初中数学中考复习专题:一元一次方程练习题1(含答案)
七年级数学一元一次方程练习题(含答案)
七年级解一元一次方程专题训练一、解下列一元一次方程:1、2+(x+1)=42、2(2-x )+(x+1)=03、(3-x )+2(x+1)=04、0.2x-3(x+1)=255、3+x+4-6=2x+106、4x+3(x-3)=57、0.9(x-3)+0.8(2+x )=10 8、x 23x2=+-9、5(0.3x+0.6)-2(0.8-x )=0.6 10、3(2x+7)=5+2(x-4) 11、x 23x6726x +=-++ 12、2(3x+1)-2=4x13、2[2(7-21)+4x]=5 14、4x 6.04x32=++15、7{2-5[3-4(x-2)+2]-6}=116、61}1]2)62(3)5[(21{31=-+--+x x17、1x 232-x 15+=+-)( 18、1524213-+=-x x19、2233554--+=+-+x x x x20、6.12.045.03=+--x x二、一元一次方程与实际问题21、甲一班有学生84人,乙班有学生66人,如果要求甲班人数是乙班的32,应从甲班调多少人到乙班去?22、某服装商城进了一款衣服,进价为400元/件,又以某一销售价卖出,结果商城盈利25%,问这款衣服的销售价是多少元?23、一轮船往返甲、乙两城之间,从下游往上游逆水航行需14时,从上游往下游顺水航行需7时,水流速度是3.5千米/时,求轮船在静水中的速度。
24、甲、乙两人完成一件工作,甲单独做需要8小时才能完成,乙单独做只需2小时就能完成。
如果甲加先做3小时,剩下的工作两个人共同完成,问还需几小时完成?参考答案一、解下列一元一次方程:1、【答案】x=1解:2+(x+1)=42+x+1=4x+3=4x=4-3x=12、【答案】x=5解;2(2-x)+(x+1)=04-2x+x+1=0(-2+1)x+(4+1)=0-x+5=03、【答案】 x=-5解:(3-x)+2(x+1)=03-x+2x+2=0x+5=0x=-54、【答案】x =-10解:0.2x-3(x+1)=250.2x-3x-3=25-2.8x=28x =-105、【答案】x=-9解:3+x+4-6=2x+10 1+x=2x+10 x-2x=10-1 - x=9 x=-96、【答案】x=2 解:4x+3(x-3)=5 4x+3x-9=5 7x-9=57x=14 x=27、【答案】x=17109解:0.9(x-3)+0.8(2+x )=10 0.9x-2.7+1.6+0.8x=10(0.9x+0.8x )+(-2.7+1.6)=10 1.7x-1.1=10 1.7x=111 x=171118、【答案】x=2解:x 23x 2=+-x 36x 2=+-2x 8x 48x 3x x 3x -8x 36x 2=-=--=--==+-9、【答案】358x -=解:5(0.3x+0.6)-2(0.8-x )=0.61.5x+3-1.6+2x=0.6(1.5+2)x+(3-1.6)=0.6 3.5x+1.4=0.6 3.5x=0.6-1.4 3.5x=-0.8358x -=10、【答案】x= -6解:3(2x+7)=5+2(x-4)6x+21=5+2x-8 6x-2x=5-8-21 4x=-24 x= -611、【答案】34x =解:34x -2015x -14-18-126x -12x -3x 6x 1212x -14183x x 266x -726)x 3x 23x6726x ===+=+++=+++=-++)()((12、【答案】解:2(3x+1)-2=4x 6x+2-2=4x 6x-4x=0 x=013、【答案】x=821-解:2[2(7-21)+4x]=52[14-1+4x]=5 2(13+4x )=5 26+8x=5 8x=-21x=821-14、【答案】2770解;2770x 14x 4.5216x 4.516x 4.2x 324x 6.04x32==-==++=++15、【答案】35121x =解; 7{2-5[3-4(x-2)+2]-6}=17[2-5(3-4x+8+2)-6]=1 7(2-15+20x-50-6)=1 7(20x-69)=1 140x-483=1140x=48435121x =16、【答案】解:61}1]2)62(3)5[(21{31=-+--+x x 两边同时乘以3得; 211]2)62(3)5[(21=-+--+x x 两边同时乘以2得;12]2)62(3)5[(=-+--+x x去掉中括号,(x+5)-3(2-6x )+2-2=1 去小括号, x+5-6+18x=1 19x=2192x =17、【答案】27x =解:27x 288x -10183x -x 518x 3105x -6x 310-x 51x 2310x 551x 232-x 15=-=--=--=+-=-+=+--+=+-)(18、 【答案】71x -= 解:71x 17x 5104x 815104x 85x 15102x 421x 351524213-=-=+-=--+=--+=--+=-)()()(x x19、【答案】x=6解:2233554--+=+-+x x x x6(x+4)-30x+150=10(x+3)-15(x-2)6x+24-30x+150=10x+30-15x+30(6-30-10+15)x=30+30-24-150 -19x=-114x=620、【答案】x=-9.2 解:2.9276302006016)5020(1620050602016)4(50)3-x 20106.124)x 1053)-x 10106.12.045.03-==-++=-=---=+-=+-=+--x x x x x x x x (两边同时乘以((,母同时乘以左边,每个分式分子分二、一元一次方程与实际问题21、【答案】应从甲班24人到乙班去解:设应从甲班调x 人到乙班去 此时:甲班人数=84-x 乙班人数=66+x因为甲班人数是乙班的32,则有(84-x )=32(66+x )3(84-x )=2(66+x )252-3x=132+2x (-3x+2x )=132-252-5x=-120 x=24检验:甲班人数=84-24=60 乙班人数=66+24=90329060= 符合题意。
初中数学解一元一次方程练习题及答案
初中数学解一元一次方程练习题及答案一、练习题1. 解下列一元一次方程:(1) 5x + 3 = 18(2) 2x - 7 = 11(3) 4(x - 3) = 32(4) 2(3x + 1) - 5x = 4(2x - 3) + 72. 某商品原价为150元,现在打8折促销,请计算促销后的价格是多少。
3. 在某个饭店聚餐,5个人一共消费145元,每人消费的金额相同。
请计算每个人的消费金额。
4. 小明的年龄是小红的2倍,小红的年龄是小华的3倍,他们三个人的年龄之和是27岁。
请分别计算小明、小红和小华的年龄。
5. 某班学生的平均身高是150厘米,男生的平均身高是152厘米,女生的平均身高是148厘米。
男女生各有多少人?二、答案1. 解下列一元一次方程:(1) 解:将5x + 3 = 18中的3移到等号右边,得到5x = 18 - 3,简化得5x = 15,再将x的系数5移到等号右边,得到x = 15 ÷ 5,即x = 3,因此方程的解是x = 3。
(2) 解:将2x - 7 = 11中的-7移到等号右边,得到2x = 11 + 7,简化得2x = 18,再将x的系数2移到等号右边,得到x = 18 ÷ 2,即x = 9,因此方程的解是x = 9。
(3) 解:将4(x - 3) = 32中的括号内的表达式展开,得到4x - 12 = 32,将-12移到等号右边,得到4x = 32 + 12,简化得4x = 44,再将x的系数4移到等号右边,得到x = 44 ÷ 4,即x = 11,因此方程的解是x = 11。
(4) 解:将2(3x + 1) - 5x = 4(2x - 3) + 7中的括号内的表达式展开,得到6x + 2 - 5x = 8x - 12 + 7,将同类项合并,得到x + 2 = 8x - 5,将x的系数8移到等号右边,得到x - 8x = -5 - 2,简化得-7x = -7,再将x的系数-7移到等号右边,得到x = -7 ÷ -7,即x = 1,因此方程的解是x = 1。
初中数学方程与不等式之一元一次方程专项训练解析含答案(1)
初中数学方程与不等式之一元一次方程专项训练解析含答案(1)一、选择题1.下面是一个被墨水污染过的方程: 11222x x -=-,答案显示此方程的解是x=-1,被墨水遮盖的是一个常数,则这个常数是( ) A .2B .﹣2C .﹣12D .12【答案】A【解析】【分析】 设被墨水覆盖的数是y ,将x=-1代入,解含有y 的方程即可得到答案.【详解】设被墨水覆盖的数是y ,则原方程为:11222x x y -=-, ∵此方程的解是x=-1,∴将x=-1代入得:11222y --=-- , ∴y=2,故选:A.【点睛】此题考查解一元一次方程,一元一次方程的解.2.一家商店将某款衬衫的进价提高40%作为标价,又以八折卖出,结果每件衬衫仍可获利15元,则这款衬衫每件的进价是( )A .120元B .135元C .125元D .140元【答案】C【解析】【分析】设这款衬衫每件的进价是x 元,则标价为(1+40%)x 元,根据售价-进价=15元,列出方程解方程即可.【详解】设这款衬衫每件的进价是x 元,则标价为(1+40%)x 元,根据题意得: ()140%0.815x x +?=解得:x=125故选:C【点睛】 本题考查的是一元一次方程的应用-利润问题,把握进价、标价、售价及利润的关系是关键.3.某种商品的进价为每件180元,按标价的九折销售时,利润率为20%,这种商品每件的标价为()元.A.200 B.240 C.245 D.255【答案】B【解析】【分析】设这种商品的标价是x元,根据某种商品每件的进价为180元,按标价的九折销售时,利润率为20%可列方程求解.【详解】设这种商品的标价是x元,90%x﹣180=180×20%x=240这种商品的标价是240元.故选:B.【点睛】本题考查一元一次方程的应用,关键知道利润=售价﹣进价,根据此可列方程求解.4.某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A.140B.120C.160D.100【答案】B【解析】【分析】设商品进价为x元,则售价为每件0.8×200元,由利润=售价-进价建立方程求出其解即可.【详解】解:设商品的进价为x元,售价为每件0.8×200元,由题意得5.某商品打七折后价格为a元,则原价为()A.a元B.107a元C.30%a元D.710a元【答案】B【解析】【分析】直接利用打折的意义表示出价格即可得出答案.【详解】设该商品原价为x元,∵某商品打七折后价格为a元,∴原价为:0.7x=a,则x=107a (元), 故选B .【点睛】 本题考查了一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.6.关于x 的方程1514()2323mx x -=-有负整数解,则所有符合条件的整数m 的和为( )A .5B .4C .1D .-1 【答案】D【解析】【分析】先解方程,再利用关于x 的方程15142323mx x ⎛⎫-=- ⎪⎝⎭有负整数解,求整数m 即可. 【详解】 解方程15142323mx x ⎛⎫-=- ⎪⎝⎭去括号得,15122323mx x -=- 移项得,11522233mx x -=-, 合并同类项得11122m x ⎛⎫-=⎪⎝⎭, 系数化为1,2 (1)1x m m =≠-,∵关于x 的方程15142323mx x ⎛⎫-=- ⎪⎝⎭有负整数解, ∴整数m 为0,-1.∴它们的和为:0+(-1)=-1.故选:D .【点睛】本题主要考查了一元一次方程的解,解题的关键是用m 表示出x 的值.7.关于x 的方程32x x a =+的解与3242x x -=的解相同,则a 的值为( ) A .2-B .2C .1-D .1【答案】B【解析】【分析】先求出第一个方程的解,再根据解的定义,把第一个方程的解代入第二个方程,得到关于a 的方程,即可求解.【详解】由32x x a =+,解得:x=a ,∵关于x 的方程32x x a =+的解与3242x x -=的解相同, ∴把x=a 代入3242x x -=得:3242a a -=, ∴a-2=0,解得:a=2.故选B .【点睛】本题主要考查解一元一次方程以及解的定义,掌握移项,去分母以及解的定义,是解题的关键.8.一个书包的标价为a 元,按八折出售仍可获利20%,该书包的进价为( ) A .23a B .34a C .45a D .56a 【答案】A【解析】【分析】设进价为x 元,根据题意可得820%10=-x a x ,解得23x a =,即为所求. 【详解】设进价为x 元 根据题意得:820%10=-x a x ∴41.25=x a ∴23x a = 故选:A【点睛】本题考查了一元一次方程的应用,理解题意,分清已知量和未知量,根据题目中的等量关系列出需要的代数式,进而列出方程,解所列的方程,求出未知数的值,检验所得的解是否符合实际问题的意义.9.一船由甲地开往乙地,顺水航行要4小时,逆水航行比顺水航行多用40分钟,已知船在静水中的速度为16千米/时,求水流速度. 解题时,若设水流速度为x 千米/时,那么下列方程中正确的是( )A .()()24164163x x ⎛⎫+=+- ⎪⎝⎭ B .()24164163x ⎛⎫⨯=+- ⎪⎝⎭C .()()()41640.416x x +=+-D .()24164163x ⎛⎫+=+⨯ ⎪⎝⎭ 【答案】A【解析】【分析】 由已知条件得到顺水航行的速度为(16+x )千米/时,逆水航行的速度为(16-x )千米/时,根据时间关系列方程即可.【详解】由题意得到:顺水航行的速度为(16+x )千米/时,逆水航行的速度为(16-x )千米/时, ∴()()24164163x x ⎛⎫+=+- ⎪⎝⎭, 故选:A.【点睛】此题考查一元一次方程的实际应用,正确理解顺水航行和逆水航行的速度是解题的关键.10.下列方程的变形中正确的是( )A .由567x x +=-得675x x -=-B .由2(1)3x --=得223x --=C .由310.7x -=得1030107x -= D .由139322x x +=--得212x =- 【答案】D【解析】【分析】根据解一元一次方程的一般步骤对各选项进行逐一分析即可.【详解】A .由567x x +=-得675x x -=--,故错误;B .由2(1)3x --=得223x -+=,故错误;C .由310.7x -=得103017x -=,故错误; D .正确.故选:D .【点睛】 本题考查的是解一元一次方程,熟知解一元一次方程的一般步骤是解答此题的关键.11.某车间有22名工人每人每天可以生产1200个螺钉或2000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套 ,设有x 名工人生产螺钉,其他工人生产螺母,根据题意列出方程( )A .20001200(22)x x =-B .212002000(22)x x ⨯=-C .220001200(22)x x ⨯=-D .12002000(22)x x =- 【答案】B【解析】【分析】首先根据题目中已经设出每天安排x 个工人生产螺钉,则(22-x )个工人生产螺母,由1个螺钉需要配2个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程【详解】设每天安排x 个工人生产螺钉,则(22-x )个工人生产螺母,利用一个螺钉配两个螺母. 由题意得:2×1200x=2000(22-x ),故选:B .【点睛】此题考查由实际问题抽象出一元一次方程,解题关键在于根据题意列出方程.12.若关于x 的一元一次方程x −m +2=0的解是负数,则m 的取值范围是A .m ≥2B .m >2C .m <2D .m ≤2【答案】C【解析】试题分析:∵程x ﹣m+2=0的解是负数,∴x=m ﹣2<0,解得:m <2,故选C . 考点:解一元一次不等式;一元一次方程的解.13.足球比赛的记分办法为:胜一场得3分,平一场得1分,负一场得0分.一个队打了14场比赛,负5场,共得19分,那么这个队胜了A .3场B .4场C .5场D .6场【答案】C【解析】【分析】设共胜了x 场,本题的等量关系为:胜的场数×3+平的场数×1+负的场数×0=总得分,解方程即可得出答案.【详解】设共胜了x 场,则平了(14-5-x )场,由题意得:3x+(14-5-x )=19,解得:x=5,即这个队胜了5场.故选C .此题考查了一元一次方程的应用,属于基础题,解答本题的关键是要掌握胜的场数×3+平的场数×1+负的场数×0=总得分,难度一般.14.下列是等式133223xx--=的变形,其中根据等式的性质2变形的是()A.133232xx--=+B.3(13)322xx--= C.3(13)64x x--=D.3(13)46x x--=【答案】C【解析】【分析】根据等式的性质2将原方程两边同时乘以2加以变形化简即可.【详解】原方程133223xx--=两边同时乘以2可得:3(13)64x x--=,故选:C.【点睛】本题主要考查了等式的性质,熟练掌握相关概念是解题关键.15.某公园门票的收费标准如下:有两个家庭分别去该公园游玩,每个家庭都有5名成员,且他们都选择了最省钱的方案购买门票,结果一家比另一家少花40元,则花费较少的一家花了()元.A.300 B.260 C.240 D.220【答案】B【解析】【分析】根据题意,分情况讨论:若花费较少的一家的购票方案为5人团购,则另一家花费340元,据此组合验证是否能凑成整数张成人票和儿童票;若花费较少的一家的购票方案是成人票和儿童票分开购买,则可根据题意设未知数,列方程求解并验证.若花费较少的一家是60×5=300(元),则花费较多的一家为340元,经检验可知,成人和儿童共5张票无法组合成340元.设花费较少的一家花了x 元,则另一家花了40x +元,根据题意得:40=605x +⨯解得:260x =检验可知,该家庭有1个成人,4个儿童,共花费100+40×4=260(元);故选:B .【点睛】本题考查一元一次方程应用,理清题意,找准等量关系,正确列出方程是解题关键.16.下列等式的变形中,正确的有( )①由53x =得53x =;②由a=b 得,-a=-b ;③由a b c c =得a b =;④由m n =得m 1n = A .1个B .2个C .3个D .4个 【答案】B【解析】【分析】本题需先根据等式的性质对每一选项灵活分析,即可得出正确答案.【详解】①若53x =,则35x =故本选项错误 ②若由a=b 得,-a=-b ,则-a=-b 故本选项正确③由a b c c=,说明c ≠0,得a b =故本选项正确 ④若m n =≠0时,则m 1n=故本选项错误 故选:B【点睛】 本题考查了等式的基本性质,在已知等式等号两边同时加减或乘除等式是否仍然成立.17.一件商品以进价120%的价格标价,后又打八折出售,最后这件商品是( ) A .赚了 B .亏了 C .不赚不亏 D .不确定盈亏【答案】B【解析】【分析】设这件商品进价为a 元,根据题意求得标价为120%a 元,打八折后的售价为0.96a ,比较即可解答.【详解】设这件商品进价为a元,则标价为120%a元,打八折后的售价为120%a×80%=0.96a.∵a>0.96a,∴这件商品亏了,亏了0.04a元.故选B.【点睛】本题考查了一元一次方程的应用,熟知售价、进价、利润之间的关系是解决问题的关键.18.已知∠1:∠2:∠3=2:3:6,且∠3比∠1大60°,则∠2=()A.10°B.60°C.45°D.80°【答案】C【解析】【分析】根据∠1:∠2:∠3=2:3:6,则设∠1=2x,∠2=3x,∠3=6x,再根据∠3比∠1大60°,列出方程解出x即可.【详解】解:∵∠1:∠2:∠3=2:3:6,设∠1=2x,∠2=3x,∠3=6x,∵∠3比∠1大60°,∴6x-2x=60,解得:x=15,∴∠2=45°,故选C.【点睛】本题是对一元一次方程的考查,准确根据题意列出方程是解决本题的关键.19.若方程组5133x y ax y a-=+⎧⎨+=-⎩的解x与y的差为3,则a的值为()A.0B.7C.7-D.8【答案】B【解析】【分析】先利用加减消元法解方程组得到37838axay-⎧=⎪⎪⎨+⎪=-⎪⎩,再根据已知条件列出关于参数a的方程,然后解一元一次方程即可得解.【详解】解:∵5133x y a x y a -=+⎧⎨+=-⎩①② ②-①×3得,38a y +=-①+②×5得,378a x -= ∴方程组的解为:37838a x a y -⎧=⎪⎪⎨+⎪=-⎪⎩∵方程组5133x y a x y a -=+⎧⎨+=-⎩的解x 与y 的差为3,即3x y -= ∴373388a a -+⎛⎫--= ⎪⎝⎭∴7a =.故选:B【点睛】本题考查了解含参数的二元一次方程组、列一元一次方程并解一元一次方程,能得到关于参数a 的方程是解决问题的关键.20.下列等式变形正确的是( )A .如果0.58x =,那么x=4B .如果x y =,那么-2-2x y =C .如果a b =,那么a b c c = D .如果x y =,那么x y = 【答案】B【解析】【分析】等式两边同时加上或减去同一个数,等式依然成立;等式两边同时除以一个不为0的数,等式依然成立;两个数的绝对值相等,其本身不一定相等,据此逐一判断即可.【详解】A :如果0.58x =,那么16x =,故选项错误;B :如果x y =,那么22x y -=-,故选项正确;C :如果a b =,当0c ≠时,那么a b c c=,故选项错误; D :如果x y =,那么x y =±,故选项错误;故选:B.【点睛】本题主要考查了等式的性质,熟练掌握相关概念是解题关键.。
2022年中考数学培优复习考点一元一次方程专项训练(含答案)
一元一次方程专项训练一.选择题1.下列方程:①3x﹣y=2:②x++2=0;③=1;④x=0;⑤3x﹣1≥5:⑥x2﹣2x﹣3=0;⑦x.其中一元一次方程有()A.5个B.4个C.3个D.2个2.若代数式a+3的值为﹣2,则a等于()A.﹣2B.﹣3C.﹣4D.﹣53.下列变形错误的是()A.如果a=b,那么a+5=b+5B.如果a=b,那么a﹣c=b﹣c.C.如果ac=bc,那么a=bD.如果,那么a=b4.商场将进价为100元的商品提高80%后标价,销售时按标价打折销售,结果仍获利44%,则这件商品销售时打几折()A.7折B.7.5折C.8折D.8.5折5.将连续的奇数1,3,5,7,9,…排成如图所示的数表,平移十字方框,方框内的5个数字之和可能是()A.405B.545C.2012D.20156.一项工程,甲单独做5天完成,乙单独做8天完成.若甲先做1天,然后甲、乙合作完成此项工作的.若设甲一共做了x天,则所列方程为()A.B.C.D.7.阅读下列解方程的过程,此过程从上一步到所给步有的产生了错误,则其中没有错误的是()解方程:.①;②2(10x﹣30)﹣5(10x+40)=160;③20x﹣60﹣50x+200=160;④﹣30x=300.A.①B.②C.③D.④8.已知关于x的方程2x+m﹣9=0的解是x=3,则m的值为()A.3B.4C.5D.69.若整数a使关于x的方程ax+3=﹣9﹣x有负整数解,且a也是四条直线在平面内交点的个数,则满足条件的所有a的个数为()A.3B.4C.5D.610.定义一种新运算“a☆b”的含义为:当a≥b时,a☆b=a+b;当a<b时,a☆b=a﹣b.例如:3☆(﹣4)=3+(﹣4)=﹣1,(﹣6)☆=(﹣6)﹣=﹣6,则方程(3x﹣7)☆(3﹣2x)=2的值为()A.1B.C.6或D.6二.填空题11.某玩具店销售一种玩具,按规定会员购买打八折,非会员购买打九折,同样购买一样玩具,小芳用会员卡比小明不用会员卡购买少花了3元钱,则这种玩具用会员卡购买的价格是元.12.已知方程(m﹣2)x|m|﹣1+7=0是关于x的一元一次方程,则m=.13.若关于x的方程2x+a=3与x+2a=7的解相同,则a的值为.14.关于x的方程2x﹣3=kx的解是整数,则整数k可以取的值是.15.对有理数a,b规定运算“*”的意义为a*b=a+2b,比如:5*7=5+2×7,则方程3x*=2﹣x的解为.三.解答题16.解方程:(1)5x+3(2﹣x)=10;(2)x=+4.17.小明在解方程=﹣1,方程两边都乘以各分母的最小公倍数去分母时,漏乘了不含分母的项﹣1,得到方程的解是x=3,请你帮助小明求出m的值和原方程正确的解.18.公司推出两种手机付费方式:甲种方式不交月租费,每通话1分钟付费0.15元;乙种方式需交18元的月租费,每通话1分钟付费0.10元,两种方式不足1分钟均按1分钟计算.(1)如果一个月通话100分钟,甲种方式应付话费多少元?用乙种方式应付话费多少元?(2)求一个月通话多少分钟时两种方式的费用相同?(列方程解)19.我们规定,若关于x的一元一次方程ax=b的解为a+b,则称该方程为“合并式方程”,例如:3x=﹣的解为﹣,且﹣,则该方程3x =﹣是合并式方程.(1)判断x=1是否是合并式方程并说明理由;(2)若关于x的一元一次方程5x=m+1是合并式方程,求m的值.20.已知数轴上三点A,O,B对应的数分别为﹣2,0,3,点P为数轴上任意一点,其对应的数为x.(1)AB的长为;(2)如果点P到点A、点B的距离相等,那么x的值是;(3)动点M从点O出发,以每秒3个单位长度的速度沿数轴正方向运动,点N从点B出发,以每秒1个单位长度的速度沿数轴正方向运动.求动点M经过几秒追上动点N?参考答案一.选择题1.解:下列方程:①3x﹣y=2:②x++2=0;③=1;④x=0;⑤3x ﹣1≥5:⑥x2﹣2x﹣3=0;⑦x.其中一元一次方程有③④⑦,共3个.故选:C.2.解:根据题意,可得:a+3=﹣2,解得a=﹣5.故选:D.3.解:∵a=b,∴a+5=b+5,∴选项A不符合题意;∵a=b,∴a﹣c=b﹣c,∴选项B不符合题意;∵ac=bc,c=0时,a可以不等于b,∴选项C符合题意;∵,∴a=b∴选项D不符合题意.故选:C.4.解:设这件商品销售时打x折,依题意,得100×(1+80%)×﹣100=100×44%,解得:x=8.故选:C.5.解:设方框中间的数为x,则方框中的5个数字之和:x+(x﹣10)+(x+10)+(x﹣2)(x+2)=5x,平移十字方框时,方框中间的数x只能在第2或3或4列.A、405÷5=81,在第一列,故本选项不符合题意;B、545÷5=109,在第五列,故本选项不符合题意;C、2012÷5=402.4,数表中都是奇数,故本选项不符合题意;D、2015÷5=403,在第二列,故本选项符合题意;故选:D.6.解:设甲一共做了x天,由题意得:+=,故选:B.7.解:A、过程①中1.6变成16,错误,本选项不符合题意;B、过程②去分母正确,本选项符合题意;C、过程③去括号时应该为﹣200,错误,本选项不符合题意;D、过程④移项及合并同类项时应该化简为﹣30x=20错误,本选项不符合题意;故选:B.8.解:∵关于x的方程2x+m﹣9=0的解是x=3,∴2×3+m﹣9=0,∴m=3.故选:A.9.解:(1)当四条直线平行时,无交点,(2)当三条平行,另一条与这三条不平行时,有三个交点,(3)当两两直线平行时,有4个交点,(4)当有两条直线平行,而另两条不平行时,有5个交点,(5)当四条直线同交于一点时,只有一个交点,(6)当四条直线两两相交,且不过同一点时,有6个交点,(7)当有两条直线平行,而另两条不平行并且交点在平行线上时,有3个交点,故四条直线在平面内交点的个数是0或1或3或4或5或6;解方程ax+3=﹣9﹣x得x=﹣,∵x是负整数,a是整数,∴a+1=1或2或3或4或6或12,解得a=0或1或2或3或5或11.综上所述,a=0或1或3或5,满足条件的所有a的个数为4.故选:B.10.解:当3x﹣7≥3﹣2x,即x≥2时,由题意得:(3x﹣7)+(3﹣2x)=2,解得x=6;当3x﹣7<3﹣2x,即x<2时,由题意得:(3x﹣7)﹣(3﹣2x)=2,解得x=(舍去),∴x的值为6.故选:D.二.填空题11.解:设这种玩具原价是x元,根据题意可得:0.9x﹣0.8x=3,解得:x=30,∴0.8x=24(元)答:这种玩具用会员卡购买的价格是24元.故答案为:24.12.解:∵方程(m﹣2)x|m|﹣1+7=0是关于x的一元一次方程,∴m﹣2≠0且|m|﹣1=1,解得m=﹣2.故答案为:﹣2.13.解:联立方程得:,②×2﹣①得,3a=11,解得a=.故答案为:.14.解:移项、合并,得(2﹣k)x=3,解得x=,∵x为整数,k为整数,∴,,解得k=±1或3或5.故答案为:±1或3或5.15.解:根据题中的新定义化简得:3x+=2﹣x,去分母得:6x+1=4﹣2x,解得:x=.故答案为:.三.解答题16.解:(1)去括号得:5x+6﹣3x=10,移项得:5x﹣3x=10﹣6,合并得:2x=4,解得:x=2;(2)去分母得:3x=x﹣2+12,移项得:3x﹣x=﹣2+12,合并得:2x=10,解得:x=5.17.解:根据题意,x=3是方程4(2x﹣1)=3(x+m)﹣1的解,将x=3代入得4×(2×3﹣1)=3(3+m)﹣1,解得m=4,所以原方程为=﹣1,解方程得x=.18.解:(1)甲:0.15×100=15(元);乙:18+0.10×100=28(元);答:甲种方式付话费15元,乙种方式付话费28元.(2)设一个月通话x分钟时两种方式的费用相同,由题意得:18+0.10x=0.15x,解得x=360.答:一个月通话360分钟时两种方式的费用相同.19.解:(1)∵x=1,∴x=2,∵+1≠2,∴x=1不是合并式方程;(2)∵关于x的一元一次方程5x=m+1是合并式方程,∴5+m+1=,解得:m=﹣.天天向上独家原创-2022故m的值为﹣.20.解:(1)AB=|﹣2﹣3|=5.故答案为:5;(2)依题意,得:|x﹣(﹣2)|=|x﹣3|,即x+2=x﹣3或x+2=3﹣x,方程无解或x=0.5.故答案为:0.5;(3)设动点M经过t秒恰好追上动点N,依题意,得:3t=3+t,解得:t=1.5.答:动点M经过1.5秒恰好追上动点N.11 / 11。
中考数学《一元一次方程》专题练习(附带答案)
中考数学《一元一次方程》专题练习(附带答案)一、单选题1.方程x ﹣3=2x ﹣4的解为( )A .1B .﹣1C .7D .﹣72.下列等式变形正确的是( ) A .如果s=12ab ,那么b=s2aB .如果12x=6,那么x=3C .如果x ﹣3=y ﹣3,那么x ﹣y=0D .如果mx=my ,那么x=y3.某种商品,若单价降低110,要保持销售收入不变,那么销售量应增加( )A .110B .19C .18D .174.一个长方形的周长为 26cm ,若这个长方形的长减少 2cm ,宽增加 3cm ,就可以成一个正方形.设长方形的长为 xcm ,可列方程( ) A .x +2=(13−x)−3 B .x +2=(26−x)−3 C .x −2=(26−x)+3D .x −2=(13−x)+35.某超市将两件商品都以84元售出,一件提价 40% ,一件降价 20% ,则最后是( )A .无法确定B .亏本3元C .盈利3元D .不赢不亏6.下列方程变形中,正确的是( )A .方程3x +4=4x −5,移项得3x −4x =5−4B .方程−32x =4,系数化为1得x =4×(−32)C .方程3−2(x +1)=5,去括号得3−2x −2=5D .方程x−12−1=3x+13,去分母得3(x −1)−1=2(3x +1) 7.已知关于x 的一元一次方程 12020x +3=2x +b 的解为x=-3,那么关于y 的一元一次方程 12020(y +1)+3=2(y +1)+b 的解为( ) A .y=1B .y=-1C .y=-3D .y=-48.若(m ﹣2)x |2m ﹣3|=6是一元一次方程,则m 等于( )A .1B .2C .1或2D .任何数9.若关于x 的方程(k+1)x 2﹣ √2−k x+ 14=0有实数根,则k 的取值范围是( )A .k≤2且k≠﹣1B .k≤ 12且k≠﹣1C .k≤ 12D .k≥ 1210.下面是一个被墨水污染过的方程 12(1-2ax)=x+a ,答案显示此方程的解是x=-2,被墨水遮盖的是一个常数a ,则这个常数是( )A .1B .−52C .52D .−1211.把方程x2﹣x−16=1去分母,正确的是( )A .3x ﹣(x ﹣1)=1B .3x ﹣x ﹣1=1C .3x ﹣x ﹣1=6D .3x ﹣(x ﹣1)=612.解方程 2x−13+3x−44=0 时,去分母正确的是( ) A .4(2x −1)+9x −4=12 B .4(2x −1)+3(3x −4)=12 C .8x −1+9x +12=0D .4(2x −1)+3(3x −4)=0二、填空题13.湘潭历史悠久,因盛产湘莲,被誉为“莲城”.李红买了8个莲蓬,付50元,找回38元,设每个莲蓬的价格为x 元,根据题意,列出方程 .14.如表所示,已知a ,b 满足表格中的条件,则b 的值是 .x ﹣1 ax ﹣1 ax 2+b415.若关于x ,y 的方程组{x −y =m +2x +3y =m的解适合方程x +y =−2,则m = .16.某村原有林地108公顷,旱地54公公顷,为保护环境,需把一部分旱地改造为林地,使旱地占林地面积的20%.设把x 公顷旱地改为林地,则为可列方程为 .17.将方程 2x +3y =6 写成用含x 的代数式表示y ,则y= .18.在①2x ﹣1②2x+1=3x ③|π﹣3|=π﹣3④t+1=3中,等式有 方程有 (填入式子的序号)三、综合题19.在习近平主席提出的“一带一路”战略构想下,甲、乙两城市决定开通动车组高速列车,如图, AD是从乙城开往甲城的第一列动车组列车距甲城的路程 s(km) 与运行时间 t(ℎ) 的函数图象, BC 是一列从甲城开往乙城的普通快车离开甲城的路程 s(km) 与运行时间 t(ℎ) 的函数图象,它比第一列动车组动车晚出发 1 小时,请根据图中的信息,解答下列问题:(1)填空:甲、乙两城市之间的距离为千米(2)若普通快车的速度为100km/ℎ,①用待定系数法求BC的函数表达式,并写出自变量的取值范围:②若普通快车与第一列动车组列车相遇后0.4小时与第二列动车组列车相遇,请直接写出相邻两列动车组列车间隔的时间③在②的条件下,请直接写出第二列动车组列车与第一列动车组列车和普通快车距离相等时的t值.20.某超市购进甲、乙两种节能灯共1200只,这两种商品的进价、售价如下表进价(元|只)售价(元|只)甲2530乙4560(2)为确保乙型节能灯顺利畅销,在(1)的条件下,商家决定对乙型节能灯进行打折出售,且全部售完后,乙型节能灯的利润率为20%,请问乙型节能灯需打几折?21.根据下列条件列出方程(1)x比它的78大15(2)2xy与5的差的3倍等于24(3)y的13与5的差等于y与1的差.22.“双11”期间,某市各大商场掀起促销狂潮,现有甲、乙、丙三个商场开展的促销活动如下表所示商场优惠活动甲全场按标价的6折销售乙实行“每满100元送100元的购物券”的优惠,购物券可以在再购买时冲抵现金(如顾客购衣服220元,赠券200元,再购买裤子时可冲抵现金,不再送券)丙实行“每满100元减50元的优惠”(如某顾客购物220元,他只需付款120元)(1)三个商场同时出售某种标价为370元的破壁机和某种标价为350元的空气炸锅,若赵阿姨想买这两样厨房电器,她选择哪家商场最实惠?(2)黄先生发现在甲、乙商场同时购买一件标价为280元的上衣和一条标价为200多元的裤子,最后付款额一样,请问这条裤子的标价是多少元?(3)如果某品牌的巴西大豆在三所商场的标价都是5元/kg,请探究是否存在分别在三个商场付同样多的100多元,并且都能够购买同样质量同品牌的该大豆?如果存在,请求出在乙商场购买该大豆的方案(并指出在三个商场购买大豆的质量是多少千克,支付的费用是多少元)如果不存在,请直接回答“不存在”.23.如图,点A、B、C是数轴上三点,点A、B、C表示的数分别为-10、2、6,我们规定数铀上两点之间的距离用字母表示.例如点A与点B之间的距离,可记为AB(1)写出AB= ,BC=,AC=(2)点P是A、C之间的点,点P在数轴上对应的数为x①若PB=5时,则x=②PA =,PC=(用含x的式子表示)(3)动点M、N同时从点A、C出发,点M以每秒2个单位长度的速度沿数轴向右运动,点N以每秒2个单位长度的速度沿数向左运动,设运动时间为t(t>0)秒,求当t为何值时,点M、N之间相距2个单位长度?24.某商场将进货价为35元台灯以50元销售价售出,平均每月能售出500个,市场调研表明当销售价每上涨1元时,其销售量就将减少10个,若设每个台灯的销售价上涨a元.(1)试用含a的代数式填空涨价后,每个台灯的销售价为元,每台利润为元,商场的台灯平均每月的销售量为台,共可获利元.(2)如果商场要想销售利润平均每月至少达到10000元,现有三种方案.方案一“在原售价每台50元的基础上再上涨25元”方案二“在原售价每台50元的基础上在上涨15元”方案三“在原售价每台50元的基础上在上涨8元”.若为了减少库存,应该采用哪一种方案?并说明理由.参考答案1.【答案】A2.【答案】C3.【答案】B4.【答案】D5.【答案】C6.【答案】C7.【答案】D8.【答案】A9.【答案】C 10.【答案】B 11.【答案】D 12.【答案】D 13.【答案】8x+38=50 14.【答案】3 15.【答案】−316.【答案】20%(108+x )=54﹣x 17.【答案】6−2x 3 (或 2−23x )18.【答案】②③④②④ 19.【答案】(1)600(2)解①设BC 的解析式为s=kt+b , 由题意B (1,0),C (7,600),则有 {k +b =07k +b =600 ,解得 {k =100b =−100 .∴s=100t − 100(1≤t≤7)②设普通快车与第一列动车组列车x 小时后相遇,则100(x -1)+150x=600 解得x=145(小时) 设第二列动车组列车行驶了y 小时与普通快车相遇,则150y+100×(0.4+ 145-1)=600 解得y=3815∴相邻两列动车组列车间隔的时间= 145 − ( 3815 − 0.4)= 23(小时)③当t= 145小时时,普通快车与第一列动车组列车相遇,此时第二列动车组列车与第一列动车组列车和普通快车距离相等.当 100(t −1)+150(t −23)−600=23×150 时,第二列动车组列车与第一列动车组列车和普通快车距离相等.∴100(t −1)+150(t −23)−600=23×150解得 t =185答第二列动车组列车与第一列动车组列车和普通快车距离相等时,t 的值是 145 或 185 .20.【答案】(1)解设商场购进甲型节能灯x 只,则购进乙型节能灯(1200-x )只由题意,得25x+45(1200-x )=46000 解得x=400购进乙型节能灯1200-x=1200-400=800只.答购进甲型节能灯400只,购进乙型节能灯800只进货款恰好为46000元(2)解设乙型节能灯需打a折0.1×60a-45=45×20%解得a=9答乙型节能灯需打9折.21.【答案】(1)解根据题意可得x﹣78x=15(2)解根据题意可得3(2xy﹣5)=24(3)解根据题意可得13y﹣5=y﹣122.【答案】(1)解选甲商场需付(370+350)×0.6=432(元)选乙商场需付370+(350−3×100)=420(元)选丙商场需付370+350−7×50=370(元)因为370<420<432,故答案为丙商场最实惠.(2)解设这条裤子的标价为x元.根据题意,得(280+x)×0.6=280+x−2×100解得x=220.故这条裤子的标价为220元.(3)解设在乙商场先购买ykg大豆,需付100多元,再用100元的购物券再在乙商场购买100÷5=20kg 大豆.根据题意,得5(y+20)×0.6=5y,解得y=30.此时,在甲商场和乙商场都购买了30+20=50kg大豆,都需付30×5=150元.在丙商场购买50kg需付5×50−2×50=150元.所以存在分别在三个商场付同样多的100多元,并且都能买到同样质量同样品牌的该大豆.所以在乙商场的购买方案为先购买30kg大豆付150元,再用100元的购物券再在乙商场购买20kg大豆,共付了150元,购买了50kg大豆.23.【答案】(1)12416(2)解-3x+106-x(3)解相遇前,(6-2t)-(-10+2t) =2,解得t= 3.5相遇后(-10+2t)-(6-2t) = 2,解得t= 4.5.答当t=3.5或t=4.5时,点M、N之间相距2个单位长度.24.【答案】(1)(50+a)(15+a)(500-10a)(15+a)(500-10a)(2)解方案一当a=25时,(15+25)(500-10×25)=10000(元).方案二当a=15时,(15+15)(500-10×15)=10500(元).方案三当a=8时,(15+8)(500-10×8)=9660(元)<10000元,故舍去该方案.因为要减少库存,所以应采用方案二.。
2020年中考数学复习指南: 《一元一次方程》 综合训练(含答案)
2020中考数学复习指南:《一元一次方程》综合训练第Ⅰ卷(选择题)一.选择题1.关于x的方程x+1=2b的解是5,则b=()A.2 B.﹣2 C.3 D.﹣32.某商场将一种商品以每件60元的价格售出,盈利20%,那么该商品的进货价是()A.36元B.48元C.50元D.54元3.在排成每行七天的日历表中取下一个3×3的方块(如图),若方块中所有日期之和为207,则n的值为()A.23 B.21 C.15 D.124.下列方程变形中,正确的是()A.方程3x﹣2=2x+1,移项,得3x﹣2x=﹣1+2B.方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x﹣1C.﹣1,去分母,得4(x+1)=3x﹣1D.方程﹣x=4,未知数系数化为1,得x=﹣105.天虹商场将某品牌的羽绒服在进价的基础上提高60%定价销售,发现销量不好,于是在“元旦”期间将该品牌的羽绒服打六折出售,那么,在“元旦”期间天虹商场每售出一件这样的羽绒服,将会()A.不亏不赚B.赚了4% C.亏了4% D.赚了36% 6.方程﹣x=+1去分母得()A.3(2x+3)﹣x=2(9x﹣5)+1 B.3(2x+3)﹣6x=2(9x﹣5)+6 C.3(2x+3)﹣x=2(9x﹣5)+6 D.3(2x+3)﹣6x=2(9x﹣5)+17.下面是一个被墨水污染过的方程:(1﹣2ax)=x+a,答案显示此方程的解是x=﹣2,被墨水遮盖的是一个常数a,则这个常数是()A.1 B.﹣C.D.﹣8.有m间学生宿舍和n个学生,若每间宿舍住8个人,则还多4个人无法安置;若每间宿舍安排10个人,则还多6张空床位,据此信息列出方程,下列4个方程正确的是()①8m﹣4=10m+6;②;③;④8m+4=10m﹣6.A.①③B.②④C.①②D.③④9.若关于x的方程(k﹣4)x=3有正整数解,则自然数k的值是()A.1或3 B.5 C.5或7 D.3或710.一列火车匀速行驶,经过一条长600米的隧道需要25秒的时间,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10秒,求火车的速度.设火车的速度为xm/s,列方程得()A.B.C.10x+600=25x D.10x+25x=600第Ⅱ卷(非选择题)二.填空题11.若x=a是方程2x+3=4的解,则代数式4a+6的值是.12.“x的与7的差等于x的2倍与5的和”用方程表示为.13.如图,数轴上A、B、C三点所表示的数分别是a,6,c,已知AB=8,a+c=0,且c是关于x的方程(m﹣4)x+16=0的解,则m的值为.14.“衢州有礼华外有你”衢州华外第19届科技艺术节如期举行,小郑在“美食节”上共卖出50个鸭头,其中一半鸭头以8元每个卖出,另一半鸭头降价为5元每个卖出,共获利50%.问小郑这50个鸭头平均每个多少元买进?设这50个鸭头平均每个以x元买进,可列出方程为:.15.已知x=4是关于x的方程3a+x=+3的解,则a2﹣a的值为.16.丰都县某中学为培养学生综合实践能力,开展了一系列综合实践活动,有一次财商训练活动中,小明同学准备去集市批发两种商品用于活动中交易.预先了解到A、B两种商品的价格之和为27元,小明计划购买B商品的数量比A商品的数量多2件,但一共不超过25件,且每样不少于3件,但小明去购买时发现A商品正打九折销售,而B商品的价格提高了20%,小明决定将A、B产品的购买数量对调,这样实际花费只比计划多8元,已知价格和购买数量均为整数,则小明购买两种商品实际花费为元.17.用“※”定义一种新运算:对于任意有理数a和b,我们规定a※b=a(a﹣b)+1,比如,2※5=2×(2﹣5)+1.若3※x=5※(x﹣1),则x的值为.18.已知连接A、B两地之间的公路长为600千米,甲开车从A地出发沿着此公路以100千米/小时的速度前往B地,乙骑自行车从B地出发沿此公路匀速前往A地.已知乙比甲晚出发1小时,乙出发4小时后与甲第一次相遇,当甲到达B地侯立即原路原速返回.若乙第二次与甲相遇时乙共骑行了m千米,则m=.19.甲、乙、丙三数之比是2:3:4,甲、乙两数之和比乙、丙两数之和大30,则甲、乙、丙分别为.20.探索规律:将连续的偶数2,4,6,8,…,排成如下表:若将十字框上下左右移动,可框住五个数,若五个数的和等于2020,写出这五个数是.三.解答题21.解方程:(1)3x﹣(x﹣1)=5(2)3x﹣=122.甲,乙两辆汽车同时从A地出发前往C地,甲车的速度是80km/h,乙车的速度是60km/h,甲车行驶30分钟后到达B地,并在B地停留了45分钟,最后两车同时到达C地.(1)当甲车从B地出发时,甲,乙两车相距多少km?(2)求A,C两地的距离.23.如图,射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm,点P从点O出发,沿OM方向以1cm/s的速度匀速运动,点Q从点C出发在线段CO 上向点O匀速运动,两点同时出发,当点Q运动到点O时,点P、Q停止运动.(1)若点Q运动速度为2cm/s,经过多长时间P、Q两点相遇?(2)当PA=2PB时,点Q运动到的位置恰好是线段OB的中点,求点Q的运动速度;(3)设运动时间为xs,当点P运动到线段AB上时,分别取OP和AB的中点E、F,则OC﹣AP﹣2EF=cm.24.列方程解应用题今年某网上购物商城在“双11购物节“期间搞促销活动,活动规则如下:①购物不超过100元不给优惠;②购物超过100元但不足500元的,全部打9折;③购物超过500元的,其中500元部分打9折,超过500元部分打8折.(1)小丽第1次购得商品的总价(标价和)为200元,按活动规定实际付款元.(2)小丽第2次购物花费490元,与没有促销相比,第2次购物节约了多少钱?(请利用一元一次方程解答)(3)若小丽将这两次购得的商品合为一次购买,是否更省钱?为什么?25.一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天,已知甲工程队铺设每天需支付工程费2000元,乙工程队铺设每天需支付工程费1500元.(1)甲、乙两队合作施工多少天能完成该管线的铺设?(2)由两队合做该管线铺设工程共需支付工程费多少元?(3)根据实际情况,若该工程要求10天完成,从节约资金的角度应怎样安排施工?26.已知:线段AB=20cm.(1)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,点Q沿线段BA自B点向A点以3厘米/秒运动,经过秒,点P、Q两点能相遇.(2)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,点P出发2秒后,点Q 沿线段BA自B点向A点以3厘米/秒运动,问再经过几秒后P、Q相距6cm?(3)如图2:AO=4cm,PO=2cm,∠POB=60°,点P绕着点O以60度/秒的速度逆时针旋转一周停止,同时点Q沿直线BA自B点向A点运动,假若点P、Q两点能相遇,求点Q运动的速度.27.某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.(1)求钢笔和毛笔的单价各为多少元?(2)学校仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么账肯定算错了.”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的账算错了.参考答案一.选择题1.解:∵关于x的方程x+1=2b的解是5,∴5+1=2b,∴2b=6,解得b=3.故选:C.2.解:设该商品的进货价是x元,依题意,得:60﹣x=20%x,解得:x=50.故选:C.3.解:这九个日期分别为:n﹣8,n﹣7,n﹣6,n﹣1,n,n+1,n+6,n+7,n+8,∴所有日期之和=9n,由题意可得9n=207,∴n=23,故选:A.4.解:A、方程3x﹣2=2x+1,移项,得3x﹣2x=1+2,不符合题意;B、方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x+5,不符合题意;C、=﹣1,去分母,得4(x+1)=3x﹣12,不符合题意;D、方程﹣x=4,未知数系数化为1,得x=﹣10,符合题意,故选:D.5.解:设一件羽绒服的进价为a元,则在进价的基础上提高60%定价为:(1+60%)a=1.6a,在“元旦”期间将该品牌的羽绒服打六折出售,售价为1.6a×0.6=0.96a,0.96a﹣a=﹣0.04a,∴在“元旦”期间天虹商场每售出一件这样的羽绒服,将会亏了4%;故选:C.6.解:方程的两边都乘以6,得3(2x+3)﹣6x=2(9x﹣5)+6.故选:B.7.解:把x=﹣2代入方程得:(1+4a)=a﹣2,去分母得:1+4a=2a﹣4,解得:a=﹣,故选:B.8.解:按照学生人数不变,可列出方程8m+4=10m﹣6;按照宿舍间数不变,可列出方程=.∴方程②④正确.故选:B.9.解:(k﹣4)x=3,解得x=,又∵(k﹣4)x=3有正整数解,k为自然数,∴自然数k的值是5或7.故选:C.10.解:设火车的速度为xm/s,依题意,得:600+10x=25x.故选:C.二.填空题(共10小题)11.解:把x=a代入方程得:2a+3=4,所以4a+6=2(2a+3)=2×4=8.故答案是:8.12.解:由题意可得:x﹣7=2x+5.故答案为:x﹣7=2x+5.13.解:∵AB=8,∴6﹣a=8,解得a=﹣2,∵a+c=0,∴c=2,∵c是关于x的方程(m﹣4)x+16=0的一个解,∴2(m﹣4)+16=0,解得m=﹣4.故答案是:﹣4.14.解:设这50个鸭头平均每个以x元买进,依题意,得:8×50×+5×50×﹣50x=50%×50x.故答案为:8×50×+5×50×﹣50x=50%×50x.15.解:将x=4代入3a+x=+3,得3a+4=+3,解得a=.所以a2﹣a=()2﹣=﹣.故答案是:﹣.16.解:设A商品的单价为x元/件,则B商品的单价为(27﹣x)元/件,计划购买A商品a件,则B商品为(a+2)件,根据题意可得:0.9x×(a+2)+1.2×(27﹣x)×a=xa+(27﹣x)(a+2)+8,∴x=,∵a≥3,a+2≥3,a+a+2≤25,x,a均为整数,∴a=10,x=10∴小明购买两种商品实际花费=9×12+1.2×10×17=312元,故答案为:31217.解:∵3※x=5※(x﹣1)∴3(3﹣x)+1=5(5﹣x+1)+1去括号,得9﹣3x+1=30﹣5x+1移项,得﹣3x+5x=30+1﹣9﹣1合并同类项,得2x=21系数化为1,得x=10.5故答案为:10.5.18.解:设乙的速度为x千米/小时,由题意可知:100×1+100×4+4x=600,解得:x=25,第一次相遇后,甲到达B地所需要的时间为=1,此时乙继续往A地走了25×1=25千米,设甲到达B地后到追上乙所需要时间为t小时,∴25+100+25t=100t,∴t=,∴当甲到达B地侯立即原路原速返回.若乙第二次与甲相遇时乙共骑行了m=100+25+25t=千米,故答案为:19.解:设甲数是2x,则乙数是3x,丙数是4x,则2x+3x﹣(3x+4x)=30解得x=﹣15.故2x=﹣30,3x=﹣45,4x=﹣60.即甲、乙、丙分别为﹣30、﹣45、﹣60.故答案是:﹣30、﹣45、﹣60.20.解:设十字框最中间的数为x,其他数为x﹣10,x+10,x﹣2,x+2,根据题意得:x﹣10+x+x+10+x﹣2+x+2=2020,解得:x=404,则五个数是394,402,404,406,414,故答案为:394,402,404,406,414.三.解答题(共7小题)21.解:(1)去括号得:3x﹣x+1=5,移项合并得:2x=4,解得:x=2;(2)去分母得:12x﹣3x+1=4,移项合并得:9x=3,解得:x=.22.解:(1)60×﹣80×=35(km).答:当甲车从B地出发时,甲,乙两车相距35km.(2)设A,C两地的距离为xkm,依题意,得:﹣=,解得:x=180.答:A,C两地的距离为180km.23.解:(1)设运动时间为t,则t+2t=90,解得t=30;所以经过30s,P、Q两点相遇;(2)当点P在线段AB上时,∵PA=2PB,∴PA=40cm,∴OA=60cm,∴t==60s,∵点Q线段OB的中点,∴BQ=40cm,∴CQ=50cm,∴点Q的运动速度=cm/s;当点P在线段AB的延长线上时,∵PA=2PB,∴PA=120cm,∴OA=140cm,∴t==140s,∵点Q线段OB的中点,∴BQ=40cm,∴CQ=50cm,∴点Q的运动速度为==cm/s;(3))∵E、F分别是OP、AB的中点,∴OE=OP=t,OF=OA+AB=20+30=50,∴EF=50﹣t∴OC﹣AP﹣2EF=90﹣(t﹣20)﹣(100﹣t)=10,故答案为:10.24.解:(1)200×0.9=180(元).答:按活动规定实际付款180元.(2)∵500×0.9=450(元),490>450,∴第2次购物超过500元,设第2次购物商品的总价是x元,依题意有500×0.9+(x﹣500)×0.8=490,解得x=550,550﹣490=60(元).答:第2次购物节约了60元钱.(3)200+550=750(元),500×0.9+(750﹣500)×0.8=450+200=650(元),∵180+490=670>650,∴小丽将这两次购得的商品合为一次购买更省钱.故答案为:180.25.解:(1)设甲、乙两队合作施工x天能完成该管线的铺设,由题意得+=1,解得:x=8.答:甲、乙两队合作施工8天能完成该管线的铺设.(2)(2000+1500)×8=28000(元)答:两队合做该管线铺设工程共需支付工程费28000元.(3)设乙干满10天,剩下的让甲工程队干需要a天,由题意得+=1,解得:a=7,故甲乙合干7天,剩下的乙再干3天完成任务.26.解:(1)设经过x秒两点相遇,由题意得,(2+3)x=20,解得:x=4,即经过4s,点P、Q两点相遇;故答案为:4.(2)设经过a秒后P、Q相距6cm,由题意得,20﹣2×2﹣(2+3)a=6,解得:a=2,或2×2+(2+3)a﹣20=6,解得:a=,答:再经过2秒和秒后P、Q相距6cm;(3)点P,Q只能在直线AB上相遇,则点P旋转到直线AB上的时间为=2s或=5s,设点Q的速度为ym/s,当2秒时相遇,依题意得,2y=20﹣2=18,解得y=9当5秒时相遇,依题意得,5y=20﹣6=14,解得y=2.8答:点Q的速度为9cm/s或2.8cm/s.27.解:(1)设钢笔的单价为x元,则毛笔的单价为(x+4)元.由题意得:30x+45(x+4)=1755解得:x=21则x+4=25.答:钢笔的单价为21元,毛笔的单价为25元.(2)设单价为21元的钢笔为y支,所以单价为25元的毛笔则为(105﹣y)支.根据题意,得21y+25(105﹣y)=2447.解得:y=44.5 (不符合题意).所以王老师肯定搞错了.。
一元一次方程专题训练经典练习题(含答案)
一元一次方程专题训练经典练习题一、解下列一元一次方程1、2x+2=3x+62、 3x-11=253、2(x-1)+3(1-x)=04、5x(2-3.140)=2(x-6)5、0.8x +2=1.6x-26、10%(x+2)=17、2(x+5)=3(x-6) 8、1-2(x-3)=3(x+2)9、3(x-1)=2(x+2)+(1-x) 10、4x-[2+(3x-6)]=111、2x-20%(x+3)=12÷10 12、7x+5(x-2)= 2(x+10)13、4x-4=2(2+x)-3(x+1) 14、1- 12x=215、3- 13x=2(x+1) 16、2(x-34)=8-x17、12(2x+1)+1=2(2-x) 18、x-13(x-5)=2319、-x= -3(x-4) 20、7x·(5 - 4·12)= 5+x21、0.1+x2=2 22、x-10.2=3(x-1)23、x-10.3+x+20.3=2 24 、12+13x =23+125、2x-10.5= 2-3x+20.326、错误! =3x27、错误! =3 28、错误! =错误!29、12{13[14(x+1)+1]+2} =2 30、25(300+x)-35(200+x)=400·110二、一元一次方程应用题1、一艘船在两个码头之间航行,水流的速度是3千米/时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离。
2、小华从家里骑自行车到学校。
若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?3、小兵由A地到B地,若以每小时12千米的速度,他将比原计划的时间迟到20分,若以每小时15千米的速度前进,则比原计划的时间早4分钟到达B地,求A、B两地间的距离。
4、甲、乙两人同时从A地前往相距25.5千米的B地,甲骑自行车,乙步行,甲的速度比乙的速度的2倍还快2千米/时,甲先到达B地后,立即由B地返回,在途中遇到乙,这时距他们出发的时间时已过了3小时。
中考数学一轮复习《一元一次方程》练习题(含答案)
中考数学一轮复习《一元一次方程》练习题(含答案)一、单选题1.下列方程中解是2x =的方程是( )A .360x +=B .240x -+=C .122x =D .240x += 2.关于x 的不等式21x a +≥的解集如图所示,则a 的值是( )A .-1B .1C .2D .33.已知a =b ,根据等式的性质,错误的是( )A .22a b +=+B .ac bc =C .a b c c =D .2211a b c c =++ 4.若方程()2180m m x---=是关于x 的一元一次方程,则m =( ) A .1 B .2 C .3 D .1或35.下列命题中是真命题的是( )A .同位角相等,两直线平行B .钝角三角形的两个锐角互余C .若实数a ,b 满足a 2=b 2,则a =bD .若实数a ,b 满足a <0,b >0,则ab >06.某车间原计划用15小时生产一批零件,实际每小时多生产了10件,用了13小时不但完成了任务,而且还多生产了80件,设原计划每小时生产x 个零件,那么下列方程正确的是( )A .11(10)801513x x =++B .11(10)801513x x +=+ C .1513(10)80x x =++D .13(10)1580x x +=+ 7.若a b =,下列变形错误的是( )A .11a b +=+B .a m b m -=-C .22a b =D .23a b = 8.《孙子算经》中记载:今有百鹿入城,家取一鹿,不尽,又三家共鹿适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?设有x 户人家,可列方程为( )A .3100x x +=B .3100x x -=C .1003x x -=D .1003x x += 9.已知点P 的坐标为()2,3x x +,点M 的坐标为()1,2x x -,PM 平行于y 轴,则P 点的坐标为( )A .()2,2-B .()6,6C .()2,2-D .()6,6--10.在平面直角坐标系中,若直线y x m =-+不经过第一象限,则关于x 的方程210mx x ++=的实数根的个数为( )A .0个B .1个C .2个D .1或2个11.如图,将4张形状、大小完全相同的小长方形纸片分别以图1、图2的方式放入长方形ABCD 中,若图1中的阴影部分周长比图2的阴影部分周长少1,则图中BE 的长为( )A .14B .12C .1D .212.小江去商店购买签字笔和笔记本(其中签字笔和笔记本的单价相同).若购买20支签字笔和15本笔记本,则他身上的钱还缺25元;若购买19支签字笔和12本笔记本,则他身上的钱会剩下15元.若小江购买17支签字笔和9本笔记本,则( )A .他身上的钱还缺65元B .他身上的钱会剩下65元C .他身上的钱还缺115元D .他身上的钱会剩下115元二、填空题13.已知等式285x y -+=,则32x y -+=______.14.若方程2x -m =1和方程3x =2(x -1)的解相同,则m 的值为__________.15.一件衣服售价为200元,六折销售,仍可获利20%,则这件衣服的进价是___ 1621x -5x 的值为 _____.17.若()235k y k x -=-+是一次函数,则k =_________.18.已知x =﹣2时,二次三项式x 2﹣2mx +4的值等于﹣4,当x =_____时,这个二次三项式的值等于﹣1.19.对于实数a ,b ,定义运算“※”如下:a ※b =a 2﹣ab ,例如,5※3=52﹣5×3=10.若(1)x +※(4)10x -=,则x 的值为_____.20.一个装有红豆和黄豆共计200颗的瓶子,现将瓶中豆子充分摇匀,再从瓶中取出80颗豆子时,发现其中有20颗红豆,根据实验估计该瓶装有红豆大约_________颗.三、解答题21.解方程:(1)2﹣3x =5﹣2x ;(2)3(3x ﹣2)=4(1+x ).22.解下列方程:(1)4385-=+x x ; (2)7531132y y --=-.23.一个正数a 的两个不相等的平方根分别是21b -和4b +.(1)求b 的值;(2)求a b +的立方根.24.我们规定一种运算=-a b ad cb c d,如232534245=⨯-⨯=-,再如14224-=-+-x x .按照这种运算规定,解答下列各题:(1)计算3245--=___________;(2)若22235-=-x x,求x 的值;(3)若88123332--+-mx x与51--n x的值始终相等,求m,n的值.25.某移动公司设了两类通讯业务,A类收费标准为不管通话时间多长使用者都应缴50元月租费,然后每通话1分钟,付0.4元,B类收费标准为用户不缴月租费,每通话1分钟,付话费0.6元,若一个月通讯x分钟,两种方式费用分别是A y,B y元.(1)分别写出A y,B y与x之间的函数关系式.(2)某人估计一个月通话时间为300分钟,应选哪种通讯方式合算些,请书写计算过程.(3)小明用的A卡,他计算了一下,若是B卡,他本月话费将会比现在多100元,请你算一下小明实际话费是多少元?26.接种疫苗是阻断新冠病毒传播的有效途径,为保障人民群众的身体健康,我市启动新冠疫苗加强针接种工作,已知今年3月甲接种点平均每天接种加强针的人数比乙接种点平均每天接种加强针的人数多20%,两接种点平均每天共有440人接种加强针.(1)求3月平均每天分别有多少人前往甲、乙两接种点接种加强针?(2)4月份,甲接种点平均每天接种加强针的人数比3月少10m人,乙接种点平均每天接种加强针的人数比3月多30%,在m天期间,甲、乙两接种点共有2250人接种加强针,求m 的值.27.冰墩墩(BingDwenDwen),是2022年北京冬季奥运会的吉祥物.将熊猫形象与富有超能量的冰晶外壳相结合,头部外壳造型取自冰雪运动头盔,装饰彩色光环,整体形象酷似航天员.冬奥会来临之际,冰墩墩玩偶非常畅销.小冬在某网店选中A,B两款冰墩墩玩偶,决定从该网店进货并销售.两款玩偶的进货价和销售价如下表:进货价(元/个)20 15 销售价(元/个)28 20(1)第一次小冬550元购进了A ,B 两款玩偶共30个,求两款玩偶各购进多少个.(2)第二次小冬进货时,网店规定A 款玩偶进货数量不得超过B 款玩偶进货数量的一半.小冬计划购进两款玩偶共30个,应如何设计进货方案才能获得最大利润,最大利润是多少?28.对于数轴上的点P ,Q ,给出如下定义:若点P 到点Q 的距离为d (0d ≥),则称d 为点P 到点Q 的追击值,记作[]d PQ .例如,在数轴上点P 表示的数是5,点Q 表示的数是2,则点P 到点Q 的追击值为[]3d PQ =.(1)点M ,N 都在数轴上,点M 表示的数是1,且点N 到点M 的追击值[]d MN a =(0a ≥),则点N 表示的数是______(用含a 的代数式表示);(2)如图,点C 表示的数是1,在数轴上有两个动点A ,B 都沿着正方向同时移动,其中A 点的速度为每秒4个单位,B 点的速度为每秒1个单位,点A 从点C 出发,点B 从表示数b 的点出发,且数b 不超过5,设运动时间为t (0t ≥).①当4b =且t =______时,点A 到点B 的追击值[]2d AB =;②当时间t 不超过3秒时,求点A 到点B 的追击值[]d AB 的最大值是多少?(用含b 的代数式表示)参考答案1.B2.D3.C4.C5.A6.D7.D8.D9.A10.D11.B12.B13.614.-515.100元16.317.-318.﹣1或﹣519.120.5021.(1)2﹣3x =5﹣2x2352x x -=-3x -=解得3x =-(2)3(3x ﹣2)=4(1+x )9644x x -=+9446x x -=+510x =2x =22.(1)解:4385-=+x x4835-=+x x48x -=2x =-.(2)解:7531132y y --=- ()()2756331y y -=--1410693y y -=-+1096314y y -+=+-5y -=-5y =.23.(1)解:一个正数a 的两个不相等的平方根分别是21b -和4b +,21(4)0b b +∴-=+,解得1b .(2)解:由(1)已得:1b, []22(21)2(1)19a b ∴=-=⨯--=,9(1)8a b +=+-=∴,a b ∴+的立方根2=.24.(1)解:根据题意354(2)73245---⨯⨯-=-=-, 故答案为:7-(2)解:根据题意22235-=-x x, 转化为2(5)3(2)2x x ⨯--⨯-=, 解方程,得12x =-. (3)解:88123833(81)(2)243732332mx x mx x mx x --+=----+=--+-; 515(1)()5x n x n n x -=---=--;根据题意24375mx x x n --+=-恒成立,即(243)75m x x n --+=-,2435m --=,7n -=, 解得,13m =-,7n =-. 25.(1)解:根据题意得,A 类的费用是月租费加上通话费,即500.4A y x =+; B 类的费用是通话费与时间的乘积,即0.6B y x =,∴500.4A y x =+,0.6B y x =.(2)解:通话时间为300分钟,根据(1)中的结论得,500.4500.4300170A y x =+=+⨯=(元),0.60.6300180B y x ==⨯=(元)∵A B y y <,∴选择A 类.(3)解:根据题意得,100A B y y +=,∴500.41000.6x x ++=,解方程得,750x =,即小明打电话的时间为750分钟, ∴500.4500.4750350A y x =+=+⨯=(元),∴小明实际话费是350元.26.(1)解:设3月平均每天有x 人前往乙接种点接种加强针,则3月平均每天有(1+20%)x 人前往甲接种点接种加强针,依题意得:(1+20%)x +x =440,解得:x =200,∴(1+20%)x =(1+20%)×200=240.答:3月平均每天有240人前往甲接种点接种加强针,有200人前往乙接种点接种加强针;(2)解:依题意得:(240-10m )m +200×(1+30%)m =2250,整理得:m 2-50m +225=0,解得:m 1=5,m 2=45.当m =5时,240-10m =240-10×5=190>0,符合题意;当m =45时,240-10m =240-10×45=-210<0,不符合题意,舍去.答:m 的值为5.27.(1)解:设A 款玩偶购进x 个,B 款玩偶购进(30)x -个,由题意,得2015(30)550x x +-=,解得:20x .302010-=(个).答:A 款玩偶购进20个,B 款玩偶购进10个;(2)解:设A 款玩偶购进a 个,B 款玩偶购进(30)a -个,获利y 元,由题意,得(2820)(2015)(30)3150y a a a =-+--=+. A 款玩偶进货数量不得超过B 款玩偶进货数量的一半.1(30)2a a ∴-, 10a ∴,3150y a =+.30k ∴=>,y ∴随a 的增大而增大.10a ∴=时,180y =最大元.B ∴款玩偶为:301020-=(个).答:按照A 款玩偶购进10个、B 款玩偶购进20个的方案进货才能获得最大利润,最大利润是180元.28.(1)由题意可得:点M 到点N 的距离为a , 当N 在M 左侧时,则N 表示的数为1a -, 当N 在M 右侧时,则N 表示的数为1a +, 故答案为1a -或1a +;(2)①由题意可得:点A 表示的数为14t +,点B 表示的数为4t + 当点A 在B 的左侧时,即144t t +<+,解得1t <, ∵[]2d AB =,∴()4142t t +-+=,解得13t = 当点A 在B 的右侧时,即144t t +>+,解得1t >, ∵[]2d AB =,∴()1442t t +-+=,解得2t = 综上,53t =或13t =时,[]2d AB =; 故答案为:53或13; ②由题意可得:点A 表示的数为14t +,点B 表示的数为b t + 当点B 在点A 的左侧或重合时,此时1b ≤,随着t 的增大,A 与B 之间的距离越来越大, ∵03t ≤≤时,即3t =时,[]143(3)10d AB b b =+⨯-+=-, ∵b 不超过5,∴105b -≥当点B 在点A 的右侧时,此时1b >,在AB 、不重合的情况下,A B 、之间的距离越来越小,[]d AB 最大为初始状态,即0=t 时,[]1d AB b =-,∵b 不超过5,∴14b -≤在AB 、可以重合的情况下,14t b t +=+,13b t =+,b 的最大值为10,又数b 不超过5, ∴,A B 不重合,综上, []d AB 最大值是10b -.。
初中数学一元一次方程精选试题(含答案和解析)
初中数学一元一次方程精选试题(含答案和解析)一.选择题1.(2018·湖北省恩施·3分)一商店在某一时间以每件120元的价格卖出两件衣服.其中一件盈利20%.另一件亏损20%.在这次买卖中.这家商店()A.不盈不亏 B.盈利20元C.亏损10元D.亏损30元【分析】设两件衣服的进价分别为x、y元.根据利润=销售收入﹣进价.即可分别得出关于x、y的一元一次方程.解之即可得出x、y的值.再用240﹣两件衣服的进价后即可找出结论.【解答】解:设两件衣服的进价分别为x、y元.根据题意得:120﹣x=20%x.y﹣120=20%y.解得:x=100.y=150.∴120+120﹣100﹣150=﹣10(元).故选:C.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.2.(2018湖南省邵阳市)(3分)程大位是我国明朝商人.珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著.详述了传统的珠算规则.确立了算盘用法.书中有如下问题:一百馒头一百僧.大僧三个更无争.小僧三人分一个.大小和尚得几丁.意思是:有100个和尚分100个馒头.如果大和尚1人分3个.小和尚3人分1个.正好分完.大、小和尚各有多少人.下列求解结果正确的是()A.大和尚25人.小和尚75人 B.大和尚75人.小和尚25人C.大和尚50人.小和尚50人 D.大、小和尚各100人【分析】根据100个和尚分100个馒头.正好分完.大和尚一人分3个.小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100.大和尚分得的馒头数+小和尚分得的馒头数=100.依此列出方程即可.【解答】解:设大和尚有x人.则小和尚有(100﹣x)人.根据题意得:3x+=100.解得x=25则100﹣x=100﹣25=75(人)所以.大和尚25人.小和尚75人.故选:A.【点评】本题考查了一元一次方程的应用.关键以和尚数和馒头数作为等量关系列出方程.二.填空题1.(2018·湖北江汉油田、潜江市、天门市、仙桃市·3分)某公司积极开展“爱心扶贫”的公益活动.现准备将6000件生活物资发往A.B两个贫困地区.其中发往A区的物资比B区的物资的1.5倍少1000件.则发往A区的生活物资为3200 件.【分析】设发往B区的生活物资为x件.则发往A区的生活物资为(1.5x﹣1000)件.根据发往A.B两区的物资共6000件.即可得出关于x的一元一次方程.解之即可得出结论.【解答】解:设发往B区的生活物资为x件.则发往A区的生活物资为(1.5x﹣1000)件.根据题意得:x+1.5x﹣1000=6000.解得:x=2800.∴1.5x﹣1000=3200.答:发往A区的生活物资为3200件.故答案为:3200.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.3.(2018•上海•4分)方程组的解是..【分析】方程组中的两个方程相加.即可得出一个一元二次方程.求出方程的解.再代入求出y即可.【解答】解:②+①得:x2+x=2.解得:x=﹣2或1.把x=﹣2代入①得:y=﹣2.把x=1代入①得:y=1.所以原方程组的解为..故答案为:..【点评】本题考查了解高次方程组.能把二元二次方程组转化成一元二次方程是解此题的关键.三.解答题1.(2018•广东•7分)某公司购买了一批A.B型芯片.其中A型芯片的单价比B型芯片的单价少9元.已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A.B型芯片的单价各是多少元?(2)若两种芯片共购买了200条.且购买的总费用为6280元.求购买了多少条A型芯片?【分析】(1)设B型芯片的单价为x元/条.则A型芯片的单价为(x ﹣9)元/条.根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.即可得出关于x的分式方程.解之经检验后即可得出结论;(2)设购买a条A型芯片.则购买(200﹣a)条B型芯片.根据总价=单价×数量.即可得出关于a的一元一次方程.解之即可得出结论.【解答】解:(1)设B型芯片的单价为x元/条.则A型芯片的单价为(x﹣9)元/条.根据题意得:=.解得:x=35.经检验.x=35是原方程的解.∴x﹣9=26.答:A型芯片的单价为26元/条.B型芯片的单价为35元/条.(2)设购买a条A型芯片.则购买(200﹣a)条B型芯片.根据题意得:26a+35(200﹣a)=6280.解得:a=80.答:购买了80条A型芯片.【点评】本题考查了分式方程的应用以及一元一次方程的应用.解题的关键是:(1)找准等量关系.正确列出分式方程;(2)找准等量关系.正确列出一元一次方程.2.(2018•海南•8分)“绿水青山就是金山银山”.海南省委省政府高度重视环境生态保护.截至2017年底.全省建立国家级、省级和市县级自然保护区共49个.其中国家级10个.省级比市县级多5个.问省级和市县级自然保护区各多少个?【分析】设市县级自然保护区有x个.则省级自然保护区有(x+5)个.根据国家级、省级和市县级自然保护区共49个.即可得出关于x的一元一次方程.解之即可得出结论.【解答】解:设市县级自然保护区有x个.则省级自然保护区有(x+5)个.根据题意得:10+x+5+x=49.解得:x=17.∴x+5=22.答:省级自然保护区有22个.市县级自然保护区有17个.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.3.(2018湖南张家界5.00分)列方程解应用题《九章算术》中有“盈不足术”的问题.原文如下:“今有共買羊.人出五.不足四十五;人出七.不足三.问人数、羊價各幾何?”题意是:若干人共同出资买羊.每人出5元.则差45元;每人出7元.则差3元.求人数和羊价各是多少?【分析】可设买羊人数为未知数.等量关系为:5×买羊人数+45=7×买羊人数+3.把相关数值代入可求得买羊人数.代入方程的等号左边可得羊价.【解答】解:设买羊为x人.则羊价为(5x+45)元钱.5x+45=7x+3.x=21(人).5×21+45=150(员).答:买羊人数为21人.羊价为150元.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.。
中考数学一轮复习专题训练:一元一次方程(附答案)
2020 年中考数学一轮复习专题训练:一元一次方程一.选择题(共 8 小题)1.以下四个式子中,是方程的是()A .3+2=5B .x= 1C. 2x﹣ 3< 022 D. a +2ab+b2.若对于 x 的方程 2x﹣( 2a﹣1) x+3=0 的解是 x=3,则 a=()A .1B .0C. 2D. 33.解是 x=2 的方程是()A .2( x﹣ 1)= 6B .C.D.4.以下等式变形正确的选项是()A .若﹣ 3x= 5,则 x=﹣B .若,则2x+3(x﹣1)=1C.若 5x﹣ 6=2x+8,则 5x+2x= 8+6D .若 3( x+1)﹣ 2x= 1,则 3x+3 ﹣2x= 15.在解方程 3x+5=﹣ 2x﹣ 1 的过程中,移项正确的选项是()A .3x﹣ 2x=﹣ 1+5B.﹣ 3x﹣ 2x= 5﹣ 1C. 3x+2x=﹣ 1﹣ 5D.﹣ 3x﹣ 2x=﹣ 1﹣ 56.解方程: 2﹣=﹣,去分母得()A .2﹣ 2 (2x﹣ 4)=﹣( x﹣ 7)B. 12﹣ 2 ( 2x﹣ 4)=﹣ x﹣7C. 2﹣( 2x﹣4)=﹣( x﹣ 7)D. 12﹣ 2 ( 2x﹣ 4)=﹣( x﹣ 7)7.有以下结论:①若 a+b+c= 0,则 abc≠ 0;②若 a( x﹣ 1)= b( x﹣ 1)有独一的解,则a≠b;③若 b=2a,则对于 x 的方程 ax+b= 0( a≠ 0)的解为 x=﹣;④若 a+b+c= 1,且 a≠ 0,则 x= 1 必定是方程 ax+b+c= 1 的解;此中结论正确的个数有()A.4 个B.3 个C.2 个D.1 个8.若对于x 的方程 |2x﹣3|+m= 0 无解, |3x﹣ 4|+n= 0 只有一个解, |4x﹣ 5|+k= 0 有两个解,A .m >n > kB .n > k > mC . k > m > nD . m > k > n二.填空题(共8 小题)9.比 a 的 3 倍大 5 的数等于 a 的 4 倍用等式表示为. 10.已知等式 5x m+2m =.+3= 0 是对于 x 的一元一次方程,则11.在 ① 2x ﹣ 1; ② 2x+1= 3x ; ③ |π﹣ 3|= π﹣ 3 ; ④ t+1 = 3 中,等式有,方程有.(填入式子的序号)12.已知 x =5 是方程 ax ﹣ 8= 20+a 的解,则 a = .13.小强在解方程时,不当心把一个数字用墨水污染成了x =1﹣ ,他翻阅了答案知道这个方程的解为 x = 1,于是他判断●应当是.14.已知代数式 与 互为相反数,则 x 的值是 .15.已知方程的解也是方程 |3x ﹣ 2|= b 的解,则b = .16.已知 x ﹣3y = 3,则 7+6y ﹣ 2x =.三.解答题(共 6 小题)17.解方程:( 1) 3x ﹣ 9= 6x ﹣1;( 2) x ﹣= 1﹣.18.若方程 3(x+1 )= 2+x 的解与对于 x 的方程 = 2( x+3)的解互为倒数,求 k 的值.19.已知对于 x 的方程( m+5) x|m|﹣4+18= 0 是一元一次方程.试求:( 1)m 的值;( 2)代数式 的值.20.依据题意设未知数,并列出方程(不用求解).( 1)有两个工程队,甲队人数30 名,乙队人数10 名,问如何调整两队的人数,才能使甲队的人数是乙队人数的7 倍.( 2)有一个班的同学准备去划船,租了若干条船,他们计算了一下,假如比原计划多租1 条船,那么正好每条船坐 6 人;假如比原计划少租 1 条船,那么正好每条船坐9 人.问这个班共有多少名同学?21.我们规定:若对于 x 的一元一次方程ax= b 的解为 b+a,则称该方程为“和解方程” .比如:方程 2x=﹣ 4 的解为 x=﹣ 2,而﹣ 2=﹣ 4+2,则方程 2x=﹣ 4 为“和解方程”.请依据上述规定解答以下问题:( 1)已知对于x 的一元一次方程3x= m 是“和解方程” ,求 m 的值;( 2)已知对于x 的一元一次方程﹣2x= mn+n 是“和解方程” ,而且它的解是x=n,求 m,n 的值.22.先阅读以下解题过程,而后解答问题(1)、( 2)、( 3).例:解绝对值方程:|2x|= 1.解:议论:①当 x≥ 0 时,原方程可化为2x= 1,它的解是x=.②当 x<0 时,原方程可化为﹣2x= 1,它的解是x=﹣.∴原方程的解为x=和﹣.问题( 1):依例题的解法,方程|的解是;问题( 2):试试解绝对值方程:2|x﹣2|= 6;问题( 3):在理解绝对值方程解法的基础上,解方程:|x﹣ 2|+|x﹣ 1|= 5.参照答案一.选择题(共8 小题)1.【解答】解:A、不是方程,由于不含有未知数,故本选项错误;B、是方程, x 是未知数,式子又是等式,故本选项正确;C、不是方程,由于它是不等式而非等式,故本选项错误;D、不是方程,由于它不是等式,故本选项错误;应选: B.2.【解答】解:把x=3 代入方程获得:6﹣ 3( 2a﹣ 1) +3= 0解得: a= 2.应选: C.3.【解答】解:将x=2 分别代入题目中的四个选项得:A、 2( x﹣ 1)= 2( 2﹣ 1)= 2≠ 6,因此, A 错误;B.= +1=2= X=2,因此, B 正确;C.==,因此,C错误;D .==≠1﹣x=1﹣2=﹣1,因此D错误;应选: B.4.【解答】解: A、若﹣ 3x=5,则 x=﹣,错误,故本选项不切合题意;B、若,则2x+3(x﹣1)=6,错误,故本选项不切合题意;C、若 5x﹣ 6=2x+8,则 5x﹣ 2x= 8+6,错误,故本选项不切合题意;D 、若 3( x+1)﹣ 2x= 1,则 3x+3 ﹣2x= 1,正确,故本选项切合题意;应选: D.5.【解答】解:方程3x+5=﹣ 2x﹣ 1 移项得: 3x+2 x=﹣ 1﹣ 5.应选: C.6.【解答】解:去分母得:12﹣2( 2x﹣ 4)=﹣( x﹣ 7),应选: D.7.【解答】解:① 错误,当a=0, b= 1, c=﹣ 1 时, a+b+c=0+1 ﹣ 1=0,可是 abc= 0;②正确,方程整理得:( a﹣ b) x= a﹣b,③ 错误,由 a ≠ 0, b = 2a ,方程解得: x =﹣ =﹣ 2;④ 正确,把 x = 1,a+b+c = 1 代入方程左侧得: a+b+c = 1,右侧= 1,故若 a+b+c = 1,且 a ≠ 0,则 x = 1 必定是方程 ax+b+c = 1 的解,应选: C .8.【解答】解: ( 1)∵ |2x ﹣ 3|+m = 0 无解,∴ m > 0.( 2)∵ |3x ﹣ 4|+n = 0 有一个解,∴ n = 0.( 3)∵ |4x ﹣ 5|+k = 0 有两个解,∴ k < 0.∴ m > n > k .应选: A .二.填空题(共 8 小题)9.【解答】解:依据题意得: 3a+5 = 4a .故答案为: 3a+5= 4.10.【解答】解:由于 5x m+2+3= 0 是对于 x 的一元一次方程,因此 m+2= 1,解得 m =﹣ 1.故填:﹣ 1.11.【解答】解:等式有 ②③④ ,方程有 ②④ .故答案为: ②③④ ,②④ .12.【解答】解:把 x = 5 代入方程 ax ﹣ 8= 20+a得: 5a ﹣ 8= 20+a ,解得: a = 7.故答案为: 7.13.【解答】解:●用 a 表示,把 x = 1 代入方程得 1= 1﹣,解得: a = 1.故答案是: 1.514.【解答】解:∵代数式与x﹣3 互为相反数,∴﹣=x﹣3,解得 x=.故答案为:.15.【解答】解:2(x﹣ 2)= 20﹣ 5( x+3),2x﹣ 4=20﹣ 5x﹣ 15,7x= 9,解得: x=.把 x=代入方程|3x﹣2|=b得:|3×﹣2|=b,解得: b=.故答案为:.16.【解答】解:x﹣ 3y= 3,方程两边都乘以﹣2,得6y﹣ 2x=﹣ 6,方程两边都加7,得7+6y﹣ 2x=﹣ 6+7= 1,故答案为: 1.三.解答题(共 6 小题)17.【解答】解:( 1)移项归并得:3x=﹣ 8,解得: x=﹣;(2)去分母得: 4x﹣ x+1=4﹣ 6+2x,移项归并得: x=﹣ 3.18.【解答】解:解3( x+1)= 2+x,得 x=﹣,∵双方程的解互为倒数,∴将 x=﹣ 2 代入=2(x+3)得=2,解得 k=0.19.【解答】解:( 1)由题意得,|m|﹣ 4= 1, m+5≠ 0,解得, m= 5;(2)当 m=5 时,原方程化为 10x+18 =0,解得, x=﹣,∴==﹣.20.【解答】解:(1)设从乙队调x 人去甲队,则乙队此刻有10﹣ x 人,甲队有30+x 人,由题意得30+x= 7( 10﹣ x);(2)设这个班共有 x 名同学,由题意得﹣1= +1.21.【解答】解:( 1)∵方程3x= m 是和解方程,∴= m+3,解得: m=﹣.(2)∵对于 x 的一元一次方程﹣ 2x= mn+n 是“和解方程” ,而且它的解是 x= n,∴﹣ 2n= mn+n,且 mn+n﹣2= n,解得 m=﹣ 3, n=﹣.22.【解答】解:( 1) |x|= 2,①当 x≥0 时,原方程可化为x= 2,它的解是x= 4;②当 x<0 时,原方程可化为﹣x=2,它的解是x=﹣ 4;∴原方程的解为x= 4 和﹣ 4,故答案为: x= 4 和﹣ 4.(2) 2|x﹣ 2|= 6,①当 x﹣ 2≥ 0 时,原方程可化为2(x﹣ 2)= 6,它的解是x= 5;②当 x﹣ 2< 0 时,原方程可化为﹣2(x﹣ 2)= 6,它的解是x=﹣ 1;∴原方程的解为x= 5 和﹣ 1.( 3) |x﹣ 2|+|x﹣ 1|= 5,①当 x﹣ 2≥ 0,即 x≥ 2 时,原方程可化为x﹣ 2+x﹣ 1= 5,它的解是x= 4;②当 x﹣ 1≤ 0,即 x≤ 1 时,原方程可化为2﹣ x+1﹣ x= 5,它的解是x=﹣ 1;③当 1< x< 2 时,原方程可化为2﹣x+x﹣ 1= 5,此时方程无解;∴原方程的解为x= 4 和﹣ 1.。
一元一次方程专题训练(附有答案详解,下载即可用)
一元一次方程专题训练姓名:___________班级:___________一、单选题1.已知x=1是方程x+2a=-1的解,那么a 的值是( )A .-1B .0C .1D .22.下列利用等式的性质,错误的是( )A .由a =b ,得到5﹣2a =5﹣2bB .由a c =b c ,得到a =bC .由a =b ,得到ac =bcD .由a =b ,得到a c =b c 3.方程2y ﹣12=12y ﹣中被阴影盖住的是一个常数,此方程的解是y =﹣53.这个常数应是( ) A .1 B .2 C .3 D .44.如果代数式5x-7与4x+9的值互为相反数,则x 的值等于( )A .92B .-92C .29D .29- 5.如果方程2x+1=3和203a x --=的解相同,则a 的值为( ) A .7 B .5 C .3 D .06.对于非零的两个数a ,b ,规定a ⊗b =3a -b ,若(x +1)⊗2=5,则x 的值为( ) A .1 B .-1 C .43 D .-2 7.已知下列方程:①22x x -=;②0.3x =1;③512x x =+;④x 2﹣4x =3;⑤x =6;⑥x+2y =0.其中一元一次方程的个数是( )A .2B .3C .4D .58.如图,下列四个天平中,相同形状的物体的重量是相等的,其中第①个天平是平衡的,根据第①个天平,后三个天平仍然平衡的有( )A .0个B .1个C .2个D .3个 9.某商店把一件商品按进价增加20%作为定价,可是总卖不出去,后来老板把定价降低20%,以48元的价格出售,很快就卖出了,则老板卖出这件商品的盈亏情况是( )A .亏2元B .亏4元C .赚4元D .不亏不赚10.如图,小明将一个正方形纸剪出一个宽为4cm 的长条后,再从剩下的长方形纸片上剪去一个宽为5cm 的长条,如果两次剪下的长条面积正好相等,那么每一个长条面积为( )A .16cm 2B .20cm 2C .80cm 2D .160cm 211.某车间原计划13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成任务,而且还多生产60件,设原计划每小时生产x 个零件,则所列方程为( ) A .()13x 12x 1060=++B .()12x 1013x 60+=+C .x x 60101312+-=D .x 60x 101213+-= 12.一列“动车组”高速列车和一列普通列车的车身长分别为80米与100米,它们相向行驶在平行的轨道上,若坐在高速列车上的旅客看见普通列车驶过窗口的时间是5秒,则坐在普通列车上的旅客看见高速列车驶过窗口的时间是( )A .7.5秒B .6秒C .5秒D .4秒13.在数列3、12、30、60……中,请你观察数列的排列规律,则第5个数是( ) A .75B .90C .105D .120二、填空题14.李明和他父亲年龄和为 55 岁,又知父亲的年龄比他年龄的 3 倍少 1 岁,若设李明年龄为 x 岁,则可列方程为_____.15.若方程(a ﹣3)x |a|﹣2﹣7=0是一个一元一次方程,则a 等于_____.16.某种品的标价为120元,若以九折降价出售,仍获利20%,该商品的进货价为________元.17.由一个两位数,十位上的数字比个位上的数字大3,把个位数字与十位数字对调之后所得新数与原数之和是77,这个两位数为_____.18.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班的学生有_____人.19.图1是边长为30的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是cm3.20.一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是__________.三、解答题21.解方程:1314(1)(5) 243x x x⎡⎤--=+⎢⎥⎣⎦.22.已知关于x的方程3x﹣5+a=bx+1,问当a、b取何值时.(1)方程有唯一解;(2)方程有无数解;(3)方程无解.23.解下列方程:(1)2(10﹣0.5y)=﹣(1.5y+2)(2)13(x﹣5)=3﹣23(x﹣5)(3)24x+﹣1=326x-(4)x﹣19(x﹣9)=13[x+13(x﹣9)](5) 210.5x--30.6x+=0.5x+224.某车间有60个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件24个或乙种零件12个.已知每2个甲种零件和3个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?25.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2017年5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表.若2017年5月份,该市居民甲用电100千瓦时,交电费60元.(1)上表中,a =________,若居民乙用电200千瓦时,应交电费________元;(2)若某用户某月用电量超过300千瓦时,设用电量为x 千瓦时,请你用含x 的代数式表示应交的电费;(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时,其当月的平均电价不超过0.62元/千瓦时?26.我市某校组织爱心捐书活动,准备将一批捐赠的书打包寄往贫困地区,其中每包书的数目相等.第一次他们领来这批书的23,结果打了16个包还多40本;第二次他们把剩下的书全部取来,连同第一次打包剩下的书一起,刚好又打了9个包,那么这批书共有多少本?27.甲、乙两件服装的成本共500元,商店老板为获取利润,决定甲服装按50℅的利润标价,乙服装按40%的利润标价出售.在实际出售时,应顾客要求,两件服装均按标价9折出售,这样商店共获利157元,求两件服装的成本各是多少元?28.一艘货轮往返于上下游两个码头之间,逆流而上需要6小时,顺流而下需要4小时,若船在静水中的速度为20千米/时,则水流的速度是多少千米/时?29.A 、B 两地相距64 km ,甲从A 地出发,每小时行14 km ,乙从B 地出发,每小时行18 km.(1)若两人同时出发相向而行,则需经过几小时两人相遇?(2)若两人同时出发相向而行,则需经过几小时两人相距16 km?(3)若甲在前,乙在后,两人同时同向而行,则几小时后乙超过甲10 km?30.(背景知识)数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A 、点B 表示的数分别为a 、b ,则A ,B 两点之间的距离AB =|a –b |,线段AB 的中点表示的数为2a b . (问题情境)如图,数轴上点A 表示的数为–2,点B 表示的数为8,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(t >0).(综合运用)(1)填空:①A 、B 两点间的距离AB =__________,线段AB 的中点表示的数为__________;②用含t的代数式表示:t秒后,点P表示的数为__________;点Q表示的数为__________.(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;(3)求当t为何值时,PQ=12 AB;(4)若点M为P A的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.31.一架飞机在两城之间飞行,风速为24千米/小时,顺风飞行需2小时50分,逆风飞行需要3小时.(1)求无风时飞机的飞行速度;(2)求两城之间的距离.32.缴纳个人所得税是收入达到缴纳标准的公民应居的义务,个人所得税率是由国家相应的法律法规规定的.根据个人的收入计算,新修改的《中华人民共和国个人所得税法》于2019年1月1日正式实施,新税法规定个人所得税的免征额为5000元,应纳税所得额按如下税率表缴纳个人所得税(应纳税所得额=税前收总额﹣国家规定扣除专项金额﹣免征额).根据以上信息,解决以下问题:(1)小明的妈妈应纳税所得额为2000元,她应该缴纳个人所得税______元.(2)小明的爸爸要缴纳个人所得税590元,他应纳税所得额是多少元?(3)如果小明的爸爸和妈妈某月应纳税所得额共为20000元(爸爸的应纳税所得额高于妈妈的应纳税所得额),共要缴纳个人所得税1780元,小明的爸爸应纳税所得额是_____元.参考答案1.A【解析】试题分析:根据方程解的定义,将方程的解代入方程可得关于字母系数a的一元一次方程,从而可求出a的值.解:把x=1代入方程,得:1+2a=﹣1,解得:a=﹣1.故选A.点评:已知条件中涉及到方程的解,把方程的解代入原方程,转化为关于字母系数的方程进行求解.可把它叫做“有解就代入”.2.D【解析】A.∵a=b,∴−2a=−2b,∴5−2a=5−2b,故本选项正确;B. ∵a bc c=,∴c×ac=c×bc,∴a=b,故本选项正确;C. ∵a=b,∴ac=bc,故本选项正确;D. ∵a=b,∴当c=0时,ac无意义,故本选项错误.故选:D. 3.C 【解析】【详解】设被阴影盖住的一个常数为k,原方程整理得,k=-32y+12,把53y=-代入k=-32y+12,中得,k=-32×(53-)+12=5122+=3,故选C.4.D【解析】【分析】根据互为相反数的两个数的和为0可得方程5x-7+4x+9=0,解方程求得x的值即可. 【详解】根据题意得5x-7+4x+9=0,移项得5x+4x=- 9+7,合并同类项得9x = -2,系数化为1,得29x =-. 故选D.【点睛】本题考查了一元一次方程的解法,熟知一元一次方程的解法是解决问题关键.5.A【解析】【分析】先求出213x +=的解,然后把求得的方程的解代入203a x --=即可求出a 的值. 【详解】∵213x +=,∴1x =.把1x =代入203a x --=,得 1203a --=, 解之得,7a =.故选A.【点睛】本题主要考查方程的解的概念和一元一次方程的解法,熟练掌握一元一次方程的解法是解答本题的关键.6.C【解析】【分析】根据新定义列出方程3(x-1)-2=4,解之可得.【详解】根据题意知3(x-1)-2=4,3x-3-2=4,3x=4+3+2,3x=9,x=3,故选:C .【点睛】考查解一元一次方程,解题的关键是根据题意列出关于x 的方程及解方程的步骤. 7.B【解析】【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.【详解】解:①x−2=2x 是分式方程,故①错误; ②0.3x=1,即0.3x-1=0,符合一元一次方程的定义.故②正确; ③2x =5x+1,即9x+2=0,符合一元一次方程的定义.故③正确; ④x 2-4x=3的未知数的最高次数是2,它属于一元二次方程.故④错误;⑤x=6,即x-6=0,符合一元一次方程的定义.故⑤正确;⑥x+2y=0中含有2个未知数,属于二元一次方程.故⑥错误.综上所述,一元一次方程的个数是3个.故选:B .【点睛】本题考查了一元一次方程的一般形式,掌握只含有一个未知数,且未知数的指数是1,一次项系数不是0是关键.8.C【解析】由①天平可得:一个球形物体和两个圆柱形物体质量相等;②天平是由①天平左右两边同时减去一个圆柱形物体得到的,仍然平衡;③天平时由①天平左边减去一个球形物体和一个圆柱形物体,即减去三个圆柱形物体,右边减去三个圆柱形物体得到的,左右两边仍然平衡;④天平由①天平左边减去一个圆柱形物体,右边减去三个圆柱形物体得到的,所以左右两边不平衡.故选C.点睛:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.9.A【解析】【分析】设这件商品的进价为a元,可用a表示出第一次和第二次的定价,再根据等量关系:第二次的定价=商品的实际售价48元,可列出关于a的方程;然后解关于a的方程,求出a的值,并将a的值与48进行比较即可得出结论.【详解】设这件商品的进价为a元,则a(1+20%)(1-20%)=48,解得a=50.由50-48=2可知,这次生意亏2元.故选:A.【点睛】本题主要考查的是一元一次方程的应用,根据题意得到等量关系是解题的关键;10.C【解析】【分析】首先根据题意,设原来正方形纸的边长是xcm,则第一次剪下的长条的长是xcm,宽是4cm,第二次剪下的长条的长是x-4cm,宽是5cm;然后根据第一次剪下的长条的面积=第二次剪下的长条的面积,列出方程,求出x的值是多少,即可求出每一个长条面积为多少.【详解】设原来正方形纸的边长是xcm,则第一次剪下的长条的长是xcm,宽是4cm,第二次剪下的长条的长是x-4cm,宽是5cm,则4x=5(x-4),去括号,可得:4x=5x-20,移项,可得:5x-4x=20,解得x=2020×4=80(cm2)答:每一个长条面积为80cm2.故选C.【点睛】此题主要考查了一元一次方程的应用,要熟练掌握,首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.11.B【解析】试题解析:设原计划每小时生产x个零件,则实际每小时生产(x+10)个零件.根据等量关系列方程得:12(x+10)=13x+60.故选B.考点:由实际问题抽象出一元一次方程.12.D【解析】设坐在普通列车上的旅客看见高速列车驶过窗口的时间是x秒,则100÷5×x=80,解得x=4,故选D.13.C【解析】【分析】根据题目中的数据,可以发现题目中数据的变化规律,从而可以得到第5个数.【详解】∵3=1×3,12=2×6=2×(3+3),30=3×10=3×(6+4),60=4×15=4×(10+5),∴第5个数是:5×(15+6)=5×21=105,故选C.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.14.3x ﹣1+x=55.【解析】【分析】直接利用已知表示出父亲的年龄,进而得出答案.【详解】设李明年龄为x 岁,则可列方程为:3x-1+x=55,故答案是:3x-1+x=55.【点睛】考查了由实际问题抽象出一元一次方程,正确得出等式是解题关键.15.-3【解析】试题分析:若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数是1,系数不为0,则这个方程是一元一次方程.解:∵()2370a a x ---=是一个一元一次方程,∴30a -≠且 |a|−2=1,∴a =-3.故答案为-3.16.90【解析】试题分析:设进货价为x 元,根据九折降价出售,仍获利20%,列方程求解.解:设进货价为x 元,由题意得,0.9×120﹣x=0.2x , 解得:x=90.故答案为:90.考点:一元一次方程的应用.17.52【解析】【分析】设原来的这个两位数个位数字为x ,则十位数字为3+x .利用新数+原数=77,列方程求解即可.【详解】设原个位数字为x ,则十位数字为3+x ,由题意得:(10x+3+x )+10(3+x )+x=77,解得:x=2,则原数为10(3+2)+2=52.故答案为52【点睛】本题考查了一元一次方程的应用,读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程求解是解题关键.18.45名.【解析】试题分析:设这个班有x 名学生,因为每人3本,则剩余20本,所以书的总量是3x+20,又每人分4本,缺25本,所以书的总量是4x ﹣25,所以可得方程:3x+20=4x ﹣25,解得:x=45.答:这个班有45名学生.考点:一元一次方程的应用.19.1000。
中考数学总复习《一次函数与一元一次方程》专题训练(附答案)
中考数学总复习《一次函数与一元一次方程》专题训练(附答案)学校:___________班级:___________姓名:___________考号:___________一、单选题 1.一次函数图象如图所示,下列说法错误的是( )A .解析式为223y x =-+ B .()3,3-是图象上的点 C .该图象y 随x 的增大而减小 D .3x >时0y <2.如图,直线1y k x =与2y k x b =+交于点(1,2)A --,则不等式21k x b k x +>的解集是( ).A .1x <-B .1x >-C .<2x -D .2x >-3.一次函数6y kx =+的图象与x 轴的交点坐标为()0,0x ,且013,101x p k <≤=+,则p 的取值范围是( )A .6121p -<≤-B .6121p -≤<-C .5919p -<≤-D .5919p -≤<- 4.一次函数1y ax b 与2y cx d =+的图象如图所示,下列结论:①当0x >时10y >,20y >;①函数y ax d =+的图象不经过第一象限;①3d b a c --=;①d a b c <++.其中正确的个数是( )6.直线()0y kx b k =+≠的图象如图所示, 由图象可知当10y -<<时x 的取值范围是( )1798.一次函数1y ax b 与2y cx d =+的图象如图所示,下列说法:①对于函数1y ax b 来说,y 随x 的增大而减小;①函数y ax d =+的图象不经过第一象限;①不等式ax b cx d +>+的解集是3x >;①()23a b a c -=-.其中正确的有( )A .①①B .①①①C .①①①D .①①二、填空题9.如图,一次函数1y x b =+的图象与一次函数21y kx =-的图象相交于点P ,则关于x 的不等式(1)10k x b ---<的解集为 .10.一次函数y kx b =+(k ,b 为常数且0k ≠),若函数经过点()2,0-和()0,1,则关于x 的不等式1kx b +>的解集为11.如图,一次函数()0y kx b k =+>的图象过点()1,0-,则不等式()20k x b -+<的解集是 .1ax b与2y=1ax b来说,的增大而增大;①函数的解集是x≥)4b其中正确的是三、解答题 17.若直线21y x =--与直线于3y x m =+相交于第三象限内一点,求m 得取值范围.18.如图,已知函数12y x b =+和23y ax =-的图象交于点()2,5P --,这两个函数的图象与x 轴分别交于点A 、B .(1)=a ______,b = ______;(2)求ABP 的面积;(3)根据图象,不等式23x b ax +<-的解集为 _______.19.根据一次函数y kx b =+的图象,写出下列问题的答案:(1)关于x 的方程0kx b +=的解是 ; (2)关于x 的方程3kx b +=-的解是 ;(3)当0x ≥时y 的取值范围是 .20.如图,直线()1111:0l y k x k =≠与直线()2222:0l y k x b k =+≠交于点()2,3C -,直线2l 与x 轴、y 轴分别交于点A ()0,4B .(1)求1k 和2k ,b 的值;(2)直接写出不等式组210k x b k x +≥≥的解集:_____________;(3)点P 是直线2l 上一点,且满足2AOP BOC S S =,求点P 的坐标.参考答案:1.B2.A3.C 4.C 5.C 6.A 7.C 8.A 9.1x >- 10.0x > 11.1x < 12.0> 13.2<<1x -- 14.①①① 15.2或3-/3-或2 16.2k >- 17.312m -<<18.(1)1,1-(2)254(3)<2x -19.(1)2x =(2)=1x -(3)2y ≥-20.(1)32- 12 4(2)20x -≤≤(3)()4,2-或()12,2--。
初中数学解一元一次方程精选计算题专题训练含答案
初中数学解一元一次方程精选计算题专题训练含答案姓名:__________ 班级:__________考号:__________一、计算题(共38题)1、解方程:2、计算:.3、4、利用等式的性质解下列方程:5、解方程:6、7、 x﹣4=2﹣5x8、9、解方程: 9-10x=10-9x10、解方程:11、-2(x-1)=4.12、解关于x的方程b(a+x)-a=(2b+1)x+ab(a≠0).13、解下列方程2y+l=5y+714、 2x+4=-1215、16、-2(x-1)=4.17、 3x-7+4x=6x-218、 -19、20、 4-2(1-x)=-2x21、解方程:22、23、 5x-6=3x+224、;25、;26、用等式的性质解方程3x+1=7.27、解下列方程:12-3(9-x)=5(x-4)-7(7-x); 28、;29、y-=y+330、31、32、.33、34、;35、 ax-1=bx36、 5(x-1)-2(x+1)=3(x-1)+x+1;37、38、============参考答案============一、计算题1、 X=22、分析:,,=1.解:原式.点拨:根据零指数幂、负整数指数幂的运算规律计算即可.3、-----3分4、 x=4.5、6、解:(1)原方程可化为:……2分,解得:………4分7、移项合并得:6x=6,解得:x=1;8、 .解:(1)合并同类项,得2x=6.系数化为1,得x=3.9、解:9-10=10x-9x x=-110、11、 x=-112、解:适当去括号,得ab+bx-a=(2b+1)x+ab,移项,得bx-(2b+1)x=a+ab-ab,合并同类项,得(b-2b-1)x=a,即-(b+1)x=a,当b≠-1时,有b+1 ≠0,方程的解为x=.当b=-1 时,有b+1=0,又因为a≠0,所以方程无解.(想一想,若a=0,则如何?13、14、解:X=-815、 x=1y=-116、 x=-117、 x=518、 x= -2219、解:…………………………2分………………………………2分………………………………1分20、 4-2(1-x)=-2x解:4-2+2x=-2x2x+2x=2-4……2′4x=-2………3′x=…………4′21、22、23、 x=424、(一)解:去分母,得2x - 20 = 60 +3x-移项,得 2x-3x = 60 +20合并同类项,得- x = 80化简,得x = - 80解:移项,得合并同类项化简,得x = - 8025、解:去括号,得 4x– 4 = 2 – 6x -12移项,得 4x + 6x = 2 -12 + 4合并同类项 10x = - 6化简,得26、【考点】等式的性质.【分析】根据等式的性质,可得答案.【解答】解:方程两边都减去1,得3x+1﹣1=7﹣1,化简,得3x=6两边除以3,得x=2.【点评】本题考查了等式的性质,利用等式的性质是解题关键.27、解:去括号,合并-15+3x=12x-69,移项合并,得9x=54,解得x=6;28、;29、解:X=-2130、解: x=3Y=431、32、去分母,…………1分去括号,移项,…………2分合并,…………3分…………5分33、 t=-934、解:先把系数化为整数,得,再去分母,两边都乘以60,得,去括号,合并同类项,得,;35、当a≠b时,方程有惟一解x=;当a=b时,方程无解;36、解:∵5(x-1)-2(x+1)=3(x-1)+x+1∴3x-7 = 3x-3+x+1∴x =-537、=2;38、。
初中七年级数学一元一次方程经典练习题(附有答案)
初中数学一元一次方程经典练习题一、解下列一元一次方程(1)2x+5=7 (2)3(3-x)=12(3)7(x+2)-5(2x-1) =8 (4)(6x+9)-2(x-2)=3(x+4)(5)x+63-x−42=4(x+1)(6)0.2·[12(4-丨-7丨)+5x]=9(7)5x - x+12= 13(3x+1)(8)6-52(3-x)=2(4x-7)(9)7- 14x= 3(1-x)(10)5(2x-16)=2+3x(11)56(x+2)+3=12(3x-5)(12)0.3(2x+7)=0.5(17-x)(13)0.7+5x4-(x+1)=2(2-x)(14)1-0.3x−10.2= 2+4x(15)x−10.3+ x+10.2= 2 (16)60%(2+3x)+80%(3-2x)=1(17)12[ 12(x+1)+13(x+1)]=14(x-2)(18)2[3(x+4)-2(2+x)]+3[2(x+1)-2(1+2x)]=4(19)(300+x)- 14(400+x)=112(200-x)(20)2−x3+ 2+x24=x+10.2-1二、一元一次方程应用题(21)某商品标价为800元,现按九折出售, 仍可获利200元 ,求这种商品的进价是多少元?(22)把一批运动鞋分给同学,若每人4双, 则剩余20双,若每人分5双,则差25双,这个班有多少学生?(23)服装店选购甲、乙两种服装,每套甲进价比乙每套进价多75元,已知用4000元购进甲种服装的数量是用1200元购进乙种服装数量的3倍。
求甲、乙两种服装每套进价分别为多少元?(24)有一批货物计划每天运20吨, 15天可以运完,如果每天只运计划的20%,那么运完这批货物要多运几天?(25)小明去书店为弟弟准备节日礼物.已知写字本每本2元,铅笔支3元.小明将50元钱全部用于购买写字本和铅笔(写字本和铅笔都买) ,小明的购买方案共有多少种?参考答案一、解下列一元一次方程(1)2x+5=7解:2x=7-52x=2x=1((2)3(3-x)=12解:9-3x=12-3x=12-9-3x=3X=-1(3)7(x+2)-5(2x-1) =8解:7x+14-10x+5=8(7-10)x=8-14-5-3x=-11x= 11 3(4)13(6x+9)-2(x-2)=3(x+4)解:2x+3-2x+4=3x+12(2-2-3)x=12-3-4 -3x=5x= −5 3(5)x+63-x−42=4(x+1)解:两边同时乘以6,得2(x+6)-3(x-4)=24(x+1)2x+12-3x+12=24x+24 (2-3-24)x=24-12-12-25x=0x=0(6)0.2·[12(4-丨-7丨)+5x]=90.1·(4-7)+x=9x=9+0.3x=9.3(7)5x - x+12= 13(3x+1)解:两边同时乘以6,得30x-3(x+1)=2(3x+1)30x-3x-3=6x+2(30-3-6)x=2+321x=5x= 5 21(8)6- 52(3-x)=2(4x-7)解:两边同时乘以2,得12-5(3-x)=4(4x-7)12-15+5x=16x-28(5-16)x= -28-12+15-11x= -25x= 25 11(9)7- 14x= 3(1-x)解:两边同时乘以4,得28-x=12(1-x )28-x=12-12x(-1+12)x=12-2811x=-16x= −1611(10)5(2x- 16)=2+3x 解:10x- 56=2+3x (10-3)x =2+ 56 7x = 176x= 1742(11)56(x+2)+3= 12(3x-5) 解:两边同时乘以6,得5(x+2)+18=3(3x-5)5x+10+18=9x-15(5-9)x=-15-10-18-4x= -43x= 434(12)0.3(2x+7)=0.5(17 -x )解:两边同时乘以10,得3(2x+7)=5(17-x ) 两边同时乘以7,得21(2x+7)=35(17-x ) 42x+147=5-35x(42+35)x=5-147x= −14277(13)0.7+5x 4-(x+1)=2(2-x ) 解:0.7+5x 4=2(2-x )+(x+1) 0.7+5x 4=4-2x +x+1 0.7+5x 4=5-x 两边同时乘以4,得0.7+5x=20-4x(5+4)x=20-0.79x=193x= 19390(14)1- 0.3x−10.2= 2+4x 解:1-(2+4x )= 0.3x−10.2-1-4x= 0.3x−10.2-0.2-0.8x=0.3x-1(-0.8-0.3)x= -1+0.2-1.1x= -0.8x = 118(15)x−10.3 + x+10.2 = 2解:两边同时乘以 610,得 2(x-1)+3(x+1)= 652x-2+3x+3= 65(2+3)x= 65+2-3 5x= 15x= 125(16)60%(2+3x )+80%(3-2x )=1解:1.2+1.8x+2.4-1.6x=1(1.8-1.6)x=1-1.2-2.40.2x=- 2.6x= -13(17) 12 [ 12(x+1)+ 13(x+1)]= 14(x-2) 解:14(x+1)+ 16(x+1) = 14(x-2) 两边同时乘以12,得3(x+1)+ 2(x+1) = 3(x-2)3x+3+2x+2=3x-6(3+2-3)x=-6-3-22x=-11x= −112(18)2[3(x+4)-2(2+x )]+3[2(x+1)-2(1+2x )]=4 解:2(3x+12-4-2x )+3(2x+2-2-4x )=42(x+8)+3(-2x )=42x+16-6x=4(2-6)x=4-16-3x= -12x=3(19) 13(300+x )- 14(400+x )= 112(200-x ) 解:两边同时乘以12,得4(300+x )-3(400+x )=(200-x )1200+4x-1200-3x=200-x(4-3+1)x=2002x=200x=100(20)2−x 3 + 2+x 24 = x+10.2 -1解:4−2x 6+ 6+3x 64 = 10x+102-1(4−2x)+(6+3x)64= 5x+5 -110+x64=5x+410+x24=5x+410+x=120x+96(1-120)x=96-10x= −86 119二、一元一次方程应用题(21)设进价为x元则:90%(800-x)=180解得:800-x =180÷ 0.9800-x =200x=600答:这种商品的进价是600元(22)设这个班有学生x个则这批运动鞋共:4x+20(双)或 5x-25(双)而:4x+20 =5x-25(5-4)x=20+25x=45答:这个班有45个学生(23)设甲服装每套进价分别为x元,乙为x-754000 x =3×1200x−754000 x =3600x−7510 x =9x−7510(x-75)=9x 10x-750=9xx=750那么,乙进价 =750-75= 675答:求甲、乙两种服装每套进价分别为750元、675元。
中考数学-一元一次方程专题练习(含答案)
中考数学-一元一次方程专题练习(含答案)一、单选题1.下列方程为一元一次方程的是()A.+y=2B.x+2=3yC.x2=2xD.y+1=22.已知一个多边形的内角和是外角和的4倍,则这个多边形是()A.八边形B.十二边形C.十边形D.九边形3.太平洋服装超市某种服装的标价为120元,元旦期间以九折降价出售,仍获利20%,该服装的进货价为()A.80元B.85元C.90元D.95元4.某商店换季促销,将一件标价为240元的T恤8折售出,仍获利20%,则这件T恤的成本为( )A.144元B.160元C.192元D.200元5.练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好用去14元.如果设水性笔的单价为x元,那么下列所列方程正确的是()A.5(x﹣2)+3x=14B.5(x+2)+3x=14C.5x+3(x+2)=14D.5x+3(x﹣2)=146.下列式子中,是一元一次方程的有()A.x+5=2xB.x2﹣8=x2+7C.5x﹣3D.x﹣y=47.下列运用等式的性质,变形不正确的是()A.若x=y,则x+5=y+5B.若a=b,则ac=bcC.若= ,则a=bD.若x=y,则8.文具店老板以每个96元的价格卖出两个计算器,其中一个赚了20%,另一个亏了20%,则卖这两个计算器总的是()A.不赚不赔B.亏8元C.盈利3元D.亏损3元9.若关于y的方程2m+y=1与3y﹣3=2y﹣1的解相同,则m的值为()A.2B. -C. -2D.010.商场将某种商品按标价的八折出售,仍可获利90元,若这种商品的标价为300元,则该商品的进价为()A.330元B.210元C.180元D.150元11.已知关于x的方程1 + 3(3-4x) = 2(4x-3) ,若4x-3 = a,则a等于()A.-1B.C.D. -12.已知x=2是关于x的方程3x+a=0的一个解,则a的值是( )A.– 6B.–3C.– 4D.–513.小明从家里骑自行车到学校,每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是xkm,则据题意列出的方程是()A.+=-B.-=+C.-=-D.+10=-514.x=1是方程3x—m+1=0的解,则m的值是()A.-4B.4C.2D.-215.方程3x+6=0的解的相反数是()A.2B.-2C.3D.-3二、填空题16.若a3﹣2n b2与5a3n﹣2b2是同类项,则n=________.17.若是关于的方程的解,则________;18.某商品货物进价是1000元,售价是1500元,由于销售情况不好,商店决定降价出售,保证利润为5%,则该店应降价________元出售.19.某公司承担了制作600个道路交通指引标志的任务,在实际操作时比原计划平均每天多制作了10个,因此提前了5天完成任务,如果设原计划x天完成,那么根据题意,可以列出的方程是:________.20.已知方程(a﹣2)x|a|﹣1+4=0是关于x的一元一次方程.则a的值为________三、解答题21.已知:如图,BD平分∠ABC,BE分∠ABC为2:5两部分,∠DBE=24°,求∠ABC的度数.22.世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元.23.毕业在即,九年级(一)班为纪念师生情谊,班委决定花800元班费买两种不同单价的留念册,分别给50位同学和10位任课老师每人一本留做纪念.其中送给老师的留念册的单价比给同学的单价多8元.请问这两种不同留念册的单价分别为多少元?四、计算题24.解方程(1)2(x+8)=3(x﹣1)(2)4x+3(2x﹣3)=12﹣(x+4)(3)x﹣6= x(4)3x+ =3﹣.25.解方程:(1)0.5x+0.6=6﹣1.3x26.(2)1+=.答案解析部分一、单选题1.下列方程为一元一次方程的是()A.+y=2B.x+2=3yC.x2=2xD.y+1=2【答案】D【考点】一元一次方程的定义【解析】【解答】A.分母中含有字母,是分式方程,A不符合题意;B.方程中含有两个未知数,是二元一次方程,B不符合题意;C.方程中未知数的最高次数为2,是一元二次方程,C不符合题意;D.方程中含有一个未知数,且未知数的最高次数为1,是一元一次方程,D符合题意;故答案为:D.【分析】根据一元一次方程定义:指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。
初中数学解一元一次方程经典练习题(含答案)
初中数学解一元一次方程经典练习题(含答案)解下列一元一次方程:1、3x+7 =2x+14;2、59 x + 2.5 = 23 x + 2.4;3、6(x+1)+7(x+2)= 8(x+3);4、x=2−x 3 + 2+x 4 ;5、2x +3(21+x )=6x +5(9+x );6、5−x 3 + 6-x = 1−x 2 + 20+x 4 ;7、23 [ x - 15( x +1)]= 14(x+14);8、4+3x−10.7 =2- 2x−30.5 ;9、5(x-2)+6x= 0.8(x+4)-3;10、3x+4(x+1)+5(x+2)=50;11、 13 - 15(16 x -1;12、1= x + x 2 + x 4 + x 6 + x12 ;参考答案1、3x+7=2x+14;解:3x+7=2x+143x-2x=14-7x=7故原方程的解是:x=72、59 x + 2.5 = 23 x + 2.4; 解:59 x + 2.5 = 23 x + 2.4 59 x - 23 x =2.4-2.5 5−2×39 x= -0.1 −19x= -0.1x= -0.9故原方程的解是:x= -0.93、6(x+1)+7(x+2)= 8(x+3);解:6(x+1)+7(x+2)= 8(x+3)6x+6+7x+14 =8x+2413x+20 =8x+2413x-8x=24-205x= 4x= 45故原方程的解是:x= 454、x= 2−x3 + 2+x4;解:x= 2−x3 + 2+x412x =4(2-x)+3(2+x)12x=8-4x+6+3x12x=14-x12x+x =1413x=14x= 1413故原方程的解是:x= 14135、2x +3(21+x)=6x +5(9+x);解:2x +3(21+x)=6x +5(9+x)2x+63+3x =6x+45+5x5x+63 =11x+455x-11x=45-63-6x= -18x=3故原方程的解是:x=36、5−x3 + 6-x = 1−x2+ 20+x4;解:5−x3 + 6-x = 1−x2+ 20+x4等式两边同时乘以124(5-x)+12(6-x)=6(1-x)+3(20+x)20-4x+72-12x =6-6x+60+3x-16x+92 =-3x+66-16x+3x =-92+66-13x= -26x=2故原方程的解是:x=27、23[ x - 15( x +1)]=14(x+14);解:23[ x - 15( x +1)]=14(x+14)等式两边同时乘以128 [ x - 15( x +1)]=3(x+14)8x- 85( x +1)=3x+42- 85( x +1)= 3x-8x+42- 85( x +1)= -5x+42等式两边同时乘以5-8(x+1)=5(-5x+42)-8x-8 =-25x+21025x-8x=210+817x=218x= 21817故原方程的解是:x=218178、4+ 3x−10.7 =2- 2x−30.5 ;解:4+ 3x−10.7 =2- 2x−30.5等式两边同时乘以0.7×0.54×0.7×0.5 +0.5(3x-1)=2×0.7×0.5 -0.7(2x-3)1.4+1.5x-0.5= 0.7-1.4x+2.10.9+1.5x= -1.4x+2.81.5x+1.4x=2.8-0.92.9x= 1.9x= 1929 故原方程的解是:x= 19299、5(x -2)+6x= 0.8(x+4)-3;解:5(x -2)+6x= 0.8(x+4)-35x-10+6x =0.8x+3.2-35x+6x-0.8x =3.2-3+10(5+6-0.8)x=10.210.2x=10.2x=1故原方程的解是:x=110、3x+4(x+1)+5(x+2)=50; 解:3x+4(x+1)+5(x+2)=503x+4x+4+5x+10=503x+4x+5x= 50-4-10(3+4+5)x= 3612x= 36x= 3故原方程的解是:x=311、 13 - 15(16 x -1;解: 13 - 15(16 x -1等号两边同时乘以15 - 15(16 x -1)] = x 等号左边去中括号(16 x -1)=x 等号左边去小括号- 16 x +1=x等号两边同时乘以2430x-4x+24=24x26x+24=24x2x= -24x= -12故原方程的解是:x= -1212、1= x + x2 + x4+ x6+ x12;解:1= x + x2 + x4+ x6+ x12等式两边同时乘以12 12=12x+6x+3x+2x+x12=24xx= 12故原方程的解是:x= 12。
初中数学中考复习专题:一元一次方程练习题1(含答案)
一元一次方程测试题一、填一填!1、若3x+6=17,移项得_____, x=____。
2、代数式5m +14与5(m -14)的值互为相反数,则m 的值等于______。
3、如果x=5是方程ax+5=10-4a 的解,那么a=______4、在解方程123123x x -+-=时,去分母得 。
5、若(a -1)x |a|+3=-6是关于x 的一元一次方程,则a =__;x =___。
6、当x=___时,单项式5a2x+1b 2 与8a x+3b 2是同类项。
7、方程5x 4x 123-+-=,去分母可变形为______。
8、如果2a+4=a -3,那么代数式2a+1的值是________。
9、从1999年11月1日起,全国储蓄存款需征收利息税,利息税的税率是20%,张老师于2003年5月1日在银行存入人民币4万元,定期一年,年利率为1.98%,存款到期后,张老师净得本息和共计______元。
10、当x 的值为-3时,代数式-3x 2+ a x -7的值是-25,则当x =-1时,这个代数式的值为 。
11、若()022=-+-y y x ,则x+y=___________ 12、某学校为保护环境,绿化家园,每年组织学生参加植树活动,去年植树x 棵,今年比去年增加20%,则今年植树___________棵.二、慧眼识真!1. 1、下列各题中正确的是( )A. 由347-=x x 移项得347=-x xB. 由231312-+=-x x 去分母得)3(31)12(2-+=-x x C. 由1)3(3)12(2=---x x 去括号得19324=---x xD. 由7)1(2+=+x x 移项、合并同类项得x =52、方程2-2x 4x 7312--=-去分母得___。
A 、2-2(2x -4)=-(x -7) B 、12-2(2x -4)=-x -7C 、24-4(2x -4)=-(x -7)D 、12-4x +4=-x +73、一批宿舍,若每间住1人,则有10人无法安排;若每间住3人,则有10间无人住。
(完整版)初一数学一元一次方程练习题(含答案)
初一数学一元一次方程练习题(含答案)一、选择题(每小题3分,共30分)1.下列方程中,属于一元一次方程的是( )A. B. C D.2.已知ax=ay,下列等式中成立的是()A.x=yB.ax+1=ay-1C.ax=-ayD.3-ax=3-ay3.一件商品提价25%后发现销路不是很好,欲恢复原价,则应降价()A.40%B.20%C25%D.15%4.一列长a米的队伍以每分钟60米的速度向前行进,队尾一名同学用1分钟从队尾走到队头,这位同学走的路程是()A.a米B.(a+60)米C.60a米D.(60+2a)米5.解方程时,把分母化为整数,得()。
A、 B、 C、 D、6.把一捆书分给一个课外小组的每位同学,如果每人5本,那么剩4本书,如果每人6本,那么刚好最后一人无书可领,这捆书的本数是()A.10B.52C.54D.567.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x 千米/分钟,则所列方程为()A.x-1=5(1.5x)B.3x+1=50(1.5x)C.3x-1=(1.5x)D.180x+1=1 50(1.5x)8.某商品的进货价为每件x元,零售价为每件900元,为了适应市场竞争,商店按零售价的九折让利40元销售,仍可获利10%,则x为( )A.约700元B.约773元C.约736元D.约865元9.下午2点x分,钟面上的时针与分针成110度的角,则有()A. B. C. D.10.某商场经销一种商品由于进货时价格比原进价降低了6.4%,使得利润增加了8个百分点,则经销这种商品原来的利润率为()A.15%B.17%C.22%D.80%二、填空题(每小题3分,共计30分)11.若x=-9是方程的解,则m= 。
12.若与是同类项,则m= ,n= 。
13.方程用含x的代数式表示y得y=,用含y的代数式表示x得x=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次方程测试题
一、填一填!
1、若3x+6=17,移项得_____, x=____。
2、代数式5m +14与5(m -14
)的值互为相反数,则m 的值等于______。
3、如果x=5是方程ax+5=10-4a 的解,那么a=______
4、在解方程123123x x -+-=时,去分母得 。
5、若(a -1)x |a|+3=-6是关于x 的一元一次方程,则a =__;x =___。
6、当x=___时,单项式5a
2x+1b 2 与8a x+3b 2是同类项。
7、方程5x 4x 123
-+-=,去分母可变形为______。
8、如果2a+4=a -3,那么代数式2a+1的值是________。
9、从1999年11月1日起,全国储蓄存款需征收利息税,利息税的税率是20%,张老师于2003年5月1日在银行存入人民币4万元,定期一年,年利率为1.98%,存款到期后,张老师净得本息和共计______元。
10、当x 的值为-3时,代数式-3x 2
+ a x -7的值是-25,则当x =-1时,这个代数式的值为 。
11、若()022=-+-y y x ,则x+y=___________ 12、某学校为保护环境,绿化家园,每年组织学生参加植树活动,去年植树x 棵,今年比去年增加20%,则今年植树___________棵.
二、慧眼识真!
1. 1、下列各题中正确的是( )
A. 由347-=x x 移项得347=-x x
B. 由2
31312-+=-x x 去分母得)3(31)12(2-+=-x x C. 由1)3(3)12(2=---x x 去括号得19324=---x x
D. 由7)1(2+=+x x 移项、合并同类项得x =5
2、方程2-2x 4x 7312
--=-去分母得___。
A 、2-2(2x -4)=-(x -7) B 、12-2(2x -4)=-x -7
C 、24-4(2x -4)=-(x -7)
D 、12-4x +4=-x +7
3、一批宿舍,若每间住1人,则有10人无法安排;若每间住3人,则有10间无人住。
这批宿舍的间数为__
__。
A、20
B、15
C、10
D、12
4、某商品的进价是110元,售价是132元,则此商品的利润率是____。
A、15%
B、20%
C、25%
D、10%
5、某商场上月的营业额是 a万元,本月比上月增长15%,那么本月的营业额是____。
A、15%a万元;
B、a(1+15%)万元;
C、15%(1+a)万元;
D、(1+15%)万元。
6、甲比乙大15岁,5年前甲的年龄是乙的两倍,乙现在的年龄是___。
A、10岁
B、15岁
C、20岁
D、30岁
7、一个长方形周长是16cm,长与宽的差是1cm,那么长与宽分别为___。
A、3cm,5cm
B、3.5cm,4.5cm
C、4cm,6cm
D、10cm,6cm
8、某种出租车的收费标准是:起步价7元(即行驶距离不超过3km都需付7元车费),超过3km以后,每增加1km,加收2.4元(不足1km按1km计)。
某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程的最大值是___。
A、11
B、8
C、7
D、5
9、一张试卷只有25道选择题,做对一题得4分,做错1题倒扣1分,某学生做了全部试题共得70分,他做对了___道题。
A、17
B、18
C、19
D、20
10、某商店有2个进价不同的计算器都卖了80元,其中一个盈利60%,另一个亏本20%,在这笔买卖中,这家商店___。
A不赔不赚B、赚了10元C赔了10元D赚了8元
11、小刚问妈妈的年龄,妈妈笑着说:“我们两人的年龄和为52岁,我的年龄是你的年龄的2倍多7,你能用学过的知识求出我们的年龄吗?”小刚想了一会儿,得出的正确结果是__。
A、14岁和38岁
B、15岁和37岁
C、16岁和36岁
D、16岁和39岁
12、一个两位数的十位数字与个位数字的和是7,把这个两位数加上45后,结果恰好成为数字对调后组成的两位数,则这个两位数是()
A、16
B、25
C、34
D、61
三.解下列方程:
1、
14126110312-+=---x x x 2、8(3x -1)-9(5x -11)-2(2x -7)=30
3、
2(x+1)5(x+1)=136
- 4、4x 1.55x 0.8 1.2x 0.50.20.1----=
几何部分
1、下面表示ABC ∠的图是 ( )
A
(A ) (B ) (C ) (D ) 2、已知α、β都是钝角,甲、乙、丙、丁四人计算)(4
1βα+的结果依次是45°,60°,90°,120°,其中只有一人计算正确,他是谁呢?( )
A .甲
B .乙
C .丙
D .丁
3、小明看钟表上时间为3:30,则时针、分针成的角是 ( )
A 70度 B 75度 C 85度 D 90度
4、下面四个图形中,∠1与∠2是对顶角的图形的个数是( )
A .0
B .1
C .2
D .3
12 12 12 12
5、三条直线两两相交于同一点时,对顶角有m 对,交于不同三点时,对顶角有n 对,则m 与n A
C A
B B
A
的关系是( )
A .m = n
B .m >n
C .m <n
D .m + n = 10
6、若∠1与∠3互余,∠2与∠3互补,则∠1与∠2的关系是( )
(A)∠1=∠2 (B)∠1与∠2互余
(C)∠1与∠2互补 (D)∠2-∠1=90°
7、如下图OA ⊥OB,OC ⊥OD,则( )
A 、AOD AOC ∠=∠
B 、DOB AOD ∠=∠
C 、BO
D AOC ∠=∠ D 、以上结论都不对
8、如上图,直线AB 、CD 相交于点O,OE ⊥AB 于O,∠COE=55°,则∠BOD 的度数是( ).
A 、40°
B 、45°
C 、30°
D 、35°
9、从A 地测得B 地在南偏东52°的方向上,则A 地在B 地的( )方向上。
A.北偏西52°
B.南偏东52°
C.西偏北52°
D.北偏西38°
10.如图1所示,AB ∥CD,则与∠1相等的角(∠1除外)共有( )
A.5个
B.4个
C.3个
D.2个
D
C B
A 1
C A
D B
A
B D C
E
O
逸兴七
一、1.3x=17-6 ;311
2.0 3.95
4.3(x-1)-2(x+3)=6 5
.-1; 29 6.1 7.3(5-x )-2(4+x)=6 8.-13 9.45385.6元 10.-7 11.4 12.1.2x
二、1.D 2.C 3.A 4.B 5.B 6.C 7.B 8.B 9.C 10.B 11. B 12. A
三、1.x=187 2.x=3 3. x=5 4. x=711
四、1.300元
2. 84
3. 64张做盒底,86张做盒身。
4.10%
P。