B×5=1F⇒B=2,F=0或B=3,F=5,∵AB×D=22×D=G0S是个三位数⇒D为5、6、7、8、9.①若B=2,F=0时,22×5=110,22×6=132,22×7=154,22×8=176,22×9=198这些积中没一个符号G0S形式的,所以此情况不行.②若B=3,F=5时,23×5=115,23×6=138,23×7=161,23×8=184,23×9=207这些积只有207符号G0S的形式,D=9.总结得:B=3,F=5,D=9.(3)23×195=4485.故:最后结果为4485.【点评】此题的入手点是积的数位,像这类题只有入手点正确就可推出结果.14.如图,乘法竖式中已经填出了3和8,那么,乘积是1843.【分析】首先根据进位分析结果的首位是1,再根据乘积的尾数是3的共有2种情况,分析排除即可.【解答】解:依题意可知:结果中有1个进位那么前两位数字是18,乘积中最大数字就是两位数乘一位数的最大99×9=891结果是800多,不会有900多.故第一个结果首位是8,第二个结果中的首位数字就是9.尾数是3的共有1×3或者7×9,再根据第二个乘积是两位数,即97×19=1843故答案为:1843【点评】本题的关键是找到结果首位是1,相加得18的只能是9和8,再加上进位,乘积尾数是3的情况可以确定2种,枚举即可问题解决.15.在如图所示除法整式的每个方框中,填入适当的数字,使算式成立.那么算式中的被除数是53036.【分析】首先根据已知数字确定尾数分别是2,1,7.根据尾数判断除数和商的数字,最后根据除数和商的乘积加上余数就是被除数.【解答】解:依题意可知乘积的结果的个位数字分别是2,1,7.根据尾数是1的共有1×1,3×7,9×9.再根据尾数是7的乘积是1×7,3×9,两次都有数字3,那么优先考虑除数的尾数是3的情况.那么商分别是4079.再根据除数与7的积是两位数,那么首位数字只能是1,即13×4079+9=53036故答案为:53036【点评】本题的关键是找到乘积的尾数是2,1,7.在根据数字的尾数判断除数的十位,被除数=除数×商+余数或者倒推填写竖式解决问题.16.在如图的乘法整式中,每一个“□”和英文字母都代表一个数字;其中相同的字母代表相同的数字,不同的字母代表不同的数字,而“□”中可以填写在任意的数字,已知P=6,那么五位数HAPPY是90662.【分析】首先根据数字1进行推理出来乘数的结果是十位数字是0+6组合,再确定第一个乘数的首位数字2,再用枚举法找出第二个乘数的个位满足题意合适的数字,接下来末尾分析即可.问题解决.【解答】解:依题意可知首先根据数字P=6,十位数字中没有进位,那么第一个结果中的四位数的十位是0.再根据乘数中的数字1和得数中的数字2判断第一个乘数的百位是2.再根据第一个结果中含有2个数字0,如果千位数字是1,那么需要乘数乘以5,经过检验不符合条件,那么四位数的千位数字或者为2.那么第二个乘数的个位数字就是6,7,8,9这四种可能性.根据尾数判断只有数字7符合.即286×7=2002.再根据结果中的百位数字P是6,得最后的三位数尾数是8,那么乘数中的百位数字就是3.故答案为:90662【点评】本题的关键是根据数字1进行推理出来乘数的结果是十位数字是0+6组合,再确定第一个乘数的首位数字2,再用枚举法找出第二个乘数的个位满足题意合适的数字,接下来末位分析即可.问题解决.17.如图,一道除法竖式中已经填出了“2016”和“0”,那么被除数是83720.【分析】根据题意可知被除数的个位是0,因被除数的十位与0与相减的差是2,所以被除数的十位上的数是2,再根据被除数的百位与6的差是1,可确定被除数的百位上的数是7,又根据除数与与商的十位数及商的个位数相乘的得数的末位数是0,可确定商的个位数或除数的个位数有一个是0或5,0不符合题意,只能是5,又除数与商的百位数相乘的结果的末尾数是6,所以只能是商的个位数是5,则除数的个位数只能是一个偶数,不能是2,如是2则与除数与5相乘的十位数上不可能是2,可以是4,不能是6,因如是6,则除数与5相乘的十位数上不可能是2,同理也不能是8,所以除数的个位数只能是4,且除数与商的个位数5相乘得数是一个三位数,所以除数的百位数只能是1,就是1几十4与5的乘积得到是几百二十,这样可确定除数的十位数是8,进而可确定除数与商的个位数相乘得数是920,再根据除数与商的十位数相乘是三位数,上面的四位数减这个三位数是92,可确定商的十位数也是5,进而再根据除数和商的百位数上的商的个位数是6,可确定商的百位数是4.据此解答.【解答】解:【点评】本题的重点是根据已知的条件,先确定商的个位数是5,进而推出除数是多少,再进一步解决问题.18.如图乘法算式中只有四个位置上的数已知,它们分别是2,0,1,6请你在空白位置填上数字,使得算式能够成立.那么乘积为2205.【分析】根据题意第一个因数是六十几,它与第二个因数相乘的十位相乘后得到的积与这个数与个位数相乘的积的和是二千几百零几,可确定第二个因数的十位数是3或4,再根据积的十位数是0,可确定第一个因数的个数与第二个因数的十位数相乘的末尾数是9,可确定第二个因数的十位数是3,因4不论和谁相乘的末尾数不能得到9,这样就可确定第一个因数的个位数是3,再根据第一个因数63与第二个因数相乘得几百一十几,可推出第二个因数的个位数是5.据此解答.【解答】解:答:乘积是2205.故答案为:2205.【点评】本题的重点是先确定第二个因数的十位数是多少,进而推理解答问题.19.如图算式中,不同的汉字代表不同的数字,那么,代表的四位数最大是1786.【分析】根据和是2016,要使代表的四位数最大,可确定“数”是1,因“探”不能为0,“学”最大是9,如是9,则“探”是1,不合题意,“学”是8,则“探”是2,“花”与“秘”的和的末尾应是1,且不能进位,不合题意,所以“学”是7,“秘”是3或2,要使“花”最大,则“探”应是2,所以“花”是9,则“秘”是2,不合题意,“花”是8“秘”是3,则“园”最大是6,“行”是0,据此解答.【解答】解:答:代表的四位数最大是1786.【点评】本题的重点是先确定中数是几,再把数从大到小进行推理,得出符合条件的数.20.如图,一道乘法竖式中已经填出了2、0、1、6,那么乘数中较小的是152.【分析】根据题意可知第一个因数与第二个因数相乘的积是一百几十几,可确定第一个因数的个位数是1,第二个因数的个位数也是1,又第一个因数与第二个因数的百位数相乘得一个四位数,所以第二个因数的百位上的数是大于5的数,又因它与2的乘积是十几,再根据第一个因数与第二个因数的百位数相乘的倒数第二位数是6,可确定第二个因数的百位数是9或7,所以乘数较小的数是152.【解答】解:答:乘数较小的数是152.故答案为:152.【点评】本题的重点是先确定第一个因数的百位数是几,进而求出第二个因数百位上的数,从面解决问题.21.如图的乘法竖式中,相同的汉子代表相同的数字,不同的汉字代表不同的数字:乘法竖式正确填写后,“”所代表的四位数是1537.【分析】根据乘法口诀可确定“学”是1、5或6,“学”如是1,则“学”与“数”的乘积应是“数”不合题意,所以“学”是5,则根据“数学”与“学”的乘积是一个两位数,可确定数只能是1,进而可得出“园”是7,再积的最高位是5,可确定“花”是3.如“学”是6,则根据则根据“数学”与“学”的乘积是一个两位数,可确定数只能是1,则“园”是9,进而推出“花”是1或6,都不符合题意.【解答】解:答:”所代表的四位数是1537.故答案为:1537.【点评】本题的重点是先确定“学”是几,进而进行推理解答.22.如图,一道乘法竖式已经填出了2、0、1、6,那么乘积是6156.【分析】首先判断根据数位相乘结果是一个四位数和一个三位数,那么两位数的乘数中的十位数字小于2只能是1,再根据个位数字是6,那么乘数的尾数是3,同时四位数的结果是1000多那么百位数字只能是5,再根据数字关系求解即可.【解答】解:依题意可知乘数中的三位数乘以2结果是一个四位数,那么百位数字是大于4的数字,再根据数字0得知结果是1000多是数字那么乘数中的百位数字是5.而且乘数的三位数的十位数字乘以2没有进位.同时这三位数乘以一个数还是结果是三位数推理出乘数中2前面的数字是1,即乘数的两位数是12.再根据结果中的尾数是6,那么三位数的乘数的个位是3.再根据数字1得0+1=1,那么这个三位乘数是513故答案为:6156【点评】本题的关键是找到结果数字中位数的关系,利用末位分析法和首位分析法再结合已知数字进行排除即可问题解决.23.如图,一道乘法竖式中已经填出了2、0、1、6,那么乘积是612.。

20181213小学奥数练习卷(知识点:竖式数字谜)含答案解析.doc

20181213小学奥数练习卷(知识点:竖式数字谜)含答案解析.doc

20181213小学奥数练习卷(知识点:竖式数字谜)含答案解析小学奥数练习卷(知识点:竖式数字谜)题号一二三四总分得分注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)评卷人得分一.选择题(共 1 小题) 1.加法算式中,七个方格中的数字和等于() A.51 B.56 C.49 D.48 第Ⅱ卷(非选择题)评卷人得分二.填空题(共 44 小题) 2.根据下面的乘法竖式,可判断出最后的乘积是.3.如图是一个空白的除法竖式迷.要使计算成立,商最大时,被除数是. 4.如图,在方框中填入适当的数字,使得竖式成立,则所得结果的各位数字和最大是. 5.已知除法竖式如图:则除数是,商是. 6.如图的式子中每一个中文字代表 1~9 中的一个数码,不同的文字代表不同的数码:则被乘数为. 7.在乘法竖式的□中填入合适的数字,使竖式成立.这个乘法算式的积是.8.填入合适的数字,使如图所示乘法竖式成立.两个乘数的和是. 9.请将下面的乘法竖式补充完整,那么,最后一行的五位数是. 10.下面的加法竖式中,所有数字互不相同,其中,数字 2、0、1、6 已经填好,那么,这个加法竖式的和是. 11.将下面的乘法竖式补充完整,最后一行的乘积是. 12.如图是一个乘法数字谜,最后的乘积为13.图中的乘法竖式,最后结果为. 14.如图,乘法竖式中已经填出了 3 和 8,那么,乘积是. 15.在如图所示除法整式的每个方框中,填入适当的数字,使算式成立.那么算式中的被除数是. 16.在如图的乘法整式中,每一个□和英文字母都代表一个数字;其中相同的字母代表相同的数字,不同的字母代表不同的数字,而□中可以填写在任意的数字,已知 P=6,那么五位数 HAPPY 是.17.如图,一道除法竖式中已经填出了2016和0,那么被除数是. 18.如图乘法算式中只有四个位置上的数已知,它们分别是 2,0,1,6 请你在空白位置填上数字,使得算式能够成立.那么乘积为. 19.如图算式中,不同的汉字代表不同的数字,那么,代表的四位数最大是. 20.如图,一道乘法竖式中已经填出了 2、0、1、6,那么乘数中较小的是. 21.如图的乘法竖式中,相同的汉子代表相同的数字,不同的汉字代表不同的数字:乘法竖式正确填写后,所代表的四位数是. 22.如图,一道乘法竖式已经填出了 2、0、1、6,那么乘积是.23.如图,一道乘法竖式中已经填出了 2、0、1、6,那么乘积是. 24.如图的两个竖式中,相同汉字代表相同数字,不同汉字代表不同数字.两个△和两个□中填入的数字分别相同:那么,花园探秘的值是. 25.如图,将竖式填写完全后,所...。

20181213小学奥数练习卷(知识点:约数个数与约数和定理)含答案解析

20181213小学奥数练习卷(知识点:约数个数与约数和定理)含答案解析

小学奥数练习卷(知识点:约数个数与约数和定理)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一.选择题(共1小题)1.恰有20个因数的最小自然数是()A.120B.240C.360D.432第Ⅱ卷(非选择题)二.填空题(共40小题)2.写出不大于100且恰有8个约数的所有自然数是.3.已知自然数n有10个约数,2n有20个约数,3n有15个约数,那么6n有个约数.4.一个自然数恰有48个约数,并且其中有10个连续的自然数,那么这个数的最小值是.5.自然数N有很多个约数,把它的这些约数两两求和得到一组新数,其中最小的为4,最大的为2684,N有个约数.6.四位数的所有因数中,有3个是质数,其它39个不是质数.那么,四位数有个因数.7.四位数的约数中,恰有3个是质数,39个不是质数,四位数的值是.8.大于0的自然数,如果满足所有因数之和等于它自身的2倍,则这样的数称为完美数或完全数.比如,6的所有因数为1,2,3,6,1+2+3+6=12,6就是最小的完美数.是否有无限多个完美数的问题至今仍然是困扰人类的难题之一.研究完美数可以从计算自然数的所有因数之和开始,81的所有因数之和为.9.恰好有12个不同因数的最小的自然数为.10.有10个不同因数的最小自然数为.11.两个正方形的面积之差为2016平方厘米,如果这样的一对正方形的边长都是整数厘米,那么满足上述条件的所有正方形共有对.12.60的不同约数(1除外)的个数是.13.如果一个自然数N(N>1)满足:N的因数个数就是其个位数字,那么这样的N就称为“中环数”(比如34=2×17,所以它有4个因数,正好就是34的个位数字,所以34就是一个”中环数”).在2~84中,一共有个“中环数”.14.在所有正整数中,因数的和不超过30的共有个.15.一个五位数是2014 的倍数,并且恰好有16个因数,则的最小值是.16.整数n一共有10个因数,这些因数从小到大排列,第8个是.那么整数n的最大值是.17.一个数恰好有8个因数,已知35和77是其中两个,则这个数是.18.在1~600中,恰好有3个约数的数有个.19.已知a、b是两个不同的正整数,并且a、b的约数个数与2013的约数个数相同,则两数之差(大减小)的最小值为.20.用表示a的不同约数的个数.如4的不同约数有1,2,4共3个,所以=3,那么(﹣)÷=.21.一个自然数恰有9个互不相同的约数,其中3个约数A,B,C满足:①A+B+C=79②A×A=B×C那么,这个自然数是.22.有一个自然数A,它的平方有9个约数,老师9个约数写在9张卡片上,发给学学三张、思思三张.学学说:“我手中的三个数乘积是A3.”思思说:“我手中的三个数乘积就是A2,而且我知道你手中的三个数和是625.”那么,思思手中的三个数和是.23.一个四位数,他最小的8个约数的和是43,那么这个四位回文数是.(回文数例如:1111、4334、3210123)24.一个正整数恰有8个约数,它的最小的3个约数的和为15,且这个四位数的一个质因数减去另一个质因数的5倍等于第三个质因数的2倍,这个数是.25.定义:A□B为A和B乘积的约数个数,那么,1□8+2□7+3□6+4□5=.26.已知自然数N的个位数字是0,且有8个约数,则N最小是.27.一个合数至少有3个约数..(判断对错)28.把72的所有约数从小到大排列,第4个是.29.把360的所有约数从小到大排列,第4个数是4,那么倒数第4个数是.30.已知360=2×2×2×3×3×5,那么360的约数共有个.31.一个正整数,它的2倍的约数恰好比它自己的约数多2个,它的3倍的约数恰好比它自己的约数多3个.那么,这个正整数是.32.已知300=2×2×3×5×5,则300一共有不同的约数.33.A、B两数都只含有质因数3和4,它们的最大公约数是36.已知A有12个约数,B有9个约数,那么A+B=.34.能被2345整除且恰有2345个约数的数有个.35.分母是3553的最简真分数的和是.36.若用G(a)表示自然数a的约数的个数,如:自然数6的约数有1、2、3、6,共4个,记作G(6)=4,则G(36)+G(42)=.37.聰聰先求出自然數N的所有約數,再將這些約數兩兩求和,結果發現,最小的和是3,最大的和是2010,那麼這個自然數N是.38.自然数N有20个正约数,N的最小值为.39.一个自然数恰好有18个约数,那么它最多有个约数的个位是3.40.数22×33×55有个不同的约数.41.设数A共有9个不同约数,B共有6个不同约数,C共有8个不同约数,这三个数中的任何两个都互不整除,则三个数之积的最小值是.三.解答题(共9小题)42.已知2008被一些自然数去除,得到的余数都是10,这些自然数共有多少个?43.A、B、C、D是一个等差数列,并且A有2个约数、B有3个约数、C有4个约数、D有5个约数.那么,这四个数和的最小值是.44.如果一个数的奇约数个数有2m个(m为自然数),则我们称这样的数为“中环数”,比如3的奇约数有1,3,一共2=21,所以3是一个“中环数”.再比如21的奇约数有1,3,7,21,4=22,所以21 也是一个中环数.我们希望能找到n个连续的中环数.求n的最大值.45.如果一个自然数的约数的个数是奇数,我们称这个自然数为“希望数”,那么,1000以内最大的“希望数”是.46.求100至160之间有8个约数的数.47.2008的约数有个.48.100以内共有8个约数的数共有多少个?它们各是多少?49.已知三位数240有d个不同的约数(因子),求d的值.50.求360所有约数的和.参考答案与试题解析一.选择题(共1小题)1.恰有20个因数的最小自然数是()A.120B.240C.360D.432【分析】首先把20拆成几个数的乘积,利用求约数个数的方法,从最小的质因数2考虑,依次增大,找出问题的答案即可.【解答】解:20=20=2×10=4×5=2×2×5;四种情况下的最小自然数分别为:219、29×3、24×33、24×3×5,其中最小的是最后一个24×3×5=240.故选:B.【点评】此题巧用求一个数约数的方法,从最小的质因数着手,分析不同的情形,得出结论.二.填空题(共40小题)2.写出不大于100且恰有8个约数的所有自然数是24、30、40、42、54、56、66、70、78、88.【分析】恰有8个约数的自然数,具有形式abc或ab3或a7(a、b、c是不同的质数),由此可得结论.【解答】解:根据题意可得:2×3×5=30,2×3×7=42,2×3×11=66,2×3×13=78,2×5×7=70;3×23=24,5×23=40,7×23=56,11×23=88,2×33=54;27=128>100.所以,所求的数从小到大依次是:24、30、40、42、54、56、66、70、78、88共十个.故答案为:24、30、40、42、54、56、66、70、78、88.【点评】本题考查约数个数问题,考查学生分析解决问题的能力,确定恰有8个约数的自然数,具有形式abc或ab3或a7(a、b、c是不同的质数)是关键.3.已知自然数n有10个约数,2n有20个约数,3n有15个约数,那么6n有30个约数.【分析】n有10个约数,而2n有20个约数,按约数和定理,得知n的分解式中不含有2,3n有15个约数,假设3n的分解式中不含有3,则3n的约数应该是(1+1)×10=20个,则n的分解式中含有一个3,6n分成2×3×n,再根据约数和定理,可以求得约数的个数.【解答】解:根据分析,n有10个约数,2n有20个约数,按约数和定理,又∵,∴n的质因数分解式中含有0个2;设n=3a m x,又∵,∴n的质因数分解式中含有一个3,根据约数和定理,得n的约数和为:(a+1)(x+1)=10,解得:a=1,x=4,此时n=3×m4;故6n=2×3×n=2×3×3×m4=2×32×m4,其约数和为:(1+1)×(2+1)(4+1)=2×3×5=30,故答案是:30.【点评】本题考查了约数个数与约数和定理,本题突破点是:根据约数和定理确定分解式中2和3的个数,再算约数的个数.4.一个自然数恰有48个约数,并且其中有10个连续的自然数,那么这个数的最小值是2520.【分析】因为这个数中的因数中有10个连续的自然数,那么这个数最小是1、2、3、4、5、6、7、8、9、10的最小公倍数,然后再验证这个最小公倍数是不是有48个约数.如果验证不到,再求2、3、4、5、6、7、8、9、10、11的最小公倍数,就这样去尝试.【解答】解:因为10=2×5,9=3×3,8=4×2,所以这10个数的最小公倍数,也就是7、8、9、10的最小公倍数.7、8的最小公倍数是56,9、10的最小公倍数是90,56和90的最小公倍数是2520.将2520分解质因数得23×32×5×7,所以它的因数个数是(3+1)×(2+1)×(1+1)×(1+1)=48个故此题填2520.【点评】此题考查是求公倍数的方法,以及如何去求约数的个数,采用的是假设验证的解题策略.5.自然数N有很多个约数,把它的这些约数两两求和得到一组新数,其中最小的为4,最大的为2684,N有8个约数.【分析】最小的数为4,则约数最小的数为1,另外一个第二小的约数为4﹣1=3,即:3是N的一个约数,最大的约数是本身,第二大的约数和第二小的约数相乘结果即为本身,所以第二大的约数为:,再根据最大的两约数和为2684,可以求出N的值,用约数和定理求出约数的个数.【解答】解:根据分析,约数最小的数为1,最小的两个约数和为4,则第二小的约数为:4﹣1=3,约数是成对出现的,N=1×N=3×,即是第二大的约数,由于最大的两约数和为2684,则有:,解得:N=2013,分解质因数2013=3×11×61,根据约数和定理,得:2013的约数个数为:(1+1)×(1+1)×(1+1)×(1+1)=8个,故答案是:8.【点评】本题考查了约数和定理与因数倍数知识,突破点是:根据约数和第二大和第二小约数,再求出N,再算其约数的个数.6.四位数的所有因数中,有3个是质数,其它39个不是质数.那么,四位数有12个因数.【分析】首先判断文字中含有隐含的数字,奇偶位数和相等是11的倍数,在分析因数的个数,同时注意题中说的是3个质数.42需要分解成3个数字相乘有唯一情况.再枚举即可.【解答】解:首先根据奇偶位数和相等一定是11的倍数.因数一共的个数是3+39=42(个),将42分解成3个数字相乘42=2×3×7.=a×b2×c6.如果是11×52×26=17600(不是四位数不满足条件).再看一下如果这个数字最小是=11×32×26=6336.=3663=11×37×32.因数的个数共2×2×3=12(个).故答案为:12个.【点评】本题考查因数个数的求解同时考查质数与合数的理解和运用,题中隐含数字11就是本题的突破口,同时关键分析42分解成2×3×7的情况.实际就是特殊的情况,都是最小的质数.问题解决.7.四位数的约数中,恰有3个是质数,39个不是质数,四位数的值是6336.【分析】根据因数个数是42个同时需要有3个质数,42分解成3个数字相乘就有唯一情况.同时这四位数中奇数偶数位数和相等.满足11整除特性.接下来从最小的情况枚举尝试即可.【解答】解:根据奇数偶数位数和相等,所以一定是11的倍数,因数个数是3+39=42个.四位数含有3个质数,需要将42分解成3个数字相乘.42=2×3×7.所以可以写成a×b2×c6.那么看一下质数是最小的是什么情况.11×32×26=6336.当质数再打一点b=5时,c=2时,11×52×26=17600(不满足是四位数的条件).故答案为:6336.【点评】本题考查因数个数的求法,同时对质数的理解和运用,突破口是42需要分解成3个数字相乘有唯一情况.同时数字是11的倍数.最后发现实际都是特殊情况唯一确定.问题解决.8.大于0的自然数,如果满足所有因数之和等于它自身的2倍,则这样的数称为完美数或完全数.比如,6的所有因数为1,2,3,6,1+2+3+6=12,6就是最小的完美数.是否有无限多个完美数的问题至今仍然是困扰人类的难题之一.研究完美数可以从计算自然数的所有因数之和开始,81的所有因数之和为121.【分析】先找出81的所有因数,再把81的所有因数相加即可.【解答】解:81的因数:1、3、9、27、81,81的所有因数之和为:1+3+9+27+81=121,故答案为:121.【点评】本题关键是找到81的所有因数.9.恰好有12个不同因数的最小的自然数为60.【分析】首先把12分成两个数的乘积或3个数的乘积,用因数减1当所求自然数的质因数个数,从最小的质数2开始考虑,使2的个数最多,算出乘积比较得出答案.【解答】解:12=1×12=2×6=3×4=2×2×3,有12个约数的自然数有:①2×2×…×2×2(11个2)=2048,②2×2×…×2(5个2)×3=96,③2×2×2×3×3=72,④2×2×3×5=60;从以上可以看出只有④的乘积最小;所以有12个约数的最小自然数是60.故答案为:60.【点评】此题主要考查一个合数的约数个数的计算公式:a=pα×qβ×rγ(其中a 为合数,p、q、r是质数),则a的约数共有(α+1)(β+1)(γ+1)个约数.10.有10个不同因数的最小自然数为48.【分析】首先把10分成两个数的乘积或3个数的乘积,用因数减1当所求自然数的质因数个数,从最小的质数2开始考虑,使2的个数最多,算出乘积比较得出答案.【解答】解:因为10=2×5=1×10,210=1024,24×3=48,所以一个自然数有10个不同的约数,则这个自然数最小:24×3=48;故答案为:48.【点评】此题主要考查一个合数的约数个数的计算公式:a=pα×qβ×rγ(其中a 为合数,p、q、r是质数),则a的约数共有(α+1)(β+1)(γ+1)个约数.11.两个正方形的面积之差为2016平方厘米,如果这样的一对正方形的边长都是整数厘米,那么满足上述条件的所有正方形共有12对.【分析】假设大正方形的边长为x,小正方形的为y,x2﹣y2=(x+y)(x﹣y)=2016,x+y与x﹣y奇偶性相同,乘积2016是偶数,所以必是偶数,据此分解质因数2016=25×32×7,然后解答即可.【解答】解:假设大正方形的边长为x,小正方形的为y,有题意可得:x2﹣y2=2016,因式分解:(x+y)(x﹣y)=2016,x+y与x﹣y奇偶性相同,乘积2016是偶数,所以必是偶数,2016=25×32×7,2016因数的个数:(1+5)×(2+1)×(1+1)=36(个),共有因数36÷2=18对因数,其中奇因数有:(2+1)×2=6对,所以偶数有:18﹣6=12对,即,满足上述条件的所有正方形共有12对.故答案为:12.【点评】本题考查了约数个数的定理和奇偶性问题,关键是得到2016的约数的个数,难点是去掉几个奇因数;本题还可以根据x+y与x﹣y都是偶数,它们的积至少含有4这个偶数,所以2016÷4=504,然后确定504的约数是24个,即12对即可.12.60的不同约数(1除外)的个数是11.【分析】先将60分解质因数,60=2×2×3×5,再写成标准式是22×3×5,再利用约数个数公式,约数个数=不同质因数指数加1然后再相乘,最后减去1,即得答案.【解答】60分解质因数60=2×2×3×5,再下称标准式是22×3×5,再利用约数个数公式,约数个数=不同质因数指数加1然后再相乘.60的不同约数(1除外)的个数是(2+1)×(1+1)×(1+1)﹣1=11个.答:答案是11个.【点评】约数个数公式的推导要用乘法原理,当然此题也可以用列举法求解.13.如果一个自然数N(N>1)满足:N的因数个数就是其个位数字,那么这样的N就称为“中环数”(比如34=2×17,所以它有4个因数,正好就是34的个位数字,所以34就是一个”中环数”).在2~84中,一共有6个“中环数”.【分析】由题意,对N的因数个数分类讨论,由此即可得出结论.【解答】解:由题意,N的因数个数是2,N就是2;N的因数个数是3,则N是完全平方数,由于末尾是3,不存在N满足题意;N的因数个数是4,由于末尾是4,则满足条件的数为14,34,74;N的因数个数是5,则N是完全平方数,由于末尾是5,不存在N满足题意;N的因数个数是6,则N是76满足题意;同理78满足题意,所以在2~84中,”中环数”是2,14,34,74,76,78,故答案为6.【点评】本题考查因数与倍数,考查新定义,解题的关键是对N的因数个数分类讨论.14.在所有正整数中,因数的和不超过30的共有19个.【分析】由于一个数的因数包括本身,则这个数一定不超过30,则依此可以一一检验得到符合题意的正整数的个数.【解答】解:根据分析,此正整数不超过30,故所有不超过30的质数均符合条件,有2、3、5、7、11、13、17、19、23、29共10个;其它非质数有:1、4、6、8、9、10、12、14、15共9个满足条件,故满足因数的和不超过30的正整数一共有:10+9=19个.故答案为:19.【点评】本题考查了约数的个数知识,突破点是:从质数开始排查,再检验其它非质数.15.一个五位数是2014 的倍数,并且恰好有16个因数,则的最小值是24168.【分析】2014的倍数是五位数的数最小从10070开始,再根据的约数个数,来确定这个五位数的最小值.【解答】解:根据分析,2014的倍数是五位数的数:①最小是10070=5×2014,末尾三位是:70=2×5×7,约数个数为:(1+1)(1+1)(1+1)=8个;②12084=6×2014,末三位是:84=22×3×7,约数个数为:(2+1)(1+1)(1+1)=12个;③14098=7×2014,末三位是:98=2×72,约数个数为:(1+1)(2+1)=6个;④16112=8×2014,末三位是:112=24×7,约数个数为:(4+1)(1+1)=10个;⑤18126=9×2014,末三位是:126=2×32×7,约数个数为:(1+1)(2+1)(1+1)=12个;⑥20140=10×2014,末三位是:140=22×5×7,约数个数为:(2+1)(1+1)(1+1)=12个;⑦22154=11×2014,末三位是:154=2×7×11,约数个数为:(1+1)(1+1)(1+1)=8个;⑧24168=12×2014,末三位是:168=23×3×7,约数个数为:(3+1)(1+1)(1+1)=16个;显然符合题意的只有:24168.故答案是:24168.【点评】本题考查了约数个数与约数和定理,突破点是:根据约数和定理一一检验,得到符合题意的数.16.整数n一共有10个因数,这些因数从小到大排列,第8个是.那么整数n的最大值是162.【分析】由于整数的因数都是成对出现,则这10个约数必然是1、、3、、、、、、、n,立即可以填出1、2、3、、、、、、、n,也就是说n必然含有质因数2和3,然后结合因数个数定理可求解.【解答】解:根据分析可知10个因数分别为1、2、3、、、、、、、n,根据因数个数定理10=1×(9+1)=(1+1)×(4+1),由于含质因数2和3,则n应为21×34或24×31,其中21×34=162更大.故答案为:162.【点评】解答本题关键是:能根据因数成对出现的特点结合因数个数和定理.17.一个数恰好有8个因数,已知35和77是其中两个,则这个数是385.【分析】先把35和77分解质因数,即35=5×7,77=7×11,则这个数至少数是:5×7×11,然后根据求一个数约数的个数的计算方法:所有相同质因数的个数加1连乘的积就是这个数约数的个数,即(1+1)×(1+1)×(1+1)=8个,正好符合要求,然后解答可得出答案.【解答】解:35=5×7,77=7×11,则这个数至少数是:5×7×11=385,共有(1+1)×(1+1)×(1+1)=8(个)因数,正好符合要求.答:这个数是385.故答案为:385.【点评】此题主要考查一个合数的约数个数的计算公式:a=pα×qβ×rγ(其中a 为合数,p、q、r是质数),则a的约数共有(α+1)(β+1)(γ+1)个约数.18.在1~600中,恰好有3个约数的数有9个.【分析】如果一个数恰好有3个约数,则这个数分解质因数的形式为P2(P为质数),然后确定在1~600中,完全平方数的个数即可.【解答】解:如果一个数恰好有3个约数,则这个数分解质因数的形式为P2(P 为质数),因为,242=576,252=625,所以,P是不大于24的质数,即2、3、5、7、11、13、17、19、23,共有9个;答:在1~600中,恰好有3个约数的数有9个.故答案为:9.【点评】本题考查了约数个数与约数和定理的灵活逆用;关键是明确:当一个数的因数的个数是奇数个数时,这个数是完全平方数.19.已知a、b是两个不同的正整数,并且a、b的约数个数与2013的约数个数相同,则两数之差(大减小)的最小值为1.【分析】显然先分解质因数2013,可以求得其约数的个数为(1+1)×(1+1)×(1+1)=8,而8=2×2×2=2×4,故而可以确定a和b的分解质因数的形式,再一一检验找出差值最小的数.【解答】解:根据分析,分解质因数2013=3×11×61,有(1+1)×(1+1)×(1+1)=8个约数,而一个数有8个余数,那么这个数分解质因数一定可以写成m3×n或m×n×w (m、n、w为互不相同的质数),故约数个数为8的数有多个,现举例说明两数之差最小的几组:①104=23×13与105=3×5×7均有8个约数(这是最小的满足差是1的一组);②189=33×7与190=2×5×19均有8个约数;③23×37=296与297=33×11均有8个约数;④2013=3×11×61,2014=2×19×53均有8个约数.综上,a、b 两数之差(大减小)的最小值为1.故答案是:1.【点评】本题考查了约数个数与约数和定理,本题突破点是:先分解质因数,求出约数的个数,再算出a,b最小的差.20.用表示a的不同约数的个数.如4的不同约数有1,2,4共3个,所以=3,那么(﹣)÷=1.【分析】由题意,12的约数个数是6个,6的约数个数是4个,5的约数个数是2个,即可得出结论.【解答】解:由题意,12的约数个数是6个,6的约数个数是4个,5的约数个数是2个,所以(﹣)÷=(6﹣4)÷2=1,故答案为1.【点评】本题考查因数与倍数,考查学生的计算能力,正确理解题意是关键.21.一个自然数恰有9个互不相同的约数,其中3个约数A,B,C满足:①A+B+C=79②A×A=B×C那么,这个自然数是441.【分析】一个自然数N恰有9个互不相同的约数,则可得N=x2y2,或者N=x8,利用其中3个约数A,B,C满足:①A+B+C=79;②A×A=B×C,进行验证即可得出结论.【解答】解:一个自然数N恰有9个互不相同的约数,则可得N=x2y2,或者N=x8,(1)当N=x8,则九个约数分别是:1,x,x2,x3,x4,x5,x6,x7,x8,其中有3个约数A、B、C且满足A×A=B×C,不可能.(2)当N=x2y2,则九个约数分别是:1,x,y,x2,xy,y2,x2y,xy2,x2y2,其中有3个约数A、B、C且满足A×A=B×C,①A=x,B=1,C=x2,则x+1+x2=79,无解.②A=xy,B=1,C=x2y2,则xy+1+x2y2=79,无解.③A=xy,B=x,C=xy2,则xy+x+xy2=79,无解.④A=xy,B=x2,C=y2,则xy+x2+y2=79,解得:,则N=32×72=441.⑤A=x2y,B=x2y2,C=x2,则x2y+x2y2+x2=79,无解.故答案为441.【点评】本题考查约数个数和约数和定理,考查分类讨论的数学思想,解题的关键是一个自然数N恰有9个互不相同的约数,则可得N=x2y2,或者N=x8.22.有一个自然数A,它的平方有9个约数,老师9个约数写在9张卡片上,发给学学三张、思思三张.学学说:“我手中的三个数乘积是A3.”思思说:“我手中的三个数乘积就是A2,而且我知道你手中的三个数和是625.”那么,思思手中的三个数和是55.【分析】A2有9个约数,故由约数个数定理可逆推出:A的质因数分解形式为p4或pq(p、q为不相同的质数),分类讨论,即可得出结论.【解答】解:A2有9个约数,故由约数个数定理可逆推出:A的质因数分解形式为p4或pq(p、q为不相同的质数);若A=p4,那么可把A2的9 个约数写成如下的表格形式(幻方):学学手中必拿到了一行或一列或一条对角线;思思手中拿到的可能是(1、p、p7)(1、p2、p6)(1、p3、p5)(p、p2、p5)(p、p3、p4);只有后两组才能确定学学手中的牌,但后两组所确定的数需要1+p4+p8=625或1+p5+p7=625,可是这两种情况p均无解;故知A的质因数分解形式不能为p4,只能为pq;若A=pq,那么可把A2的9 个约数写成如下的表格形式思思手中拿到的可能是(1、p、pq2)(1、q、p2q)(1、p2、q2)(p、q、pq);经分析可知,只有当思思拿到(p、q、pq)时,才一定能确定学学手中的牌,此时学学手中的牌为(1、p2q、pq2),故1+p2q+pq2=625,解得A的两个质因数p、q为3和13,故思思手中的牌为(3、13、39),所求答案为3+13+39=55.故答案为55.【点评】本题考查约数和定理,考查幻方的运用,考查分类讨论的数学思想,正确运用约数个数定理是关键.23.一个四位数,他最小的8个约数的和是43,那么这个四位回文数是2772.(回文数例如:1111、4334、3210123)【分析】最小的八个约数的和为43,约数首先为自然数,首先该有1和2(如果没2的话,就不会有偶约数,最小的8个奇数的和大于43),不该有5(有5的话首末位都为0)和10,而1+2+3+4+6+7+8+9=40不够43,而回文数必然是11的倍数,所以11也是这8个约数之一,把11考虑进去,就只有下面一种情形了:1+2+3+4+6+7+9+11=43,然后求出这8个数的最小公倍数即可;由此解答.【解答】解:由分析可知:约数首先为自然数,首先该有1和2,不该有5和10,而1+2+3+4+6+7+8+9=40不够43,而回文数必然是11的倍数,所以11也是这8个约数之一,把11考虑进去,则有:1+2+3+4+6+7+9+11=43,以上数的最小公倍数为:4×7×9×11=2772,正好满足要求;答:这个四位回文数是2772;故答案为:2772.【点评】明确回文数的含义:从左往右读,还是从右往左读,都是同一个数,称这样的数为“回文数”;然后根据题意,进行推导,求出这8个约数,是解答此题的关键.24.一个正整数恰有8个约数,它的最小的3个约数的和为15,且这个四位数的一个质因数减去另一个质因数的5倍等于第三个质因数的2倍,这个数是1221或2013.【分析】它的最小的3个约数的和为15,1肯定是其中一个约数,另两个最小的约数之和是14,然后通过列举,推出它的最小的3个约数只能是:1,3,11;它是4位数,所以,3和它本身肯定也是它的约数,所以已经有5个约数了,其中有两个质因数3,11,另外它至少有3个质因数,设第3个质因数为x.那么它的约数有:1,3,11,33,x,3×x,11×x,这个数本身,刚好8个,所以有x﹣5×3=2×11或者x﹣5×11=2×3,由此可以得出x=37或61;由此即可得出结论.【解答】解:它的最小的3个约数的和为15,1肯定是其中一个约数,另两个最小的约数之和是14,可能是:7、7(不符),6、8(如果是这两个,那2也是,不符),5、9(如果是这两个,那3也是,不符),4、10(如果是这两个,那2也是,不符),3、11(符合),所以可以推出它的最小的3个约数只能是:1,3,11;它是4位数,所以,33和它本身肯定也是它的约数,所以已经有5个约数了,其中有两个质因数3,11,另外它至少有3个质因数,设第3个质因数为x.那么它的约数有:1,3,11,33,x,3×x,11×x,这个数本身,刚好8个,所以有x﹣5×3=2×11或者x﹣5×11=2×3,由此可以得出x=37或61;所以它的约数有:1,3,11,33(3×11),37,111(3×37),407(11×37),1221(3×11×37)或1,3,11,33(3×11),61,183(3×61),671(11×61),2013(3×11×61)所以答案应该是1221或2013;故答案为:1221或2013.【点评】此题考查了约数个数和约数和定理,根据题意,进行推导,得出它的最小的3个约数是:1,3,11,是解答此题的关键.25.定义:A□B为A和B乘积的约数个数,那么,1□8+2□7+3□6+4□5=20.【分析】依次算出各部分约数的个数,然后相加即可.【解答】解:1×8的因数有4个2×7的因数有4个3×6的因数有6个4×5的因数有6个所以1□8+2□7+3□6+4□5=4+4+6+6=20故填20【点评】此题的关键是看懂A□B的意思,然后确定运算顺序.26.已知自然数N的个位数字是0,且有8个约数,则N最小是30.【分析】根据能被2、5整除的数的特征;自然数N的个位数字是0,它一定有质因数5和2,要使N最小,5的个数应最少,而其它质因数最好都是2和3,并且2的个数不能超过2个;据此解答.【解答】解:自然数N的个位数字是0,它一定有质因数5和2,要使N最小,5的个数应最少为1个,而求其它因数最好都是2和3,并且2的个数不能超过2个,其它最好都是3;设这个自然数N=21×51×3a,根据约数和定理,可得:(a+1)×(1+1)×(1+1)=8,(a+1)×2×2=8,a=1;所以,N最小是:2×3×5=30;答:N最小是30.故答案为:30.【点评】本题关键是根据能被2、5整除的数的特征确定自然数N的质因数;难点是根据约数和定理得出质因数5、3和2的个数.27.一个合数至少有3个约数.√.(判断对错)【分析】根据合数的意义,一个数,如果除了1和它本身还有别的因数,这样的数叫做合数.由此解答.【解答】解:根据合数的意义,一个合数至少有3个约数;所以这种说法是对的.。

小学奥数数论问题完全平方数练习题【六篇】

小学奥数数论问题完全平方数练习题【六篇】

小学奥数数论问题完全平方数练习题【六篇】【篇一】一个自然数减去45及加上44都仍是完全平方数,求此数。

解答:设此自然数为x,依题意可得x-45=m^2; (1)x+44=n^2 (2)(m,n为自然数)(2)-(1)可得 :n^2-m^2=89或: (n-m)(n+m)=89因为n+m>n-m又因为89为质数,所以:n+m=89; n-m=1解之,得n=45。

代入(2)得。

故所求的自然数是1981。

【篇二】求证:11,111,1111,这串数中没有完全平方数解答:形如的数若是完全平方数,必是末位为1或9的数的平方,即或在两端同时减去1之后即可推出矛盾。

证明若,则因为左端为奇数,右端为偶数,所以左右两端不相等。

若,则因为左端为奇数,右端为偶数,所以左右两端不相等。

综上所述,不可能是完全平方数。

【篇三】求满足下列条件的所有自然数:(1)它是四位数。

(2)被22除余数为5。

(3)它是完全平方数解答:设,其中n,N为自然数,可知N为奇数。

11|N - 4或11|N + 4或k = 1k = 2k = 3k = 4k = 5所以此自然数为1369, 2601, 3481, 5329, 6561, 9025。

【篇四】决断下列各数哪几个数是完全平方数:486,1156,4128。

解:486=4×121+2,因为形如4k+2的数肯定不是完全平方数,所以486不是完全平方数。

如果1156是平方数,设A2=1156,则A的个位数字为4或6,因为302<1156<352,342=1156,所以1156是完全平方数。

因为完全平方数的个位数只能是0,1,4,5,6,9这6个数字中的一个,所以4128不是完全平方数。

答:1156是完全平方数。

例2:在20~1000中,有多少个完全平方数。

解:因为52=25,312=961,322=1024,所以在20~1000之间的完全平方数个数有 31-5+1=27答:有27个完全平方数。

小学奥数 完全平方数及应用(一) 精选例题练习习题(含知识点拨)

小学奥数  完全平方数及应用(一)  精选例题练习习题(含知识点拨)

1. 学习完全平方数的性质;2. 整理完全平方数的一些推论及推论过程3. 掌握完全平方数的综合运用。

一、完全平方数常用性质1.主要性质 1.完全平方数的尾数只能是0,1,4,5,6,9。

不可能是2,3,7,8。

2.在两个连续正整数的平方数之间不存在完全平方数。

3.完全平方数的约数个数是奇数,约数的个数为奇数的自然数是完全平方数。

4.若质数p 整除完全平方数2a ,则p 能被a 整除。

2.性质性质1:完全平方数的末位数字只可能是0,1,4,5,6,9.性质2:完全平方数被3,4,5,8,16除的余数一定是完全平方数.性质3:自然数N 为完全平方数⇔自然数N 约数的个数为奇数.因为完全平方数的质因数分解中每个质因数出现的次数都是偶数次,所以,如果p 是质数,n 是自然数,N 是完全平方数,且21|n p N -,则2|n p N .性质4:完全平方数的个位是6⇔它的十位是奇数.性质5:如果一个完全平方数的个位是0,则它后面连续的0的个数一定是偶数.如果一个完全平方数的个位是5,则其十位一定是2,且其百位一定是0,2,6中的一个.性质6:如果一个自然数介于两个连续的完全平方数之间,则它不是完全平方数.3.一些重要的推论1.任何偶数的平方一定能被4整除;任何奇数的平方被4(或8)除余1.即被4除余2或3的数一定不是完全平方数。

2.一个完全平方数被3除的余数是0或1.即被3除余2的数一定不是完全平方数。

3.自然数的平方末两位只有:00,01,21,41,61,81,04,24,44,64,84,25,09,29,49,69,89,16,36,56,76,96。

4.完全平方数个位数字是奇数(1,5,9)时,其十位上的数字必为偶数。

5.完全平方数个位数字是偶数(0,4)时,其十位上的数字必为偶数。

6.完全平方数的个位数字为6时,其十位数字必为奇数。

7.凡个位数字是5但末两位数字不是25的自然数不是完全平方数;末尾只有奇数个“0”的自然数不是完全平方数;个位数字为1,4,9而十位数字为奇数的自然数不是完全平方数。

20181213小学奥数练习卷(知识点:完全平方数性质)含答案解析

20181213小学奥数练习卷(知识点:完全平方数性质)含答案解析

小学奥数练习卷(知识点:完全平方数性质)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一.选择题(共2小题)1.老师把一个三位完全平方数的百位告诉了甲,十位告诉了乙,个位告诉了丙,并且告诉三人他们的数字互不相同.三人都不知道其他两人的数是多少,他们展开了如下对话:甲:我不知道这个完全平方数是多少.乙:不用你说,我也知道你一定不知道.丙:我已经知道这个数是多少了.甲:听了丙的话,我也知道这个数是多少了.乙:听了甲的话,我也知道这个数是多少了.请问这个数是()的平方.A.14B.17C.28D.292.已知正整数A分解质因数可以写成A=2α×3β×5γ,其中α、β、γ是自然数.如果A的二分之一是完全平方数,A的三分之一是完全立方数,A的五分之一是某个自然数的五次方,那么α+β+γ的最小值是()A.10B.17C.23D.31第Ⅱ卷(非选择题)二.填空题(共33小题)3.a1 、a2、…、a10表示10个正整数,取其中的9个数相加,得到一些不同的和:86、87、88、89、90、91、93、94、95,那么a12+a22+…+a102=.4.(1)n为任意大于0的整数,那么2n+2n+1+2n+2+2n+3+2n+4+2n+5除以9的余数是.(2)设2+22+23+…+22015=A,A的各位数字之和为a1,a1的各位数字之和为a2,a2的各位数字之和为a3,…,直到各位数字之和为一位数k,则k=.5.已知四位数满足下面的性质:、、都是完全平方数(完全平方数是指能表示为某个整数平方的数,比如4=22,81=92,则我们就称4、81为完全平方数).所有满足这个性质的四位数之和为.6.有些三位数具有下面的性质:(1)去掉百位数字后,剩下的两位数是一个完全平方数;(2)去掉个位数字后,剩下的两位数也是一个完全平方数;所有满足这些性质的三位数之和为.7.有A、B、C三个两位数.A是一个完全平方数,而且它的每一位数字都是完全平方数;B是一个质数,而且它的每一位数字都是质数,数字和也是质数;C是一个合数,而且它的每一位数字都是合数,两个数字之差也是合数,并且C介于A、B之间.那么A,B、C这三个数的和是.8.将2016的四个数字重新编排,组成一个四位完全平方数;那么这个四位完全平方数是.9.设P是一个平方数.如果q﹣2和q+2都是质数,就称q为P型平方数.例如:9就是一个P型平方数.那么小于1000的最大P型平方数是.10.已知a、b均为小于100的正整数,a﹣2b为质数,且2ab为完全平方数.这样的数对(a、b)有对.11.五位数是一个完全平方数,那么A+B=.12.今年是2014年,2014不是完全平方数,但可以将它的各位数字改变顺序,使得到的新四位数是完全平方数,例如1024=322,已知用数字2、0、1、4各一个还能组成另一个四位完全平方数,那么这个新的四位完全平方数是.13.有这样的正整数n,使得8n﹣7、18n﹣35均为完全平方数.则所有符合要求的正整数n=.14.A、B、C三人和他们的妻子L、M、N(不对应)去集市上买羊,买完后惊奇的发现,每个人所买羊的数量正好和价格相同(例如A买了a只羊,则每只羊的价格是a元):若已知A、B、C分别比他们的妻子多花了63元,还知道A比M多买了23只羊,B比L多买了11只羊,那么A的妻子是.(填字母)15.有4个不同的数字共可组成18个不同的四位数由小到大排成一排,其中第一个位数是一个完全平方数,倒数第二个四位数也是完全平方数,那么这两个数的和是.16.1234567654321×(1+2+3+4+5+6+7+6+5+4+3+2+l)是的平方.17.自然数n乘以3960,所得的乘积正好是m的平方.n的最小值是.18.已知:503=125000,603=216000,如果a3=195112,且a为整数.那么a=.19.从0、2、4、6、8中挑出4个各不相同的数字能组成一个四位完全平方数,那么这个完全平方数是.20.十个不同奇数的平方之和的最小值与这个最小值被 4 除的余数之差是.(注:相同的两个自然数的乘积叫做这个自然数的平方,如1×1=12,2×2=22,3×3=33,类推)21.在1﹣﹣﹣2012这2012个自然数中,是平方数但不是立方数的一共有个.22.如果存在n个连续自然数的平方和为质数,则n的所有取值的平方和等于.23.设M是三个相邻整数的平方和,则M的个位数字可能是.24.甲、乙两人合买了n个篮球,每个篮球n元.付钱时,甲先乙后,10元,10元地轮流付钱,当最后要付的钱不足10元时,轮到乙付.付完全款后,为了使两人所付的钱数同样多,则乙应给甲元.25.一个四位数是完全平方数,四个数字的和是偶数,千位数字和百位数字的和为3,个位数字为偶数,那么这个数是.26.若两位数的平方只有十位上的数字是0,则这样的两位数共有个.27.把1,2,3,4,5,6,7,8,9按另一种顺序填在下表的第二行的空格中,使得每两个上、下对齐的数的和都是平方数.28.已知自然数n满足:12除以n得到一个完全平方数,则n的最小值是.29.一个数与它自身的乘积称为这个数的平方,各位数字互不相同且各位数字的平方和等于49的四位数共有个.30.如果一个两位数与它的反序数(比如:52的反序数是25)的和是一个完全平方数,则称为“灵巧数”请写出所有的”灵巧数”:.31.给1999加上一个三位数,使结果是一个平方数,这样的三位数共有个.32.有4个不同的数字共可组成18个不同的4位数.将这18个不同的4位数由小到大排成一排,其中第一个是一个完全平方数,倒数第二个也是完全平方数,则这18个数中最大的数是.33.已知两个质数的平方差等于21,那么,这两个质数的平方和等于.34.在2×2=4,3×3=9,4×4=16,5×5=25,6×6=36,…等这些算式中,4,9,16,25,36…叫做完全平方数.那么不超过2007的最大的完全平方数是.35.自然数N是一个两位数,它是一个完全平方数,而且N的个位数字与十位数字都是完全平方数,这样的自然数有个.三.解答题(共15小题)36.一个四位数,它本身是一个完全平方数,由它前两位数字及后两位数字组成的两个两位数也都是完全平方数.那么这个四位数是多少?37.A、B、C三人到D老师家里玩,D老师给每人发了一顶帽子,并在每个人的帽子上写了一个四位数.已知这三个四位数都是完全平方数(比如4=22,100=102,4、100都是某个数的平方,这样的数称为完全平方数),并且这三个四位数的十位数都是0,个位数都不是0,每个小朋友只能看见别人帽子上的数.这三个小朋友非常聪明而且诚实,发生了如下的对话:A说:“B、C帽子上数的个位数相同.”B、C同时说:“听了A的话,我知道自己的数是多少了.”A说:“听了B、C的话,我也知道自己的数是多少了,我的这个数的个位数是一个偶数.”求:A、B、C帽子上的数之和.38.从1至100中最多能取出个数,才能够确保其中任意两个数的最小公倍数与最大公因数的商不是一个完全平方数?39.某自然数减去39是一个完全平方数,减去144也是一个完全平方数,求此自然数.40.有多少种方法可以将22012表示成四个正整数的完全平方和?请证明你的结论.41.有一个奇怪的四位数(首位不为0),它是完全平方数,它的数字和也是完全平方数,用这个四位数除以它的数字和得到的结果还是完全平方数,并且它的约数个数还恰好等于它的数字和,那当然也是完全平方数,如果这个四位数的各位数字互不相同,那么这个四位数是多少?42.有一对四位数对(2025,3136),拥有如下的特点:每个数都是完全平方数,并且第二个四位数的每个数码比第一个四位数的对应数码都大1.请找出所有满足这个个点的五位数数对.(如果找出的一对五位数为a和b,请写成(a,b)的形式.)43.少年官游乐厅内悬挂着250个彩色灯泡,按1﹣250编号.它们的亮暗规则是:第1秒,全部灯泡变亮;第2秒,凡是编号为2的倍数的灯泡由亮变暗;第3秒,凡是编号为3的倍数的灯泡改变原来的亮暗状态,即亮的变暗,暗的变亮;第n秒,凡编号为n的倍数的灯泡改变原来的亮暗状态.这样继续下去,第250秒时,亮着的灯泡有个.44.把既不是平方数也不是立方数的正整数(0除外)按从小到大的顺序排列,得到2,3,5,6,7,10,…,其中第1000个数是多少?45.将一个2n位数的前n位数和后n位数各当成一个n位数.如果这两个n位数之和的平方正好等于这个2n位数.则称这个2n位数为卡不列克(Kabulek)怪数,例如,(30+25)2=3025,所以3025是一个拉布列克怪数.请问在四位数中有哪些卡不列克怪数?46.老师为自己班级的50名学生做了50张分别写着1到50的数字卡片,每张卡片都是一面红色,另一面蓝色,两面都写着相同的数字.老师把这50张卡片都蓝色朝上地摆在桌上,对同学们说:“请你们按顺序逐个到前面来翻卡片,规则是:只要卡片上的数字是你自己序号的倍数,你就把它们都翻过来,蓝的就翻成红的,红的就翻成蓝的.”那么,当全体学生都按老师的要求翻完以后,红色朝上的卡片有多少张?47.在每个人心里都默记住两个不等于0的数.算出这两个数和的平方,其结果记做“共”,算出这两个数差的平方,其结果记做“迎”;再算出这两个数的乘积,记做“接”.请你你的“共”,“迎”,“接”来计算式子:()2=?.请大家一起同声回答.48.是否能将1~l6这16个自然数排成一排,使得任相邻两个数的和都等于自然数的平方?如果能,请写出排法,如果不能,请说明理由.49.如果l,2,3…n可以这样重排,使得每个数加上它的序号的和都是平方数,那么n就称为“迎春数”.例如,自然数1,2,3,4,5可以重新排列为3,2,1,5,4;这时每个数加上它的序号的和都是平方数,那么5就是一个“迎春数”.问:在6,7,8,9,10,11中哪几个是“迎春数”?50.求同时满足下列三个条件的自然数a,b:(1)a>b;(2);(3)a+b是平方数.参考答案与试题解析一.选择题(共2小题)1.老师把一个三位完全平方数的百位告诉了甲,十位告诉了乙,个位告诉了丙,并且告诉三人他们的数字互不相同.三人都不知道其他两人的数是多少,他们展开了如下对话:甲:我不知道这个完全平方数是多少.乙:不用你说,我也知道你一定不知道.丙:我已经知道这个数是多少了.甲:听了丙的话,我也知道这个数是多少了.乙:听了甲的话,我也知道这个数是多少了.请问这个数是()的平方.A.14B.17C.28D.29【分析】首先利用枚举法得出所有的可能,进而利用已知分析得出所有可能,进而得出答案.【解答】解:先枚举出所有三位五重复数字的完全平方数.(1)根据甲的第一句话,排除了625,841,961 三种情形(2)根据乙的第一句话,知道乙拿到的一定不是2,4,6,从而只剩下了196,256,289,576,784 (更重要的是,此时此刻甲和丙并不知道乙知不知道结果,因此他们不能进一步缩小范围.)(3)根据丙的话,知道丙拿的一定不是6,否则就不可能知道结果,于是又排除了196,256,576.(4)根据甲的第二句话,知道甲在第二句话之后还不知道结果,因此甲一定是2.甲是由于丙的话排除了256,从而知道了自己是289的.(5)最后一句话没有用,但最后一句话是事实,因为丙不知道到底是289还是784,他只有听到了甲说完上一句话才能知道.故此数是17的平方.故选:B.【点评】此题主要考查了完全平方数的特征,利用枚举法得出所有可能是解题关键.2.已知正整数A分解质因数可以写成A=2α×3β×5γ,其中α、β、γ是自然数.如果A的二分之一是完全平方数,A的三分之一是完全立方数,A的五分之一是某个自然数的五次方,那么α+β+γ的最小值是()A.10B.17C.23D.31【分析】A的二分之一是完全平方数,α﹣1、β、γ是2的倍数;A的三分之一是完全立方数,α、β﹣1、γ是3的倍数;A的五分之一是某个自然数的五次方,α、β、γ﹣1是5的倍数;要α+β+γ的值最小,分别求满足条件的α、β、γ值,然后求出α+β+γ的最小值即可.【解答】解:A的二分之一是完全平方数,α﹣1、β、γ是2的倍数;A的三分之一是完全立方数,α、β﹣1、γ是3的倍数;A的五分之一是某个自然数的五次方,α、β、γ﹣1是5的倍数;要α+β+γ的值最小,分别求满足条件的α、β、γ值:3×5﹣1是2的倍数,α的最小值为15,2×3﹣1是5的倍数,γ的最小值为6,2×5﹣1是3的倍数,β的最小值为10,所以α+β+γ的最小值是:15+6+10=31;故选:D.【点评】根据题意,推导出满足条件的α、β、γ值,是解答此题的关键.二.填空题(共33小题)3.a1 、a2、…、a10表示10个正整数,取其中的9个数相加,得到一些不同的和:86、87、88、89、90、91、93、94、95,那么a12+a22+…+a102=1090.【分析】由10个正整数取9个数相加只有9个不同的和,可得出有一个重复的数,设9个数的和中重复的数为x、s=a1+a2+…+a10,将这十个数相加即可得出x+813=9s,变形后可得出x+3=9s﹣810=9(s﹣90)是9的倍数,结合给定的数可得出x=87、s=100,继而可求出该10个正整数,将其平方再相加即可得出结论.【解答】解:∵只有9个不同的和,∴有一个重复.设9个数的和中重复的数为x,s=a1+a2+…+a10,∴x+86+87+88+89+90+91+93+94+95=9s,即x+813=9s,∴x+3=9s﹣810=9(s﹣90)是9的倍数,∴x=87,s=100,∴10个正整数分别是:14,13,13,12,11,10,9,7,6,5.∴a12+a22+…+a102=142+132+132+122+112+102+92+72+62+52=1090.故答案为:1090.【点评】本题考查了完全平方数的性质以及因数与倍数,将9个数之和全部相加,找出x+813=9s是解题的关键.4.(1)n为任意大于0的整数,那么2n+2n+1+2n+2+2n+3+2n+4+2n+5除以9的余数是0.(2)设2+22+23+…+22015=A,A的各位数字之和为a1,a1的各位数字之和为a2,a2的各位数字之和为a3,…,直到各位数字之和为一位数k,则k=8.【分析】(1)2n+2n+1+2n+2+2n+3+2n+4+2n+5=2n(1+2+4+8+16+32)=2n×63是9的倍数,可得2n+2n+1+2n+2+2n+3+2n+4+2n+5除以9的余数;(2)求出2、22、23、…、22015,直到各位数字之和为一位数分别为2,4,8,7,5,1,2,4,8,7,5,1,…,2,4,8,7,5,其和为335×(2+4+8+7+5+1)+2+4+8+7+5=14164847,即可得出结论.【解答】解:依题意可知:(1)2n+2n+1+2n+2+2n+3+2n+4+2n+5=2n(1+2+4+8+16+32)=2n×63是9的倍数,所以2n+2n+1+2n+2+2n+3+2n+4+2n+5除以9的余数是0.(2)2、22、23、…、22015,直到各位数字之和为一位数分别为2,4,8,7,5,1,2,4,8,7,5,1,…,2,4,8,7,5,其和为335×(2+4+8+7+5+1)+2+4+8+7+5=14164847,各位数字之和为1+4+1+6+4+8+4+7=35,3+5=8直到各位数字之和为一位数,则k=8.故答案为0,8.【点评】本题考查数字和问题,考查逻辑推理,考查学生分析解决问题的能力,确定2、22、23、…、22015,直到各位数字之和为一位数分别为2,4,8,7,5,1,2,4,8,7,5,1,…,2,4,8,7,5是关键.5.已知四位数满足下面的性质:、、都是完全平方数(完全平方数是指能表示为某个整数平方的数,比如4=22,81=92,则我们就称4、81为完全平方数).所有满足这个性质的四位数之和为13462.【分析】由题意,、、都是完全平方数,所以、、分别是16,64,49或36,64,49或81,16,64,可得四位数是1649或3649或8164,即可求出满足这个性质的四位数之和.【解答】解:由题意,、、都是完全平方数,所以、、分别是16,64,49或36,64,49或81,16,64,所以四位数是1649或3649或8164,所以满足这个性质的四位数之和为1649+3649+8164=13462.故答案为13462.【点评】本题考查位值原理,考查学生对概念的理解,考查学生分析解决问题的能力,属于中档题.6.有些三位数具有下面的性质:(1)去掉百位数字后,剩下的两位数是一个完全平方数;(2)去掉个位数字后,剩下的两位数也是一个完全平方数;所有满足这些性质的三位数之和为1993.【分析】完全平方数是两位数的数有16,25,36,49,64,81,再根据性质,得出满足条件的三位数为816、649、164、364.求和可得结论.【解答】解:完全平方数是两位数的数有16,25,36,49,64,81,以16作为十位数、个位数,百位数取8,以49作为十位数、个位数,百位数取6,以64作为十位数、个位数,百位数取1或3,满足条件的三位数之和为816+649+164+364=1993,故答案为1993.【点评】本题考查完全平方数性质,考查学生对题意的理解,确定完全平方数是两位数的数有16,25,36,49,64,81,再根据性质,得出满足条件的三位数是关键.7.有A、B、C三个两位数.A是一个完全平方数,而且它的每一位数字都是完全平方数;B是一个质数,而且它的每一位数字都是质数,数字和也是质数;C是一个合数,而且它的每一位数字都是合数,两个数字之差也是合数,并且C介于A、B之间.那么A,B、C这三个数的和是120.【分析】可以先确定A的值,由于一位数为完全平方数的只有1,4,9,而其中能构成平方数的两位数只有49,而质数B的两个数字之和为质数且每个数字都是质数,则B的十位上数字只能是2,又因为合数C的两数字之差是合数且每个数字都是合数,则这个数字只能是:4,6,8,9,C介于A、B之间,可以缩小范围再确定这三个数.【解答】解:根据分析,先确定A,∵一位数为完全平方数的只有1,4,9,而其中能构成平方数的两位数只有49,∴A=49;∵质数B的两个数字之和为质数且每个数字都是质数,∴B的十位上数字只能是2,而个位只能是3,故B=23;∵合数C的两数字之差是合数且每个数字都是合数,则这个数字只能是:4,6,8,9,C介于A、B之间即,∴C=48,故A+B+C=49+23+48=120,故答案是:120.【点评】本题考查了完全平方数性质,本题突破点是:根据完全平方数的性质,以及质数合数的特征缩小范围,最后确定三个数的值.8.将2016的四个数字重新编排,组成一个四位完全平方数;那么这个四位完全平方数是2601.【分析】显然,将2016的四个数字重新编排后的数在1026~6210之间,要组成一个四位完全平方数,则个位数必为0,1,6,又因为个位为0时,四位数必然出现两个0才能是一个平方数,故可以排除个位数是0和2的数,而个位数为6和1的数中可以一个一个排除,缩小范围,最后确定答案.【解答】解:根据分析,将2016的四个数字重新编排,设此四位数为A=n2,322<1026≤A≤6210<802,32<n<80,要想组成一个四位完全平方数,则个位数必为0,1,6,又因为个位为0时,四位数必然出现两个0才能是一个平方数,故可以排除个位数是0和2的数,个位数为1和6的数有:2061、2601、6021、6201、1206、1026、2016、2106,共八个数,其中,若个位数为6,则n=36、46、56、66、76,而362=1296,462=2116,562=3136,662=4356,762=5776,均不合题意,故排除,所以个位数为1,而2061、2601、6021、6201,这四个数中只有2601=512,是一个平方数,此四位数是2601,故答案是:2601.【点评】本题考查了完全平方数的性质,本题突破点是:根据完全平方数的性质,排除掉不合题意的数,再缩小范围确定结果.9.设P是一个平方数.如果q﹣2和q+2都是质数,就称q为P型平方数.例如:9就是一个P型平方数.那么小于1000的最大P型平方数是225.【分析】小于1000的最大P型平方数,33的平方数是1089,这个数需要小于33的平方的平方数.q﹣2和q+2的差是4.只要找到数字相差4的不超过33的质数组合即可.【解答】解:小于33的质数有31,29,23,19,17,13,11,7,5,3,2等数字差是4的两个质数有19和23最大.21﹣2=19,21+2=23.21×21=441.故答案为:441.【点评】本题关键在于找到q﹣2和q+2的差是4的质数,而且小于33的质数.要注意找到的是这两个质数,题中要找的是一个平方数441,不是21.10.已知a、b均为小于100的正整数,a﹣2b为质数,且2ab为完全平方数.这样的数对(a、b)有3对.【分析】先讨论确定(a,b)=1,再得出设a﹣2b=p (p是质数),则x+2y=p,x﹣2y=1,p=4y+11~21被4除余1的质数有:5,13,17,即可得出结论.【解答】解:(1)若a﹣2b=2,则a=2b+2所以,2ab=4b2+4b4b2<4b2+4b<4b2+4b+1=(2b+1)2因为两个完全平方数之间不存在完全平方数,所以,2ab不是完全平方数.这种情况舍去.(2)若(a,b)=d≠1,设b=kd,则a=(2k+1)d,2ab=d2(4k2+2k)因为2ab是完全平方数,所以,4k2+2k是完全平方数,由于4k2<4k2+2k<4k2+4k+1=(2k+1)2同理这也是不可能的.综上所述,(a,b)=1从而,a﹣2b是奇数,所以,a是奇数,因为2ab是完全平方数,所以a=x2,b=2y2,(x<10,y<5)所以,a﹣2b=x2﹣4y2=(x+2y)(x﹣2y)设a﹣2b=p (p是质数),则x+2y=p,x﹣2y=1,两式相减得到4y=p﹣1所以,p=4y+11~21被4除余1的质数有:5,13,17,所以,这样的数对(a、b)共有3组解:①a=9,b=2;②a=49,b=18;③a=81,b=32.故答案为3.【点评】本题考查完全平方数的性质,考查质数,考查学生分析解决问题的能力,属于中档题.11.五位数是一个完全平方数,那么A+B=3.【分析】由题意,五位数是一个三位数的完全平方,百位为1,末位是3或7,再分类讨论验证可得结论.【解答】解:由题意,五位数是一个三位数的完全平方,百位为1,末位是3或7,若是,则代入验证可得1232=15129,∴A=1,B=2,A+B=3.若是,则代入验证可得1172=13689,1272=16129,不符合题意,故答案为3.【点评】本题考查完全平方数性质考查学生分析解决问题的能力,解题的关键是得出五位数是一个三位数的完全平方,百位为1,末位是3或7.12.今年是2014年,2014不是完全平方数,但可以将它的各位数字改变顺序,使得到的新四位数是完全平方数,例如1024=322,已知用数字2、0、1、4各一个还能组成另一个四位完全平方数,那么这个新的四位完全平方数是2401.【分析】首先找到这些数字中尾数只能是1或者4才能构成平方数.再枚举这些数字,然后进行分解.只要分解出一个不是平方数的数字就不符合题意.【解答】解:首先根据是平方数判断尾数可以是1或者4.没有一个平方数尾数是2的.尾数是1和尾数是4时有1024,1204,2014,2104,2041,2401,4201,4021共8个数字.对以上8个数字进行分解得:①1024=25,②1204=4×301(不符合题意),③2014=2×1007(不符合题意),④2104=8×263(不符合题意)⑤2041=13×157(不符合题意),⑥2401=492(符合题意),⑦4201(质数),⑧4021(质数).故答案为:2401【点评】本题关键是尽可能找到一个条件缩小可能出现的数字范围,比如如果是平方数尾数的特征是固定的.根据这些特征进行筛选.13.有这样的正整数n,使得8n﹣7、18n﹣35均为完全平方数.则所有符合要求的正整数n=22或2.【分析】设8n﹣7=a2…①,18n﹣35=b2…②,用①×9﹣②×4可以得到(3a+2b)(3a﹣2b)=77,然后把77进行分解,进而解得a、b的值.【解答】解:设8n﹣7=a2…①,18n﹣35=b2…②,①×9得,72n﹣63=9a2…③,②×4=72n﹣140=4b2…④式,③代入④式,得到9a2﹣4b2=77,即(3a+2b)(3a﹣2b)=77,又77=1×77=7×11,即或,解得a=13或3,分别把a=13或3,代入①得,8n﹣7=169,或8n﹣7=9,8n=176,或8n=16解得:n=22,或n=2,所以n=22或n=22.故答案为:22或2.【点评】本题主要考查完全平方数的知识点,解答本题的关键是设出8n﹣7=a2,18n﹣35=b2.14.A、B、C三人和他们的妻子L、M、N(不对应)去集市上买羊,买完后惊奇的发现,每个人所买羊的数量正好和价格相同(例如A买了a只羊,则每只羊的价格是a元):若已知A、B、C分别比他们的妻子多花了63元,还知道A比M多买了23只羊,B比L多买了11只羊,那么A的妻子是N.(填字母)【分析】根据题意得:A、B、C都比他们的妻子多花63元,每个人花的钱是完全平方数,每对夫妻均有x2﹣y2=63.(x、y代表买到羊的只数,x>y),即(x+y)(x﹣y)=63,求出方程的三组解(32,31),(12,9),(8,1),根据A比M 多买了23只羊,B比L多买了11只羊,可得结论.【解答】解:根据题意得:A、B、C都比他们的妻子多花63元,每个人花的钱是完全平方数,每对夫妻均有x2﹣y2=63.(x、y代表买到羊的只数,x>y),即(x+y)(x﹣y)=63,而63=1×63=3×21=7×9(x+y与x﹣y的奇偶性一样),有或或,得到三组解(32,31),(12,9),(8,1),题目中B比L多买了11只羊,差11的只有一组,12﹣1=11,所以B=12,L=1,A比M多买了23只羊,32﹣9=23和31﹣8=23,但是若M=8,M和L是夫妻,矛盾,所以A=32,M=9,所以A的妻子是N.故答案为N.【点评】此题考查了非一次不定方程的性质.解题的关键是理解题意,根据题意列方程,还要注意分类讨论思想的应用.15.有4个不同的数字共可组成18个不同的四位数由小到大排成一排,其中第一个位数是一个完全平方数,倒数第二个四位数也是完全平方数,那么这两个数的和是10890.【分析】四个数字只有18个不同四位数,可以得出,四个数字中有一个为0;设:四个数字为0<a<b<c,且c>3;最小(第一个数)为:a0bc,倒数第二为:cb0a,下面从c值入手讨论(结合0<a<b<c):根据平方数个位特点:c=4,5,6,9,然后分情况讨论:得出符合条件的c值,进一步解决问题.【解答】解:设:四个数字为0<a<b<c,且c>3;最小(第一个数)为:a0bc,倒数第二为:cb0a,下面从c值入手讨论(结合0<a<b<c):根据平方数个位特点:c=4,5,6,9,当c=4时:只有32×32=1024;但是4201不是平方数,排除,当c=5时候:45×45=2025;55×55=3025都不符合,排除,当c=6时候:都不符合排除,c=9时:33×33=1089;9801=99×99 符合条件;最小:1089,倒数第二:9801,进而求出这两个数的和.这两个数的和是:1089+9801=10890.故答案为:10890.【点评】设出四个数字为0<a<b<c,且c>3;最小(第一个数)为:a0bc,倒数第二为:cb0a,根据平方数特点,解决问题.16.1234567654321×(1+2+3+4+5+6+7+6+5+4+3+2+l)是7777777的平方.【分析】通过观察与计算,1234567654321是1111111的平方,1+2+3+4+5+6+7+6+5+4+3+2+1=49,是7的平方,因此它们的积是7777777的平方.【解答】解:1234567654321=11111112,1+2+3+4+5+6+7+6+5+4+3+2+1=49=72,1234567654321×(1+2+3+4+5+6+7+6+5+4+3+2+l)=77777772.故答案为:7777777.【点评】对于在各种类型的题目,要仔细观察,进行试算,从中发现规律或技巧,进而解决问题.17.自然数n乘以3960,所得的乘积正好是m的平方.n的最小值是110.【分析】先将3960写成62×2×5×11的形式,显然可以看出,再乘以2×5×11即可得出答案.【解答】解:因为3960=62×2×5×11,所以3960乘以2×5×11就可变成6×2×5×11=660的平方,故答案为:110.【点评】此题解答的关键在于通过分解质因数,求得n的最小值.18.已知:503=125000,603=216000,如果a3=195112,且a为整数.那么a=58.【分析】根据503=125000,603=216000,a3=195112,且a为整数,得出50<a <60,由于个位数为2,可得结论.【解答】解:因为125000<195112<216000,503=125000,603=216000,a3=195112,所以50<a<60,由于个位数为2,则a=58.故答案为58.【点评】本题考查整数的确定,考查立方数的求解,比较基础.19.从0、2、4、6、8中挑出4个各不相同的数字能组成一个四位完全平方数,那么这个完全平方数是6084.【分析】首先个位只能为4(为0需2个0,为6需要十位数为奇数;其次,不用的数字只能是2(为0或6则被3整除余2,为8则被3整除而不被9整除),这样以来,只有6084、6804、8064、8604四种可能,然后进行验证即可得出结论.【解答】解:先个位只能为4(为0需2个0,为6需要十位数为奇数;其次,不用的数字只能是2(为0或6则被3整除余2,为8则被3整除而不被9整除),这样以来,只有6084、6804、8064、8604四种可能,因为78×78=6084,所以6084符合题意,它是78的平方;故答案为:6084.【点评】解答此题的关键是根据题意,进行推导,确定出个位数是4,不用的数是2是解答此题的关键.20.十个不同奇数的平方之和的最小值与这个最小值被 4 除的余数之差是1328.(注:相同的两个自然数的乘积叫做这个自然数的平方,如1×1=12,2×2=22,3×3=33,类推)【分析】十个不同奇数的平方之和的最小值,即从1开始,到19结束,求出1~19的10个不同奇数的平方之和,然后求出这个最小值被4除的余数,然后用10个不同奇数的平方之和减去这个最小值被4除的余数即可.。

20181213小学奥数练习卷(知识点:简单规划问题)含答案解析

20181213小学奥数练习卷(知识点:简单规划问题)含答案解析

小学奥数练习卷(知识点:简单规划问题)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一.选择题(共1小题)1.制作“新希望杯”水晶奖杯共需A、B、C、D、E五道工序,A工序需要5小时、B工序需要6小时、C工序需要8小时、D工序需要2小时、E工序需要7小时.有些工序可同时进行,但工序B、C必须在工序A完成之后才能进行;工序D、E必须在工序B完成之后才能进行.那么生产这种奖杯最少需()A.17小时B.18小时C.19小时D.20小时第Ⅱ卷(非选择题)二.填空题(共10小题)2.甲乙丙三种书.甲每本5元,乙每本3元,丙1元3本.现在要买三种书共100本(三种书都要有),总价恰好为100元.写出所有可能的购书方案(甲书的本数,乙书的本数,丙书的本数).3.一次乐器比赛的规则规定:初赛分四轮依次进行,四轮得分的平均分不低于96分的才能进入决赛,小光前三轮的得分依次是95、97、94.那么,他要进入决赛,第四轮的得分至少是分.4.学校商店出售每支5角的铅笔,很少有人买,但经过降价,一下子全部库存铅笔都卖光,共卖得31.93元,问库存支这种铅笔,每支降价元.5.请在5×5的棋盘中放入10个国际象棋中的皇后,使得标有数X的格子恰好受到X枚皇后的攻击,每个格最多放一枚棋子,标有数的格子不能放棋子,如果有超过一枚皇后从同一方向攻击到某个格子,只计算最前方的那枚皇后(注:每只皇后可攻击同一行、同一列或同一斜线上的格子)6.请在5×5的棋盘中放入10个国际象棋中的皇后,使得标有数N的格子恰好受到N枚皇后的攻击,每个格最多一枚棋子,标有数的格子不能放棋子,如果有超过一枚皇后从同一方向攻击到某个格子,只计算最前方的那枚皇后(注:每只皇后可攻击同一行、同一列或同一斜线上的格子).7.电话费均以整分为单位计时收费(不足1分钟按1分钟计算).市内电话三分钟内一律收费0.30元,超过三分钟则为0.30元/分,夜间21:00后对折收费.市外电话计费正好是市内的3倍,夜间21:00后也对折收费,但超过5分钟,就另加0.10元/分的附加费,超过10分钟,则另加0.20元/分的附加费,依此类推(附加费不对折).A市的小东在夜间20点54分时给B市的外婆打了一个电话,外婆不在,五分钟后小东再次打电话给外婆,直到21点18分8秒才挂了电话,则小东在这天夜里给外婆打电话应付元电话费.8.有三个没有刻度,容积分别为160升、119升和77升的不均匀的空桶,和无限多的水,要想量出76升水,至少需要进行次操作.(接水、互倒、倒水均算一次操作)9.有47名游客要渡河.现在只有一条小船,每次只能载6人(无船工),每渡河一次需要2分钟.那么,至少要花分钟才能渡完.10.某小学召开春季运动会,六年级1班的老师给体育委员100元钱到超市购买巧克力和矿泉水,要求全班每人至少1瓶矿泉水,运动员每人至少1块巧克力.如果全班人数是26人,有24人参赛,巧克力和矿泉水的单价分别是3元和1元,那么体育委员购买巧克力和矿泉水的方法有种.11.如图所示,一个矩形被分成A、B、C、D四个矩形.现知A的面积是2cm2,B的面积是4cm2,C的面积是6cm2.那么原矩形的面积是平方厘米.三.解答题(共21小题)12.在操场上做游戏,上午8:00从A地出发,匀速地行走,每走5分钟就折转90o.问:(1)上午9:20能否恰好回到原处?(2)上午9:10能否恰好回到原处?如果能,请说明理由,并设计一条路线.如果不能,请说明理由.13.有12人要到河对岸去,现只有一条船,这条船每次只能载4人.这条船至少要载几次才能将所有的人都送过河?14.解放军某连队有120名战士,每天晚上要派3名战士站岗.如果要做一个安排,使得在一段时间内他们中的任何两个人都恰好在一起站过一次岗,那么这样的安排能实现吗?15.有10棵树,栽成5排,每排4棵,你能做到么?请画图说明.16.有10只箱子,分别装有2、4、6、8、10、11、12、13、14、15斤苹果.甲乙二人轮流将苹果搬入编号为1~10的十间屋子,每人每次搬一箱,每间屋子也只能放一箱,他们约定甲将拥有第1、3、4、6、7、9、10间屋子中的苹果,乙将拥有第1、2、3、7、8、9、10间屋子中的苹果,如果遇到同一间屋子,两人就平分该屋内苹果.现在让甲先搬,他最多能保证最终比乙多拥有多少斤苹果?17.在一条公路上,每隔10千米有一个仓库,共有6个,顺序编号.1号仓库存货30吨,2号仓库存货40吨,4号仓库存货10吨,5号仓库存货15吨,6号仓库存货50吨,3号仓库为空.要把货物集中于一个仓库,如每吨货物运输1千米运费为1元,问集中到几号仓库最省运费,运费最少需多少元?18.“帅锅炒饭”店里有一张桌子,10把椅子,如何摆使桌子每一面椅子数均相等?19.甲、乙、丙三个旅客要渡过一条河,但河上没有桥,这三人恰好又都不会游泳.这时三人发现河上有两个小孩划着一条小船,船太小,最多只能载一个旅客,一个旅客和一个小孩同时过河都不行.请你给三位旅客设计一个过河方案.20.幸福小区要在四幢楼之间开个小超市,如图,如果你是小区物业管理人员,小超市放在什么位置最合理.请你画一画,并说明理由.21.某建筑公司有两个工程队,甲队有26人,乙队有14人,现要使甲、乙两队的人数比为3:2.1.请你先判断下表中给出的几种方案的可行性(可行的画“√”,不可行的画“×”),再算出甲、乙两队调整的人数.2.请你再设计一种方案,并算出结果.22.两个大人和两名儿童一起渡河,渡口只有一条小船,一次只能渡过一个大人或两名儿童,他们四人都会划船,但都不会游泳.请你帮他们设计一个渡河方案.23.红星小学一年级新生报名情况表小明:最多可编8个班.小红:每班人数不得超过35人.请你设计出合力的编班方案,与同学交流一下,说说你的理由.24.某班有四位同学参加班长竞选,结果有两人的票数并列第一,但班长只能选一个,该怎么办呢?经过讨论,形成了三种不同意见:①两人自己去协商,谁来当班长;②两人用抽签的方法决定谁当班长;③全班重新进行一次投票,在他们两人中选1人,得票多者当班长你认为以上三种方法各有什么优缺点?你更倾向于哪种方法?25.熊爸爸带着两个儿子去河对岸爬山,河上只有一只空船,船最多能载重100千克,而熊爸爸正好重100千克,两个儿子各重50千克.问他们怎样才能全部过河?26.请你设计一下,做桌面,桌腿分别用多少立方米的木料,恰好配套成方桌?27.由于德清经济发展的需要,武康和新市各有一厂家要引进某种型号的机器设备,现联系到杭州和湖州各有一厂家同时生产该种型号的机器若干台,杭州可支援德清10台,湖州可支援德清4台,现在决定将这些机器给武康8台,新市6台,每台机器的运费如下表(单位:元)设杭州运往武康的机器有x台起点/终点武康新市杭州厂400 600湖州厂400 500(1)用x的代数式表示①湖州运往武康的机器有多少台;②杭州运往新市的有多少台;③湖州运往新市的有多少台;④总运费是多少元?(2)若总运费为7000元,则杭州运往武康的机器应为多少台?(3)试问有无可能使总运费是7400元?若有可能,请写出相应的运调方案;若无可能,请说明理由.28.李阿姨准备给儿子存2万元,供他六年后上大学,银行给李阿姨提供了三种类型的理财方式:普通储蓄存款,教育储蓄存款和购买国债.①普通储蓄存款利率(2012年7月6日)如下:②教育储蓄存款的存期分为一年,三年和六年,国债有一年期,三年期和五年期等.请你调查一下教育储蓄存款和国债的利率,然后帮李阿姨设计一个合理的存款方案,使六年后的受益最大.29.某班有50名学生帮助学校平整操场.学生按身体状况分成三类,干活的效率各不相同,他们所承担的任务是挖土和运土,要求总共运土120车,挖土越多越好,三类学生的效率如表,试求最合理的人员安排.(效率指单位时间所完成的车数)30.小明想买长为2dm,宽为15cm的长方形大理石砖和边长为30cm的正方形地砖客厅铺地面.(1)你把设想画出来;(2)求需要正方形地砖和长方形大理石砖各多少块?31.某物流公司有甲乙两种型号的托运车,已知甲型车和乙型车的拖运量的比是6:5,拖运的速度比是3:4.该公司曾用6辆甲型车和8辆乙型车将一批货物运到距离40千米的目的地,8天刚好运完.根据经验,现在要将同样多的货物运到距离85千米的目的地,要求8.5天运完,该公司已安排了16辆乙型车,问还要安排多少辆甲型车?32.用手洗衣服时要先打好肥皂,揉搓得很充分了,再拧一拧,当然不可能全拧干.假设使劲拧干后,衣服上留有1千克带污物的水,现在有清水18千克,假设每次用来漂洗的水都用整千克数(假设每次漂洗结束时,污物都能均匀分布在水中).问:(1)如果分成2次漂洗后,污物的残留量至少是漂洗前的几分之几?(2)要使污物的残留量小于漂洗前的,至少要漂洗几次?请给出符合条件的一种漂洗方案和理由.参考答案与试题解析一.选择题(共1小题)1.制作“新希望杯”水晶奖杯共需A、B、C、D、E五道工序,A工序需要5小时、B工序需要6小时、C工序需要8小时、D工序需要2小时、E工序需要7小时.有些工序可同时进行,但工序B、C必须在工序A完成之后才能进行;工序D、E必须在工序B完成之后才能进行.那么生产这种奖杯最少需()A.17小时B.18小时C.19小时D.20小时【分析】因为工序B、C必须在工序A完成之后才能进行;工序D、E必须在工序B完成之后才能进行,所以工序A需要先进行,即5小时,然后B和C同时进行,B需要6小时,B进行6小时后(C还差8﹣2小时),这时C、D、E 同时进行需要7小时,由此即可求出生产这种奖杯最少需要的时间.【解答】解:因为工序B、C必须在工序A完成之后才能进行;工序D、E必须在工序B完成之后才能进行,所以工序A需要先进行,即5小时,然后B和C同时进行,B需要6小时,B进行6小时后(C还差8﹣2小时),这时C、D、E同时进行需要7小时,所以生产这种奖杯最少需要的时间是:5+6+7=18(小时),答:生产这种奖杯最少需要18小时;故选:B.【点评】关键是根据题意和生产工序确定生产的顺序,再求出需要的时间.二.填空题(共10小题)2.甲乙丙三种书.甲每本5元,乙每本3元,丙1元3本.现在要买三种书共100本(三种书都要有),总价恰好为100元.写出所有可能的购书方案(甲书的本数,乙书的本数,丙书的本数)第一种:甲4本,乙18本,丙78本,第二种:甲8本,乙11本,丙81本,第三种:甲12本,乙4本,丙84本..【分析】根据题意可设要购甲书x本,乙书y本,丙书z本,根据题意可知5x+3y+z=100,x+y+z=100,据此来解由这两个方程组成的方程组即可.【解答】解:设要购甲书x本,乙书y本,丙书z本得14x+8y+100=30014x+8y=2008(x+y)+6x=200x+y+x=25x+y=25x需是4的倍数,当x=4时,y=18,z=100﹣4﹣18=78当x=8时,y=11,z=100﹣8﹣11=81当x=12时,y=4,z=100﹣12﹣4=84当x大于12时,不合题意所以共有三种购书方案:第一种:甲4本,乙18本,丙78本第二种:甲8本,乙11本,丙81本第三种:甲12本,乙4本,丙84本故答案为:第一种:甲4本,乙18本,丙78本,第二种:甲8本,乙11本,丙81本,第三种:甲12本,乙4本,丙84本.【点评】本题的重点是根据题意列出方程组,再进行化简,然后进行讨论.3.一次乐器比赛的规则规定:初赛分四轮依次进行,四轮得分的平均分不低于96分的才能进入决赛,小光前三轮的得分依次是95、97、94.那么,他要进入决赛,第四轮的得分至少是98分.【分析】要想四轮得分的平均分不低于96分,总分应该达到96×4=384分,用这一分数减去小光前三轮的得分即可解答.【解答】解:96×4﹣95﹣97﹣94,=384﹣95﹣97﹣94,=98(分);答:第四轮的得分至少是98分.【点评】本题主要考查简单规划问题,熟练掌握平均数的定义与求法是解答本题的关键.4.学校商店出售每支5角的铅笔,很少有人买,但经过降价,一下子全部库存铅笔都卖光,共卖得31.93元,问库存103支这种铅笔,每支降价0.19元.【分析】根据题意知道,铅笔的支数是整数,所以找3193的约数,即3193=31×103,由此即可得出31.93是哪两个整数的积.【解答】解:因为,31.93=0.31×103,所以,0.5﹣0.31=0.19(元),故答案为:103,0.19.【点评】解答此题的关键是,能够根据题目的特点,即铅笔的支数是整数,这一突破口入手解决,另外还要注意,要求的是降价的钱数.所以要注意看清题目要求.5.请在5×5的棋盘中放入10个国际象棋中的皇后,使得标有数X的格子恰好受到X枚皇后的攻击,每个格最多放一枚棋子,标有数的格子不能放棋子,如果有超过一枚皇后从同一方向攻击到某个格子,只计算最前方的那枚皇后(注:每只皇后可攻击同一行、同一列或同一斜线上的格子)【分析】1、首先找出和“1”有关系的皇后位置,横着,竖着,斜着2、这些位置里只有1个放皇后.3、这时你会发现“5”有关系的皇后位置只有4个,必须都放皇后,剩余1个放在刚才你找出的一个位置中;4、刚好满足4对应的皇后个数.可以把4对应的其他位置全部找出.5、根据7对应的位置,全部放皇后.6、“7”周围只有6个,还缺少一个,再结合4,5即可判断出最后一个.【解答】解:如图:【点评】关键是明确题意,利用试试的方法找出每个皇后的位置.6.请在5×5的棋盘中放入10个国际象棋中的皇后,使得标有数N的格子恰好受到N枚皇后的攻击,每个格最多一枚棋子,标有数的格子不能放棋子,如果有超过一枚皇后从同一方向攻击到某个格子,只计算最前方的那枚皇后(注:每只皇后可攻击同一行、同一列或同一斜线上的格子).【分析】根据过0和1两个点做过这点的横线、竖线和斜线,在过0的这些直线所在的格子中不能放后,在过1的直线所在的格子中只能在1的后面放后,据此进行解答.【解答】解:【点评】本题主要考查了学生对过直线上的格子中过0的起线上不能放后,过1的格子后面在在一行的后面放后.7.电话费均以整分为单位计时收费(不足1分钟按1分钟计算).市内电话三分钟内一律收费0.30元,超过三分钟则为0.30元/分,夜间21:00后对折收费.市外电话计费正好是市内的3倍,夜间21:00后也对折收费,但超过5分钟,就另加0.10元/分的附加费,超过10分钟,则另加0.20元/分的附加费,依此类推(附加费不对折).A市的小东在夜间20点54分时给B市的外婆打了一个电话,外婆不在,五分钟后小东再次打电话给外婆,直到21点18分8秒才挂了电话,则小东在这天夜里给外婆打电话应付11.25元电话费.【分析】此题应分为三部分:①前3分钟的电话费;②后17分钟的电话费;③附加费.求出这三部分的电话费,相加即可.【解答】解:小东打电话的计费时间是从20:59至21:19,前3分钟的电话费为:0.3×3×+0.3×3×÷2=0.3+0.3=0.6(元)后17分钟的电话费为:0.3×3×17÷2=0.9×17÷2=7.65(元)附加费:0.10×5+0.20×5+0.30×5=(0.10+0.20+0.30)×5=0.60×5=3(元)总费用:0.6+7.65+3=11.25(元)答:小东在这天夜里给外婆打电话应付11.25元电话费.故答案为:11.25.【点评】解答此题,注意理清思路,分类解答.8.有三个没有刻度,容积分别为160升、119升和77升的不均匀的空桶,和无限多的水,要想量出76升水,至少需要进行8次操作.(接水、互倒、倒水均算一次操作)【分析】把大桶装满水倒入119升的桶内,把119升的桶倒掉,再把大桶得水倒入,把77升水倒入119升的桶,再次装满倒入,最后77升的桶内剩下的水就是76升.据此解答.【解答】解:①把160升的空桶接满水.②把水倒入119升的空桶内,接着把119升水倒掉,把大桶内剩的水再次倒入119升的空桶内.③把77升的空桶接满水倒入119升的桶内,再把77升的空桶接满水倒入119升的桶内,最后77升的桶内正好是76升水.160﹣119+77+77﹣119=354﹣238=76(升)操作次数:1+3+4=8(次)答:至少需要进行8次操作.故答案为:8.【点评】本题的关键是怎样用三个没有刻度的空桶组合能变成一个剩余76升的水.9.有47名游客要渡河.现在只有一条小船,每次只能载6人(无船工),每渡河一次需要2分钟.那么,至少要花38分钟才能渡完.【分析】先求出每次渡河实际人数是6﹣1=5人,再除以47,可求出最后一次剩下的人数,47÷5=9(次)…2(人),还剩下2人只需渡河1次.共渡河次数:9×2+1=19(次);所花时间是:19×2=38(分钟).据此解答.【解答】解:47÷(6﹣1)=47÷5=9(次)…2(人),剩下的2人还需渡河一次,共需渡河时间为(9×2+1)×2=(18+1)×2=19×2=38(分钟)答:至少要花38分钟.故答案为:38分钟.【点评】本题的关键是求出每次实际渡河的人数,及时间渡河的次数,再进行解答.10.某小学召开春季运动会,六年级1班的老师给体育委员100元钱到超市购买巧克力和矿泉水,要求全班每人至少1瓶矿泉水,运动员每人至少1块巧克力.如果全班人数是26人,有24人参赛,巧克力和矿泉水的单价分别是3元和1元,那么体育委员购买巧克力和矿泉水的方法有3种.【分析】先满足“每人1瓶矿泉水,运动员每人1块巧克力.”这个条件,需要花:3×24+1×26=98(元),那么还剩:100﹣98=2(元),可供体育委员自由支配,他利用这2元,只能购买:0、1、2瓶矿泉水,即有3种购买方法;据此解答.【解答】解:可供体育委员自由支配的钱数是:100﹣(3×24+1×26),=100﹣98,=2(元),他利用这2元,只能购买:0、1、2瓶矿泉水,即有3种购买方法;答:体育委员购买巧克力和矿泉水的方法有3种.故答案为:3.【点评】本题不要受“至少数”的干扰,要从先满足最低要求去考虑,这样能够缩小讨论的范围,然后再解答就水到渠成了.11.如图所示,一个矩形被分成A、B、C、D四个矩形.现知A的面积是2cm2,B的面积是4cm2,C的面积是6cm2.那么原矩形的面积是24平方厘米.【分析】图中的四个矩形是大矩形是被两条直线分割后得到的,矩形的面积等于一组邻边的乘积,从横的方向来看,两个相邻矩形的倍比关系是一致的,B是A的两倍,那么D也是C的两倍,从而求出D的面积,然后把A、B、C、D的面积加在一起即可.【解答】解:由题意知:B是A的两倍,那么D也是C的两倍,所以D的面积是2×6=12(cm2),从而原矩形的面积是:2+4+6+12=24(cm2),故答案为:24.【点评】此题考查组合图形的面积.三.解答题(共21小题)12.在操场上做游戏,上午8:00从A地出发,匀速地行走,每走5分钟就折转90o.问:(1)上午9:20能否恰好回到原处?(2)上午9:10能否恰好回到原处?如果能,请说明理由,并设计一条路线.如果不能,请说明理由.【分析】因操场一个封闭的图形,匀速地行走,每走5分钟就折转90°,求出9:20和9:10分到出发时用的时间,再进行解答.【解答】解:(1)上午9:(20分)恰好回到原地.我们可以设计如下的路线:我们若没定每走5分钟都按顺时针方向(或逆时针方向)折转90°,则可知每过20分钟回到原处,而到9:20恰好过了80分钟,故可知9:20恰好第4次回原处.(2)上午9:10不能回到原地.因为到上午9:10共走了70分钟,而我们可以验证不管每一步为逆时针折转90°,还是顺时针折转90°都不能在70分钟内回原地.【点评】本题的关键是根据操场的形状,和到结束时用的时间进行解答.13.有12人要到河对岸去,现只有一条船,这条船每次只能载4人.这条船至少要载几次才能将所有的人都送过河?【分析】虽然船上每次能坐4个人,但在船返回时,必须有一个人划着船返回.因此,每次只能有4﹣1=3(个)人过河,那么,小船至少要载12÷3=4(次).【解答】解:4﹣1=3(个)12÷3=4(次)答:这条船至少要载4次才能将所有的人都送过河.【点评】本题主要考查简单规划问题,此题关键要明确:船返回时必须有一个人划着船.14.解放军某连队有120名战士,每天晚上要派3名战士站岗.如果要做一个安排,使得在一段时间内他们中的任何两个人都恰好在一起站过一次岗,那么这样的安排能实现吗?【分析】本题考察规划问题.可以把某一名战士当成研究对象,讨论其他战士是否能安排到恰好都与这名战士一起站过一次岗.【解答】解:假设战士A要和每个人都站过岗,每天和他一起站岗的为两个人,因为120﹣1=119,119不是偶数,所以不可能在一段时间内他们中的任何两个人都恰好在一起站过一次岗,总会有一个人一起站过两次岗,所以不能实现.【点评】本题较为麻烦,需要化整为零,利用奇偶性进行判断即可.15.有10棵树,栽成5排,每排4棵,你能做到么?请画图说明.【分析】每排4棵,共5排,不重复就应该有20棵,现在只有10棵,说明要重复10棵树.【解答】解:【点评】此题中每棵树都算了两遍,正好符合要求.16.有10只箱子,分别装有2、4、6、8、10、11、12、13、14、15斤苹果.甲乙二人轮流将苹果搬入编号为1~10的十间屋子,每人每次搬一箱,每间屋子也只能放一箱,他们约定甲将拥有第1、3、4、6、7、9、10间屋子中的苹果,乙将拥有第1、2、3、7、8、9、10间屋子中的苹果,如果遇到同一间屋子,两人就平分该屋内苹果.现在让甲先搬,他最多能保证最终比乙多拥有多少斤苹果?【分析】作出图形,确定甲、乙拥有房间的苹果数,即可得出结论.【解答】解:如图所示,甲拥有房间4号、6号,让甲先搬15斤苹果,则第二次搬13斤苹果,苹果有:15+13=28斤;乙拥有房间2号、8号,乙第一次搬14斤苹果,则第二次搬12斤苹果,苹果有:14+12=26斤,其余房间二人均分,因此,让甲先搬,他最多能保证最终比乙多拥有28﹣26=2斤苹果.【点评】本题考查简单规划问题,考查学生的读图能力,属于中档题.17.在一条公路上,每隔10千米有一个仓库,共有6个,顺序编号.1号仓库存货30吨,2号仓库存货40吨,4号仓库存货10吨,5号仓库存货15吨,6号仓库存货50吨,3号仓库为空.要把货物集中于一个仓库,如每吨货物运输1千米运费为1元,问集中到几号仓库最省运费,运费最少需多少元?【分析】可以把货物分别集中到1到6号仓库,把各种情况的花费情况进行计算比较,得出花费最少的一种情况即可.【解答】解:如果选择1号不动,总耗费为:(40×1+10×3+15×4+50×5)×10=3850(元);选择2号不动时,总耗费为:(30×1+10×2+15×3+50×4)×10=2950(元);(30×2+40×1+10×1+15×2+50×3)×10=2900(元);选择3号不动时,总耗费为:选择4号不动时,总耗费为:(30×3+40×2+15×1+50×2)×10=2850(元);选择5号不动时,总耗费为:(30×4+40×3+10×1+50×1)×10=3000(元);选择6号不动时,总耗费为:(30×5+40×4+10×2+15×1)×10=3450(元);答:根据上述计算结果可得,集中到4号仓库运费最省,需要花费2850元.【点评】本题考查学生在日常生活中,注意运用统筹法解决问题.此题告诉学生掌握了统筹法,对于进行合理调度,是十分有效的.18.“帅锅炒饭”店里有一张桌子,10把椅子,如何摆使桌子每一面椅子数均相等?【分析】一张桌子四个面,每面摆2张,共8张,还缺2张,对角摆两张,这样共10张.【解答】解:根据分析画图如下:【点评】本题不能用常规解法,要考虑重叠交叉计数的方法,类似于方阵问题.19.甲、乙、丙三个旅客要渡过一条河,但河上没有桥,这三人恰好又都不会游泳.这时三人发现河上有两个小孩划着一条小船,船太小,最多只能载一个旅客,一个旅客和一个小孩同时过河都不行.请你给三位旅客设计一个过河方案.【分析】第一次先渡两个小孩子过河,其中一个小孩再渡回来,另一个小孩在对岸上等着,这就可以渡甲旅客过去后,第二个小孩再渡回来,然后两小孩又渡过河去,又由其中的一个渡回来,乙旅客再过河,另一个小孩又回来,然后两小孩又渡过河去,又由其中的一个渡回来,丙旅客再过河,由此三人都。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学奥数练习卷(知识点:完全平方数性质)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一.选择题(共2小题)1.老师把一个三位完全平方数的百位告诉了甲,十位告诉了乙,个位告诉了丙,并且告诉三人他们的数字互不相同.三人都不知道其他两人的数是多少,他们展开了如下对话:甲:我不知道这个完全平方数是多少.乙:不用你说,我也知道你一定不知道.丙:我已经知道这个数是多少了.甲:听了丙的话,我也知道这个数是多少了.乙:听了甲的话,我也知道这个数是多少了.请问这个数是()的平方.A.14B.17C.28D.292.已知正整数A分解质因数可以写成A=2α×3β×5γ,其中α、β、γ是自然数.如果A的二分之一是完全平方数,A的三分之一是完全立方数,A的五分之一是某个自然数的五次方,那么α+β+γ的最小值是()A.10B.17C.23D.31第Ⅱ卷(非选择题)二.填空题(共33小题)3.a1 、a2、…、a10表示10个正整数,取其中的9个数相加,得到一些不同的和:86、87、88、89、90、91、93、94、95,那么a12+a22+…+a102=.4.(1)n为任意大于0的整数,那么2n+2n+1+2n+2+2n+3+2n+4+2n+5除以9的余数是.(2)设2+22+23+…+22015=A,A的各位数字之和为a1,a1的各位数字之和为a2,a2的各位数字之和为a3,…,直到各位数字之和为一位数k,则k=.5.已知四位数满足下面的性质:、、都是完全平方数(完全平方数是指能表示为某个整数平方的数,比如4=22,81=92,则我们就称4、81为完全平方数).所有满足这个性质的四位数之和为.6.有些三位数具有下面的性质:(1)去掉百位数字后,剩下的两位数是一个完全平方数;(2)去掉个位数字后,剩下的两位数也是一个完全平方数;所有满足这些性质的三位数之和为.7.有A、B、C三个两位数.A是一个完全平方数,而且它的每一位数字都是完全平方数;B是一个质数,而且它的每一位数字都是质数,数字和也是质数;C是一个合数,而且它的每一位数字都是合数,两个数字之差也是合数,并且C介于A、B之间.那么A,B、C这三个数的和是.8.将2016的四个数字重新编排,组成一个四位完全平方数;那么这个四位完全平方数是.9.设P是一个平方数.如果q﹣2和q+2都是质数,就称q为P型平方数.例如:9就是一个P型平方数.那么小于1000的最大P型平方数是.10.已知a、b均为小于100的正整数,a﹣2b为质数,且2ab为完全平方数.这样的数对(a、b)有对.11.五位数是一个完全平方数,那么A+B=.12.今年是2014年,2014不是完全平方数,但可以将它的各位数字改变顺序,使得到的新四位数是完全平方数,例如1024=322,已知用数字2、0、1、4各一个还能组成另一个四位完全平方数,那么这个新的四位完全平方数是.13.有这样的正整数n,使得8n﹣7、18n﹣35均为完全平方数.则所有符合要求的正整数n=.14.A、B、C三人和他们的妻子L、M、N(不对应)去集市上买羊,买完后惊奇的发现,每个人所买羊的数量正好和价格相同(例如A买了a只羊,则每只羊的价格是a元):若已知A、B、C分别比他们的妻子多花了63元,还知道A比M多买了23只羊,B比L多买了11只羊,那么A的妻子是.(填字母)15.有4个不同的数字共可组成18个不同的四位数由小到大排成一排,其中第一个位数是一个完全平方数,倒数第二个四位数也是完全平方数,那么这两个数的和是.16.1234567654321×(1+2+3+4+5+6+7+6+5+4+3+2+l)是的平方.17.自然数n乘以3960,所得的乘积正好是m的平方.n的最小值是.18.已知:503=125000,603=216000,如果a3=195112,且a为整数.那么a=.19.从0、2、4、6、8中挑出4个各不相同的数字能组成一个四位完全平方数,那么这个完全平方数是.20.十个不同奇数的平方之和的最小值与这个最小值被 4 除的余数之差是.(注:相同的两个自然数的乘积叫做这个自然数的平方,如1×1=12,2×2=22,3×3=33,类推)21.在1﹣﹣﹣2012这2012个自然数中,是平方数但不是立方数的一共有个.22.如果存在n个连续自然数的平方和为质数,则n的所有取值的平方和等于.23.设M是三个相邻整数的平方和,则M的个位数字可能是.24.甲、乙两人合买了n个篮球,每个篮球n元.付钱时,甲先乙后,10元,10元地轮流付钱,当最后要付的钱不足10元时,轮到乙付.付完全款后,为了使两人所付的钱数同样多,则乙应给甲元.25.一个四位数是完全平方数,四个数字的和是偶数,千位数字和百位数字的和为3,个位数字为偶数,那么这个数是.26.若两位数的平方只有十位上的数字是0,则这样的两位数共有个.27.把1,2,3,4,5,6,7,8,9按另一种顺序填在下表的第二行的空格中,使得每两个上、下对齐的数的和都是平方数.28.已知自然数n满足:12除以n得到一个完全平方数,则n的最小值是.29.一个数与它自身的乘积称为这个数的平方,各位数字互不相同且各位数字的平方和等于49的四位数共有个.30.如果一个两位数与它的反序数(比如:52的反序数是25)的和是一个完全平方数,则称为“灵巧数”请写出所有的”灵巧数”:.31.给1999加上一个三位数,使结果是一个平方数,这样的三位数共有个.32.有4个不同的数字共可组成18个不同的4位数.将这18个不同的4位数由小到大排成一排,其中第一个是一个完全平方数,倒数第二个也是完全平方数,则这18个数中最大的数是.33.已知两个质数的平方差等于21,那么,这两个质数的平方和等于.34.在2×2=4,3×3=9,4×4=16,5×5=25,6×6=36,…等这些算式中,4,9,16,25,36…叫做完全平方数.那么不超过2007的最大的完全平方数是.35.自然数N是一个两位数,它是一个完全平方数,而且N的个位数字与十位数字都是完全平方数,这样的自然数有个.三.解答题(共15小题)36.一个四位数,它本身是一个完全平方数,由它前两位数字及后两位数字组成的两个两位数也都是完全平方数.那么这个四位数是多少?37.A、B、C三人到D老师家里玩,D老师给每人发了一顶帽子,并在每个人的帽子上写了一个四位数.已知这三个四位数都是完全平方数(比如4=22,100=102,4、100都是某个数的平方,这样的数称为完全平方数),并且这三个四位数的十位数都是0,个位数都不是0,每个小朋友只能看见别人帽子上的数.这三个小朋友非常聪明而且诚实,发生了如下的对话:A说:“B、C帽子上数的个位数相同.”B、C同时说:“听了A的话,我知道自己的数是多少了.”A说:“听了B、C的话,我也知道自己的数是多少了,我的这个数的个位数是一个偶数.”求:A、B、C帽子上的数之和.38.从1至100中最多能取出个数,才能够确保其中任意两个数的最小公倍数与最大公因数的商不是一个完全平方数?39.某自然数减去39是一个完全平方数,减去144也是一个完全平方数,求此自然数.40.有多少种方法可以将22012表示成四个正整数的完全平方和?请证明你的结论.41.有一个奇怪的四位数(首位不为0),它是完全平方数,它的数字和也是完全平方数,用这个四位数除以它的数字和得到的结果还是完全平方数,并且它的约数个数还恰好等于它的数字和,那当然也是完全平方数,如果这个四位数的各位数字互不相同,那么这个四位数是多少?42.有一对四位数对(2025,3136),拥有如下的特点:每个数都是完全平方数,并且第二个四位数的每个数码比第一个四位数的对应数码都大1.请找出所有满足这个个点的五位数数对.(如果找出的一对五位数为a和b,请写成(a,b)的形式.)43.少年官游乐厅内悬挂着250个彩色灯泡,按1﹣250编号.它们的亮暗规则是:第1秒,全部灯泡变亮;第2秒,凡是编号为2的倍数的灯泡由亮变暗;第3秒,凡是编号为3的倍数的灯泡改变原来的亮暗状态,即亮的变暗,暗的变亮;第n秒,凡编号为n的倍数的灯泡改变原来的亮暗状态.这样继续下去,第250秒时,亮着的灯泡有个.44.把既不是平方数也不是立方数的正整数(0除外)按从小到大的顺序排列,得到2,3,5,6,7,10,…,其中第1000个数是多少?45.将一个2n位数的前n位数和后n位数各当成一个n位数.如果这两个n位数之和的平方正好等于这个2n位数.则称这个2n位数为卡不列克(Kabulek)怪数,例如,(30+25)2=3025,所以3025是一个拉布列克怪数.请问在四位数中有哪些卡不列克怪数?46.老师为自己班级的50名学生做了50张分别写着1到50的数字卡片,每张卡片都是一面红色,另一面蓝色,两面都写着相同的数字.老师把这50张卡片都蓝色朝上地摆在桌上,对同学们说:“请你们按顺序逐个到前面来翻卡片,规则是:只要卡片上的数字是你自己序号的倍数,你就把它们都翻过来,蓝的就翻成红的,红的就翻成蓝的.”那么,当全体学生都按老师的要求翻完以后,红色朝上的卡片有多少张?47.在每个人心里都默记住两个不等于0的数.算出这两个数和的平方,其结果记做“共”,算出这两个数差的平方,其结果记做“迎”;再算出这两个数的乘积,记做“接”.请你你的“共”,“迎”,“接”来计算式子:()2=?.请大家一起同声回答.48.是否能将1~l6这16个自然数排成一排,使得任相邻两个数的和都等于自然数的平方?如果能,请写出排法,如果不能,请说明理由.49.如果l,2,3…n可以这样重排,使得每个数加上它的序号的和都是平方数,那么n就称为“迎春数”.例如,自然数1,2,3,4,5可以重新排列为3,2,1,5,4;这时每个数加上它的序号的和都是平方数,那么5就是一个“迎春数”.问:在6,7,8,9,10,11中哪几个是“迎春数”?50.求同时满足下列三个条件的自然数a,b:(1)a>b;(2);(3)a+b是平方数.参考答案与试题解析一.选择题(共2小题)1.老师把一个三位完全平方数的百位告诉了甲,十位告诉了乙,个位告诉了丙,并且告诉三人他们的数字互不相同.三人都不知道其他两人的数是多少,他们展开了如下对话:甲:我不知道这个完全平方数是多少.乙:不用你说,我也知道你一定不知道.丙:我已经知道这个数是多少了.甲:听了丙的话,我也知道这个数是多少了.乙:听了甲的话,我也知道这个数是多少了.请问这个数是()的平方.A.14B.17C.28D.29【分析】首先利用枚举法得出所有的可能,进而利用已知分析得出所有可能,进而得出答案.【解答】解:先枚举出所有三位五重复数字的完全平方数.(1)根据甲的第一句话,排除了625,841,961 三种情形(2)根据乙的第一句话,知道乙拿到的一定不是2,4,6,从而只剩下了196,256,289,576,784 (更重要的是,此时此刻甲和丙并不知道乙知不知道结果,因此他们不能进一步缩小范围.)(3)根据丙的话,知道丙拿的一定不是6,否则就不可能知道结果,于是又排除了196,256,576.(4)根据甲的第二句话,知道甲在第二句话之后还不知道结果,因此甲一定是2.甲是由于丙的话排除了256,从而知道了自己是289的.(5)最后一句话没有用,但最后一句话是事实,因为丙不知道到底是289还是784,他只有听到了甲说完上一句话才能知道.故此数是17的平方.故选:B.【点评】此题主要考查了完全平方数的特征,利用枚举法得出所有可能是解题关键.2.已知正整数A分解质因数可以写成A=2α×3β×5γ,其中α、β、γ是自然数.如果A的二分之一是完全平方数,A的三分之一是完全立方数,A的五分之一是某个自然数的五次方,那么α+β+γ的最小值是()A.10B.17C.23D.31【分析】A的二分之一是完全平方数,α﹣1、β、γ是2的倍数;A的三分之一是完全立方数,α、β﹣1、γ是3的倍数;A的五分之一是某个自然数的五次方,α、β、γ﹣1是5的倍数;要α+β+γ的值最小,分别求满足条件的α、β、γ值,然后求出α+β+γ的最小值即可.【解答】解:A的二分之一是完全平方数,α﹣1、β、γ是2的倍数;A的三分之一是完全立方数,α、β﹣1、γ是3的倍数;A的五分之一是某个自然数的五次方,α、β、γ﹣1是5的倍数;要α+β+γ的值最小,分别求满足条件的α、β、γ值:3×5﹣1是2的倍数,α的最小值为15,2×3﹣1是5的倍数,γ的最小值为6,2×5﹣1是3的倍数,β的最小值为10,所以α+β+γ的最小值是:15+6+10=31;故选:D.【点评】根据题意,推导出满足条件的α、β、γ值,是解答此题的关键.二.填空题(共33小题)3.a1 、a2、…、a10表示10个正整数,取其中的9个数相加,得到一些不同的和:86、87、88、89、90、91、93、94、95,那么a12+a22+…+a102=1090.【分析】由10个正整数取9个数相加只有9个不同的和,可得出有一个重复的数,设9个数的和中重复的数为x、s=a1+a2+…+a10,将这十个数相加即可得出x+813=9s,变形后可得出x+3=9s﹣810=9(s﹣90)是9的倍数,结合给定的数可得出x=87、s=100,继而可求出该10个正整数,将其平方再相加即可得出结论.【解答】解:∵只有9个不同的和,∴有一个重复.设9个数的和中重复的数为x,s=a1+a2+…+a10,∴x+86+87+88+89+90+91+93+94+95=9s,即x+813=9s,∴x+3=9s﹣810=9(s﹣90)是9的倍数,∴x=87,s=100,∴10个正整数分别是:14,13,13,12,11,10,9,7,6,5.∴a12+a22+…+a102=142+132+132+122+112+102+92+72+62+52=1090.故答案为:1090.【点评】本题考查了完全平方数的性质以及因数与倍数,将9个数之和全部相加,找出x+813=9s是解题的关键.4.(1)n为任意大于0的整数,那么2n+2n+1+2n+2+2n+3+2n+4+2n+5除以9的余数是0.(2)设2+22+23+…+22015=A,A的各位数字之和为a1,a1的各位数字之和为a2,a2的各位数字之和为a3,…,直到各位数字之和为一位数k,则k=8.【分析】(1)2n+2n+1+2n+2+2n+3+2n+4+2n+5=2n(1+2+4+8+16+32)=2n×63是9的倍数,可得2n+2n+1+2n+2+2n+3+2n+4+2n+5除以9的余数;(2)求出2、22、23、…、22015,直到各位数字之和为一位数分别为2,4,8,7,5,1,2,4,8,7,5,1,…,2,4,8,7,5,其和为335×(2+4+8+7+5+1)+2+4+8+7+5=14164847,即可得出结论.【解答】解:依题意可知:(1)2n+2n+1+2n+2+2n+3+2n+4+2n+5=2n(1+2+4+8+16+32)=2n×63是9的倍数,所以2n+2n+1+2n+2+2n+3+2n+4+2n+5除以9的余数是0.(2)2、22、23、…、22015,直到各位数字之和为一位数分别为2,4,8,7,5,1,2,4,8,7,5,1,…,2,4,8,7,5,其和为335×(2+4+8+7+5+1)+2+4+8+7+5=14164847,各位数字之和为1+4+1+6+4+8+4+7=35,3+5=8直到各位数字之和为一位数,则k=8.故答案为0,8.【点评】本题考查数字和问题,考查逻辑推理,考查学生分析解决问题的能力,确定2、22、23、…、22015,直到各位数字之和为一位数分别为2,4,8,7,5,1,2,4,8,7,5,1,…,2,4,8,7,5是关键.5.已知四位数满足下面的性质:、、都是完全平方数(完全平方数是指能表示为某个整数平方的数,比如4=22,81=92,则我们就称4、81为完全平方数).所有满足这个性质的四位数之和为13462.【分析】由题意,、、都是完全平方数,所以、、分别是16,64,49或36,64,49或81,16,64,可得四位数是1649或3649或8164,即可求出满足这个性质的四位数之和.【解答】解:由题意,、、都是完全平方数,所以、、分别是16,64,49或36,64,49或81,16,64,所以四位数是1649或3649或8164,所以满足这个性质的四位数之和为1649+3649+8164=13462.故答案为13462.【点评】本题考查位值原理,考查学生对概念的理解,考查学生分析解决问题的能力,属于中档题.6.有些三位数具有下面的性质:(1)去掉百位数字后,剩下的两位数是一个完全平方数;(2)去掉个位数字后,剩下的两位数也是一个完全平方数;所有满足这些性质的三位数之和为1993.【分析】完全平方数是两位数的数有16,25,36,49,64,81,再根据性质,得出满足条件的三位数为816、649、164、364.求和可得结论.【解答】解:完全平方数是两位数的数有16,25,36,49,64,81,以16作为十位数、个位数,百位数取8,以49作为十位数、个位数,百位数取6,以64作为十位数、个位数,百位数取1或3,满足条件的三位数之和为816+649+164+364=1993,故答案为1993.【点评】本题考查完全平方数性质,考查学生对题意的理解,确定完全平方数是两位数的数有16,25,36,49,64,81,再根据性质,得出满足条件的三位数是关键.7.有A、B、C三个两位数.A是一个完全平方数,而且它的每一位数字都是完全平方数;B是一个质数,而且它的每一位数字都是质数,数字和也是质数;C是一个合数,而且它的每一位数字都是合数,两个数字之差也是合数,并且C介于A、B之间.那么A,B、C这三个数的和是120.【分析】可以先确定A的值,由于一位数为完全平方数的只有1,4,9,而其中能构成平方数的两位数只有49,而质数B的两个数字之和为质数且每个数字都是质数,则B的十位上数字只能是2,又因为合数C的两数字之差是合数且每个数字都是合数,则这个数字只能是:4,6,8,9,C介于A、B之间,可以缩小范围再确定这三个数.【解答】解:根据分析,先确定A,∵一位数为完全平方数的只有1,4,9,而其中能构成平方数的两位数只有49,∴A=49;∵质数B的两个数字之和为质数且每个数字都是质数,∴B的十位上数字只能是2,而个位只能是3,故B=23;∵合数C的两数字之差是合数且每个数字都是合数,则这个数字只能是:4,6,8,9,C介于A、B之间即,∴C=48,故A+B+C=49+23+48=120,故答案是:120.【点评】本题考查了完全平方数性质,本题突破点是:根据完全平方数的性质,以及质数合数的特征缩小范围,最后确定三个数的值.8.将2016的四个数字重新编排,组成一个四位完全平方数;那么这个四位完全平方数是2601.【分析】显然,将2016的四个数字重新编排后的数在1026~6210之间,要组成一个四位完全平方数,则个位数必为0,1,6,又因为个位为0时,四位数必然出现两个0才能是一个平方数,故可以排除个位数是0和2的数,而个位数为6和1的数中可以一个一个排除,缩小范围,最后确定答案.【解答】解:根据分析,将2016的四个数字重新编排,设此四位数为A=n2,322<1026≤A≤6210<802,32<n<80,要想组成一个四位完全平方数,则个位数必为0,1,6,又因为个位为0时,四位数必然出现两个0才能是一个平方数,故可以排除个位数是0和2的数,个位数为1和6的数有:2061、2601、6021、6201、1206、1026、2016、2106,共八个数,其中,若个位数为6,则n=36、46、56、66、76,而362=1296,462=2116,562=3136,662=4356,762=5776,均不合题意,故排除,所以个位数为1,而2061、2601、6021、6201,这四个数中只有2601=512,是一个平方数,此四位数是2601,故答案是:2601.【点评】本题考查了完全平方数的性质,本题突破点是:根据完全平方数的性质,排除掉不合题意的数,再缩小范围确定结果.9.设P是一个平方数.如果q﹣2和q+2都是质数,就称q为P型平方数.例如:9就是一个P型平方数.那么小于1000的最大P型平方数是225.【分析】小于1000的最大P型平方数,33的平方数是1089,这个数需要小于33的平方的平方数.q﹣2和q+2的差是4.只要找到数字相差4的不超过33的质数组合即可.【解答】解:小于33的质数有31,29,23,19,17,13,11,7,5,3,2等数字差是4的两个质数有19和23最大.21﹣2=19,21+2=23.21×21=441.故答案为:441.【点评】本题关键在于找到q﹣2和q+2的差是4的质数,而且小于33的质数.要注意找到的是这两个质数,题中要找的是一个平方数441,不是21.10.已知a、b均为小于100的正整数,a﹣2b为质数,且2ab为完全平方数.这样的数对(a、b)有3对.【分析】先讨论确定(a,b)=1,再得出设a﹣2b=p (p是质数),则x+2y=p,x﹣2y=1,p=4y+11~21被4除余1的质数有:5,13,17,即可得出结论.【解答】解:(1)若a﹣2b=2,则a=2b+2所以,2ab=4b2+4b4b2<4b2+4b<4b2+4b+1=(2b+1)2因为两个完全平方数之间不存在完全平方数,所以,2ab不是完全平方数.这种情况舍去.(2)若(a,b)=d≠1,设b=kd,则a=(2k+1)d,2ab=d2(4k2+2k)因为2ab是完全平方数,所以,4k2+2k是完全平方数,由于4k2<4k2+2k<4k2+4k+1=(2k+1)2同理这也是不可能的.综上所述,(a,b)=1从而,a﹣2b是奇数,所以,a是奇数,因为2ab是完全平方数,所以a=x2,b=2y2,(x<10,y<5)所以,a﹣2b=x2﹣4y2=(x+2y)(x﹣2y)设a﹣2b=p (p是质数),则x+2y=p,x﹣2y=1,两式相减得到4y=p﹣1所以,p=4y+11~21被4除余1的质数有:5,13,17,所以,这样的数对(a、b)共有3组解:①a=9,b=2;②a=49,b=18;③a=81,b=32.故答案为3.【点评】本题考查完全平方数的性质,考查质数,考查学生分析解决问题的能力,属于中档题.11.五位数是一个完全平方数,那么A+B=3.【分析】由题意,五位数是一个三位数的完全平方,百位为1,末位是3或7,再分类讨论验证可得结论.【解答】解:由题意,五位数是一个三位数的完全平方,百位为1,末位是3或7,若是,则代入验证可得1232=15129,∴A=1,B=2,A+B=3.若是,则代入验证可得1172=13689,1272=16129,不符合题意,故答案为3.【点评】本题考查完全平方数性质考查学生分析解决问题的能力,解题的关键是得出五位数是一个三位数的完全平方,百位为1,末位是3或7.12.今年是2014年,2014不是完全平方数,但可以将它的各位数字改变顺序,使得到的新四位数是完全平方数,例如1024=322,已知用数字2、0、1、4各一个还能组成另一个四位完全平方数,那么这个新的四位完全平方数是2401.【分析】首先找到这些数字中尾数只能是1或者4才能构成平方数.再枚举这些数字,然后进行分解.只要分解出一个不是平方数的数字就不符合题意.【解答】解:首先根据是平方数判断尾数可以是1或者4.没有一个平方数尾数是2的.尾数是1和尾数是4时有1024,1204,2014,2104,2041,2401,4201,4021共8个数字.对以上8个数字进行分解得:①1024=25,②1204=4×301(不符合题意),③2014=2×1007(不符合题意),④2104=8×263(不符合题意)⑤2041=13×157(不符合题意),⑥2401=492(符合题意),⑦4201(质数),⑧4021(质数).故答案为:2401【点评】本题关键是尽可能找到一个条件缩小可能出现的数字范围,比如如果是平方数尾数的特征是固定的.根据这些特征进行筛选.13.有这样的正整数n,使得8n﹣7、18n﹣35均为完全平方数.则所有符合要求的正整数n=22或2.【分析】设8n﹣7=a2…①,18n﹣35=b2…②,用①×9﹣②×4可以得到(3a+2b)(3a﹣2b)=77,然后把77进行分解,进而解得a、b的值.【解答】解:设8n﹣7=a2…①,18n﹣35=b2…②,①×9得,72n﹣63=9a2…③,②×4=72n﹣140=4b2…④式,③代入④式,得到9a2﹣4b2=77,即(3a+2b)(3a﹣2b)=77,又77=1×77=7×11,即或,解得a=13或3,分别把a=13或3,代入①得,8n﹣7=169,或8n﹣7=9,8n=176,或8n=16解得:n=22,或n=2,所以n=22或n=22.故答案为:22或2.【点评】本题主要考查完全平方数的知识点,解答本题的关键是设出8n﹣7=a2,18n﹣35=b2.14.A、B、C三人和他们的妻子L、M、N(不对应)去集市上买羊,买完后惊奇的发现,每个人所买羊的数量正好和价格相同(例如A买了a只羊,则每只羊的价格是a元):若已知A、B、C分别比他们的妻子多花了63元,还知道A比M多买了23只羊,B比L多买了11只羊,那么A的妻子是N.(填字母)【分析】根据题意得:A、B、C都比他们的妻子多花63元,每个人花的钱是完全平方数,每对夫妻均有x2﹣y2=63.(x、y代表买到羊的只数,x>y),即(x+y)(x﹣y)=63,求出方程的三组解(32,31),(12,9),(8,1),根据A比M 多买了23只羊,B比L多买了11只羊,可得结论.【解答】解:根据题意得:A、B、C都比他们的妻子多花63元,每个人花的钱是完全平方数,每对夫妻均有x2﹣y2=63.(x、y代表买到羊的只数,x>y),即(x+y)(x﹣y)=63,而63=1×63=3×21=7×9(x+y与x﹣y的奇偶性一样),有或或,得到三组解(32,31),(12,9),(8,1),题目中B比L多买了11只羊,差11的只有一组,12﹣1=11,所以B=12,L=1,A比M多买了23只羊,32﹣9=23和31﹣8=23,但是若M=8,M和L是夫妻,矛盾,所以A=32,M=9,所以A的妻子是N.故答案为N.【点评】此题考查了非一次不定方程的性质.解题的关键是理解题意,根据题意列方程,还要注意分类讨论思想的应用.15.有4个不同的数字共可组成18个不同的四位数由小到大排成一排,其中第一个位数是一个完全平方数,倒数第二个四位数也是完全平方数,那么这两个数的和是10890.【分析】四个数字只有18个不同四位数,可以得出,四个数字中有一个为0;设:四个数字为0<a<b<c,且c>3;最小(第一个数)为:a0bc,倒数第二为:cb0a,下面从c值入手讨论(结合0<a<b<c):根据平方数个位特点:c=4,5,6,9,然后分情况讨论:得出符合条件的c值,进一步解决问题.【解答】解:设:四个数字为0<a<b<c,且c>3;最小(第一个数)为:a0bc,倒数第二为:cb0a,下面从c值入手讨论(结合0<a<b<c):根据平方数个位特点:c=4,5,6,9,当c=4时:只有32×32=1024;但是4201不是平方数,排除,当c=5时候:45×45=2025;55×55=3025都不符合,排除,当c=6时候:都不符合排除,c=9时:33×33=1089;9801=99×99 符合条件;最小:1089,倒数第二:9801,进而求出这两个数的和.这两个数的和是:1089+9801=10890.故答案为:10890.【点评】设出四个数字为0<a<b<c,且c>3;最小(第一个数)为:a0bc,倒数第二为:cb0a,根据平方数特点,解决问题.16.1234567654321×(1+2+3+4+5+6+7+6+5+4+3+2+l)是7777777的平方.【分析】通过观察与计算,1234567654321是1111111的平方,1+2+3+4+5+6+7+6+5+4+3+2+1=49,是7的平方,因此它们的积是7777777的平方.【解答】解:1234567654321=11111112,1+2+3+4+5+6+7+6+5+4+3+2+1=49=72,1234567654321×(1+2+3+4+5+6+7+6+5+4+3+2+l)=77777772.故答案为:7777777.【点评】对于在各种类型的题目,要仔细观察,进行试算,从中发现规律或技巧,进而解决问题.17.自然数n乘以3960,所得的乘积正好是m的平方.n的最小值是110.【分析】先将3960写成62×2×5×11的形式,显然可以看出,再乘以2×5×11即可得出答案.【解答】解:因为3960=62×2×5×11,所以3960乘以2×5×11就可变成6×2×5×11=660的平方,故答案为:110.【点评】此题解答的关键在于通过分解质因数,求得n的最小值.18.已知:503=125000,603=216000,如果a3=195112,且a为整数.那么a=58.【分析】根据503=125000,603=216000,a3=195112,且a为整数,得出50<a <60,由于个位数为2,可得结论.【解答】解:因为125000<195112<216000,503=125000,603=216000,a3=195112,所以50<a<60,由于个位数为2,则a=58.故答案为58.【点评】本题考查整数的确定,考查立方数的求解,比较基础.19.从0、2、4、6、8中挑出4个各不相同的数字能组成一个四位完全平方数,那么这个完全平方数是6084.【分析】首先个位只能为4(为0需2个0,为6需要十位数为奇数;其次,不用的数字只能是2(为0或6则被3整除余2,为8则被3整除而不被9整除),这样以来,只有6084、6804、8064、8604四种可能,然后进行验证即可得出结论.【解答】解:先个位只能为4(为0需2个0,为6需要十位数为奇数;其次,不用的数字只能是2(为0或6则被3整除余2,为8则被3整除而不被9整除),这样以来,只有6084、6804、8064、8604四种可能,因为78×78=6084,所以6084符合题意,它是78的平方;故答案为:6084.【点评】解答此题的关键是根据题意,进行推导,确定出个位数是4,不用的数是2是解答此题的关键.20.十个不同奇数的平方之和的最小值与这个最小值被 4 除的余数之差是1328.(注:相同的两个自然数的乘积叫做这个自然数的平方,如1×1=12,2×2=22,3×3=33,类推)【分析】十个不同奇数的平方之和的最小值,即从1开始,到19结束,求出1~19的10个不同奇数的平方之和,然后求出这个最小值被4除的余数,然后用10个不同奇数的平方之和减去这个最小值被4除的余数即可.。

相关文档
最新文档