弦振动驻波实验

合集下载

大学物理实验讲义~弦振动和驻波研究方案

大学物理实验讲义~弦振动和驻波研究方案

⼤学物理实验讲义~弦振动和驻波研究⽅案弦振动与驻波研究【实验⽬的】1.观察在弦上形成的驻波;2.确定弦线振动时驻波波长与张⼒的关系; 3.学习对数作图和最⼩⼆乘法进⾏数据处理。

【实验原理】在⼀根拉紧的弦线上,其中张⼒为T ,线密度为µ,则沿弦线传播的横波应满⾜下述运动⽅程:2222xyT t y ??=??µ (1) 式中x 为波在传播⽅向(与弦线平⾏)的位置坐标,y 为振动位移。

将(1)式与典型的波动⽅程 22222x y V t y ??=?? 相⽐较,即可得到波的传播速度: µTV =若波源的振动频率为f ,横波波长为λ,由于波速λf V =,故波长与张⼒及线密度之间的关系为:µλTf1=(2)为了⽤实验证明公式(2)成⽴,将该式两边取对数,得:11lg lg lg lg 22T f λµ=-- (3)固定频率f 及线密度µ,⽽改变张⼒T ,并测出各相应波长λ,作lg λ-lg T 图,若得⼀直线,计算其斜率值(如为21),则证明了λ∝21T的关系成⽴。

弦线上的波长可利⽤驻波原理测量。

当两个振幅和频率相同的相⼲波在同⼀直线上相向传播时,其所叠加⽽成的波称为驻波,⼀维驻波是波⼲涉中的⼀种特殊情形。

在弦线上出现许多静⽌点,称为驻波的波节。

相邻两波节间的距离为半个波长。

【实验仪器】1、可调频率数显机械振动源;2、振动簧⽚;3、弦线(铜丝);4、可动⼑⽚⽀架;5、可动⼑⼝⽀架;6、标尺;7、固定滑轮;8、砝码与砝码盘;9、变压器;10、实验平台;11、实验桌图1 实验装置⽰意图图2 可调频率数显机械振动源⾯板图(1、电源开关 2、频率调节 3、复位键 4、幅度调节 5、频率指⽰)实验装置如图1所⽰,⾦属弦线的⼀端系在能作⽔平⽅向振动的可调频率数显机械振动源的振簧⽚上,频率变化范围从0-200Hz 连续可调,频率最⼩变化量为0.01Hz ,弦线⼀端通过定滑轮⑦悬挂⼀砝码盘⑧;在振动装置(振动簧⽚)的附近有可动⼑⽚⽀架④,在实验装置上还有⼀个可沿弦线⽅向左右移动并撑住弦线的可动⼑⼝⑤。

弦振动与驻波实验报告

弦振动与驻波实验报告

弦振动与驻波实验报告弦振动与驻波实验报告引言:弦振动与驻波是物理学中重要的研究领域,对于理解波动现象和振动特性有着重要的作用。

本次实验旨在通过实验观测和数据分析,探究弦振动和驻波的基本特性,并验证实验结果与理论预期的一致性。

实验装置:实验装置主要由一根细长的弦、固定装置和振动源组成。

弦通过固定装置固定在两端,振动源通过机械手柄产生横向振动,使弦发生振动。

实验过程:1. 调整弦的张力:首先,我们根据实验要求调整弦的张力,使其保持稳定。

通过调节固定装置上的螺钉,可以改变弦的张力,从而影响弦的振动频率和振幅。

2. 观察弦的振动模式:接下来,我们将振动源固定在弦的一个端点,并通过机械手柄产生横向振动。

我们观察到弦在振动过程中形成了不同的振动模式。

当振动源产生的频率与弦的固有频率相等时,弦会形成稳定的驻波。

3. 测量驻波的节点和腹点:我们使用尺子测量弦上的驻波节点和腹点的位置。

节点是弦上振动幅度为零的点,而腹点则是振动幅度最大的点。

通过测量节点和腹点的位置,我们可以计算出弦的波长和振动频率。

4. 计算波长和频率:根据实验测量的数据,我们可以利用以下公式计算弦的波长和频率:波长 = 2 * 节点间距离频率 = 振动源产生的频率实验结果与分析:通过实验观测和数据分析,我们得到了一系列关于弦振动和驻波的结果。

首先,我们发现当振动源产生的频率等于弦的固有频率时,弦会形成稳定的驻波。

这是因为当振动源频率与弦的固有频率一致时,反射波和入射波在弦上形成了干涉,导致驻波的形成。

其次,我们发现驻波的节点和腹点位置与振动源产生的频率有关。

当频率增加时,节点和腹点的位置会发生变化,波长也会相应改变。

这是因为频率的增加导致波长的缩短,从而节点和腹点的位置也会随之改变。

最后,通过计算弦的波长和频率,我们发现实验结果与理论预期相符。

这进一步验证了弦振动和驻波的基本原理和公式的准确性。

结论:通过本次实验,我们深入了解了弦振动和驻波的基本特性,并通过实验结果验证了相关理论。

弦振动与驻波实验报告

弦振动与驻波实验报告

弦振动与驻波实验报告弦振动与驻波实验报告引言弦振动是物理学中一个经典的实验课题,通过实验可以观察到弦线在不同条件下的振动模式。

本实验旨在通过对弦线振动的研究,探索驻波现象的产生及其特性。

实验目的1. 理解弦振动的基本原理;2. 掌握测量弦线振动频率的方法;3. 观察驻波现象的形成和特性。

实验器材1. 弦线:长度约为2-3米,材质均匀、柔软的弦线;2. 弦线固定装置:用于固定弦线的两端,保持稳定;3. 驱动装置:用于产生弦线的振动;4. 频率计:用于测量弦线的振动频率;5. 各类测量仪器:尺子、计时器等。

实验步骤1. 将弦线固定在实验装置的两端,保持稳定;2. 调整驱动装置,使其产生合适的振动频率;3. 使用频率计测量弦线的振动频率;4. 观察弦线的振动模式,并记录下来;5. 调整驱动装置的频率,观察驻波现象的形成和特性;6. 测量不同驻波节点位置之间的距离,并计算波长。

实验结果与分析通过实验观察,我们可以看到弦线在不同频率下的振动模式。

当驱动频率与弦线固有频率相同时,弦线上形成了驻波现象。

驻波是指波动传播过程中,波峰和波谷相互叠加形成的现象。

在弦线上形成的驻波由一系列波节和波腹组成,波节为振动幅度最小的位置,波腹为振动幅度最大的位置。

在实验中,我们可以通过调整驱动频率,观察驻波现象的形成和特性。

当驱动频率与弦线固有频率相同时,弦线上形成了一个完整的驻波模式。

当驱动频率与弦线固有频率不匹配时,弦线上不会形成驻波,而是呈现出不规则的振动模式。

通过测量不同驻波节点位置之间的距离,我们可以计算出弦线的波长。

波长是指波动中一个完整波动周期所占据的距离。

根据波动理论,波长与频率之间存在着简单的关系,即波速等于波长乘以频率。

因此,通过测量波长和频率,我们可以计算出波速。

实验结论通过本次实验,我们深入了解了弦振动和驻波现象。

弦振动是一种常见的物理现象,通过调整驱动频率可以观察到不同的振动模式。

驻波现象是波动传播中的一个重要现象,通过波节和波腹的叠加形成。

弦线上的驻波实验报告

弦线上的驻波实验报告

弦线上的驻波实验报告实验目的:本实验旨在通过弦线上的驻波实验,探究驻波现象的形成原理、规律及其对弦线振动的影响,并验证速度与频率间的关系。

实验原理:当一条细弦被两端固定在同一平面上并被同时激发振动时,产生的波将在弦线中心线形成驻波现象。

驻波是指一种波介质内相互干涉而组成的新波型,其节点为波动振幅为零的位置,而能量密集的地方则称为“腹部”。

在本实验中,采用电机定频源提供频率固定的正弦波,通过弦线与尺子固定杆相连,将激发振动的弦线的一端固定在定频源的振荡器,另一端则通过弹簧卡子连接负载挂钩。

实验步骤:1. 将弦线端点固定在振荡器上。

2. 将弦线另一端通过弹簧卡子连接负载挂钩,并将这一侧的弹簧略作松弛。

3. 调整负载挂钩的位置,使弦线尽量处于水平状态,且不接触实验台面或其他辅助器材。

4. 将电机定频源开启,并设置适当的频率和振幅。

5. 小心调整弦线的张力使其产生不同的谐波现象,用尺子测量不同谐波的长度,并记录频率和波长数据。

6. 重复以上步骤,记录不同频率的波长数据。

实验结果与分析:根据数据统计结果,可以得出以下结论:1. 弦线上的驻波现象存在多种谐波。

除基波外,第一个、第二个、第三个谐波的频率和波长分别为基频的2倍、3倍、4倍。

2. 驻波的波长与频率成反比例关系,即波长越短频率越高,波长越长频率越低。

3. 改变弦线长度对于谐波的产生和振动特征会产生影响,当弦线长度为一定值时,谐波现象最明显且出现密集的腹部。

结论:弦线上驻波的实验过程非常简单,但却蕴含着丰富的物理原理。

通过本实验,我们可以更好地掌握驻波现象的形成规律和相互关系,并得到了直观的实验数据验证。

弦振动和驻波实验

弦振动和驻波实验

弦振动和驻波实验【实验目的】1、观察固定均匀弦振动传播时形成的驻波波形;2、测量均匀弦线上横波的传播速度及均匀弦线的线密度。

【实验器材】XZDY-B 型固定均匀弦振动仪、磁铁、钩码、滑轮、电子天平等。

【实验原理】驻波是一种波的叠加现象,它广泛存在于各种振动现象中。

本实验通过通有交流电的铜导线在磁场中的振动,观察弦振动驻波的形成,验证横波的波长与弦线中的张力平方根成正比,与线密度的平方根成反比,并利用弦线上产生的驻波,测出驻波的波长。

横波沿弦线传播时,在维持弦线张力不变的情况下,横波的传播速度v 与张力T 及弦线的线密度ρ(即单位长度的质量)之间的关系为:Tv ρ=(1)。

设弦线的振动频率为f ,横波在弦线上传播的波长为λ,则根据v f λ=,有1Tfλρ=(2)。

根据式(2)可知,若弦线的振动频率f 和线密度ρ一定,则波长λ与张力T 的平方根成正比。

如图所示,弦线的一端通过劈尖A ,另一端跨过劈尖B 后通过滑轮挂钩码,当铜导线振动时,振动频率为交流电的频率。

随着振动产生向右传播的横波,此波由A 点传到B 点时发生反射。

由于前进波和反射波的振幅相同、频率相同、振动方向相同,但传播方向相反,所以可互相干涉形成驻波。

在驻波中,弦上各点的振幅出现周期性的变化,有些点振幅最大,称为波腹;有些点振幅为零,称为波节。

两相邻波腹(或波节)之间的距离等于形成驻波的相干波波长的一半。

当弦的长度L (A 、B 两劈尖之间的距离)恰为半波长(2λ)的整数倍时产生共振。

此时驻波的振幅最大且稳定,因此均匀弦振动产生驻波的条件为:(1,2,3......)2L nn λ== (3),式中n 为半波数。

可见,由驻波的半波长的波段数n 和弦长L ,即可求出波长λ,则2(1,2,3......)L n n λ==(4)。

由公式(2)和(4)可得弦线的线密度2224Tn L f ρ=(5)。

【实验内容】1、打开电源,启动弦振动仪,观察均匀弦振动传播时形成的驻波波形。

大学物理《弦振动》实验报告

大学物理《弦振动》实验报告

大学物理《弦振动》实验报告大学物理《弦振动》实验报告(报告内容:目的、仪器装置、简单原理、数据记录及结果分析等)一.实验目的1.观察弦上形成的驻波2.学习用双踪示波器观察弦振动的波形3.验证弦振动的共振频率与弦长、张力、线密度及波腹数的关系二.实验仪器XY弦音计、双踪示波器、水平尺三实验原理当弦上某一小段受到外力拨动时便向横向移动,这时弦上的张力将使这小段恢复到平衡位置,但是弦上每一小段由于都具有惯性,所以到达平衡位置时并不立即停止运动,而是继续向相反方向运动,然后由于弦的张力和惯性使这一小段又向原来的方向移动,这样循环下去,此小段便作横向振动,这振动又以一定的速度沿整条弦传播而形成横波。

理论和实验证明,波在弦上传播的速度可由下式表示:=ρ1------------------------------------------------------- ①另外一方面,波的传播速度v和波长λ及频率γ之间的关系是:v=λγ-------------------------------------------------------- ②将②代入①中得γ=λ1-------------------------------------------------------③ ρ1又有L=n*λ/2 或λ=2*L/n代入③得γn=2L------------------------------------------------------ ④ ρ1四实验内容和步骤1.研究γ和n的关系①选择5根弦中的一根并将其有黄铜定位柱的一端置于张力杠杆的槽内,另一端固定在张力杠杆水平调节旋钮的螺钉上。

②设置两个弦码间的距离为60.00cm,置驱动线圈距离一个弦码大约5.00cm的位置上,将接受线圈放在两弦码中间。

将弦音计信号发生器和驱动线圈及示波器相连接,将接受线圈和示波器相连接。

③将1kg砝码悬挂于张力杠杆第一个槽内,调节张力杠杆水平调节旋钮是张力杠杆水平(张力杠杆水平是根据悬挂物的质量精确确定,弦的张力的必要条件,如果在张力杠杆的第一个槽内挂质量为m的砝码,则弦的张力T=mg,这里g是重力加速度;若砝码挂在第二个槽,则T=2mg;若砝码挂在第三个槽,则T=3mg…….)④置示波器各个开关及旋钮于适当位置,由信号发生器的信号出发示波器,在示波器上同时显示接收器接受的'信号及驱动信号两个波形,缓慢的增加驱动频率,边听弦音计的声音边观察示波器上探测信号幅度的增大,当接近共振时信号波形振幅突然增大,达到共振时示波器现实的波形是清晰稳定的振幅最大的正弦波,这时应看到弦的震动并听到弦振动引发的声音最大,若看不到弦的振动或者听不到声音,可以稍增大驱动的振幅(调节“输出调节”按钮)或改变接受线圈的位置再试,若波形失真,可稍减少驱动信号的振幅,测定记录n=1时的共振频率,继续增大驱动信号频率,测定并记录n=2,3,4,5时的共振频率,做γn图线,导出γ和n的关系。

弦振动和驻波试验

弦振动和驻波试验

弦振动和驻波实验【实验目的】1、观察固定均匀弦振动传播时形成的驻波波形;2、测量均匀弦线上横波的传播速度及均匀弦线的线密度。

【实验器材】XZD Y-B型固定均匀弦振动仪、磁铁、钩码、滑轮、电子天平等。

【实验原理】驻波是一种波的叠加现象,它广泛存在于各种振动现象中。

本实验通过通有交流电的铜导线在磁场中的振动,观察弦振动驻波的形成,验证横波的波长与弦线中的张力平方根成正比,与线密度的平方根成反比,并利用弦线上产生的驻波,测出驻波的波长。

横波沿弦线传播时,在维持弦线张力不变的情况下,横波的传播速度v与张力T及弦线的线密度(即单位长度的质量)之间的关系为:v . T(1)。

设弦线的振动频率为f,横波在弦线上传播的波长为,则根据v f,有(2)。

根据式(2)可知,若弦线的振动频率f和线密度一定,则波长与张力T的平方根成正比。

如图所示,弦线的一端通过劈尖A,另一端跨过劈尖B后通过滑轮挂钩码,当铜导线振动时,振动频率为交流电的频率。

随着振动产生向右传播的横波,此波由A点传到B点时发生反射。

由于前进波和反射波的振幅相同、频率相同、振动方向相同,但传播方向相反,所以可互相干涉形成驻波。

在驻波中,弦上各点的振幅出现周期性的变化, 有些点振幅最大,称为波腹;有些点振幅为零,称为波节。

两相邻波腹(或波节)之间的距离等于形成驻波的相干波波长的一半。

当弦的长度L(A、B两劈尖之间的距离)恰为半波长()的整数倍时产生共振。

此时驻波的振2幅最大且稳定,因此均匀弦振动产生驻波的条件为:L n㊁(n 1,2,3……)(3),式中n为半波数。

可见,由驻波的半波长的波段数n和弦长L ,即可求出波长,则丄(n 1,2, 3……)(4)。

由公式(2)和(4)可得弦线的线密度丄匚(5)。

n 4L f【实验内容】1、打开电源,启动弦振动仪,观察均匀弦振动传播时形成的驻波波形。

2、测定弦线的线密度:选取频率f 100Hz,张力T由40 g钩码挂在弦线的一端产生。

弦振动与驻波实验报告

弦振动与驻波实验报告

弦振动与驻波实验报告弦振动与驻波实验报告引言:弦振动是物理学中一个重要的研究领域,对于理解声波、光波等波动现象有着重要的意义。

驻波现象则是弦振动中一个有趣的现象,它产生于两个同频率、相位相反的波在同一介质中相遇并叠加时。

本实验旨在通过观察弦振动和驻波现象,深入理解波动性质以及相关的物理原理。

实验设备与方法:实验中我们使用了一根细而柔软的弦,将其两端固定在实验台上,并通过一个发声装置产生振动。

我们使用一个频率可调的声波发生器,将声波传导到弦上。

同时,我们在弦上设置了一系列固定的振动节点和腹点,用以观察驻波现象的形成。

实验过程与观察:在实验中,我们首先调整发声装置的频率,使其与弦的固有频率相匹配。

随着频率的逐渐增大,我们观察到弦上出现了一系列驻波现象。

通过细致观察,我们发现弦上形成了一些固定的节点和腹点,它们交替出现,并且节点和腹点之间的距离保持不变。

接下来,我们将实验中的发声装置移动到弦的不同位置,重新调整频率,观察到了不同的驻波现象。

我们发现,当发声装置位于弦的中间位置时,形成的驻波现象最为明显,节点和腹点之间的距离也最大。

而当发声装置位于弦的两端时,驻波现象几乎消失,弦上只表现出简单的振动。

实验结果分析:通过实验观察和测量,我们得出了一些结论。

首先,弦上形成的驻波现象是由两个同频率、相位相反的波在弦上相遇叠加形成的。

这两个波分别由弦的两端发出,形成了一个定态的波动模式。

其次,驻波现象的形成与弦的固有频率以及发声装置的频率密切相关。

只有当这两个频率相等时,才能形成稳定的驻波现象。

进一步分析,我们可以得出结论,驻波现象的形成是因为弦两端的波反射与干涉所致。

当波到达弦的固定端时,发生反射并改变相位,然后与原始波相叠加。

如果两个波的相位相反,它们将相互抵消,形成节点。

而如果两个波的相位相同,它们将相互增强,形成腹点。

这种反射与干涉的过程不断重复,最终形成了稳定的驻波现象。

结论:通过本次实验,我们深入理解了弦振动和驻波现象的物理原理。

弦线上的驻波实验报告

弦线上的驻波实验报告

一、实验目的1. 观察在两端被固定的弦线上形成的驻波现象;2. 了解弦线达到共振和形成稳定驻波的条件;3. 测定弦线上横波的传播速度;4. 用实验的方法确定弦线作受迫振动时的共振频率与驻波波长、张力和弦线线密度之间的关系;5. 对实验结果进行数据处理,并给出结论。

二、实验原理1. 横波的波速:在弦线上,横波的波速v与弦线的张力T和线密度μ有关,公式为v = √(T/μ)。

2. 驻波的形成:当两列振幅、频率相同,有固定相位差,传播方向相反的简谐波叠加时,可形成驻波。

对于两端固定的弦,驻波满足条件:λ/2 = L/n,其中λ为驻波波长,L为弦长,n为驻波数目。

3. 共振频率:当弦线受到外部驱动力作用时,若驱动力频率等于弦线的固有频率,则弦线发生共振,形成稳定的驻波。

三、实验仪器1. 弦音计装置一套(包括驱动线圈和探测线圈各一个、1 kg硅码和6根不同线密度的吉他弦)2. 信号(功率函数)发生器3. 数字示波器4. 千分尺5. 米尺四、实验内容与步骤1. 认识和调节仪器:熟悉弦音计装置、信号发生器、数字示波器等仪器的使用方法。

2. 测定弦线的线密度:使用千分尺测量吉他弦的直径,根据公式μ = m/L计算弦线线密度,其中m为弦线质量,L为弦长。

3. 固定外力和弦线长度,测定弦线共振频率和驻波数目的关系:a. 调节信号发生器,使输出频率逐渐增加;b. 观察弦线上的驻波,记录共振频率和对应的驻波数目;c. 改变弦线长度,重复上述步骤。

4. 固定驻波数目和弦线长度,测定弦线振振频率和外力的关系:a. 调节砝码盘上的砝码,改变弦线的张力;b. 观察弦线上的驻波,记录不同张力下的共振频率;c. 改变砝码质量,重复上述步骤。

5. 固定驻波数目和弦线长度,测定弦线共振频率和弦线长度的关系:a. 改变弦线长度;b. 观察弦线上的驻波,记录不同弦线长度下的共振频率;c. 重复上述步骤。

五、实验数据及数据处理1. 记录实验数据,包括弦线长度、张力、驻波数目、共振频率等。

大学物理演示实验——弦驻波3页

大学物理演示实验——弦驻波3页

大学物理演示实验——弦驻波3页第一页:实验名称:弦驻波实验实验原理:弦驻波是指在两端固定并受一定张力作用下的弦子上,由于弦子的振动而形成的波动现象。

当弦子振动的频率趋近于弦子固有频率时,在弦子上会形成一系列波峰和波谷,这种状态被称为驻波。

实验材料:弦子、螺钉、扳手、符合弦子长度的振动板、线圈、信号发生器、示波器。

实验过程:1.将弦子固定在一侧的螺钉上,穿过振动板并拉直。

将另一侧的弦子固定在无线电线圈上。

2.调整信号发生器的频率,使得弦子的振动频率趋近于弦子固有频率。

可以通过变化振动板的长度和张力来调整弦子的固有频率。

3.观察弦子上形成的驻波现象,并使用示波器显示出波形。

第二页:实验注意事项:1.调整弦子的长度和张力时,要注意不要使弦子太紧或者太松,以免影响实验结果。

2.在进行实验时,应该保持实验室的安静,以便于观察弦子上的驻波现象。

3.在使用示波器时,要注意将其接在弦子的两端,并调整合适的垂直放大倍数和时间基准,以便于观察驻波的波形。

实验结果分析:1.驻波现象的产生是由于弦子振动频率趋近于弦子固有频率,才能使得波峰波谷不断循环出现。

2.在一定条件下,弦子上的驻波现象稳定不动,可以提取弦子的固有频率。

3.弦子的固有频率与其长度和张力有关,通过调整长度和张力可以调节弦子的固有频率,从而控制弦子上的驻波现象。

第三页:实验结论:通过弦驻波实验,我们可以了解到驻波的产生原理和特点。

在实验中,我们可以通过调整弦子的长度和张力,使得弦子振动频率趋近于固有频率,从而使得驻波现象稳定出现。

在观察弦子上的驻波现象时,可以使用示波器显示弦子的波形,以便于更加直观的观察弦子上的波动现象。

弦子的固有频率与其长度和张力有关,通过调节这些变量可以控制弦子的固有频率,进而控制驻波现象的出现。

基础物理实验--关于弦振动的探究附图

基础物理实验--关于弦振动的探究附图

如何做好这个实验呢?这里有图有真相~一、首先了解一下实验目的:1、观察弦振动形成的驻波。

熟悉其性质2、测定弦振动张力与波速的关系3、测定音叉的频率二、实验原理一、驻波的性质柔软均匀的弦线被拉紧,一端固定,另一端以一个固定频率振动,于是激起一个由振动端传至固定端然后反射回来的波,前进波和反射波不断在弦线上传播,并发生干涉。

为了简便可见,我们视前进波与反射波的振幅相等,通过调整绳线的压力,当弦线的长度为半波长的整数倍时,形成振幅最大又稳定的驻波,即弦与音叉共振。

前进波为;y1=Asin2p(t/T-x/λ)y2=Asin〔2p(t/T-(X+2l)/λ)-p〕y=y1+y2 经三角函数变换,得y=〔2Asin2p(l/λ)〕cos2p〔t/T-(x+l)/λ〕此式即驻波方程,式中余弦符号前面的系数是驻播上各点振动的振幅,可见,驻波上不同的点(不同l)以不同的振幅振动,振动的振幅依点的位置而按正弦规律变化,振动的最大值等于2A,叫波腹;最小值等于0,叫波节。

可见驻波上某些点始终以最大的振幅振动,某些点则始终静止。

处sin2p(l/λ)=0,是波节的位置,即l=0,λ、2、2λ/2、3λ/2......波节的位置;处sin2p(l/λ)=1,是波腹的位置,即l=λ/4、3λ/4、5λ/4、7λ/4.......是波腹的位置可见,波节与波节,波腹与波腹的距离,叫做驻波的波长,它等于形成这个驻波的两个横波波长的一半,因此利用驻波可以方便的测出横波波长二、音叉以固有频率做等幅简谐振动的原理音叉两臂间装有一个电磁铁N,磁铁的线圈一端接直流电源,一端接螺钉尖端的固定架,螺钉尖端可与音叉一臂上的弹片接触,电源另一极在音叉座驾上,通电后,调整尖端与音叉的距离(这是重要操作,音叉与尖端不能接触,但要足够近,以至于产生尖端放电,形成回路),电磁铁线圈有电流通过,音叉臂在电磁铁的吸引下使得尖端断开,电流中断,电磁铁失去吸引力,音叉臂弹回,弹片与尖端重新接触电路接通,电磁铁又吸引如此反复,使音叉以固有频率不断振动,而且每次振动都能得到电磁铁补给的能量,因此,音叉按照它的固有频率做等幅振动。

弦线驻波实验报告结果(3篇)

弦线驻波实验报告结果(3篇)

第1篇一、实验目的本次实验旨在通过观察弦线上形成的驻波现象,了解弦线达到共振和形成稳定驻波的条件;测定弦线上横波的传播速度;探究弦线作受迫振动时的共振频率与驻波波长、张力和弦线线密度之间的关系。

二、实验原理1. 横波传播速度:在张力为T、线密度为μ的弦线上,横波的传播速度v可表示为:v = √(T/μ)。

2. 驻波形成条件:当两列振幅相同、频率相同、传播方向相反的波在同一直线上叠加时,若满足以下条件,则形成驻波:- 波长λ = 2nL/n,其中n为正整数,L为弦长。

- 驻波频率f = (n/T) v,其中n为正整数,T为弦线张力。

3. 共振频率:当弦线上的振动频率等于其固有频率时,弦线发生共振,此时驻波振幅最大。

三、实验仪器1. 弦音计装置(包括驱动线圈和探测线圈各一个、1 kg硅码和6根不同线密度的吉他弦)2. 信号(功率函数)发生器3. 数字示波器4. 千分尺5. 米尺四、实验步骤1. 将弦线固定在两个滑轮上,调节弦长L,使其满足驻波形成的条件。

2. 使用信号发生器产生频率可调的正弦波信号,驱动弦线振动。

3. 使用数字示波器观察并记录弦线上的振动波形。

4. 改变弦线张力T,记录不同张力下的共振频率f和驻波波长λ。

5. 改变弦线线密度μ,记录不同线密度下的共振频率f和驻波波长λ。

6. 对实验数据进行处理和分析。

五、实验结果与分析1. 驻波形成条件:通过实验观察到,当弦长满足2nL/n(n为正整数)时,弦线上形成稳定的驻波。

这与驻波形成的理论条件相符。

2. 共振频率与张力的关系:实验结果表明,在弦线线密度一定的情况下,共振频率f与张力T呈线性关系,即f = aT + b(a、b为常数)。

这与理论公式f =(n/T) v相符。

3. 共振频率与线密度的关系:实验结果表明,在弦线张力一定的情况下,共振频率f与线密度μ呈线性关系,即f = cμ + d(c、d为常数)。

这与理论公式f= (n/T) v相符。

驻波的实验方法

驻波的实验方法

驻波的实验方法驻波是物理学中一个重要的现象,它在声学、光学和电磁学等学科中都有广泛的应用。

驻波实验是研究驻波现象的一种有效方法。

本文将介绍两种常见的驻波实验方法:弦上驻波实验和声管中驻波实验。

一、弦上驻波实验弦上驻波实验是通过在一根张紧的弦上激发驻波来观察和研究驻波现象的。

实验器材包括一根弦、一个张紧装置和一个振动源。

1. 准备工作首先,固定一边的弦于支架上,并用张紧装置将另一端的弦绷紧。

确保弦的张力均匀且适度,以避免弦的过度松弛或过度紧绷。

2. 振动源的设置在弦的中央位置处,将一振动源固定于弦上。

振动源可以是一个音叉,也可以是一段产生连续波的发声装置。

确保振动源能够将足够的振动能量传递给弦。

3. 观察和记录打开振动源,使其发出声音或振动。

观察弦上的波动情况,并记录下弦上形成的驻波图案。

可以使用相机或者手机来拍摄驻波图案以便进一步分析和研究。

二、声管中驻波实验声管中驻波实验是通过在一个封闭的管道中形成声波的驻波来研究驻波现象的。

实验器材包括一个封闭的管道、一个声源和一个频率调节器。

1. 实验装置的准备首先,准备一个封闭的管道,可以是一个玻璃管或金属管。

确保管道的密封性良好,以避免泄漏声音和气体。

2. 声源和频率调节器的设置将一个声源放置在管道的一端,并将频率调节器连接到声源上。

频率调节器可以调节声源发出的声音的频率,以便产生不同频率的声波。

3. 观察和记录打开声源,调节频率调节器,改变声波的频率。

观察管道内的压强分布,以及形成的驻波现象。

利用压强传感器等设备进行实时数据采集,并记录下实验过程中不同频率下的驻波情况。

总结:驻波的实验方法包括了弦上驻波实验和声管中驻波实验。

弦上驻波实验适用于研究机械波的驻波现象,而声管中驻波实验适用于研究声波的驻波现象。

通过观察和记录实验过程中的驻波图案和数据,可以深入理解驻波现象的形成和特点,并进一步研究其在不同学科中的应用。

(字数:555字)。

大物实验报告 弦振动与驻波实验

大物实验报告 弦振动与驻波实验

物理实验报告哈工大物理实验中心班号33006学号1190501917姓名刘福田教师签字实验日期2020.4.19预习成绩学生自评分总成绩(注:为方便登记实验成绩,班号填写后5位,请大家合作。

)实验(三)弦振动和驻波实验一.实验目的1、在弦线张力不变时,用实验确定驻波波长与振动频率的关系;2、在振动源频率不变时,用实验确定驻波波长与张力的关系;3、观察弦振动及驻波的形成。

二.实验原理在一根拉紧的弦线上,张力为T,线密度为μ,则沿弦线传播的横波应满足运动方程其中x:波在传播方向(与弦线平行)的位置坐标;y:振动位移;而典型的波动方程为通过比较(1)、(2),可得到波的传播速度;若波源的振动频率为f,横波波长为λ,则横波沿弦线传播的速度可表示为波长与张力及线密度之间的关系可表示为两边取对数,得到公式波长的测量:驻波方法图像如图所示三.实验主要步骤或操作要点1、在弦线张力不变时,用实验确定驻波波长与振动频率的关系;①将弦线一端固定在鞋盒侧面,线跨过鞋盒沿,另一端下垂并悬挂一水瓶。

实验装置如图3-1图3-1②在保持张力不变的情况下,移动筷子位置,使半波长λ/2分别为10、15、20、25、30c m。

③用牙签波动弦线发出声音,利用P h y p h o x分别测出线的振动频率f2、在振动源频率不变时,用实验确定驻波波长与张力的关系①固定A B之间的距离并测量②利用小量杯等量地增加水瓶中水的体积,即等量地改变弦线的张力T③波动弦线,用软件p h y p h o x测量不同张力下弦线的振动频率f3、验证三分损益法①保持弦线张力不变,先将A B的距离固定,测出此时的频率,并将音调定为基准音D o,算出相应的F a,S o l,L a,高音D o的理论频率。

②移动筷子,缩短A B距离,波动弦线,先粗略听出F a音,再微调距离使得P h y p h o x 测出的频率恰为理论的F a音频率。

测出相应的A B距离。

标记F a位置。

大学物理实验----弦振动驻波

大学物理实验----弦振动驻波

弦振动驻波的研究【实验目的】1.观察弦振动时驻波的形成;2.验证弦振动时驻波波长与张力的关系; 3.验证弦线波传播规律ρTV =,λ⋅=f V 。

【实验仪器】本实验用产生稳定驻波的实验装置产生驻波(如图1所示)。

波源A 是由电力驱动的电动音叉,能够产生机械波。

B 是一个定滑轮,称为节点。

从音叉A 的端部引出一根弦线穿过B 点后弯折,弦线的另一端悬挂一重物M 。

重物产生的重力就是加在弦线上的张力。

【实验原理】1. 求弦线线密度的原理机械波在介质中的传播速度与介质本身的物理属性有关系。

当一列横波沿弦线传播时,若维持张力T 不变,则横波的传播速度v 与弦线上的张力T 及弦线的线密度ρ的关系为ρTv =。

若弦线的振动频率为f ,横波在弦线上传播的波长为λ,则ρλTf v =⋅=,即ρλTf1=,若f 、ρ固定,则 λ∝T 。

精确测定λ和T ,作λ~T 图线,若其为一过原点的直线,则上述观点得到验证。

若知道f ,T ,λ则可求出弦线的线密度。

2. 用驻波法求波长的原理从波源A 发出的机械波沿着弦线向前传播。

机械波传播到节点B 后即被反射,反射回来的机械波仍然沿弦线传播。

发射波(波1)与反射波(波2)在C 点相遇,如图2。

波1比波图1 驻波发生装置源A 的相位延迟了πλϕ21⋅=x。

波2比波源A 的相位延迟了ππλϕ+⋅-=222xL 。

其中2ϕ里面附加的相位π是由于在节点B 的位置处,波是由波疏介质(弦线)入射到波密介质(金属定滑轮),因此产生半波损失,产生π的相位突变。

波1和波2在C 点处的相位差ππλϕϕϕ+⋅-=-=∆22212xL c 。

对于C 点来说,两列波的相位差恒定。

且两列波是从同一个波源发出的,故频率相同,振幅相同,满足机械波波的相干条件(频率相同,振幅相近,相位差恒定),会产生波的干涉现象。

图2 驻波原理当波源到节点的距离为半波长的整数倍的时候,即2λ⋅=m L ,m 为整数,在C 点处相遇的两束波的相位差为πλππππλλϕ22222⋅-+=+⋅-=∆xm xm c 。

大物实验-弦振动与驻波-汪新文修改改

大物实验-弦振动与驻波-汪新文修改改

弦振动与驻波【实验目的】1.观察在弦上形成的驻波;2.确定弦线振动时驻波波长与张力的关系; 3.学习对数作图或最小二乘法进行数据处理。

【实验原理】在一根拉紧的弦线上,其中张力为T ,线密度为μ,则沿弦线传播的横波应满足下述运动方程:2222x yT t y ∂∂=∂∂μ (1) 式中x 为波在传播方向(与弦线平行)的位置坐标,y 为振动位移。

将(1)式与典型的波动方程 22222xy V t y ∂∂=∂∂ 相比较,即可得到波的传播速度: μTV =若波源的振动频率为f ,横波波长为λ,由于波速λf V =,故波长与张力及线密度之间的关系为:μλTf1=(2)为了用实验证明公式(2)成立,将该式两边取对数,得:f T log log 21log 21log --=μλ (3) 固定频率f 及线密度μ,而改变张力T ,并测出各相应波长λ,作log λ-log T 图,若得一直线,计算其斜率值(如为21),则证明了λ∝21T 的关系成立。

弦线上的波长可利用驻波原理测量。

当两个振幅和频率相同的相干波在同一直线上相向传播时,其所叠加而成的波称为驻波,一维驻波是波干涉中的一种特殊情形。

在弦线上出现许多静止点,称为驻波的波节。

相邻两波节间的距离为半个波长。

【实验仪器】1、可调频率数显机械振动源;2、振动簧片;3、弦线(铜丝);4、可动支架;5、可动刀口支架;6、标尺;7、固定滑轮;8、砝码与砝码盘;9、变压器;10、实验平台;11、实验桌图1 实验装置示意图图2 可调频率数显机械振动源面板图(1、电源开关2、频率调节 3、复位键 4、幅度调节5、频率指示)实验装置如图1所示,金属弦线的一端系在能作水平方向振动的可调频率数显机械振动源的振簧片上,频率变化范围从0-200Hz连续可调,频率最小变化量为0.01Hz,弦线一端通过定滑轮⑦悬挂一砝码盘⑧;在振动装置(振动簧片)的附近有可动支架④,在实验装置上还有一个可沿弦线方向左右移动并撑住弦线的可动刀口⑤。

弦上驻波实验实验报告

弦上驻波实验实验报告

弦上驻波实验-实验报告弦上驻波实验实验报告一、实验目的本实验旨在通过弦上驻波的方法,研究弦的振动特性,包括弦的频率、波长、振幅等参数。

通过此实验,我们期望能深入理解驻波的概念及其在物理学中的应用。

二、实验原理驻波是由振源振动引发,在介质中传播,但振幅不随时间变化的一种特殊波。

在弦上,驻波的形状由弦的长度和张力决定。

弦上的驻波可以激发出各种模态,这些模态的频率与弦的长度和张力有关。

弦上驻波的基本公式为:f = (1 + π^2 * v * T^2 / L^2)^(1/2)其中 f 是模态频率,v 是声速,T 是弦的张力,L 是弦的长度。

三、实验步骤1.准备实验器材:弦线、张力测量仪、声速测量仪、信号发生器、放大器、示波器等。

2.将弦线悬挂于张力测量仪上,调整弦线的张力至预定值。

3.使用信号发生器在弦线上产生激振信号,通过放大器将信号放大,再通过示波器观测弦线的振动响应。

4.调整信号发生器的频率,观察示波器中的振动图形。

当弦线振动稳定时,记录此时的激振频率和振动模态。

5.逐步改变激振频率,观察并记录每个激振频率下弦线的振动模态。

四、数据分析在实验过程中,我们记录了不同激振频率下弦线的振动模态。

通过分析这些数据,我们可以得到以下结论:1.随着激振频率的增加,弦线的振动幅度逐渐增大。

这是因为在相同时间内,高频率的振动意味着更多的振动能量。

2.当激振频率增加到一定值时,弦线的振动幅度开始减小。

这是因为在高频率下,弦线的阻尼开始起作用,消耗了部分振动能量。

3.通过对比不同激振频率下的振动模态,我们可以发现振动模态的形状与弦线的长度和张力有关。

当激振频率一定时,增加弦线的张力会使振动幅度增大,而减小弦线的长度则会减小振动幅度。

4.根据实验数据,我们可以验证上述公式。

通过测量声速、张力、长度等参数,我们可以计算出理论模态频率与实验结果进行比较。

发现两者较为接近。

五、实验结论通过本次实验,我们研究了弦上驻波的振动特性。

弦振动驻波实验.

弦振动驻波实验.
弦振动研究
实验原理
驻波可以由两列振动方向相同,频率相同,振幅相等,
传播方向相反的简谐波叠加和干涉产生。
实验原理
正向传播的波为:
y1 A cos 2 ( ft ) A cos(t kx) x

(1)
反向传播的波为:
x y 2 A cos 2 ( ft ) A cos(t kx)
就可以确定波长。
实验原理
由于弦的两端分别由劈尖A、B支撑,故两端点(劈尖) 必为波节,又由于相邻两波节的距离为/2,所以当弦上 出现稳定驻波时,A、B两点的距离l必为/2的整数倍。

ln

2
,
n 1, 2, 3,
称为驻波条件。式中n为半波数,即A、B两点间出现的 /2的数目。振动频率为 f 时,波速为 = f 根据波动理论,可证明弦中

(2)
式中x为质点位置坐标;t为时间;A为振幅;f为频率;
=2f称为圆频率;为波长;k=2/称为波矢; =f 为波的传播速度。
两列波叠加的结果,任一点x的合成振动为: 驻波方程
y y1 y 2 2 A cos kx cost
(3)
实验原理
令 2 A cos
2x

实验仪器
FB301型弦振动研究实验仪,FB302型信号源, 双踪示波器
实验仪器
砝码悬挂在不同位置所对应的张力
实验内容
1. 测定弦线的线密度

4
(1) 理论值: 1 9.8 10 kg / m
2 15.3104 kg / m
(2)测共振频率算得 利用 计算
Δf 2 Δ mg Δ Δ 2 m 2 和 E (2 ) (2 ) ( ) 2 2 f f m

大学物理实验弦线上的驻波

大学物理实验弦线上的驻波

11 级
砝码托 40 克,若无砝码托则加两只 20 克砝码)接上电源,使音叉振动大小合适,能看到稳

中 心
数据表格
1. 观察驻波现象并加以描述:_____________________________________ ___________________________________________________________________________________ ___________________________________________________________________________________ ___________________________________________________________________________________ ___________________________________________________________________________________ _____________________________________________________________________。
弦线上的振动
驻波是由两列传播方向相反而振幅、频率都相同,且相位差 1 恒定的简谐波波叠加而成 的。驻波有一维驻波、二维驻波等。例如,按某些频率激发弦乐器的弦线振动,弦线就会形 成一维驻波。对于话筒的膜片、锣鼓鼓面,它们形成的驻波分布在平面或曲面上,这是二维 驻波。驻波在声学、光学、无线电工程等方面都有广泛的应用。
使 用 学 生 成 贤 学 院 物 理 实
实验内容
1. 定性观察弦线上的驻波现象
(1) 装好仪器, 移动音叉使弦线长约为 120cm。 在弦线一端的砝码托上加 20 克砝码 (连 定的驻波,并使振幅最大。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
驻波是由两列振动方向相同、频波的叠加结果形成了驻波方程,通过该方程我们可以确定波节和波腹的位置。在驻波实验中,通过测量相邻两波节或波腹的距离,可以确定波长。弦的两端由劈尖支撑,因此两端点必为波节。当弦上出现稳定驻波时,两端点的距离必须是半波长的整数倍,这被称为驻波条件。为了调出稳定的驻波,可以通过调节振动频率、弦的长度或弦中的张力来实现。具体来说,常用的方法是在保持张力不变的情况下,固定频率并调节两端点的距离,或者固定两端点距离并调节频率。通过这些调整,可以满足驻波条件,从而在弦上形成稳定的驻波。
相关文档
最新文档