最新八年级上册数学集体备课教案
八年级数学上册教案(优秀8篇)
八年级数学上册教案(优秀8篇)八年级数学上册教案篇1教学目标:1、经历数据离散程度的探索过程2、了解刻画数据离散程度的三个量度极差、标准差和方差,能借助计算器求出相应的数值。
教学重点:会计算某些数据的极差、标准差和方差。
教学难点:理解数据离散程度与三个差之间的关系。
教学准备:计算器,投影片等教学过程:一、创设情境1、投影课本P138引例。
(通过对问题串的解决,使学生直观地估计从甲、乙两厂抽取的20只鸡腿的平均质量,同时让学生初步体会平均水平相近时,两者的离散程度未必相同,从而顺理成章地引入刻画数据离散程度的一个量度极差)2、极差:是指一组数据中最大数据与最小数据的差,极差是用来刻画数据离散程度的一个统计量。
二、活动与探究如果丙厂也参加了竞争,从该厂抽样调查了20只鸡腿,数据如图(投影课本159页图) 问题:1、丙厂这20只鸡腿质量的平均数和极差是多少?2、如何刻画丙厂这20只鸡腿质量与其平均数的差距?分别求出甲、丙两厂的20只鸡腿质量与对应平均数的差距。
3、在甲、丙两厂中,你认为哪个厂鸡腿质量更符合要求?为什么?(在上面的情境中,学生很容易比较甲、乙两厂被抽取鸡腿质量的极差,即可得出结论。
这里增加一个丙厂,其平均质量和极差与甲厂相同,此时导致学生思想认识上的矛盾,为引出另两个刻画数据离散程度的量度标准差和方差作铺垫。
三、讲解概念:方差:各个数据与平均数之差的平方的平均数,记作s2设有一组数据:x1,x2,x3,,xn,其平均数为则s2=,而s=称为该数据的标准差(既方差的算术平方根)从上面计算公式可以看出:一组数据的极差,方差或标准差越小,这组数据就越稳定。
四、做一做你能用计算器计算上述甲、丙两厂分别抽取的20只鸡腿质量的方差和标准差吗?你认为选哪个厂的鸡腿规格更好一些?说说你是怎样算的?(通过对此问题的解决,使学生回顾了用计算器求平均数的步骤,并自由探索求方差的详细步骤)五、巩固练习:课本第172页随堂练习六、课堂小结:1、怎样刻画一组数据的离散程度?2、怎样求方差和标准差?七、布置作业:习题5.5第1、2题。
八年级数学上册教案精选6篇
八年级数学上册教案精选6篇八年级数学上册教案篇一一、学习目标:1.使学生了解运用公式法分解因式的意义;2.使学生掌握用平方差公式分解因式二、重点难点重点:掌握运用平方差公式分解因式。
难点:将单项式化为平方形式,再用平方差公式分解因式;学习方法:归纳、概括、总结三、合作学习创设问题情境,引入新课在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式。
如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的方法——公式法。
1.请看乘法公式(a+b)(a-b)=a2-b2 (1)左边是整式乘法,右边是一个多项式,把这个等式反过来就是a2-b2=(a+b)(a-b) (2)左边是一个多项式,右边是整式的乘积。
大家判断一下,第二个式子从左边到右边是否是因式分解?利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式。
a2-b2=(a+b)(a-b)2.公式讲解如x2-16=(x)2-42=(x+4)(x-4).9 m 2-4n2=(3 m )2-(2n)2=(3 m +2n)(3 m -2n)四、精讲精练例1、把下列各式分解因式:(1)25-16x2; (2)9a2- b2.例2、把下列各式分解因式:(1)9(m+n)2-(m-n)2; (2)2x3-8x.补充例题:判断下列分解因式是否正确。
(1)(a+b)2-c2=a2+2ab+b2-c2.(2)a4-1=(a2)2-1=(a2+1)•(a2-1).五、课堂练习教科书练习六、作业1、教科书习题2、分解因式:x4-16 x3-4x 4x2-(y-z)23、若x2-y2=30,x-y=-5求x+y数学八年级上教案篇二教学目标1、理解并掌握等腰三角形的判定定理及推论2、能利用其性质与判定证明线段或角的相等关系。
八年级上册数学教案 八年级上册数学教案(9篇)
八年级上册数学教案八年级上册数学教案(9篇)作为一名为他人授业解惑的教育工作者,通常需要用到教案来辅助教学,借助教案可以让教学工作更科学化。
那么大家知道正规的教案是怎么写的吗?下面是细致的小编帮大家收集整理的9篇八年级上册数学教案的相关范文,欢迎参考阅读,希望能够帮助到大家。
八年级上册数学教案篇一第11章平面直角坐标系11.1平面上点的坐标第1课时平面上点的坐标(一)教学目标【知识与技能】1.知道有序实数对的概念,认识平面直角坐标系的相关知识,如平面直角坐标系的构成:横轴、纵轴、原点等。
2.理解坐标平面内的点与有序实数对的一一对应关系,能写出给定的平面直角坐标系中某一点的坐标。
已知点的坐标,能在平面直角坐标系中描出点。
3.能在方格纸中建立适当的平面直角坐标系来描述点的位置。
【过程与方法】1.结合现实生活中表示物体位置的例子,理解有序实数对和平面直角坐标系的作用。
2.学会用有序实数对和平面直角坐标系中的点来描述物体的位置。
【情感、态度与价值观】通过引入有序实数对、平面直角坐标系让学生体会到现实生活中的问题的解决与数学的发展之间有联系,感受到数学的价值。
重点难点【重点】认识平面直角坐标系,写出坐标平面内点的坐标,已知坐标能在坐标平面内描出点。
【难点】理解坐标系中的坐标与坐标轴上的数字之间的关系。
教学过程一、创设情境、导入新知师:如果让你描述自己在班级中的位置,你会怎么说?生甲:我在第3排第5个座位。
生乙:我在第4行第7列。
师:很好!我们买的电影票上写着几排几号,是对应某一个座位,也就是这个座位可以用排号和列号两个数字确定下来。
二、合作探究,获取新知师:在以上几个问题中,我们根据一个物体在两个互相垂直的方向上的数量来表示这个物体的位置,这两个数量我们可以用一个实数对来表示,但是,如果(5,3)表示5排3号的话,那么(3,5)表示什么呢?生:3排5号。
师:对,它们对应的不是同一个位置,所以要求表示物体位置的这个实数对是有序的。
八年级上册数学教案(6篇)
八年级上册数学教案(6篇)八年级上册数学教案(篇1)一、学生起点分析通过前一章《勾股定理》的学习,学生已经明白什么是勾股数,但也发现并不是所有的直角三角形的边长都是勾股数,甚至有些直角三角形的边长连有理数都不是,例如:①腰长为1的等腰直角三角形的底边长不是有理数,②两条直角边分别为1,2的直角三角形的斜边长不是有理数,这为引入“新数”奠定了必要性.二、教学任务分析《数不够用了》是义务教育课程标准北师大版实验教科书八年级(上)第二章《实数》的第一节.本节内容安排了2个课时完成,第1课时让学生感受无理数的存在,初步建立无理数的印象,结合勾股定理知识,会根据要求画线段;第2课时借助计算器感受无理数是无限不循环小数,会判断一个数是无理数.本课是第1课时,学生将在具体的实例中,通过操作、估算、分析等活动,感受无理数的客观存在性和引入的必要性,并能判断一个数是不是有理数.本节课的教学目标是:①通过拼图活动,让学生感受客观世界中无理数的存在;②能判断三角形的某边长是否为无理数;③学生亲自动手做拼图活动,培养学生的动手能力和探索精神;④能正确地进行判断某些数是否为有理数,加深对有理数和无理数的理解;三、教学过程设计本节课设计了6个教学环节:第一环节:置疑;第二环节:课题引入;第三环节:获取新知;第四环节:应用与巩固;第五环节:课堂小结;第六环节:作业布置.第一环节:质疑内容:想一想⑴一个整数的平方一定是整数吗?⑵一个分数的平方一定是分数吗?目的:作必要的知识回顾,为第二环节埋下伏笔,便于后续问题的说理.效果:为后续环节的进行起了很好的铺垫的作用第二环节:课题引入内容:1.算一算已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长的平方,并提出问题:是整数(或分数)吗?2.剪剪拼拼把边长为1的两个小正方形通过剪、拼,设法拼成一个大正方形,你会吗?目的:选取客观存在的“无理数“实例,让学生深刻感受“数不够用了”.效果:巧设问题背景,顺利引入本节课题.第三环节:获取新知内容:议一议→释一释→忆一忆→找一找议一议:已知,请问:① 可能是整数吗?② 可能是分数吗?释一释:释1.满足的为什么不是整数?释2.满足的为什么不是分数?忆一忆:让学生回顾“有理数”概念,既然不是整数也不是分数,那么一定不是有理数,这表明:有理数不够用了,为“新数”(无理数)的学习奠定了基础找一找:在下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段目的:创设从感性到理性的认知过程,让学生充分感受“新数”(无理数)的存在,从而激发学习新知的兴趣效果:学生感受到无理数产生的过程,确定存在一种数与以往学过的数不同,产生了学习新数的必要性.第四环节:应用与巩固内容:画一画1→画一画2→仿一仿→赛一赛画一画1:在右1的正方形网格中,画出两条线段:1.长度是有理数的线段2.长度不是有理数的线段画一画2:在右2的正方形网格中画出四个三角形(右1) 2.三边长都是有理数2.只有两边长是有理数3.只有一边长是有理数4.三边长都不是有理数仿一仿:例:在数轴上表示满足的解:(右2)仿:在数轴上表示满足的赛一赛:右3是由五个单位正方形组成的纸片,请你把它剪成三块,然后拼成一个正方形,你会吗?试试看!(右3)目的:进一步感受“新数”的存在,而且能把“新数”表示在数轴上效果:加深了对“新知”的理解,巩固了本课所学知识.第五环节:课堂小结内容:1.通过本课学习,感受有理数又不够用了,请问你有什么收获与体会?2.客观世界中,的确存在不是有理数的数,你能列举几个吗? 3.除了本课所认识的非有理数的数以外,你还能找到吗?目的:引导学生自己小结本节课的知识要点及数学方法,使知识系统化.效果:学生总结、相互补充,学会进行概括总结.第六环节:布置作业习题2.1六、教学设计反思(一)生活是数学的源泉,兴趣是学习的动力大量事实都证明一点,与生活贴得越近的东西最容易引起学习者的浓厚兴趣,才能激发学习者的学习积极性,学习才可能是主动的.本节课中教师首先用拼图游戏引发学生学习的欲望,把课程内容通过学生的生活经验呈现出来,然后进行大胆置疑,生活中的数并不都是有理数,那它们究竟是什么数呢?从而引发了学生的好奇心,为获取新知,创设了积极的氛围.在教学中,不要盲目的抢时间,让学生能够充分的思考与操作.(二)化抽象为具体常言道:“数学是锻炼思维的体操”,数学教师应通过一系列数学活动开启学生的思维,因此对新数的学习不能仅仅停留于感性认识,还应要求学生充分理解,并能用恰当数学语言进行解释.正是基于这个原因,在教学过程中,刻意安排了一些环节,加深对新数的理解,充分感受新数的客观存在,让学生觉得新数并不抽象.(三)强化知识间联系,注意纠错既然称之为“新数”,那它当然不是有理数,亦即不是整数,也不是分数,所以“新数”不可以用分数来表示,这为进一步学习“新数”,即第二课时教学埋下了伏笔,在教学中,要着重强调这一点:“新数”不能表示成分数,为无理数的教学奠好基.八年级上册数学教案(篇2)教学目标1.知识与技能了解因式分解的意义,以及它与整式乘法的关系.2.过程与方法经历从分解因数到分解因式的类比过程,掌握因式分解的概念,感受因式分解在解决问题中的作用.3.情感、态度与价值观在探索因式分解的方法的活动中,培养学生有条理的思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值.重、难点与关键1.重点:了解因式分解的意义,感受其作用.2.难点:整式乘法与因式分解之间的关系.3.关键:通过分解因数引入到分解因式,并进行类比,加深理解.教学方法采用“激趣导学”的教学方法.教学过程一、创设情境,激趣导入问题牵引请同学们探究下面的2个问题:问题1:720能被哪些数整除?谈谈你的想法.问题2:当a=102,b=98时,求a2-b2的值.二、丰富联想,展示思维探索:你会做下面的填空吗?1.ma+mb+mc=()();2._2-4=()();3._2-2_y+y2=()2.师生共识把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式.三、小组活动,共同探究问题牵引(1)下列各式从左到右的变形是否为因式分解:①(_+1)(_-1)=_2-1;②a2-1+b2=(a+1)(a-1)+b2;③7_-7=7(_-1).(2)在下列括号里,填上适当的项,使等式成立.①9_2(______)+y2=(3_+y)(_______);②_2-4_y+(_______)=(_-_______)2.四、随堂练习,巩固深化课本练习.探研时空计算:993-99能被100整除吗?五、课堂总结,发展潜能由学生自己进行小结,教师提出如下纲目:1.什么叫因式分解?2.因式分解与整式运算有何区别?六、布置作业,专题突破选用补充作业.板书设计15.4.1 因式分解1、因式分解例:练习:15.4.2 提公因式法教学目标1.知识与技能能确定多项式各项的公因式,会用提公因式法把多项式分解因式.2.过程与方法使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解.3.情感、态度与价值观培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值.重、难点与关键1.重点:掌握用提公因式法把多项式分解因式.2.难点:正确地确定多项式的最大公因式.3.关键:提公因式法关键是如何找公因式.方法是:一看系数、二看字母.•公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.教学方法采用“启发式”教学方法.教学过程一、回顾交流,导入新知复习交流下列从左到右的变形是否是因式分解,为什么?(1)2_2+4=2(_2+2);(2)2t2-3t+1= (2t3-3t2+t);(3)_2+4_y-y2=_(_+4y)-y2;(4)m(_+y)=m_+my;(5)_2-2_y+y2=(_-y)2.问题:1.多项式mn+mb中各项含有相同因式吗?2.多项式4_2-_和_y2-yz-y呢?请将上述多项式分别写成两个因式的乘积的形式,并说明理由.教师归纳我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式式是m,在4_2-_中的公因式是_,在_y2-yz-y中的公因式是y.概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法.二、小组合作,探究方法教师提问多项式4_2-8_6,16a3b2-4a3b2-8ab4各项的公因式是什么?师生共识提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.三、范例学习,应用所学例1把-4_2yz-12_y2z+4_yz分解因式.解:-4_2yz-12_y2z+4_yz=-(4_2yz+12_y2z-4_yz)=-4_yz(_+3y-1)例2分解因式,3a2(_-y)3-4b2(y-_)2思路点拨观察所给多项式可以找出公因式(y-_)2或(_-y)2,于是有两种变形,(_-y)3=-(y-_)3和(_-y)2=(y -_)2,从而得到下面两种分解方法.解法1:3a2(_-y)3-4b2(y-_)2=-3a2(y-_)3-4b2(y-_)2=-[(y-_)23a2(y-_)+4b2(y-_)2]=-(y-_)2 [3a2(y-_)+4b2]=-(y-_)2(3a2y-3a2_+4b2)解法2:3a2(_-y)3-4b2(y-_)2=(_-y)23a2(_-y)-4b2(_-y)2=(_-y)2 [3a2(_-y)-4b2]=(_-y)2(3a2_-3a2y-4b2)例3用简便的方法计算:0.84×12+12×0.6-0.44×12.教师活动引导学生观察并分析怎样计算更为简便.解:0.84×12+12×0.6-0.44×12=12×(0.84+0.6-0.44)=12×1=12.教师活动在学生完全例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同?四、随堂练习,巩固深化课本P167练习第1、2、3题.探研时空利用提公因式法计算:0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69五、课堂总结,发展潜能1.利用提公因式法因式分解,关键是找准最大公因式.•在找最大公因式时应注意:(1)系数要找最大公约数;(2)字母要找各项都有的;(3)指数要找最低次幂.2.因式分解应注意分解彻底,也就是说,分解到不能再分解为止.六、布置作业,专题突破课本P170习题15.4第1、4(1)、6题.板书设计15.4.2 提公因式法1、提公因式法例:练习:15.4.3 公式法(一)教学目标1.知识与技能会应用平方差公式进行因式分解,发展学生推理能力.2.过程与方法经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性.3.情感、态度与价值观培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.重、难点与关键1.重点:利用平方差公式分解因式.2.难点:领会因式分解的解题步骤和分解因式的彻底性.3.关键:应用逆向思维的方向,演绎出平方差公式,•对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.教学方法采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维.教学过程一、观察探讨,体验新知问题牵引请同学们计算下列各式.(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).学生活动动笔计算出上面的两道题,并踊跃上台板演.(1)(a+5)(a-5)=a2-52=a2-25;(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.教师活动引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律.1.分解因式:a2-25; 2.分解因式16m2-9n.学生活动从逆向思维入手,很快得到下面答案:(1)a2-25=a2-52=(a+5)(a-5).(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).教师活动引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解.平方差公式:a2-b2=(a+b)(a-b).评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).二、范例学习,应用所学例1把下列各式分解因式:(投影显示或板书)(1)_2-9y2;(2)16_4-y4;(3)12a2_2-27b2y2;(4)(_+2y)2-(_-3y)2;(5)m2(16_-y)+n2(y-16_).思路点拨在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解.教师活动启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演.学生活动分四人小组,合作探究.解:(1)_2-9y2=(_+3y)(_-3y);(2)16_4-y4=(4_2+y2)(4_2-y2)=(4_2+y2)(2_+y)(2_-y);(3)12a2_2-27b2y2=3(4a2_2-9b2y2)=3(2a_+3by)(2a_-3by);(4)(_+2y)2-(_-3y)2=[(_+2y)+(_-3y)][(_+2y)-(_-3y)] =5y(2_-y);(5)m2(16_-y)+n2(y-16_)=(16_-y)(m2-n2)=(16_-y)(m+n)(m-n).三、随堂练习,巩固深化课本P168练习第1、2题.探研时空1.求证:当n是正整数时,n3-n的值一定是6的倍数. 2.试证两个连续偶数的平方差能被一个奇数整除.连续偶数的平方差能被一个奇数整除.四、课堂总结,发展潜能运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底,最后应注意两点:一是每个因式要化简,二是分解因式时,每个因式都要分解彻底.五、布置作业,专题突破课本P171习题15.4第2、4(2)、11题.板书设计15.4.3 公式法(一)1、平方差公式:例:a2-b2=(a+b)(a-b)练习:15.4.3 公式法(二)教学目标1.知识与技能领会运用完全平方公式进行因式分解的方法,发展推理能力. 2.过程与方法经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.3.情感、态度与价值观培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力.重、难点与关键1.重点:理解完全平方公式因式分解,并学会应用.2.难点:灵活地应用公式法进行因式分解.3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,•达到能应用公式法分解因式的目的.教学方法采用“自主探究”教学方法,在教师适当指导下完成本节课内容.教学过程一、回顾交流,导入新知问题牵引1.分解因式:(1)-9_2+4y2;(2)(_+3y)2-(_-3y)2;(3) _2-0.01y2.八年级上册数学教案(篇3)一、创设情景,明确目标多媒体展示:内角三兄弟之争在一个直角三角形里住着三个内角,平时,它们三兄弟非常团结.可是有一天,老二突然不高兴,发起脾气来,它指着老大说:“你凭什么度数最大,我也要和你一样大!”“不行啊!”老大说:“这是不可能的,否则,我们这个家就再也围不起来了……”“为什么?”老二很纳闷.同学们,你们知道其中的道理吗?二、自主学习,指向目标学习至此:请完成《学生用书》相应部分.三、合作探究,达成目标三角形的内角和活动一:见教材P11“探究”.展示点评:从探究的操作中,你能发现证明的思路吗?图中的直线L与△ABC的边BC有什么关系?你能想出证明“三角形内角和的方法”吗?证明命题的步骤是什么?证明三角形的内角和定理.小组讨论:有没有不同的证明方法?反思小结:证明是由题设出发,经过一步步的推理,最后推出结论正确的过程.三角形三个内角的和等于180°.针对训练:见《学生用书》相应部分三角形内角和定理的应用活动二:见教材P12例1展示点评:题中所求的角是哪个三角形的一个内角吗?你能想出几种解法?小组讨论:三角形的内角和在解题时,如何灵活应用?反思小结:当三角形中已知两角的读数时,可直接用内角和定理求第三个内角;当三角形中未直接给出两内角的度数时,可根据它们之间的关系列方程解决.针对训练:见《学生用书》相应部分四、总结梳理,内化目标1.本节学习的数学知识是:三角形的内角和是180°.2.三角形内角和定理的证明思路是什么?3.数学思想是转化、数形结合.《三角形综合应用》精讲精练1. 现有3 cm,4 cm,7 cm,9 cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是( )A.1个B.2个C.3个D.4个2. 如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依次为2,3,4,6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝之间的距离最大值是( )A.5B.6C.7D.103.下列五种说法:①三角形的三个内角中至少有两个锐角;②三角形的三个内角中至少有一个钝角;③一个三角形中,至少有一个角不小于60°;④钝角三角形中,任意两个内角的和必大于90°;⑤直角三角形中两锐角互余.其中正确的说法有________(填序号).《11.2与三角形有关的角》同步测试4.(1)如图①,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,∠ACD与∠B有什么关系?为什么?(2)如图②,在Rt△ABC中,∠C=90°,D,E分别在AC,AB上,且∠ADE=∠B,判断△ADE的形状.为什么?(3)如图③,在Rt△ABC和Rt△DBE 中,∠C=90°,∠E=90°,AB⊥BD,点C,B,E在同一直线上,∠A与∠D有什么关系?为什么?八年级上册数学教案(篇4)单元(章)主题第三章直棱柱任课教师与班级本课(节)课题3.1 认识直棱柱第 1 课时 / 共课时教学目标(含重点、难点)及设置依据教学目标1、了解多面体、直棱柱的有关概念.2、会认直棱柱的侧棱、侧面、底面.3、了解直棱柱的侧棱互相平行且相等,侧面是长方形(含正方形)等特征.教学重点与难点教学重点:直棱柱的有关概念.教学难点:本节的例题描述一个物体的形状,把它看成怎样的两个几何体的组合,都需要一定的空间想象能力和表达能力.教学准备每个学生准备一个几何体,(分好学习小组)教师准备各种直棱柱和长方体、立方体模型教学过程内容与环节预设、简明设计意图二度备课(即时反思与纠正)一、创设情景,引入新课师:在现实生活中,像笔筒、西瓜、草莓、礼品盒等都呈现出了立体图形的形状,在你身边,还有没有这样类似的立体图形呢?析:学生很容易回答出更多的答案。
最新-八年级上册数学教案【优秀6篇】
八年级上册数学教案【优秀6篇】作为一名为他人授业解惑的教育工作者,就有可能用到教案,教案是实施教学的主要依据,有着至关重要的作用。
那么什么样的教案才是好的呢?奇文共欣赏,疑义相如析,下面是勤劳的阿青为大家整编的6篇八年级数学上册教案的相关内容,欢迎阅读,希望对大家有一些参考价值。
初二数学上册教案篇一教学目标1.等腰三角形的概念。
2.等腰三角形的性质。
3.等腰三角形的概念及性质的应用。
教学重点:1.等腰三角形的概念及性质。
2.等腰三角形性质的应用。
教学难点:等腰三角形三线合一的性质的理解及其应用。
教学过程Ⅰ.提出问题,创设情境在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,Ⅰ并且能够作出一个简单平面图形关于某一直线的轴对称图形,Ⅰ还能够通过轴对称变换来设计一些美丽的图案。
这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形。
来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?有的三角形是轴对称图形,有的三角形不是。
问题:那什么样的三角形是轴对称图形?满足轴对称的条件的三角形就是轴对称图形,Ⅰ也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形。
我们这节课就来认识一种成轴对称图形的三角形──等腰三角形。
Ⅰ.导入新课:要求学生通过自己的思考来做一个等腰三角形。
作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形。
等腰三角形的定义:有两条边相等的三角形叫做等腰三角形。
相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角。
同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角。
思考:1.等腰三角形是轴对称图形吗?请找出它的对称轴。
2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?Ⅰ底边上的高所在的直线呢?结论:等腰三角形是轴对称图形。
八年级数学上册教案(6篇)
八年级数学上册教案(6篇)八年级数学上册教案(篇1)教学目标1.知识与技能领会运用完全平方公式进行因式分解的方法,发展推理能力.2.过程与方法经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.3.情感、态度与价值观培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力.重、难点与关键1.重点:理解完全平方公式因式分解,并学会应用.2.难点:灵活地应用公式法进行因式分解.3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,•达到能应用公式法分解因式的目的教学方法采用“自主探究”教学方法,在教师适当指导下完成本节课内容.教学过程一、回顾交流,导入新知问题牵引1.分解因式:(1)-9_2+4y2;(2)(_+3y)2-(_-3y)2;(3)_2-0.01y2.知识迁移2.计算下列各式:(1)(m-4n)2;(2)(m+4n)2;(3)(a+b)2;(4)(a-b)2.教师活动引导学生完成下面两道题,并运用数学“互逆”的思想,寻找因式分解的规律.3.分解因式:(1)m2-8mn+16n2(2)m2+8mn+16n2;(3)a2+2ab+b2;(4)a2-2ab+b2.学生活动从逆向思维的角度入手,很快得到下面答案:解:(1)m2-8mn+16n2=(m-4n)2;(2)m2+8mn+16n2=(m+4n)2;(3)a2+2ab+b2=(a+b)2;(4)a2-2ab+b2=(a-b)2.归纳公式完全平方公式a2±2ab+b2=(a±b)2.二、范例学习,应用所学例1把下列各式分解因式:(1)-4a2b+12ab2-9b3;(2)8a-4a2-4;(3)(_+y)2-14(_+y)+49;(4)+n4.例2如果_2+a_y+16y2是完全平方,求a的值.思路点拨根据完全平方式的定义,解此题时应分两种情况,即两数和的平方或者两数差的平方,由此相应求出a的值,即可求出a3.三、随堂练习,巩固深化课本P170练习第1、2题.探研时空1.已知_+y=7,_y=10,求下列各式的值.(1)_2+y2;(2)(_-y)22.已知_+=-3,求_4+的值.四、课堂总结,发展潜能由于多项式的因式分解与整式乘法正好相反,因此把整式乘法公式反过来写,就得到多项式因式分解的公式,主要的有以下三个:a2-b2=(a+b)(a-b);a2±ab+b2=(a±b)2.在运用公式因式分解时,要注意:(1)每个公式的形式与特点,通过对多项式的项数、•次数等的总体分析来确定,是否可以用公式分解以及用哪个公式分解,通常是,当多项式是二项式时,考虑用平方差公式分解;当多项式是三项时,应考虑用完全平方公式分解;(2)•在有些情况下,多项式不一定能直接用公式,需要进行适当的组合、变形、代换后,再使用公式法分解;(3)当多项式各项有公因式时,应该首先考虑提公因式,•然后再运用公式分解.五、布置作业,专题突破八年级数学上册教案(篇2)Ⅰ.教学任务分析教学目标知识与技能使学生理解正比例函数的概念,会用描点法画正比例函数图象,掌握正比例函数的性质.过程与能力培养学生数学建模的能力.情感与态度实例引入,激发学生学习数学的兴趣.教学重点探索正比例函数的性质.教学难点从实际问题情境中建立正比例函数的数学模型.Ⅱ.教学过程设计问题及师生行为设计意图一、创设问题,激发兴趣问题1将下列问题中的变量用函数表示出来:(1)小明骑自行车去郊游,速度为4km/h,其行驶路程y随时间_变化而变化;(2)三角形的底为10cm,其面积y随高_的变化而变化;(3)笔记本的单价为3元,买笔记本所要的钱数y随作业本数量_的变化而变化.解:(1)y=4_;(2)y=5_;(3)y=3_.教师提出问题,学生独立思考并回答问题.教师点评,并且提醒学生注意用_表示y. 问题引入,为新知作好铺垫.二、诱导参与,探究新知思考:观察函数关系式:① y=4_; ② y=5_; ③ y=3_.这些函数有什么特点?都是y等于一个常量与_的乘积.教师提出问题,并引导学生观察:学生观察思考并回答问题.三、引导归纳,提炼新知(板书)正比例函数的概念:一般地,形如y=k_(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数.注意:_ 的取值范围是全体实数.由教师引导,学生观察得出结论.体现学生为主体,教师为主导的关系.通过板书,突出本节课的重点.四、指导应用,发展能力1.下列函数是否是正比例函数?比例系数是多少?(1) 是,比例系数k=8. (2) 不是.(3) 是,比例系数k= . (4) 不是.填空1.若函数y=(2m2+8)_m2-8+(m+3)是正比例函数,则m的值是___-3____.题 1请学生口答,题2学生独立完成,并到黑板板书,教师评价书写规范.在本次活动中,教师要关注:学生能否准确地理解正比例函数的定义,注意二次项系数不能为0.五、探究新知例1 画出正比例函数y=_的图象.解:(1)列表:_ --- -2 -1 0 1 2 ---y --- -2 -1 0 1 2 ---画出函数y=_的图象.(1)列表: (2)描点: (3)连线:想一想除了用描点法外,还有其他简单的方法画正比例函数图象吗?根据两点确定一条直线,我们可以经过原点与点(1,k)画直线,即两点法.同理,画出y=-_的图象.师生共同分析:两个图象的共同点:都是经过原点的直线.不同点:函数y=_的图象从左向右呈上升状态,即随着_的增大y也增大,经过第一、三象限.函数y=-_的图象从左向右呈下降状态,即随_增大y反而减小,经过第二、四象限.归纳:一般地,正比例函数y=k_(k是常数,k≠ 0)的图象是一条经过原点的直线.当k0时,图象经过一、三象限,从左向右上升,即随_的增大y也增大;当k0时,图象经过二、四象限,从左向右下降,即随_增大y反而减小.由于正比例函数y=k_(k是常数,k≠0)的图象是一条直线,•我们可以称它为直线y=k_.六、指导应用,发展能力例2 在同一直角坐标系中画出y=_,y=2_,y=3_的函数图象,并比较它们的异同点.相同点:图象经过一、三象限,从左向右上升;不同点:倾斜度不同,y=_,y=2_,y=3_的函数图象离y轴越来越近.例3 在同一直角坐标系中画出y=-_,y=-2_,y=-3_的函数图象,并比较它们的异同点.相同点:图象经过二、四象限,从左向右下降;不同点:倾斜度不同, y=-_,y=-2_,y=-3_的函数图象离y 轴越来越近.在y=k_中,k的绝对值越大,函数图象越靠近y轴.八年级数学上册教案(篇3)11.1 与三角形有关的线段11.1.1 三角形的边1.理解三角形的概念,认识三角形的顶点、边、角,会数三角形的个数.(重点)2.能利用三角形的三边关系判断三条线段能否构成三角形.(重点)3.三角形在实际生活中的应用.(难点)一、情境导入出示金字塔、战机、大桥等图片,让学生感受生活中的三角形,体会生活中处处有数学.教师利用多媒体演示三角形的形成过程,让学生观察.问:你能不能给三角形下一个完整的定义?二、合作探究探究点一:三角形的概念图中的锐角三角形有( )A.2个B.3个C.4个D.5个解析:(1)以A为顶点的锐角三角形有△ABC、△ADC共2个;(2)以E为顶点的锐角三角形有△EDC共1个.所以图中锐角三角形的个数有2+1=3(个).故选B.方法总结:数三角形的个数,可以按照数线段条数的方法,如果一条线段上有n个点,那么就有n(n-1)2条线段,也可以与线段外的`一点组成n(n-1)2个三角形.探究点二:三角形的三边关系类型一判定三条线段能否组成三角形以下列各组线段为边,能组成三角形的是( )A.2c,3c,5cB.5c,6c,10cC.1c,1c,3cD.3c,4c,9c解析:选项A中2+3=5,不能组成三角形,故此选项错误;选项B中5+6>10,能组成三角形,故此选项正确;选项C中1+1<3,不能组成三角形,故此选项错误;选项D中3+4<9,不能组成三角形,故此选项错误.故选B.方法总结:判定三条线段能否组成三角形,只要判定两条较短的线段长度之和大于第三条线段的长度即可.类型二判断三角形边的取值范围一个三角形的三边长分别为4,7,_,那么_的取值范围是( ) A.3<_<11 B.4<_<7C.-3<_<11 D._>3解析:∵三角形的三边长分别为4,7,_,∴7-4<_<7+4,即3<_<11.故选A.方法总结:判断三角形边的取值范围要同时运用两边之和大于第三边,两边之差小于第三边.有时还要结合不等式的知识进行解决.类型三等腰三角形的三边关系已知一个等腰三角形的两边长分别为4和9,求这个三角形的周长.解析:先根据等腰三角形两腰相等的性质可得出第三边长的两种情况,再根据两边和大于第三边来判断能否构成三角形,从而求解.解:根据题意可知等腰三角形的三边可能是4,4,9或4,9,9,∵4+4<9,故4,4,9不能构成三角形,应舍去;4+9>9,故4,9,9能构成三角形,∴它的周长是4+9+9=22.方法总结:在求三角形的边长时,要注意利用三角形的三边关系验证所求出的边长能否组成三角形.类型四三角形三边关系与绝对值的综合若a,b,c是△ABC的三边长,化简|a-b-c|+|b-c-a|+|c+a-b|.解析:根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定绝对值里的式子的正负,然后去绝对值符号进行计算即可.解:根据三角形的三边关系,两边之和大于第三边,得a-b -c<0,b-c-a<0,c+a-b>0.∴|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b+c+a-b=3c+a-b.方法总结:绝对值的化简首先要判断绝对值符号里面的式子的正负,然后根据绝对值的性质将绝对值的符号去掉,最后进行化简.此类问题就是根据三角形的三边关系,判断绝对值符号里面式子的正负,然后进行化简.三、板书设计三角形的边1.三角形的概念:由不在同一直线上的三条线段首尾顺次相接所组成的图形. 2.三角形的三边关系:两边之和大于第三边,两边之差小于第三边.本节课让学生经历一个探究解决问题的过程,抓住“任意的三条线段能不能围成一个三角形”引发学生探究的欲望,围绕这个问题让学生自己动手操作,发现有的能围成,有的不能围成,由学生自己找出原因,为什么能?为什么不能?初步感知三条边之间的关系,重点研究“能围成三角形的三条边之间到底有什么关系”.通过观察、验证、再操作,最终发现三角形任意两边之和大于第三边这一结论.这样教学符合学生的认知特点,既提高了学生学习的兴趣,又增强了学生的动手能力.八年级数学上册教案(篇4)一.教学目标:1.了解方差的定义和计算公式。
八年级数学备课组集体备课教案
八年级数学备课组集体备课教案第一章:实数的运算一、教学目标1. 理解实数的概念,掌握实数的分类及特点。
2. 熟练掌握实数的运算方法,包括加、减、乘、除、乘方等。
3. 能够运用实数运算解决实际问题。
二、教学内容1. 实数的概念及分类。
2. 实数的运算方法及运算律。
3. 实数运算在实际问题中的应用。
三、教学重点与难点1. 实数的分类及特点。
2. 实数运算方法的掌握。
3. 实数运算在实际问题中的应用。
四、教学方法1. 采用讲授法,讲解实数的概念、分类及运算方法。
2. 利用例题,演示实数运算的过程。
3. 引导学生运用实数运算解决实际问题,培养学生的实际应用能力。
五、教学步骤1. 引入实数的概念,讲解实数的分类及特点。
2. 讲解实数的运算方法,并通过例题演示运算过程。
3. 布置练习题,让学生巩固实数运算的方法。
4. 引导学生运用实数运算解决实际问题,分享解题过程及答案。
第二章:方程与不等式的解法一、教学目标1. 理解方程与不等式的概念,掌握一元一次方程、一元一次不等式的解法。
2. 能够运用解法解简单的一元二次方程和不等式。
3. 能够运用方程与不等式解决实际问题。
二、教学内容1. 方程与不等式的概念及分类。
2. 一元一次方程、一元一次不等式的解法。
3. 一元二次方程和不等式的解法。
4. 方程与不等式在实际问题中的应用。
三、教学重点与难点1. 方程与不等式的解法。
2. 一元二次方程和不等式的解法。
3. 方程与不等式在实际问题中的应用。
四、教学方法1. 采用讲授法,讲解方程与不等式的概念及解法。
2. 利用例题,演示一元一次方程、一元一次不等式的解法。
3. 引导学生运用解法解决实际问题,培养学生的实际应用能力。
五、教学步骤1. 引入方程与不等式的概念,讲解分类。
2. 讲解一元一次方程、一元一次不等式的解法,并通过例题演示解法。
3. 讲解一元二次方程和不等式的解法,并通过例题演示解法。
4. 布置练习题,让学生巩固解法。
初中八年级数学上册备课教案5篇
初中八年级数学上册备课教案5篇初中八年级数学上册备课教案篇1分式方程教学目标1.经历分式方程的概念,能将实际问题中的等量关系用分式方程表示,体会分式方程的模型作用.2.经历实际问题-分式方程方程模型的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想人体,培养学生的应用意识。
3.在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值.教学重点:将实际问题中的等量关系用分式方程表示教学难点:找实际问题中的等量关系教学过程:情境导入:有两块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦9000 kg和15000 kg。
已知第一块试验田每公顷的产量比第二块少3000 kg,分别求这两块试验田每公顷的产量。
你能找出这一问题中的所有等量关系吗?(分组交流)如果设第一块试验田每公顷的产量为 kg,那么第二块试验田每公顷的产量是________kg。
根据题意,可得方程___________________二、讲授新课从甲地到乙地有两条公路:一条是全长600 km的普通公路,另一条是全长480 km的高速公路。
某客车在高速公路上行驶的平均速度比在普通公路上快45 km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半。
求该客车由高速公路从甲地到乙地所需的时间。
这一问题中有哪些等量关系?如果设客车由高速公路从甲地到乙地所需的时间为 h,那么它由普通公路从甲地到乙地所需的时间为_________h。
根据题意,可得方程_ _____________________。
学生分组探讨、交流,列出方程.三.做一做:为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款。
已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等。
如果设第一次捐款人数为人,那么满足怎样的方程?四.议一议:上面所得到的方程有什么共同特点?分母中含有未知数的方程叫做分式方程分式方程与整式方程有什么区别?五、随堂练习(1)据联合国《20_年全球投资报告》指出,中国20_年吸收外国投资额达530亿美元,比上一年增加了13%。
八年级上册数学教案 八年级上册数学教案(5篇)
八年级上册数学教案八年级上册数学教案(5篇)作为一位杰出的老师,常常要写一份优秀的教案,教案有利于教学水平的提高,有助于教研活动的开展。
教案要怎么写呢?书痴者文必工,艺痴者技必良,以下是勤劳的小编给家人们收集的八年级上册数学教案(5篇),仅供借鉴,希望大家能够喜欢。
八年级上册数学教案全集篇一教学目标1.掌握角的平分线的性质定理和它的逆定理的内容、证明及应用.2.理解原命题和逆命题的概念和关系,会找一个简单命题的逆命题.3.渗透角平分线是满足特定条件的点的集合的思想。
教学重点和难点角平分线的性质定理和逆定理的应用是重点.性质定理和判定定理的区别和灵活运用是难点.教学过程设计一、角平分钱的性质定理与判定定理的探求与证明1,复习引入课题.(1)提问关于直角三角形全等的判定定理.(2)让学生用量角器画出图3-86中的∠AOB的角平分线OC.2.画图探索角平分线的性质并证明之.(1)在图3-86中,让学生在角平分线OC上任取一点P,并分别作出表示P点到∠AOB两边的距离的线段PD,PE.(2)这两个距离的大小之间有什么关系?为什么?学生度量后得出猜想,并用直角三角形全等的知识进行证明,得出定理.(3)引导学生叙述角平分线的性质定理(定理1),分析定理的条件、结论,并根据相应图形写出表达式.3.逆向思维探求角平分线的判定定理.(1)让学生将定理1的条件、结论进行交换,并思考所得命题是否成立?如何证明?请一位同学叙述证明过程,得出定理2——角平分线的判定定理.(2)教师随后强调定理1与定理2的区别:已知角平分线用性质为定理1,由所给条件判定出角平分线是定理2.(3)教师指出:直接使用两个定理不用再证全等,可简化解题过程.4.理解角平分线是到角的两边距离都相等的点的集合.(1)角平分线上任意一点(运动显示)到角的两边的距离都相等(渗透集合的纯粹性).(2)在角的内部,到角的两边距离相等的点(运动显示)都在这个角的平分线上(而不在其它位置,渗透集合的完备性).由此得出结论:角的平分线是到角的两边距离相等的所有点的集合.二、应用举例、变式练习练习1填空:如图3-86(1)∠OC平分∠AOB,点P在射线OC上,PD∠OA于DPE∠OB于E.∠---------(角平分线的性质定理).(2)∠PD∠OA,PE∠OB,----------∠OP平分∠AOB(-------------)例1已知:如图3-87(a),ABC的角平分线BD和CE交于F.(l)求证:F到AB,BC和AC边的距离相等;(2)求证:AF平分∠BAC;(3)求证:三角形中三条内角的平分线交于一点,而且这点到三角形三边的距离相等;(4)怎样找∠ABC内到三边距离相等的点?(5)若将“两内角平分线BD,CE交于F”改为“∠ABC的两个外角平分线BD,CE交于F,如图3-87(b),那么(1)~(3)题的结论是否会改变?怎样找∠ABC外到三边所在直线距离相等的点?共有多少个?说明:(1)通过此题达到巩固角平分线的性质定理(第(1)题)和判定定理(第(2)题)的目的.(2)此题提供了证明“三线共点”的一种常用方法:先确定两条直线交于某一点,再证明这点在第三条直线上。
八年级数学上册教案最新5篇
八年级数学上册教案最新5篇初二数学上册教案篇一教学目标:经历探索两个圆之间位置关系的过程;了解圆与圆之间的几种位置关系;了解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系教学重点和难点重点:圆与圆之间的几种位置关系难点:两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系教学过程设计一、从学生原有的认知结构提出问题(1)复习点与圆的位置关系;(2)复习直线与圆的位置关系。
二、师生共同研究形成概念1.书本引例☆ 想一想P 125 平移两个圆利用平移实验直观地探索圆和圆的位置关系。
2.圆与圆的位置关系每一种位置关系都可以先让学生想想应该用什么名称表达。
在讲解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系时,可先让学生探索,老师不要生硬地把答案说出来☆ 巩固练习若两圆没有交点,则这两个圆的位置关系是相离;若两圆有一个交点,则这两个圆的位置关系是相切;若两圆有两个交点,则这两个圆的位置关系是相交;☆ 想一想书本P 126 想一想通过实际例子让学生理解圆与圆的位置关系。
3.圆与圆相切的性质☆ 想一想书本P 127 想一想旨在引导学生思考两圆相切的性质:如果两圆相切,那么两圆的连心线经过切点,这一性质是下面议一议的基础。
学生容易看出两圆相切图形的轴对称性及对称轴,但要说明切点在连心线上则有一定困难。
如果两圆相切,那么两圆的连心线经过切点4.讲解例题例1.已知☆ 、☆ 相交于点A、B,☆A B = 120°,☆A B = 60°,= 6cm。
求:(1)☆ A 的度数;2)☆ 的半径和☆ 的半径。
5.讲解例题例2.两个同样大小的肥皂泡粘在一起,其剖面如图所示,分隔两个肥皂泡的肥皂膜PQ 成一条直线,TP、NP分别为两圆的切线,求☆TPN的大小。
三、随堂练习1、书本P 128 随堂练习2、《练习册》P 59四、小结圆与圆的位置关系;圆心距与两圆半径和两圆的关系。
五、作业书本P 130 习题3.9 1初二数学上册教案篇二教学目标1、会解简易方程,并能用简易方程解简单的应用题;2、通过代数法解简易方程进一步培养学生的运算能力,发展学生的应用意识;3、通过解决问题的实践,激发学生的学习兴趣,培养学生的钻研精神。
八年级数学上册教案(优秀7篇)
八年级数学上册教案(优秀7篇)八年级数学上册教案篇一教学目的:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
教学重点:集合的交集与并集、补集的概念;教学难点:集合的。
交集与并集、补集“是什么”,“为什么”,“怎样做”;教学过程:1、引入课题我们两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?思考(P9思考题),引入并集概念。
2、新课教学1.并集一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union)记作:A∪B读作:“A并B”即:A∪B={x|x∪A,或x∪B}Venn图表示:说明:两个集合求并集,结果还是一个集合,是由集合A与B的所有元素组成的集合(重复元素只看成一个元素)。
例题(P9-10例4、例5)说明:连续的(用不等式表示的)实数集合可以用数轴上的一段封闭曲线来表示。
问题:在上图中我们除了研究集合A与B的并集外,它们的公共部分(即问号部分)还应是我们所关心的,我们称其为集合A与B的交集。
2.交集一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集(intersection)。
记作:A∩B读作:“A交B”即:A∩B={x|∪A,且x∪B}交集的Venn图表示说明:两个集合求交集,结果还是一个集合,是由集合A与B的公共元素组成的集合。
例题(P9-10例6、例7)拓展:求下列各图中集合A与B的并集与交集说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集3.补集全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe),通常记作U。
补集:对于全集U的一个子集A,由全集U中所有不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集(plementary set),简称为集合A的`补集,记作:CUA即:CUA={x|x∪U且x∪A}补集的Venn图表示说明:补集的概念必须要有全集的限制例题(P12例8、例9)4.求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法。
八年级数学(上)全册教案(新人教版)
八年级数学(上)全册教案(新人教版)教案内容:一、第一章:勾股定理1. 教学目标:理解勾股定理的定义和证明;能够运用勾股定理解决实际问题。
2. 教学重点:勾股定理的表述和证明;勾股定理的应用。
3. 教学难点:勾股定理的证明;解决实际问题时的计算和应用。
4. 教学准备:教学课件;练习题。
5. 教学过程:导入:介绍勾股定理的背景和意义;讲解:讲解勾股定理的表述和证明;练习:学生练习解决实际问题;总结:回顾本节课的重点和难点。
二、第二章:平行四边形1. 教学目标:理解平行四边形的定义和性质;能够识别和判断平行四边形。
2. 教学重点:平行四边形的定义和性质;平行四边形的判定。
3. 教学难点:平行四边形的性质证明;平行四边形的判定方法。
4. 教学准备:教学课件;练习题。
5. 教学过程:导入:介绍平行四边形的背景和意义;讲解:讲解平行四边形的定义和性质;练习:学生练习识别和判断平行四边形;总结:回顾本节课的重点和难点。
三、第三章:三角形1. 教学目标:理解三角形的定义和性质;能够识别和判断三角形。
2. 教学重点:三角形的定义和性质;三角形的判定。
3. 教学难点:三角形的性质证明;三角形的判定方法。
4. 教学准备:教学课件;练习题。
5. 教学过程:导入:介绍三角形的背景和意义;讲解:讲解三角形的定义和性质;练习:学生练习识别和判断三角形;总结:回顾本节课的重点和难点。
四、第四章:数的开方与乘方1. 教学目标:理解数的开方和乘方的概念;能够熟练进行数的开方和乘方运算。
2. 教学重点:数的开方和乘方的概念;数的开方和乘方的运算规则。
3. 教学难点:数的乘方运算;数的开方和乘方的逆运算。
4. 教学准备:教学课件;练习题。
5. 教学过程:导入:介绍数的开方和乘方的意义;讲解:讲解数的开方和乘方的概念和运算规则;练习:学生练习进行数的开方和乘方运算;总结:回顾本节课的重点和难点。
五、第五章:实数1. 教学目标:理解实数的定义和性质;能够运用实数解决实际问题。
八年级数学备课组集体备课教案
八年级数学备课组集体备课教案第一章:实数的性质和运算1.1 有理数的加减乘除法教学目标:理解有理数的加减乘除法运算规则,能够熟练进行计算。
教学内容:讲解有理数的加减乘除法运算方法,举例说明运算规则,进行练习题的讲解。
1.2 实数的定义和性质教学目标:理解实数的概念,掌握实数的性质。
教学内容:讲解实数的定义,介绍实数的性质,如正负性、奇偶性、绝对值等,进行相关练习题的讲解。
第二章:一次函数和二次函数2.1 一次函数的定义和性质教学目标:理解一次函数的概念,掌握一次函数的性质。
教学内容:讲解一次函数的定义,介绍一次函数的性质,如斜率、截距等,进行相关练习题的讲解。
2.2 二次函数的定义和性质教学目标:理解二次函数的概念,掌握二次函数的性质。
教学内容:讲解二次函数的定义,介绍二次函数的性质,如开口方向、顶点等,进行相关练习题的讲解。
第三章:几何图形的性质和计算3.1 三角形的性质和计算教学目标:理解三角形的性质,掌握三角形的计算方法。
教学内容:讲解三角形的性质,如内角和、两边之和大于第三边等,介绍三角形的计算方法,如周长、面积等,进行相关练习题的讲解。
3.2 四边形的性质和计算教学目标:理解四边形的性质,掌握四边形的计算方法。
教学内容:讲解四边形的性质,如对角线互相平分、四边之和大于第三边等,介绍四边形的计算方法,如周长、面积等,进行相关练习题的讲解。
第四章:概率和统计4.1 概率的基本概念教学目标:理解概率的概念,掌握概率的计算方法。
教学内容:讲解概率的定义,介绍概率的计算方法,如古典概率、条件概率等,进行相关练习题的讲解。
4.2 统计的基本概念教学目标:理解统计的概念,掌握统计的计算方法。
教学内容:讲解统计的定义,介绍统计的计算方法,如平均数、中位数、众数等,进行相关练习题的讲解。
第五章:方程和不等式5.1 线性方程的解法教学目标:理解线性方程的概念,掌握线性方程的解法。
教学内容:讲解线性方程的定义,介绍线性方程的解法,如加减法、代入法等,进行相关练习题的讲解。
2023最新-八年级上册数学教案(优秀6篇)
八年级上册数学教案(优秀6篇)作为一名专为他人授业解惑的人民教师,就不得不需要编写教案,教案是教学蓝图,可以有效提高教学效率。
写教案需要注意哪些格式呢?学而不思则罔,思而不学则殆,以下是编辑为大伙儿整理的八年级上册数学教案(优秀6篇)。
人教版八年级上册数学教案篇一一、教学目标1、认识中位数和众数,并会求出一组数据中的众数和中位数。
2、理解中位数和众数的意义和作用。
它们也是数据代表,可以反映一定的数据信息,帮助人们在实际问题中分析并做出决策。
3、会利用中位数、众数分析数据信息做出决策。
二、重点、难点和难点的突破方法:1、重点:认识中位数、众数这两种数据代表2、难点:利用中位数、众数分析数据信息做出决策。
3、难点的突破方法:首先应交待清楚中位数和众数意义和作用:中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响,中位数可能出现在所给的数据中,当一组数据中的个别数据变动较大时,可用中位数描述其趋势。
众数是当一组数据中某一重复出现次数较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算很少不受极端值的影响。
教学过程中注重双基,一定要使学生能够很好的掌握中位数和众数的求法,求中位数的步骤:⑴将数据由小到大(或由大到小)排列,⑴数清数据个数是奇数还是偶数,如果数据个数为奇数则取中间的数,如果数据个数为偶数,则取中间位置两数的平均值作为中位数。
求众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据。
在利用中位数、众数分析实际问题时,应根据具体情况,课堂上教师应多举实例,使同学在分析不同实例中有所体会。
三、例习题的意图分析1、教材p143的例4的意图(1)这个问题的。
研究对象是一个样本,主要是反映了统计学中常用到一种解决问题的方法:对于数据较多的研究对象,我们可以考察总体中的一个样本,然后由样本的研究结论去估计总体的情况。
(2)这个例题另一个意图是交待了当数据个数为偶数时,中位数的求法和解题步骤。
八年级数学(上)全册教案(新人教版)
八年级数学(上)全册教案(新人教版)第一章:一元一次方程1.1 方程与方程的解理解方程的概念,掌握方程的解的定义。
学会解一元一次方程,掌握解方程的基本步骤。
1.2 方程的解法学习使用加减法、乘除法解一元一次方程。
学会使用移项、合并同类项解方程。
1.3 方程的应用学会将实际问题转化为方程,解决实际问题。
练习使用一元一次方程解决实际问题。
第二章:不等式与不等式组2.1 不等式理解不等式的概念,掌握不等式的性质。
学会解一元一次不等式,掌握解不等式的基本步骤。
2.2 不等式组理解不等式组的概念,掌握不等式组的解法。
学会解不等式组,掌握解不等式组的基本步骤。
2.3 不等式的应用学会将实际问题转化为不等式,解决实际问题。
练习使用不等式解决实际问题。
第三章:函数的初步认识3.1 函数的概念理解函数的概念,掌握函数的定义。
学会判断两个变量之间的关系是否为函数。
3.2 函数的性质学习函数的单调性、奇偶性、周期性等基本性质。
学会判断函数的单调性、奇偶性、周期性。
3.3 函数的应用学会将实际问题转化为函数问题,解决实际问题。
练习使用函数解决实际问题。
第四章:整式的加减4.1 整式的概念理解整式的概念,掌握整式的定义。
学会判断两个整式是否相等。
4.2 整式的加减法学习整式的加减法运算,掌握加减法的基本步骤。
学会使用合并同类项进行整式的加减法运算。
4.3 整式的应用学会将实际问题转化为整式问题,解决实际问题。
练习使用整式解决实际问题。
第五章:数据的收集、整理与描述5.1 数据的收集学会使用调查、实验等方法收集数据。
掌握数据的整理方法,如列表、画图等。
5.2 数据的整理学习数据的整理方法,掌握数据的分类、排序等基本操作。
学会使用图表展示数据,如条形图、折线图等。
5.3 数据的描述学习数据的描述方法,掌握数据的平均数、中位数、众数等基本统计量。
学会使用统计量对数据进行描述和分析。
八年级数学(上)全册教案(新人教版)第六章:三角形6.1 三角形的概念理解三角形的基本概念,掌握三角形的定义。
2024年版人教版八年级上册数学教案5篇
2024年版人教版八年级上册数学教案5篇2023版人教版八年级上册数学教案篇1教学目标:教学知识点:能运用勾股定理及直角三角形的判别条件(即勾股定理的逆定理)解决简单的实际问题。
能力训练要求:1.学会观察图形,勇于探索图形间的关系,培养学生的空间观念。
2.在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。
情感与价值观要求:1.通过有趣的问题提高学习数学的兴趣。
2.在解决实际问题的过程中,体验数学学习的实用性,体现人人都学有用的数学。
教学重点难点:重点:探索、发现给定事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题。
难点:利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题。
教学过程1、创设问题情境,引入新课:前几节课我们学习了勾股定理,你还记得它有什么作用吗?例如:欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需多长的梯子?根据题意,(如图)ac是建筑物,则ac=12米,bc=5米,ab 是梯子的长度,所以在rt△abc中,ab2=ac2+bc2=122+52=132;ab=13米。
所以至少需13米长的梯子。
2、讲授新课:①、蚂蚁怎么走最近。
出示问题:有一个圆柱,它的高等于12厘米,底面半径等于3厘米。
在圆行柱的底面a点有一只蚂蚁,它想吃到上底面上与a 点相对的b点处的食物,需要爬行的的最短路程是多少?(π的值取3)。
(1)同学们可自己做一个圆柱,尝试从a点到b点沿圆柱的侧面画出几条路线,你觉得哪条路线最短呢?(小组讨论)(2)如图,将圆柱侧面剪开展开成一个长方形,从a点到b 点的最短路线是什么?你画对了吗?(3)蚂蚁从a点出发,想吃到b点上的食物,它沿圆柱侧面爬行的最短路程是多少?(学生分组讨论,公布结果)我们知道,圆柱的侧面展开图是一长方形。
好了,现在咱们就用剪刀沿母线aa′将圆柱的侧面展开(如下图)。
我们不难发现,刚才几位同学的走法:(1)a→a′→b;(2)a→b′→b;(3)a→d→b;(4)a—→b。
2023最新-八年级上册数学教案【优秀9篇】
八年级上册数学教案【优秀9篇】新学期已经开始了,同学们又要进入紧张的学习生活当中了,下面是的小编为您带来的八年级上册数学教案【优秀9篇】,您的肯定与分享是对小编最大的鼓励。
八年级上册数学教案篇一学习重点:函数的概念及确定自变量的取值范围。
学习难点:认识函数,领会函数的意义。
【自主复习知识准备】请你举出生活中含有两个变量的变化过程,说明其中的常量和变量。
【自主探究知识应用】请看书72——74页内容,完成下列问题:1、思考书中第72页的问题,归纳出变量之间的关系。
2、完成书上第73页的思考,体会图形中体现的变量和变量之间的关系。
3、归纳出函数的定义,明确函数定义中必须要满足的条件。
归纳:一般的,在一个变化过程中,如果有______变量x和y,并且对于x的_______,y都有_________与其对应,那么我们就说x是__________,y是x的________。
如果当x=a时,y=b,那么b叫做当自变量的'值为a时的函数值。
补充小结:(1)函数的定义:(2)必须是一个变化过程;(3)两个变量;其中一个变量每取一个值,另一个变量有且有唯一值对它对应。
三、巩固与拓展:例1:一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:千米)的增加而减少,平均耗油量为0.1L/千米。
(1)写出表示y与x的函数关系式。
(2)指出自变量x的取值范围。
(3) 汽车行驶200千米时,油箱中还有多少汽油?【当堂检测知识升华】1、判断下列变量之间是不是函数关系:(1)长方形的宽一定时,其长与面积;(2)等腰三角形的底边长与面积;(3)某人的年龄与身高;2、写出下列函数的解析式。
(1)一个长方体盒子高3cm,底面是正方形,这个长方体的体积为y(cm3),底面边长为x(cm),写出表示y与x的函数关系的式子。
(2)汽车加油时,加油枪的流量为10L/min.①如果加油前,油箱里还有5 L油,写出在加油过程中,油箱中的油量y(L)与加油时间x(min)之间的函数关系;②如果加油时,油箱是空的,写出在加油过程中,油箱中的油量y(L)与加油时间x(min) 之间的函数关系。
八年级上学期数学备课组工作计划(10篇)
八年级上学期数学备课组工作计划(10篇)八年级上学期数学备课组工作计划 1有效组织经常性的教研,注重实效,积极参与上级机关的教研活动,坚持每周一次的校内教研活动,提倡集体备课,充分发挥教师的群体智慧,让教师的智慧和智慧在课堂教学中得到体现。
一、指导思想集体备课要求选择最科学的教学方法和程序,为优质高效的课堂教学做好充分准备。
目的是充分发挥集体智慧,集思广益,取长补短,真正实现脑资源共享。
集体备课必须以个人备课为基础,在充分学习课程标准和教材的前提下,集体讨论教学方法,共同研究教学中应注意的问题,考虑学生的基本情况和实际情况,确定教学目标,提高课堂教学效率。
在“一个教案”的指导思想指导下,我们组将建立“个人粗准备、资源共享、个人加减、课后反思、教案准备”的备课体系。
我们在与时俱进,保持共性的基础上,力求各有特色,彰显个性。
二、工作重点认真开展八年级数学小组集体备课活动,备课要把握三个结合:与新理念结合、与头脑风暴结合、与课堂效率结合。
开展“一课一议一思一得”的教研活动。
如果组内有亮眼的教学设计,会及时发到教学网,供其他老师参考。
三、准备时间和地点集体备课时间:每周二第二第三节课,周四集体备课地点:__楼八年级数学办公室四、集体备课的目标和措施(一)目标1、以学生为导向我们小组将以学生的实际为切入点,讨论一种易于学生接受和掌握的教学方法,努力让大多数学生理解和掌握,努力让每个学生都学到东西。
2、关注集体我们小组将发挥集体智慧,实现资源共享,保持集体备课的有效性,从而提高课堂教学效率。
3、注重方法备课时主要考虑学生的学习方法。
在教学过程中,培养学生的学习方法,使他们形成自主学习的习惯,为他们的终身学习奠定基础。
在教学过程中,它可以为学生提供一个展示自己的平台,达到活跃课堂的目的`。
(二)措施1、面点:集体备课时,主要讨论内容、重点、难点、注意点、学生容易出错的地方、教学策略等。
下周上课,选一节课集体准备教案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【交流讨论】通过同桌交流,实验得出下面结论:1.任意放置时,并不一定完全重合,•只有当把相同的角旋转到一起时才能完全重合.2.这时它们的三个顶点、三条边和三个内角分别重合了.3.完全重合说明三条边对应相等,三个内角对应相等,•对应顶点在相对应的位置.【教师活动】根据学生交流的情况,给予补充和语言上的规范.1.概念:把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,•重合的边叫做对应边,重合的角叫做对应角.2.证两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,•如果本图11.1─2△ABC和△DBC全等,点A和点D,点B和点B,点C和点C是对应顶点,•记作△ABC≌△DBC.【问题提出】课本图11.1─1中,△ABC≌△DEF,对应边有什么关系?对应角呢?【学生活动】经过观察得到下面性质:1.全等三角形对应边相等;2.对应线段(边,中线,高,角平分线)相等;3.全等三角形对应角相等;4. 全等三角形周长、面积相等.(二)、随堂练习,巩固深化课本P4练习.【探研时空】1.如图1所示,△ACF≌△DBE,∠E=∠F,若AD=20cm,BC=8cm,你能求出线段AB的长吗?与同伴交流.(AB=6)2.如图2所示,△ABC≌△AEC,∠B=30°,∠ACB=85°,求出△AEC 各内角的度数.•(∠AEC=30°,∠EAC=65°,∠ECA=85°)(三)、课堂总结,发展潜能1.什么叫做全等三角形?2.全等三角形具有哪些性质?(四)、布置作业,专题突破:课本P4习题11.1第1,2,3,4题教学反思标题11.2.1三角形全等的判定(SSS)教学目标1.知识与技能:了解三角形的稳定性,会应用“边边边”判定两个三角形全等.2.过程与方法:经历探索“边边边”判定全等三角形的过程,解决简单的问题.3.情感、态度与价值观:培养有条理的思考和表达能力,形成良好的合作意识.教学重难点1.重点:掌握“边边边”判定两个三角形全等的方法.2.难点:理解证明的基本过程,学会综合分析法.3.关键:掌握图形特征,寻找适合条件的两个三角形.教学过程(一)、设疑求解,操作感知【教师活动】(出示教具)问题提出:一块三角形的玻璃损坏后,只剩下如图2所示的残片,•你对图中的残片作哪些测量,就可以割取符合规格的三角形玻璃,与同伴交流.【学生活动】观察,思考,回答教师的问题.方法如下:可以将图1•的玻璃碎片放在一块纸板上,然后用直尺和铅笔或水笔画出一块完整的三角形.如图2,•剪下模板就可去割玻璃了.【理论认知】修正栏:如果△ABC≌△A′B′C′,那么它们的对应边相等,对应角相等.•反之,•如果△ABC与△A′B′C′满足三条边对应相等,三个角对应相等,即AB=A′B′,BC=B′C′,CA=C′A′,∠A=∠A′,∠B=∠B′,∠C=∠C′.这六个条件,就能保证△ABC≌△A′B′C′,从刚才的实践我们可以发现:•只要两个三角形三条对应边相等,就可以保证这两块三角形全等.信不信?【作图验证】(用直尺和圆规)先任意画出一个△ABC,再画一个△A′B′C′,使A′B′=AB,B′C′=BC,C′A′=CA.把画出的△A′B′C′剪下来,放在△ABC上,它们能完全重合吗?(即全等吗)【学生活动】拿出直尺和圆规按上面的要求作图,并验证.(如课本图11.2-2所示)画一个△A′B′C′,使A′B′=AB′,A′C′=AC,B′C′=BC:1.画线段取B′C′=BC;2.分别以B′、C′为圆心,线段AB、AC为半径画弧,两弧交于点A′; 3.连接线段A′B′、A′C′.【教师活动】巡视、指导,引入课题:“上述的生活实例和尺规作图的结果反映了什么规律?”【学生活动】在思考、实践的基础上可以归纳出下面判定两个三角形全等的定理.(1)判定方法:三边对应相等的两个三角形全等(简写成“边边边”或“SSS”).(2)判断两个三角形全等的推理过程,叫做证明三角形全等.【评析】通过学生全过程的画图、观察、比较、交流等,逐步探索出最后的结论──边边边,在这个过程中,学生不仅得到了两个三角形全等的条件,同时增强了数学体验.(二)、范例点击,应用所学【例1】如课本图11.2─3所示,△ABC是一个钢架,AB=AC,AD是连接点A 与BC 中点D 的支架,求证△ABD ≌△ACD .(教师板书)【教师活动】分析例1,分析:要证明△ABD ≌△ACD ,可看这两个三角形的三条边是否对应相等.证明:∵D 是BC 的中点,∴BD=CD在△ABD 和△ACD 中,,.AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩∴△ABD ≌△ACD (SSS ).【评析】符号“∵”表示“因为”,“∴”表示“所以”;从例1可以看出,•证明是由题设(已知)出发,经过一步步的推理,最后推出结论(求证)正确的过程.书写中注意对应顶点要写在同一个位置上,哪个三角形先写,哪个三角形的边就先写.(三)、实践应用,合作学习【问题思考】已知AC=FE ,BC=DE ,点A 、D 、B 、F 在直线上,AD=FB (如图所示),要用“边边边”证明△ABC ≌△FDE ,除了已知中的AC=FE ,BC=DE 以外,还应该有什么条件?怎样才能得到这个条件?【教师活动】提出问题,巡视、引导学生,并请学生说说自己的想法.【学生活动】先独立思考后,再发言:“还应该有AB=FD ,只要AD=FB 两边都加上DB 即可得到AB=FD .”【教学形式】先独立思考,再合作交流,师生互动.(四)、随堂练习,巩固深化课本P8练习.【探研时空】如图所示,AB=DF ,AC=DE ,BE=CF ,BC 与EF 相等吗?•你能找到一对全等三角形吗?说明你的理由.(BC=EF ,△ABC ≌△DFE )(五)、课堂总结,发展潜能1.全等三角形性质是什么?2.正确地判断出全等三角形的对应边、对应角,•利用全等三角形处理问题的基础,你是怎样掌握判断对应边、对应角的方法?3.“边边边”判定法告诉我们什么呢?•(答:只要一个三角形三边长度确定了,则这个三角形的形状大小就完全确定了,这就是三角形的稳定性)(六)、布置作业,专题突破:课本P15习题11.2第1,2题.教学反思标题11.2.2 三角形全等判定(SAS)教学目标1.知识与技能:领会“边角边”判定两个三角形的方法.2.过程与方法:经历探究三角形全等的判定方法的过程,学会解决简单的推理问题.3.情感、态度与价值观:培养合情推理能力,感悟三角形全等的应用价值.教学重难点1.重点:会用“边角边”证明两个三角形全等.2.难点:应用结合法的格式表达问题.3.关键:在实践、观察中正确选择判定三角形全等的方法.教学过程(一)、回顾交流,操作分析【动手画图】【投影】作一个角等于已知角.【学生活动】动手用直尺、圆规画图.已知:∠AOB.求作:∠A1O1B1,使∠A1O1B1=∠AOB.【作法】(1)作射线O1A1;(2)以点O为圆心,以适当长为半径画弧,交修正栏:OA•于点C,交OB于点D;(3)以点O1为圆心,以OC长为半径画弧,交O1A1于点C1;(4)以点C1为圆心,以CD•长为半径画弧,交前面的弧于点D1;(5)过点D1作射线O1B1,∠A1O1B1就是所求的角.【导入课题】教师叙述:请同学们连接CD、C1D1,回忆作图过程,分析△COD和△C1O1D1中相等的条件.【学生活动】与同伴交流,发现下面的相等量:OD=O1D1,OC=O1C1,∠COD=∠C1O1D1,△COD≌△C1O1D1.归纳出规律:两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS•”).【评析】通过让学生回忆基本作图,在作图过程中体会相等的条件,在直观的操作过程中发现问题,获得新知,使学生的知识承上启下,开拓思维,发展探究新知的能力.【媒体使用】投影显示作法.【教学形式】操作感知,互动交流,形成共识.(二)、范例点击,应用新知【例2】如课本图11.2-6所示有一池塘,要测池塘两侧A、B的距离,可先在平地上取一个可以直接到达A和B的点,连接AC并延长到D,使CD=CA,连接BC并延长到E,•使CE=CB,连接DE,那么量出DE的长就是A、B的距离,为什么?【教师活动】操作投影仪,显示例2,分析:如果能够证明△ABC≌△DEC,就可以得出AB=DE.在△ABC和△DEC中,CA=CD,CB=CE,如果能得出∠1=∠2,△ABC和△DEC•就全等了.证明:在△ABC和△DEC中12CA CD CB CE =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DEC (SAS )∴AB=DE想一想:∠1=∠2的依据是什么?(对顶角相等)AB=DE 的依据是什么?(全等三角形对应边相等)【学生活动】参与教师的讲例之中,领悟“边角边”证明三角形全等的方法,学会分析推理和规范书写.【媒体使用】投影显示例2.【教学形式】教师讲例,学生接受式学习但要积极参与.【评析】证明分别属于两个三角形的线段相等或角相等的问题,常常通过证明这两个三角形全等来解决.(三)、辨析理解,正确掌握【问题探究】(投影显示)我们知道,两边和它们的夹角对应相等的两个三角形全等,由“两边及其中一边的对角对应相等”的条件能判定两个三角形全等吗?为什么?【教师活动】拿出教具进行示范,让学生直观地感受到问题的本质.操作教具:把一长一短两根细木棍的一端用螺钉铰合在一起,•使长木棍的另一端与射线BC 的端点B 重合,适当调整好长木棍与射线BC 所成的角后,固定住长木棍,把短木棍摆起来(课本图11.2-7),出现一个现象:△ABC 与△ABD 满足两边及其中一边对角相等的条件,但△ABC 与△ABD 不全等.这说明,•有两边和其中一边的对角对应相等的两个三角形不一定全等.【学生活动】观察教师操作教具、发现问题、辨析理解,动手用直尺和圆规实验一次,做法如下:(如图1所示)(1) (2)[答案:能,因为根据“SAS ”,可以得到△EDH ≌△FDH ,从而EH=FH]2.如图2,AB=AD ,AC=AE ,能添上一个条件证明出△ABC ≌△ADE 吗?[答案:BC=•DE (SSS )或∠BAC=∠DAE (SAS )].3.如果两边及其中一边的对角对应相等,两个三角形一定会全等吗?试举例说明.【教师活动】操作投影仪,提出问题,组织学生思考和提问.【学生活动】通过情境思考,复习前面学过的知识,学会正确选择三角形全等的判定方法,小组交流,踊跃发言.【教学形式】用问题牵引,辨析、巩固已学知识,在师生互动交流过程中,激发求知欲.(二)、实践操作,导入课题【动手动脑】(投影显示)问题探究:先任意画一个△ABC ,再画出一个△A ′B ′C ′,使A ′B ′=AB ,∠A ′=∠A ,∠B ′=∠B (即使两角和它们的夹边对应相等),把画出的△A ′B ′C ′剪下,•放到△ABC 上,它们全等吗?【学生活动】动手操作,感知问题的规律,画图如下:探究规律:两角和它们的夹边对应相等的两个三角形全等(简写成“角边角”或“ASA ”).【知识铺垫】课本图11.2─8中,∠A ′=∠A ,∠B ′=∠B ,那么∠C=∠A ′C ′B•′吗?为什么?【学生回答】根据三角形内角和定理,∠C ′=180°-∠A ′-∠B ′,∠C=180°-∠A-∠B ,由于∠A=∠A ′,∠B=∠B ′,∴∠C=∠C ′. 画一个△A ′B ′C ′,使A ′B ′=AB , ∠A ′=∠A ,∠B ′=∠B : 1. 画A ′B ′=AB ; 2. 在A ′B ′的同旁画∠DA ′B ′=∠A , ∠EBA ′=∠B ,A ′D ,B ′E 交于点C ′。