高考数列解题技巧归纳总结
2024高考数学数列知识点总结与题型分析
2024高考数学数列知识点总结与题型分析数列是高中数学中的重要内容,作为数学的一个分支,数列的掌握对于高考数学的考试非常关键。
在本文中,我们将对2024年高考数学数列的知识点进行总结,并分析可能出现的相关题型。
一、等差数列与等差数列的通项公式等差数列是数学中最常见的数列类型之一。
对于等差数列,首先要了解等差数列的概念:如果一个数列中任意两个相邻的项之差都相等,则称该数列为等差数列。
1.1 等差数列的通项公式等差数列的通项公式是等差数列中非常重要的一个公式,它可以用来求解等差数列中任意一项。
设等差数列的首项为$a_1$,公差为$d$,第$n$项为$a_n$,则等差数列的通项公式为:$a_n = a_1 + (n-1)d$1.2 等差数列的性质与常用公式等差数列有一些重要的性质与常用的公式,掌握这些性质与公式可以帮助我们更好地解决与等差数列相关的题目。
(1)等差数列中,任意三项可以构成一个等差数列。
(2)等差数列的前$n$项和公式为:$S_n = \frac{n}{2}(a_1 + a_n)$(3)等差数列的前$n$项和的差为:$S_n - S_m = (n-m+1)\frac{a_1 + a_{n+m}}{2}$二、等比数列与等比数列的通项公式等比数列也是数学中常见的数列类型之一。
与等差数列不同的是,等比数列中的任意两项的比值都相等。
2.1 等比数列的通项公式等比数列的通项公式可以用来求解等比数列中的任意一项。
设等比数列的首项为$a_1$,公比为$q$,第$n$项为$a_n$,则等比数列的通项公式为:$a_n = a_1 \cdot q^{(n-1)}$2.2 等比数列的性质与常用公式等比数列也有一些重要的性质与常用的公式,下面我们来了解一下:(1)等比数列中,任意三项可以构成一个等比数列。
(2)等比数列的前$n$项和公式为($q\neq1$):$S_n = \frac{a_1(1-q^n)}{1-q}$(3)当公比$q \neq 1$时,等比数列的前$n$项和与第$n$项的关系为:$S_n = \frac{a_nq - a_1}{q - 1}$三、数列题型分析与解题技巧在高考数学中,对于数列的考察主要包括以下几个方面:3.1 数列的递推关系与通项公式的应用常见的数列题目往往要求我们根据已知的递推关系或者通项公式来求解数列中的某一项或者求解前$n$项的和。
高中物理数学高中数列10种解题技巧
高中物理数学高中数列10种解题技巧
当涉及到高中物理和数学中的数列问题时,以下是10种解题技巧:
确定数列类型:首先,确定数列是等差数列、等比数列还是其他类型的数列。
这将有助于你选择正确的解题方法。
寻找通项公式:对于等差数列和等比数列,寻找通项公式是解题的关键。
通过观察数列中的规律,尝试找到递推关系式,从而得到通项公式。
求和公式:对于需要求和的数列,使用相应的求和公式可以简化计算过程。
例如,等差数列的求和公式是Sn = (n/2)(2a + (n-1)d),其中Sn表示前n项和,a表示首项,d表示公差。
利用递推关系求解:对于一些复杂的数列问题,可以利用递推关系式逐步求解。
通过已知的前几项,推导出后续项的值。
利用数列性质:数列有许多性质和特点,例如对称性、周期性等。
利用这些性质可以简化问题,找到解题的突破口。
利用数列图像:将数列表示为图像,有时可以更直观地理解数列的规律。
通过观察图像,可以得到一些有用的信息。
利用数列的性质进行变形:有时,对数列进行一些变形可以使问题更容易解决。
例如,将等差数列转化为等比数列,或者将复杂的数列转化为简单的数列。
利用数列的对称性:如果数列具有对称性,可以利用对称性来简化问题。
例如,利用等差数列的对称性可以减少计算量。
利用数列的周期性:如果数列具有周期性,可以利用周期性来简化问题。
通过观察周期内的规律,可以推断出整个数列的性质。
多角度思考:对于复杂的数列问题,尝试从不同的角度思考,采用不同的解题方法。
有时,换一种思路可能会带来新的启示。
数列常用解题方法归纳总结
数列常用解题方法归纳总结一、 等差数列的定义与性质() 定义:为常数,a a d d a a n d n n n +-==+-111() 等差中项:,,成等差数列x A y A x y ⇔=+2()()前项和n S a a n nan n d n n =+=+-11212{}性质:是等差数列a n()若,则;1m n p q a a a a m n p q +=++=+{}{}{}()数列,,仍为等差数列;2212a a ka b n n n -+ S S S S S n n n n n ,,……仍为等差数列;232--()若三个数成等差数列,可设为,,;3a d a a d -+ ()若,是等差数列,为前项和,则;42121a b S T n a b S T n n n n m m m m =-- {}()为等差数列(,为常数,是关于的常数项为52a S an bn ab n n n ⇔=+0的二次函数){}S S an bn a n n n 的最值可求二次函数的最值;或者求出中的正、负分界=+2项,即:当,,解不等式组可得达到最大值时的值。
a d a a S n n n n 110000><≥≤⎧⎨⎩+当,,由可得达到最小值时的值。
a d a a S n n n n 110000<>≤≥⎧⎨⎩+{}如:等差数列,,,,则a S a a a S n n n n n n =++===--1831123(由,∴a a a a a n n n n n ++=⇒==----12113331()又·,∴S a a aa 31322233113=+===()()∴·S a a n a a n nn n n =+=+=+⎛⎝ ⎫⎭⎪=-12122131218 ∴=n 27) 二、等比数列的定义与性质 定义:(为常数,),a a q q q a a q n nn n +-=≠=1110 等比中项:、、成等比数列,或x G y G xy G xy ⇒==±2()前项和:(要注意)n S na q a q qq n n ==--≠⎧⎨⎪⎩⎪111111()()!{}性质:是等比数列a n()若,则··1m n p q a a a a m n p q +=+= (),,……仍为等比数列2232S S S S S n n n n n -- 三、求数列通项公式的常用方法1、公式法2、n n a S 求由;(时,,时,)n a S n a S S n n n ==≥=--121113、求差(商)法{}如:满足……a a a a n n n n 121212251122+++=+<>解:n a a ==⨯+=1122151411时,,∴n a a a n n n ≥+++=-+<>--2121212215212211时,……<>-<>=12122得:n n a ,∴a n n =+21,∴a n n n n ==≥⎧⎨⎩+141221()()[练习]{}数列满足,,求a S S a a a n n n n n +==++111534 (注意到代入得:a S S S S n n n n n+++=-=1114 {}又,∴是等比数列,S S S n n n144==n a S S n n n n ≥=-==--23411时,……·4、叠乘法{}例如:数列中,,,求a a a a nn a n n n n 1131==++ 解:a a a a a a n n a a nn n n 213211122311·……·……,∴-=-= 又,∴a a nn 133== 5、等差型递推公式由,,求,用迭加法a a f n a a a n n n -==-110()n a a f a a f a a f n n n ≥-=-=-=⎫⎬⎪⎪⎭⎪⎪-22321321时,…………两边相加,得:()()()a a f f f n n -=+++123()()()…… ∴……a a f f f n n =++++023()()() [练习]{}()数列,,,求a a a a n a n n n n n 111132==+≥--()()a n n=-1231 6、等比型递推公式()a ca d c d c c d n n =+≠≠≠-1010、为常数,,, ()可转化为等比数列,设a x c a x n n +=+-1()⇒=+--a ca c x n n 11令,∴()c x d x d c -==-11∴是首项为,为公比的等比数列a d c a dc c n +-⎧⎨⎩⎫⎬⎭+-111∴·a d c a d c c n n +-=+-⎛⎝ ⎫⎭⎪-1111∴a a d c c dc n n =+-⎛⎝⎫⎭⎪---1111[练习]{}数列满足,,求a a a a a n n n n 11934=+=+()a n n =-⎛⎝ ⎫⎭⎪+-843117、倒数法例如:,,求a a a a a n n n n 11122==++ ,由已知得:1221211a a a a n n n n+=+=+∴11121a a n n +-= , ∴⎧⎨⎩⎫⎬⎭=111121a a n 为等差数列,,公差为 ()()∴=+-=+11112121a n n n · ,∴a n n =+21三、 求数列前n 项和的常用方法1、公式法:等差、等比前n 项和公式2、裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。
高中数学数列方法及技巧
高中数学数列方法及技巧1高中数学数列方法和技巧一.公式法如果一个数列是等差数列或等比数列,则求和时直接利用等差、等比数列的前n项和公式.注意等比数列公示q的取值要分q=1和q≠1.二.倒序相加法如果一个数列的首末两端等“距离”的两项的和相等,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.三.错位相减法如果一个数列的各项和是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.四.裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.用裂项相消法求和时应注意抵消后并不一定只剩下第一项和最后一项,也可能前面剩两项,后面也剩两项,前后剩余项是对称出现的.五.分组求和法若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和然后相加减.2高中数学数列问题的答题技巧高中数列,有规律可循的类型无非就是两者,等差数列和等比数列,这两者的题目还是比较简单的,要把公式牢记住,求和,求项也都是比较简单的,公式的运用要熟悉。
题目常常不会如此简单容易,稍微加难一点的题目就是等差和等比数列的一些组合题,这里要采用的一些方法有错位相消法。
题目变化多端,往往出现的压轴题都是一些从来没有接触过的一些通项,有些甚至连通项也不给。
针对这两类,我认为应该积累以下的一些方法。
对于求和一类的题目,可以用柯西不等式,转化为等比数列再求和,分母的放缩,数学归纳法,转化为函数等方法等方法对于求通项一类的题目,可以采用先代入求值找规律,再数学归纳法验证,或是用累加法,累乘法都可以。
总之,每次碰到一道陌生的数列题,要进行总结,得出该类的解题方法,或者从中学会一种放缩方法,这对于以后很有帮助。
3高考数学解题方法解题过程要规范高考数学计算题要保证既对且全,全而规范。
应为高考数学计算题表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。
高考数列解题技巧
高考数列解题技巧数列是高中数学的重要内容之一,也是高考数学的热点之一。
在解决数列问题时,学生需要掌握一些常用的解题技巧,以提高解题效率和准确性。
1. 公式法公式法是解决数列问题的基本方法之一。
对于等差数列和等比数列,学生需要熟记它们的通项公式和求和公式,以便在解题时能够迅速运用。
例如,对于等差数列{an},其通项公式为a_n=a_1+(n-1)d,其中a_1为首项,d为公差。
求和公式为S_n=n/2(a_1+a_n)。
2. 裂项相消法裂项相消法是一种常用的求和技巧,适用于一些看似复杂的数列求和问题。
通过将每一项都拆分成两个部分,然后抵消掉中间的部分,可以简化计算过程。
例如,对于数列1/2, 2/3, 3/4, ..., n/(n+1),学生可以使用裂项相消法进行求和。
将每一项都拆分成两个部分,即分子和分母,然后抵消掉中间的部分,得到结果为1-1/(n+1)。
3. 错位相减法错位相减法是一种常用的求和方法,适用于一些周期性变化的数列。
通过错位相减法,可以将一个复杂的数列转化为一个简单的数列,从而简化计算过程。
例如,对于数列1, 1/2, 1/3, 1/4, ..., 1/n,学生可以使用错位相减法进行求和。
将每一项都乘以10,得到数列10, 5, 3, 2, ..., 1/n,然后将两个数列相减,得到结果为9+4+2+...+1-1/n。
4. 倒序相加法倒序相加法是一种求解递推关系式的常用方法。
通过将一个数列的顺序倒过来,然后将正序和倒序的两个数列相加,可以得到一个常数列的和,进而求出原数列的和。
例如,对于数列a_n=S_{n-1}+S_n,学生可以使用倒序相加法求解。
将数列a_n的顺序倒过来得到a_n=S_n+S_{n-1}......(B),然后将(A)式和(B)式相加得到2a_n=2S_n+S_{n-1}+S_{n-2}+......+S_2+S_1=S_n+S_{n-1}+......+S_2+S_1+ S_0=2^n-1。
数列题型及解题方法归纳总结
数列题型及解题方法归纳总结一、等差数列等差数列是指数列中的相邻项之差都相等的数列。
下面对等差数列的题型及解题方法进行归纳总结。
1. 求第n项的值设等差数列的首项为a,公差为d,第n项的值为an,则有公式:an = a + (n-1)d2. 求前n项和设等差数列的首项为a,公差为d,前n项和为Sn,则有公式:Sn = (n/2)(2a + (n-1)d)3. 求公差已知等差数列的首项为a,第m项与第n项的和为s,则公差d的值可以通过以下公式计算得出:d = (sm - sn)/(m - n)4. 求项数已知等差数列的首项为a,公差为d,第n项的值为an,可以通过以下公式求解项数n:n = (an - a)/d + 15. 应用题解题思路在解等差数列应用题时,关键是要找到规律。
可以通过观察数列的特点,列出方程,再解方程求解。
二、等比数列等比数列是指数列中的相邻项之比都相等的数列。
下面对等比数列的题型及解题方法进行归纳总结。
1. 求第n项的值设等比数列的首项为a,公比为q,第n项的值为an,则有公式:an = a * q^(n-1)2. 求前n项和(当公比q不等于1时)设等比数列的首项为a,公比为q,前n项和为Sn,则有公式:Sn = a * (q^n - 1) / (q - 1)3. 求前n项和(当公比q等于1时)当公比q等于1时,等比数列的前n项和为n * a。
4. 求公比已知等比数列的首项为a,第m项与第n项的比为r,则公比q的值可以通过以下公式计算得出:q = (an / am)^(1/(n-m))5. 求项数已知等比数列的首项为a,公比为q,第n项的值为an,可以通过以下公式求解项数n:n = log(an/a) / log(q)6. 应用题解题思路在解等比数列应用题时,关键是要找到规律。
可以通过观察数列的特点,列出方程,再解方程求解。
三、斐波那契数列斐波那契数列是指数列中第一、第二项为1,后续项为前两项之和的数列。
数列之通项公式求法 高考数学解题技巧归纳(新高考地区专用)
1+
为首项,以
−1
为公比的等比数列
∴
+
=(
−1
1+
)
−1
−1解得:
=(
1+
)
−1
−1 −
−1
例 4、数列an 中,a1 1 , an 3an1 2 ,求数列an 的通项公式
解:设 an 3 an1 即an 3an1 2
对比 an 3an1 2 ,可得 1
an 1 3 an1 1 an 1 是以 2 为首项,3 为公比的等比数列 an 1 a1 1 3n1
2 3
bn
1
1
3 bn1
1
bn
1
为公比是
1 3
的等比数列
bn
1
b1
1
1 3
n 1
bn
1
1 3
n
即
n an
1
1 3
n
an
1
n 1 3
n
n 3n 3n 1
移项整理得: 1 = 1 + 1 −1
令 = 1 ,则 = −1 + 1, 从而转化为第①种形式进行处理。
例 6、已知在数列 an 中,an 0, a1 2 ,且an1 an 2an1an
求数列 an 的通项公式;
解:∵ +1 − = 2 +1 ;且 +1 ≠ 0
∴ 1 − 1 = 2 ,即 1 − 1 =− 2
9 2
n
,
显然
a1
7 2
满足上式,
∴数列an的通项公式为an
9 2
n
n N
.
【跟踪训练】4、已知数列an 满足
数列常见题型及解题技巧
数列常见题型及解题技巧
数列常见题型及解题技巧
一、等差数列
1、求首项:求出首项a1可用公式:a1=Sn−n(d+a2)
2、求末项:求出末项an可用公式:an=Sn−n(d+a1)
3、求和:求出数列前n项和可用公式:Sn=n(a1+an)2
4、求通项公式:求出通项公式可用公式:an=a1+(n-1)d
5、求某项:求出第k项可用公式:ak=a1+(k-1)d
二、等比数列
1、求首项:求出首项a1可用公式:a1=Sn(qn−1)
2、求末项:求出末项an可用公式:an=a1qn−1
3、求和:求出数列前n项和可用公式:
Sn=a1(1−qn)1−q
4、求通项公式:求出通项公式可用公式:an=a1qn−1
5、求某项:求出第k项可用公式:ak=a1qk−1
三、复合数列
1、求和:求出数列前n项和可用公式:
Sn=a1+a2+…+an
2、求某项:求出第k项可用公式:ak=ak−1+ak
解题技巧:
1、利用性质转化:根据所给的条件,尝试将原数列转换成更简单的形式,如等差数列、等比数列或者复合数列。
2、利用关系性:通过对数列中一些特殊项的求出,可以确定整个数列的情况,比如求出第一项和最后一项,就可以确定数列的前n项和。
3、利用规律性:数列中的每一项都有一定的规律性,依靠这一点可以得到数列的通项公式,进而求出数列的其他项。
数列解题方法技巧汇总
数列解题方法技巧汇总
1. 找规律:观察数列的前几项并找出它们之间的规律,以此推断出后面的项。
2. 递推法:通过前面的项推导出后面的项,可以采用递推关系式或递推公式来计算。
3. 通项公式:数列中任意一项可以通过通项公式来计算,这要求我们找出数列中的一些特征,例如等差、等比等等。
4. 数列套路:掌握一些数列的套路,例如等差数列的求和公式、等比数列的求和公式、等比数列求通项公式等等。
5. 折线法:将数列的前几项按照一定的规律连接起来,形成一条折线,然后通过这条折线来推导出数列中的规律。
6. 矩阵法:将数列转化成矩阵形式,然后通过矩阵的乘法来计算数列中的每一项。
7. 生成函数法:将数列中的每一项看成某个函数的系数,然后将整个数列转化成一个生成函数,通过对生成函数的展开来求解数列中的每一项。
8. 等差数列和等比数列的转换:将等比数列通过取对数或对数值相乘改为等差
数列,从而可以采用等差数列的求和公式求解。
9. 反向思维:将给出的数列倒序排列,倒推数列的规律。
10. 郝氏减法:将数列中位置相邻的两项作差,将结果构成一个新的数列,这个新的数列往往具有更为明显的规律,容易推算。
高考数学 数列解题技巧总结
专题三、数列解题技巧总结一、等差数列:1、如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差.2、由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列,则A 称为a 与b 的等差中项.若2a c b +=,则称b 为a 与c 的等差中项. 3、若等差数列{}n a 的首项是1a ,公差是d ,则()11n a a n d =+-.()n m a a n m d =+-4、等差数列的前n 项和的公式:①()12n n n a a S +=;②()112n n n S na d -=+. 5、等差数列的性质:(1)m n p q +=+(m 、n 、p 、*q ∈N ),则m n p q a a a a +=+;特别地,若2n p q =+(n 、p 、*q ∈N ),则2n p q a a a =+.(2)n S ,2n n S S -,32n n S S -成等比数列.(3)若项数为()*2n n ∈N ,则S S nd -=偶奇,.(4)若项数为()*21n n -∈N ,则()2121n n S n a -=-,1S n S n =-奇偶 二、等比数列: 1、如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比.2、在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,则G 称为a 与b 的等比中项.若2G ab =,则称G 为a 与b 的等比中项.3、若等比数列{}n a 的首项是1a ,公比是q ,则11n n a a q -=.n m n m a a q -=4、等比数列{}n a 的前n 项和的公式:()()()11111111n n n na q S a q a a q q qq =⎧⎪=-⎨-=≠⎪--⎩ 5、等比数列的前n 项和的性质:(1)m n p q+=+(m 、n 、p 、*q ∈N ),则m n p q a a a a ⋅=⋅;若{}n a 是等比数列,且2n p q =+(n 、p 、*q ∈N ),则2n p q a a a =⋅.(2)n S ,2n n S S -,32n n S S -成等比数列。
数列题型及解题方法归纳总结
知识框架掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。
一、典型题的技巧解法1、求通项公式(1)观察法。
(2)由递推公式求通项。
对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。
(1)递推式为a n+1=a n+d及a n+1=qa n(d,q为常数)例1、 已知{a n}满足a n+1=a n+2,而且a1=1。
求a n。
例1、解 ∵a n+1-a n=2为常数 ∴{a n}是首项为1,公差为2的等差数列∴a n=1+2(n-1) 即a n=2n-1例2、已知满足,而,求=?(2)递推式为a n+1=a n+f(n)例3、已知中,,求.解: 由已知可知令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)★说明 只要和f(1)+f(2)+…+f(n-1)是可求的,就可以由a n+1=a n +f(n)以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。
(3)递推式为a n+1=pa n +q(p,q 为常数)例4、中,,对于n>1(n∈N)有,求.解法一: 由已知递推式得a n+1=3a n +2,a n =3a n-1+2。
两式相减:a n+1-a n =3(a n -a n-1)因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4∴a n+1-a n =4·3n-1 ∵a n+1=3a n +2 ∴3a n +2-a n =4·3n-1 即 a n =2·3n-1-1解法二: 上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2,把n-1个等式累加得:∴an=2·3n-1-1(4)递推式为an+1=p a n +q n(p,q 为常数)由上题的解法,得: ∴(5)递推式为思路:设,可以变形为:,想于是{a n+1-αa n }是公比为β的等比数列,就转化为前面的类型。
处理数列问题的五个常用小技巧
处理数列问题的五个常用小技巧高考中,解决数列问题的技巧性较强,掌握一些处理数列问题的常用技巧,对寻找切入点,化归数列问题,提高解题的准确性都有所帮助.1、 等差(比)数列的前n 项和公式和与通项公式的快速转化: 大家知道,公差为d 的等差数列{a n }的通项公式是:11(1)()n a a n d dn a d =+-=+-,前n 项和公式是:1111()[(1)](1)222n n n a a n a a n d d S na n n +++-===+-21()22d dn a n =+-.当d ≠0时,通项公式是关于n 的一次函数,前n 项和公式是关于n 的二次函数.对比1()n a dn a d =+-与n S 21()22d dn a n =+-可知:前n 项和公式变成通项公式是把n 降次:22n n s d da n n =+-,可借助导数记为:2n S an bn =+⇒'n n a S a =-,其中'n S 是n S 的导数(把n 看成自变量),用口诀可记为: 二次变一次,求导减二系.通项公式变成前n 项和公式是把n 升次:()22n n d d S a n n =-+. 用口诀记为:一次变二次,一次项减半,加上半系,然后升次如:2223[(3)1]22n n na n S n n n =-⇒=-+=- 22n S n n =-2'1(2)'1n n a S n n ⇒=-=-- 二次项系数=221n --=23n -, 一般地,n a an b =+⇒[()]22n an a S b n =++211()22an b a n =++ 2n S a n b n =+⇒2()'n a a n b n a =+-=2an b a +- 特别地,2(1)2()(2)n n a b c n S an bn c a an b a n ++=⎧=++⇒=⎨+-≥⎩若0c ≠,则数列从第二项起成等差数列.公比为q 的等比数列{a n }的通项公式为:11n n a a q -=,当q 1≠时,前n 项和公式为:1111(1)(1)()1111n n n n a q a q a a S q q q q q --===+-----.由等比数列的通项公式求其前项和公式,公比等于1的比较简单,公比等于2或12比较常用,在后面将要表述.当公比1q ≠时,也可以是1111n n n a a q a q a S q q --==--,可用口诀记为:末项乘以公比减去首项.,再把差除以(公比-1).这是主要描述前n 项和公式变成通项公式.当,0n n s aq b a b =++=且0,1abq q ≠≠()时,对比11()11n n a a S q q q =+---知,11aa q =-,从而1(1)a a q =-.即:,0n n s aqb a b =++=且⇒1(1)n n a a q q -=-.若,0n n s aq b a b =++≠且,则1,1(1),2n n aq b n a a q q n -+=⎧=⎨-≥⎩,此时的1a 不符合1(1)n n a a q q -=-. 2、公比是2或12的等比数列中,序号连续的项的和的求法 对于等比数列{}n a ,当公比1q ≠时,1111n n n a a q a q a S q q --==--,当2q =时,12n n S a a =-,若公比为12,则倒序后变为公比是2,因而可归纳为:公比为2或12的等比数列中,序号连续的项的和,等于绝对值最大的加数的2倍减去绝对值最小的加数. 如:124828115+++=⨯-=(-2)+(—4)+…+(—256)=2(—256)—(-2)=-510111111204722482048220482048++++=⨯-= 3、非常手段求等差、等比数列的公差、公比数列的项的序号应取正整数,若以每项的序号为横坐标,该项的值为纵坐标来描点,则等差数列的图象是一条直线上一系列孤立的点.等比数列的图象是一条指数型函数(不一定是指数函数)图象上一系列孤立的点.因而我们也可以把这两种数列的图象拓展为连续曲线(直线也可以看成是直线),利用曲线上其它的点来确定一次函数或指数型函数中的参数.基于这个观点,可以让数列的项的序号取正整数外的其它数,有时处理起问题来会显得更方便.尤其是在做选择题、填空题时,不需要参考解题过程评分,利用这样的方式来处理更准更快.例1、等差数列n a {}的前n 项和为n S ,且2S =10, 4S =36,则这个数列n a {}的公差是 按常规,列出一个关于首项1a 和公差d 的二元一次一方程组,消去首项1a ,解出公差d 即可. 但如此处理会更快些:2S =10⇒ 1.5a =5,4S =36⇒ 2.5a =9 于是, 2.5 1.59542.5 1.51a a d --===-.公差实质上是直线的斜率.可以利用直线上两个点11,1222(),(,)P x y P x y 的纵坐标之差除以对应的横坐标之差,即:2121y y k x x -=-(12x x ≠),或1212y y k x x -=-(12x x ≠).在数列中,利用两个点2(,),(,)m n M m a N n a 可得mn a y d m n -=-(m n ≠),或n ma a d n m-=-(m n ≠). 与等差数列类似,也可借助曲线来解决相关问题,此处不再赘述.4、递推公式为: 1()n n a qa f n +=+(0q ≠,()f n 是非零常数,或一、二次函数, 或指数型函数)的数列n a {}的通项公式的求法 对数列的考查仍然以等差、等比数列为主线,命题时加上一些加、乘、乘方运算变化,把等差、等比的属性隐盖起来,使得问题出现的面孔有所改变.作为考生要做的事情,就是把隐藏了的等差、等比性质拨离出来,再用处理等差、等比的常规手段来处理. (1)当()f n 是一个非零常数d 时,1n n a qa d +=+例2、已知数列n a {},111,23n n a a a +==+, 求数列n a {}的通项公式. 猜想:把常数3分配成两个数相加到1n a +和n a 上,变成1()n n a c q a c ++=+的形式. 解:123n n a a +=+⇒当2n ≥时,132(3)n n a a -+=+⇒113(3)2n n a a -+=+11a = ∴123n n a +=-,验证知符合 1.n =∴数列na {}的通项公式为:123n na +=-一般地,如果数列n a {}满足:11,n n a a a qa d +==+(0,1)q ≠,可以把这个数列的每项都加上一个常数c ,使它变成公比为q 的等比数列.即:{}n a c +是公比为q 的等比数列.设1()n n a c q a c -+=+(2n ≥),则1(1)n n a qa q c -=+-, 对比当2n ≥时,1n n a qa d -=+,得1d c q =-.可得到:11()()1111n n n n d d d da a q a a q q q q q --+=+⇒=+-----⇒1()1n n n aq d a q d a q -+--=-这种数列是把等比数列的各项加上一个常数后得到的数列.或者说成是等比数列平移后的数列.在通项公式上的表现是,相邻两项是一次函数的关系.(2)1n n a qa an b +=++(1q ≠)型与处理(1)类似,令1(1)()n n a s n t q a sn t ++++=++,则1(1)(1)n n a qa q sn q t s +=+-+--,对比1n n a qa an b +=++,得:(1)(1)q s aq t s b -=⎧⎨--=⎩,可得到,s t 的值.与处理1n n a qa an b +=++(1q ≠)型类似,也可求出21n n a qa an bn c +=+++型(相当于2()f n an bn c =++型的数列的通项公式.(3)1n k n n a qa ap ++=+(相当于()n k f n ap +=)的可先转化成1n n a qa d -=+型的来处理 例3、在数列n a {}中,14a =,1652n n n a a -=-⨯(2n ≥).求数列n a {}的通项公式. 过程略.答案:11526n n n a --=⨯-以上主要分析1q ≠的情形,1q =的情形较简单,后面给出3道题供练习.5、对于含有n S 和n a 的递推公式例4、已知数列{}n a 中,1n 13,S (1)(1)12n a n n a ==++-前项和 (I )求证:数列{}n a 是等差数列;(II )求数列{}n a 的通项公式.(I )证明:由n 1S (1)(1)12n n a =++-,得 当2n ≥时,n 111S (11)(1)12n n a -=-++--=11(1)12n n a -+-1n n S S --=1(1)2n n a +-112n na -+12⇒2n a =(1)n n a +-1n na -+1⇒(1)n n a --1n na -+1=0………. ①又1(1)10n n na n a +-++=………..②②-①,得:1120n n n na na na +--+=⇒11n n n n a a a a +--=- ∴ 数列{}n a 是等差数列.(Ⅱ)解:由n 1S (1)(1)12n n a =++-,得1221(21)(1)12a a a +=++-,联系13a =可得,25a =. 故d =5-3=2 ∴数列{}n a 的通项公式为:21n a n =+练习1、数列{}n a 满足:111,,n n a a a n +==+求数列{}n a 的通项公式.2、已知数列n a {},1111,3(2)n n n a a a n --==+≥, 求数列n a {}的通项公式.(312n n a -=) 3、在数列n a {}中, 1114,(2)2n n n n a a a λλλ++==++-,其中λ>0. 求数列n a {}的通项公式;通项公式为:(1)2n n n a n λ=-+;。
数列解题思想技巧总结
数列解题思想技巧总结数列是高中数学中的一个重要内容,解题技巧也是需要掌握的。
以下是数列解题思想技巧的总结:1. 观察法:观察数列中的规律,找出数列的特点和变化规律。
可以通过列出数列的前几项,比较相邻项之间的关系,寻找共同的特征来找出数列的规律。
2. 递推法:对于递推数列,通过从已知的项出发,找出每一项与前一项之间的关系,推导出数列的通项公式。
递推法是数列求和、求项数等问题的主要思路。
3. 代数法:将数列的问题转化为代数方程的问题。
通过列出数列的通项公式,得到数列的某项的表达式,然后利用已知条件列出方程,解方程得到所求的项或者数值。
4. 数学归纳法:数学归纳法是用来证明数列性质和定理的方法,也可以用来找出数列的规律。
通过证明一个条件成立的前提下,推论该条件在下一个值也成立,从而可以推断出通项公式或者数列的变化规律。
5. 等差数列和等比数列的性质:等差数列和等比数列是两种常见的数列类型。
等差数列的性质是首项与末项之和的一半与项数的乘积相等,等比数列的性质是相邻两项的比值恒定。
利用这些性质可以帮助求解数列相关问题。
6. 假设法:对于一些没有明显规律的数列,可以通过假设一些规律来解题。
假设规律之后,再验证是否满足所有已知条件,如果满足,则假设成立,可以继续求解。
7. 倒序法:对于一些复杂的数列问题,可以从最后一项开始倒序思考。
通过倒序思考,可以找到求解数列的规律,然后再用递推法或者代数法求解。
8. 分类讨论法:对于一些复杂的数列,可以根据某个条件对数列进行分类讨论。
通过不同的分类,可以得到不同的解法,从而可以更好地解决问题。
9. 数列的性质和定理:掌握数列的常见性质和定理,比如等差中项、等差数列求和公式、等比数列求和公式等,可以帮助解决数列相关问题。
10. 几何解法:有些数列问题可以通过几何解法来解决。
通过将数列的项表示为几何图形的数量,可以利用几何性质解题。
以上是数列解题思想技巧的总结,通过掌握这些技巧,可以更好地解决各种数列相关的问题。
高考数列知识点归纳总结
高考数列知识点归纳总结一、等差数列等差数列是指数列中任意两项之间的差值恒定的数列。
常用的表示方式是:a,a + d,a + 2d,a + 3d...,其中a为首项,d为公差。
1. 等差数列的通项公式为了快速计算等差数列中任意一项的数值,我们可以使用通项公式。
对于等差数列{an},其通项公式为:an = a + (n - 1)d其中,an表示第n项的值,a为首项,d为公差。
2. 等差数列的前n项和公式等差数列的前n项和可以通过求和公式来计算,公式为:Sn = (n/2)(a + l)其中,Sn表示前n项和,n为项数,a为首项,l为末项。
3. 等差数列性质等差数列具有以下性质:- 任意三项成等差数列,当且仅当它们的差值相等。
- 等差数列中,如果知道了首项、末项和项数,就可以计算出公差。
或者前n项和。
二、等比数列等比数列是指数列中任意两项之间的比值恒定的数列。
常用的表示方式是:a,ar,ar^2,ar^3...,其中a为首项,r为公比。
1. 等比数列的通项公式为了快速计算等比数列中任意一项的数值,我们可以使用通项公式。
对于等比数列{an},其通项公式为:an = ar^(n-1)其中,an表示第n项的值,a为首项,r为公比。
2. 等比数列的前n项和公式等比数列的前n项和可以通过求和公式来计算,公式为:Sn = a(r^n - 1) / (r - 1)其中,Sn表示前n项和,n为项数,a为首项,r为公比。
3. 等比数列性质等比数列具有以下性质:- 任意三项成等比数列,当且仅当它们的比值相等。
- 等比数列中,如果知道了首项、末项和项数,就可以计算出公比。
或者前n项和。
三、数列的求和运算在高考数学中,常常会遇到需要计算数列前n项和的情况。
数列的求和运算可以通过特定的公式或者方法来实现。
1. 等差数列的求和等差数列的前n项和可以通过求和公式来计算,公式为:Sn = (n/2)(a + l)其中,Sn表示前n项和,n为项数,a为首项,l为末项。
数列解题技巧归纳总结 好(5份)
数列解题技巧归纳总结好(5份)一、典型题的技巧解法1、求通项公式(1)观察法。
(2)由递推公式求通项。
对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。
(1)递推式为an+1=an+d及an+1=qan(d,q为常数)例1、已知{an}满足an+1=an+2,而且a1=1。
求an。
例1、解∵an+1-an=2为常数∴{an}是首项为1,公差为2的等差数列∴an=1+2(n-1)即an=2n-1例2、已知满足,而,求=?(2)递推式为an+1=an+f(n)例3、已知中,,求、解:由已知可知令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a2-a1)+(a3-a2)+…+(an-an-1)★ 说明只要和f (1)+f(2)+…+f(n-1)是可求的,就可以由an+1=an+f(n)以n=1,2,…,(n-1)代入,可得n-1个等式累加而求an。
(3)递推式为an+1=pan+q(p,q为常数)例4、中,,对于n>1(n∈N)有,求、解法一:由已知递推式得an+1=3an+2,an=3an-1+2。
两式相减:an+1-an=3(an-an-1)因此数列{an+1-an}是公比为3的等比数列,其首项为a2-a1=(31+2)-1=4∴an+1-an=43n-1 ∵an+1=3an+2∴3an+2-an=43n-1 即 an=23n-1-1解法二:上法得{an+1-an}是公比为3的等比数列,于是有:a2-a1=4,a3-a2=43,a4-a3=432,…,an-an-1=43n-2,把n-1个等式累加得:∴an=23n-1-1(4)递推式为an+1=p an+q n(p,q为常数)由上题的解法,得:∴ (5)递推式为思路:设,可以变形为:,想于是{an+1-αan}是公比为β的等比数列,就转化为前面的类型。
求。
(6)递推式为Sn与an的关系式关系;(2)试用n表示an。
数学高中数列10种解题技巧
数学高中数列10种解题技巧数列是高中数学中一个非常重要且经常被考察的概念。
它在数学和实际应用中都有着广泛的应用。
但是,数列的解题方法非常多,有时候我们可能会感到困惑。
为此,本文总结了数学高中数列10种解题技巧,让我们一起来看看吧。
1. 求和公式有些数列如果求和,使用求和公式可以极大地简化计算。
例如,等差数列和等比数列的求和公式是非常常见和重要的。
2. 递推式递推式是数列的一种描述方法,是一种基于之前项和公式推导下一项的方法。
有些数列通过递推式很容易得到通项公式,进而求解问题。
3. 归纳法归纳法是数列题目解题的常用方法。
通过证明一个命题对于某个特定的数成立,以及每一个下一个数都满足这个性质,我们就可以得到它对于所有数都成立的结论。
4. 图像法有些数列的图像规律比较明显,通过观察它们的图像,我们可以得到一些结论,从而解决一些问题。
5. 交替数列交替数列是一种奇数项和偶数项分别出现不同的项的数列。
有时候,我们可以通过对它进行分割,分别计算奇数项和偶数项的和,然后再将结果相加。
6. 通项公式对于某些数列,如果能够求得它们的通项公式,那么我们就可以很方便地计算出它们的各个项。
常见的数列有等差数列、等比数列、斐波那契数列等等。
7. 变形技巧变形技巧是数列解题过程中常用的一种方法。
它通常用于将原有的数列问题转化为其他已知的数列问题,从而利用已有的知识来解决问题。
8. 逆推法逆推法是一种通过倒向考虑来解决数列问题的方法,通常它可以帮助我们找到某个数列的特定项。
9. 等比数列与等差数列之间的关系等比数列和等差数列是数列中最常见的两种类型,它们之间有着一些重要的关系。
通过研究它们之间的联系,我们可以更加深入的理解它们的性质和规律。
10. 特殊的数列有些数列非常特殊,它们没有通项公式,没有明显的规律,但是它们在实际应用中却有着广泛的应用。
如果我们能够了解这些特殊的数列及其应用,那么在应用数学中会有更多的灵活性和优越性。
(完整)数列题型及解题方法归纳总结,推荐文档
1 2
5
文德教育
n 2时,a n Sn Sn1 …… 3·4 n1
a n ca n1 d c、d为常数,c 0,c 1,d 0
建议收藏下载本文,以便随时学习! 4、叠乘法
可转化为等比数列,设a n x c a n1 x
例如:数列a n 中,a1
3,
a n1 an
n n 1 ,求an
a n ca n1 c 1x
解: a 2 · a 3 …… a n 1 · 2 …… n 1 ,∴ a n 1
a1 a2
a n1 2 3
n
a1 n
又a 1
3,∴a n
3 n
5、等差型递推公式
由a n a n1 f (n),a1 a 0,求a n ,用迭加法
令(c 1)x d,∴x d c1
(3)形如 an1 ank 的递推数列都可以用对数法求通项。
(7)(理科)数学归纳法。
4
文德教育
建议收藏下载本文,以便随时学习! (8)当遇到 an1
an1
d或 an1 an1
q 时,分奇数项偶数项讨论,结果
求数列通项公式的常用方法:
1、公式法
可能是分段形式。 数列求和的常用方法:
2、 由S n 求a n
∴a n
c
d
1是首项为a
1
c
d ,c为公比的等比数列 1
∴a n
c
d 1
a1
c
d
1
·c
n
1
n
2时,a 2 a3
a1 a2
f (2)
f
(3)
两边相加,得:
…… ……
a n a n1 f (n)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数列解题技巧归纳总结知识框架111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a qa a d n a a n d n n n S a a na d a a a a m n p q --=≥=⎧⎪←⎨⎪⎩-=≥⎧⎪=+-⎪⎪-⎨=+=+⎪⎪+=++=+⎪⎩两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1)11(1)()n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+⎧⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎨⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎩⎩⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎧⎨⎩⎩等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用其他⎪⎪⎪⎪⎪⎪⎪⎪⎪掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。
一、典型题的技巧解法 1、求通项公式 (1)观察法。
(2)由递推公式求通项。
对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。
(1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。
求a n 。
解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足112n n a a +=,而12a =,求n a =?(2)递推式为a n+1=a n +f (n )例3、已知{}n a 中112a =,12141n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+=-+n n a a n n )121121(21+--=n n令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)2434)1211(211--=--+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。
(3)递推式为a n+1=pa n +q (p ,q 为常数)例4、{}n a 中,11a =,对于n >1(n ∈N )有132n n a a -=+,求n a .解法一: 由已知递推式得a n+1=3a n +2,a n =3a n-1+2。
两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4∴a n+1-a n =4·3n-1 ∵a n+1=3a n +2 ∴3a n +2-a n =4·3n-1 即 a n =2·3n-1-1解法二: 上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2,把n-1个等式累加得: ∴an=2·3n-1-1(4)递推式为a n+1=p a n +q n (p ,q 为常数))(3211-+-=-n n n n b b b b 由上题的解法,得:n n b )32(23-= ∴nn nn n b a )31(2)21(32-==(5)递推式为21n n n a pa qa ++=+思路:设21n n n a pa qa ++=+,可以变形为:211()n n n n a a a a αβα+++-=-,想于是{a n+1-αa n}是公比为β的等比数列,就转化为前面的类型。
求na。
(6)递推式为Sn 与an的关系式关系;(2)试用n表示a n。
∴)2121()(1211--++-+-=-nnnnnnaaSS∴11121-+++-=nnnnaaa∴nnnaa21211+=+上式两边同乘以2n+1得2n+1a n+1=2n a n+2则{2n a n}是公差为2的等差数列。
∴2n a n= 2+(n-1)·2=2n2.数列求和问题的方法(1)、应用公式法等差、等比数列可直接利用等差、等比数列的前n项和公式求和,另外记住以下公式对求和来说是有益的。
1+3+5+……+(2n-1)=n2【例8】 求数列1,(3+5),(7+9+10),(13+15+17+19),…前n 项的和。
解 本题实际是求各奇数的和,在数列的前n 项中,共有1+2+…+n=)1(21+n n 个奇数,∴最后一个奇数为:1+[21n(n+1)-1]×2=n 2+n-1因此所求数列的前n 项的和为(2)、分解转化法对通项进行分解、组合,转化为等差数列或等比数列求和。
【例9】求和S=1·(n 2-1)+ 2·(n 2-22)+3·(n 2-32)+…+n (n 2-n 2)解 S=n 2(1+2+3+…+n )-(13+23+33+…+n 3)(3)、倒序相加法适用于给定式子中与首末两项之和具有典型的规律的数列,采取把正着写与倒着写的两个和式相加,然后求和。
例10、求和:12363nn n n n S C C nC =+++ 解 0120363n n n n n n S C C C nC =•++++∴ S n =3n ·2n-1(4)、错位相减法如果一个数列是由一个等差数列与一个等比数列对应项相乘构成的,可把和式的两端同乘以上面的等比数列的公比,然后错位相减求和.例11、 求数列1,3x ,5x 2,…,(2n-1)x n-1前n 项的和.解 设S n =1+3+5x 2+…+(2n-1)x n-1. ①(2)x=0时,S n=1.(3)当x≠0且x≠1时,在式①两边同乘以x得 xS n=x+3x2+5x3+…+(2n-1)x n,②①-②,得 (1-x)S n=1+2x+2x2+2x3+…+2x n-1-(2n-1)x n.(5)裂项法:把通项公式整理成两项(式多项)差的形式,然后前后相消。
常见裂项方法:例12、求和1111 153759(21)(23)n n +++•••-+注:在消项时一定注意消去了哪些项,还剩下哪些项,一般地剩下的正项与负项一样多。
在掌握常见题型的解法的同时,也要注重数学思想在解决数列问题时的应用。
二、常用数学思想方法1.函数思想运用数列中的通项公式的特点把数列问题转化为函数问题解决。
【例13】等差数列{a n}的首项a1>0,前n项的和为S n,若S l=S k(l≠k)问n为何值时S n最大?此函数以n为自变量的二次函数。
∵a1>0 S l=S k(l≠k),∴d<0故此二次函数的图像开口向下∵ f(l)=f(k)2.方程思想【例14】设等比数列{a n}前n项和为S n,若S3+S6=2S9,求数列的公比q。
分析本题考查等比数列的基础知识及推理能力。
解∵依题意可知q≠1。
∵如果q=1,则S3=3a1,S6=6a1,S9=9a1。
由此应推出a1=0与等比数列不符。
∵q≠1整理得 q3(2q6-q3-1)=0 ∵q≠0此题还可以作如下思考:S6=S3+q3S3=(1+q3)S3。
S9=S3+q3S6=S3(1+q3+q6),∴由S3+S6=2S9可得2+q3=2(1+q3+q6),2q6+q3=03.换元思想【例15】已知a,b,c是不为1的正数,x,y,z∈R+,且求证:a,b,c顺次成等比数列。
证明依题意令a x=b y=c z=k∴x=1og a k,y=log b k,z=log c k∴b2=ac ∴a,b,c成等比数列(a,b,c均不为0)错位相减法1.设数列{}{})0(S ,1,1>=c c a S n a n n n 是以且数列项和为的前为公比的等比数列.(1)求数列{}n a 的通项公式; (2)求n a a a 242+++ .2、等差数列{}为则中,593,19,7a a a a n ==( ). A 、13 B 、12 C 、11 D 、10 3、已知等比数列{}n a 中,n T 表示前n 项的积,若5T =1,则( ).A 、1a =1B 、3a =1C 、4a =1D 、5a =14.已知数列{}n a 满足1a =1 ,n a =113--+n n a (2≥n ).① 求32,a a ;② 求n a .5.已知等差数列}{n a 的首项为24,公差为2-,则当n= __时,该数列的前n 项和n S 取得最大值。
6. 在等差数列{}n a 中,首项10,a =公差0d ≠,若1237k a a a a a =++++,则k =A .21B .22C .23D .247.已知正项等差数列{}n a 的前n 项和为n S ,若312S =,且1232,,1a a a +成等比数列.(Ⅰ)求{}n a 的通项公式;(Ⅱ)记3nn na b =的前n 项和为n T ,求n T .8.在数列}{n a 中,41,4111==+n n a a a 已知,*)(log 3241N n a b n n ∈=+. (1)求数列}{n a 的通项公式; (2)求证:数列}{n b 是等差数列; (3)设数列n n n n b a c c ⋅=满足}{,求{}n c 的前n 项和n S .9.已知数列{}n b 前n 项和n n S n 21232-=.数列{}n a 满足)2(34n a +-=n b )(*∈N n ,数列{}n c 满足n n n b a c =。
(1)求数列{}n a 和数列{}n b 的通项公式; (2)求数列{}n c 的前n 项和n T ;10. 设n S 为数列}{n a 的前n 项和,对任意的∈n N *,都有()1n n S m ma =+-m (为常数,且0)m >.(1)求证:数列}{n a 是等比数列;(2)设数列}{n a 的公比()m f q =,数列{}n b 满足()1112,n n b a b f b -== (2n ≥,∈n N *),求数列{}n b 的通项公式;(3)在满足(2)的条件下,求数列12n n b +⎧⎫⎨⎬⎩⎭的前n 项和n T .答案1、解:(1)∵数列{}1,)0(11==>a S c c S n 且为公比的等比数列是以∴111--==n n n c cs S ………………3分 ∴)221≥=--n c S n n (∴)2()1(2211≥-=-=-=----n c c cc S S a n n n n n n ………………6分 ∴⎩⎨⎧∈≥-==+-N n n C c n a n n 且 ,2,)1(1,12………………8分 (2)由(1)知,2642,,,,n a a a a 是以2a 为首项,C 2为公比的等比数列,……11分111)1)(1(222242+-=---=+++c c c c c a a a n n n……………14分2.,226197693a a a ==+=+ ∴2313366=+==d d a a a 得 由∴11a5= 选C3、, 所以1 1353543215====a a a a a a a T 选B 4、(1)解:(1)解: ∵11=a ,∴4132=+=a ,134323=+=a …………4 分(2) 证明:已知 )2(311≥=---n a a n n n 得+-+-=---)()(211n n n n n a a a a a …112)(a a a +-+ …………8 分++=--2133n n …13++ 213-=n …………12 分当1=n 时,121311=-=a ∴213-=n n a …………14 分 5.由已知得:24(1)(2)262n a n n =+-•-=-,由*1026201213,02420n n a n n n N a n +≥⎧-≥⎧⇒⇒≤≤∈⎨⎨≤-≤⎩⎩,所以n=12或137. 解:(Ⅰ)∵312S =,即12312a a a ++=,∴2312a =,所以24a =,--------------------------------2分又∵12a ,2a ,31a +成等比数列, ∴22132(1)a a a =⋅+,即22222()(1)a a d a d =-⋅++,--------------------------------4分解得,3d =或4d =-(舍去), ∴121a a d =-=,故32n a n =-;---------------------------------------7分(Ⅱ)法1:321(32)333n n n n na nb n -===-⋅, ∴231111147(32)3333n n T n =⨯+⨯+⨯++-⨯, ①①13⨯得,2341111111147(35)(32)333333n n n T n n +=⨯+⨯+⨯++-⨯+-⨯ ②①-②得,234121111113333(32)3333333n n n T n +=+⨯+⨯+⨯++⨯--⨯2111111(1)115111333(32)(32)133623313n n n n n n -+-+-=+⨯--⨯=-⨯--⨯-∴2511321565144323443n n n n n n T --+=-⨯-⨯=-⨯. ---------------------------------------14分法2:1321123333n n n n n na nb n --===⋅-⨯, 设231111112343333n n A n -=+⨯+⨯+⨯++⨯, ①则234111111234333333n n A n =+⨯+⨯+⨯++⨯, ② ①-②得,2312111111333333n n n A n -=+++++-⨯1113313()1322313nn n n n -=-⨯=-+⨯- ∴9931()4423n n A n =-+⨯,∴11(1)993115651332()(1)14423344313n n n n n nn T A n ⨯-+=-⨯=-+⨯--=-⨯-.----------------------------14分 8.解:(1)411=+n n a a ∴数列}{n a 是首项为41,公比为41的等比数列, ∴*)()41(N n a nn ∈=.…………………………………………………………………2分(2)2log 341-=n n a b ………………………………………………………………3分。