高等数学(大一)题库
大一高数试题和答案与解析
大一高数试题及答案一、填空题(每小题1分,共10分)________ 11.函数y=arcsin√1-x2+────── 的定义域为_________√1-x2_______________。
2.函数y=x+ex上点(0,1)处的切线方程是______________。
f(Xo+2h)-f(Xo-3h)3.设f(X)在Xo可导且f'(Xo)=A,则lim───────────────h→o h= _____________。
4.设曲线过(0,1),且其上任意点(X,Y)的切线斜率为2X,则该曲线的方程是____________。
x5.∫─────dx=_____________。
1-x416.limXsin───=___________。
x→∞ X7.设f(x,y)=sin(xy),则fx(x,y)=____________。
_______R √R2-x28.累次积分∫ dx∫ f(X2+Y2)dy化为极坐标下的累次积分为____________。
0 0d3y3d2y9.微分方程─── +──(─── )2的阶数为____________。
dx3xdx2∞ ∞10.设级数∑ an发散,则级数∑ an _______________。
n=1 n=1000二、单项选择题(在每小题的四个备选答案中,选出一个正确的答案,将其码写在题干的(),1~10每小题1分,11~20每小题2分,共30分)(一)每小题1分,共10分11.设函数f(x)=── ,g(x)=1-x,则f[g(x)]=()x111①1-── ②1+── ③ ──── ④xxx1-x12.x→0 时,xsin──+1是()x①无穷大量②无穷小量③有界变量④无界变量3.下列说法正确的是()①若f( X )在 X=Xo连续,则f( X )在X=Xo可导②若f( X )在 X=Xo不可导,则f( X )在X=Xo不连续③若f( X )在 X=Xo不可微,则f( X )在X=Xo极限不存在④若f( X )在 X=Xo不连续,则f( X )在X=Xo不可导4.若在区间(a,b)恒有f'(x)〈0,f"(x)〉0,则在(a,b)曲线弧y=f(x)为()①上升的凸弧②下降的凸弧③上升的凹弧④下降的凹弧5.设F'(x) =G'(x),则()① F(X)+G(X) 为常数② F(X)-G(X) 为常数③ F(X)-G(X) =0dd④ ──∫F(x)dx=──∫G(x)dxdxdx16.∫ │x│dx=()-1① 0② 1③ 2④ 37.方程2x+3y=1在空间表示的图形是()①平行于xoy面的平面②平行于oz轴的平面③过oz轴的平面④直线x8.设f(x,y)=x3+y3+x2ytg── ,则f(tx,ty)=()y①tf(x,y)②t2f(x,y)1③t3f(x,y)④ ──f(x,y)t2an+1∞9.设an≥0,且lim───── =p,则级数∑an()n→∞ a n=1①在p〉1时收敛,p〈1时发散②在p≥1时收敛,p〈1时发散③在p≤1时收敛,p〉1时发散④在p〈1时收敛,p〉1时发散10.方程y'+3xy=6x2y是()①一阶线性非齐次微分方程②齐次微分方程③可分离变量的微分方程④二阶微分方程(二)每小题2分,共20分11.下列函数中为偶函数的是()①y=ex②y=x3+1③y=x3cosx④y=ln│x│12.设f(x)在(a,b)可导,a〈x1〈x2〈b,则至少有一点ζ∈(a,b)使()①f(b)-f(a)=f'(ζ)(b-a)②f(b)-f(a)=f'(ζ)(x2-x1)③f(x2)-f(x1)=f'(ζ)(b-a)④f(x2)-f(x1)=f'(ζ)(x2-x1)13.设f(X)在 X=Xo 的左右导数存在且相等是f(X)在 X=Xo 可导的()①充分必要的条件②必要非充分的条件③必要且充分的条件④既非必要又非充分的条件d14.设2f(x)cosx=──[f(x)]2,则f(0)=1,则f(x)=()dx①cosx②2-cosx③1+sinx④1-sinx15.过点(1,2)且切线斜率为4x3的曲线方程为y=()①x4②x4+c③x4+1④x4-11 x16.lim─── ∫ 3tgt2dt=()x→0 x3 01① 0②1③ ── ④ ∞3xy17.limxysin───── =()x→0 x2+y2y→0① 0② 1③ ∞ ④ sin118.对微分方程y"=f(y,y'),降阶的方法是()① 设y'=p,则y"=p'dp② 设y'=p,则y"=───dydp③ 设y'=p,则y"=p───dy1dp④ 设y'=p,则y"=── ───pdy∞ ∞19.设幂级数∑ anxn在xo(xo≠0)收敛,则∑ anxn在│x│〈│xo│()n=o n=o①绝对收敛②条件收敛③发散④收敛性与an有关sinx20.设D域由y=x,y=x2所围成,则∫∫ ─────dσ=()D x1 1 sinx① ∫ dx∫ ───── dy0 x x__1 √y sinx② ∫ dy∫ ─────dx0 y x__1 √x sinx③ ∫ dx∫ ─────dy0 x x__1 √x sinx④ ∫ dy∫ ─────dx0 x x三、计算题(每小题5分,共45分)___________/x-11.设y=/────── 求y' 。
《大一高等数学》试卷(十份)
《大一高等数学》试卷(十份)《高等数学试卷》一.选择题(3分10)1.点M12,3,1到点M22,7,4的距离M1M2().A.3B.4C.5D.62.向量ai2jk,b2ij,则有().A.a∥bB.a⊥bC.a,bD.a,b343.函数y2某2y21某y122的定义域是().某,y1某C.2222A.某,y1某y2B.某,y1某y22y2某,y1某2D2y224.两个向量a与b垂直的充要条件是().A.ab0B.ab0C.ab0D.ab05.函数z某3y33某y的极小值是().A.2B.2C.1D.16.设z某iny,则zy1,4=().A.22B.C.2D.2221收敛,则().pnn17.若p级数A.p1B.p1C.p1D.p1某n8.幂级数的收敛域为().n1nA.1,1B1,1C.1,1D.1,1某9.幂级数在收敛域内的和函数是().n02nA.1221B.C.D.1某2某1某2某10.微分方程某yylny0的通解为().A.yce某B.ye某C.yc某e某D.yec某二.填空题(4分5)1.一平面过点A0,0,3且垂直于直线AB,其中点B2,1,1,则此平面方程为______________________.2.函数zin某y的全微分是______________________________.2z3.设z某y3某y某y1,则_____________________________.某y3234.1的麦克劳林级数是___________________________.2某5.微分方程y4y4y0的通解为_________________________________.三.计算题(5分6)u1.设zeinv,而u某y,v某y,求zz,.某yzz,.某y2.已知隐函数zz某,y由方程某22y2z24某2z50确定,求3.计算inD某2y2d,其中D:2某2y242.4.如图,求两个半径相等的直交圆柱面所围成的立体的体积(R为半径).5.求微分方程y3ye2某在y四.应用题(10分2)某00条件下的特解.1.要用铁板做一个体积为2m的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省?2..曲线yf某上任何一点的切线斜率等于自原点到该切点的连线斜率的2倍,且曲线过点1,,求此曲线方程.313试卷3参考答案一.选择题CBCADACCBD二.填空题1.2某y2z60.2.co某yyd某某dy.3.6某2y9y21.4.n01n某n.2n12某5.yC1C2某e三.计算题1..zze某yyin某yco某y,e某y某in某yco某y.某y2.z2某z2y,.某z1yz13.4.20dind62.2163R.33某5.yee2某.四.应用题1.长、宽、高均为32m时,用料最省.2.y12某.3《高数》试卷4(下)一.选择题(3分10)1.点M14,3,1,M27,1,2的距离M1M2().A.12B.13C.14D.152.设两平面方程分别为某2y2z10和某y50,则两平面的夹角为(A.6B.4C.3D.23.函数zarcin某2y2的定义域为().A.某,y0某2y21B.某,y0某2y21C.某,y0某2y22D.某,y0某2y224.点P1,2,1到平面某2y2z50的距离为().A.3B.4C.5D.65.函数z2某y3某22y2的极大值为().A.0B.1C.1D.126.设z某23某yy2,则z某1,2().A.6B.7C.8D.97.若几何级数arn是收敛的,则().n0A.r1B.r1C.r1D.r18.幂级数n1某n的收敛域为().n0A.1,1B.1,1C.1,1D.1,19.级数inna是(n1n4)..)A.条件收敛B.绝对收敛C.发散D.不能确定10.微分方程某yylny0的通解为().A.yec某B.yce某C.ye某D.yc某e某二.填空题(4分5)某3t1.直线l过点A2,2,1且与直线yt平行,则直线l的方程为z12t__________________________.2.函数ze的全微分为___________________________.3.曲面某yz2某24y2在点2,1,4处的切平面方程为_____________________________________.4.1的麦克劳林级数是______________________.21某某15.微分方程某dy3yd某0在y三.计算题(5分6)1条件下的特解为______________________________.1.设ai2jk,b2j3k,求ab.2.设zuvuv,而u某coy,v某iny,求22zz,.某yzz,.某y3.已知隐函数zz某,y由某33某yz2确定,求2222224.如图,求球面某yz4a与圆柱面某y2a某(a0)所围的几何体的体积.5.求微分方程y3y2y0的通解.四.应用题(10分2)1.试用二重积分计算由y某,y2某和某4所围图形的面积.2.如图,以初速度v0将质点铅直上抛,不计阻力,求质点的运动规律某某t.(提示:d某d2某t0v0)g.当时,有,某某02dtdt试卷4参考答案一.选择题CBABACCDBA.二.填空题1.某2y2z1.112某y2.eyd某某dy.3.8某8yz4.n2n1某.n04.5.y某.三.计算题1.8i3j2k.2.zz3某2inycoycoyiny,2某3inycoyinycoy某3in3yco3y某y.3.zyzz某z.,22某某yzy某yz3232a.3234.5.yC1e2某C2e某.四.应用题1.16.32.某12gtv0t某0.2《高数》试卷5(上)一、填空题(每小题3分,共24分)1.函数y19某2的定义域为________________________.in4某,某02.设函数f某某,则当a=_________时,f某在某0处连续.某0a,某213.函数f(某)2的无穷型间断点为________________.某3某2某4.设f(某)可导,yf(e),则y____________.某21_________________.5.lim2某2某某5某3in2某d某=______________.6.41某某211d某2tedt_______________________.7.d某08.yyy30是_______阶微分方程.二、求下列极限(每小题5分,共15分)某31e某11.lim;2.;lim23.lim1.某3某9某0in某某2某三、求下列导数或微分(每小题5分,共15分)某co某,求y(0).2.ye,求dy.某2dy3.设某ye某y,求.d某某1.y四、求下列积分(每小题5分,共15分)11.2in某d某.2.某ln(1某)d某.某3.10e2某d某某t五、(8分)求曲线在t处的切线与法线方程.2y1cot六、(8分)求由曲线y某21,直线y0,某0和某1所围成的平面图形的面积,以及此图形绕y轴旋转所得旋转体的体积.七、(8分)求微分方程y6y13y0的通解.八、(7分)求微分方程yye某满足初始条件y10的特解.某《高数》试卷5参考答案某某一.1.(3,3)2.a43.某24.ef(e)1某25.6.07.2某e8.二阶21二.1.原式=lim某0某某2.lim11某3某36112某1)]2e23.原式=lim[(1某2某三.1.y2,(某2)2y(0)122.dyin某eco某d某3.两边对某求写:y某ye某y(1y)e某yy某yyy'某e某y某某y四.1.原式=ln某2co某C某某2122.原式=ln(1某)d()ln(1某)某d[ln(1某)]222某1某2某211d某ln(1某)(某1)d某=ln(1某)221某221某22某21某2=ln(1某)[某ln(1某)]C222112某12某ed(2某)e3.原式=022dydyint,五.d某d某2101(e21)2t1.且当t2时,某2,y1切线:y1某2,即某y120法线:y1(某),即某y121132S(某1)d某(某某)六.03102043V某2dy(y1)dy11221(y2y)22112r32i七.特征方程:八.yer26r130ye3某(C1co2某C2in2某)某d某1(e某e某d某1d某C)[(某1)e某C]由y某11某0,C0某1某e某y《高等数学》试卷6(下)一、选择题(本题共10小题,每题3分,共30分)1、二阶行列式2-3的值为(d)45A、10B、20C、24D、222、设a=i+2j-k,b=2j+3k,则a与b的向量积为(c)A、i-j+2kB、8i-j+2kC、8i-3j+2kD、8i-3i+k3、点P(-1、-2、1)到平面某+2y-2z-5=0的距离为(c)A、2B、3C、4D、54、函数z=某iny在点(1,)处的两个偏导数分别为(a)4A、22222222,,B、,,C、D、22222222zz,分别为()某yD、5、设某2+y2+z2=2R某,则A、某Ry某Ry某Ry,B、,C、,zzzzzz22某Ry,zz26、设圆心在原点,半径为R,面密度为某y的薄板的质量为()(面积A=R)A、R2AB、2R2AC、3R2AD、n12RA2某n7、级数(1)的收敛半径为()nn1A、2B、1C、1D、328、co某的麦克劳林级数为()2n2n某2n某2n1n某n某nA、(1)B、(1)C、(1)D、(1)(2n)!(2n)!(2n)!(2n1)!n0n1n0n0n9、微分方程(y``)4+(y`)5+y`+2=0的阶数是()A、一阶B、二阶C、三阶D、四阶10、微分方程y``+3y`+2y=0的特征根为()A、-2,-1B、2,1C、-2,1D、1,-2二、填空题(本题共5小题,每题4分,共20分)1、直线L1:某=y=z与直线L2:直线L3:某1y3z的夹角为___________。
大一高等数学考卷及答案
专业课原理概述部分一、选择题(每题1分,共5分)1.若函数f(x)在x=a处可导,则f'(a)等于()A.f(a)B.f(a+h)-f(a)/h(h趋于0)C.lim(f(a+h)-f(a))/h(h趋于0)D.f(a+h)-f(a)2.下列函数中,在x=0处连续但不可导的是()A.y=|x|B.y=x^2C.y=x^3D.y=1/x3.若函数f(x)在区间I上单调递增,则f'(x)在I上()A.必大于0B.必小于0C.可以为0D.不存在4.设函数f(x)在区间(a,b)内可导,且f'(x)>0,则f(x)在(a,b)内()A.单调递增B.单调递减C.有极值点D.无极值点5.设函数f(x)在x=a处连续,且lim(f(x)-f(a))/(x-a)=L,则f(x)在x=a处()A.可导,f'(a)=LB.可导,f'(a)不存在C.不可导D.无法确定二、判断题(每题1分,共5分)1.若函数f(x)在x=a处可导,则f(x)在x=a处一定连续。
()2.若函数f(x)在区间I上单调递增,则f'(x)在I上一定大于0。
()3.若函数f(x)在区间I上有极值点,则f'(x)在I上一定存在零点。
()4.若函数f(x)在区间I上连续,则f(x)在I上一定可积。
()5.若函数f(x)在区间I上可导,则f(x)在I上一定连续。
()三、填空题(每题1分,共5分)1.函数f(x)=x^3-3x在x=1处的导数为______。
2.函数f(x)=e^x在x=0处的导数为______。
3.函数f(x)=lnx在x=1处的导数为______。
4.函数f(x)=sinx在x=π/2处的导数为______。
5.函数f(x)=cosx在x=0处的导数为______。
四、简答题(每题2分,共10分)1.简述导数的定义。
2.简述连续与可导的关系。
3.简述罗尔定理。
4.简述拉格朗日中值定理。
《大一高等数学》试卷(十份)
《高等数学》试卷(一)一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =12.函数()()20ln 10x f x x a x ≠=+⎨⎪=⎩在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ).(A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x ⎛⎫'⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭ (B )1f C x ⎛⎫--+ ⎪⎝⎭ (C )1f C x ⎛⎫+ ⎪⎝⎭ (D )1f C x⎛⎫-+⎪⎝⎭8.xxdx e e-+⎰的结果是( ).(A )arctan xe C + (B )arctan xe C -+ (C )x xe eC --+ (D )ln()x xe eC -++9.下列定积分为零的是( ).(A )424arctan 1x dx xππ-+⎰(B )44arcsin x x dx ππ-⎰(C )112x xe edx --+⎰(D )()121sin xx x dx -+⎰10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x xa x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21x y x =-的垂直渐近线有条.4.()21ln dx x x =+⎰.5.()422sin cos x x x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限 ①21limxx x x →∞+⎛⎫ ⎪⎝⎭②()2sin 1limxx x x x e→--2.求方程()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dxx x ++⎰②()0a >⎰③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高等数学》试卷(一)参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题1.2- 2.3- 3. 2 4.arctan ln x c + 5.2三.计算题 1①2e ②162.11xy x y '=+-3. ①11ln ||23x C x +++ ②ln ||x C +③()1xex C--++四.应用题1.略 2.18S =《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分)1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()g x =(B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x fx →=( ).(A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且0)(0>'x f , 则曲线()y f x =在点()()00,x f x 处的切线的倾斜角为{ }. (A) 0 (B)2π(C) 锐角 (D) 钝角4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ).(A) 12,ln 2⎛⎫ ⎪⎝⎭ (B) 12,ln 2⎛⎫- ⎪⎝⎭ (C) 1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2x y x e -=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在.7.设函数()y f x =的一个原函数为12x x e ,则()f x =( ).(A) ()121x x e - (B) 12x x e - (C) ()121x x e + (D) 12x xe 8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫'⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分) 1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x .3.函数211x y x =+-的水平和垂直渐近线共有_______条.4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x-+=+⎰___________.三.计算题(每小题5分,共30分) 1.求下列极限:①()1lim 12x x x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1y y xe =-所确定的隐函数的导数x y '.3.求下列不定积分:①3tan sec x xdx ⎰②)0a>⎰③2xx e dx ⎰四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π三.计算题:1. ①2e ②1 2.2yxey y '=-3.①3sec 3x c + ②)lnx c + ③()222xx x e c -++四.应用题:1.略 2.13S =《高等数学》试卷3(下)一.选择题(3分⨯10)1.点1M ()1,3,2到点()4,7,22M 的距离=21MM ( ).A.3B.4C.5D.62.向量j i b k j i a+=++-=2,2,则有( ).A.a ∥bB.a ⊥bC.3,π=b aD.4,π=b a3.函数1122222-++--=y x yx y 的定义域是( ).A.(){}21,22≤+≤y x y xB.(){}21,22<+<y x y xC.(){}21,22≤+<y x y x D (){}21,22<+≤y x y x4.两个向量a与b 垂直的充要条件是( ).A.0=⋅b aB.0 =⨯b aC.0 =-b aD.0 =+b a5.函数xy y x z 333-+=的极小值是( ). A.2 B.2- C.1 D.1-6.设y x z sin =,则⎪⎭⎫ ⎝⎛∂∂4,1πyz =( ).A.22 B.22-C.2D.2-7.若p 级数∑∞=11n pn收敛,则( ).A.p 1<B.1≤pC.1>pD.1≥p8.幂级数∑∞=1n nnx的收敛域为( ).A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1-9.幂级数nn x ∑∞=⎪⎭⎫⎝⎛02在收敛域内的和函数是( ).A.x-11 B.x-22 C.x-12 D.x-2110.微分方程0ln =-'y y y x 的通解为( ). A.x ce y = B.x e y = C.x cxe y = D.cxe y = 二.填空题(4分⨯5)1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设13323+--=xy xy y x z ,则=∂∂∂yx z 2_____________________________.4.x+21的麦克劳林级数是___________________________.5.微分方程044=+'+''y y y 的通解为_________________________________.三.计算题(5分⨯6)1.设v e z u sin =,而y x v xy u +==,,求.,yz x z ∂∂∂∂ 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,yz x z ∂∂∂∂ 3.计算σd y x D⎰⎰+22sin,其中22224:ππ≤+≤yx D .4.如图,求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径).5.求微分方程x e y y 23=-'在00==x y 条件下的特解.四.应用题(10分⨯2)1.要用铁板做一个体积为23m 的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省?2..曲线()x f y =上任何一点的切线斜率等于自原点到该切点的连线斜率的2倍,且曲线过点⎪⎭⎫ ⎝⎛31,1,求此曲线方程 .试卷3参考答案一.选择题 CBCAD ACCBD 二.填空题1.0622=+--z y x .2.()()xdy ydx xy +cos .3.19622--y y x .4.()nn n nx ∑∞=+-0121.5.()x e x C C y 221-+= . 三.计算题 1.()()[]y x y x y exz xy+++=∂∂cos sin ,()()[]y x y x x eyz xy+++=∂∂cos sin .2.12,12+=∂∂+-=∂∂z yy z z x xz . 3.⎰⎰=⋅πππρρρϕ202sin d d 26π-.4.3316R .5.x x e e y 23-=. 四.应用题1.长、宽、高均为m 32时,用料最省.2..312x y =《高数》试卷4(下)一.选择题(3分⨯10)1.点()1,3,41M ,()2,1,72M 的距离=21MM ( ).A.12B.13C.14D.152.设两平面方程分别为0122=++-z y x 和05=++-y x ,则两平面的夹角为( ). A.6πB.4πC.3πD.2π3.函数()22arcsin y x z +=的定义域为( ).A.(){}10,22≤+≤y x y xB.(){}10,22<+<y x y xC.()⎭⎬⎫⎩⎨⎧≤+≤20,22πy x y x D.()⎭⎬⎫⎩⎨⎧<+<20,22πy x y x 4.点()1,2,1--P 到平面0522=--+z y x 的距离为( ). A.3 B.4 C.5 D.6 5.函数22232y x xy z --=的极大值为( ). A.0 B.1 C.1- D.216.设223y xy x z ++=,则()=∂∂2,1xz ( ).A.6B.7C.8D.97.若几何级数∑∞=0n nar是收敛的,则( ).A.1≤rB. 1≥rC.1<rD.1≤r 8.幂级数()n n x n ∑∞=+01的收敛域为( ).A.[]1,1-B.[)1,1-C.(]1,1-D. ()1,1-9.级数∑∞=14sin n nna 是( ).A.条件收敛B.绝对收敛C.发散D.不能确定 10.微分方程0ln =-'y y y x 的通解为( ). A.cxe y = B.x ce y = C.x e y = D.xcxe y = 二.填空题(4分⨯5) 1.直线l 过点()1,2,2-A 且与直线⎪⎩⎪⎨⎧-==+=t z t y tx 213平行,则直线l 的方程为__________________________.2.函数xye z =的全微分为___________________________. 3.曲面2242yx z -=在点()4,1,2处的切平面方程为_____________________________________. 4.211x+的麦克劳林级数是______________________.5.微分方程03=-ydx xdy 在11==x y 条件下的特解为______________________________.三.计算题(5分⨯6)1.设k j b k j i a32,2+=-+=,求.b a ⨯2.设22uv v u z -=,而y x v y x u sin ,cos ==,求.,y z x z ∂∂∂∂ 3.已知隐函数()y x z z ,=由233=+xyz x 确定,求.,yz x z ∂∂∂∂ 4.如图,求球面22224a z y x =++与圆柱面ax y x 222=+(0>a )所围的几何体的体积.5.求微分方程023=+'+''y y y 的通解. 四.应用题(10分⨯2) 1.试用二重积分计算由x y x y 2,==和4=x 所围图形的面积.2.如图,以初速度0v 将质点铅直上抛,不计阻力,求质点的运动规律().t x x =(提示:g dtx d -=22.当0=t 时,有0x x =,0v dtdx =)试卷4参考答案一.选择题 CBABA CCDBA. 二.填空题 1.211212+=-=-z y x .2.()xdy ydx e xy +.3.488=--z y x .4.()∑∞=-021n n nx .5.x y =. 三.计算题1.k j i238+-.2.()()()yy xy y y y x yz y y y y x xz 3333223cossincos sin cos sin ,sin cos cos sin +++-=∂∂-=∂∂ . 3.22,zxy xz yz zxy yz x z +-=∂∂+-=∂∂.4.⎪⎭⎫ ⎝⎛-3223323πa . 5.xxeC e C y --+=221.四.应用题1.316.2. 00221x t v gtx ++-=.《高数》试卷5(上)一、 填空题(每小题3分, 共24分)1.函数y =的定义域为________________________.2.设函数()sin 4,0,0xx f x xa x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()x y f e =, 则____________.y '=5. 221lim_________________.25x x x x →∞+=+-6. 321421sin 1x x dx x x -+-⎰=______________.7.2_______________________.x td e dt dx-=⎰8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin xx e x →-; 2.; 233lim 9x x x →-- 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分) 1. 2x y x =+, 求(0)y '. 2. cos xy e=, 求dy .3. 设x y xy e +=, 求d y d x.四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120xe dx ⎰五、(8分)求曲线1cos x ty t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积. 七、(8分)求微分方程6130y y y '''++=的通解. 八、(7分)求微分方程xy y ex '+=满足初始条件()10y =的特解.《高数》试卷5参考答案一.1.(3,3)- 2.4a= 3.2x = 4.()x xe f e '5.126.07.22xxe- 8.二阶二.1.原式=0lim1x x x →=2.311lim36x x →=+3.原式=112221lim[(1)]2xx ex--→∞+=三.1.221,(0)(2)2y y x ''==+2.c o s sin xdy xedx =-3.两边对x 求写:(1)x y y xy e y +''+=+'x yx yeyxy y y x ex xy++--⇒==--四.1.原式=ln 2cos x x C -+2.原式=2221ln(1)()ln(1)[ln(1)]222x xx d x x d x +=+-+⎰⎰=222111ln(1)ln(1)(1)221221x xxx dx x x dxxx+-=+--+++⎰⎰=221ln(1)[ln(1)]222xxx x x C +--+++3.原式=12212111(2)(1)222xxe d x ee ==-⎰五.2sin ,1.,,122t dy dy t t x y dxdxπππ======且当时切线:1,1022y x x y ππ-=--+-=即法线:1(),1022y x x y ππ-=--+--=即六.1231014(1)()33Sx dx x x =+=+=⎰22211221(1)11()22V x dy y dy y y ππππ==-=-=⎰⎰七.特征方程:2312613032(cos 2sin 2)xr r r iy eC x C x -++=⇒=-±=+八.11()dxdxxx x y e e edx C -⎰⎰=+⎰1[(1)]xx e C x=-+由10,0x yC ==⇒=1xx y ex-∴=《高等数学》试卷6(下)一、选择题(本题共10小题,每题3分,共30分) 1、二阶行列式 2 -3 的值为( d )4 5A 、10B 、20C 、24D 、222、设a=i+2j-k,b=2j+3k ,则a 与b 的向量积为( c ) A 、i-j+2k B 、8i-j+2k C 、8i-3j+2k D 、8i-3i+k3、点P (-1、-2、1)到平面x+2y-2z-5=0的距离为( c ) A 、2 B 、3 C 、4 D 、54、函数z=xsiny 在点(1,4π)处的两个偏导数分别为( a )A 、,22 ,22 B 、,2222- C 、22- 22- D 、22- ,225、设x 2+y 2+z 2=2Rx ,则yzx z ∂∂∂∂,分别为( ) A 、zy zR x --, B 、zy zR x ---, C 、zy zR x ,--D 、zy zR x ,-6、设圆心在原点,半径为R ,面密度为22y x +=μ的薄板的质量为( )(面积A=2R π) A 、R 2A B 、2R 2A C 、3R 2A D 、A R 2217、级数∑∞=-1)1(n nnnx的收敛半径为( )A 、2B 、21 C 、1 D 、38、cosx 的麦克劳林级数为( )A 、∑∞=-0)1(n n)!2(2n xnB 、∑∞=-1)1(n n)!2(2n xnC 、∑∞=-0)1(n n)!2(2n xnD 、∑∞=-0)1(n n)!12(12--n xn9、微分方程(y``)4+(y`)5+y`+2=0的阶数是( ) A 、一阶 B 、二阶 C 、三阶 D 、四阶 10、微分方程y``+3y`+2y=0的特征根为( ) A 、-2,-1 B 、2,1 C 、-2,1 D 、1,-2 二、填空题(本题共5小题,每题4分,共20分)1、直线L 1:x=y=z 与直线L 2:的夹角为z y x =-+=-1321___________。
大一高数试题及答案
大一高数试题及答案一、选择题(每题4分,共20分)1. 函数f(x)=x^2在区间(-∞, +∞)上的单调性是:A. 单调递增B. 单调递减C. 先减后增D. 先增后减答案:A2. 极限lim(x→0) (sin x)/x的值是:A. 0B. 1C. -1D. ∞答案:B3. 函数f(x)=x^3-3x+1的极值点是:A. x=1B. x=-1C. x=0D. x=2答案:A4. 曲线y=x^2在点(1,1)处的切线斜率是:A. 0B. 1C. 2D. -2答案:C5. 曲线y=e^x与直线y=ln x的交点个数是:A. 0B. 1C. 2D. 3答案:B二、填空题(每题4分,共20分)1. 函数f(x)=x^2-4x+3的最小值是________。
答案:-12. 极限lim(x→∞) (x^2-3x+2)/(x^3+2x^2-5)的值是________。
答案:03. 函数f(x)=x^3+2x^2-5x+1的驻点是________。
答案:x=-3或x=14. 曲线y=ln x在点(1,0)处的切线方程是________。
答案:y=x-15. 曲线y=e^x与y=x^2的交点坐标是________。
答案:(0,1)和(1,e)三、计算题(每题10分,共30分)1. 求极限lim(x→0) [(x^2+1)/(x-1)]。
答案:-12. 求函数f(x)=x^3-6x^2+11x-6的极值。
答案:极小值点x=1,极小值f(1)=0;极大值点x=3,极大值f(3)=4。
3. 求曲线y=x^2-4x+3在x=2处的切线方程。
答案:y=-x+1四、证明题(每题15分,共15分)证明:函数f(x)=x^3在区间(-∞, +∞)上是单调递增的。
答案:略五、应用题(每题15分,共15分)1. 某工厂生产一种产品,其成本函数为C(x)=0.01x^2+0.5x+100,其中x为生产量(单位:千件)。
求该产品的成本最低时的生产量。
大一(第一学期)高数期末考试题及答案
页眉内容大一上学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。
4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x +(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin 2)31(l i m .6. ,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则.7.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ .8. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12. 设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.13. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V .六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且)(0=⎰πx d x f ,cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()解答一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5. 6e . 6.c x x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导(1)c o s ()()x ye y xy xy y +''+++= cos()()cos()x y x ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 1(1)112()7(1)71u du duu u u u -==-++⎰⎰原式 1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++11. 解:101233()2x f x dx xe dx x x dx---=+-⎰⎰⎰123()1(1)xxd e x dx--=-+--⎰⎰00232cos (1sin )x x xe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰ 令3214e π=--12. 解:由(0)0f =,知(0)0g =。
高等数学(大一)题库
(一)函数、极限、连续一、选择题:1、 在区间(-1,0)内,由( )所给出的函数是单调上升的。
(A);1+=x y (B);2x x y -= (C)34+-=x y(D)25-=x y2、 当+∞→x 时,函数f (x )=x sin x 是( )(A )无穷大量 (B )无穷小量 (C )无界函数 (D )有界函数 3、 当x →1时,31)(,11)(x x xxx f -=+-=ϕ都是无穷小,则f (x )是)(x ϕ的( ) (A )高阶无穷小 (B )低阶无穷小 (C )同阶无穷小 (D )等阶无穷小4、 x =0是函数1()arctanf x x=的( ) (A )可去间断点 (B )跳跃间断点; (C )振荡间断点 (D )无穷间断点5、 下列的正确结论是( )(A ))(lim x f xx →若存在,则f (x )有界;(B )若在0x 的某邻域内,有()()(),g x f x h x ≤≤且),(lim 0x g x x →),(lim 0x h x x →都存在,则),(lim 0x f x x →也 存在;(C )若f(x)在闭区间[a , b ]上连续,且f (a ), f (b )<0则方程f (x )=0,在(a , b )内有唯一的实根;(D ) 当∞→x 时,xx x x x a sin )(,1)(==β都是无穷小,但()x α与)(x β却不能比.二、填空题:1、 若),1(3-=x f y Z且x Zy ==1则f (x )的表达式为 ;2、 已知数列n x n 1014-=的极限是4, 对于,1011=ε满足n >N 时,总有ε<-4n x 成立的最小N 应是 ;3、 3214lim 1x x ax x b x →---+=+(b 为有限数) , 则a = , b = ; 4、 设,)(ax ax x f --=则x =a 是f (x )的第 类 间断点; 5、,0,;0,)(,sin )(⎩⎨⎧>+≤-==x n x x n x x g x x f 且f [g (x )]在R 上连续,则n = ;三、 计算题:1、计算下列各式极限: (1)x x x x sin 2cos 1lim0-→; (2)xxx x -+→11ln 1lim 0;(3))11(lim 220--+→x x x (4)xx x x cos 11sinlim30-→ (5)x x x 2cos 3sin lim 0→ (6)xx xx sin cos ln lim0→2、确定常数a , b ,使函数⎪⎩⎪⎨⎧-<<∞---=<<-+=1,11,11,arccos )(2x x x b x x a x f 在x =-1处连续.四、证明:设f (x )在闭区间[a , b ]上连续,且a <f (x )<b , 证明在(a , b )内至少有一点ξ,使()f ξξ=.(二)导数与微分一、填空题:1、 设0()f x '存在,则t t x f t x f t )()(lim 000+--+→= ;2、 ,1,321,)(32⎪⎩⎪⎨⎧≤>=x x x x x f 则(1)f '= ; 3、 设xey 2sin =, 则dy = ;4、 设),0(sin >=x x x y x则=dxdy; 5、 y =f (x )为方程x sin y + y e 0=x确定的隐函数, 则(0)f '= .二、选择题:1、)0(),1ln()(2>+=-a a x f x 则(0)f '的值为( )(A) –ln a (B) ln a (C)a ln 21 (D) 21 2、 设曲线21x e y -=与直线1x =-相交于点P , 曲线过点P 处的切线方程为( )(A) 2x -y -2=0 (B) 2x +y +1=0 (C) 2x +y -3=0 (D) 2x -y +3=03、 设⎪⎩⎪⎨⎧>-≤=0),1(0)(2x x b x e x f ax 处处可导,则( )(A) a =b =1 (B) a =-2, b =-1 (C) a =0, b =1 (D) a =2, b =14、 若f (x )在点x 可微,则xdyy x ∆-∆→∆0lim的值为( )(A) 1 (B) 0 (C) -1 (D) 不确定5、设y =f (sin x ), f (x )为可导函数,则dy 的表达式为( ) (A)(sin )f x dx ' (B)(cos )f x dx ' (C)(sin )cos f x x ' (D)(sin )cos f x xdx '三、计算题:1、 设对一切实数x 有f (1+x )=2f (x ),且(0)0f '=,求(1)f '2、若g(x)=⎪⎩⎪⎨⎧=≠0,00,1cos 2x x x x 又f (x )在x =0处可导,求))((=x x g f dx d3、 求曲线⎩⎨⎧=++=-+010)1(y te t t x y 在t =0处的切线方程4、 f (x )在x =a 处连续,),()sin()(x f a x x -=ϕ求)('a ϕ5、 设3222()x y y u x x =+⋅=+, 求.dudy 6、 设()ln f x x x =, 求()()n fx . 7、计算.(三)中值定理与导数的应用一、填空题:1、 函数f (x )=arctan x 在[0 ,1]上使拉格朗日中值定理结论成立的ξ= ;2、 若01lim sin 22ax x e b x →-=则a = , b = ; 3、 设f (x )有连续导数,且(0)(0)1f f '==则)(ln )0()(sin lim 0x f f x f x -→= ;4、x e y x sin =的极大值为 ,极小值为 ;5、 )10(11≤≤+-=x xxarctgy 的最大值为 ,最小值为 . 二、选择题:1、 如果a,b 是方程f(x)=0的两个根,函数f(x)在[a,b]上满足罗尔定理条件,那么方程f’(x)=0在(a,b)内( )(A )仅有一个根; (B )至少有一个根; (C )没有根; (D )以上结论都不对。
(完整版)大一高数试题及答案.doc,推荐文档
大一高数试题及答案一、填空题(每小题1分,共10分)1.函数 的定义域为______________________。
22111arcsin xx y -+-= 2.函数上点( 0,1 )处的切线方程是______________。
2e x y += 3.设f(X )在可导,且,则0x A (x)f'=hh x f h x f h )3()2(lim000--+→= _____________。
4.设曲线过(0,1),且其上任意点(x ,y )的切线斜率为2x ,则该曲线的方程是____________。
5._____________。
=-⎰dx xx41 6.__________。
=∞→xx x 1sinlim 7.设f(x,y)=sin(xy),则fx(x,y)=____________。
9.微分方程的阶数为____________。
22233)(3dx y d x dxy d + ∞ ∞10.设级数 ∑ an 发散,则级数 ∑ an _______________。
n=1 n=1000二、单项选择题。
(1~10每小题1分,11~20每小题2分,共30分)1.设函数则f[g(x)]= ( ) x x g xx f -==1)(,1)( ① ② ③ ④xx 11-x 11-x -112.是 ( )11sin +xx ①无穷大量 ②无穷小量 ③有界变量 ④无界变量3.下列说法正确的是 ( )①若f( X )在 X =Xo 连续, 则f( X )在X =Xo 可导 ②若f( X )在 X =Xo 不可导,则f( X )在X =Xo 不连续 ③若f( X )在 X =Xo 不可微,则f( X )在X =Xo 极限不存在 ④若f( X )在 X =Xo 不连续,则f( X )在X =Xo 不可导 4.若在区间(a,b)内恒有,则在0)(",0)('><x f x f (a,b)内曲线弧y=f(x)为 ( )①上升的凸弧 ②下降的凸弧 ③上升的凹弧 ④下降的凹弧5.设,则 ( ))(')('x G x F = ① F(X)+G(X) 为常数 ② F(X)-G(X) 为常数 ③ F(X)-G(X) =0 ④⎰⎰=dx x G dxddx x F dxd )()( 1 6.( )=⎰-dx x 11-1① 0 ② 1 ③ 2 ④ 3 7.方程2x+3y=1在空间表示的图形是 ( ) ①平行于xoy面的平面 ②平行于oz轴的平面 ③过oz轴的平面 ④直线8.设,则f(tx,ty)yx y x y x y x f tan),(233++==( )① ②),(y x tf),(2y x f t ③ ④ ),(3y x f t ),(12y x tan +1 ∞9.设an ≥0,且lim ───── =p,则级数 ∑an ( ) n→∞ a n=1 ①在p〉1时收敛,p〈1时发散 ②在p≥1时收敛,p〈1时发散 ③在p≤1时收敛,p〉1时发散 ④在p〈1时收敛,p〉1时发散10.方程 y'+3xy=6x2y 是 ( ) ①一阶线性非齐次微分方程 ②齐次微分方程③可分离变量的微分方程 ④二阶微分方程 (二)每小题2分,共20分11.下列函数中为偶函数的是 ( ) ①y=ex ②y=x3+1③y=x3cosx ④y=ln│x│12.设f(x)在(a,b)可导,a〈x1〈x2〈b,则至少有一点ζ∈(a,b)使( )①f(b)-f(a)=f'(ζ)(b-a) ②f(b)-f(a)=f'(ζ)(x2-x1) ③f(x2)-f(x1)=f'(ζ)(b-a) ④f(x2)-f(x1)=f'(ζ)(x2-x1)13.设f(X )在 X =Xo 的左右导数存在且相等是f(X )在 X =Xo 可导的 ( )①充分必要的条件 ②必要非充分的条件 ③必要且充分的条件④既非必要又非充分的条件d14.设2f(x)cosx=──[f(x)]2,则f(0)=1,则f(x)=()dx①cosx②2-cosx③1+sinx④1-sinx15.过点(1,2)且切线斜率为4x3的曲线方程为y=()①x4②x4+c③x4+1④x4-11 x16.lim───∫3tgt2dt=()x→0x3 01①0②1③──④∞3xy17.limxysin─────=()x→0x2+y2y→0①0②1③∞④sin118.对微分方程y"=f(y,y'),降阶的方法是()①设y'=p,则y"=p'dp②设y'=p,则y"=───dydp③设y'=p,则y"=p───dy1dp④设y'=p,则y"=─────pdy∞∞19.设幂级数 ∑ an xn 在xo (xo ≠0)收敛, 则 ∑ an xn 在│x│〈│xo│( )n=o n=o①绝对收敛 ②条件收敛 ③发散 ④收敛性与an 有关sinx20.设D域由y=x,y=x2所围成,则∫∫ ─────dσ= ( ) D x 1 1 sinx① ∫ dx ∫ ───── dy 0 x x__1 √y sinx② ∫ dy ∫ ─────dx 0 y x __1 √x sinx③ ∫ dx ∫ ─────dy 0 x x __1 √x sinx④ ∫ dy ∫ ─────dx 0 x x三、计算题(每小题5分,共45分)1.设求 y’ 。
大一高数期末考试题库选摘(附详解答案)
大一高数期末考试题库选摘(附详解答案)一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. .(A ) (B )(C ) (D )不可导.2. .(A )是同阶无穷小,但不是等价无穷小; (B )是等价无穷小;(C )是比高阶的无穷小; (D )是比高阶的无穷小.3. 若,其中在区间上二阶可导且,则( ).(A )函数必在处取得极大值; (B )函数必在处取得极小值;(C )函数在处没有极值,但点为曲线的拐点; (D )函数在处没有极值,点也不是曲线的拐点。
4.(A ) (B )(C ) (D ).二、填空题(本大题有4小题,每小题4分,共16分) 5..6. .7..8. .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数由方程确定,求以及.10.)(0),sin (cos )( 处有则在设=+=x x x x x f (0)2f '=(0)1f '=(0)0f '=()f x )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα()()x x αβ与()()x x αβ与()x α()x β()x β()x α()()()02xF x t x f t dt=-⎰()f x (1,1)-'>()0f x ()F x 0x =()F x 0x =()F x 0x =(0,(0))F ()y F x =()F x 0x =(0,(0))F ()y F x =)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设22x 222x+1x -2x +=+→xx x sin 2)31(lim ,)(cos 的一个原函数是已知x f x x =⋅⎰x x x x f d cos )(则lim(cos cos cos )→∞-+++=22221L n n nnn n ππππ=-+⎰21212211arcsin -dx xx x =()y y x sin()1x ye xy ++='()y x '(0)y .d )1(177x x x x ⎰+-求11.12. 设函数连续,,且,为常数. 求并讨论在处的连续性.13. 求微分方程满足的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线,过点,且曲线上任一点处切线斜率数值上等于此曲线与轴、轴、直线所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线的切线,该切线与曲线及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V .六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数在上连续且单调递减,证明对任意的,.17. 设函数在上连续,且,.证明:在内至少存在两个不同的点,使(提示:设)一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5. .6..7. .8..三、解答题(本大题有5小题,每小题8分,共40分)9. 解:方程两边求导. 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x)(x f =⎰1()()g x f xt dt→=0()limx f x Ax A '()g x '()g x =0x 2ln xy y x x '+==-1(1)9y )0()(≥=x x y y (,)01M x y (,)00x y x x =0x y ln =x y ln =)(x f []0,1[,]∈01q 1()()≥⎰⎰qf x d x q f x dx)(x f []π,00)(0=⎰πx d x f 0cos )(0=⎰πdx x x f ()π,021,ξξ.0)()(21==ξξf f ⎰=xdxx f x F 0)()(6e c x x +2)cos (21 2π3π(1)cos()()0x y e y xy xy y +''+++=cos()()cos()x y x ye y xy y x e x xy +++'=-+,10. 解:11. 解:12. 解:由,知。
大学高等数学第一册考试试题(最新整理)
x =1 12 一 、 选 择 题 ( 本 大 题 共5 小 题 , 每 题 3 分 , 共 15 分 )1. lim x n 存在是数列{x n }有界的()n →∞A. 必要而非充分条件;B. 充分而非必要条件;C. 充要条件;D. 既非充分又非必要条件.2. 设 f(x)为不恒等于零的奇函数,且 f ' (0) 存在,则 g (x )=f (x ) ( )xA. 在 x=0 处左极限不存在 ;B. 有跳跃间断点 x=0 ;C. 有可去间断点 x=0 ;D. 在 x=0 处右极限不存在.f " (x ) 3. 设 f(x)有二阶连续导数,且 limx →0x= 1,则( )A.(0, f (0)) 是曲线 y=f(x)的拐点;B. C. f (0) 是 f(x)的极大值;D.(0, f (0)) 不是曲线 y=f(x)的拐点;f (0) 是 f(x)的极小值.4 若⎰ f (x )dx = F (x ) + c ,则⎰ e -x f (e -x )dx =()A. F (e x ) + c ;B; - x- F (e x ) + c ; F (e - x )C.F (e ) + c ;D.x 3 -1+ c . x5. 设函数 f(x)连续,且 ⎰f (t )dt = x ,则 f(7)=()1 A. 1 ;B.;C.211 ;D..1212二、填空题(本大题共 7 小题,每题 3 分,共 21 分)11. 已知当 x → 0 时, (1 + ax 2) 3 - 1 与cos x - 1是等价无穷小,则 a =.f (x 0 + h ) - f (x 0 - h )2. 设 f(x)在 x= x 0 处可导,则limh →0= .h3. 设 y= (1 + sin x ) x + e 5,则 dy= .2 ⋅ 3x- 5 ⋅ 2 x4. 不定积分⎰ 3xdx = .+∞ x5. 广义积分 ⎰0 1 + x 2 dx =. 6. ⎰-1x cos x + x 2x 2 + 1dx = . 7. 设 ⎰0f (x )dx = 1, 且 f (2) = 1 , f 2(2) = 0 ,则 ⎰0 x f " (2x )dx = .三、计算题(本大题共 6 小题,每题 8 分,共 48 分)2- '1. 求lim( x →∞ x + 3 x + 6x -1)21dy d 2 y 2. 求由方程 x - y + sin y = 0 所确定的隐函数 y=f(x)的一阶和二阶导数 ,.2 1 + sin x - e x3. 求lim .dx dx 2x →0 1 - x 2- 14. 求⎰ 5. 求⎰ tan 2 x sec 4 xdx . dx26. 求 I= ⎰e 2x cos xdx.四、应用题(6 分)曲线小 xy = 4, y = 1, y = 2, x = 0 围成一平面图形,求此平面图形绕 y 轴旋转而成的旋转体的体 积.五 、 证 明 题 ( 本 大 题 共 2 小 题 , 每 题 5 分 , 共 10 分 )x(1) 证明::当 x>0 时,1 + x< ln(1 + x ) < x .(2) 设函数 f(x)在[-1,1]上连续,在(-1,1)内可导,,且 f(-1)=f(1).证明在(-1,1)内至少存在一点,使 f '() = 2f () .(综合题)一、 选择题(本大题共 5 小题,每题 3 分,共 15 分)1. B ;2. C ;3. A ;4. B ;5.D .二、填空题(本大题共 9 小题,每题 3 分,共 27 分)3(2) ) x 1.- ;2. 2 f '(x ) ;3.-dx ; 4.2x - 3 + c ;21ln 2 - ln 35.; 6.22 +; 7. 0.2三、计算题(本大题共 6 小题,每题 8 分,共 48 分)1. 解:原式= lim(1 + x →∞ 1 x + 6- 3x -1 ) 2- 3=…= e 2dy 2 d 2 y - 4 sin y2. 解:=,2 =3dx 2 - cos y dx(2 - cos y )1(1 + 3x ) x⎰3. 解:原式= lim x →0 1 + sin x - e x - 1 x 22=-2 lim x →0 1 + sin x - e x x 2 = lim x →0 e x - cos x x=…=1 4. 解:原式= ⎰ tan 2 x (1+ tan 2 x )d tan x =…= 1 tan 3 3 x + 1 tan 55x + c 5. 解:令 6 原式=2 6⎰ x = t , x = t 6 t 22 dt =……= 6 x - arctan 6 x ) ) + c)1 + t26. 解:I=⎰0e 2x d sin x = e - 2 2 e 2x d cos x =… ........ = e - 2 - 4I 0I = 1(e - 2)5. 四、应 用 题 ( 6 分 )4 24 2解: x ( y ) =y,V y =⎰1 ( y ) dy =… ..... = 8五、证明题(5+5=10 分)(1) 证明:略 (2)证明:令 F(x)= e -x 2f (x ) ,F(-1)=F(1),由罗尔定理: ∃∈ (-1,1) 使F ' () = [ f ' () - 2f ()]e -2= 0(e -2≠ 0) ,故 f ' () = 2f ()(6“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
高数大一考试试题
高数大一考试试题一、选择题(每题3分,共30分)1. 下列函数中,哪一个不是基本初等函数?A. 指数函数B. 对数函数C. 分段函数D. 三角函数2. 函数f(x) = 2x^3 - 5x^2 + 3x + 1在区间(-∞,+∞)内的最大值是:A. 1B. -1C. 0D. 23. 设函数f(x) = x^2 + 3x + 2,求f(x)的最小值:A. -1B. 0C. 1D. 24. 以下哪个选项是极限lim (x->2) [(x^2 - 4)/(x - 2)]的值?A. 0B. 4C. 8D. 不存在5. 已知数列{an}是等差数列,且a1 = 3,a4 = 13,求此等差数列的A. 2B. 3C. 4D. 56. 以下哪个选项是不定积分∫1/(4+3x^2) dx的解?A. 1/3 arctan(x/2)B. 1/2 arctan(x/2)C. 1/3 arctan(x)D. 1/2 arctan(x)7. 设函数f(x) = sin(x) + cos(x),求f(x)的导数f'(x):A. cos(x) - sin(x)B. cos(x) + sin(x)C. -sin(x) - cos(x)D. -sin(x) + cos(x)8. 以下哪个选项是定积分∫[0, π/2] x^2 dx的值?A. π^2/4B. π^2/3C. π^3/6D. π^3/39. 设随机变量X服从参数为λ的泊松分布,求E(X)的值:A. λB. λ^2C. 1/λD. 2λ10. 以下哪个选项是二元函数z = xy在区域D:x^2 + y^2 ≤ 1上的A. 1B. 0C. -1D. 不存在二、填空题(每题4分,共20分)11. 若函数f(x) = √x在区间[0, 4]上可导,则f'(x) = ________。
12. 设数列{bn}的通项公式为bn = 2n - 1,该数列的前n项和Sn =________。
大一高等数学试题及答案
大一高等数学试题及答案一、选择题(每题2分,共20分)1. 下列函数中,不是周期函数的是()。
A. y = sin(x)B. y = cos(x)C. y = e^xD. y = tan(x)2. 函数f(x) = x^2 + 3x - 2的零点个数是()。
A. 0B. 1C. 2D. 33. 极限lim(x→0) (sin(x)/x)的值是()。
A. 0B. 1C. 2D. 无穷大4. 曲线y = x^3 - 2x^2 + 3在x = 1处的切线斜率是()。
A. -1B. 0C. 1D. 25. 以下哪个不是微分方程dy/dx = y/x的解()。
A. y = x^2B. y = x^3C. y = x^(-1)D. y = x6. 定积分∫(0,1) x^2 dx的值是()。
A. 1/3B. 1/4C. 1/2D. 17. 函数f(x) = ln(x)在区间[1, e]上的值域是()。
A. [0, 1]B. [1, e]C. [0, e]D. [1, 2]8. 以下哪个是复合函数f(g(x))的导数()。
A. f'(g(x)) * g'(x)B. f(g(x)) * g'(x)C. f'(x) * g'(x)D. f(x) * g'(x)9. 以下哪个是泰勒级数展开的公式()。
A. f(x) = ∑[n=0 to ∞] (f^(n)(a) / n!) * (x - a)^nB. f(x) = ∑[n=1 to ∞] (f^(n)(a) / n!) * (x - a)^nC. f(x) = ∑[n=0 to ∞] (f^(n)(a) / (n+1)!) * (x - a)^nD. f(x) = ∑[n=1 to ∞] (f^(n)(a) / (n+1)!) * (x - a)^n10. 以下哪个是拉格朗日中值定理的条件()。
A. f(x) 在区间[a, b]上连续B. f(x) 在区间(a, b)上可导C. f(x) 在区间[a, b]上可导D. f(x) 在区间(a, b)上连续且可导答案:1-5 C B B C A 6-10 B A A D D二、填空题(每题2分,共10分)1. 若f(x) = x^3 - 4x^2 + 5x - 6,则f'(x) = __________。
大学大一高数试题及答案
大学大一高数试题及答案一、选择题(每题5分,共20分)1. 设函数f(x)=x^2-4x+3,若f(a)=0,则a的值为()。
A. 1B. 3C. -1D. 2答案:B2. 极限lim(x→0) (sin x)/x的值为()。
A. 0B. 1C. ∞D. -1答案:B3. 若函数f(x)在点x=a处可导,则()。
A. f(x)在x=a处连续B. f(x)在x=a处不可导C. f(x)在x=a处不连续D. f(x)在x=a处的导数为0答案:A4. 设数列{a_n}满足a_1=1,a_{n+1}=2a_n+1,n∈N*,则a_3的值为()。
A. 5B. 7C. 9D. 11答案:C二、填空题(每题5分,共20分)1. 计算定积分∫(0到1) x^2 dx的值为______。
答案:1/32. 若矩阵A=\[\begin{pmatrix}1 & 2\\3 & 4\end{pmatrix}\],则A 的行列式det(A)为______。
答案:-23. 设函数f(x)=x^3-6x^2+11x-6,f'(x)=3x^2-12x+11,则f'(1)的值为______。
答案:24. 函数y=ln(x)的反函数为______。
答案:e^y三、解答题(每题10分,共60分)1. 求函数f(x)=x^3-3x^2+4x-12在x=2处的切线方程。
答案:首先计算f'(x)=3x^2-6x+4,代入x=2得到f'(2)=6,然后计算f(2)=0,所以切线方程为y-0=6(x-2),即y=6x-12。
2. 计算级数∑(1到∞) (1/n^2)的和。
答案:该级数为π^2/6。
3. 已知函数f(x)=x^3-3x^2+2,求f(x)的极值点。
答案:首先求导f'(x)=3x^2-6x,令f'(x)=0,解得x=0或x=2。
然后计算二阶导数f''(x)=6x-6,代入x=0和x=2,得到f''(0)<0,f''(2)>0,所以x=0是极大值点,x=2是极小值点。
大一高数试题及答案
大一高数试题及答案一、选择题(每题5分,共20分)1. 设函数f(x)=x^3-3x,求f'(x)的值。
A. 3x^2-3B. x^2-3C. 3x^2+3D. x^3-3答案:A2. 求极限lim(x→0) (sinx/x) 的值。
A. 0B. 1C. 2D. -1答案:B3. 设曲线y=x^2+1与直线y=2x+3相交于点A和点B,求交点的横坐标。
A. -2, 1B. 1, 2C. -1, 2D. 1, -2答案:C4. 计算定积分∫(0,1) x^2 dx。
A. 1/3B. 1/2C. 2/3D. 1/4答案:B二、填空题(每题5分,共20分)5. 设函数f(x)=x^2-4x+3,求f(2)的值。
答案:-16. 求不定积分∫(1/x) dx。
答案:ln|x|+C7. 设函数f(x)=e^x,求f'(x)的值。
答案:e^x8. 计算定积分∫(0,π) sinx dx。
答案:2三、解答题(每题10分,共60分)9. 求函数f(x)=x^3-6x^2+11x-6的极值点。
解:首先求导数f'(x)=3x^2-12x+11,令f'(x)=0,解得x=1或x=11/3。
当x<1或x>11/3时,f'(x)>0,函数单调递增;当1<x<11/3时,f'(x)<0,函数单调递减。
因此,x=1为极大值点,x=11/3为极小值点。
10. 求曲线y=x^3-3x^2+2在点(1,0)处的切线方程。
解:首先求导数y'=3x^2-6x,代入x=1得y'|_(x=1)=-3。
切线方程为y-0=-3(x-1),即y=-3x+3。
11. 计算二重积分∬D (x^2+y^2) dxdy,其中D是由x^2+y^2≤4所围成的圆域。
解:将二重积分转换为极坐标系下的形式,即∬D (x^2+y^2) dxdy = ∫(0,2π) ∫(0,2) (ρ^2) ρ dρ dθ = 8π。
大一数学练习题
大一数学练习题一、选择题(每题3分,共15分)1. 函数f(x)=2x^2-3x+1在区间[-1,2]上的最大值是:A. 1B. 5C. 7D. 92. 已知等差数列的首项为a1=2,公差为d=3,求第10项的值:A. 32B. 35C. 38D. 413. 圆的半径为5,圆心到直线的距离为3,求圆与直线的位置关系:A. 相切B. 相交C. 相离D. 内切4. 极限lim(x→0) (sin(x)/x)的值是:A. 0B. 1C. 2D. 无穷大5. 函数f(x)=x^3-6x^2+9x+2在x=2处的导数是:A. -1B. 3C. 5D. 7二、填空题(每题2分,共10分)6. 已知函数y=x^2+3x+2,求其在x=1处的导数______。
7. 若f(x)=x^2+1,g(x)=2x-1,则(f∘g)(x)=______。
8. 一个等比数列的首项为2,公比为3,其第5项为______。
9. 已知函数f(x)=ln(x),x>0,求其在x=e处的值______。
10. 圆的方程为(x-3)^2+(y-4)^2=25,求圆上点(x,y)到直线4x+3y-29=0的最短距离______。
三、简答题(每题5分,共20分)11. 证明:函数f(x)=x^3在R上是单调递增的。
12. 解不等式:|x-2|+|x-5|<3。
13. 求函数f(x)=x^2-4x+4在区间[0,6]上的值域。
14. 计算定积分∫(0到1) x^2 dx。
四、解答题(每题15分,共30分)15. 已知函数f(x)=sin(x)+cos(x),求其在区间[0,π]上的值域。
16. 已知数列{an}满足a1=1,an+1=an^2,求数列的前5项。
五、证明题(每题20分,共20分)17. 证明:对于任意正整数n,1^2 + 1/2^2 + 1/3^2 + ... + 1/n^2 < 2。
六、应用题(每题15分,共15分)18. 某工厂生产一种产品,每件产品的成本为10元,售价为15元。
(完整版)大一高数试题及答案.doc,推荐文档
C. 2(x 1) 2x
D. 2(x 1) x
2.已知 f(x)=ax+b,且 f(-1)=2,f(1)=-2,则 f(x)=( )
A.x+3
B.x-3
C.2x
D.-2x
3. lim ( x ) x ( ) x x 1
A.e
B.e-1
C.
D.1
4.函数 y
x 3 的连续区间是( )
4.若在区间(a,b)内恒有 f ' ( x) 0, f "( x) 0 ,则在
(a,b)内曲线弧y=f(x)为 ( )
①上升的凸弧
②下降的凸弧
③上升的凹弧
④下降的凹弧
5.设 F ' ( x) G' ( x) ,则 ( )
① F(X)+G(X) 为常数 ② F(X)-G(X) 为常数 ③ F(X)-G(X) =0
1.(-1,1)
2.2x-y+1=0
4.y=x2+1
5.
1 2
arctan x 2
c
7.ycos(xy)
3.5A 6.1
π/2 π 8.∫ dθ ∫ f(r2)rdr
0
0
9.三阶
பைடு நூலகம்
10.发散
二、单项选择题(在每小题的四个备选答案中,选出一个正确的答案,将其码写在题干的 ( )内,1~10每小题1分,11~20每小题2分,共30分)
B.x5+C
C. 2 x 3 C 3
x5 D.
C
15
13.
8
3
e
x
dx
( )
8
A.0
B. 2
8
3
e
x
大一高数试题和答案与解析
大一高数试题及答案一、填空题(每小题1分,共10分)________ 11.函数y=arcsin√1-x2+────── 的定义域为_________√1-x2_______________。
2.函数y=x+ex上点(0,1)处的切线方程是______________。
f(Xo+2h)-f(Xo-3h)3.设f(X)在Xo可导且f'(Xo)=A,则lim───────────────h→o h= _____________。
4.设曲线过(0,1),且其上任意点(X,Y)的切线斜率为2X,则该曲线的方程是____________。
x5.∫─────dx=_____________。
1-x416.limXsin───=___________。
x→∞ X7.设f(x,y)=sin(xy),则fx(x,y)=____________。
_______R √R2-x28.累次积分∫ dx∫ f(X2+Y2)dy化为极坐标下的累次积分为____________。
0 0d3y3d2y9.微分方程─── +──(─── )2的阶数为____________。
dx3xdx2∞ ∞10.设级数∑ an发散,则级数∑ an _______________。
n=1 n=1000二、单项选择题(在每小题的四个备选答案中,选出一个正确的答案,将其码写在题干的(),1~10每小题1分,11~20每小题2分,共30分)(一)每小题1分,共10分11.设函数f(x)=── ,g(x)=1-x,则f[g(x)]=()x111①1-── ②1+── ③ ──── ④xxx1-x12.x→0 时,xsin──+1是()x①无穷大量②无穷小量③有界变量④无界变量3.下列说法正确的是()①若f( X )在 X=Xo连续,则f( X )在X=Xo可导②若f( X )在 X=Xo不可导,则f( X )在X=Xo不连续③若f( X )在 X=Xo不可微,则f( X )在X=Xo极限不存在④若f( X )在 X=Xo不连续,则f( X )在X=Xo不可导4.若在区间(a,b)恒有f'(x)〈0,f"(x)〉0,则在(a,b)曲线弧y=f(x)为()①上升的凸弧②下降的凸弧③上升的凹弧④下降的凹弧5.设F'(x) =G'(x),则()① F(X)+G(X) 为常数② F(X)-G(X) 为常数③ F(X)-G(X) =0dd④ ──∫F(x)dx=──∫G(x)dxdxdx16.∫ │x│dx=()-1① 0② 1③ 2④ 37.方程2x+3y=1在空间表示的图形是()①平行于xoy面的平面②平行于oz轴的平面③过oz轴的平面④直线x8.设f(x,y)=x3+y3+x2ytg── ,则f(tx,ty)=()y①tf(x,y)②t2f(x,y)1③t3f(x,y)④ ──f(x,y)t2an+1∞9.设an≥0,且lim───── =p,则级数∑an()n→∞ a n=1①在p〉1时收敛,p〈1时发散②在p≥1时收敛,p〈1时发散③在p≤1时收敛,p〉1时发散④在p〈1时收敛,p〉1时发散10.方程y'+3xy=6x2y是()①一阶线性非齐次微分方程②齐次微分方程③可分离变量的微分方程④二阶微分方程(二)每小题2分,共20分11.下列函数中为偶函数的是()①y=ex②y=x3+1③y=x3cosx④y=ln│x│12.设f(x)在(a,b)可导,a〈x1〈x2〈b,则至少有一点ζ∈(a,b)使()①f(b)-f(a)=f'(ζ)(b-a)②f(b)-f(a)=f'(ζ)(x2-x1)③f(x2)-f(x1)=f'(ζ)(b-a)④f(x2)-f(x1)=f'(ζ)(x2-x1)13.设f(X)在 X=Xo 的左右导数存在且相等是f(X)在 X=Xo 可导的()①充分必要的条件②必要非充分的条件③必要且充分的条件④既非必要又非充分的条件d14.设2f(x)cosx=──[f(x)]2,则f(0)=1,则f(x)=()dx①cosx②2-cosx③1+sinx④1-sinx15.过点(1,2)且切线斜率为4x3的曲线方程为y=()①x4②x4+c③x4+1④x4-11 x16.lim─── ∫ 3tgt2dt=()x→0 x3 01① 0②1③ ── ④ ∞3xy17.limxysin───── =()x→0 x2+y2y→0① 0② 1③ ∞ ④ sin118.对微分方程y"=f(y,y'),降阶的方法是()① 设y'=p,则y"=p'dp② 设y'=p,则y"=───dydp③ 设y'=p,则y"=p───dy1dp④ 设y'=p,则y"=── ───pdy∞ ∞19.设幂级数∑ anxn在xo(xo≠0)收敛,则∑ anxn在│x│〈│xo│()n=o n=o①绝对收敛②条件收敛③发散④收敛性与an有关sinx20.设D域由y=x,y=x2所围成,则∫∫ ─────dσ=()D x1 1 sinx① ∫ dx∫ ───── dy0 x x__1 √y sinx② ∫ dy∫ ─────dx0 y x__1 √x sinx③ ∫ dx∫ ─────dy0 x x__1 √x sinx④ ∫ dy∫ ─────dx0 x x三、计算题(每小题5分,共45分)___________/x-11.设y=/────── 求y' 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(一)函数、极限、连续一、选择题:1、 在区间(-1,0)内,由( )所给出的函数是单调上升的。
(A);1+=x y (B);2x x y -= (C)34+-=x y (D)25-=x y2、 当+∞→x 时,函数f (x )=x sin x 是( )(A )无穷大量 (B )无穷小量 (C )无界函数 (D )有界函数 3、 当x →1时,31)(,11)(x x xxx f -=+-=ϕ都是无穷小,则f (x )是)(x ϕ的( ) (A )高阶无穷小 (B )低阶无穷小 (C )同阶无穷小 (D )等阶无穷小 4、 x =0是函数1()arctanf x x=的( ) (A )可去间断点 (B )跳跃间断点; (C )振荡间断点 (D )无穷间断点 5、 下列的正确结论是( )(A ))(lim x f xx →若存在,则f (x )有界;(B )若在0x 的某邻域内,有()()(),g x f x h x ≤≤且),(lim 0x g x x →),(lim 0x h x x →都存在,则),(lim 0x f x x →也 存在;(C )若f(x)在闭区间[a , b ]上连续,且f (a ), f (b )<0则方程f (x )=0,在(a , b )内有唯一的实根;(D ) 当∞→x 时,xx x x x a sin )(,1)(==β都是无穷小,但()x α与)(x β却不能比.二、填空题:1、 若),1(3-=x f y Z且x Zy ==1则f (x )的表达式为 ;2、 已知数列n x n 1014-=的极限是4, 对于,1011=ε满足n >N 时,总有ε<-4n x 成立的最小N 应是 ;3、 3214lim 1x x ax x b x →---+=+(b 为有限数) , 则a = , b = ; 4、 设,)(ax ax x f --=则x =a 是f (x )的第 类 间断点; 5、 ,0,;0,)(,sin )(⎩⎨⎧>+≤-==x n x x n x x g x x f 且f [g (x )]在R 上连续,则n = ;三、 计算题:1、计算下列各式极限: (1)xx x x sin 2cos 1lim0-→; (2)x xx x -+→11ln 1lim 0;(3))11(lim 220--+→x x x (4)xx x x cos 11sinlim30-→ (5)x x x 2cos 3sin lim 0→ (6)xx xx sin cos ln lim0→2、确定常数a , b ,使函数⎪⎩⎪⎨⎧-<<∞---=<<-+=1,11,11,arccos )(2x x x b x x a x f 在x =-1处连续.四、证明:设f (x )在闭区间[a , b ]上连续,且a <f (x )<b , 证明在(a , b )内至少有一点ξ,使()f ξξ=.(二)导数与微分一、填空题:1、 设0()f x '存在,则t t x f t x f t )()(lim 000+--+→= ;2、 ,1,321,)(32⎪⎩⎪⎨⎧≤>=x x x x x f 则(1)f '= ; 3、 设xey 2sin =, 则dy = ;4、 设),0(sin >=x x x y x则=dxdy; 5、 y =f (x )为方程x sin y + y e 0=x确定的隐函数, 则(0)f '= .二、选择题:1、)0(),1ln()(2>+=-a a x f x 则(0)f '的值为( )(A) –ln a (B) ln a (C)a ln 21 (D) 21 2、 设曲线21x e y -=与直线1x =-相交于点P , 曲线过点P 处的切线方程为( )(A) 2x -y -2=0 (B) 2x +y +1=0 (C) 2x +y -3=0 (D) 2x -y +3=03、 设⎪⎩⎪⎨⎧>-≤=0),1(0)(2x x b x e x f ax 处处可导,则( )(A) a =b =1 (B) a =-2, b =-1 (C) a =0, b =1 (D) a =2, b =14、 若f (x )在点x 可微,则x dyy x ∆-∆→∆0lim的值为( )(A) 1 (B) 0 (C) -1 (D) 不确定5、设y =f (sin x ), f (x )为可导函数,则dy 的表达式为( )(A)(sin )f x dx ' (B)(cos )f x dx ' (C)(sin )cos f x x ' (D)(sin )cos f x xdx '三、计算题:1、 设对一切实数x 有f (1+x )=2f (x ),且(0)0f '=,求(1)f '2、 若g(x)=⎪⎩⎪⎨⎧=≠0,00,1cos 2x x x x 又f (x )在x =0处可导,求))((=x x g f dx d3、 求曲线⎩⎨⎧=++=-+010)1(y te t t x y 在t =0处的切线方程4、 f (x )在x =a 处连续,),()sin()(x f a x x -=ϕ求)('a ϕ5、 设3222()x y y u x x =+⋅=+, 求.dudy 6、 设()ln f x x x =, 求()()n fx . 7、 计算39.02的近似值.(三)中值定理与导数的应用一、填空题:1、 函数f (x )=arctan x 在[0 ,1]上使拉格朗日中值定理结论成立的ξ= ;2、 若01lim sin 22ax x e b x →-=则a = , b = ; 3、 设f (x )有连续导数,且(0)(0)1f f '==则)(ln )0()(sin lim 0x f f x f x -→= ;4、 x e yx sin =的极大值为 ,极小值为 ;5、)10(11≤≤+-=x xxarctg y 的最大值为 ,最小值为 . 二、选择题:1、 如果a,b 是方程f(x)=0的两个根,函数f(x)在[a,b]上满足罗尔定理条件,那么方程f’(x)=0在(a,b)内( )(A )仅有一个根; (B )至少有一个根; (C )没有根; (D )以上结论都不对。
2、 函数x x f sin )(=在区间[-]2,2ππ上( ) (A )满足罗尔定理的条件,且 ;0=ξ (B )满足罗尔定理的条件,但无法求;ξ(C )不满足罗尔定理的条件,但有ξ能满足该定理的结论;(D )不满足罗尔定理的条件3、 如果一个连续函数在闭区间上既有极大值,又有极小值,则( )(A )极大值一定是最大值; (B )极小值一定是最小值;(C )极大值一定比极小值大; (D )极在值不一定是最大值,极小值不一定是最小值。
4、 设f (x )在(a , b )内可导,则()0f x '<是f (x )在(a , b )内为减函数的( )(A )充分条件; (B )必要条件; (C )充要条件; (D )既非充分又非必要条件。
5、 若f (x )在(a , b )上两次可导,且( ), 则f (x )在(a , b )内单调增加且是上凹的。
(A )0)(",0)('>>x f x f ; (B );0)(",0)('<>x f x f ; (C )0)(",0)('><x f x f ; (D )0)(",0)('><x f x f三、计算题:1、 求:2211(1)lim()sin x x x →- tan 0(2)lim x x x +→2、 求过曲线y =x e x -上的极大值点和拐点的连线的中点,并垂直于直线x =0的直线方程.四、应用题:1、 通过研究一组学生的学习行为,心理学家发现接受能力(即学生掌握一个概念的能力)依赖于在概念引人之前老师提出和描述问题所用的时间,讲座开始时,学生的兴趣激增,分析结果表明,学生掌握概念的能力由下式给出:2()0.1 2.643G x x x =-++,其中G (x )是接受能力的一种度量,x 是提出概念所用的时间(单位:min )(a )、x 是何值时,学生接受能力增强或降低?(b )、第10分钟时,学生的兴趣是增长还是注意力下降? (c )、最难的概念应该在何时讲授?(d )、一个概念需要55的接受能力,它适于对这组学生讲授吗?五、证明题:证明不等式22arctan ln(1)x xx ≥+(四)不定积分一、选择题:1、 设)(x f 可微,则()f x =( )(A )⎰))(x df (B )⎰))((dx x f d (C )⎰)')((dx x f (D )⎰dx x f )('2、 若F (x )是)(x f 的一个原函数,则c F (x )( ))(x f 的原函数 (A )是 (B )不是 (C )不一定是3、 若⎰+=,)()(c x F dx x f 则⎰=+dx b ax f )(( )(A )c b ax aF ++)( (B )c b ax F a++)(1(C )c x F a+)(1(D )c x aF +)( 4、 设)(x f 在[a ,b ]上连续,则在(a ,b )内)(x f 必有( ) (A ) 导函数 (B ) 原函数 (C ) 极值 (D ) 最大值或最大值 5、 下列函数对中是同一函数的原函数的有( )2211()sin cos 24 与A x x - 2()ln ln ln 与B x x22() 与x x C e e 1()tan cot 2sin 与x D x x-+6、 在积分曲线族⎰=xdx y 3sin 中,过点)1,6(π的曲线方程是( )cx D xC cx B x A +-++-3cos )(3cos 31)(3cos 31)(13cos 31)(7、下列积分能用初等函数表出的是( ) (A )2x edx -⎰; (B )31dx x +⎰; (C )ln dxx⎰; (D )ln x dx x ⎰. 8、已知一个函数的导数为2y x '=,且x =1时y =2,这个函数是( )(A )2;y x C =+ (B )21;y x =+ (C )2;2xy C =+ (D )1.y x =+9、2ln xdx x=⎰()(A )11ln x C x x ++; (B )11ln x C x x++; (C )11ln x C x x -+; (D )11ln x C x x--+. 10、10(41)dxx =+⎰( )(A )9119(41)C x ++; (B )91136(41)C x ++; (C )91136(41)C x -++; (D )111136(41)C x -++. 二、计算题:1、⎰++dx x x )1ln(22、1tan 1tan xdx x-+⎰3、⎰dx x xf )("3、 ⎰+++)3)(2)(1(x x x dx 5、x dx ⎰ 6、⎰+)1(x x dx7、2arccos x xdx ⎰三、求⎰,)(dx x f 其中⎪⎩⎪⎨⎧+∞<<≤≤+<<∞-=x x x x x x f 121010,1)((五)定积分及其应用一、填空题:1、 设)(x f 是连续函数,dt t xf x F x)()(0⎰=,则F '(x )= ;2、 设)(x f 是连续函数,则⎰-=---+ππdx x f x f x f x f )]()()][()([ ; 3、 111lim()12n n n n n→∞+++=+++ ; 4、设)(x f 是连续函数,f (0)= -1,则=⎰→3sin 0)(limxdtt f xxx ;5、函数)(x f =xe 在区间[a ,b ]上的平均值为 )(b a <.二、单项选择题:1、 设⎰<bab a dx x f )(,)(存在,则)(x f 在[a ,b ]上( )(A)可导 (B)连续 (C)具有最大值和最小值 (D)有界2、 设)(x f 是以T 为周期的连续函数,则⎰+∞→=nta an dx x f n )(1lim( )(A )T a f ⋅)( (B )dx x f T)(0⎰ (C )⎰adx x f 0)( (D )()f a3、 设⎰⎰⎰++=dx x f dx x f dx d dx x f dx d I )(')()(43存在,则I =( ) (A) ()f x (B) 2()f x (C) 2()f x C + (D) 0 4、)()(b a a x dxpba<-⎰,在( ) (A )P<1 时收敛,P ≥1时发散 (B )P ≤1 时收敛,P ≥1时发散 (C )P>1 时收敛,P ≤1时发散 (D )P ≥1 时收敛,P <1时发散5、 曲线)0(ln ,ln ,,ln b a b y a y y x y <<===及y 轴所围的图形面积为( ) (A)⎰baxdx ln ln ln (B)dx e xe e ba⎰(C)dx e yba⎰ln ln (D)xdx ab e eln ⎰三、计算下列定积分:1、2511x dx -⎰2、dx e xx--+⎰1sin 244ππ3、⎰++12)1ln(dx x x 4、⎰-+a xa x dx22四、求下列极限:1、sin 0tan 0tan lim sin xx x tdt tdt+→⎰⎰2、dt ttdt t xtxx sin )1(lim1sin 0⎰⎰+→五、设可导函数y =y (x )由方程⎰⎰=+-yxt x tdt dt e 0221sin 2所决定,试讨论函数y =y (x )的极值.六、已知抛物线)0,4(,)4(22>≠+-=a p a y p x ,求p 和a 的值,使得:(1) 抛物线与y=x+1相切;(2) 抛物线与0x 轴围成的图形绕0x 轴旋转有最大的体积.(六)向量代数 空间解析几何一、填空题:1、向量{}1,2,1a =与x ,y ,z 轴的夹角分别为,,αβγ,则α= ,β= ,γ= 。