高一数学 课堂训练2-8

合集下载

2020-2021学年必修二高一数学下学期期末第八章 立体几何初步(章节专练解析版)

2020-2021学年必修二高一数学下学期期末第八章 立体几何初步(章节专练解析版)

第八章 立体几何初步(章节复习专项训练)一、选择题1.如图,在棱长为1正方体ABCD 中,点E ,F 分别为边BC ,AD 的中点,将ABF ∆沿BF 所在的直线进行翻折,将CDE ∆沿DE 所在直线进行翻折,在翻折的过程中,下列说法错误..的是A .无论旋转到什么位置,A 、C 两点都不可能重合B .存在某个位置,使得直线AF 与直线CE 所成的角为60︒C .存在某个位置,使得直线AF 与直线CE 所成的角为90︒D .存在某个位置,使得直线AB 与直线CD 所成的角为90︒【答案】D【详解】解:过A 点作AM⊥BF 于M ,过C 作CN⊥DE 于N 点在翻折过程中,AF 是以F 为顶点,AM 为底面半径的圆锥的母线,同理,AB ,EC ,DC 也可以看成圆锥的母线;在A 中,A 点轨迹为圆周,C 点轨迹为圆周,显然没有公共点,故A 正确;在B 中,能否使得直线AF 与直线CE 所成的角为60°,又AF ,EC 分别可看成是圆锥的母线,只需看以F 为顶点,AM 为底面半径的圆锥的轴截面的顶角是否大于等于60°即可,故B 正确;在C 中,能否使得直线AF 与直线CE 所成的角为90°,只需看以F 为顶点,AM 为底面半径的圆锥的轴截面的顶角是否大于等于90°即可,故C 正确;在D 中,能否使得直线AB 与直线CD 所成的角为90︒,只需看以B 为顶点,AM 为底面半径的圆锥的轴截面的顶角是否大于等于90°即可,故D 不成立;故选D .2.如图所示,多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,//EF AB ,32EF =,EF 到平面ABCD 的距离为2,则该多面体的体积V 为( )A .92B .5C .6D .152【答案】D【详解】解法一:如图,连接EB ,EC ,AC ,则213263E ABCD V -=⨯⨯=.2AB EF =,//EF AB2EAB BEF S S ∆∆∴=.12F EBC C EFB C ABE V V V ---=∴= 11132222E ABC E ABCD V V --==⨯=. E ABCDF EBC V V V --∴=+315622=+=. 解法二:如图,设G ,H 分别为AB ,DC 的中点,连接EG ,EH ,GH ,则//EG FB ,//EH FC ,//GH BC ,得三棱柱EGH FBC -,由题意得123E AGHD AGHD V S -=⨯ 1332332=⨯⨯⨯=, 133933332222GH FBC B EGH E BGH E GBCH E AGHD V V V V V -----===⨯==⨯=⨯, 915322E AGHD EGH FBC V V V --=+=+=∴. 解法三:如图,延长EF 至点M ,使3EM AB ==,连接BM ,CM ,AF ,DF ,则多面体BCM ADE -为斜三棱柱,其直截面面积3S =,则9BCM ADE V S AB -=⋅=.又平面BCM 与平面ADE 平行,F 为EM 的中点,F ADE F BCM V V --∴=,2F BCM F ABCD BCM ADE V V V ---∴+=, 即12933233F BCM V -=-⨯⨯⨯=, 32F BCM V -∴=,152BCM ADE F BCM V V V --=-=∴. 故选:D 3.下列命题中正确的是A .若a ,b 是两条直线,且a ⊥b ,那么a 平行于经过b 的任何平面B .若直线a 和平面α满足a ⊥α,那么a 与α内的任何直线平行C .平行于同一条直线的两个平面平行D .若直线a ,b 和平面α满足a ⊥b ,a ⊥α,b 不在平面α内,则b ⊥α【答案】D【详解】解:如果a ,b 是两条直线,且//a b ,那么a 平行于经过b 但不经过a 的任何平面,故A 错误; 如果直线a 和平面α满足//a α,那么a 与α内的任何直线平行或异面,故B 错误;如果两条直线都平行于同一个平面,那么这两条直线可能平行,也可能相交,也可能异面,故C 错误; D 选项:过直线a 作平面β,设⋂=c αβ,又//a α//a c ∴又//a b//b c ∴又b α⊂/且c α⊂//b α∴.因此D 正确.故选:D .4.如图,正方体ABCD -A 1B 1C 1D 1中,O 为底面ABCD 的中心,M 为棱BB 1的中点,则下列结论中错误的是( )A .D 1O⊥平面A 1BC 1B .MO⊥平面A 1BC 1C .二面角M -AC -B 等于90°D .异面直线BC 1与AC 所成的角等于60°【答案】C【详解】对于A ,连接11B D ,交11AC 于E ,则四边形1DOBE 为平行四边形 故1D O BE1D O ⊄平面11,A BC BE ⊂平面111,A BC DO ∴平面11A BC ,故正确对于B ,连接1B D ,因为O 为底面ABCD 的中心,M 为棱1BB 的中点,1MO B D ∴,易证1B D ⊥平面11A BC ,则MO ⊥平面11A BC ,故正确;对于C ,因为,BO AC MO AC ⊥⊥,则MOB ∠为二面角M AC B --的平面角,显然不等于90︒,故错误对于D ,1111,AC AC AC B ∴∠为异面直线1BC 与AC 所成的角,11AC B ∆为等边三角形,1160AC B ∴∠=︒,故正确故选C5.如图,在长方体1111ABCD A BC D -中,E 、F 分别是棱1AA 和1BB 的中点,过EF 的平面EFGH 分别交BC 和AD 于点G 、H ,则GH 与AB 的位置关系是A .平行B .相交C .异面D .平行或异面【答案】A【详解】 在长方体1111ABCD A BC D -中,11//AA BB ,E 、F 分别为1AA 、1BB 的中点,//AE BF ∴,∴四边形ABFE 为平行四边形,//EF AB ∴, EF ⊄平面ABCD ,AB 平面ABCD ,//EF ∴平面ABCD ,EF ⊂平面EFGH ,平面EFGH平面ABCD GH =,//EF GH ∴, 又//EF AB ,//GH AB ∴,故选A.6.如图所示,点S 在平面ABC 外,SB⊥AC ,SB=AC=2,E 、F 分别是SC 和AB 的中点,则EF 的长是A .1 BC .2D .12【答案】B【详解】取BC 的中点D ,连接ED 与FD⊥E 、F 分别是SC 和AB 的中点,点D 为BC 的中点⊥ED⊥SB ,FD⊥AC,而SB⊥AC ,SB=AC=2则三角形EDF 为等腰直角三角形,则ED=FD=1即故选B.7.如图,AB 是圆O 的直径,PA 垂直于圆O 所在的平面,C 是圆O 上一点(不同于A ,B 两点),且PA AC =,则二面角P BC A --的大小为A .60°B .30°C .45°D .15°【答案】C【详解】 解:由条件得,PA BC AC BC ⊥⊥.又PAAC A =,PA ⊂平面PAC ,AC ⊂平面PAC ,所以BC ⊥平面PAC .又因为PC ⊂平面PAC , 所以BC PC ⊥.所以PCA ∠为二面角P BC A --的平面角.在Rt PAC ∆中,由PA AC =得45PCA ︒∠=. 故选:C .8.在空间四边形ABCD 中,若AD BC BD AD ⊥⊥,,则有A .平面ABC ⊥平面ADCB .平面ABC ⊥平面ADBC .平面ABC ⊥平面DBCD .平面ADC ⊥平面DBC【答案】D【详解】 由题意,知AD BC BD AD ⊥⊥,,又由BC BD B =,可得AD ⊥平面DBC ,又由AD ⊂平面ADC ,根据面面垂直的判定定理,可得平面ADC ⊥平面DBC9.直三棱柱111ABC A B C -中,若90BAC ∠=︒,1AB AC AA ==,则异面直线1BA 与1AC 所成的角等于 A .30°B .45°C .60°D .90°【答案】C【详解】本试题主要考查异面直线所成的角问题,考查空间想象与计算能力.延长B 1A 1到E ,使A 1E =A 1B 1,连结AE ,EC 1,则AE ⊥A 1B ,⊥EAC 1或其补角即为所求,由已知条件可得⊥AEC 1为正三角形,⊥⊥EC 1B 为60,故选C .10.已知两个平面相互垂直,下列命题⊥一个平面内已知直线必垂直于另一个平面内的任意一条直线⊥一个平面内已知直线必垂直于另一个平面内的无数条直线⊥一个平面内任意一条直线必垂直于另一个平面⊥过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面其中正确命题个数是( )A .1B .2C .3D .4 【答案】A【详解】由题意,对于⊥,当两个平面垂直时,一个平面内的不垂直于交线的直线不垂直于另一个平面内的任意一条直线,故⊥错误;对于⊥,设平面α∩平面β=m ,n⊥α,l⊥β,⊥平面α⊥平面β, ⊥当l⊥m 时,必有l⊥α,而n⊥α, ⊥l⊥n ,而在平面β内与l 平行的直线有无数条,这些直线均与n 垂直,故一个平面内的已知直线必垂直于另一个平面内的无数条直线,即⊥正确;对于⊥,当两个平面垂直时,一个平面内的任一条直线不不一定垂直于另一个平面,故⊥错误;对于⊥,当两个平面垂直时,过一个平面内任意一点作交线的垂线,若该直线不在第一个平面内,则此直线不一定垂直于另一个平面,故⊥错误;故选A .11.在空间中,给出下列说法:⊥平行于同一个平面的两条直线是平行直线;⊥垂直于同一条直线的两个平面是平行平面;⊥若平面α内有不共线的三点到平面β的距离相等,则//αβ;⊥过平面α的一条斜线,有且只有一个平面与平面α垂直.其中正确的是( )A .⊥⊥B .⊥⊥C .⊥⊥D .⊥⊥ 【答案】B【详解】⊥平行于同一个平面的两条直线可能平行、相交或异面,不正确;易知⊥正确;⊥若平面α内有不共线的三点到平面β的距离相等,则α与β可能平行,也可能相交,不正确;易知⊥正确.故选B.12.下列结论正确的选项为( )A .梯形可以确定一个平面;B .若两条直线和第三条直线所成的角相等,则这两条直线平行;C .若l 上有无数个点不在平面α内,则l⊥αD .如果两个平面有三个公共点,则这两个平面重合.【答案】A【详解】因梯形的上下底边平行,根据公理3的推论可知A 正确.两条直线和第三条直线所成的角相等,这两条直线相交、平行或异面,故B 错.当直线和平面相交时,该直线上有无数个点不在平面内,故C 错.如果两个平面有三个公共点且它们共线,这两个平面可以相交,故D 错.综上,选A .13.已知圆柱的轴截面为正方形,且圆柱的体积为54π,则该圆柱的侧面积为A .27πB .36πC .54πD .81π 【答案】B【详解】设圆柱的底面半径为r .因为圆柱的轴截面为正方形,所以该圆柱的高为2r .因为该圆柱的体积为54π,23π2π54πr h r ==,解得3r =,所以该圆柱的侧面积为2π236r r ⨯=π.14.用与球心距离为1的平面去截球,所得截面圆的面积为π,则球的表面积为A .8π3B .32π3C .8πD 【答案】C【详解】设球的半径为R ,则截面圆的半径为,⊥截面圆的面积为S =π2=(R 2-1)π=π,⊥R 2=2,⊥球的表面积S =4πR 2=8π.故选C. 15.已知圆柱的侧面展开图是一个边长为2的正方形,那么这个圆柱的体积是A .2πB .1πC .22πD .21π【答案】A【详解】由题意可知,圆柱的高为2,底面周长为2,故半径为1π,所以底面积为1π,所以体积为2π,故选A . 16.用斜二测画法画水平放置的平面图形的直观图,对其中的线段说法不正确的是( )A .原来相交的仍相交B .原来垂直的仍垂直C .原来平行的仍平行D .原来共点的仍共点【答案】B【详解】解:根据斜二测画法作水平放置的平面图形的直观图的规则,与x 轴平行的线段长度不变,与y 轴平行的线段长度变为原来的一半,且倾斜45︒,故原来垂直线段不一定垂直了;故选:B .17.如图所示为一个水平放置的平面图形的直观图,它是底角为45︒,腰和上底长均为1的等腰梯形,则原平面图形为 ( )A .下底长为1B .下底长为1+C .下底长为1D .下底长为1+【答案】C【详解】45A B C '''∠=,1A B ''= 2cos451B C A B A D ''''''∴=+=∴原平面图形下底长为1由直观图还原平面图形如下图所示:可知原平面图形为下底长为1故选:C18.半径为R 的半圆卷成一个圆锥,则它的体积是( )A 3RB 3RC 3RD 3R 【答案】C【详解】设底面半径为r ,则2r R ππ=,所以2R r =.所以圆锥的高2h R ==.所以体积22311332R V r h R ππ⎛⎫=⨯== ⎪⎝⎭.故选:C .19.下列说法中正确的是A .圆锥的轴截面是等边三角形B .用一个平面去截棱锥,一定会得到一个棱锥和一个棱台C .将一个等腰梯形绕着它的较长的底边所在的直线旋转一周,所围成的几何体是由一个圆台和两个圆锥组合而成D .有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱【答案】D【详解】圆锥的轴截面是两腰等于母线长的等腰三角形,A 错误;只有用一个平行于底面的平面去截棱锥,才能得到一个棱锥和一个棱台,B 错误;等腰梯形绕着它的较长的底边所在的直线旋转一周的几何体,是由一个圆柱和两个圆锥组合而成,故C 错误;由棱柱的定义得,有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱,故D 正确.20.如图,将矩形纸片ABCD 折起一角落()EAF △得到EA F '△,记二面角A EF D '--的大小为π04θθ⎛⎫<< ⎪⎝⎭,直线A E ',A F '与平面BCD 所成角分别为α,β,则( ).A .αβθ+>B .αβθ+<C .π2αβ+>D .2αβθ+> 【答案】A【详解】如图,过A '作A H '⊥平面BCD ,垂足为H ,过A '作A G EF '⊥,垂足为G ,设,,A G d A H h A EG γ'''==∠=,因为A H '⊥平面BCD ,EF ⊂平面BCD ,故A H EF '⊥,而A G A H A '''⋂=,故EF ⊥平面A GH ',而GH ⊂平面A GH ',所以EF GH ⊥,故A GH θ'∠=,又A EH α'∠=,A FH β'∠=.在直角三角形A GE '中,sin d A E γ'=,同理cos d A F γ'=, 故sin sin sin sin sin h h d dαγθγγ===,同理sin sin cos βθγ=, 故222sin sin sin αβθ+=,故2cos 2cos 21sin 22αβθ--=, 整理得到2cos 2cos 2cos 22αβθ+=, 故()()2cos cos cos 22αβαβαβαβθ+--⎡⎤++-⎣⎦+=, 整理得到()()2cos cos cos αβαβθ+-=即()()cos cos cos cos αβθθαβ+=-, 若αβθ+≤,由04πθ<< 可得()cos cos αβθ+≥即()cos 1cos αβθ+≥, 但αβαβθ-<+≤,故cos cos αβθ->,即()cos 1cos θαβ<-,矛盾, 故αβθ+>.故A 正确,B 错误. 由222sin sin sin αβθ+=可得sin sin ,sin sin αθβθ<<,而,,αβθ均为锐角,故,αθβθ<<,22παβθ+<<,故CD 错误.故选:D.二、填空题 21.如图,已知六棱锥P ﹣ABCDEF 的底面是正六边形,P A ⊥平面ABC ,P A =AB ,则下列结论正确的是_____.(填序号)⊥PB ⊥AD ;⊥平面P AB ⊥平面PBC ;⊥直线BC ⊥平面P AE ;⊥sin⊥PDA =.【答案】⊥【详解】⊥P A ⊥平面ABC ,如果PB ⊥AD ,可得AD ⊥AB ,但是AD 与AB 成60°,⊥⊥不成立,过A 作AG ⊥PB 于G ,如果平面P AB ⊥平面PBC ,可得AG ⊥BC ,⊥P A ⊥BC ,⊥BC ⊥平面P AB ,⊥BC ⊥AB ,矛盾,所以⊥不正确;BC 与AE 是相交直线,所以BC 一定不与平面P AE 平行,所以⊥不正确;在R t⊥P AD 中,由于AD =2AB =2P A ,⊥sin⊥PDA =,所以⊥正确;故答案为: ⊥22.如图,已知边长为4的菱形ABCD 中,,60AC BD O ABC ⋂=∠=︒.将菱形ABCD 沿对角线AC 折起得到三棱锥D ABC -,二面角D AC B --的大小为60°,则直线BC 与平面DAB 所成角的正弦值为______.【详解】⊥四边形ABCD 是菱形,60ABC ∠=︒,,,AC OD AC OB OB OD ∴⊥⊥==,DOB ∴∠为二面角D AC B --的平面角,60DOB ∠=︒∴,OBD ∴△是等边三角形.取OB 的中点H ,连接DH ,则,3DH OB DH ⊥=.,,AC OD AC OB OD OB O ⊥⊥⋂=,AC ∴⊥平面,OBD AC DH ∴⊥,又,AC OB O AC ⋂=⊂平面ABC ,OB ⊂平面ABC ,DH ∴⊥平面ABC ,2114333D ABC ABC V S DH -∴=⋅=⨯=△4,AD AB BD OB ====ABD ∴∆的边BD 上的高h =1122ABD S BD h ∴=⋅=⨯=△设点C 到平面ABD 的距离为d ,则13C ABD ABD V S d -=⋅=△.D ABC C ABD V V --=,d ∴=∴=⊥直线BC 与平面DAB 所成角的正弦值为d BC = 23.球的一个内接圆锥满足:球心到该圆锥底面的距离是球半径的一半,则该圆锥的体积和此球体积的比值为_______. 【答案】932或332【解析】设圆锥的底面半径为r,高为h,球的半径为R .由立体几何知识可得,连接圆锥的顶点和底面的圆心,必垂直于底面,且球心在连线所成的直线上.分两种情况分析:(1)球心在连线成构成的线段内因为球心到该圆锥底面的距离是球半径的一半,所以,故圆锥的体积为.该圆锥的体积和此球体积的比值为(2)球心在连线成构成的线段以外因为球心到该圆锥底面的距离是球半径的一半,所以,故圆锥的体积为.该圆锥的体积和此球体积的比值为24.如图,四棱台''''ABCD A B C D -的底面为菱形,P 、Q 分别为''''B C C D ,的中点.若'AA ⊥平面BPQD ,则此棱台上下底面边长的比值为___________.【答案】2 3【详解】连接AC,A′C′,则AC⊥A′C′,即A,C,A′,C′四点共面,设平面ACA′C′与PQ和QB分别均于M,N点,连接MN,如图所示:若AA′⊥平面BPQD,则AA′⊥MN,则AA'NM为平行四边形,即A'M=AN,即31''42A C=AC,''23A BAB∴=,即棱台上下底面边长的比值为23.故答案为23.三、解答题25.如图,在直四棱柱ABCD–A1B1C1D1中,已知底面ABCD是菱形,点P是侧棱C1C的中点.(1)求证:AC 1⊥平面PBD ;(2)求证:BD ⊥A 1P .【答案】(1)见解析;(2)见解析【详解】(1)连接AC 交BD 于O 点,连接OP ,因为四边形ABCD 是正方形,对角线AC 交BD 于点O ,所以O 点是AC 的中点,所以AO =OC .又因为点P 是侧棱C 1C 的中点,所以CP =PC 1,在⊥ACC 1中,11C P AO OC PC==,所以AC 1⊥OP , 又因为OP ⊥面PBD ,AC 1⊥面PBD ,所以AC 1⊥平面PBD .(2)连接A 1C 1.因为ABCD –A 1B 1C 1D 1为直四棱柱,所以侧棱C 1C 垂直于底面ABCD ,又BD ⊥平面ABCD ,所以CC 1⊥BD ,因为底面ABCD 是菱形,所以AC ⊥BD ,又AC ∩CC 1=C ,AC ⊥面AC 1,CC 1⊥面AC 1,所以BD ⊥面AC 1,又因为P ⊥CC 1,CC 1⊥面ACC 1A 1,所以P ⊥面ACC 1A 1,因为A 1⊥面ACC 1A 1,所以A 1P ⊥面AC 1,所以BD ⊥A 1P .26.如图,在直三棱柱111ABC A B C -中,1BC BB =,12BAC BCA ABC ∠=∠=∠,点E 是1A B 与1AB 的交点,D 为AC 的中点.(1)求证:1BC 平面1A BD ;(2)求证:1AB ⊥平面1A BC .【答案】(1)见解析(2)见解析【解析】分析:(1)连结ED ,E 为1A B 与1AB 的交点,E 为1AB 中点,D 为AC 中点,根据三角形中位线定理可得1//ED B C ,由线面平行的判定定理可得结果;(2)由等腰三角形的性质可得AB BC ⊥,由菱形的性质可得11AB A B ⊥,1BB ⊥平面ABC ,可得1BC BB ⊥,可证明1BC AB ⊥,由线面垂直的判定定理可得结果.详解:(1)连结ED ,⊥直棱柱111ABC A B C -中,E 为1A B 与1AB 的交点,⊥E 为1AB 中点,D 为AC 中点,⊥1//ED B C又⊥ED ⊂平面1A BD ,1B C ⊄平面1A BD⊥1//B C 平面1A BD .(2)由12BAC BCA ABC ∠=∠=∠知,AB BC AB BC =⊥ ⊥1BB BC =,⊥四边形11ABB A 是菱形,⊥11AB A B ⊥. ⊥1BB ⊥平面ABC ,BC ⊂平面ABC⊥1BC BB ⊥⊥1AB BB B ⋂=,1,AB BB ⊂平面11ABB A ,⊥BC ⊥平面11ABB A⊥1AB ⊂平面11ABB A ,⊥1BC AB ⊥⊥1BC A B B ⋂=,1,BC A B ⊂平面1A BC ,⊥1AB ⊥平面1A BC27.如图,在四棱锥P ﹣ABCD 中,底面ABCD 是平行四边形,平面PBC ⊥平面ABCD ,⊥BCD 4π=,BC ⊥PD ,PE ⊥BC .(1)求证:PC =PD ;(2)若底面ABCD 是边长为2的菱形,四棱锥P ﹣ABCD 的体积为43,求点B 到平面PCD 的距离.【答案】(1)证明见解析 (2)3. 【详解】 (1)证明:由题意,BC ⊥PD ,BC ⊥PE ,⊥BC ⊥平面PDE ,⊥DE ⊥平面PDE ,⊥BC ⊥DE .⊥⊥BCD 4π=,⊥DEC 2π=,⊥ED =EC ,⊥Rt⊥PED ⊥Rt⊥PEC ,⊥PC =PD .(2)解:由题意,底面ABCD 是边长为2的菱形,则ED =EC =⊥平面PBC ⊥平面ABCD ,PE ⊥BC ,平面PBC ∩平面ABCD =BC ,⊥PE ⊥平面ABCD ,即PE 是四棱锥P ﹣ABCD 的高.⊥V P ﹣ABCD 13=⨯2PE 43=,解得PE = ⊥PC =PD =2.设点B 到平面PCD 的距离为h ,⊥V B ﹣PCD =V P ﹣BCD 12=V P ﹣ABCD 23=, ⊥1132⨯⨯2×2×sin60°×h 23=,⊥h 3=.⊥点B 到平面PCD 的距离是3. 28.如图,在以A 、B 、C 、D 、E 、F 为顶点的五面体中,面ABCD 是等腰梯形,//AB CD ,面ABFE 是矩形,平面ABFE ⊥平面ABCD ,BC CD AE a ===,60DAB ∠=.(1)求证:平面⊥BDF 平面ADE ;(2)若三棱锥B DCF -a 的值. 【答案】(1)证明见解析;(2)1.【详解】(1)因为四边形ABFE 是矩形,故EA AB ⊥,又平面ABFE ⊥平面ABCD ,平面ABFE 平面ABCD AB =,AE ⊂平面ABFE , 所以AE ⊥平面ABCD ,又BD ⊂面ABCD ,所以AE BD ⊥,在等腰梯形ABCD 中,60DAB ∠=,120ADC BCD ︒∴∠=∠=,因BC CD =,故30BDC ∠=,1203090ADB ∠=-=,即AD BD ⊥, 又AE AD A =,故BD ⊥平面ADE ,BD ⊂平面BDF ,所以平面⊥BDF 平面ADE ;(2)BCD 的面积为2213sin12024BCD S a ==, //AE FB ,AE ⊥平面ABCD ,所以,BF ⊥平面ABCD ,2313D BCF F BCD V V a --∴==⋅==,故1a =.。

高一数学训练习题参考答案

高一数学训练习题参考答案

数学必修(4)同步练习参考答案§1.1任意角和弧度制一、CDDCBA二、7.{x|x=k•3600+1800, k∈Z}, {x|x=k•1800+450,k∈Z} ; 8.-345°; 9. ;10.第二或第四象限, 第一或第二象限或终边在y轴的正半轴上三、11.{ α|α=k•3600+1200或α=k•3600+3000, k∈Z } -60° 120°12.由7θ=θ+k•360°,得θ=k•60°(k∈Z)∴θ=60°,120°,180°,240°,300°13.∵l=20-2r,∴S= lr= (20-2r)•r=-r2+10r=-(r-5)2+25∴当半径r=5 cm时,扇形的面积最大为25 cm2,此时,α= = =2(rad)14.A点2分钟转过2θ,且π<2θ<π,14分钟后回到原位,∴14θ=2kπ,θ= ,且 <θ< π,∴θ= π或π§1.2.1 任意角的三角函数一、CCDBCD二、7.一、三; 8. 0 ; 9. 或π; 10.二、四三、11.[2kπ, 2kπ,+ ( k∈Z)12.13.∵sinθ= - ,∴角θ终边与单位圆的交点(cosθ,sinθ)=( ,- )又∵P(-2, y)是角θ终边上一点, ∴cosθ<0,∴cosθ= - .14.略.§1.2.2同角三角函数的基本关系式一、BCDBBA二、7. ; 8.0; 9. ; 10.三、11.12.原式= - ==sinx+cosx13.左边=tan2θ-sin2θ= -sin2θ=sin2θ• =sin2θ• =sin2θ•tan2θ=右边14.(1)当m=0时, α=kπ, k∈Z ,cosα=±1, tanα=0(2)当|m|=1时, α=kπ+ , k∈Z ,cosα=0, tanα=0不存在(3)当0<|m|<1时,若α在第一或第四象限,则cosα= tanα= ;若α在第二或第三象限,则cosα=- tanα=- .§1.3 三角函数的诱导公式一、BBCCBC二、7. ; 8.1 ; 9.1 ; 10.三、11. 112. f(θ)= = =cosθ-1∴f( )=cos -1=-13.∵cos(α+β)=1, ∴α+β=2kπ, k∈Z. ∴cos(2α+β)= cos(α+α+β)= cos(π+α)=- cosα= - .14. 由已知条件得:sinα= sinβ①, cos α=- cosβ②,两式推出sinα= ,因为α∈(- , ),所以α= 或- ;回代②,注意到β∈(0,π),均解出β= ,于是存在α= ,β= 或α=- ,β= ,使两等式同时成立。

2022高一数学同步精品课件(苏教版2019必修第一册)1

2022高一数学同步精品课件(苏教版2019必修第一册)1

课标要求素养要求理解集合之间包含与相等的含义,能识别给定集合的子集.会用三种语言(自然语言、图形语言、符号语言)表示集合间的基本关系,并能进行转换,重点提升数学抽象素养和直观想象素养.新知探究草原上,蓝蓝的天上白云飘,白云下面马儿跑.如果草原上的枣红马组成集合A,草原上的所有马组成集合B.问题 (1)集合A中的元素与集合B中的元素的关系是怎样的?(2)集合A与集合B又存在什么关系?提示 (1)集合A中的元素都是B的元素.(2)A是B的子集.1.子集、真子集(1)如果集合A 的任意一个元素______集合B 的元素(若a ∈A ,则a ∈B ),那么集合A 称为集合B 的子集,记为________________.读作:“集合A 包含于集合B ”或“集合B 包含集合A ”.(2)如果A ⊆B ,并且________.那么集合A 称为集合B 的真子集,记为________或B⊋A .读作“A 真包含于B ”或“B 真包含A”.都是A ⊆B 或B ⊇A A ≠B A ⫋B2.子集、真子集的性质(1)任意集合A 都是它自身的______,即A ⊆A .(2)空集是任意一个集合A 的子集,即________.(3)对于集合A ,B ,C ,如果A ⊆B ,B ⊆C ,那么________.(4)对于集合A ,B ,C ,如果A ⫋B ,B ⫋C ,那么________.子集∅⊆A A ⊆C A ⫋C3.用韦恩图表示非空集合的基本关系(1)A⊆B表示为:或(2)A⫋B表示为:(3)A=B表示为:基础自测[判断题]1.1⊆{1,2,3}.( )提示 “⊆”表示集合与集合之间的关系,而不是元素和集合之间的关系.2.任何集合都有子集和真子集.( )提示 空集只有子集,没有真子集.3.若a ∈A ,则{a } A .()提示 也有可能{a }=A .4.若A ⊆B ,且B ⊆A ,则A =B .( )×××√5.已知集合A={-1,3,m},B={3,4},若B⊆A,则实数m=________.解析 ∵B⊆A,∴ 元素3,4必为A中元素,∴m=4.答案 46.若A={1,a,0},B={-1,b,1},且A=B,则a=________,b=________.解析 由两个集合相等可知b=0,a=-1.答案 -1 07.若{1,2}⊆B⊆{1,2,4},则B=________.解析 由条件知B中一定含有元素1和2,故B可能是{1,2}或{1,2,4}.答案 {1,2}或{1,2,4}[思考]1.A⊆B能否理解为子集A是B中的“部分元素”所组合的集合?提示 A⊆B不能理解为集合A是B中的“部分元素”所组成的集合.因为若A=∅,则A中不包含任何元素;若A=B,则A中含有B中的所有元素,而此时可以说集合A 是集合B的子集.2.符号“∈”与“⊆”的区别是什么?提示 符号“∈”用于表示元素与集合之间的关系;而符号“⊆”用于表示集合与集合之间的关系.3.集合A中有n(n∈N*)个元素,则A的子集、真子集、非空子集、非空真子集的个数分别是多少?提示 ①由n个元素组成的集合有2n个子集;②由n个元素组成的集合有(2n-1)个真子集;③由n个元素组成的集合有(2n-1)个非空子集;④由n个元素组成的集合有(2n-2)个非空真子集.题型一 集合关系的判断【例1】 指出下列各对集合之间的关系:(1)A={-1,1},B={(-1,-1),(-1,1),(1,-1),(1,1)};(2)A={x|x是等边三角形},B={x|x是等腰三角形};(3)A={x|-1<x<4},B={x|x-5<0};(4)M={x|x=2n-1,n∈N+},N={x|x=2n+1,n∈N+}.解 (1)集合A的元素是数,集合B的元素是有序实数对,故A与B之间无包含关系.规律方法 判断集合关系的方法(1)观察法:一一列举观察.(2)元素特征法:首先确定集合的元素是什么,弄清集合元素的特征,再利用集合元素的特征判断关系.(3)数形结合法:利用数轴或Venn图.【训练1】 (1)设集合M={菱形},N={平行四边形},P={四边形},Q={正方形},则这些集合之间的关系为( )A.P⊆N⊆M⊆QB.Q⊆M⊆N⊆PC.P⊆M⊆N⊆QD.Q⊆N⊆M⊆P(2)设集合A={0,1},集合B={x|x<2或x>3},则A与B的关系为( )A.A∈BB.B∈AC.A⊆BD.B⊆A解析 (1)正方形都是菱形,菱形都是平行四边形,平行四边形都是四边形,故选B.(2)∵0<2,∴0∈B.又∵1<2,∴1∈B.∴A⊆B.答案 (1)B (2)C题型二 集合的子集、真子集【例2】 (1)集合{a,b,c}的所有子集为________________,其中它的真子集有________个.解析 集合{a,b,c}的子集有:∅,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c},其中,除{a,b,c}外,都是{a,b,c}的真子集,共7个.答案 ∅,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c} 74},{0,2,3,4},{1,2,3,4},{0,1,2,3,4}.规律方法 1.假设集合A中含有n个元素,则有:(1)A的子集有2n个;(2)A的非空子集有(2n-1)个;(3)A的真子集有(2n-1)个;(4)A的非空真子集有(2n-2)个.2.求给定集合的子集的两个注意点:(1)按子集中元素个数的多少,以一定的顺序来写;(2)在写子集时要注意不要忘记空集和集合本身.【训练2】 已知集合A={(x,y)|x+y=2,x,y∈N},试写出A的所有子集.解 ∵A={(x,y)|x+y=2,x,y∈N},∴A={(0,2),(1,1),(2,0)}.∴A的子集有:∅,{(0,2)},{(1,1)},{(2,0)},{(0,2),(1,1)},{(0,2),(2,0)},{(1,1),(2,0)},{(0,2),(1,1),(2,0)}.题型三 子集关系的应用【例3】 已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若B⫋A,求实数m的取值范围.解 (1)当B≠∅时,如图所示.解这两个不等式组得2≤m≤3.(2)当B=∅时,由m+1>2m-1,得m<2.综上可得,m的取值范围是{m|m≤3}.【迁移1】 (变换条件)若本例条件“A={x|-2≤x≤5}”改为“A={x|-2<x<5}”,其他条件不变,求m的取值范围.解 (1)当B=∅时,由m+1>2m-1,得m<2.(2)当B≠∅时,如图所示.即2≤m<3,综上可得,m的取值范围是{m|m<3}.解 当A⊆B时,如图所示,此时B≠∅.∴m∈∅,即m的取值范围为∅.【训练3】 已知集合A={x|1≤x≤2},集合B={x|1≤x≤a,a≥1}.(2)若B⊆A,由图可知1≤a≤2.一、课堂小结1.通过自然语言、图形语言、符号语言表示集合间的基本关系,提升数学抽象素养和直观想象素养.2.对子集、真子集有关概念的理解(1)集合A中的任何一个元素都是集合B中的元素,即由x∈A,能推出x∈B,这是判断A⊆B的常用方法.(2)不能简单地把“A⊆B”理解成“A是B中部分元素组成的集合”,因为若A=∅时,则A中不含任何元素;若A=B,则A中含有B中的所有元素.(3)在真子集的定义中,A,B首先要满足A⊆B,其次至少有一个x∈B,但x∉A.二、课堂检测1.已知集合A={-1,0,1},A的子集中,含有元素0的子集共有( )A.2个B.4个C.6个D.8个解析 根据题意,在集合A的子集中,含有元素0的子集有{0},{0,1},{0,-1},{-1,0,1}, 故选B.答案 B2.已知集合A={1,2,3},B={2,3},则( )解析 ∵A={1,2,3},B={2,3},∴A≠B.又1∈A且1∉B,∴B是A的真子集,故选D.答案 D3.设集合A={x|1<x<2},B={x|x<a},若A⊆B,则a的取值范围是________.解析 画出数轴可得a≥2.答案 {a|a≥2}4.我们已经知道自然数集、整数集、有理数集、实数集可以分别用N,Z,Q,R 表示,用符号表示N,Z,Q,R的关系为____________.答案 N⫋Z⫋Q⫋R5.已知集合M={x|x=a2+1,a∈N},集合P={y|y=b2+2b+2,b∈N},试判断M与P的关系,并说明理由.当a=0时,x=1,∴1∈M.∵b∈N,∴y=b2+2b+2=(b+1)2+1≥2,∴1∉P.谢谢观看。

2020年上海新高一新教材数学讲义-专题08 基本不等式及其应用教师版

2020年上海新高一新教材数学讲义-专题08 基本不等式及其应用教师版

专题08 基本不等式及其应用(平均值不等式及其应用,三角不等式)知识梳理一、基本不等式:1.若,a b R ∈,222a b ab +≥,当且仅当a =b 时取等号2.(1)“积定和最小”:ab b a 2≥+⇔如果积ab 是定值P ,那么当a b =时,和a b +有最小值(2)“和定积最大”:22⎪⎭⎫ ⎝⎛+≤b a ab ⇔如果和a b +是定值S ,那么当a b =时,积ab 有最大值214S 。

3.若,a b R +∈2a b+≥ 加权平均》算术平均》几何平均二、平均值不等式:若a 、b 为正数,则2a b+≥a b =时取等号变式:222()22a b a b ab ++≥≥推广:123,,,,n a a a a 是n 个正数,则12na a a n+++称为这n 个正数的算术平均数,称为这n个正数的几何平均数,它们的关系是:12n a a a n ++⋅⋅⋅+≥12n a a a ===时等号成立。

三、三角形不等式如果,a b 是实数,则a b a b a b -±+≤≤ 注:当b a ,为复数或向量时结论也成立. 推论1:1212n n a a a a a a ++++++≤推论2:如果a b c 、、是实数,那么a c a b b c --+-≤,当且仅当()()0a b b c --≥时,等号成立.例题解析一、简单基本不等式问题【例1】条件“0>a 且0>b ”是结论“ab ba ≥+2”成立的 条件。

【难度】★【答案】充分非必要条件 【例2】已知正数y x ,满足12=+y x ,求yx 11+的最小值。

判断下述解法正确与否,若不正确,请给出正确的解法,若正确,则说明理由。

y x xyxy y x xy y x y x 112422221,2110,0+∴≥∴≥+=≥+∴>> 的最小值为24【难度】★【答案】不正确,忽略了前两个小不等式中的取等条件, 当时,即,取得最小值。

人教A版高一数学必修第一册全册复习训练题卷含答案解析(48)

人教A版高一数学必修第一册全册复习训练题卷含答案解析(48)

人教A 版高一数学必修第一册全册复习训练题卷(共30题)一、选择题(共10题)1. 已知 a =1.70.3,b =0.31.7,c =log 0.31.7,则 a ,b ,c 的大小关系为 ( ) A . a <b <c B . c <b <a C . c <a <b D . b <a <c2. 已知 m ∈R ,“函数 y =2x +m −1 有零点”是“函数 y =log m x 在 (0,+∞) 上为减函数”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3. 已知 sin (α+β)=14,sin (α−β)=13,则 tanα:tanβ= ( )A . −17B . 17C . −7D . 74. 根据统计,一名工人组装第 x 件某产品所用的时间(单位:分钟)为 f (x )=√x x <A√Ax ≥A (A ,c为常数),已知工人组装第 4 件产品用时 30 min ,组装第 A 件产品用时 15 min ,那么 c 和 A 的值分别是 ( ) A . 75,25 B . 75,16 C . 60,25 D . 60,165. 已知函数 f (x )={ln (x +1)+m,x ≥0ax −b +1,x <0(m <−1),对于任意 s ∈R ,且 s ≠0,均存在唯一实数 t ,使得 f (s )=f (t ),且 s ≠t ,若关于 x 的方程 ∣f (x )∣=f (m2) 有 4 个不相等的实数根,则 a 的取值范围是 ( ) A . (−4,−2) B . (−1,0)C . (−2,−1)D . (−4,−1)∪(−1,0)6. 已知 a >0 且 a ≠1,下列说法中正确的是 ( ) ①若 M =N ,则 log a M =log a N ; ②若 log a M =log a N ,则 M =N ; ③若 log a M 2=log a N 2,则 M =N ; ④若 M =N ,则 log a M 2=log a N 2. A .①③B .②④C .②D .①②③④7.定义在(−1,1]上的函数f(x)满足f(x)+1=1f(x+1),当x∈[0,1]时,f(x)=x,若函数g(x)=∣∣f(x)−12∣∣−mx−m+1在(−1,1]内恰有3个零点,则实数m的取值范围是( )A.(32,+∞)B.(32,258)C.(32,2516)D.(23,34)8.实数α,β为方程x2−2mx+m+6=0的两根,则(α−1)2+(β−1)2的最小值为( )A.8B.14C.−14D.−2549.若a>b>0,c<d<0,则一定有( )A.ac −bd>0B.ac−bd<0C.ad>bcD.ad<bc10.一个半径为R的扇形,它的周长是4R,则这个扇形所含弓形的面积为( )A.12R2B.12R2Ssin1cos1C.12(1−sin1cos1)R2D.(1−sin1cos1)R2二、填空题(共10题)11.已知△ABC中,sin(A+B)=45,cosB=−23,则sinB=,cosA=.12.函数y=lg(x2+2x−a)的定义域为R,则实数a的取值范围是.13.已知函数y=f(x)是定义在R上的以3为周期的奇函数,且f(2)=0,则方程f(x)=0在区间(0,6)内零点的个数的最小值是个.14.一个驾驶员喝了少量酒后,血液中的酒精含量迅速上升到0.3mg/mL,在停止喝酒后,血液中的酒精含量以每小时25%的速度减少.为了保障交通安全,规定驾驶员血液中的酒精含量不得超过0.09mg/mL,那么这个驾驶员至少要经过小时才能开车.(精确到1小时,参考数据lg2≈0.30,lg3≈0.48)15.将函数y=√4+6x−x2−2(x∈[0,6])的图象绕坐标原点逆时针方向旋转角θ(0≤θ≤α),得到曲线C.若对于每一个旋转角θ,曲线C都是一个函数的图象,则tanα的最大值为.16.设集合A为含有三个元素的集合,集合B={z∣z=x+y,x,y∈A,x≠y},若B={log 26,log 210,log 215},则集合 A = .17. 已知 p:∣x −4∣>6,q:x 2−2x +1−a 2>0(a >0),若 p 是 q 的充分不必要条件,则实数 a的取值范围为 .18. 已知 α 为第二象限角,sinα+cosα=12,则 cos2α= .19. 定义在 R 上的函数 f (x ) 满足 f (x +2)=f (x )−2,当 x ∈(0,2] 时,f (x )={x 2−x −6,x ∈(0,1]−2x−1−5,x ∈(1,2],若 x ∈(−6,−4] 时,关于 x 的方程 af (x )−a 2+2=0(a >0) 有解,则实数 a 的取值范围是 .20. 已知函数 f (x )={x +2x −3,x ≥1lg (x 2+1),x <1,则 f(f (−3))= ,f (x ) 的最小值是 .三、解答题(共10题)21. 已知一扇形的周长为 40 cm ,当它的半径和圆心角取何值时,能使扇形的面积最大,最大面积是多少?22. 已知实数 a ,b 是常数,函数 f (x )=(√1+x +√1−x +a)(√1−x 2+b).(1) 求函数 f (x ) 的定义域,判断函数的奇偶性,并说明理由;(2) 若 a =−3,b =1,设 t =√1+x +√1−x ,记 t 的取值组成的集合为 D ,则函数 f (x )的值域与函数 g (t )=12(t 3−3t 2)(t ∈D ) 的值域相同.试解决下列问题:(i )求集合 D ;(ii )研究函数 g (t )=12(t 3−3t 2) 在定义域 D 上是否具有单调性?若有,请用函数单调性定义加以证明:若没有,请说明理由.并利用你的研究结果进一步求出函数 f (x ) 的最小值.23. 对于定义域为 R 的函数 g (x ),若存在正常数 T ,使得 cosg (x ) 是以 T 为周期的函数,则称g (x ) 为余弦周期函数,且称 T 为其余弦周期.已知 f (x ) 是以 T 为余弦周期的余弦周期函数,其值域为 R .设 f (x ) 单调递增,f (0)=0,f (T )=4π. (1) 验证 g (x )=x +sin x3 是以 6π 为周期的余弦周期函数;(2) 设 a <b ,证明对任意 c ∈[f (a ),f (b )],存在 x 0∈[a,b ],使得 f (x 0)=c ;(3) 证明:“u 0 为方程 cosf (x )=1 在 [0,T ] 上的解,”的充要条件是“u 0+T 为方程 cosf (x )=1 在区间 [T,2T ] 上的解”,并证明对任意 x ∈[0,T ],都有 f (x +T )=f (x )+f (T ).24. 已知函数 f (x )=(sinx +cosx )2+2cos 2x −1.(1) 求 f (x ) 的最小正周期;(2) 求 f (x ) 在 [0,π2] 上的单调区间.25. 已知函数 f (x )=a +b x (b >0,b ≠1) 的图象过点 (1,4) 和点 (2,16).(1) 求 f (x ) 的表达式; (2) 解不等式 f (x )>(12)3−x2;(3) 当 x ∈(−3,4] 时,求函数 g (x )=log 2f (x )+x 2−6 的值域.26. 已知函数 f (x ) 的定义域为 D ,若对任意的 x 1∈D ,都存在 x 2∈D ,满足 f (x 1)=1f (x 2),则称函数 f (x ) 为“L 函数”.(1) 判断函数 f (x )=sinx +32,x ∈R 是否为“L 函数”,并说明理由;(2) 已知“L 函数”f (x ) 是定义在 [a,b ] 上的严格增函数,且 f (a )>0,f (b )>0,求证:f (a )⋅f (b )=1.27. 记函数 f (x ) 的定义域为 D ,如果存在实数 a ,b 使得 f (a −x )+f (a +x )=b 对任意满足a −x ∈D 且 a +x ∈D 的 x 恒成立,则称 f (x ) 为 Ψ 函数. (1) 设函数 f (x )=1x −1,试判断 f (x ) 是否为 Ψ 函数,并说明理由; (2) 设函数 g (x )=12x +t ,其中常数 t ≠0,证明 g (x ) 是 Ψ 函数;(3) 若 ℎ(x ) 是定义在 R 上的 Ψ 函数,且函数 ℎ(x ) 的图象关于直线 x =m (m 为常数)对称,试判断 ℎ(x ) 是否为周期函数?并证明你的结论.28. 已知函数 f (x ) 和 g (x ) 的图象关于原点对称,且 f (x )=x 2+2x .(1) 求函数 g (x ) 的解析式;(2) 若 ℎ(x )=g (x )−λf (x )+1 在区间 [−1,1] 上是增函数,求实数 λ 的取值范围.29. 解答题.(1) 已知 cosα=17,cos (α+β)=−1114,α,β 都是锐角,求 cosβ 的值;(2) 已知 π2<β<α<34π,cos (α−β)=1213,sin (α+β)=−35,sin2α.30.用五点法作出下列函数在[−2π,0]上的图象.(1) y=1−sinx;(2) y=sin(π+x)−1.答案一、选择题(共10题) 1. 【答案】B【知识点】指数函数及其性质、对数函数及其性质2. 【答案】B【解析】若函数 y =f (x )=2x +m −1 有零点,则 f (0)=1+m −1=m <1, 当 m ≤0 时,函数 y =log m x 在 (0,+∞) 上为减函数不成立,即充分性不成立,若 y =log m x 在 (0,+∞) 上为减函数,则 0<m <1,此时函数 y =2x +m −1 有零点成立,即必要性成立,故“函数 y =2x +m −1 有零点”是“函数 y =log m x 在 (0,+∞) 上为减函数”的必要不充分条件. 【知识点】指数函数及其性质、充分条件与必要条件、对数函数及其性质3. 【答案】C【解析】 sin (α+β)=sinαcosβ+cosαsinβ=14,sin (α−β)=sinαcosβ−cosαsinβ=13, 所以 sinαcosβ=724,cosαsinβ=−124,所以 tanα:tanβ=sinαcosβcosαsinβ=−7. 【知识点】两角和与差的正切4. 【答案】D【知识点】函数的模型及其实际应用5. 【答案】A【解析】由题意可知 f (x ) 在 [0,+∞) 上单调递增,值域为 [m,+∞),因为对于任意 s ∈R ,且 s ≠0,均存在唯一实数 t ,使得 f (s )=f (t ),且 s ≠t , 所以 f (x ) 在 (−∞,0) 上是减函数,值域为 (m,+∞), 所以 a <0,且 −b +1=m ,即 b =1−m . 因为 ∣f (x )∣=f (m2) 有 4 个不相等的实数根,所以 0<f (m2)<−m ,又 m <−1,所以 0<am 2<−m ,即 0<(a2+1)m <−m ,所以 −4<a <−2,所以则 a 的取值范围是 (−4,−2).【知识点】对数函数及其性质、函数的零点分布6. 【答案】C【解析】对于①,当 M =N ≤0 时,log a M ,log a N 都没有意义,故不成立; 对于②,log a M =log a N ,则必有 M >0,N >0,M =N ,故成立;对于③,当 M ,N 互为相反数且不为 0 时,也有 log a M 2=log a N 2,但此时 M ≠N ,故不成立; 对于④,当 M =N =0 时,log a M 2,log a N 2 都没有意义,故不成立. 综上,只有②正确. 【知识点】对数的概念与运算7. 【答案】C【解析】当 x ∈(−1,0) 时,x +1∈(0,1),f (x )=1f (x+1)−1=1x+1−1,若函数 g (x )=∣∣f (x )−12∣∣−mx −m +1 在 (−1,1] 内恰有 3 个零点,即方程 ∣∣f (x )−12∣∣−mx −m +1=0 在 (−1,1] 内恰有 3 个根,也就是函数 y =∣∣f (x )−12∣∣ 与 y =mx +m −1 的图象有三个不同交点,作出函数图象如图:由图可知,过点 (−1,−1) 与点 (−13,0) 的直线的斜率为 32;设过点 (−1,1),且与曲线 y =1x+1−1−12=−3x−12(x+1) 相切的切点为 (x 0,y 0), 则 yʹ∣x=x 0=−1(x 0+1)2=y 0−1x0−(−1), 又因为 y 0=−3x 0−12(x 0+1),解得 {x 0=−15,y 0=−14,则切点为 (−15,−14).所以切线的斜率为 k =1+14−1−(−15)=−2516,由对称性可知,过点 (−1,−1) 与曲线 ∣∣f (x )−12∣∣ 在 (−1,0) 上相切的切线的斜率为 2516.所以使函数 y =∣∣f (x )−12∣∣与 y =mx +m −1 的图象有三个不同交点的 m 的取值范围为(32,2516).【知识点】函数的零点分布、利用导数求函数的切线方程8. 【答案】A【解析】因为 Δ=(2m )2−4(m +6)≥0, 所以 m 2−m −6≥0, 所以 m ≥3 或 m ≤−2.而(α−1)2+(β−1)2=α2+β2−2(α+β)+2=(α+β)2−2αβ−2(α+β)+2=(2m )2−2(m +6)−2(2m )+2=4m 2−6m −10=4(m −34)2−494,因为 m ≥3,或 m ≤−2,所以当 m =3 时,(α−1)2+(β−1)2 的最小值为 8,故选A . 【知识点】函数的最大(小)值9. 【答案】D【解析】因为 c <d <0,所以 0<−d <−c , 又 0<b <a ,所以 −bd <−ac ,即 bd >ac , 又因为 cd >0,所以 bdcd >accd ,即 bc >ad . 【知识点】不等式的性质10. 【答案】D【解析】 l =4R −2R =2R ,α=lR =2R R=2,可得:S 扇形=12lR =12×2R ×R =R 2,可得:S 三角形=12×2Rsin1×Rcos1=sin1⋅cos1⋅R 2,可得:S弓形=S扇形−S三角形=R2−sin1⋅cos1⋅R2 =(1−sin1cos1)R2.【知识点】弧度制二、填空题(共10题)11. 【答案】√53;6+4√515【知识点】两角和与差的余弦12. 【答案】a<−1【知识点】函数的定义域的概念与求法、对数函数及其性质13. 【答案】7【知识点】函数的零点分布、函数的周期性14. 【答案】5【解析】设经过n小时后才能开车,由题意得0.3(1−0.25)n≤0.09,所以(34)n≤0.3,所以nlg34≤lg310<0,所以n≥lg3−1lg3−2lg2=0.48−10.48−0.6=133,解得n≥133,故至少经过5小时才能开车.故答案为:5.【知识点】函数模型的综合应用15. 【答案】23【解析】将函数变形为方程,可得(x−3)2+(y+2)2=13,x∈[0,6],y≥0,其图象如图所示.过点O作该图象所在圆M的切线OA,将该函数的图象绕原点逆时针旋转时,其最大的旋转角为∠AOy,此时曲线C都是一个函数的图象,因为k OA=−1k OM =32,所以tan∠AOy=23.【知识点】函数的相关概念16. 【答案】 {1,log 23,log 25}【解析】设 A ={a,b,c }(a <b <c ),则 {a +b =log 26,b +c =log 215,c +a =log 210,所以 a +b +c =log 230,所以 a =1,b =log 23,c =log 25, 所以 A ={1,log 23,log 25}. 【知识点】元素和集合的关系17. 【答案】 0<a ≤3【知识点】充分条件与必要条件18. 【答案】 −√74【解析】因为 sinα+cosα=12,所以 1+2sinαcosα=14,所以 2sinαcosα=−34,则 (cosα−sinα)2=1−2sinαcosα=74. 又因为 α 为第二象限角,所以 cosα<0,sinα>0, 则 cosα−sinα=−√72,所以cos2α=cos 2α−sin 2α=(cosα+sinα)(cosα+sinα)=12×(−√72)=−√74. 【知识点】二倍角公式19. 【答案】 1≤a ≤√2【解析】因为函数 f (x ) 满足 f (x +2)=f (x )−2,所以若 x ∈(−6,−4] 时,则 x +2∈(−4,−2],x +4∈(−2,0], 若 x +6∈(0,2],即若 x ∈(−6,−5] 时, 则 x +2∈(−4,−3],x +4∈(−2,−1], 若 x +6∈(0,1],则f (x )=2+f (x +2)=4+f (x +4)=6+f (x +6)=6+(x +6)2−(x +6)−6=x 2+11x +30,若 x ∈(−5,−4] 时,则 x +2∈(−3,−2],x +4∈(−1,0], 若 x +6∈(1,2],则 f (x )=2+f (x +2)=4+f (x +4)=6+f (x +6)=6−2x+6−1−5=1−2x+5,由 af (x )−a 2+2=0(a >0) 得 af (x )=a 2−2(a >0), 即 f (x )=a −2a (a >0).作出函数 f (x ) 在 x ∈(−6,−4] 的图象如图. 在函数的值域为 −1≤f (x )≤0, 由 −1≤a −2a≤0,得 {a −2a ≥−1,a −2a ≤0,即 {a 2+a −2≥0,a 2−2≤0, 即 {a ≥1 或 a ≤−2,−√2≤a ≤√2,因为 a >0,所以 1≤a ≤√2.【知识点】函数的零点分布20. 【答案】 0 ; 2√2−3【解析】因为 f (−3)=lg [(−3)2+1]=lg10=1,所以 f(f (−3))=f (1)=1+2−3=0.当x ≥1 时,x +2x −3≥2√x ⋅2x −3=2√2−3,当且仅当 x =2x ,即 x =√2 时等号成立,此时 f (x )min =2√2−3<0;当 x <1 时,lg (x 2+1)≥lg (02+1)=0,此时 f (x )min =0.所以f(x)的最小值为2√2−3.【知识点】函数的最大(小)值、分段函数三、解答题(共10题)21. 【答案】设扇形的圆心角为θ(0<θ<2π),半径为r,弧长为l,面积为S,则l+2r=40,所以l=40−2r.S=12lr=12(40−2r)r=20r−r2=−(r−10)2+100.所以当r=10cm时,扇形的面积最大,最大值为100cm2,此时θ=lr =40−2×1010=2.【知识点】弧度制22. 【答案】(1) 因为实数a,b是常数,函数f(x)=(√1+x+√1−x+a)(√1−x2+b),所以由{1+x≥0,1−x≥0,1−x2≥0.解得−1≤x≤1.所以函数的定义域是[−1,1].对于任意x∈[−1,1],有−x∈[−1,1],且f(−x)=(√1+(−x)+√1−(−x)+a)(√1−(−x)2+b)=(√1−x+√1+x+a)(√1−x2+b)=f(x),即f(−x)=f(x)对x∈[−1,1]都成立.(又f(x)不恒为零)所以,函数f(x)是偶函数.(该函数是偶函数不是奇函数也可以)(2) 因为a=−3,b=1,所以f(x)=(√1+x+√1−x−3)(√1−x2+1).设t=√1+x+√1−x(−1≤x≤1),则t2=2+2√1−x2.所以0≤√1−x2≤1,2≤t2≤4(t≥0),即√2≤t≤2.所以D=[√2,2].于是,g(t)=12(t3−3t2)的定义域为D=[√2,2].对于任意的t1,t2∈D,且t1<t2,有g(t1)−g(t2)=12[t13−3t12−(t23−3t22)]=12[(t1−t2)(t12+t1t2+t22)−3(t1−t2)(t1+t2)]=12(t1−t2)[(t12−2t1)+(t22−2t2)+(12t1t2−t1)+(12t1t2−t2)]=12(t1−t2)[t1(t1−2)+t2(t2−2)+12t1(t2−2)+12t2(t1−2)].又t1>0,t2>0,t1−t2<0,且t1−2≤0,t2−2≤0(这里二者的等号不能同时成立),所以12(t1−t2)[t1(t1−2)+t2(t2−2)+12t1(t2−2)+12t2(t1−2)]>0,即g(t1)−g(t2)>0,g(t1)>g(t2).所以函数g(t)在D上是减函数.所以(g(t))min =g(2)=12×(23−3×22)=−2.又因为函数f(x)的值域与函数g(t)=12(t3−3t2)的值域相同,所以函数f(x)的最小值为−2.【知识点】函数的值域的概念与求法、函数的奇偶性23. 【答案】(1) g(x)=x+sin x3,所以cosg(x+6π)=cos(x+6π+sin x+6π3)=cos(x+sin x3)=cosg(x),所以g(x)是以6π为周期的余弦周期函数.(2) 因为f(x)的值域为R;所以存在x0,使f(x0)=c;又c∈[f(a),f(b)],所以f(a)≤f(x0)≤f(b),而f(x)为增函数;所以a≤x0≤b;即存在x0∈[a,b],使f(x0)=c;(3) 若u0+T为方程cosf(x)=1在区间[T,2T]上的解;则:cosf(u0+T)=1,T≤u0+T≤2T;所以cosf(u0)=1,且0≤u0≤T;所以u0为方程cosf(x)=1在[0,T]上的解;所以“u0为方程cosf(x)=1在[0,T]上得解”的充分条件是“u0+T为方程cosf(x)=1在区间[T,2T]上的解”;下面证明对任意x∈[0,T],都有f(x+T)=f(x)+f(T):①当x=0时,f(0)=0,所以显然成立;②当x=T时,cosf(2T)=cosf(T)=1;所以f(2T)=2k1π,(k1∈Z),f(T)=4π,且2k1π>4π,所以k1>2;(1)若k1=3,f(2T)=6π,由(2)知存在x0∈(0,T),使f(x0)=2π;cosf(x0+T)=cosf(x0)=1⇒f(x0+T)=2k2π,k2∈Z;所以f(T)<f(x0+T)<f(2T);所以4π<2k2π<6π;所以2<k2<3,无解;(2)若k1≥5,f(2T)≥10π,则存在T<x1<x2<2T,使得f(x1)=6π,f(x2)=8π;则T,x1,x2,2T为cosf(x)=1在[T,2T]上的4个解;但方程cosf(x)=1在[0,2T]上只有f(x)=0,2π,4π,3个解,矛盾;(3)当k1=4时,f(2T)=8π=f(T)+f(T),结论成立;③当x∈(0,T)时,f(x)∈(0,4π),考查方程cosf(x)=c在(0,T)上的解;设其解为f(x1),f(x2),⋯,f(x n),(x1<x2<⋯<x n);则f(x1+T),f(x2+T),⋯,f(x n+T)为方程cosf(x)=c在(T,2T)上的解;又f(x+T)∈(4π,8π);而f(x1)+4π,f(x2)+4π,⋯,f(x n)+4π∈(4π,8π)为方程cosf(x)=c在(T,2T)上的解;所以f(x i+T)=f(x i)+4π=f(x i)+f(T);所以综上对任意x∈[0,T],都有f(x+T)=f(x)+f(T).【知识点】Asin(ωx+ψ)形式函数的性质、二倍角公式24. 【答案】(1) 由已知得,f(x)=sin2x+cos2x+1=√2sin(2x+π4)+1.函数的最小正周期T=2π2=π.(2) 由2kπ−π2≤2x+π4≤2kπ+π2(k∈Z)得,kπ−3π8≤x≤kπ+π8(k∈Z),又x∈[0,π2],所以x∈[0,π8],所以f(x)的单调递增区间为[0,π8],由2kπ+π2−≤2x+π4≤2kπ+3π2(k∈Z)得,kπ+π8≤x≤kπ+5π8(k∈Z),又x∈[0,π2],所以x∈[π8,π2 ],所以f(x)的单调递减区间为[π8,π2 ].【知识点】Asin(ωx+ψ)形式函数的性质25. 【答案】(1) 由题意知 {4=a +b,16=a +b 2,解得 {a =0,b =4 或 {a =7,b =−3(舍去), 所以 f (x )=4x . (2) f (x )>(12)3−x2,所以 4x>(12)3−x2,所以 22x >2x 2−3, 所以 2x >x 2−3, 解得 −1<x <3,所以不等式的解集为 (−1,3). (3) 因为g (x )=log 2f (x )+x 2−6=log 24x +x 2−6=2x +x 2−6=(x +1)2−7,因为 x ∈(−3,4],所以当 x =−1 时,g (x )min =−7, 当 x =4 时,g (x )max =18,所以函数 g (x )=log 2f (x )+x 2−6 的值域为 [−7,18].【知识点】函数的解析式的概念与求法、指数函数及其性质、函数的值域的概念与求法26. 【答案】(1) 不是; (2) 反证法,略.【知识点】Asin(ωx+ψ)形式函数的性质27. 【答案】(1) f (x ) 的定义域为 {x∣ x ≠0}.设 f (x )=1x −1 是为 Ψ 函数,则存在实数 a ,b ,使得 f (a −x )+f (a +x )=b 对任意满足 a −x ∈D 且 a +x ∈D 的 x 恒成立, 即 1a−x +1a+x −2=b ,所以 (b +2)(a 2−x 2)=2a 恒成立,所以 a =0,b =−2. 所以存在 a =0,b =−2,使得 f (a −x )+f (a +x )=b 对任意 x ≠±a 恒成立. 所以 f (x )=1x −1 是 Ψ 函数.(2) 若 g (a +x )+g (a −x )=12a−x +t +12a+x +t =b 恒成立, 则 2a+x +2a−x +2t =b (2a+x +t )(2a−x +t ) 恒成立, 即 (1−bt )(2a+x +2a−x )=b (22a +t 2)−2t 恒成立,所以 1−bt =0,b (22a +t 2)−2t =0,又 t ≠0,所以 b =1t ,a =log 2∣t∣. 所以存在实数 a ,b 使得 g (x ) 是 Ψ 函数.(3) 因为函数 ℎ(x ) 的图象关于直线 x =m (m 为常数)对称, 所以 ℎ(m −x )=ℎ(m +x ),所以当 m ≠a 时, ℎ(x +2m −2a )=ℎ[m +(x +m −2a )]=ℎ[m −(x +m −2a )]=ℎ(2a −x )=ℎ(a +(a −x )),又 ℎ(a +x )+ℎ(a −x )=b ,所以 ℎ(a +(a −x ))=b −ℎ[a −(a −x )]=b −ℎ(x ),所以 ℎ(x +2m −2a )=b −ℎ(x ),ℎ(x )=b −ℎ(x +2m −2a )=ℎ(x +2m −2a +2m −2a )=ℎ(x +4m −4a ).所以 ℎ(x ) 为周期函数,周期为 4m −4a .若 m =a ,则 ℎ(a −x )=ℎ(a +x ),且 ℎ(a −x )=b −ℎ(a +x ), 所以 ℎ(a +x )=b2,显然 ℎ(x ) 是周期函数. 综上,ℎ(x ) 是周期函数.【知识点】函数的对称性、函数的周期性、幂函数及其性质、指数函数及其性质28. 【答案】(1) g (x )=−x 2+2x ,(2) ℎ(x )=−(1+λ)x 2+2(1−λ)x +1,当 λ=−1 时,ℎ(x )=4x +1 在 [−1,1] 上显然为增函数,当 λ≠−1 时,可得 {1+λ>0,1−λ1+λ≥1, 或 {1+λ>0,1−λ1+λ≤−1,⇒−1<λ≤0 或 λ<−1,综上所述,所求 λ 的取值范围是 λ=−1 或 −1<λ≤0 或 λ<−1,即 λ≤0.【知识点】函数的解析式的概念与求法、函数的单调性29. 【答案】(1) 由题知,sinα=4√37,sin (α+β)=5√314,所以,cosβ=cos (α+β−α)=cos (α+β)cosα+sin (α+β)sinα=12. (2) 因为 0<α−β<π4,cos (α−β)=1213,所以 sin (α−β)=513,因为 π<α+β<3π2,sin (α+β)=−35,所以 cos (α+β)=−45,所以 sin2α=sin [(α−β)+(α+β)]=sin (α−β)cos (α+β)+cos (α−β)sin (α+β)=−5665. 【知识点】两角和与差的正弦、两角和与差的余弦30. 【答案】(1) 找出关键的五个点,列表如下: x −2π−3π2−π−π2y =sinx 010−10y =1−sinx10121描点作图,如图所示.(2) 由于 y =sin (x +π)−1=−sinx −1,找出关键的五个点,列表如下: x −2π−3π2−π−π20y =sinx 010−10y =−sinx −1−1−2−10−1描点作图,如图所示. 【知识点】正弦函数的图象。

高一数学复习知识点讲解专题训练8---全称量词与存在量词

高一数学复习知识点讲解专题训练8---全称量词与存在量词
在实数 x,使 x2-3x-4=0 C.不存在实数 x,使 x<4 且 x2+5x-24=0 D.任意实数 x,使得|x+1|≤1 且 x2>4
答案 B
解析
1 t=4时,
t>t,所以 A 选项错;由 x2-3x-4=0,得 x=-1 或 x=4,因此当 x
=-1 或 x=4 时,x2-3x-4=0,故 B 选项正确;由 x2+5x-24=0,得 x=-8 或 x
1 / 12
3.“三角形内角和是 180°”是全称量词命题.( √ )
一、全称量词命题与存在量词命题的辨析 例 1 (1)下列语句不是存在量词命题的是 ( ) A.有的无理数的平方是有理数 B.有的无理数的平方不是有理数 C.对于任意 x∈Z,2x+1 是奇数 D.存在 x∈R,2x+1 是奇数 答案 C 解析 因为“有的”“存在”为存在量词,“任意”为全称量词,所以选项 A,B,D 均为存在量词命题,选项 C 为全称量词命题. (2)给出下列几个命题: ①至少有一个 x,使 x2+2x+1=0 成立; ②对任意的 x,都有 x2+2x+1=0 成立; ③对任意的 x,都有 x2+2x+1=0 不成立; ④存在 x,使 x2+2x+1=0 成立. 其中是全称量词命题的个数为( ) A.1 B.2 C.3 D.0 答案 B 解析 因为“至少有一个”、“存在”是存在量词,“任意的”为全称量词,所以①④ 为存在量词命题,②③为全称量词命题,所以全称量词命题的个数为 2. 反思感悟 全称量词命题或存在量词命题的判断
7 / 12
2.存在量词命题“存在实数 x,使 x2+1<0”可写成( )
A.若 x∈R,则 x2+1>0
B.∀x∈R,x2+1<0
C.∃x∈R,x2+1<0

高一数学练习试题集

高一数学练习试题集

高一数学练习试题答案及解析1.在空间直角坐标系中,点,过点P作平面xOy的垂线PQ,则Q的坐标为()A.B.C.D.【答案】D【解析】过点P作平面xOy的垂线PQ,则P,Q两个点的横标和纵标相同,只有竖标不同,在xoy平面上的点的竖标为0,写出要求点的坐标.解:空间直角坐标系中,点,过点P作平面xOy的垂线PQ,则P,Q两个点的横标和纵标相同,只有竖标不同,在xoy平面上的点的竖标为0,∴Q(1,,0)故选D.点评:不同考查空间中点的坐标,是一个基础题,这种题目一般不会单独出现,它只是立体几何与空间向量中所出现的题目的一个小部分.2.下列各点不在曲线x2+y2+z2=12上的是()A.(2,﹣2,2)B.C.(﹣2,2,2)D.(1,3,4)【答案】D【解析】把选项中的点坐标代入曲线方程,结果不是12的即不在曲线上.解:把A项的点代入方程求得4+4+4=12符合题意,故A中的点在曲线上.把B项的点代入方程求得0+4+8=12符合题意,故B中的点在曲线上.把C项的点代入方程求得4+4+4=12符合题意,故C中的点在曲线上.把D项的点代入方程求得1+9+16=26不符合题意,故D中的点不在曲线上.故选D点评:本题主要考查了曲线与方程.属基础题.3.点(2,0,3)在空间直角坐标系中的位置是在()A.y轴上B.xOy平面上C.xOz平面上D.第一卦限内【答案】C【解析】从选项中可以看出,此题是考查空间坐标系下坐标平面上点的特征,此点的纵坐标为0,故此点是直角坐标系中xOz平面上的点.解:∵点(2,0,3)的纵坐标为0∴此点是xOz平面上的点故应选C点评:空间直角坐标系下,xOy平面上的点的竖坐标为0,xOz平面上的点的纵坐标为0,yOz平面上的点的横坐标为0,本题考查是空间直角坐标系中点的坐标中三个分量与在坐标系中的位置的对应关系.4.点P(﹣3,2,﹣1)关于平面xOy的对称点是,关于平面yOz的对称点是,关于平面zOx的对称点是,关于x轴的对称点是,关于y轴的对称点是,关于z轴的对称点是.【答案】(﹣3,2,1);(3,2,﹣1);(﹣3,﹣2,﹣1);(3,﹣2,1);(3,﹣2,﹣1).【解析】根据空间直角坐标系,点点对称性,直接求解对称点的坐标即可.解:根据点的对称性,空间直角坐标系的八卦限,分别求出点P(﹣3,2,﹣1)关于平面xOy的对称点是(﹣3,2,1);关于平面yOz的对称点是:(3,2,﹣1);关于平面zOx的对称点是:(﹣3,﹣2,﹣1);关于x轴的对称点是:(3,﹣2,1);关于y轴的对称点是(3,2,1);关于z轴的对称点是(3,﹣2,﹣1).故答案为:(﹣3,2,1);(3,2,﹣1);(﹣3,﹣2,﹣1);(3,﹣2,1);(3,﹣2,﹣1).点评:本题是基础题,考查空间直角坐标系,对称点的坐标的求法,考查空间想象能力,计算能力.5.点M(4,﹣3,5)到原点的距离d= ,到z轴的距离d= .【答案】;5【解析】直接利用空间两点间的距离公式,求出点M(4,﹣3,5)到原点的距离d,写出点M (4,﹣3,5)到z轴的距离d,即可.解:由空间两点的距离公式可得:点M(4,﹣3,5)到原点的距离d=到z轴的距离d==,点M(4,﹣3,5)到z轴的距离d==5故答案为:;5点评:本题是基础题,考查空间两点的距离公式的求法,考查计算能力.6.在空间直角坐标系中,在Ox轴上的点P1的坐标特点为,在Oy轴上的点P2的坐标特点为,在Oz轴上的点P3的坐标特点为,在xOy平面上的点P4的坐标特点为,在yOz平面上的点P5的坐标特点为,在xOz平面上的点P6的坐标特点为.【答案】(x,0,0),(0,y,0),(0,0,z),(x,y,0),(0,y,z),(x,0,z).【解析】考查空间坐标系中坐标轴与坐标平面上点的坐标的结构,Ox轴上的点只有横坐标不为0;Oy轴上的点只有纵坐标不为0;Oz轴上的点只有竖坐标不为0;在xOy平面上的点竖坐标一定为0;yOz平面上的点横坐标一定为0;xOz平面上的点纵坐标一定为0;解:由空间坐标系的定义知;Ox轴上的点P1的坐标特点为(x,0,0),在Oy轴上的点P2的坐标特点为(0,y,0),在Oz轴上的点P3的坐标特点为(0,0,z),在xOy平面上的点P4的坐标特点为(x,y,0),在yOz平面上的点P5的坐标特点为(0,y,z),在xOz平面上的点P6的坐标特点为(x,0,z).故答案应依次为(x,0,0),(0,y,0),(0,0,z),(x,y,0),(0,y,z),(x,0,z).点评:考查空间坐标系的定义,训练对空间坐标系中坐标轴上的点的坐标结构与坐标平面上的点的坐标结构.7.给定空间直角坐标系,在x轴上找一点P,使它与点P(4,1,2)的距离为.【答案】点P坐标为(9,0,0)或(﹣1,0,0).【解析】设出x轴上的点的坐标,根据它与已知点之间的距离,写出两点之间的距离公式,得到关于未知数的方程,解方程即可,注意不要漏掉解,两个结果都合题意.解:设点P的坐标是(x,0,0),由题意,即,∴(x﹣4)2=25.解得x=9或x=﹣1.∴点P坐标为(9,0,0)或(﹣1,0,0).点评:本题考查空间两点之间的距离公式,是一个基础题,在两点的坐标,和两点之间的距离,这三个量中,可以互相求解.8.在空间,下列命题中正确的是()A.对边相等的四边形一定是平面图形B.有一组对边平行的四边形一定是平面图形C.四边相等的四边形一定是平面图形D.有一组对角相等的四边形一定是平面图形【答案】B【解析】根据平面的基本性质,由能够确定平面的四个条件,一个一个地进行分析,能够得到正确答案.解:对边相等的四边形不一定是平面图形,例如正四面体的对边相等,但不是平面图形.故A不正确;有一组对边平行的四边形一定是平面图形,因为平行线确定一个平面,故B正确;四边相等的四边形不一定是平面图形,例如正四面体的对边相等,但不是平面图形.故C不正确;有一组对角相等的四边形不一定是平面图形,例如正四面体的对角相等,但不是平面图形.故D不正确.故选B.点评:本题考查平面的基本性质和推论,解题时要认真审题,仔细解答,注意确定一个平面的条件.9.已知点A(﹣3,1,﹣4),则点A关于x轴的对称点的坐标为()A.(﹣3,﹣1,4)B.(﹣3,﹣1,﹣4)C.(3,1,4)D.(3,﹣1,﹣4)【答案】A【解析】根据在空间直角坐标系中关于x轴对称的点的坐标是横标不变,纵标和竖标变为原来的相反数,写出点A关于x轴对称的点的坐标.解:∵在空间直角坐标系中关于x轴对称的点的坐标横标不变,纵标和竖标变为原来的相反数,∵点A(﹣3,1,﹣4),∴关于x轴对称的点的坐标是(﹣3,﹣1,4),故选A.点评:本题是一个空间直角坐标系中坐标的变化特点,关于三个坐标轴对称的点的坐标特点,关于三个坐标平面对称的坐标特点,我们一定要掌握,这是一个基础题.10.下列各点不在曲线x2+y2+z2=12上的是()A.(2,﹣2,2)B.C.(﹣2,2,2)D.(1,3,4)【答案】D【解析】把选项中的点坐标代入曲线方程,结果不是12的即不在曲线上.解:把A项的点代入方程求得4+4+4=12符合题意,故A中的点在曲线上.把B项的点代入方程求得0+4+8=12符合题意,故B中的点在曲线上.把C项的点代入方程求得4+4+4=12符合题意,故C中的点在曲线上.把D项的点代入方程求得1+9+16=26不符合题意,故D中的点不在曲线上.故选D点评:本题主要考查了曲线与方程.属基础题.11.已知两点M1(﹣1,0,2),M2(0,3,﹣1),此两点间的距离为()A.B.C.19D.11【答案】A【解析】直接利用空间两点间的距离公式求出两点间的距离.解:两点M1(﹣1,0,2),M2(0,3,﹣1),此两点间的距离为:=故选A.点评:本题是基础题,考查空间两点间的距离的求法,注意正确应用距离公式,考查计算能力.12.下列各点不在曲线x2+y2+z2=12上的是()A.(2,﹣2,2)B.C.(﹣2,2,2)D.(1,3,4)【答案】D【解析】把选项中的点坐标代入曲线方程,结果不是12的即不在曲线上.解:把A项的点代入方程求得4+4+4=12符合题意,故A中的点在曲线上.把B项的点代入方程求得0+4+8=12符合题意,故B中的点在曲线上.把C项的点代入方程求得4+4+4=12符合题意,故C中的点在曲线上.把D项的点代入方程求得1+9+16=26不符合题意,故D中的点不在曲线上.故选D点评:本题主要考查了曲线与方程.属基础题.13.点(2,0,3)在空间直角坐标系中的位置是在()A.y轴上B.xOy平面上C.xOz平面上D.第一卦限内【答案】C【解析】从选项中可以看出,此题是考查空间坐标系下坐标平面上点的特征,此点的纵坐标为0,故此点是直角坐标系中xOz平面上的点.解:∵点(2,0,3)的纵坐标为0∴此点是xOz平面上的点故应选C点评:空间直角坐标系下,xOy平面上的点的竖坐标为0,xOz平面上的点的纵坐标为0,yOz平面上的点的横坐标为0,本题考查是空间直角坐标系中点的坐标中三个分量与在坐标系中的位置的对应关系.14.在空间直角坐标系O﹣xyz中,z=1的所有点构成的图形是.点P(2,3,5)到平面xOy的距离为.【答案】过点(0,0,1)且与z轴垂直的平面;5.【解析】空间直角坐标系中,z=1表示一个平面,其与xoy平面平行且距离为1,点P(2,3,5)到平面xOy的距离与其横纵坐标无关,只与其竖坐标有关,由于平面xOy的方程为z=0,故可算出点到平面的距离.解:z=1表示一个平面,其与xoy平面平行且距离为1,故z=1的所有点构成的图形是过点(0,0,1)且与z轴垂直的平面P(2,3,5)到平面xOy的距离与其横纵坐标无关,只与其竖坐标有关,由于平面xOy的方程为z=0,故点P(2,3,5)到平面xOy的距离为|5﹣0|=5故答案应依次为过点(0,0,1)且与z轴垂直的平面;5.点评:本题考点是空间直角坐标系,考查空间直角坐标系中点到面的距离的计算方法与空间中面的表示方法.15.点P(﹣3,2,﹣1)关于平面xOy的对称点是,关于平面yOz的对称点是,关于平面zOx的对称点是,关于x轴的对称点是,关于y轴的对称点是,关于z轴的对称点是.【答案】(﹣3,2,1);(3,2,﹣1);(﹣3,﹣2,﹣1);(3,﹣2,1);(3,﹣2,﹣1).【解析】根据空间直角坐标系,点点对称性,直接求解对称点的坐标即可.解:根据点的对称性,空间直角坐标系的八卦限,分别求出点P(﹣3,2,﹣1)关于平面xOy的对称点是(﹣3,2,1);关于平面yOz的对称点是:(3,2,﹣1);关于平面zOx的对称点是:(﹣3,﹣2,﹣1);关于x轴的对称点是:(3,﹣2,1);关于y轴的对称点是(3,2,1);关于z轴的对称点是(3,﹣2,﹣1).故答案为:(﹣3,2,1);(3,2,﹣1);(﹣3,﹣2,﹣1);(3,﹣2,1);(3,﹣2,﹣1).点评:本题是基础题,考查空间直角坐标系,对称点的坐标的求法,考查空间想象能力,计算能力.16.已知空间三点的坐标为A(1,5,﹣2),B(2,4,1),C(p,3,q+2),若A,B,C三点共线,则p= ,q= .【答案】3;2【解析】根据所给的三个点的坐标,写出两个向量的坐标,根据三个点共线,得到两个向量之间的共线关系,得到两个向量之间的关系,即一个向量的坐标等于实数倍的另一个向量的坐标,写出关系式,得到结果.解:∵A(1,5,﹣2),B(2,4,1),C(p,3,q+2),∴=(1,﹣1,3),=(p﹣1,﹣2,q+4)∵A,B,C三点共线,∴∴(1,﹣1,3)=λ(p﹣1,﹣2,q+4),∴1=λ(p﹣1)﹣1=﹣2λ,3=λ(q+4),∴,p=3,q=2,故答案为:3;2点评:本题考查向量共线,考查三点共线与两个向量共线的关系,考查向量的坐标之间的运算,是一个基础题.17.求证:以A(﹣4,﹣1,﹣9),B(﹣10,1,﹣6),C(﹣2,﹣4,﹣3)为顶点的三角形是等腰直角三角形.【答案】见解析【解析】先利用空间两点的距离公式分别求出AB,AC,BC的长,然后利用勾股定理进行判定是否为直角三角形,以及长度是否有相等,从而判定是否是等腰直角三角形.证明:,,,∵d2(A,B)+d2(A,C)=d2(B,C)且d(A,B)=d(A,C).∴△ABC为等腰直角三角形.点评:本题主要考查了两点的距离公式和勾股定理的应用,考查空间想象能力、运算能力和推理论证能力,属于基础题.18.在xOy平面内的直线x+y=1上确定一点M;使M到点N(6,5,1)的距离最小.【答案】点M的坐标为(1,0,0)时到点N(6,5,1)的距离最小.【解析】先设点M(x,1﹣x,0),然后利用空间两点的距离公式表示出距离,最后根据二次函数研究最值即可.解:设点M(x,1﹣x,0)则=∴当x=1时,.∴点M的坐标为(1,0,0)时到点N(6,5,1)的距离最小.点评:本题主要考查了空间两点的距离公式,以及二次函数研究最值问题,同时考查了计算能力,属于基础题.19.试解释方程(x﹣12)2+(y+3)2+(z﹣5)2=36的几何意义.【答案】在空间中以点(12,﹣3,5)为球心,球半径长为6的球面.【解析】题中式子可化为:,只要利用两点间的距离公式看看它所表示的几何意义即可得出答案.解:在空间直角坐标系中,方程(x﹣12)2+(y+3)2+(z﹣5)2=36即:方程表示:动点P(x,y)到定点(12,﹣3,5)的距离等于定长6,所以该方程几何意义是:在空间中以点(12,﹣3,5)为球心,球半径长为6的球面.点评:本题主要考查了球的性质和数形结合的数学思想,是一道好题.20.与正方体ABCD﹣A1B1C1D1的三条棱AB、CC1、A1D1所在直线的距离相等的点()A.有且只有1个B.有且只有2个C.有且只有3个D.有无数个【答案】D【解析】由于点D、B1显然满足要求,猜想B1D上任一点都满足要求,然后想办法证明结论.解:在正方体ABCD﹣A1B1C1D1上建立如图所示空间直角坐标系,并设该正方体的棱长为1,连接B1D,并在B1D上任取一点P,因为=(1,1,1),所以设P(a,a,a),其中0≤a≤1.作PE⊥平面A1D,垂足为E,再作EF⊥A1D1,垂足为F,则PF是点P到直线A1D1的距离.所以PF=;同理点P到直线AB、CC1的距离也是.所以B1D上任一点与正方体ABCD﹣A1B1C1D1的三条棱AB、CC1、A1D1所在直线的距离都相等,所以与正方体ABCD﹣A1B1C1D1的三条棱AB、CC1、A1D1所在直线的距离相等的点有无数个.故选D.点评:本题主要考查合情推理的能力及空间中点到线的距离的求法.21.设a、b是两条不同的直线,α、β是两个不同的平面,则下列四个命题:①若a⊥b,a⊥α,b⊄α,则b∥α;②若a∥α,a⊥β,则α⊥β;③若a⊥β,α⊥β,则a∥α或a⊂α;④若a⊥b,a⊥α,b⊥β,则α⊥β其中正确命题的个数为()A.1B.2C.3D.4【答案】D【解析】①若a⊥b,a⊥α,b⊄α,则b∥α,可由线面平行的条件进行证明;②若a∥α,a⊥β,则α⊥β可由面面垂直的判定定理进行判断;③若a⊥β,α⊥β,则a∥α或a⊂α,本题可由面面垂直的性质进行判断;④若a⊥b,a⊥α,b⊥β,则α⊥β,可由面面垂直的判定定理进行判断.解:①若a⊥b,a⊥α,b⊄α,则b∥α,a⊥b,a⊥α,可得出此b∥α或b⊂α,再b⊄α,可得b∥α由是真命题;②若a∥α,a⊥β,由线面平行的性质定理可以得出在α内存在一条线c⊥β,故可得出α⊥β,是真命题;③若a⊥β,α⊥β,由图形即可得出a∥α或a⊂α,是正确命题;④由a⊥b,a⊥α可推出b∥α或b⊂α,再有b⊥β,可得出α⊥β,故是真命题.故选D.点评:本题考查了线面平行,面面垂直的判定及性质,重点考查了空间立体感知能力及运用相关知识组织判断的能力.22.下列说法正确的是()A.三点确定一个平面B.四边形一定是平面图形C.梯形一定是平面图形D.平面α和平面β有不同在一条直线上的三个交点【答案】C【解析】不共线的三点确定一个平面,两条平行线确定一个平面,得到A,B,C两个选项的正误,根据两个平面如果相交一定有一条交线,确定D选项是错误的,得到结果.解:不共线的三点确定一个平面,故A不正确,四边形有时是指空间四边形,故B不正确,梯形的上底和下底平行,可以确定一个平面,故C正确,两个平面如果相交一定有一条交线,所有的两个平面的公共点都在这条交线上,故D不正确,故选C.点评:本题考查平面的基本性质即推论,考查确定平面的条件,考查两个平面相交的性质,是一个基础题,越是简单的题目,越是不容易说明白,同学们要注意这个题目.23.已知点A(﹣3,1,﹣4),则点A关于x轴的对称点的坐标为()A.(﹣3,﹣1,4)B.(﹣3,﹣1,﹣4)C.(3,1,4)D.(3,﹣1,﹣4)【答案】A【解析】根据在空间直角坐标系中关于x轴对称的点的坐标是横标不变,纵标和竖标变为原来的相反数,写出点A关于x轴对称的点的坐标.解:∵在空间直角坐标系中关于x轴对称的点的坐标横标不变,纵标和竖标变为原来的相反数,∵点A(﹣3,1,﹣4),∴关于x轴对称的点的坐标是(﹣3,﹣1,4),故选A.点评:本题是一个空间直角坐标系中坐标的变化特点,关于三个坐标轴对称的点的坐标特点,关于三个坐标平面对称的坐标特点,我们一定要掌握,这是一个基础题.24.坐标原点到下列各点的距离最小的是()A.(1,1,1)B.(1,2,2)C.(2,﹣3,5)D.(3,0,4)【答案】A【解析】利用两点间的距离分别求得原点到四个选项中点的距离,得出答案.解:到A项点的距离为=,到B项点的距离为=3到C项点的距离为=到D项点的距离为=5故选A点评:本题主要考查了两点间的距离公式的应用.属基础题.25.已知两点M1(﹣1,0,2),M2(0,3,﹣1),此两点间的距离为()A.B.C.19D.11【答案】A【解析】直接利用空间两点间的距离公式求出两点间的距离.解:两点M1(﹣1,0,2),M2(0,3,﹣1),此两点间的距离为:=故选A.点评:本题是基础题,考查空间两点间的距离的求法,注意正确应用距离公式,考查计算能力.26.若向量在y轴上的坐标为0,其他坐标不为0,那么与向量平行的坐标平面是()A.xOy平面B.xOz平面C.yOz平面D.以上都有可能【答案】B【解析】根据向量在y轴上的坐标为0,其他坐标不为0,设出向量的坐标,并用与坐标轴平行的单位向量表示出来,即可找到答案.解:设=(a,0,b),(a≠0,b≠0)∴(分别是x,z轴上的单位向量)∴与向量平行的坐标平面是xoz平面.故选B.点评:此题是个基础题.考查空间点、线、面的位置关系.27.在z轴上与点A(﹣4,1,7)和点B(3,5,﹣2)等距离的点C的坐标为.【答案】(0,0,)【解析】根据C点是z轴上的点,设出C点的坐标(0,0,z),根据C点到A和B的距离相等,写出关于z的方程,解方程即可得到C的竖标,写出点C的坐标.解:由题意设C(0,0,z),∵C与点A(﹣4,1,7)和点B(3,5,﹣2)等距离,∴|AC|=|BC|,∴=,∴18z=28,∴z=,∴C点的坐标是(0,0,)故答案为:(0,0,)点评:本题考查两点之间的距离公式,不是求两点之间的距离,而是应用两点之间的距离相等,得到方程,应用方程的思想来解题,本题是一个基础题.28.在空间直角坐标系中,在Ox轴上的点P1的坐标特点为,在Oy轴上的点P2的坐标特点为,在Oz轴上的点P3的坐标特点为,在xOy平面上的点P4的坐标特点为,在yOz平面上的点P5的坐标特点为,在xOz平面上的点P6的坐标特点为.【答案】(x,0,0),(0,y,0),(0,0,z),(x,y,0),(0,y,z),(x,0,z).【解析】考查空间坐标系中坐标轴与坐标平面上点的坐标的结构,Ox轴上的点只有横坐标不为0;Oy轴上的点只有纵坐标不为0;Oz轴上的点只有竖坐标不为0;在xOy平面上的点竖坐标一定为0;yOz平面上的点横坐标一定为0;xOz平面上的点纵坐标一定为0;解:由空间坐标系的定义知;Ox轴上的点P1的坐标特点为(x,0,0),在Oy轴上的点P2的坐标特点为(0,y,0),在Oz轴上的点P3的坐标特点为(0,0,z),在xOy平面上的点P4的坐标特点为(x,y,0),在yOz平面上的点P5的坐标特点为(0,y,z),在xOz平面上的点P6的坐标特点为(x,0,z).故答案应依次为(x,0,0),(0,y,0),(0,0,z),(x,y,0),(0,y,z),(x,0,z).点评:考查空间坐标系的定义,训练对空间坐标系中坐标轴上的点的坐标结构与坐标平面上的点的坐标结构.29.求到两定点A(2,3,0),B(5,1,0)距离相等的点的坐标(x,y,z)满足的条件.【答案】6x﹣4y﹣13=0即为所求点所满足的条件.【解析】直接利用空间坐标系中两点间的距离公式得关于x,y的方程式,化简即可得所求的点的坐标(x,y,z)满足的条件.解:设P(x,y,z)为满足条件的任一点,则由题意,得,.∵|PA|=|PB|,平方后化简得:6x﹣4y﹣13=0.∴6x﹣4y﹣13=0即为所求点所满足的条件.点评:本题主要考查了点、线、面间的距离计算,以及空间几何体的概念、空间想象力,属于基础题.30.已知点P的坐标为(3,4,5),试在空间直角坐标系中作出点P.【答案】见解析【解析】找出P点在横轴和纵轴上的投影,以这两个投影为邻边的矩形的一个顶点是点P在xOy坐标平面上的射影,过这个射影对应的点作直线垂直于xOy坐标平面,并在此直线的xOy平面上方截取5个单位,得到要求的点.解:由P(3,4,5)可知点P在Ox轴上的射影为A(3,0,0),在Oy轴上射影为B(0,4,0),以OA,OB为邻边的矩形OACB的顶点C是点P在xOy坐标平面上的射影C(3,4,0).过C作直线垂直于xOy坐标平面,并在此直线的xOy平面上方截取5个单位,得到的就是点P.点评:本题考查空间直角坐标系,考查空间中点的坐标,是一个基础题,解题的关键是能够想象出空间图形,是一个送分题目.。

人教A版高一数学必修第一册全册复习训练题卷含答案解析(39)

人教A版高一数学必修第一册全册复习训练题卷含答案解析(39)

人教A 版高一数学必修第一册全册复习训练题卷(共30题)一、选择题(共10题)1. 设函数 f (x ) 的定义城为 A ,如果对于任意的 x 1∈A ,都存在 x 2∈A ,使得 f (x 1)+f (x 2)=2m (其中 m 为常数)成立,则称函数 f (x ) 在 A 上“与常数 m 相关联”.给定函数:① y =1x ;② y =x 3;③ y =(12)x;④ y =lnx ;⑤ y =cosx +1,则在其定义域上与常数 1 相关联的所有函数是 ( ) A .①②⑤ B .①③ C .②④⑤ D .②④2. 设全集为 R ,A ={x ∣x 2−5x −6>0},B ={x ∣−2<x <12},则 ( ) A . (∁R A )∪B =R B . A ∪(∁R B )=R C . (∁R A )∪(∁R B )=RD . A ∪B =R3. 已知函数 f (x )={log 2(x +1),x ≥11,x <1,则满足 f (2x +1)<f (3x −2) 的实数 x 的取值范围是( ) A . (−∞,0] B . (3,+∞) C . [1,3) D . (0,1)4. 已知函数 f (x )={x 2+4a,x >01+log a ∣x −1∣,x ≤0(a >0,且 a ≠1)在 R 上单调递增,若关于 x 的方程 ∣f (x )∣=x +3 恰好有两个互异的实数解,则 a 的取值范围是 ( ) A . (34,1316]B . (0,34]∪{1316}C . [14,34)∪{1316}D . [14,34]∪{1316}5. 已知 cosα+cosβ=12,sinα+sinβ=√32,则 cos (α−β)= ( ) A . −12B . −√32C . 12D . 16. 已知函数 f (x )=m 2x 2−2mx −√x +1−m 区间 [0,1] 上有且只有一个零点,则正实数 m 的取值范围是 ( ) A . (0,1]∪[2√3,+∞) B . (0,√2]∪[3,+∞)C . (0,√2]∪[2√3,+∞)D . (0,1]∪[3,+∞)7. 已知函数 f (x )=sin2x ,x ∈[a,b ],则“b −a ≥π2”是“f (x ) 的值域为 [−1,1]”的 ( ).A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8. 已知函数 f (x )={(2a −1)x +a,x ≥2log a (x −1),1<x <2 是 (1,+∞) 上的减函数,则实数 a 的取值范围是( ) A . [25,12)B . (0,25]C . (0,12)D . (0,15]9. 函数 f (x )=lnx +2x −6 的零点一定位于区间 ( ) A . (1,2) B . (2,3) C . (3,4) D . (4,5)10. 已知 a =log 0.92019,b =20190.9,c =0.92019,则 ( ) A . a <c <b B . a <b <c C . b <a <c D . b <c <a二、填空题(共10题) 11. 已知函数 f (x )=3x −13x +1,若不式 f (kx 2)+f (2x −1)<0 对任意 x ∈R 恒成立,则实数 k 的取值范围是 .12. 已知函数 f (x )=lg 1−x 1+x ,若 f (a )=b ,则 f (−a )= .13. 已知一次函数 f (x ) 满足 f [f (x )]=4x +3,且 f (x ) 在 R 上为单调递增函数,则 f (1)= .14. 已知 f (x ) 是以 2e 为周期的 R 上的奇函数,当 x ∈(0,e ),f (x )=lnx ,若在区间 [−e,3e ],关于 x 的方程 f (x )=kx 恰有 4 个不同的解,则 k 的取值范围是 .15. 已知函数 f (x )={∣x 2+5x +4∣,x ≤0,2∣x −2∣,x >0,若函数 y =f (x )−a∣x∣ 恰有 4 个零点,则实数 a 的取值范围为 .16. 用二分法求函数 y =f (x ) 在区间 [2,4] 上零点的近似解,经验证有 f (2)f (4)<0.取区间的中点 x 1=2+42=3,计算得 f (2)f (x 1)<0,则此时零点 x 0∈ (填区间).17. 函数 f (x )=2x 与 g (x )=x 2 的图象交点个数是 个.18. 若某种参考书每本 2.5 元,则购书 x 本这种参考书的费用 y 关于 x 的函数表达式为 .19.已知13≤k<1,函数f(x)=∣2x−1∣−k的零点分别为x1,x2(x1<x2),函数g(x)=∣2x−1∣−k2k+1的零点分别为x3,x4(x3<x4),则(x4−x3)+(x2−x1)的最小值为.20.已知函数f(x)=∣∣x+1x∣∣,给出下列命题:①存在实数a,使得函数y=f(x)+f(x−a)为奇函数;②对任意实数a,均存在实数m,使得函数y=f(x)+f(x−a)关于x=m对称;③若对任意非零实数a,f(x)+f(x−a)≥k都成立,则实数k的取值范围为(−∞,4];④存在实数k,使得函数y=f(x)+f(x−a)−k对任意非零实数a均存在6个零点.其中的真命题是.(写出所有真命题的序号)三、解答题(共10题)21.如图,在平面直角坐标系xOy中,点A为单位圆与x轴正半轴的交点,点P为单位圆上的一点,且∠AOP=π4,点P沿单位圆按逆时针方向旋转角θ后到点Q(a,b).(1) 当θ=π6时,求ab的值;(2) 设θ∈[π4,π2],求b−a的取值范围.22.化简:(1) 1+sin(α−2π)sin(π+α)−2cos2(−α);(2) sin(−1071∘)sin99∘+sin(−171∘)sin(−261∘).23.已知f(x)=e x−ae x是奇函数(e为自然对数的底数).(1) 求实数a的值;(2) 求函数y=e2x+e−2x−2λf(x)在[0,+∞)上的值域;(3) 令g(x)=f(x)+x,求不等式g((log2x)2)+g(2log2x−3)≥0的解集.24. 已知 α,β 为锐角,tanα=43,cos (α+β)=−√55. (1) 求 cos2α 的值; (2) 求 tan (α−β) 的值.25. 设函数 f (x )=∣x −a ∣,a ∈R .(1) 当 a =2 时,解不等式:f (x )≥6−∣2x −5∣;(2) 若关于 x 的不等式 f (x )≤4 的解集为 [−1,7],且两正数 s 和 t 满足 2s +t =a ,求证:1s+8t ≥6.26. 已知 a ≥1,函数 f (x )=sin (x +π4),g (x )=−sinxcosx −1+√2af (x ).(1) 若 f (x ) 在 [−b,b ] 上单调递增,求正数 b 的最大值; (2) 若函数 g (x ) 在 [0,3π4] 内恰有一个零点,求 a 的取值范围.27. 对于函数 f (x )=ax 2+(b +1)x +b −2,(a ≠0),若存在实数 x 0,使 f (x 0)=x 0 成立,则称x 0 为 f (x ) 的不动点.(1) 当 a =2,b =−2 时,求 f (x ) 的不动点;(2) 当 a =2 时,函数 f (x ) 在 (−2,3) 内有两个不同的不动点,求实数 b 的取值范围; (3) 若对于任意实数 b ,函数 f (x ) 恒有两个不相同的不动点,求实数 a 的取值范围.28. 用适当的方法表示下列集合:(1) 二次函数 y =x 2−4 的函数值组成的集合; (2) 反比例函数 y =2x 的自变量组成的集合; (3) 不等式 3x ≥4−2x 的解集.29. 已知定义在 R 上的奇函数 f (x ),当 x ≤0 时,f (x )=x 2+4x .(1) 求出 f (x ) 的解析式,并直接写出 f (x ) 的单调区间. (2) 求不等式 f (x )>3 的解集.30. 经过多年的运作,“双十一”抢购活动已经演变成为整个电商行业的大型集体促销盛宴.为迎接2016 年“双十一”网购狂欢节,某厂家拟投入适当的广告费,对网上所售产品进行促销.经调查测算,该促销产品在“双十一”的销售量 p 万件与促销费用 x 万元满足 p =3−2x+1(其中 0≤x ≤a,a为正常数).已知生产该产品还需投入成本10+2p万元(不含促销费用),每一件产品的)元,假定厂家的生产能力完全能满足市场的销售需求.销售价格定为(4+20p(1) 将该产品的利润y万元表示为促销费用x万元的函数;(2) 促销费用投入多少万元时,厂家的利润最大?并求出最大利润的值.答案一、选择题(共10题) 1. 【答案】D【解析】若在其定义域上与常数 1 相关联,则满足 f (x 1)+f (x 2)=2. ① y =1x 的定义域为 {x∣ x ≠0},由 f (x 1)+f (x 2)=2 得 1x 1+1x 2=2,即 1x 2=2−1x 1,当 x 1=12 时,2−1x 1=2−2=0,此时 1x 2=0 无解,不满足条件;② y =x 3 的定义域为 R ,由 f (x 1)+f (x 2)=2 得 (x 1)3+(x 2)3=2,即 x 2=√2−x 133唯一,满足条件;③ y =(12)x 定义域为 R ,由 f (x 1)+f (x 2)=2 得 (12)x 1+(12)x 2=2,即 (12)x 2=2−(12)x 1,当 x 1=−2 时,(12)x 2=2−(12)x 1=2−4=−2,无解,不满足条件;④ y =lnx 定义域为 {x∣ x >0},由 f (x 1)+f (x 2)=2 得 lnx 1+lnx 2=2,得 lnx 1x 2=2, 即 x 1x 2=e 2,x 2=e 2x 1,满足唯一性,满足条件;⑤ y =cosx +1 的定义域为 R ,由 f (x 1)+f (x 2)=2 得 cosx 1+cosx 2=2,得 cosx 2=2−cosx 1,当 x 1=π3 时,cosx 2=2−cosx 1=2−0=2,无解,不满足条件. 故满足条件的函数是②④.【知识点】余弦函数的性质、对数函数及其性质、幂函数及其性质、指数函数及其性质2. 【答案】D【知识点】交、并、补集运算3. 【答案】B【解析】法一:由 f (x )={log 2(x +1),x ≥11,x <1可得当 x <1 时,f (x )=1;当 x ≥1 时,函数 f (x ) 在 [1,+∞) 上单调递增,且 f (1)=log 22=1, 要使得 f (2x +1)<f (3x −2),则 {2x +1<3x −2,3x −2>1, 解得 x >3,即不等式 f (2x +1)<f (3x −2) 的解集为 (3,+∞). 法二:当 x ≥1 时,函数 f (x ) 在 [1,+∞) 上单调递增,且 f (x )≥f (1)=1, 要使 f (2x +1)<f (3x −2) 成立,需 {2x +1≥1,2x +1<3x −2 或 {2x +1<1,3x −2>1,解得 x >3.【知识点】函数的单调性4. 【答案】D【解析】由函数的解析式可知函数在区间(0,+∞)上单调递增,当x≤0时,函数y=∣x−1∣单调递减,由复合函数的单调性法则可知:0<a<1,且函数在x=0处满足:02+4a≥1+log a∣0−1∣,解得:a≥14,故14≤a<1,方程∣f(x)∣=x+3恰有两个不相等的实数解,则函数∣f(x)∣与函数y=x+3的图象有且仅有两个不同的交点,绘制函数∣f(x)∣的图象如图中虚线所示,令1+log a∣x−1∣=0可得:x=1±1a,由14≤a<1可知1+1a>1,1−1a≥−3,则直线y=x+3与函数∣f(x)∣的图象在区间(−∞,0]上存在唯一的交点,原问题转化为函数y=x+3与二次函数y=x2+4a(14≤a<1)在区间(0,+∞)上存在唯一的交点,很明显当4a≤3,即a≤34时满足题意,当直线与二次函数相切时,设切点坐标为(x0,x02+4a),亦即(x0,x0+3),由函数的解析式可得:yʹ=2x,故2x0=1,x0=12,则x0+3=72,故切点坐标(12,72),从而x02+4a=72,即14+4a=72,a=1316.据此可得:a的取值范围是[14,34]∪{1316}.【知识点】函数的零点分布5. 【答案】A【解析】由 cosα+cosβ=12,sinα+sinβ=√32, 两边平方相加得,(cosα+cosβ)2+(sinα+sinβ)2=(12)2+(√32)2=1,所以 2+2cosαcosβ+2sinαsinβ=1, 即 2(cosαcosβ+sinαsinβ)=−1, 所以 cos (α−β)=−12. 故选A .【知识点】两角和与差的余弦6. 【答案】D【解析】由 f (x )=m 2x 2−2mx −√x +1−m =0, 得 m 2x 2−2mx +1=√x +m ,令 g (x )=m 2x 2−2mx +1=(mx −1)2,ℎ(x )=√x +m ,问题等价于函数 g (x )=(mx −1)2 和 ℎ(x )=√x +m 的图象在区间 [0,1] 上有且只有一个交点. 又函数 g (x )=(mx −1)2 的图象为经过点 (0,1),对称轴为 x =1m 的抛物线,函数 ℎ(x )=√x +m 在区间 [0,1] 上单调递增,且图象经过点 (0,m ) 和 (1,1+m ). ①当 0<m ≤1 时,1m ≥1,所以函数 g (x )=(mx −1)2 在区间 [0,1] 上单调递减, 又当 0<m ≤1 时,g (1)=(m −1)2<1,ℎ(1)=1+m >1, 所以 g (1)<ℎ(1),所以函数 g (x )=(mx −1)2 和 ℎ(x )=√x +m 的图象在区间 [0,1] 上有且只有一个交点. ②当 m >1 时,0<1m<1,在同一坐标系内做出两个函数的图象,如图所示. 由图形可得,要使两个函数的图象有且只有一个交点, 则需满足当 m >1 时,g (1)≥ℎ(1), 即 {m >1,m 2−3m ≥0,解得 m ≥3.综上,正实数 m 的取值范围是 (0,1]∪[3,+∞).【知识点】函数的零点分布7. 【答案】B【解析】 f (x ) 的最小正周期 T =2π2=π,所以当 x ∈[a,b ] 时,f (x )∈[−1,1],则 b −a ≥π2 恒成立, 而当 a =0,b =π2时,a −b ≥π2,此时 f (x )∈[0,1],故“b −a ≥π2”是“f (x ) 的值域为 [−1,1]”的必要而不充分条件.故B 选项符合题意.【知识点】Asin(ωx+ψ)形式函数的性质8. 【答案】B【解析】因为函数 f (x )={(2a −1)x +a,x ≥2log a (x −1),1<x <2 是 (1,+∞) 上的减函数,所以 {2a −1<0,0<a <1,log a 1≥2(2a −1)+a,即 {a <12,0<a <1,a ≤25,解得 0<a ≤25.【知识点】函数的单调性9. 【答案】B【知识点】零点的存在性定理10. 【答案】A【解析】因为 a <0,b >1,0<c <1, 所以 a <c <b .【知识点】对数函数及其性质、指数函数及其性质二、填空题(共10题) 11. 【答案】 (−∞,−1)【解析】易证 f (x )=3x −13x +1 为奇函数,所以 f (kx 2)+f (2x −1)<0⇒f (kx 2)<f (1−2x ). 因为 f (x )=3x −13x +1=1−23x +1,所以 f (x ) 在 R 上单调递增,所以 f (kx 2)<f (1−2x )⇒kx 2<1−2x ⇒kx 2+2x −1<0 在 R 上恒成立, 所以 {k <0,Δ=4+4k <0, 解得 k <−1,所以实数 k 的取值范围是 (−∞,−1).【知识点】函数的奇偶性、函数的单调性12. 【答案】 −b【解析】由 1−x1+x >0,得 {1−x >0,1+x >0, 或 {1−x <0,1+x <0,所以 −1<x <1.故 f (x ) 的定义域为 (−1,1),而 f (−x )=lg 1+x1−x =lg (1−x 1+x )−1=−lg 1−x1+x =−f (x ),所以 f (x ) 为奇函数,所以 f (−a )=−f (a )=−b . 【知识点】对数函数及其性质13. 【答案】 3【解析】根据题意,函数 f (x ) 是一次函数,设 f (x )=ax 十b ,则 f [f (x )]=a (ax +b )+b =a 2x +ab +b =4x +3,则有 {a 2=4,ab +b =3.解得:{a =2,b =1, 或 {a =−2,b =−3.又由 f (x ) 在 R 上为单调递增函数,则 f (x )=2x +1, 故 f (1)=2+1=3. 【知识点】函数的单调性14. 【答案】 (−∞,−1e]∪[13e ,1e)【知识点】函数的零点分布15. 【答案】(1,2)【解析】考查函数 y =f (x ) 图象与 y =a ∣x ∣ 图象的交点的情况,根据图象,得 a >0. 当 a =2 时,函数 y =f (x ) 与 y =a ∣x ∣ 图象有 3 个交点; 当 y =a ∣x ∣(x ≤0) 图象与 y =∣x 2+5x +4∣ 图象相切时,在整个定义域内,函数 y =f (x ) 图象与 y =a ∣x ∣ 图象有 5 个交点, 此时,由 {y =−ax,y =−x 2−5x −4, 得 x 2+(5−a )x +4=0.由 Δ=0,解得 a =1 或 a =9(舍去).故当 1<a <2 时,函数 y =f (x ) 与 y =a ∣x ∣ 图象有 4 个交点.【知识点】函数零点的概念与意义、函数图象16. 【答案】 (2,3)【解析】因为 x 1=3,且 f (2)⋅f (3)<0,所以 x 0∈(2,3). 【知识点】零点的存在性定理17. 【答案】 3【知识点】函数的零点分布18. 【答案】 y =2.5x ,x ∈N ∗【知识点】函数的解析式的概念与求法19. 【答案】log23【解析】f(x)=∣2x−1∣−k=0⇒2x1=1−k,2x2=1+k⇒x1=log2(1−k),x2=log2(1+k),g(x)=∣2x−1∣−k2k+1=0⇒2x3=k+12k+1,2x4=3k+12k+1⇒x3=log2k+12k+1,x4=log23k+12k+1,由(1)(2)得(x4−x3)+(x2−x1)=log23k+11−k =log2(41−k−3),因为13≤k<1,故(x4−x3)+(x2−x1)≥log23.【知识点】函数的零点分布20. 【答案】②③④【知识点】函数的零点分布三、解答题(共10题)21. 【答案】(1) 由三角函数的定义,可得P(cosπ4,sinπ4),Q(cos(π4+θ),sin(π4+θ)).当θ=π6时,Q(cos5π12,sin5π12),即a=cos5π12,b=sin5π12,所以ab=cos5π12sin5π12=12×2×cos5π12sin5π12=12×sin5π6=14.(2) 因为Q(cos(π4+θ),sin(π4+θ)),所以a=cos(π4+θ),b=sin(π4+θ),由三角恒等变换的公式,化简可得:b−a=sin(π4+θ)−cos(π4+θ)=√2[sin(π4+θ)cosπ4−cos(π4+θ)sinπ4]=√2sinθ,因为θ∈[π4,π2],所以1≤√2sinθ≤√2.即b−a的取值范围为[1,√2].【知识点】任意角的三角函数定义、Asin(ωx+ψ)形式函数的性质22. 【答案】(1) −cos2a.(2) 0.【知识点】诱导公式23. 【答案】(1) 因为f(x)的定义域为R,f(x)为奇函数,所以f(0)=0,故1−a=0,即a=1.经检验,满足题意.(2) 设e x−1e x =t(t≥0),则e2x+1e2x=t2+2,设y=ℎ(t)=t2−2λt+2=(t−λ)2+2−λ2,t∈[0,+∞).①当λ≤0时,ℎ(t)≥ℎ(0),所以函数的值域为[2,+∞);②当λ>0时,ℎ(t)≥ℎ(λ),所以函数的值域为[2−λ2,+∞).(3) 因为g(x)的定义域为R,f(x)为奇函数,所以g(−x)=f(−x)+(−x)=−f(x)−x=−(f(x)+x)=−g(x),故g(x)为奇函数.任取x1,x2,且x1<x2,则g(x1)−g(x2)=(e x1−e x2)−(1e x1−1e x2)+(x1−x2)=(e x1−e x2)(1+1e x1+x2)+(x1−x2),因为x1<x2,所以(e x1−e x2)(1+1e x1+x2)<0,x1−x2<0,所以g(x1)−g(x2)<0,所以g(x1)<g(x2),故g(x)在R上单调递增.由g((log2x)2)+g(2log2x−3)≥0,得g((log2x)2)≥−g(2log2x−3),即g((log2x)2)≥g(−2log2x+3),所以(log2x)2≥−2log2x+3,所以(log2x)2+2log2x−3≥0,解得log2x≥1或log2x≤−3,故x≥2或0<x≤18.故原不等式的解集为(0,18]∪[2,+∞).【知识点】对数函数及其性质、函数的单调性、函数的奇偶性24. 【答案】(1) 因为 tanα=43,tanα=sinαcosα, 所以 sinα=43cosα,因为 sin 2α+cos 2α=1,所以 cos 2α=925, 因此,cos2α=2cos 2α−1=−725.(2) 因为 α,β 为锐角,所以 α+β∈(0,π), 因为 cos (α+β)=−√55, 所以 sin (α+β)=√1−cos 2(α+β)=2√55.因此 tan (α+β)=−2, 因为 tanα=43,所以 tan2α=2tanα1−tan 2α=−247,因此tan (α−β)=tan [2α−(α+β)]=tan2α−tan (α+β)1+tan2αtan (α+β)=−211.【知识点】两角和与差的正切、二倍角公式25. 【答案】(1) 当 a =2 时,不等式:f (x )≥6−∣2x −5∣,可化为 ∣x −2∣+∣2x −5∣≥6. ① x ≥2.5 时,不等式可化为 x −2+2x −5≥6,所以 x ≥133;② 2≤x <2.5,不等式可化为 x −2+5−2x ≥6,所以 x ∈∅; ③ x <2,不等式可化为 2−x +5−2x ≥6,所以 x ≤13,综上所述,不等式的解集为 (−∞,13]∪[133,+∞).(2) 不等式 f (x )≤4 的解集为 [a −4,a +4]=[−1,7], 所以 a =3,所以 1s +8t =13(1s +8t )(2s +t )=13(10+ts +16s t)≥6,当且仅当 s =12,t =2 时取等号.【知识点】绝对值不等式的求解、均值不等式的应用26. 【答案】(1) 由2kπ−π2≤x+π4≤2kπ+π2,k∈Z,得2kπ−3π4≤x≤2kπ+π4,k∈Z.因为f(x)在[−b,b]上单调递增,令k=0,得−3π4≤x≤π4是f(x)的一个单调递增区间,所以{b≤π4,−b≥−3π4,解得b≤π4,可得正数b的最大值为π4.(2) g(x)=−sinxcosx+√2af(x)−1=−sinxcosx+a(sinx+cosx)−1,设t=sinx+cosx+√2sin(x+π4),当x∈[0,3π4]时,t∈[0,√2].它的图形如图所示.又sinxcosx=12(t2−1),则−sinxcosx+a(sinx+cosx)−1=12t2+at−12,t∈[0,√2],令ℎ(t)=−12t2+at−12,则函数g(x)在[0,3π4]内恰有一个零点,转化为ℎ(t)=−12t2+at−12在[0,√2]内恰有一个零点.①当t=0时,ℎ(t)无零点.②当t=√2时,由√2a−32=0,得a=3√24,把a=3√24代入−12t2+at−12=0中,得−12t2+3√24t−12=0,解得t1=√2,t2=√22,不符合题意.③当0<t<√2时,若Δ=a2−1=0,得a=1,此时t=1,由t=√2sin(x+π4)的图象可知不符合题意;若Δ=a2−1>0,即a>1,设−12t2+at−12=0的两根分别为t1,t2,由t1t2=1,且抛物线的对称轴为t=a≥1,要使ℎ(t)=−12t2+at−12在[0,√2]内恰有一个零点,则两同时为正,且一个根在(0,1)内,另一个根在(√2,+∞)内,所以{ℎ(1)>0,ℎ(√2)>0,解得a>3√24.综上,a的取值范围为(3√24,+∞).【知识点】Asin(ωx+ψ)形式函数的性质27. 【答案】(1) 当a=2,b=−2时,f(x)=2x2−x−4,所以由 f (x )=x 得 x 2−x −2=0,所以 x =−1 或 x =2, 所以 f (x ) 的不动点为 −1,2.(2) 当 a =3 时,f (x )=2x 2+(b +1)x +b −2, 由题意得 f (x )=x 在 (−2,3) 内有两个不同的不动点,即方程 2x 2+bx +b −2=0 在 (−2,3) 内的两个不相等的实数根, 设 g (x )=2x 2+bx +b −2,所以只须满足 {g (−2)=8−2b +b −2>0,g (3)=18+3b +b −2>0,−2<−b4<3,b 2−8(b −2)>0, 所以 {b <6,b >−4,−12<b <8,b ≠4, 所以 −4<b <4 或 4<b <6.(3) 由题意得:对于任意实数 b ,方程 ax 2+bx +b −2=0 总有两个不相等的实数解, 所以 {a ≠0,Δ=b 2−4a (b −2)>0,所以 b 2−4ab +8a >0 对 b ∈R 恒成立, 所以 16a 2−32a <0,所以 0<a <2.【知识点】函数的零点分布28. 【答案】(1) {y∣ y ≥−4}. (2) {x∣ x ≠0}. (3) {x∣ x ≥45}.【知识点】集合的表示方法29. 【答案】(1) 当 x >0 时,−x <0,f (−x )=(−x )2+4(−x )=x 2−4x , 因为 f (x ) 是定义在 R 上的奇函数, 所以 f (x )=−f (x )=−x 2+4x , 所以 f (x )={x 2+4x,x ≤0−x 2+4x,x >0,f (x ) 的单调减区间为 (−∞,−2) 和 (2,+∞),单调增区间为 (−2,2).(2) 当 x ≤0 时,x 2+4x >3,即 x 2+4x −3>0, 即 x <−2−2√7 或 x >−2+2√7, 因为 x ≤0,所以 x <−2−2√7, 当 x >0 时,−x 2+4x >3,即 x 2−4x +3<0,即 (x −1)(x −3)<0,解得 1<x <3.综上,不等式f(x)>3的解集为(−∞,−2−2√7)∪(1,3).【知识点】函数的奇偶性、函数不等式的解法30. 【答案】(1) 由题意知,t=(4+20p)p−x−(10+2p),将p=3−2x+1代入化简得:y=16−4x+1−x(0≤x≤a).(2) y=17−(4x+1+x+1)≤17−2√4x+1×(x+1)=13,当且仅当4x+1=x+1,即x=1时,上式取等号,当a≥1时,促销费用投入1万元,厂家的利润最大;当a<1时,y=17−(4x+1+x+1)在[0,a]上单调递增,所以x=a时,函数有最大值,即促销费用投入a万元时,厂家的利润最大.综上,当a≥1时,促销费用投入1万元,厂家的利润最大;当a<1时,促销费用投入a万元时,厂家的利润最大.【知识点】均值不等式的实际应用问题、建立函数表达式模型。

高一数学 课堂训练_1-2

高一数学 课堂训练_1-2

第1章第2节时间:45分钟满分:100分一、选择题(每小题7分,共42分)1. [2011·天津]设x,y∈R,则“x≥2且y≥2”是“x2+y2≥4”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件答案:A解析:x≥2,y≥2⇒x2≥4,y2≥4⇒x2+y2≥8>4,又当x2+y2≥4时,推不出x≥2,y≥2,例如x=0,y=-2.故x≥2,y≥2是x2+y2≥4的充分而不必要条件,故选A.2. [2012·浙江省台州市调研]有关下列命题,其中说法错误的是()A. 命题“若x2-3x-4=0,则x=4”的逆否命题为“若x≠4,则x2-3x-4≠0”B. “x2-3x-4=0”是“x=4”的必要不充分条件C. 若p∧q是假命题,则p,q都是假命题D. 命题p:∃x∈R,使得x2+x+1<0,则綈p:∀x∈R,都有x2+x+1≥0答案:C解析:选项A根据逆否命题的写法,是正确的;选项B“x2-3x-4=0”不能推出“x =4”,但是“x=4”能推出“x2-3x-4=0”所以B正确;选项C中若p∧q是假命题,只需要其中一个是假命题即可,故选项C错误.根据特称命题与全称命题的否定,选项D正确.3. [2012·郑州四中第一次调考]命题“若p不正确,则q不正确”的逆命题的等价命题是()A. 若q不正确,则p不正确B. 若q不正确,则p正确C. 若p正确,则q不正确D. 若p正确,则q正确答案:D解析:互为逆否的命题相互等价.4. [2012·东莞一模]已知命题p :∃x ∈(-∞,0),2x <3x ;命题q :∀x ∈(0,π2),cos x <1,则下列命题为真命题的是( )A. p ∧qB. p ∨(綈q )C. (綈p )∧qD. p ∧(綈q )答案:C解析:在x ∈(-∞,0)上,y =2x 的图象恒在y =3x 的上方,所以不存在这样的x 使得2x <3x 成立,命题p 为假命题,命题q 为真命题,所以(綈p )∧q 为真命题,故选C.5. 已知p :一元二次方程ax 2+2x +1=0(a ≠0)有一个正根和一个负根,则p 的一个充分不必要条件是( )A. a <0B. a >0C. a <-1D. a <1答案:C解析:“一元二次方程ax 2+2x +1=0(a ≠0)有一个正根和一个负根”⇔⎩⎪⎨⎪⎧22-4a >01a <0⇔a <0,因为{a |a <0} {a |a <-1},所以p 的一个充分不必要条件是a <-1,故选C.6. [原创题]已知条件p :4x -1≤-1,条件q :x 2+x <a 2-a ,且綈q 的一个充分不必要条件是綈p ,则a 的取值范围是( )A. [-2,-12]B. [12,2] C. [-1,2] D. (-2,12]∪[2,+∞)答案:C解析:由4x -1≤-1,即4x -1+1≤0,化简,得x +3x -1≤0,解得-3≤x <1;由x 2+x <a 2-a ,得x 2+x -a 2+a <0,由綈q 的一个充分不必要条件是綈p ,可知綈p 是綈q 的充分不必要条件,即p 为q 的一个必要不充分条件,即条件q 对应的x 取值集合是条件p 对应的x 取值集合的真子集. 设f (x )=x 2+x -a 2+a ,如图,则⎩⎪⎨⎪⎧f (-3)=-a 2+a +6>0f (1)=-a 2+a +2≥0, ∴⎩⎪⎨⎪⎧-2<a <3-1≤a ≤2, ∴-1≤a ≤2,故选C.二、填空题(每小题7分,共21分)7. [变式题]对于集合A ,B 及元素x ,若A ⊆B ,则x ∈B 是x ∈A ∪B 的________.(填充分不必要条件、必要不充分条件、充要条件、既不充分也不必要条件)答案:充要条件解析:根据并集的概念,由x ∈B 显然可得x ∈A ∪B ;反之,由于A ⊆B ,则A ∪B =B ,所以由x ∈A ∪B 也可以得到x ∈B .故x ∈B 是x ∈A ∪B 的充要条件.8.已知命题p :|2x -3|>1,命题q :log 12(x 2+x -5)<0,则綈p 是綈q 的________(填充分不必要条件、必要不充分条件、充要条件).答案:充分不必要条件解析:p :{x |x >2或x <1},由x 2+x -5>1得x >2或x <-3,∴q :{x |x >2或x <-3}. 易知q ⇒p ,但pq ,即綈p ⇒綈q ,綈q綈p .故填充分不必要条件.9. [2012·山东济宁模拟]给出下列结论:①命题p :a >23时,函数y =(3a -1)x 在(-∞,+∞)上是增函数;命题q :n ∈N *时,函数y =x n 在(-∞,+∞)上是增函数,则命题p ∧q 是真命题;②命题:“若lg x >lg y ,则x >y ”的逆命题是真命题;③已知直线l 1:ax +3y -1=0,l 2:x +by +1=0,“若l 1⊥l 2,则ab =-3”是假命题;④设α、β是两个不同的平面,a 、b 是两条不同的直线.“若a ∥α,b ∥β,a ∥b ,则α∥β”是假命题.其中正确结论的序号是__________.(把你认为正确结论的序号都填上).答案:③④解析:对于①,由a >23,得3a -1>1,即命题p 正确;当n 取偶数时,函数y =x n 在(-∞,+∞)上不是增函数,即命题q 不正确,命题p ∧q 是假命题.对于②,该命题的逆命题是“若x >y ,则lg x >lg y ”,显然是假命题.对于③,当a =b =0时,l 1⊥l 2,这与ab =-3相矛盾.④显然是假命题,故③④的判断是正确的. 三、解答题(10、11题12分、12题13分)10.判断命题“若a ≥0,则x 2+x -a =0有实根”的逆否命题的真假. 解:解法一:写出逆否命题进行判断. 原命题:若a ≥0,则x 2+x -a =0有实根. 逆否命题:若x 2+x -a =0无实根,则a <0. 判断如下:∵x 2+x -a =0无实根, ∴Δ=1+4a <0,∴a <-14<0,∴“若x 2+x -a =0无实根,则a <0”为真命题.解法二:利用原命题与逆否命题同真同假(即等价关系)判断. ∵a ≥0,∴4a ≥0,∴4a +1>0,∴方程x 2+x -a =0的判别式Δ=4a +1>0, ∴方程x 2+x -a =0有实根.故原命题“若a ≥0,则x 2+x -a =0有实根”为真. 又因原命题与其逆否命题等价,所以“若a ≥0,则x 2+x -a =0有实根”的逆否命题为真. 11.已知命题p :A ={x |a -1<x <a +1}, 命题q :B ={x |x 2-4x +3≥0}, 若綈q 是p 的必要条件,求实数a . 解:由题意B ={x |x ≥3或x ≤1}, ∴綈q :{x |1<x <3},∵綈q 是p 的必要条件即p ⇒綈q , ∴A ⊆∁R B =(1,3),∴⎩⎪⎨⎪⎧a +1≤3a -1≥1,∴a =2. 12. [2012·济宁市第一中学第一次质量检测]已知全集U =R ,非空集合A ={x |x -2x -(3a +1)<0},B ={x |x -a 2-2x -a<0}.(1)当a =12时,求(∁U B )∩A ;(2)命题p :x ∈A ,命题q :x ∈B ,若q 是p 的必要条件,求实数a 的取值范围. 解:(1)当a =12时,A ={x |2<x <52},B ={x |12<x <94},∴∁U B ={x |x ≤12或x ≥94},∴(∁U B )∩A ={x |94≤x <52}.(2)由若q 是p 的必要条件,即p ⇒q ,可知A ⊆B . ∵a 2+2>a ,∴B ={x |a <x <a 2+2}.当3a +1>2,即a >13时,A ={x |2<x <3a +1},∴⎩⎪⎨⎪⎧a ≤2,a 2+2≥3a +1,解得13<a ≤3-52;当3a +1=2,即a =13时,A =Ø,不符合题意,舍去;当3a +1<2,即a <13时,A ={x |3a +1<x <2},⎩⎪⎨⎪⎧a ≤3a +1,a 2+2≥2,解得-12≤a <13.综上所述,a 的取值范围是[-12,13)∪(13,3-52].。

【高一】高一数学上册第三章课堂练习题(附答案)

【高一】高一数学上册第三章课堂练习题(附答案)

【高一】高一数学上册第三章课堂练习题(附答案)一、1.方程x-1=lgx必有一个根的区间是( )A.(0.1,0.2) B.(0.2,0.3)C.(0.3,0.4)D.(0.4,0.5)[答案] A[解析] 设f(x)=x-1-lgx,f(0.1)=0.1>0,f(0.2)=0.2-1-lg0.2=0.2-lg2<0∴f(0.1)f(0.2)<0,故选A.2.实数a、b、c是图象连续不断的函数y=f(x)定义域中的三个数,且满足aA.2B.奇数C.偶数D.至少是2[答案] D[解析] 由f(a)f(b)<0 知y=f(x)在(a,b)上至少有一实根,由f(b)f(c)<0知y=f(x)在(b,c)上至少有一实根,故y=f(x)在(a,c)上至少有2实根.3.已知函数f(x)=ex-x2+8x,则在下列区间中f(x)必有零点的是( )A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)[答案] B[解析] f(-1)=1e-9<0,f(0)=e0=1>0,故f(x)在(-1,0)上有一实数解,故选B.4.某企业2021年12月份的产值是这年1月份产值的p倍,则该企业2021年年度产值的月平均增长率为( )A.pp-1B.11p-1C.11pD.p-111[答案] B[解析] 设1月份产值为a,增长率为x,则ap=a(1+x)11,∴x=11p-1,故选B.5.(09?福建文)下列函数中,与函数y=1x有相同定义域的是( )A.f(x)=lnxB.f(x)=1xC.f(x)=xD.f(x)=ex[答案] A[解析] 函数y=1x的定义域为(0,+∞),故选A.6.(09?宁夏海南文)用min{a,b,c}表示a,b,c三个数中的最小值设f(x)=min{2x,x+2,10-x}(x≥0),则f(x)的最大值为( )A.4 B.5 C.6 D.7[答案] C[解析] 由题意,可画下图:f(x)的最大值在A点,由y=x+2y=10-x,得x=4y=6,∴f(x)的最大值为6.7.对任意实数x>-1,f(x)是2x,log12(x+1)和1-x中的最大者,则f(x)的最小值( )A.在(0,1)内B.等于1C.在(1,2)内D.等于2[答案] B[解析] 在同一坐标系中,作出函数y=2x,y=log12(x+1),y=1-x的图象,由条件知f(x)的图象是图中实线部分,显见f(x)的最小值在y=2x与y=1-x交点(0,1)处取得.∴最小值为f(0)=1.8.(江门一中2021~2021高一期末)设f(x)=2x-x-4,x0是函数f(x)的一个正数零点,且x0∈(a,a+1),其中a∈N,则a=( )A.1B.2C.3D.4[答案] B[解析] 由条件知,f(a)=2a-a-4与f(a+1)=2a+1-a-5异号,取a=2,有f(2)=22-2-4<0,f(3)=23-2-5>0满足,∴a=2,故选B.二、题9.下图是某县农村养鸡行业发展规模的统计结果,那么此县养鸡只数最多的那年有________万只鸡.[答案] 31.2[解析] 2002年,30×1=30万只,2021年,26×1.2=31.2万只,2021年,22×1.4=30.8万只,2021年,18×1.6=28.8万只,2021年,14×1.8=25.2万只,2021年,10×2=20万只.10.函数y=ax2-ax+3x+1的图象与x轴有且只有一个交点,那么a的值的集合为________.[答案] {0,1,9}[解析] 当a=0时,y=3x+1的图象与x轴只有一个交点;当a≠0时,由Δ=(3-a)2-4a=0得a=1或9.三、解答题11.某公司试销一种成本单价为500元/件的新产品,规定试销时的销售单价不低于成本单价,又不高于800元/件.经试销调查,发现销售量y(件)与销售单价x(元/件),可近似看作一次函数y=kx+b的关系(如图所示).(1)根据图象,求一次函数y=kx+b的表达式;(2)设公司获得的毛利润(毛利润=销售总价-成本总价)为S元.①试用销售单价x 表示毛利润S;②试问销售单价定为多少时,该公司可获得最大毛利润?最大毛利润是多少?此时的销售量是多少?[解析] (1)由图象知,当x=600时,y=400;当x=700时,y=300,代入y=kx+b中,得400=600k+b,300=700k+b,解得k=-1,b=1 000.∴y=-x+1000(500≤x≤800).(2)销售总价=销售单价×销售量=xy,成本总价=成本单价×销售量=500y,代入求毛利润的公式,得s=xy-500y=x(-x+1000)-500(-x+1000)=-x2+1500x-500000=-(x-750)2+62500(500≤x≤800).∴当销售单价为750元/件时,可获得最大毛利润62500元,此时销售量为250件.12.2021年1月6日,我国的第13亿个小公民在北京诞生,若今后能将人口年平均递增率控制在1%,经过x年后,我国人口数为y(亿).(1)求y与x的函数关系y=f(x);(2)求函数y=f(x)的定义域;(3)判断函数f(x)是增函数还是减函数?并指出在这里函数增减有什么实际意义.[分析] 关键是理解年递增率的意义2021年人口数为13(亿)经过1年,2021年人口数为13+13×1%=13(1+1%)(亿)经过2年,2021年人口数为13(1+1%)+13(1+1%)×1%=13(1+1%)(1+1%)=13(1+1%)2(亿).经过3年,2021年人口数为13(1+1%)2+13(1+1%)2×1%=13(1+1%)3(亿).[解析] (1)由题设条件知,经过x年后我国人口总数为13(1+1%)x(亿).∴y=f(x)=13(1+1%)x.(2)∵此问题以年作为单位时间,∴此函数的定义域是N*.(3)y=13(1+1%)x是指数型函数,∵1+1%>1,13>0,∴y=13(1+1%)x是增函数,感谢您的阅读,祝您生活愉快。

高一数学 课堂训练2-10

高一数学 课堂训练2-10

第2章 第10节时间:45分钟 满分:100分一、选择题(每小题7分,共42分)1. [2012·龙岩质检]已知函数f (x )的导函数的图像如图所示,给出下列四个结论:①函数f (x )在区间(-3,1)内单调递减; ②函数f (x )在区间(1,7)内单调递减; ③当x =-3时,函数f (x )有极大值; ④当x =7时,函数f (x )有极小值. 则其中正确的是( ) A. ②④ B. ①④ C. ①③ D. ②③答案:A解析:由图像可知函数f (x )在(-3,1)内单调递增,在(1,7)内单调递减,在(7,+∞)内单调递增,所以①是错误的;②是正确的;③是错误的;④是正确的.故选A.2. [2012·山东烟台一模]已知函数f (x )的图像过点(0,-5),它的导数f ′(x )=4x 3-4x ,则当f (x )取得最大值-5时,x 的值应为( )A. -1B. 0C. 1D. ±1答案:B解析:由题意易知f (x )=x 4-2x 2-5.由f ′(x )=0得x =0或x =±1,只有f (0)=-5,故选B.3. [2012·江西七校联考]函数f (x )=x cos x 的导函数f ′(x )在区间[-π,π]上的图像大致是( )答案:A解析:令g (x )=f ′(x )=cos x -x sin x ,则g (-x )=cos(-x )-(-x )sin(-x )=cos x -x sin x =g (x ),即函数f ′(x )是偶函数,其图像关于y 轴对称.当0<x <π2时,g ′(x )=-sin x -(x cos x+sin x )<0,此时f ′(x )是减函数,因此结合各选项知,选A.4. 已知函数y =f (x )(x ∈R )的图像如图所示,则不等式xf ′(x )<0的解集为 ( )A .(-∞,12)∪(12,2)B .(-∞,0)∪(12,2)C .(-∞,12)∪(12,+∞)D .(-∞,12)∪(2,+∞)答案:B解析:由f (x )图像单调性可得f ′(x )在(-∞,12)∪(2,+∞)大于0,在(12,2)上小于0,∴xf ′(x )<0的解集为(-∞,0)∪(12,2).5. [2011·湖南]设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图像分别交于点M ,N ,则当|MN |达到最小时t 的值为( )A. 1B. 12C.52D.22答案:D解析:当x =t 时,|MN |=|f (t )-g (t )|=|t 2-ln t |,令φ(t )=t 2-ln t ,∴φ′(t )=2t -1t =2t 2-1t,可知t ∈(0,22)时,φ(t )单调递减;t ∈(22,+∞)时,φ(t )单调递增,∴t =22时|MN |取最小值.6. 设f (x )、g (x )是R 上的可导函数,f ′(x ),g ′(x )分别为f (x )、g (x )的导函数,且满足f ′(x )g (x )+f (x )g ′(x )<0,则当a <x <b 时,有( )A .f (x )g (b )>f (b )g (x )B .f (x )g (a )>f (a )g (x )C .f (x )g (x )>f (b )g (b )D .f (x )g (x )>f (b )g (a )答案:C解析:令y =f (x )·g (x ),则y ′=f ′(x )·g (x )+f (x )·g ′(x ), 由于f ′(x )g (x )+f (x )g ′(x )<0, 所以y 在R 上单调递减, 又x <b ,故f (x )g (x )>f (b )g (b ). 二、填空题(每小题7分,共21分)7. f (x )=x (x -c )2在x =2处有极大值,则常数c 的值为________. 答案:6解析:f (x )=x 3-2cx 2+c 2x , f ′(x )=3x 2-4cx +c 2, f ′(2)=0⇒c =2或c =6, 若c =2,f ′(x )=3x 2-8x +4, 令f ′(x )>0⇒x <23或x >2,f ′(x )<0⇒23<x <2,故函数在(-∞,23)及(2,+∞)上单调递增,在(23,2)上单调递减,∴x =2是极小值点, 故c =2不合题意,所以c =6.8. 关于x 的方程x 3-3x 2-a =0有三个不同的实数解,则实数a 的取值范围是__________.答案:(-4,0)解析:由题意知使函数f (x )=x 3-3x 2-a 的极大值大于0且极小值小于0即可,又f ′(x )=3x 2-6x =3x (x -2),令f ′(x )=0得x 1=0,x 2=2,当x <0时f ′(x )>0;当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0,所以当x =0时,f (x )取得极大值,即f (x )极大值=f (0)=-a ;当x =2时,f (x )取得极小值,即f (x )极小值=f (2)=-4-a ,所以⎩⎪⎨⎪⎧-a >0-4-a <0,解得-4<a <0.9. [2012·山东聊城外国语学校一模]一辆列车沿直线轨道前进,从刹车开始到停车这段时间内,测得刹车后t 秒内列车前进的距离为s =27t -0.45t 2米,则列车刹车后__________秒车停下来,期间列车前进了__________米.答案:30 405解析:s ′(t )=27-0.9t ,由瞬时速度v (t )=s ′(t )=0得t =30(秒),期间列车前进了s (30)=27×30-0.45×302=405(米).三、解答题(10、11题12分、12题13分) 10. 设函数f (x )=e x-1-x -ax 2. (1)若a =0,求f (x )的单调区间;(2)若当x ≥0时f (x )≥0,求a 的取值范围. 解:(1)a =0时,f (x )=e x-1-x ,f ′(x )=e x-1.当x ∈(-∞,0)时,f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0.故f (x )在(-∞,0)单调递减,在(0,+∞)单调递增.(2)f ′(x )=e x -1-2ax .由(1)知e x≥1+x ,当且仅当x =0时等号成立. 故f ′(x )≥x -2ax =(1-2a )x ,从而当1-2a ≥0,即a ≤12时,f ′(x )≥0(x ≥0),∴f (x )在[0,+∞)上单调递增,而f (0)=0,于是当x ≥0时,f (x )≥0. 由e x >1+x (x ≠0)可得e -x >1-x (x ≠0).从而当a >12时,f ′(x )<e x -1+2a (e -x -1)=e -x (e x -1)(e x-2a ),故当x ∈(0,ln2a )时,f ′(x )<0,∴f (x )在(0,ln2a )上单调递减, 而f (0)=0,于是当x ∈(0,ln2a )时,f (x )<0.不符合要求. 综合得a 的取值范围为(-∞,12].11. [2011·南昌一模]已知函数f (x )=⎩⎪⎨⎪⎧-x 3+x 2+bx +c (x <1)a ln x (x ≥1)的图像过点(-1,2),且在x =23处取得极值.(1)求实数b ,c 的值;(2)求f (x )在[-1,e](e 为自然对数的底数)上的最大值. 解:(1)当x <1时,f ′(x )=-3x 2+2x +b , 由题意得:⎩⎪⎨⎪⎧f (-1)=2,f ′(23)=0, 即⎩⎪⎨⎪⎧2-b +c =2,-3×49+43+b =0, 解得b =c =0. (2)由(1)知:f (x )=⎩⎪⎨⎪⎧-x 3+x 2(x <1),a ln x (x ≥1).①当-1≤x <1时,f ′(x )=-x (3x -2),解f ′(x )>0得0<x <23;解f ′(x )<0得-1≤x <0或23<x <1.∴f (x )在[-1,0)和(23,1)上单减,在(0,23)上单增,由f ′(x )=-x (3x -2)=0得x =0或x =23.∵f (-1)=2,f (23)=427,f (0)=0,f (1)=0,∴f (x )在[-1,1)上的最大值为2. ②当1≤x ≤e 时,f (x )=a ln x ,当a ≤0时,f (x )≤0;当a >0时,f (x )在[1,e]上单调递增, ∴f (x )在[1,e]上的最大值为a .∴当a ≥2时,f (x )在[-1,e]上的最大值为a ; 当a <2时,f (x )在[-1,e]上的最大值为2. 12. [2012·山东烟台一模]已知f (x )=x ln x ,g (x )= -x 2+ax -3.(1)求函数f (x )在[t ,t +2](t >0)上的最小值;(2)对一切x ∈(0,+∞),2f (x )≥g (x )恒成立,求实数a 的取值范围. 解:(1)f ′(x )=ln x +1,则当x ∈(0,1e )时,f ′(x )<0,f (x )单调递减,当x ∈(1e ,+∞)时,f ′(x )>0,f (x )单调递增.①0<t <t +2<1e,不成立舍去;②0<t <1e <t +2,即0<t <1e 时,f (x )min =f (1e )=-1e;③1e ≤t <t +2,即t ≥1e时,f (x )在[t ,t +2]上单调递增,f (x )min =f (t )=t ln t . 所以f (x )min=⎩⎨⎧-1e ,0<t <1e,t ln t ,t ≥1e.(2)2x ln x ≥-x 2+ax -3, 则a ≤2ln x +x +3x,设h (x )=2ln x +x +3x (x >0),则h ′(x )=(x +3)(x -1)x 2. ①x ∈(0,1),h ′(x )<0,h (x )单调递减; ②x ∈(1,+∞),h ′(x )>0,h (x )单调递增.所以h(x)min=h(1)=4,对一切x∈(0,+∞),2f(x)≥g(x)恒成立.所以a≤h(x)min=4,即a的取值范围是(-∞,4].。

高一数学基础训练题

高一数学基础训练题

高一数学基础训练题一、选择题:1.已知集合{}c b a A ,,=,集合{}1,0=B 。

映射)()()(:c f b f a f B A f =⋅→满足.那么这样的映射B A f →:有( )个. A 、0 B 、2 C 、3 D 、42.设的大小关系是、、,则,,c b a c b a 243.03.03log 4log -=== A.a <b <c B.a <c <b C.c <b <a D .b <a <c 3.指数函数y =f(x)的反函数的图象过点(2,-1),则此指数函数为A .x y )21(=B .x y 2=C .x y 3=D .x y 10=4.已知函数,,,且、、,00)(32213213>+>+∈--=x x x x R x x x x x x f 13x x +>0,则)()()(321x f x f x f ++的值A .一定大于零 B .一定小于零 C .等于零D .正负都有可能 5.若函数1log )(+=x x f a 在区间(-1,0)上有)(0)(x f x f ,则>的递增区间是A .(-∞,1)B .(1,+∞)C .(-∞,-1)D .(-1,+∞)6.已知b a b a 、,则2log 2log 0<<的关系是A .0<a <b <1B .0<b <a <1C .b >a >1D .a >b >17.若函数432--=x x y 的定义域为[0 , m],值域为]4,425[--,则m 的取值范围是( )A 、(0 , 4]B 、]4,23[C 、]3,23[D 、),23[+∞8.如果不等式x x m log 2-<0,在(0,21)内恒成立,那么实数m 的取值范围是( )A 、1161≠>m m 且 B 、1610<<m C 、410<<m D 、1161<≤m 9.已知函数f (x )是定义在R 上的奇函数,当x <0时,f (x )=(13)x ,那么f -1(-9)的值为A .2B .-2C .3D .-310.若x ≥0, y ≥0, 且x +2y =1, 则2x +3y 2的最小值为 ( )A. 2B. 43 C.32 D. 011.函数1log )(log 221212+-=x x y 的单调递增区间是( )(A)⎪⎪⎭⎫⎢⎣⎡+∞,284 (B)⎥⎦⎤ ⎝⎛41,0 (C)⎥⎦⎤ ⎝⎛22,0 (D) ⎥⎦⎤ ⎝⎛22,4112.若关于x 的方程043).4(9=+++x x a 有解,则实数a 的取值范围是( )A 、(-∞,-8)B 、(8,-∞-]C 、[),8+∞-D 、),(+∞-∞二、填空题:13.)2log (2)9(log )(91-==-f f x x f a ,则满足函数的值是__________________.14.使函数542+-=x x y 具有反函数的一个条件是____________________________.15.设函数)(x f y =的图象与x y 2=的图象关于直线0=-y x 对称,则函数)6(2x x f y -=的递增区间为 。

高一数学同步训练之8集合与函数复习学案

高一数学同步训练之8集合与函数复习学案

高一数学同步训练 第1页(共1页)集合与函数复习知识梳理1.集合(概念、关系和运算)2.函数的概念与性质3.一次函数与二次函数4.零点与二分法5.函数的应用 例题1.设全集{(,),},I x y x y R =∈集合3{(,)1},{(,)1}2y M x y N x y y x x -===≠+-,那么()()I I C M C N ⋂等于2.2{4,21,}A a a =--,B={5,1,9},a a --且{9}A B ⋂=,求a 的值。

3.2{60},{10}A x x x B x mx =+-==+=,且A B A ⋃=,则m 的取值范围是 4.已知集合M = {x | - 4 < x < 3},N = {x | x – t ≥0}。

(1)若M ∩N = ∅,求实数t 的取值范围; (2)若M N ,求实数t 的取值范围 5.下面函数是否表示同一个函数:{})0(1)0,(1)(,||)()1(≥-==x x x g xx x f (2)x x g x x f ==)(,)( 6.求函数的定义域:(1)0)1(311)(+-++-=x x x x f (2)2231)(xx x f --=7.(1)已知的f(x)定义域为(1,3),求f (2x-1) 的定义域; (2)已知f (x+1)的定义域为[]1,1-,求f (x) 的定义域; (3)已知f (2x+1)的定义域为[-3, 0],求f (1- x) 的定义域. 8.求下列函数的值域:(1)y=132+-x x (2)y=312-+x x (3)的值域]3,0[,542∈+-=x x x y(4)122+--=x x x x y9.已知函数⎪⎩⎪⎨⎧≥<<--≤+=)2(2)21()1(2)(2x x x x x x x f 。

(1)求)4(-f 、)3(f 、))2((-f f 的值;(2)若10)(=a f ,求a 的值.10.已知函数3(10)()[(5)](10)n n f n f f n n -≥⎧=⎨+<⎩,其中n ∈N ,则f (8)=( ) (A )6 (B )7 (C ) 2 (D )411.()x f 是R 上的增函数,A(0,-1),B(3,1)是其图象上的两点,则()11<+x f 的解集是 12.f(x)(x ∈R)是奇函数,当x ∈(0,+∞)时,xx f +=21)(,则f(0)=____ __,f(-2)= ______,当a<0时f(a)=___________.13.把函数22)(x x f =的图像向左平移3个单位,再向上平移1个单位得到函数14.某旅游商品生产企业,2007年某商品生产的投入成本为1元/件,出厂价为1.2元/件,年销售量为10000件,因2008年调整黄金周的影响,此企业为适应市场需求,计划提高产品档次,适度增加投入成本.若每件投入成本增加的比例为x (01x <<),则出厂价相应提高的比例为0.75x ,同时预计销售量增加的比例为0.8x .已知得利润=(出厂价-投入成本)⨯年销售量.(1)2007年该企业的利润是多少?(2)写出2008年预计的年利润y 与投入成本增加的比例x 的关系式;(3)为使2008年的年利润达到最大值,则每件投入成本增加的比例x 应是多少?此时最大利润是多少? 巩固练习1.已知集合{}R x x x M ∈≤-=,2|1||,⎭⎬⎫⎩⎨⎧∈≥+=Z x x x P ,115|,则P M 等于() A {}Z x x x ∈≤<,30| B {}Z x x x ∈≤≤,30| C {}Z x x x ∈≤≤-,01|D {}Z x x x ∈<≤-,01| 2.已知集使A={}0)1()1(222>++++-a a y a a y y ,B=⎭⎬⎫⎩⎨⎧≤≤+-=30,25212x x x y y ,A ∩B=φ,求实数a 的取值范围3.若集合A={x |kx 2+4x+4=0,x∈R}只有一个元素,则实数k 的值为 0或1 为( )4.已知集合{}22|190A x x ax a =-+-=,{}2|560B x x x =-+=,{}2|280C x x x =+-=。

专题02 充要条件与简易逻辑-2023学年高一数学培优练(人教A版2019第一册)(原卷版)

专题02 充要条件与简易逻辑-2023学年高一数学培优练(人教A版2019第一册)(原卷版)

专题02充要条件与简易逻辑目录【题型一】充要条件求参1:充分不必要条件求参...............................................................................................1【题型二】充要条件求参2:必要不充分条件求参.................................................................................................2【题型三】充要条件求参3:综合应用.....................................................................................................................3【题型四】全称特称命题............................................................................................................................................3【题型五】逻辑联结词求参........................................................................................................................................4【题型六】综合求参1:充要条件与函数综合.........................................................................................................5【题型七】综合求参2:充要条件与三角函数综合.................................................................................................6【题型八】综合求参3:充要条件与不等式综合.....................................................................................................6【题型九】综合求参4:简易逻辑与函数综合.........................................................................................................7【题型十】综合求参5:新定义与充要条件.............................................................................................................8培优第一阶——基础过关练........................................................................................................................................9培优第二阶——能力提升练......................................................................................................................................10培优第三阶——培优拔尖练.. (11)【题型一】充要条件求参1:充分不必要条件求参【典例分析】若不等式|1|x a -<成立的充分条件为04x <<,则实数a 的取值范围是()A .{3}a a ≥∣B .{1}a a ≥∣C .{3}a a ≤∣D .{1}aa ≤∣1.一元二次方程()22100ax x a ++=≠有一个正实数根和一个负实数根的一个充分不必要条件是()2.函数3()1f x x ax a =-+-有两个零点的一个充分不必要条件是()A .a =3B .a =2C .a =1D .a =03..集合,.若“a =1”是“A B φ⋂≠”的充分条件,则实数b的取值范围是________.【题型二】充要条件求参2:必要不充分条件求参【典例分析】已知p :201x A xx -⎧⎫=≤⎨⎬-⎩⎭,q :{}0B x x a =-<,若p 是q 的必要不充分条件,则实数a 的取值范围是()A .()2,+∞B .[)2,+∞C .(),1-∞D .(],1-∞专题1-2简易逻辑题型归类-2-【巅峰课堂】2023年高考数学一轮复习热点题型归纳与变式演练(全国通用)1下列选项中,是“∅是集合{}2|210,R M x ax x a =++=∈的真子集”成立的必要不充分条件的是()A .(,0)a ∈-∞B .(,0]a ∈-∞C .(,1]a ∈-∞D .(,2)a ∈-∞2.已知函数()283640f x x x =-+-在[)1,2上的值域为A ,函数()2x g x a =+在[)1,2上的值域为B .若x A ∈是x B ∈的必要而不充分条件,则实数a 的取值范围是()A .[)4,-+∞B .(]14,4--C .[]14,4--D .()14,+∞3.已知命题31:01x p A xx ⎧⎫-=≤⎨⎬-⎩⎭,命题{}2:30q B x x mx =--+>.若命题q 是p 的必要不充分条件,则m 的取值范围是____;【题型三】充要条件求参3:综合应用【典例分析】已知函数22log ,0()22,0x x f x x x x ⎧>=⎨++≤⎩,方程()0f x a -=有四个不同的根,记最大的根的所有取值为集合D ,则“函数()()()F x f x kx x D =-∈有两个零点”是“12k >”的.A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件1.“不等式20x x m -+>在R 上恒成立”的充要条件是()A .14m >B .14m <C .1m <D .1m >2.设集合{}20A x x =∈->R ,{}0B x x =∈<R ,(){}40C x x x =∈->R ,则“x A B ∈U ”是“x C ∈”的_______条件.(填:充分不必要、必要不充分、充要、既不充分也不必要)3.若α是β的必要非充分条件,β是γ的充要条件,γ是δ的必要非充分条件,则δ是α的___________条件.【题型四】全称特称命题【典例分析】命题“∀n ∈N *,f (n )∈N *且f (n )≤n ”的否定形式是()A .∀n ∈N *,f (n )∉N *且f (n )>nB .∀n ∈N *,f (n )∉N *或f (n )>nC .()**00N N n f n ∃∈∉,且f (n 0)>n 0D .()**00N N n f n ∃∈∉,或f (n 0)>n 01已知命题p :0x R ∃∈,01x =-或02x =,则()A .p ⌝:x R ∀∈,1x ≠-或2x ≠B .p ⌝:x R ∀∈,1x ≠-且2x ≠C .p ⌝:x R ∀∈,1x =-且2x =D .p ⌝:0x R ∃∉,01x =-或02x =2.命题“[]1,2x ∀∈,2320x x -+≤”的否定为()A .[]1,2x ∀∈,2320x x -+>B .[]01,2x ∃∈,200320x x -+≤C .[]01,2x ∃∈,200320x x -+>D .[]01,2x ∃∉,200320x x -+>3.若命题“2000R,(1)10a x x x ∃+∈-+≤”的否定是真命题,则实数a 的取值范围是()A .[]1,3-B .()1,3-C .(][),13,-∞-+∞ D .()(),13,-∞-⋃+∞【题型五】逻辑联结词求参【典例分析】命题:p 关于x 的不等式2240x ax ++>对一切x ∈R 恒成立,:q 函数()()32xf x a =-是增函数,若“p q ∨”为真命题,“p q ∧”为假命题,则实数a 取值范围为()A .()(),22,-∞-+∞B .(][),21,2-∞-C .(](],21,2-∞-D .(][),22,-∞-+∞1.已知命题p :x R ∃∈,()()2110m x ++≤,命题q :x R ∀∈,210x mx -+>恒成立.若p q∧为假命题,则实数m 的取值范围为()A .2m ≥B .2m ≤-或1m >-C .2m ≤-或2m ≥D .12m -<≤2.已知命题p :关于x 的函数234y x ax =-+在[1,)+∞上是增函数,命题q :函数(21)x y a =-为减函数,若p q ∧为真命题,则实数a 的取值范围是()A .23a ≤B .102a <<C .1223a <≤D .112a <<3已知命题2:540p x x -+≤;命题1:13q x<-,若q p ⌝∧是真命题,则x 取值范围是().A .[]1,2B .[)(]1,23,4 C .[]1,4D .[]2,3【题型六】综合求参1:充要条件与函数综合【典例分析】已知定义在R 上的偶函数()y f x =在[)0,+∞上单调递减,则对于实数a ,b ,“a b >”是“()()f a f b <”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【变式训练】1.已知实数a 满足01a <<,则“21x -<”是“函数()()2log 23a f x x x =+-单调递减”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.“10,3m ⎛⎫∈ ⎪⎝⎭”是“函数()()314,1,1m x m x f x mx x ⎧-+<=⎨-≥⎩是定义在R 上的减函数”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.使函数1,1()1,1mx f x x x x ⎧->⎪=⎨⎪-+≤⎩满足:对任意的12x x ≠,都有()()12f x f x ≠的充分不必要条件为()A .0m <或1m >B .112m -<<C .01m <<D .1122m -<<【题型七】综合求参2:充要条件与三角函数综合【典例分析】已知,αβR ∈,则“αβ=”是“tan tan αβ=”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【变式训练】1..在ABC 中,角、、A B C 的对边为,,a b c ,则“A B =”成立的必要不充分条件为()A .cos cos AB =B .sin sin A B=C .cos cos b A a B=D .cos cos a A b B=2.已知函数f (x )=sinωx (ω>0),则“函数f (x )在263,ππ⎡⎤⎢⎥⎣⎦上单调递增”是“0<ω≤2”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3.在△ABC 中,角A ,B 均为锐角,则“cosA>sinB”是“△ABC 是钝角三角形”的_____条件.(填“充分不必要”,“必要不充分”,“充要”,“既不充分又不必要”)【题型八】综合求参3:充要条件与不等式综合【典例分析】已知实数0x >,0y >,则“1xy ≤”是“224x y +≤”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【变式训练】1.已知命题2:11xp x <-,命题:()(3)0q x a x -->,若p 是q 的充分不必要条件,则实数a 的取值范围是()A .(,1]-∞B .[1,3]C .[1,)+∞D .[3,)+∞2.使得0a b >>成立的一个充分不必要条件是()A .110b a >>B .a b e e >C .22a b >D .ln ln 0a b >>3.已知实数a ,b ,则“0a b +>”是“0a a b b +>”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【题型九】综合求参4:简易逻辑与函数综合【典例分析】已知命题:p 函数()20.5log 2y x x a =++的定义域为R ,命题:q 函数()52xy a =--是减函数.若p q ∨为真命题,p q ∧为假命题,p ⌝为真命题,则实数a 的取值范围是()A .1a ≤B .12a <<C .2a <D .1a ≤或2a ≥【变式训练】1.已知命题:p 若1a >,则0.2log 0.21a a <<;命题:q 若函数22()1f x mx m x =-+在(1,)+∞上单调递增,则实数m 的取值范围为(,0)(0,2]-∞⋃,下列说法正确的是()A .p q ∧为真命题B .q 为真命题C .p 为假命题D .()p q ⌝∧为假命题2.已知命题p :()24242m m+<+⨯,命题q :函数2()(1)1f x m x mx =--+在区间3,2⎛⎫-∞ ⎪⎝⎭上单调递减.若命题“p 且q ”为假,则实数m 的取值范围为()A .3(,2⎛⎫-∞⋃+∞ ⎪⎝⎭B .)2C .(,1])-∞⋃+∞D .12,,23⎛⎤⎛⎫-∞+∞ ⎪⎥⎝⎦⎝⎭3设有两个命题p :不等式14xx e a e+>的解集为R ;q :函数()(73)x f x a =--在R 上是减函数,如果这两个命题中有且只有一个真命题,那么实数a 的取值范围是().A .12a ≤<B .723a <≤C .723a ≤<D .12a <≤【题型十】综合求参5:新定义与充要条件【典例分析】已知a 、b 、c 、d R ∈,则“{}{}max ,max ,0a b c d +>”是“{}max ,0a c b d ++>”的()注:{}max ,p q 表示p 、q 之间的较大者.A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件1.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[]k ,即{}[]5k n k n Z =+∈,给出四个结论:①2015[0]∈;②3[3]-∈;③[0][1][2][3][4]Z =⋃⋃⋃⋃;④“整数a 与b 属于同一“类””的充要条件是“[0]a b -∈”.其中正确结论的个数是()A .1个B .2个C .3个D .4个2.在下列所示电路图中,下列说法正确的是____(填序号).(1)如图①所示,开关A 闭合是灯泡B 亮的充分不必要条件;(2)如图②所示,开关A 闭合是灯泡B 亮的必要不充分条件;(3)如图③所示,开关A 闭合是灯泡B 亮的充要条件;(4)如图④所示,开关A 闭合是灯泡B 亮的必要不充分条件.3.对于定义在D 上的函数()f x ,点(),A m n 是()f x 图像的一个对称中心的充要条件是:对任意x D ∈都有()()22f x f m x n +-=,判断函数()32234f x x x x =+++的对称中心______.分阶培优练培优第一阶——基础过关练1.二次函数2()21f x ax x =+-在区间(,1)-∞上单调递增的一个充分不必要条件为()A .1a >B .2a <-C .102a -<<D .01a <<2.设命题p :431x -≤,命题q :()()22110x a x a a -+++≤,若q 是p 的必要不充分条件,则实数a 的取值范围是______3.已知集合261|()13x x A x --⎧⎫=≤⎨⎬⎩⎭,3{|log ()}1B x x a ≥=+,若“x ∈A ”是“x ∈B ”的必要不充分条件,则实数a 的取值范围是________.4.已知命题p :∀x >0,总有(x +1)ln x >1,则¬p 为()A .∃x 0≤0,使得(x 0+1)ln x 0≤1B .∃x 0>0,使得(x 0+1)ln x 0≤1C .∃x 0>0,总有(x 0+1)ln x 0≤1D .∃x 0≤0,总有(x 0+1)ln x 0≤15.已知命题:p “[]0,1x ∀∈,x a e ≥”;命题:q “0x R ∃∈,使得20040x x a ++=”.若命题“p q ∧”是真命题,则实数a 的取值范围为()A .[]1,4B .[]1,e C .[],4e D .[)4,+∞6.“ln ln a b ≥”是“1122a b ≥”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.“26x k ππ=+,k Z ∈”是“1sin 2x =”成立的____________条件.8.已知集合1{|0}1x A x x -=<+,B ={x |(x −b )2<a },若“a =1”是“A B ⋂≠∅”的充分条件,则实数b 的取值范围是________.9.设[]:2,3p x ∀∈,1kx >,:q x R ∃∈,20x x k ++≤.若p 或q 为真,p 且q 为假,则k 的取值范围为()A .11,,42⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭ B .11,42⎡⎫⎪⎢⎣⎭C .11,,42⎛⎤⎛⎫-∞⋃+∞ ⎪⎥⎝⎦⎝⎭D .11,42⎛⎫ ⎪⎝⎭10.若实数a ,b 满足0a ≥,0b ≥,且0ab =,则称a 与b 互补.记(),a b a b ϕ=-,那么“(),0a b ϕ=”是“a 与b 互补”的().A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件培优第二阶——能力提升练1.设集合{1,2}A =,2{|10}B x x ax =--≤,若x A ∈是x B ∈的充分条件,则实数a 的取值范围是________2.已知2:2310p x x -+≤,2:(21)(1)0q x a x a a -+++≤.若p ⌝是q ⌝的必要不充分条件,则实数a 的取值范围是__.3.1:123x p --≤,()22:2100q x x m m -+-≤>,且q 是p 的必要不充分条件,则实数m 的取值范围是______.4.已知()sin f x x x =-,命题P :0,2x π⎛⎫∀∈ ⎪⎝⎭,()0f x <,则()A .P 是假命题,()0,02P x f x π⎛⎫∀∈≥ ⎪⎝⎭¬:,B .P 是假命题,()000,02P x f x π⎛⎫∃∈≥ ⎪⎝⎭¬:,C .P 是真命题,()0,02P x f x π⎛⎫∀∈ ⎪⎝⎭¬:,>D .P 是真命题,()000,02P x f x π⎛⎫∃∈≥ ⎪⎝⎭¬:,5.已知命题:p 关于x 的方程210x ax ++=没有实根;命题:0q x ∀≥,20x a ->.若p ⌝和p q ∧都是假命题,则实数a 的取值范围是()A .()(),21,-∞-⋃+∞B .(]2,1-C .(]1,2D .[)1,26.设ab 为实数,则“12x<”是“12log 1x <”的()条件.A .充分必要B .充分不必要C .必要不充分D .既不充分也不必要7.已知函数()()sin f x A x =+ωϕ(0A >,0>ω),则“πb a ω->”是“函数()f x 在(),a b 上不单调”的________条件.(填“充分不必要、必要不充分、充分必要、非充分非必要”之一)8.已知a ,b ,R c ∈,则“00ab bc >⎧⎨>⎩”是“b c b ca a -+<”()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.已知命题p :函数()221f x ax x =--在()0,1内恰有一个零点;命题q :函数2-=a y x 在()0,+¥上是减函数.若()p q ∧⌝为真命题,则实数a 的取值范围是()A .()1,+¥B .(],2-∞C .(]1,2D .(],1-∞10.如果对于任意实数x ,x 表示不小于x 的最小整数.例如2.273=,11=,0.50-=.那么“x y =”是“1x y -<”的()A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件培优第三阶——培优拔尖练1.已知2:320x x α-+≤,:x a β<,若α是β的充分条件,则满足条件的最小的整数a 为_______.2.已知:条件p :120x-≥和q :()()22110x a x a a -+++<,若p ⌝是q ⌝的必要不充分条件,则实数a 的取值范围是______.3.若2320x x -+<是()()210x m x m ---<的充分不必要条件,则实数m 的取值范围是___________.4.已知命题p :{}12x x x ∃∈<<,0x a -≥,若p ⌝是真命题,则实数a 的取值范围是()A .1a <B .2a >C .2a ≤D .2a ≥5.已知:,2sin 0p x m x ∀∈-R ;:q 关于x 的方程210x mx ++=的解集至多有两个子集.若p q ∨为假命题,则实数m 的取值范围是()A .2m >B .2m <-C .2m <-或2m >D .22m -<<6.已知函数()12ax f x x +=+(R a ∈),则“12a >”是“()f x 在区间(0,+∞)上单调递增”的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件7.记集合A =[a ,b ],当θ∈,64ππ⎡⎤-⎢⎥⎣⎦时,函数f (θ)=2cos 2cos θθ+θ的值域为B ,若“x ∈A ”是“x ∈B ”的必要条件,则b ﹣a 的最小值是__.8..已知a ,b 为非零实数,则“a b <”是“a b b a <”的()A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件9.已知命题:p “x ∀∈R ,2220x x a -+>”,命题:q “函数2lg 22a y x ax ⎛⎫=-+ ⎪⎝⎭的定义域为R ”,若p q ∧为真命题,则实数a 的取值范围是()A .()1,4B .()1,3C .()1,2D .()2,410.若“()222330x k x k k -+++>”是“2340x x +-<”的必要不充分条件,则实数k 不可能是()A .8-B .5-C .1D .。

通用版高一数学集合考点专题训练

通用版高一数学集合考点专题训练

(每日一练)通用版高一数学集合考点专题训练单选题1、已知集合A={x|x2+2x−15≤0},B={−3,−1,1,3,5},则A∩B=()A.{−3,−1,1,3}B.{−3,−1,1}C.{−1,1,3}D.{−3,−1,1,3,5}答案:A解析:求出集合A,直接进行集合的交集运算.因为A={x|x2+2x−15≤0}={x|−5≤x≤3},所以A∩B={−3,−1,1,3}.故选:A小提示:本题考查集合的交集,考查运算求解能力,属于基础题.2、集合A={0,−1,a2},B={−2,a4}.若A∪B={−2,−1,0,4,16},则a=()A.±1B.±2C.±3D.±4答案:B解析:根据并集运算,结合集合的元素种类数,求得a的值.由A∪B={−2,−1,0,4,16}知,{a 2=4a 4=16 ,解得a =±2故选:B3、已知集合A ={x|x 2+2x −15≤0},B ={−3,−1,1,3,5},则A ∩B =( )A .{−3,−1,1,3}B .{−3,−1,1}C .{−1,1,3}D .{−3,−1,1,3,5}答案:A解析:求出集合A ,直接进行集合的交集运算.因为A ={x|x 2+2x −15≤0}={x|−5≤x ≤3},所以A ∩B ={−3,−1,1,3}. 故选:A小提示:本题考查集合的交集,考查运算求解能力,属于基础题.解答题4、用适当的方法表示下列集合:(1)方程组{2x −3y =14,3x +2y =8 的解集;(2)方程x 2−2x +1=0的实数根组成的集合;(3)平面直角坐标系内所有第二象限的点组成的集合;(4)二次函数y =x 2+2x −10的图象上所有的点组成的集合;(5)二次函数y =x 2+2x −10 的图象上所有点的纵坐标组成的集合. 答案:(1){(4,−2)};(2){x ∈R|x 2−2x +1=0};(3){(x,y)|x <0且y >0};(4){(x,y)|y =x 2+2x −10};(5){y|y =x 2+2x −10}.解析:描述法或列举法表示(1)、(2),描述法表示(3)、(4)、(5).(1)解方程组{2x −3y =14,3x +2y =8,得{x =4,y =−2, 故解集可用描述法表示为{(x,y)|{x =4,y =−2},也可用列举法表示为{(4,−2)}. (2)方程x 2−2x +1=0有两个相等的实数根1,因此可用列举法表示为{1},也可用描述法表示为{x ∈R|x 2−2x +1=0}.(3)集合的代表元素是点,可用描述法表示为{(x,y)|x <0且y >0}.(4)二次函数y =x 2+2x −10的图象上所有的点组成的集合中,代表元素为有序实数对(x,y),其中x ,y 满足y =x 2+2x −10,则可用描述法表示为{(x,y)|y =x 2+2x −10}.(5)二次函数y =x 2+2x −10的图象上所有点的纵坐标组成的集合中,代表元素y 是实数,故可用描述法表示为{y|y =x 2+2x −10}.小提示:本题考查集合的表示方法,属于基础题.5、已知集合A ={x|x 2+2x −a =0}.(1)若∅是A 的真子集,求a 的范围;(2)若B ={x|x 2+x =0},且A 是B 的子集,求实数a 的取值范围. 答案:(1)a ≥−1;(2)a ≤−1.解析:(1)根据∅是A 的真子集可得Δ≥0得解;(2)由A 是B 的子集对集合A 进行讨论可求解.(1)∵若∅是A 的真子集∴A={x|x2+2x−a=0}≠∅,∴Δ=4+4a≥0,∴a≥−1;(2)B={x|x2+x=0}={0,−1},∵A⊆B,∴A=∅,{0},{−1},{0,−1},A=∅,则Δ=4+4a<0,∴a<−1;A是单元素集合,Δ=4+4a=0,∴a=−1此时A={−1},符合题意;A={0,−1},0−1=−1≠−2不符合.综上,a≤−1.小提示:本题考查了集合的基本运算,分类讨论集合的包含关系求参数,属于基础题.。

高一数学必修4模块训练2答案

高一数学必修4模块训练2答案

(A) cos 80
(B) cos160 (C) cos 80 sin 80
6.函数 y Asin(x ) 在一个周期内的图象如下,此函数的解析式为
(D)
(D) sin 80 cos 80
(A)
(A) y 2 sin(2x 2 ) 3
(C) y 2 sin( x ) 23
(B) y 2 sin(2x ) 3
2
2
(A)-2
(B)-1
(C)1
(D)2
二.填空题:
(D)
9.若 a (2,3) 与 b (4, y) 共线,则 y = -6 ;
10.若 tan
1 2
,则
sin 2sin
cos 3cos
=
-3

三.解答题:
11.已知向量 a ,
b
的夹角为
60
,
且 | a | 2 ,
| b | 1 ,
4 4 81 41
12 所以 | c d | 12 2 3
12.已知函数 f (x) sin x 3 cos x 。
(Ⅰ)求 f (x) 的周期和振幅;
(Ⅱ)在给出的方格纸上用五点作图法作出 f (x) 在一个周期内的图象。
(Ⅲ)写出函数 f (x) 的递减区间。
解:(Ⅰ) y 2( 1 sin x
C y tan x 2
D y cos 4x
4.要得到 y 2sin(2x 2 ) 的图像, 需要将函数 y 2sin(2x 2 ) 的图像
3
3
2
A 向左平移 个单位
3
2
B 向右平移 个单位
3
C. 向左平移 个单位
3
D 向右平移 个单位

高一数学:函数的单调性知识点+例题讲解+课堂练习

高一数学:函数的单调性知识点+例题讲解+课堂练习

第3讲 函数的单调性教学内容一、知识梳理单调性定义设函数y =)(x f 的定义域为A ,区间A M ⊆.如果取区间M 上的任意两个值x 1 , x 2,改变量12x x x -=∆>0,则 当)()(12x f x f y -=∆>0时,就称函数)(x f 在区间M 上是增函数; 当)()(12x f x f y -=∆<0时,就称函数)(x f 在区间M 上是增函数. 如果一个函数在某个区间M 上是增函数或是减函数,就说这个函数在这个区间M 上具有单调性(区间M 称为单调区间).二、方法归纳在同一单调区间上,两个增(减)函数的和仍为增(减)函数,但单调性相同的两个函数的积未必是增函数.设[]b a x x ,,21∈,若有 (1)2121)()(x x x f x f -->0,则有[]b a x f ,)(在上是增函数.(2)2121)()(x x x f x f --<0,则有[]b a x f ,)(在上是减函数.在函数)(x f 、)(x g 公共定义域内,增函数+)(x f 增函数)(x g 是增函数; 减函数+)(x f 减函数)(x g 是减函数; 增函数-)(x f 减函数)(x g 是增函数; 减函数-)(x f 增函数)(x g 是减函数. 函数的单调性常应用于如下三类问题: (1)利用函数的单调性比较函数值的大小.(2)利用函数的单调性解不等式,常见题型是,已知函数的单调性,给出两 个函数的大小,求含于自变量中的某个特定的系数,这时就应该利用函数的单调性“脱”去抽象的函数“外衣”,以实现不等式间的转化.(3)利用函数的单调性确定函数的值域,求函数的最大值和最小值. 若函数)(x f y =在定义域()b a ,上递增,则函数值域为()(a f ,)(b f );若函数)(x f y =在定义域()b a ,上递减,则函数值域为()(b f ,)(a f ); 若函数)(x f y =在定义域[]b a , 上递增,则函数值域为 [)(a f ,)(b f ] ; 若函数)(x f y =在定义域 []b a , 上递减,则函数值域为 [)(b f ,)(a f ]; 若函数)(x f y =在定义域[]b a ,上递增,则函数的最大值为)(b f ,最小值为)(a f ;若函数)(x f y =在定义域[]b a ,上递减,则函数的最大值为)(a f ,最小值为)(b f ;三、典型例题精讲[例1]若ax y =与xb y -=在()+∞,0上都是减函数,对函数bx ax y +=3的单调性描述正确的是( )A. 在()+∞∞-,上是增函数B. 在()+∞,0上是增函数C. 在()+∞∞-,上是减函数D. 在()0,∞-上是增函数,在()+∞,0上是减函数 解析: 由函数 ax y =在()+∞,0上是减函数,得 a <0,又函数xby -=在()+∞,0上是减函数,得 b <0, 于是,函数3ax ,bx 在()+∞∞-,上都是减函数, ∴ 函数bx ax y +=3在()+∞∞-,上是减函数,故选C .【技巧提示】 熟悉函数ax y =,3ax y =,bx y =,xby =的单调性与a 、b 的符号的关系,就能正确的描述由它们组合而成的函数的单调性.[例2]求函数31)(--+=x x x f 的最大值.解析:由31431)(-++=--+=x x x x x f ,知函数31)(--+=x x x f 在其定义域 [3,+∞ )上是减函数. 所以31)(--+=x x x f 的最大值是2)3(=f .【技巧提示】 显然由31431-++=--+x x x x 使得问题简单化,当然函数定义域是必须考虑的.又例 已知[]1,0∈x ,则函数x x y --+=12的值域是 .解析:∵ x x y --+=12在[]1,0∈x 上单调递增,∴ 函数x x y --+=12的值域是[])1(),0(f f .即[]3,12-.再例 求函数x x y 21++=的值域.解析:∵ x x y 21++= 在定义域⎪⎭⎫⎢⎣⎡+∞-,21上是增函数,∴ 函数x x y 21++=的值域为 ⎪⎭⎫⎢⎣⎡+∞-,21.[例3]函数)(x f 在R 上为增函数,求函数)1(+=x f y 单调递减区间. 解析:令1+=x u ,则u 在(-∞,-1]上递减, 又函数)(x f 在R 上为增函数,∴ 函数)1(+=x f y 单调递减区间为(-∞,-1].【技巧提示】 这是一个求复合函数的单调性的例子,同时又含有抽象函数.只要知道函数1+x 的单调性,)1(+=x f y 与1+x 的单调性和单调区间相同.如果变函数)(x f 在R 上为减函数,那么函数)1(+=x f y 的单调性与函数1+x 的单调性相反,即函数)1(+=x f y 单调递增区间为(-∞,-1].又例 设函数)(x f 在R 上为减函数,求函数)1(xf y =单调区间. 再例 设函数)(x f 在R 上为增函数,且)(x f >0,求证函数)(1x f y =在R 上单调递减.[例4]试判断函数xbax x f +=)()0,0(>>b a 在()0,+∞上的单调性并给出证明.解析:设120x x >> ,()()()12121212ax x bf x f x x x x x --=- 由于120x x ->故当12,x x ⎫∈∞⎪⎪⎭ 时()()120f x f x ->,此时函数()f x在⎫∞⎪⎪⎭上增函数,同理可证函数()f x在⎛⎝上为减函数.【技巧提示】 xbax x f +=)()0,0(>>b a 是一种重要的函数模型,要引起足够的重视.事实上,函数()()0,0b f x ax a b x =+>>的增函数区间为,⎛-∞ ⎝和⎫∞⎪⎪⎭,减函数区间为⎛ ⎝和⎛⎫⎪ ⎪⎝⎭.但注意本题中不能说()f x在,⎛-∞ ⎝⎫∞⎪⎪⎭上为增函数,在⎛ ⎝⎛⎫⎪ ⎪⎝⎭上为减函数, 在叙述函数的单调区间时不能在多个单调区间之间添加符号“∪”和“或”.又例:求函数4522++=x x y 的最小值.解析:由()u g uu x x x x y =+=+++=++=1414452222,[)+∞∈,2u ,用单调性的定义法易证()u u u g 1+= 在[)+∞,2上是增函数,易求函数4522++=x x y 的最小值为25为所求. 再例:已知函数()[)+∞∈++=,1,22x xax x x f . 若对于x [)+∞∈,1,)(x f >0恒成立,试求a 的取值范围.解析:由)(x f = [)+∞∈++=++,1,222x xax x a x x .当a >0时, ()2++=xa x x f 显然有)(x f >0 在[)∞+.1恒成立; a ≤0时,由()[)+∞∈++=++=,x ,xax x a x x x f 1222知其为增函数,只需)(x f 的最小值)1(f =3+a >0,解之,a >-3.∴当a >-3时,)(x f >0在[)+∞,1上恒成立.[例5]已知)(x f 是定义在R 上的增函数,对x ∈R 有)(x f >0,且)10(f =1,设)(x F =)(1)(x f x f +,讨论)(x F 的单调性,并证明你的结论. 解析:在R 上任取1x 、2x ,设1x <2x ,∴)(2x f >)(1x f ,],)()(11)][()([])(1)([])(1)([)()(2112112212x f x f x f x f x f x f x f x f x F x F --=+-+=-∵)(x f 是R 上的增函数,且)10(f =1,∴当x <10时0<)(x f <1,而当x >10时)(x f >1; ① 若1x <2x <10,则0<)(1x f < )(2x f <1, ∴0< )(1x f )(2x f <1, ∴)()(1121x f x f -<0,∴)(2x F <)(1x F ;② 2x >1x >10,则)(2x f >)(1x f >1 , ∴)(1x f )(2x f >1, ∴)()(1121x f x f ->0, ∴ )(2x F >)(1x F ;综上,)(x F 在(-∞,10)为减函数,在(10,+∞)为增函数.【技巧提示】 该题属于判断抽象函数的单调性问题,用单调性定义解决是关键.[例6]已知113a ≤≤,若2()21f x ax x =-+在区间[1,3]上的最大值为()M a ,最小值为()N a ,令()()()g a M a N a =-.(1)求函数()g a 的表达式; (2)判断函数()g a 在区间[31,1]上的单调性,并求()g a 的最小值. 解析:(1)∵131≤≤a ∴ 函数()f x 的图像为开口向上的抛物线,且对称轴为].3,1[1∈=ax ∴()f x 有最小值aa N 11)(-= .当2≤a 1≤3时,a ∈[)(],21,31x f 有最大值()()11M a f a ==-; 当1≤a 1<2时,a ∈()(],1,21x f 有最大值M (a )=f (3)=9a -5;∴ ⎪⎪⎩⎪⎪⎨⎧≤<+-≤≤+-=).121(169),2131(12)(a a a a a a a g(2)设1211,32a a ≤<≤则 121212121()()()(1)0,()(),g a g a a a g a g a a a -=-->∴> ∴ ]21,31[)(在a g 上是减函数.设1211,2a a <<≤ 则121212121()()()(9)0,()(),g a g a a a g a g a a a -=--<∴< ∴ ]1,21()(在a g 上是增函数. ∴当12a =时,()g a 有最小值21. 【技巧提示】 当知道对称轴为]3,1[1∈=ax 后,要求2()21f x ax x =-+在区间[1,3]上的最大值为()M a ,最小值为()N a ,就必须分类讨论.本题对培养学生分类讨论的思想有很好的作用.第(2)问讨论一个分段函数的单调性并求最值,也具有一定的典型性.四、课后训练1、函数1()(0)f x x x x=+≠的单调性描述,正确的是( ) A 、在(-∞,+∞)上是增函数; B 、在(-∞,0)∪(0,+∞)上是增函数; C 、在(-∞,-1)∪(1,+∞)上是增函数; D 、在(-∞,-1)和(1,+∞)上是增函数 2、证明函数()x f =2x 在[0,+∞)上是增函数.3、证明函数x x y 14+= 在),21[+∞上是增函数. 4、对于任意R x ∈,函数()x f 表示3+-x ,2123+x ,342+-x x 中的较大者,则()x f 的最小值是_____________.5、已知函数)(x f 、)(x g 在R 上是增函数,求证:))((x g f 在R 上也是增函数.6、已知函数()()2223f x x x =+-,那么( )A .()y f x =在区间[]1,1-上是增函数B .()y f x =在区间(],1-∞-上是增函数C .()y f x =在区间[]1,1-上是减函数D .()y f x =在区间(],1-∞-上是减函数7、函数()f x 是定义在[0,)+∞上的单调递减函数,则2(1)f x -的单调递增区间是8、函数236xy x -=+的递减区间是 ;函数y =递减区间是9、设()y f x =是R 上的减函数,则()3y fx =-的单调递减区间为10、求函数12)(2--=ax x x f 在区间]2,0[上的最值.11、若函数22)(2+-=x x x f 当]1,[+∈t t x 时的最小值为()g t ,求函数()g t 当]2,3[--∈t 时的最值.12、讨论函数()f x =)0(12≠-a x ax,在-1<x <1上的单调性. 五、参考答案1.D 2.略 3.解析:设1x >2x ≥21, 则 )(2x f -)(1x f =2214x x +-(1114x x +) =212112)(4x x x x x x -+-=21211214)(x x x x x x -⋅-, ∵ 012<-x x ,4121>x x , ∴ )(2x f -)(1x f <0∴ 函数x x y 14+= 在),21[+∞上是增函数. 4.25.证明:设1x >2x ,则)(1x f -)(2x f >0,)(1x g -)(2x g >0, 即 )(1x g >)(2x g于是 ))((1x g f -))((2x g f >0 ∴ ))((x g f 在R 上也是增函数.6.C 7.]1,0[ 8.)2,(--∞和),2(+∞- ]2,2(- 9.),3[+∞10.解析:函数12)(2--=ax x x f )1()(22+--=a a x ,当 0<a 时,)(x f 在区间]2,0[上的最小值为)(min x f =)0(f =-1 )(x f 在区间]2,0[上的最大值为)(max x f =)2(f =a 43-; 当 10<≤a 时,)(x f 在区间]2,0[上的最小值为)(min x f =)1(2+-a )(x f 在区间]2,0[上的最大值为)(max x f =)2(f =a 43-; 当 21<≤a 时,)(x f 在区间]2,0[上的最小值为)(min x f =)1(2+-a )(x f 在区间]2,0[上的最大值为)(max x f =)0(f =-1; 当 2≥a 时,)(x f 在区间上的最小值为)(min x f =)2(f =a 43- )(x f 在区间]2,0[上的最大值为)(max x f =)0(f =-1; 11.解析:因为函数22)(2+-=x x x f =1)1(2+-x 当t ≤0时,最小值)(t g =)1(+t f =12+t ; 当0<t ≤1时,最小值)(t g =)1(f =1; 当t >1时,最小值)(t g =)(t f =222+-t t ;∴ ⎪⎩⎪⎨⎧>+-≤<≤+=1,2210,10,1)(22t t t t t t t g ,)(t g 当]2,3[--∈t 时的最大值为)3(-g =10;最小值为)2(-g =5.12.解析:函数)(x f =12-x ax =xx a 1- 作函数xx x g 1)(-=, )(x g 为奇函数且在)0,1(-和)1,0(上都是增函数, ∴ 当a <0时,)(x f 在)0,1(-和)1,0(上都是增函数; 当a >0时,)(x f 在)0,1(-和)1,0(上都是减函数.。

高一数学 课堂训练9-2

高一数学 课堂训练9-2

第9章第2节时间:45分钟满分:100分一、选择题(每小题7分,共42分)1.下列赋值能使y的值为4的是()A.y-2=6B.2]D.y=2]答案:D解析:赋值时把“=”右边的值赋给左边的变量.2. 给出以下程序:如果输入x1=2,x2=3,那么执行此程序的结果是输出()A.7 B.10C.5 D.8答案:C解析:由于输入的两个数x1=2,x2=3,不满足条件x1=x2,因此,不执行语句体x1=x1+x2,而直接执行y=x1+x2,所以y=5,最后输出5.3.下面的程序运行结果是()A.3B.7C.15D.17答案:C解析:当i=1时,s=0×2+1=1;当i=2时,s=1×2+1=3;当i=3时,s=3×2+1=7;当i=4时,s=7×2+1=15.4.下面程序运行的结果是( )A .5050B .5049C .3D .2答案:A解析:读程序框图知,该框图的功能是求S =1+2+…+100的值.由等差数列求和公式S =1002(1+100)=5050.故选A.5. 下列程序:若输入的两位数是83,则输出的结果为( )A .83B .38C .3D .8答案:B解析:程序功能是输入一个两位数,交换其个位与十位的位置,输入83,输出应为38.6.若INT(x )表示不超过x 的最大整数(如INT(4.3)=4,INT(4)=4),则下列程序的目的是( )A .求x ,y 的最小公倍数B .求x ,y 的最大公约数C .求x 被y 除的商D .求y 除以x 的余数答案:B解析:∵m /n <>INT(m /n )与r <>0所表达的含义是一样的,都是m 除以n 的余数不为0,c =m -INT(m /n )*n 就是m 除以n 的余数,即为r .二、填空题(每小题7分,共21分)若x =6,则p =________;若x =20,则p =________.答案:2.1 10.5解析:此程序功能是求函数y =⎩⎪⎨⎪⎧0.35x (x ≤10),3.5+0.7(x -10) (x >10),的函数值问题. ∴当x =6时,y =0.35×6=2.1,当x =20时,y =3.5+0.7×(20-10)=10.5.8.如下图是求n !(n !=n ×(n -1)×…×3×2×1)的部分程序,请在横线上补全程序.答案:①INPUT n ②i<=n ③s =s*i9.有一列数:1,1,2,3,5,8,13,21,…,这列数有下面的特点:前两个数都是1,从第三个数开始,每个数都是前两个数的和,这样的一列数一般称为斐波那契数.图中程序所描述的算法功能是输出前10个斐波那契数.请把这个算法填写完整.a =1b =1n =2FOR n =2 To 9c=a+bPRINT c________b=cn=n+1NEXTEND答案:a=b解析:由斐波那契数的特点知,应填a=b.三、解答题(10、11题12分、12题13分)10.下列程序的功能是输出1~100间的所有偶数.程序:i=1m=i MOD 2DOIF①THENPRINT iEND IF②LOOP WHILE i>100END(1)试将上面的程序补充完整;(2)改写为FOR型循环语句.解:(1)①m=0②i=i+1(2)改写为FOR型循环程序如下:i=1m=i MOD 2FOR i=1 To 100IF m=0THENPRINT iEND IFi=i+1NEXTEND11.某商场为了促销,采用购物打折的优惠办法:每位顾客一次购物①在1000元以上者(含1000元)总额按九五折优惠;②在2000元以上者(含2000元)总额按九折优惠;③在3000元以上者(含3000元)总额按八五折优惠;④在5000元以上者(含5000元)总额按八折优惠.试编写算法程序求优惠价.解:设购物款数原为x 元,优惠后价格为y 元,则优惠付款方式可用分段函数表示为y =⎩⎪⎨⎪⎧ x ,x <1000,0.95x ,1000≤x <2000,0.9x ,2000≤x <3000,0.85x ,3000≤x <5000,0.8x ,x ≥5000.用条件语句表示为12.下面给出了一个数学问题的程序框图(如下图所示).阅读后,说明该框图的功能,并用代数式表述其功能.解:该程序框图是求f (x )=a 4x 4+a 3x 3+a 2x 2+a 1x +a 0在x =x 0处的函数值.用代数式表述其功能为:f (x 0)=(((a 4x 0+a 3)x 0+a 2)x 0+a 1)x 0+a 0.。

第7讲 复数的概念-高一数学新教材专题讲义同步辅导+课堂检测(人教A版2019必修第二册)

第7讲 复数的概念-高一数学新教材专题讲义同步辅导+课堂检测(人教A版2019必修第二册)

第7讲 复数的概念一、考点梳理考点1 复数的概念1. 虚数单位i(1) 它的平方等于1-,即 2i 1=-;(2) 实数可以与它进行四则运算,进行四则运算时,原有的加、乘法运算仍然成立,即满足交换律与结合律.(3) i 的乘方: 4414243*i 1,i i,i 1,i i,N n n n n n +++===-=-∈,它们不超出i b 的形式.2. 复数的定义形如(,)a bi a b R +∈的数叫复数,a 叫复数的实部,b 叫复数的虚部全体复数所成的集合叫做复数集,用字母C 表示 复数通常用字母z 表示,即(,)z a bi a b R =+∈ 3. 复数与实数、虚数、纯虚数及0的关系:对于复数(,)a bi a b R +∈,当且仅当b =0时,复数a +bi (a 、b ∈R)是实数a ;当b ≠0时,复数z =a +bi 叫做虚数;当a =0且b ≠0时,z =bi 叫做纯虚数;当a ≠0且b ≠0时,z =bi 叫做非纯虚数的纯虚数;当且仅当a =b =0时,z 就是实数0.4. 复数集与其它数集之间的关系:N Z Q R C.5. 两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等如果a ,b ,c ,d ∈R ,那么a +bi =c +di ⇔a =c ,b =d一般地,两个复数只能说相等或不相等,而不能比较大小.如果两个复数都是实数,就可以比较大小 当两个复数不全是实数时不能比较大小例1.(1)已知复数z=6﹣4i,则它的实部是6,虚部是﹣4.【分析】利用复数实部和虚部的定义求解.【解答】解:∵复数z=6﹣4i,∴它的实部是6,虚部是﹣4,故答案为:6,﹣4.(2)若复数z=(m+1)+(2﹣m)i(m∈R)是纯虚数,则m=﹣1.【分析】直接利用复数的定义的应用求出结果.【解答】解:复数z=(m+1)+(2﹣m)i(m∈R)是纯虚数,则m+1=0,解得m=﹣1.故答案为:﹣1.(3)i2020=()A.1B.﹣1C.i D.﹣i 【分析】直接利用虚数单位i的运算性质求解.【解答】解:i2020=i4×505=(i4)505=1.故选:A.【变式训练1】.设复数z=3﹣2i,则z的虚部是()A.i B.3C.2D.﹣2【分析】直接由复数的基本概念得答案.【解答】解:复数z=3﹣2i,则z的虚部是:﹣2.故选:D.【变式训练2】.若复数m(m﹣2)+(m2﹣3m+2)i是纯虚数,则实数m的值为0.【分析】由实部为0且虚部不为0列式求解.【解答】解:∵m(m﹣2)+(m2﹣3m+2)i是纯虚数,∴,即m=0.故答案为:0.【变式训练3】.i为虚数单位,i2019=()A.i B.﹣i C.1D.﹣1【分析】直接利用虚数单位i的运算性质求解.【解答】解:∵i4=1,∴i2019=i4×504+3=i3=﹣i.故选:B.考点2 复数的几何意义1. 复平面、实轴、虚轴:点Z 的横坐标是a ,纵坐标是b ,复数z =a +bi (a 、b ∈R)可用点Z (a ,b )表示,这个建立了直角坐标系来表示复数的平面叫做复平面, x 轴叫做实轴,y 轴叫做虚轴实轴上的点都表示实数 (1)实轴上的点都表示实数 (2)虚轴上的点都表示纯虚数(3)原点对应的有序实数对为(0,0) 2. 复数的两种几何意义:3. 复数的模:复数bi a Z +=的模22b a Z +=4. 共轭复数 i z a b =+时,i z a b =-.(1)实数的共轭复数仍然是它本身 (2)22Z Z ZZ ==⋅ (3)两个共轭复数对应的点关于实轴对称例2.(1)已知复数z 满足iz =1﹣i (i 为虚数单位),则z 在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限【分析】利用复数的运算法则、几何意义即可得出.【解答】解:iz =1﹣i ⇒z =﹣1﹣i ,故z 在复平面内对应的点为(﹣1,﹣1),在第三象限,故选:C .点向量一一对应 一一对应 一一对应 复数(2)在平行四边形ABCD中,对角线AC与BD相交于点O,若向量,对应的复数分别是3+i,﹣1+3i,则对应的复数是()A.2+4i B.﹣2+4i C.﹣4+2i D.4﹣2i【分析】由==,代入向量,对应的复数计算即可.【解答】解:因为向量,对应的复数分别是3+i,﹣1+3i,所以===3+i﹣(﹣1+3i)=4﹣2i,故选:D.(3)若z=1﹣2i+i2021,则|z|=()A.0B.1C.D.2【分析】化简复数z,再求它的模长|z|.【解答】解:因为z=1﹣2i+i2021=1﹣2i+i=1﹣i,所以|z|==.故选:C.(4)已知复数z=2i,则z的共轭复数等于()A.0B.2i C.﹣2i D.﹣4【分析】直接根据共轭复数的定义求解即可.【解答】解:因为复数z=2i,则z的共轭复数=﹣2i;故选:C.(5)(多选)对于复数z=a+bi(a,b∈R),下列结论错误的是()A.若a=0,则a+bi为纯虚数B.若a﹣bi=3+2i,则a=3,b=2C.若b=0,则a+bi为实数D.纯虚数z的共轭复数是﹣z【分析】复数z=a+bi(a,b∈R),(1)若a=0,且b≠0时,a+bi为纯虚数;(2)若b=0,则为实数;(3)其共轭复数为a﹣bi;(4)两个复数相等,则实部和虚部分别相等.【解答】解:对于A:复数z=a+bi(a,b∈R),若a=0,且b≠0时,a+bi为纯虚数.故A错误.对于B:两个复数相等,则实部和虚部分别相等,所以a=3,b=﹣2,故B错误.由复数定义及运算知,C、D正确.故选:AB.【变式训练1】.在复平面内,复数z=﹣1﹣i的对应点在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】求出z在复平面内对应的点的坐标得答案.【解答】解:z=﹣1﹣i在复平面内对应的点的坐标为:(﹣1,﹣1),位于第三象限.故选:C.【变式训练2】.在复平面内点P对应的复数z1=2+i,将点P绕坐标原点O逆时针旋转到点Q,则点Q对应的复数z2的虚部为()A.B.C.D.【分析】由题意求得点Q对应的复数z2,则其虚部可求.【解答】解:设P点对应的向量为,向量绕坐标原点O逆时针旋转得到对应的复数为(2+i)(cos i sin)=(2+i)()=()+()i,∴点Q对应的复数z2的虚部为.故选:B.【变式训练3】.已知a∈R,若有(i为虚数单位),则a=()A.1B.﹣2C.±2D.±1【分析】根据复数模的定义得到关于a的方程,再解出a即可.【解答】解:∵,∴1+a2=5,解得a=±2,故选:C.【变式训练4】.若复数z=(m﹣1)﹣(m+2)i(m∈R)为纯虚数,则复数z的共轭复数为()A.﹣3i B.3i C.4i D.﹣4i【分析】先利用纯虚数的定义可得:m﹣1=0且m+2≠0,求出m的值,求出复数z,再利用共轭复数概念即可求解.【解答】解:∵复数z=(m﹣1)﹣(m+2)i(m∈R)为纯虚数,∴m﹣1=0且m+2≠0,∴m=1,∴z=﹣3i,∴复数z的共轭复数为3i,故选:B.【变式训练5】.(多选)下列关于复数的说法,其中正确的是()A.复数z=a+bi(a,b∈R)是实数的充要条件是b=0B.复数z=a+bi(a,b∈R)是纯虚数的充要条件是b≠0C.若z1,z2互为共轭复数,则z1z2是实数D.若z1,z2互为共轭复数,则在复平面内它们所对应的点关于y轴对称【分析】利用实数和纯虚数的概念即可判定选项A正确,选项B错误,再利用共轭复数的定义即可判定选项C 正确,选项D错误.【解答】解:对于选项A:复数z=a+bi(a,b∈R)是实数的充要条件是b=0,所以选项A正确;对于选项B:复数z=a+bi(a,b∈R)是纯虚数的充要条件是a=0且b≠0,所以选项B错误;对于选项C:若z1,z2互为共轭复数,不妨设z1=a+bi(a∈R,b∈R),则z2=a﹣bi,所以,所以选项C正确;对于选项D:若z1,z2互为共轭复数,不妨设z1=a+bi(a∈R,b∈R),则z2=a﹣bi,则它们在复平面内所对应的点分别为(a,b)和(a,﹣b),关于x轴对称,所以选项D错误,故选:AC.二、课堂检测1.已知a是实数,则复数(a2﹣2a)+(a2+a﹣6)i为纯虚数的充要条件是()A.a=0或a=2B.a=0C.a∈R,且a≠2且a≠﹣3D.a∈R,且a≠2【分析】由实部为0且虚部不为0列式求得a值,则答案可求.【解答】解:∵a是实数,则复数(a2﹣2a)+(a2+a﹣6)i为纯虚数需满足:,解得:a=0,故选:B.2.若集合A={i,i2,i3,i4}(i是虚数单位),B={1,﹣1},则A∩B等于()A.{﹣1}B.{1}C.{1,﹣1}D.∅【分析】利用虚数单位i的运算性质化简A,然后利用交集运算得答案.【解答】解:∵A={i,i2,i3,i4}={i,﹣1,﹣i,1},B={1,﹣1},∴A∩B={i,﹣1,﹣i,1}∩{1,﹣1}={1,﹣1}.故选:C.3.实部为﹣2,虚部为1的复数所对应的点位于复平面内的()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据复数的几何意义,即可得到结论.【解答】解:实部为﹣2,虚部为1的复数所对应的点的坐标为(﹣2,1),位于第二象限,故选:B.4.已知复数z,“z+=0”是“z为纯虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也不必要条件【分析】由充分必要条件的判断方法,结合两复数和为纯虚数的条件判断.【解答】解:对于复数z,若z+=0,z不一定为纯虚数,可以为0,反之,若z为纯虚数,则z+=0.∴“z+=0”是“z为纯虚数”的必要非充分条件.故选:B.5.已知i为虚数单位,则z=i+i2+i3+…+i2017=()A.0B.1C.﹣i D.i【分析】利用等比数列的求和公式、复数的周期性即可得出.【解答】解:z====i,故选:D.6.(多选)已知复数z=1+i,则下列命题中正确的为()A.B.=1﹣iC.z的虚部为i D.z在复平面上对应点在第一象限【分析】利用复数的模、共轭复数、虚部及复数与平面内点的对应关系即可判断出正误.【解答】解:复数z=1+i,则.故A正确;,故B正确;z的虚部为1,故C错误;z在复平面上对应点的坐标为(1,1),在第一象限,故D正确.∴命题中正确的个数为3.故选:ABD.7.(多选)已知复数z在复平面上对应的向量,则()A.z=﹣1+2i B.|z|=5C.=1+2i D.z•=5【分析】由题意可得z=﹣1+2i,再由复数的模的公式和共轭复数的定义、复数的乘法运算,可判断正确结论.【解答】解:由题意可得z=﹣1+2i,|z|==,=﹣1﹣2i,z•=(﹣1+2i)(﹣1﹣2i)=1+4=5,则A、D正确,B、C错误.故选:AD.8.若复数z=1+ai(i是虚数单位)的模不大于2,则实数a的取值范围是[].【分析】由于复数的模不大于2,可得不等式,然后求解即可.【解答】解:复数z=1+ai(i是虚数单位)的模不大于2,即:1+a2≤4即a2≤3可得a∈故答案为:9.复数3+4i(i为虚数单位)的实部是3.【分析】根据复数的定义判断即可.【解答】解:复数3+4i(i为虚数单位)的实部是3,故答案为:3.10.已知0<a<2,复数z的实部为a,虚部为1,则|z|的取值范围是(1,).【分析】由复数z的实部为a,虚部为1,知|z|=,再由0<a<2,能求出|z|的取值范围.【解答】解:∵复数z的实部为a,虚部为1,∴|z|=,∵0<a<2,∴1<|z|=<.故答案为:(1,).11.在复平面内,复数z=1﹣2i对应的点到原点的距离是.【分析】利用复数的几何意义、两点之间的距离公式即可得出.【解答】解:复数z=1﹣2i对应的点(1,﹣2)到原点的距离d==.故答案:.12.在复平面内,O是原点,向量对应的复数是2+i,若点A关于实轴的对称点为B,则向量对应的复数是2﹣i.【分析】由已知求得A的坐标,再由对称性求得B点坐标,则向量对应的复数可求.【解答】解:由题意,A(2,1),则B(2,﹣1),∴向量对应的复数是2﹣i.故答案为:2﹣i.13.若复数z=(m2+m﹣6)+(m2﹣m﹣2)i,当实数m为何值时(1)z是实数;(2)z是纯虚数;(3)z对应的点在第二象限.【分析】(1)令复数z的虚部为0,即可求解;(2)令复数z的实部为0且虚部不为0,即可求解;(3)根据第二象限点的符号特征,列出不等式,即可求出m的范围.【解答】解:(1)由题意可得:m2﹣m﹣2=0,解得:m=﹣1或2;(2)由题意可得:m2+m﹣6=0,且m2﹣m﹣2≠0,∴m=2或﹣3,且m≠﹣1且m≠2,∴m=﹣3;(3)由题意可得:,解得:﹣3<m<﹣1.。

精选题库高一数学 课堂训练10-4

精选题库高一数学 课堂训练10-4

第10章 第4节时间:45分钟 满分:100分一、选择题(每小题7分,共42分)1. [2012·浙江金华]下课后教室里最后还剩下2位男同学和2位女同学,如果没有2位同学一块走,则第二位走的是男同学的概率是( )A. 12 B. 13 C. 14 D. 15答案:A解析:每个同学均可能在第二位走,故共有4种情况,而男同学有2个,故所求概率为P =24=12,故选A.2.某班准备到郊外野营,为此向商店定了帐篷,如果下雨与不下雨是等可能的,能否准时收到帐篷也是等可能的,只要帐篷如期运到,他们就不会淋雨,则下列说法正确的是( )A .一定不会淋雨B .淋雨的可能性为34C .淋雨的可能性为12D .淋雨的可能性为14答案:D解析:基本事件有“下雨帐篷到”“不下雨帐篷到”“下雨帐篷未到”“不下雨帐篷未到”4种情况,而只有“下雨帐篷未到”时会淋雨,故淋雨的可能性为14.3.某同学同时掷两颗骰子,得到点数分别为a ,b ,则椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e >32的概率是( ) A.118 B.536 C.16 D.13答案:C 解析:e =1-b 2a 2>32⇒b a <12⇒a >2b ,符合a >2b 的情况有:当b =1时,有a =3,4,5,6四种情况;当b =2时,有a =5,6两种情况,总共有6种情况.则概率为66×6=16.4.[2012·浙江联考]有编号分别为1,2,3,4,5的5个红球和5个黑球,从中取出4个,则取出的编号互不相同的概率为( )A. 521B. 27C. 13D. 821答案:D解析:从10个球中任意取出4个,一共有C 410=210种取法,取出的小球编号互不相同的取法为C 45·24=80种取法,所以由古典概型公式得取出的编号互不相同的概率为P =80210=821. 5.[2012·奉贤区检测]在一次读书活动中,一同学从4本不同的科技书和2本不同的文艺书中任选3本,则所选的书中既有科技书又有文艺书的概率为( )A. 15B. 12C. 23D. 45答案:D解析:因为文艺书只有2本,所以选取的3本书中必有科技书,这样问题就等价于求选取的3本书中有文艺书的概率.设4本不同的科技书为a ,b ,c ,d,2本不同的文艺书为e ,f ,则从这6本书中任选3本的可能情况有:(a ,b ,c ),(a ,b ,d ),(a ,b ,e ),(a ,b ,f ),(a ,c ,d ),(a ,c ,e ),(a ,c ,f ),(a ,d ,e ),(a ,d ,f ),(a ,e ,f ),(b ,c ,d ),(b ,c ,e ),(b ,c ,f ),(b ,d ,e ),(b ,d ,f ),(b ,e ,f ),(c ,d ,e ),(c ,d ,f ),(c ,e ,f ),(d ,e ,f ),共20种,记“选取的3本书中有文艺书”为事件A ,则事件A 包含的可能情况有:(a ,b ,c ),(a ,b ,d ),(a ,c ,d ),(b ,c ,d ),共4种,故P (A )=1-P (A )=1-420=45.6.[2011·安徽]从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于( )A. 110B. 18C. 16D. 15 答案:D解析:如图正六边形ABCDEF ,从6个顶点中随机选择4个顶点有ABCD ,ABCE ,ABCF ,ABDE ,ABDF ,ACDE ,ACDF ,ACEF ,ADEF ,BCDE ,BCDF ,BCEF ,ABEF ,BDEF ,CDEF 共15种选法,基本事件总数为15,其中四边形是矩形的有ABDE ,BCEF ,CDF A 3种,所以所求概率为P =315=15.二、填空题(每小题7分,共21分)7.连续掷两次骰子,出现向上的点数之和等于4的概率为________(结果用数值表示). 答案:112解析:连续掷两次骰子出现向上的点数记作点坐标(x ,y ),则共可得点坐标的个数为6×6=36,而出现向上的点数之和为4的点坐标有(1,3),(3,1),(2,2),共3个.所以连续掷两次骰子出现向上的点数之和为4的概率为P =336=112.8. [2011·福建]盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.若从中随机取出2个球,则所取出的2个球颜色不同的概率等于________.答案:35解析:此题属古典概型,从5个小球取出2个小球所有可能的取法n =C 25=10(种),而若取出的2个小球颜色不同则红、黄各取一个,取法m =C 13·C 12=6(种),∴所求事件的概率P =m n =610=35.9.[2011·湖北]在30瓶饮料中,有3瓶已过了保质期,从这30瓶饮料中任取2瓶.则至少取到1瓶已过保质期饮料的概率为__________.(结果用最简分数表示)答案:28145解析:1-C 227C 230=168870=28145.三、解答题(10、11题12分、12题13分)10.[2011·山东]甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女. (1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.解:(1)甲校两男教师分别用A 、B 表示,女教师用C 表示;乙校男教师用D 表示,两女教师分别用E 、F 表示.从甲校和乙校报名的教师中各任选1名的所有可能的结果为:(A ,D ),(A ,E ),(A ,F ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F )共9种,从中选出两名教师性别相同的结果有:(A ,D ),(B ,D ),(C ,E ),(C ,F )共4种,选出的两名教师性别相同的概率为P =49.(2)从甲校和乙校报名的教师中任选2名的所有可能的结果为:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F )共15种,从中选出两名教师来自同一学校的结果有:(A ,B ),(A ,C ),(B ,C ),(D ,E ),(D ,F ),(E ,F )共6种, 选出的两名教师来自同一学校的概率为P =615=25.11. [2011·天津]编号分别为A 1,A 2,…,A 16的16名篮球运动员在某次训练比赛中的得分记录如下:(2)①用运动员编号列出所有可能的抽取结果; ②求这2人得分之和大于50的概率. 解:(1)4,6,6.(2)①得分在[20,30)内的运动员编号为A 3,A 4,A 5,A 10,A 11,A 13,从中随机抽2人,所有可能抽取的结果有:{A 3,A 4},{A 3,A 5},{A 3,A 10},{A 3,A 11},{A 3,A 13}, {A 4,A 5},{A 4,A 10},{A 4,A 11},{A 4,A 13},{A 5,A 11},{A 5,A 10},{A 5,A 13},{A 10,A 11},{A 10,A 13},{A 11,A 13},共15种.②设B 表示“得分在[20,30)内的运动员中随机抽取2人,这两人得分之和大于50”,则所有可能的结果有:{A 4,A 5},{A 4,A 10},{A 4,A 11},{A 5,A 10},{A 10,A 11},共5种.所以P (B )=515=13.12. [2012·惠州模拟]将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,记第一次出现的点数为a ,第二次出现的点数为b ,设复数z =a +b i.(1)求事件“z -3i 为实数”的概率;(2)求事件“复数z 在复平面内的对应点(a ,b )满足(a -2)2+b 2≤9”的概率. 解:(1)z -3i 为实数,即a +b i -3i =a +(b -3)i 为实数,∴b =3,依题意a 可取1,2,3,4,5,6.将一颗质地均匀的正方体骰子先后抛掷两次的所有可能的结果为:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),…,(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共36种,出现b =3的结果有:(1,3),(2,3),(3,3),(4,3),(5,3),(6,3),共6种,故出现b =3的概率为P 1=636=16,即事件“z -3i 为实数”的概率为16.(2)由条件可知,b 的值只能取1,2,3. 当b =1时,(a -2)2≤8,即a 可取1,2,3,4, 当b =2时,(a -2)2≤5,即a 可取1,2,3,4, 当b =3时,(a -2)2≤0,即a 可取2.故共有9种情况可使所求事件发生,又(a ,b )的取值情况共有36种,所以事件“点(a ,b )满足(a -2)2+b 2≤9”的概率为P 2=436+436+136=14.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2章 第8节时间:45分钟 满分:100分一、选择题(每小题7分,共42分)1. [2012·安徽合肥]某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x 、y 应为( )A .x =15,y =12B .x =12,y =15C .x =14,y =10D .x =10,y =14答案:A解析:由三角形相似得24-y 24-8=x 20,得x =54(24-y ),∴S =xy =-54(y -12)2+180,∴当y =12时,S 有最大值,此时x =15.2. [2012·泰安第一次模拟]某钢厂的年产量由1990年的40万吨增加到2000年的50万吨,如果按照这样的年增长率计算,则该钢厂2010年的年产量约为( )A .60万吨B .61万吨C .63万吨D .64万吨 答案:C解析:依题意,设年增长率为x ,则40(1+x )10=50,即(1+x )10=54,∴该钢厂2010年的年产量约为50(1+x )10=50×54=62.5(万吨),故选C.3. [2012·成都龙泉第一中学月考]某百货大楼在促销期间规定:商场内所有商品按标价的80%出售;同时,当顾客在该商场内消费满一定金额后,按如下的规定获得相应金额的奖券:=购买商品获得的优惠额商品的标价,试问:对于标价在[625,800]之内的商品,顾客要得到不小于13的优惠率,应购买商品的标价范围是( )A .[525,600]B .[625,750]C .[650,760]D .[700,800]答案:B解析:当标价为625元时优惠的钱数为625·0.2+100=225元,225625>13,据此可知应选B.4. 在某种新型材料的研制中,实验人员获得了下列一组实验数据:( )A. y =2x -2B. y =12(x 2-1)C. y =log 3xD. y =2x -2答案:B解析:把表格中的数据代入选择项的解析式中,易得最接近的一个函数是y =12(x 2-1).5. [2011·北京]某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( )A .60件B .80件C .100件D .120件 答案:B解析:若每批生产x 件产品,则每件产品的生产准备费用是800x ,存储费用是x8,总的费用是800x +x8≥2800x ·x 8=20,当且仅当800x =x8时取等号,即x =80. 6. 国家规定个人稿费纳税办法是:不超过800元的不纳税;超过800元而不超过4000元的按超过800元部分的14%纳税;超过4000元的按全部稿酬的11%纳税.已知某人出版一本书,共纳税420元,这个人应得稿费(扣税前)为( )A. 2800元B. 3000元C. 3800元D. 3818元答案:C解析:设扣税前应得稿费为x 元,则应纳税额y 为分段函数,由题意,得 y =⎩⎪⎨⎪⎧0 (x ≤800)(x -800)×14% (800<x ≤4000).11%·x (x >4000)如果稿费为4000元应纳税为448元,现知某人共纳税420元,所以稿费应在800~4000元之间,∴(x -800)×14%=420,∴x =3800. 二、填空题(每小题7分,共21分)7. 某出租车公司规定“打的”收费标准如下:3公里以内为起步价8元(即行程不超过3公里,一律收费8元),若超过3公里除起步价外,超过部分再按1.5元/公里收费计价,若某乘客再与司机约定按四舍五入以元计费不找零钱,该乘客下车时乘车里程数为7.4,则乘客应付的车费是________元.答案:15解析:乘车里程数为7.4,则付费应为8+1.5×4.4=14.6,四舍五入后乘客应付的车费为15元.8. [2011·陕西]植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米.开始时需将树苗集中放置在某一树坑旁边,使每位同学从各自树坑出发前来领树苗往返所走的路程总和最小,这个最小值为__________米.答案:2000解析:本小题考查绝对值的几何意义. 设放在第x 个坑边,则s =20(|x -1|+|x -2|+…+|20-x |) 由式子的对称性讨论,当x =10或11时, s =2000.当x =9或12时,S =20×102=2040. ∴s min =2000(米).9. [2012·广州一测]如图为某质点在4秒钟内做直线运动时,速度函数v =v (t )的图像,则该质点运动的总路程s =__________cm.答案:11解析:∵该质点运动的总路程为右图阴影部分的面积,∴s =12×(1+3)×2+2×3+12×1×2=11.三、解答题(10、11题12分、12题13分)10. [2012·南京模拟]某投资公司投资甲、乙两个项目所获得的利润分别是P (亿元)和Q (亿元),它们与投资额t (亿元)的关系有经验公式P =163t ,Q =18t .今该公司将5亿元投资这两个项目,其中对甲项目投资x (亿元),投资这两个项目所获得的总利润为y (亿元).求:(1)y 关于x 的函数表达式; (2)总利润的最大值. 解:(1)根据题意,得 y =163x +18(5-x ),x ∈[0,5]. (2)令t =3x ,t ∈[0,15],则x =t 23,y =-t 224+16t +58=-124(t -2)2+1924.因为2∈[0,15],所以当3x =2,即x =43时,y 最大值=1924,所以总利润的最大值是1924亿元.11. [2012·福建龙岩一中月考]某分公司经销某品牌产品,每件产品成本3元,且每件产品需向总公司交a 元(3≤a ≤5)的管理费,预计当每件产品的售价为x 元(9≤x ≤11)时,一年的销售量为(12-x )2万件.(1)求分公司一年的利润L (万元)与每件产品的售价x (元)的函数关系式;(2)当每件产品的售价为多少元时,分公司一年的利润L 最大?并求出L 的最大值Q (a ). 解析:(1)根据题意可知,L (x )=(x -3-a )(12-x )2,x ∈[9,11].(2)由(1)知,L ′(x )=(12-x )(18+2a -3x ), 令L ′(x )=0,解得x =6+2a3或x =12(舍去),∵3≤a ≤5,∴8≤6+2a 3≤283.①当8≤6+2a 3<9,即3≤a <92时,L max =L (9)=9(6-a ),②当9≤6+2a 3≤283,即92≤a ≤5时,L max =L (6+2a 3)=4(3-a3)3.∴Q (a )=⎩⎨⎧9(6-a ),3≤a <92,4(3-a 3)3,92≤a ≤5.∴若3≤a <92,则每件产品的售价为9元时,L 最大,最大值为9(6-a )万元;若92≤a ≤5,则每件产品的售价为(6+2a 3)元时,L 最大,最大值为4(3-a3)3万元. 12. [2012·湖北黄冈中学模拟]市政府为招商引资,决定对外资企业第一年产品免税.某外资厂该年A 型产品出厂价为每件60元,年销售量为11.8万件.第二年,当地政府开始对该商品征收税率为p %(0<p <100,即销售100元要征收p 元)的税收,于是该产品的出厂价上升为每件8000100-p元,预计年销售量将减少p 万件.(1)将第二年政府对该商品征收的税收y (万元)表示成p 的函数,并指出这个函数的定义域;(2)要使第二年该厂的税收不少于16万元,则税率p %的范围是多少?(3)在第二年该厂的税收不少于16万元的前提下,要让厂家获得最大销售金额,则p 应为多少?解:(1)依题意,该商品第二年的年销售量为(11.8-p )万件, 年销售收入为8000100-p (11.8-p )万元,政府对该商品征收的税收y =8000100-p(11.8-p )p %(万元), 故所求函数为y =80100-p(11.8-p )p .由11.8-p >0及p >0得0<p <11.8,即该函数的定义域为{p |0<p <11.8}. (2)由y ≥16得80100-p(11.8-p )p ≥16, 化简得p 2-12p +20≤0,即(p -2)(p -10)≤0,解得2≤p ≤10. 故当税率在[0.02,0.1]内时,税收不少于16万元.(3)由(2)知,在第二年该厂的税收不少于16万元时, 厂家的年销售收入为g (p )=8000100-p (11.8-p )(2≤p ≤10).∵g (p )=8000100-p (11.8-p )=800(10-882100-p )在[2,10]是减函数,∴g (p )max =g (2)=800(万元).故当税率为2%时,厂家获得销售金额最大.。

相关文档
最新文档