高三数学 理科数学(印)

合集下载

2023湘豫名校联考高三5月第三次模拟考试 理科数学试题(含答案解析)

2023湘豫名校联考高三5月第三次模拟考试 理科数学试题(含答案解析)

数学(理科)参考答案 第1 页(共9页)湘豫名校联考2023年5月高三第三次模拟考试数学(理科)参考答案题号123456789101112答案C C B B C D D C D A A B一㊁选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.C ʌ命题意图ɔ本题考查元素与集合的关系,考查数据分析的核心素养.ʌ解析ɔ因为U ={1,2,3,4,5},∁U A ={2,4},所以A ={1,3,5}.又∁UB ={3,4},所以B ={1,2,5}.所以3ɪA ,3∉B .故选C .2.C ʌ命题意图ɔ本题考查复数相等,考查数学运算的核心素养.ʌ解析ɔ由i 3=a -b i (a ,b ɪR ),得-i =a -b i .所以a =0,b =1.所以a +b =1.故选C .3.B ʌ命题意图ɔ本题考查向量的投影,考查直观想象㊁数学运算的核心素养.ʌ解析ɔ由题知,向量b =a +b -a =(-1,7)-(1,3)=(-2,4),所以a ㊃b =-2+12=10.又|b |=4+16=25.所以向量a 在向量b 方向上的投影为a ㊃b |b |=1025=5.故选B .4.B ʌ命题意图ɔ本题考查排列组合㊁古典概型,考查逻辑推理㊁数学运算的核心素养.ʌ解析ɔ依题意,可得三个小区中恰有一个小区未分配到任何工作人员的概率为C 13C 24C 222+C 14㊃C 33()㊃A 2234=3ˑ3+4()ˑ234=1427.故选B .5.C ʌ命题意图ɔ本题考查双曲线的标准方程,考查数学运算㊁逻辑推理的核心素养.ʌ解析ɔ设双曲线C 1的方程为x 2a 2-y 2b 2=1(a >0,b >0)或y 2a 2-x 2b2=1(a >0,b >0),因为C 1和C 2有相同的焦距,双曲线C 2:x 27-y 2=1的焦距为42,所以双曲线C 1的焦距2c =42.若C 1的焦点在x 轴上,将点(3,1)代入x 2a 2-y 2b 2=1(a >0,b >0),得32a 2-12b2=1①.又a 2+b 2=c 2=8②,联立①②两式得a 2=6,b 2=2.所以双曲线C 1的标准方程为x 26-y 22=1.若C 1的焦点在y 轴上,将点(3,1)代入y 2a 2-x 2b 2=1(a >0,b >0),得12a2-32b2=1③.又a 2+b 2=c 2=8④,联立③④两式得a 2=9-73,b 2=73-1,所以双曲线C 1的标准方程为y 29-73-x 273-1=1.综上所述,双曲线C 1的标准方程为x 26-y 22=1或y 29-73-x 273-1=1.故选C .6.D ʌ命题意图ɔ本题考查四个平均数的大小关系,基本不等式的性质,考查数学运算的核心素养.ʌ解析ɔ方法一:a b ɤa +b 2()2=14(当且仅当a =b 时取等号),A 正确;易知a +b 2ɤa 2+b 22,则12ɤa 2+b 22,即a 2+b 2ȡ12(当且仅当a =b 时取等号),B 正确;由题得1a +1b +1=11-b +1b +1=21-b 2,1-b 2ɪ(0,1),故1a +1b +1>2,C 正确;易知a +b 2ɤa +b 2=12,即a +b ɤ2(当且仅当a =b 时取等数学(理科)参考答案 第2 页(共9页)号),D 错误.故选D.方法二(特殊情况):取a =b =12,则a +b =12+12=2,故D 错误.故选D.7.D ʌ命题意图ɔ本题考查程序框图,考查数学运算㊁逻辑推理的核心素养.ʌ解析ɔ执行程序框图,第一次循环:1<5,M =12+12=2,b =2,a =0,n =2;第二次循环:2<5,M =02+22=4,b =1,a =2,n =3;第三次循环:3<5,M =22+12=5,b =3,a =3,n =4;第四次循环:4<5,M =32+32=18,b =4,a =16,n =5;第五次循环:5=5,M =162+42=272,b =17,a =270,n =6,此时6>5,退出循环,输出M =272.故选D .8.C ʌ命题意图ɔ本题考查二项式定理,考查数学运算的核心素养.ʌ解析ɔ1y +x ()(x +3y )6=1y (x +3y )6+x (x +3y )6.(x +3y )6的展开式的通项为T r +1=C r 6x 6-r (3y )r =C r 63r x 6-r y r .因为1y (x +3y )6的展开式中没有x 4y 3项,x (x +3y )6的展开式中x 4y 3项为x ˑC 3633x 3y 3=540x 4y 3,所以1y+x ()(x +3y )6的展开式中x 4y 3的系数为540.故选C .9.D ʌ命题意图ɔ本题考查等差数列的基本运算,数列的前n 项和,考查数学抽象㊁逻辑推理和数学运算的核心素养.ʌ解析ɔ设等差数列的首项为a 1,公差为d ,则由a 1+a 8=2a 5-2,a 3+a 11=26,{得a 1+a 1+7d =2(a 1+4d )-2,a 1+2d +a 1+10d =26,{化简得7d =8d -2,2a 1+12d =26,{解得a 1=1,d =2.{所以a n =1+(n -1)ˑ2=2n -1.设数列a n ㊃c o s n π{}的前n 项和为S n ,则S 2022=-a 1+a 2-a 3+a 4- -a 2021+a 2022=(a 2-a 1)+(a 4-a 3)+ +(a 2022-a 2021)=1011d =2022.故选D .10.A ʌ命题意图ɔ本题考查三棱锥的外接球的体积,考查直观想象㊁逻辑推理和数学运算的核心素养.ʌ解析ɔ在әP A Q 中,设A Q =x ,则P Q =x 2+(2)2=x 2+2.所以әP A Q 的周长为2+x +x 2+2ȡ1+2+3.所以x 2+2ȡ1+3-x ,不等式两边平方,得x 2+2ȡ4+23-2(1+3)x +x 2,解得x ȡ1,即A Q 的最小值是1.所以点A 到边B C 的距离为1.当A Q 取最小值时,因为在R t әA B Q 中,A B =2,所以øB A Q =60ʎ.又øB A C =60ʎ,所以C ,Q 两点重合,所以øA C B =90ʎ,即A C ʅB C .又P A ʅ平面A B C ,B C ⊂平面A B C ,所以P A ʅB C .因为P A ɘA C =A ,所以B C ʅ平面P A C .因为P C ⊂平面P A C ,所以B C ʅP C .因为P B 是R t әP A B 和R t әP C B 的公共斜边,所以P B 为三棱锥P A B C 的外接球的直径,设外接球的半径为R ,则R =12P B =12P A 2+A B 2=12(2)2+22=62,所以三棱锥P A B C 的外接球的体积V =43πR 3=43πˑ62æèçöø÷3=6π.故选A .11.A ʌ命题意图ɔ本题考查直线与抛物线的位置关系,考查直观想象㊁数学抽象和逻辑推理的核心素养.ʌ解析ɔ如图,不妨设点A 在x 轴上方,由抛物线的定义可知|A F |=|AM |,因为øF MD =30ʎ,所以øAM F =90ʎ-30ʎ=60ʎ,所以әAM F 是正三角形.由y 2=4x 可知F (1,0),D (-1,0),设A (x A ,y A ),B (x B ,yB ),因为øF M D =30ʎ,|D F |=2,所以|D M |=23,|M F |=|AM |=4.所以x A =4-1=3.所以点A 的坐标为(3,23),所数学(理科)参考答案 第3 页(共9页)以直线A B 的方程为y -230-23=x -31-3,整理得y =3x -3.由y =3x -3,y 2=4x ,{得3x 2-10x +3=0,解得x A =3,x B =13.将x B =13代入直线A B 的方程,得y B =3ˑ13-3=-233.所以点B 的坐标为13,-233æèçöø÷.所以S 四边形A M D B =S 四边形A M D F +S әB D F =12ˑ(2+4)ˑ23+12ˑ2ˑ233=2033.故选A .12.B ʌ命题意图ɔ本题考查通过构造函数,利用导数比较大小,考查数学抽象和逻辑推理的核心素养.ʌ解析ɔa =11+e 2=1-11e 2+1,b =1e =1e 2,c =l n 1+e 2e 2=l n 1e 2+1(),令f (x )=x -l n (x +1),0<x <1,则f '(x )=1-1x +1=x x +1>0,所以f (x )在(0,1)上单调递增.所以f (x )>f (0)=0,即x >l n (x +1).令g (x )=l n (x +1)-1+1x +1,0<x <1,则g '(x )=1x +1-1(x +1)2=x (x +1)2>0,所以g (x )在(0,1)上单调递增.所以g (x )>g (0)=0,即l n (x +1)>1-1x +1.又当0<x <1时,x >x ,所以当0<x <1时,x >x >l n (x +1)>1-1x +1.所以当x =1e 2时,1e 2>1e 2>l n 1e 2+1()>1-11e 2+1,即b >c >a .故选B .二㊁填空题:本题共4小题,每小题5分,共20分.13.14x -y -8=0 ʌ命题意图ɔ本题考查导数的几何意义,考查逻辑推理和数学运算的核心素养.ʌ解析ɔ由题得f '(x )=6x 2+8x ,所以曲线f (x )在点(1,f (1))处的切线的斜率为f '(1)=14.又f (1)=6,所以曲线f (x )=2x 3+4x 2在点(1,f (1))处的切线方程为y -6=14ˑ(x -1),即14x -y -8=0.14.3(答案不唯一,答对即可得分) ʌ命题意图ɔ本题考查直线与圆的位置关系,考查逻辑推理㊁直观想象㊁数学运算的核心素养.ʌ解析ɔ因为圆心C (a ,1)到直线l 的距离d =|a -1|12+(-1)2=|a -1|2,所以r =d 2+|A B |2()2=|a -1|2æèçöø÷2+(2)2,即r 2=|a -1|22+2.由题意,得|a -1|22必为整数,且0<|a -1|2<r ,所以可取a =-1或a =3,此时r =2.因此a 的值可以取3.15.7或8(只答一个不得分) ʌ命题意图ɔ本题考查等比数列的基本运算,考查逻辑推理和数学运算的核心素养.ʌ解析ɔ由题可知a 4ʂ0,因为8a 7=a 4,所以q 3=a 7a 4=18,解得q =12.又S 6=252,所以a 11-12()6[]1-12=252,解得a 1=128.所以a n =128ˑ12()n -1.令a n =128ˑ12()n -1ɤ1,得n ȡ8.又a 8=128ˑ12()7=1,所以当n =7或8时,a 1a 2 a n 最大.16.15π ʌ命题意图ɔ本题考查正弦函数的图象与性质,考查逻辑推理㊁直观想象㊁数学运算的核心素养.ʌ解析ɔ由题图知A =2.由f 3π4-x ()=f (x )知,函数f (x )的图象关于直线x =3π8对称.则由图象可知3π8--π8()=K 2T (K ɪN *),解得T =πK (K ɪN *).又π8<T 4,所以T >π2.所以K =1,最小正周期T =π.所以ω=2πT =2.所以f (x )=2s i n (2x +φ).因为函数f (x )的图象经过点-π8,-2(),所以f -π8()=数学(理科)参考答案 第4 页(共9页)2s i n -π4+φ()=-2,解得φ=-π4+2k π(k ɪZ ).又|φ|<π2,所以φ=-π4,所以f (x )=2s i n 2x -π4().设方程f (x )=1在(0,λ)上的8个根从小到大依次为x 1,x 2, ,x 8.令2x -π4=π2,则x =3π8.根据f (x )的图象的对称性,可得x 1+x 22=3π8.由f (x )的周期性可得x 3+x 42=3π8+T =11π8,x 5+x 62=3π8+2T =19π8,x 7+x 82=3π8+3T =27π8,所以ð8i =1x i =2ˑ3π8+11π8+19π8+27π8()=15π.三㊁解答题:共70分.解答应写出文字说明㊁证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22㊁23题为选考题,考生根据要求作答.(一)必考题:共60分.17.ʌ命题意图ɔ本题考查解三角形,三角形的面积与周长,考查逻辑推理和数学运算的核心素养.ʌ解析ɔ(1)因为3a s i n C +c c o s A =a +b ,所以由正弦定理得3s i n A s i n C +s i n C c o s A =s i n A +s i n B .1分…………………………………………………………………………………………………………………因为B =π-A -C ,所以s i n B =s i n (π-A -C )=s i n (A +C )=s i n A c o s C +c o s A s i n C ,所以3s i n A s i n C =s i n A c o s C +s i n A .3分……………………………………………………………………因为A ɪ(0,π),所以s i n A ʂ0,所以3s i n C =c o s C +1,即3s i n C -c o s C =1.4分………………………所以2s i n C -π6()=1,即s i n C -π6()=12.5分………………………………………………………………又C ɪ(0,π),所以C =π3.6分…………………………………………………………………………………(2)因为әA B C 的面积为3,所以12a b s i n C =3.由(1)知C =π3,所以a b =4①.8分……………………………………………………………………………由余弦定理得c 2=a 2+b 2-2a b c o s C ,又c =2,所以a 2+b 2=8②.10分………………………………………………………………………………由①②解得a =b =2.11分………………………………………………………………………………………故әA B C 的周长为a +b +c =6.12分……………………………………………………………………………18.ʌ命题意图ɔ本题考查独立性检验思想㊁离散型随机变量的分布列与数学期望,考查逻辑推理㊁数学运算㊁数据分析的核心素养.ʌ解析ɔ(1)因为套餐价格在[898,1498]内的频率为(0.00100+0.00050+0.00025)ˑ200=0.35,所以选择 尊享套餐 的客户有0.35ˑ200=70(名).2分………………………………………………………完善2ˑ2列联表如下:选择 尊享套餐 选择 普通套餐合计年龄不低于45岁5070120年龄低于45岁206080合计70130200K 2的观测值k =200ˑ(50ˑ60-70ˑ20)2120ˑ80ˑ70ˑ130ʈ5.861<6.635.4分……………………………………………所以没有99%的把握认为是否选择尊享套餐 与年龄有关.5分……………………………………………数学(理科)参考答案 第5 页(共9页)(2)由题设,年龄低于45岁的所有客户中,估计选择 普通套餐 的概率为6080=34,6分……………………易知ξ~B 3,34().7分……………………………………………………………………………………………所以P (ξ=0)=C 03ˑ34()0ˑ14()3=164,P ξ=1()=C 13ˑ34()1ˑ14()2=964,P (ξ=2)=C 23ˑ34()2ˑ14()1=2764,P ξ=3()=C 33ˑ34()3ˑ14()0=2764,9分…………………………所以ξ的分布列为ξ0123P1649642764276410分………………………………………………………………………………………………………………所以E (ξ)=3ˑ34=94.12分……………………………………………………………………………………19.ʌ命题意图ɔ本题考查面面垂直的证明㊁三棱柱的体积㊁二面角等,考查直观想象㊁逻辑推理和数学运算的核心素养.ʌ解析ɔ(1)方法一(几何法):如图,作C E ʅA B 于点E ,E F ʊB B 1交A B 1于点F ,连接D F .因为A C =2,B C =3,A B =13,所以A C 2+B C 2=22+32=(13)2=A B 2.所以A C ʅB C .1分……………………………………………………………所以C E =A C ㊃B C A B =2ˑ313=61313.由勾股定理得A E =A C 2-C E 2=22-61313æèçöø÷2=41313,所以E F B B 1=A E A B =4131313=413=C D C C 1,所以E F =C D .3分………………………………………………………又E F ʊB B 1,C D ʊB B 1,所以E F ʊC D .所以四边形E F D C 是平行四边形,所以D F ʊC E .4分…………………………………………………………因为平面A B C ʅ平面A B B 1A 1,平面A B C ɘ平面A B B 1A 1=A B ,C E ʅA B ,所以C E ʅ平面A B B 1A 1.5分……………………………………………………………………………………所以D F ʅ平面A B B 1A 1.又D F ⊂平面A B 1D ,所以平面A B 1D ʅ平面A B B 1A 1.6分……………………………………………………方法二(向量法):因为A C =2,B C =3,A B =13,所以A C 2+B C 2=22+32=(13)2=A B 2.所以A C ʅB C .1分………………………………………………………………………………………………由题知C C 1ʅ平面A B C ,又A C ⊂平面A B C ,B C ⊂平面A B C ,所以C C 1ʅA C ,C C 1ʅB C .以点C 为原点,以C A ,C B ,C C 1所在直线分别为x 轴㊁y 轴㊁z 轴建立如图所示的空间直角坐标系,设C C 1=a (a >0),则A (2,0,0),A 1(2,0,a ),B 1(0,3,a ),D 0,0,4a 13().数学(理科)参考答案 第6 页(共9页)所以A B 1ң=(-2,3,a ),A D ң=-2,0,4a 13(),A A 1ң=(0,0,a ).2分………设平面A B 1D 的法向量为m =(x ,y ,z ),由m ㊃A B 1ң=-2x +3y +a z =0,m ㊃A D ң=-2x +4a z 13=0,{得x =2a z 13,y =-3a z 13.ìîíïïïï令z =13,得平面A B 1D 的一个法向量为m =(2a ,-3a ,13).3分………设平面A B B 1A 1的法向量为n =(x ',y',z '),由n ㊃A B 1ң=-2x '+3y '+a z '=0,n ㊃A A 1ң=a z '=0,{得y '=23x ',z '=0.{令x '=3,得平面A B B 1A 1的一个法向量为n =3,2,0().4分…………………………………………………因为m ㊃n =6a -6a +0=0,所以m ʅn .5分……………………………………………………………………………………………………所以平面A B 1D ʅ平面A B B 1A 1.6分……………………………………………………………………………(2)因为直三棱柱A B C A 1B 1C 1的体积为392,所以12ˑ2ˑ3ˑC C 1=392,解得C C 1=132.所以C D =2,C 1D =92.7分………………………………………………………………………………………由题知C C 1ʅ平面A B C ,又A C ⊂平面A B C ,B C ⊂平面A B C ,所以C C 1ʅA C ,C C 1ʅB C .以点C 为原点,以C A ,C B ,C C 1所在直线分别为x 轴㊁y 轴㊁z 轴建立如图所示的空间直角坐标系,则A (2,0,0),B 10,3,132(),D (0,0,2),所以A B 1ң=-2,3,132(),A D ң=(-2,0,2).8分…………………………设平面A B 1D 的法向量为u =(x 1,y1,z 1),由u ㊃A B 1ң=-2x 1+3y 1+132z 1=0,u ㊃A D ң=-2x 1+2z 1=0,{得y 1=-32z 1,x 1=z 1.{令z 1=2,得平面A B 1D 的一个法向量为u =(2,-3,2).9分……………易知平面B B 1D 的一个法向量为v =(1,0,0),10分……………………设二面角A B 1D B 的大小为θ,则c o s θ=u ㊃v |u ||v |=(2,-3,2)㊃(1,0,0)17ˑ1=21717.易知θ为锐角,所以二面角A B 1D B 的余弦值为21717.12分………………………………………………………………20.ʌ命题意图ɔ本题考查椭圆的标准方程㊁直线与椭圆的位置关系㊁三角形的周长等,考查直观想象和数学运算的核心素养.ʌ解析ɔ(1)依题意,әMN F 2的周长为|M F 2|+|MN |+|N F 2|=|M F 1|+|M F 2|+|N F 1|+|N F 2|=4a =12,解得a =3.1分……………………………………………………………………………………………………数学(理科)参考答案 第7 页(共9页)设椭圆C 的半焦距为c ,因为椭圆C 的离心率为23,所以e =c a =23,即c 3=23,解得c =2.2分……………………………………………………………………因为a 2=b 2+c2,所以b =a 2-c 2=32-22=5.3分…………………………………………………………………………所以椭圆C 的标准方程为y 29+x 25=1.4分……………………………………………………………………(2)由(1)知,F 1(0,2),A (0,3).易知直线l 的方程为y =k x +2(k ʂ0).5分…………………………………由y =k x +2,y 29+x 25=1,{消去y 得(5k 2+9)x 2+20k x -25=0,Δ>0.6分……………………………………………设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-20k 5k 2+9,x 1x 2=-255k 2+9.7分………………………………………所以k 1=y 1-3x 1=k x 1+2-3x 1=k x 1-1x 1,k 2=y 2-3x 2=k x 2+2-3x 2=k x 2-1x 2.8分………………………………所以k 1+k 2=k -1x 1+k -1x 2=2k -x 1+x 2x 1x 2=65k .k 1㊃k 2=k-1x 1()㊃k -1x 2()=k 2-k ˑx 1+x 2x 1x 2+1x 1x 2=-925.所以1k 1+1k 2=k 1+k 2k 1㊃k 2=-103k .11分……………………………………………………………………………所以1k 1k 1+1k 2()=-103,为定值.12分………………………………………………………………………21.ʌ命题意图ɔ本题考查导数的几何意义,考查利用导数解决不等式恒成立问题,考查逻辑推理㊁数学运算的核心素养.ʌ解析ɔ(1)由f (x )=e x -s i n x -c o s x -12a x 2,得f '(x )=e x-c o s x +s i n x -a x .1分……………………所以曲线y =f (x )在点π4,fπ4()()处的切线的斜率为f 'π4()=e π4-π4a .2分…………………………所以e π4-π4a =e π4-π,解得a =4.4分…………………………………………………………………………(2)由(1)知,f'(x )=e x-c o s x +s i n x -a x ,所以不等式f '(x )ȡl n (1-x ),即e x-c o s x +s i n x -a x -l n (1-x )ȡ0对任意x ɪ(-ɕ,1)恒成立.5分…………………………………………………………………………………………………………………令g (x )=e x+s i n x -c o s x -a x -l n (1-x )(x <1),则g '(x )=e x+c o s x +s i n x -a +11-x .6分……………………………………………………………………因为g (x )ȡ0,g (0)=0,所以∀x ɪ(-ɕ,1),g (x )ȡg (0),即g (0)为g (x )的最小值,x =0为g (x )的一个极小值点.所以g '(0)=e 0+c o s 0+s i n0-a +11-0=0,解得a =3.7分…………………………………………………当a =3时,g (x )=e x+s i n x -c o s x -3x -l n (1-x )(x <1),所以g '(x )=e x +c o s x +s i n x -3+11-x =e x+2s i n x +π4()-3+11-x.8分……………………………数学(理科)参考答案 第8 页(共9页)令φ(x )=e x+11-x -3,h (x )=2s i n x +π4(),易知φ(x )在(-ɕ,1)上单调递增.①当0ɤx <1时,[φ(x )]m i n =φ(0)=-1,[h (x )]m i n =h (0)=1,所以g '(x )ȡg '(0)=0(当且仅当x =0时等号成立),所以g (x )在[0,1)上单调递增.9分…………………………………………………………………………………………………………………②当x <0时,若-π2ɤx <0,则φ(x )<φ(0),h (x )<h (0),所以g '(x )<g '(0)=0;若x <-π2,则φ(x )<φ-π2()=e -π2+2π+2-3,h (x )ɤ2,所以g '(x )<e -π2+2-3+2π+2<12+32-3+2π+2<0.所以g (x )在(-ɕ,0)上单调递减.11分…………………………………………………………………………综上所述,g (x )在(-ɕ,0)上单调递减,在[0,1)上单调递增.所以当a =3时,g (x )ȡg (0)=0.12分…………………………………………………………………………(二)选考题:共10分.请考生在22㊁23题中任选一题作答,如果多做,则按所做的第一题计分.22.ʌ命题意图ɔ本题考查极坐标与参数方程,考查直观想象㊁逻辑推理㊁数学运算的核心素养.ʌ解析ɔ(1)因为直线l 的参数方程为x =3-32t ,y =3-12t ìîíïïïï(t 为参数),所以消去参数t 可得直线l 的普通方程为x -3y =0.2分……………………………………………………因为曲线C 的极坐标方程为ρ=2s i n θ+π6(),即ρ=3s i n θ+c o s θ,所以ρ2=3ρs i n θ+ρc o s θ.由x =ρc o s θ,y =ρs i n θ,{得x 2+y 2-x -3y =0.所以曲线C 的直角坐标方程为x 2+y 2-x -3y =0.4分……………………………………………………(2)因为点P 的极坐标为23,π6(),所以点P 的直角坐标为(3,3).易得点P 在直线l 上,将直线l 的参数方程x =3-32t ,y =3-12t ìîíïïïï(t 为参数)代入x 2+y 2-x -3y =0,6分………………………………化简得t 2-33t +6=0,Δ>0.设A ,B 两点所对应的参数分别为t 1,t 2,则t 1+t 2=33,t 1t 2=6,8分………………………………………所以t 1>0,t 2>0.所以1|P A |+1|P B |=1|t 1|+1|t 2|=1t 1+1t 2=t 1+t 2t 1t 2=336=32.10分………………………………………23.ʌ命题意图ɔ本题考查绝对值不等式的求解,绝对值不等式恒成立问题,考查逻辑推理和数学运算的核心素养.数学(理科)参考答案 第9 页(共9页)ʌ解析ɔ(1)当a =2时,f (x )=|x +4|+|x -4|,1分……………………………………………………………不等式f (x )ɤ13,即为|x +4|+|x -4|ɤ13.则x ɤ-4,-(x +4)-(x -4)ɤ13,{或-4<x <4,(x +4)-(x -4)ɤ13,{或x ȡ4,(x +4)+(x -4)ɤ13.{3分……………………解得-132ɤx ɤ-4或-4<x <4或4ɤx ɤ132.4分……………………………………………………………故不等式f (x )ɤ13的解集为-132,132[].5分…………………………………………………………………(2)f (x )=|x +4|+|x -2a |ȡ|x +4-(x -2a )|=|2a +4|(当且仅当(x +4)(x -2a )ɤ0时等号成立)6分…………………………………………………………………………………………………………………因为f (x )ȡa 2+5a 恒成立,所以|2a +4|ȡa 2+5a .7分………………………………………………………所以2a +4ȡa 2+5a ①或2a +4ɤ-(a 2+5a )②.8分…………………………………………………………由①解得-4ɤa ɤ1,由②解得-7-332ɤa ɤ-7+332.9分………………………………………………综上所述,-7-332ɤa ɤ1,故实数a 的取值范围是-7-332,1[].10分………………………………。

四川省乐山市高中2023届高三第一次调查研究考试 数学(理) Word版含答案

四川省乐山市高中2023届高三第一次调查研究考试 数学(理) Word版含答案

乐山市高中2023届第一次调查研究考试理科数学(本试卷共4页,满分150分。

考试时间120分钟)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需“改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|-2<x<2},B={x|(x+3)(x-1)<0},则A∩B=()A.{x|-3<x<2}B.{x|-3<x<1}C.{x|-2<x<1}D.{x|-2<x<-1}2.为了了解乐山大佛景区暑假游客年龄情况,大佛管委会对不同年龄段的游客人数进行了统计,并整理得到如下的频率分布直方图.已知20岁到70岁的游客人数共约200万,则年龄在[50,60]的游客人数约为()A.6万B.60万C.8万D.80万3.设复数z满足|z+i|=|z-3i|,z在复平面内对应的点为(x,y),则()A.x=1B.y=1C.x=-1D.y=-14.(1+2x)(1+x)³的展开式中x² 的系数为()A.4B.6C.9D.105.背海省龙羊峡水电站大坝为重力拱坝(如图1),其形状如同曲池(如图2).《九章算术》指出,曲池是上下底面皆为扇环形状的水池,设其上底面扇环的内外弧长分别为c₁,c₂,内外径之差为a₁,下底面扇环的内外弧长分别为d₁,d₂,内外径之差为a₂,高为h,则曲池体积公式为V=16[(2a1+a2)b1+(2a2+a1)b2]ℎ,其中b1=c1+c2 2,b2=d1+d22.已知龙羊峡水电站大坝的上底面内外弧长分别为360m和380m,内外半径分别为250m和265m;下底面内外弧长分别为50m和70m,内外半径差为80m,高为180m.则浇筑龙羊峡大坝需要的混凝土约为(结果四舍五入)()A.1.3× 10 ⁶m³B.1.4×10⁶m³C.1.5×10⁶m³D.1.6×10⁶m³6.已知等比数列{a n }的公比为q ,前n 项和为S ,,则“q >0”是“Sₙ+Sₙ₊₂>2Sₙ₊₁”.的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.已知函数f (x )=lg(√1+x 2−x)+2x ,则函数f (x )的大致图象为( )8.已知t a n(a +β)=3, t a nβ=2,则c os2α=( )A.2425B.−2425C.725D.−725 9.已知 100.4771≈3,100.301≈2,设 M=1510,则M 所在的区间为( )10.已知 f (x )={−x 2+2x ,x ≥0x 2+2x ,x <0, 满足f (a )( ) A.(-∞,-2)∪(0,2) B.(-∞,-2)∪(2,+∞)C.(-2.0) ∪(0,2)D.(-2.0)∪(2,+∞)11.已知x +y =1,x ≠0,y >0,则 1|x|+2|x1y+1的最小值为( ) A.2 B.32 C.52 D ⋅83 12.已知a =sin0.1,b =0.09,c =12ln119,则( ) A.c >a >b B.a >c >b C.b >c >a D.a >b >c填空题:本大题共4小题;每小题5分,共20分.13.抛物线y ²=2px (p >0)上一点M (2,y )到焦点F 的距离|MF |=5,则抛物线的方程为 .14.若向量a ,b 满足|a |=1,|b |=2,a 与b 的夹角为120°.则a ·(2b -a )= .A.(109,1010)B.(1010,1011)C.(10¹¹,10¹²)D.(1012,1013)15.函数f(x)=1|x−1|−1−cosπx在[-1,3]上所有零点之和为.16.在平面四边形ABCD中AB=BD=CD=√3,BC=AD=2,,沿BD将△ABD折起,使得△ABC与△BAD全等.记四面体ABCD外接球球心到平面ABC的距离为d₁,四面体ABCD的内切球球心到点A的距离为d2,则d1d2的值为.三、解答题:全科免费下载公众号《高中僧课堂》本大题共6小题,共70分.解答应写出文字说明、证明过程或推演步骤.17.(本小题满分12分)已知等差数列{a.}的前三项和为15,等比数列{b.}的前三项积为64,且a₁=b₁=2.(1)求{a n}和{b n}的通项公式;(2)设c n={a n,n为奇数√b n,n为偶数,求数列{c n}的前20项和.18.(本小题满分12分)设函数f(x)=cos(2x+π3)+sin2x.(1)求函数f(x)的最大值和最小正周期;(2)在锐角△ABC中,角A,B,C所对的边分别为a,b,c,S为△ABC的面积.若f(B2)=−14且b=√3,求√3cosAcosC+S的最大值.19.(本小题满分12分)如图,在四棱锥P—ABCD中,P A⊥平面ABCD,底面ABCD满足AD∥BC,且AD=12.P A=AB=BC=1,三角形P AC的面积为√22.(1)画出平面P AB和平面PCD的交线,并说明理由,(2)求平面P AB与平面PCD所成锐二面角的余弦值.20.(本小题满分12分)“双十一”期间,某大型商场举行了“消费领奖”的促销活动,在规定的商品中,顾客消费满,200元(含200元)即可抽奖一次,抽奖方式有两种(顾客只能选择其中一种).方案一:从装有5个形状、大小完全相同的小球(其中红球1个,黑球4个)的抽奖盒中,有放回地摸出2球,每摸出1次红球,立减100元.方案二:从装有10个形状、大小完全相同的小球(其中红球2个,黑球8个)的抽奖盒中,不放回地摸出2个球,中奖规则为:若摸出2个红球,享受免费优惠;若摸出1个红球,1个黑球,则打5折;若摸出2个黑球,则抵扣现金50元.(1)某顾客恰好消费200元,选择抽奖方案一,求他实付现金的分布列和期望;(2)若顾客消费300元,试从实付金额的期望值分析顾客选择哪一种抽奖方式更合理?21.(本小题满分12分)若函数g(x)=xe 12x−e x+1.(1)证明:当x>0时,g(x)<0;(2)设n∈N*,证明:∑n√i(i+1)>ln(n+1).请考生在第22―23题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2sinθ.(1)求曲线C的直角坐标方程;(2)若P是C上一动点A(1,π2),B(2,π6),作线段BP的中垂线交直线AP于点Q,求点Q 的轨迹方程.23.(本小题满分10分)已知函数f(x)=2|x+1|-|2x+3|.(1)求f(x)的最大值m;(2)若正数a.b,c满足a/x=m,证明: 1a +1b+1c≥√a+√b+√c.乐山市高中2023届第一次调查研究考试理科数学参考答案及评分意见一、选择题:本大题共12小题,每小题5分,共60分.CBBCC BAACD BA二、填空题:本大题共4小题,每小题5分,共20分.13.212y x =; 14.3-; 15.4; 16三、解答题:本大题共6小题,共70分.17.解:(1)∵等差数列{}n a 满足12315a a a ++=,∴25a =.∵12a =,∴213d a a =-=,∴31n a n =-.∵等比数列{}n b 满足12364b b b =,∴24b =.∵12b =,∴212b q b ==,∴2n n b =.(2)由题知{}n c 的前20项2013192420S a a a b b b =+++++++()10221256102336221⋅-+=⋅+=-.18.解:(1)2()cos 2sin 3f x x x π⎛⎫=++ ⎪⎝⎭1cos 2cos 2cos sin 2sin 332xx x ππ-=-+122x =-∴函数()f x ,最小正周期为π.(2)∵11224B f B ⎛⎫==- ⎪⎝⎭,∴sin 2B =.∵B 为锐角,∴3B π=.∵sin sin sin acbA CB ==,∴2sin a A =,2sin cC =。

高三理科数学最难的知识点

高三理科数学最难的知识点

高三理科数学最难的知识点在高三数学学科中,有一些知识点被广大理科生认为是最难掌握的。

这些知识点或涉及复杂的计算,或需要深入理解抽象概念,由于难度较大,对学生的数学素养提出了很高的要求。

本文将重点分析高三理科数学最难的知识点,并提供一些解题技巧,以帮助学生克服困难。

1. 微积分中的极限与导数微积分是高中数学中的重要分支,也是理科生必须掌握的知识点。

而其中的极限和导数概念往往是学生们感到最困惑的内容。

极限是一种非常抽象的概念,教师在讲解时常常使用数学符号和定义,给学生造成了难以理解的困扰。

而导数则需要学生理解变化率的概念,掌握求导公式以及各种特殊函数的导数运算法则。

对于这两个知识点,学生应多做相关练习,理解概念,强化运算技巧。

2. 矩阵与行列式线性代数中的矩阵与行列式也是高三理科数学中难度较大的部分。

学生需要掌握矩阵的基本概念、运算法则以及特殊矩阵的性质,并且能够熟练求解线性方程组。

同时,行列式的计算也是一个需要大量练习的环节。

学生可通过反复练习,熟悉相关技巧和运算规则,加深对矩阵与行列式的理解。

3. 空间几何与向量空间几何与向量是高中数学中的重点内容。

而其中涉及的三角形、四面体等立体几何的性质和计算,以及向量的定义和运算,是高三理科数学中的难点。

学生需通过多做几何证明题,掌握几何图形的性质,并能熟练运用向量运算法则。

此外,建议学生多画图解题,加深对空间几何的直观理解。

4. 概率与统计概率与统计是数学中的实践性较强的一个分支,也是许多学生觉得较难的内容之一。

学生需要掌握概率的基本概念、计算方法以及概率推理的思维方式。

统计方面,要求学生能够熟练计算样本的描述性统计,并能较好地理解统计推断的原理与方法。

学生在掌握了概率的基本理论后,可以通过大量练习加深对概率与统计的理解。

总之,高三理科数学的最难知识点是微积分中的极限与导数、矩阵与行列式、空间几何与向量以及概率与统计。

针对这些难点,学生应注重理解概念,掌握运算技巧,并通过大量练习将知识点牢固掌握。

高三理科数学试卷(含答案)

高三理科数学试卷(含答案)

理科数学试卷参考答案及评分标准本试卷分第Ⅰ卷和第Ⅱ卷两部分,共11页,满分150分,考试时间120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上,并将准考证号条形码粘贴在答题卡上指定位置.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3. 第Ⅱ卷必须用0.5毫米黑色签字笔在答题卡各题的答题区域内作答;不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效.4. 填空题请直接填写答案,解答题应写出文字说明,证明过程或演算步骤.第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集I 是实数集R , 3{|2}{|0}1x M x x N x x -=>=≤-与都是I 的子集(如图所示), 则阴影部分所表示的集合为A .{}2x x <B .{}21x x -≤<C .{}12x x <≤D .{}22x x -≤≤2.下列函数中既不是奇函数,又不是偶函数的是A .2xy = B . (lg y x =C . 22xxy -=+ D . 1lg1y x =+ 3.若曲线x x x f -=4)(在点P 处的切线平行于直线03=-y x ,则点P 的坐标为A .(1,0)B .(1,5)C .(1,-3)D .(-1,2)4.在ABC ∆中,a b 、分别是角A B 、所对的边,条件“a b <”是使 “cos cos A B >”成立的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 5.422142x x dx -⎛⎫-++= ⎪⎝⎭⎰ A .16 B .18 C .20 D .226. 已知函数),6cos()6sin()(ππ++=x x x f 则下列判断正确的是A .)(x f 的最小正周期为2π,其图象的一条对称轴为12π=xB .)(x f 的最小正周期为2π,其图象的一条对称轴为6π=xC .)(x f 的最小正周期为π,其图象的一条对称轴为12π=xD .)(x f 的最小正周期为π,其图象的一条对称轴为6π=x7. 一空间几何体的三视图如图所示,则该几何体的表面积为 A.2π+ B.42π+ C.6π+ D.62π+ 8. 若直线:10 l ax by ++=始终平分圆M :224210x y x y ++++=的周长,则()()2222a b -+-的最小值为AB .5C.D .109. 设b c 、表示两条直线,αβ、表示两个平面,下列命题中真命题是A .若c ∥α,c ⊥β,则αβ⊥B .若b α⊂,b ∥c ,则c ∥αC .若b α⊂,c ∥α,则b ∥cD .若c ∥α,αβ⊥,则c β⊥10.已知数列{}n x 满足3n n x x +=,21||()n n n x x x n N *++=-∈,若11x =,2 (1,0)x a a a =≤≠,则数列{}n x 的前2010项的和2010S 为A .669B .670C .1338D .134011. 在平面直角坐标系中,O 为坐标原点,设向量).3,1(),1,3(,,====其中若10,≤≤≤+=μλμλ且,C 点所有可能的位置区域用阴影表示正确的是俯视图正视图侧视图(第7题图)A .B .C .D .12.已知点F 是双曲线)0,0(12222>>=-b a by a x 的左焦点,点E 是该双曲线的右顶点,过F 且垂直于x 轴的直线与双曲线交于A B 、两点,若ABE ∆是锐角三角形,则该双曲线的离心率e 的取值范围是A . ()1,+∞B .()1,2C.(1,1+D.(2,1+第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分. 13. 对任意非零实数a b 、,若a b ⊗的运算原理如图所示,则()221log 82-⎛⎫⊗= ⎪⎝⎭___1___.14.在ABC ∆中,已知41AB AC ==,,ABCS AB AC ∆=⋅则的值为 ±2 .15. 设n S 表示等差数列{}n a 的前n 项和,且918S =,240n S =,若()4309n a n -=>,则n = 15 .16. 已知两个不相等的实数a b 、满足以下关系式:204a sin a cos πθθ⋅+⋅-=,204b sin b cos πθθ⋅+⋅-=,则连接A ()2a ,a 、 B ()2b ,b 两点的直线与圆心在原点的单位圆的位置关系是 相交 . 三、解答题:本大题共6个小题,共74分. 17.(本小题满分12分)已知函数2()sin cos f x x x x =. (Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在区间,62ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值. 解:(Ⅰ)∵2()sin cos f x x x x =+)12sin cos cos 212x x x =⋅++(第13题图)1sin 2cos 2222x x =++ ……………3分sin 23x π⎛⎫=++ ⎪⎝⎭ ……………5分 ∴ 函数()f x 的最小正周期22T ππ==. ……………6分 (Ⅱ)∵ 62x ππ-≤≤,40233x ππ≤+≤∴sin 213x π⎛⎫≤+≤ ⎪⎝⎭, ……………9分 ∴0sin 213x π⎛⎫≤++≤= ⎪⎝⎭, ∴ ()f x 在区间,62ππ⎡⎤-⎢⎥⎣⎦上的最大值为22,最小值为0.……………12分 18.(本小题满分12分)已知等腰直角三角形RBC ,其中∠RBC =90º, 2==BC RB .点A 、D 分别是RB 、RC 的中点,现将△RAD 沿着边AD 折起到△PAD 位置,使PA ⊥AB ,连结PB 、PC . (Ⅰ)求证:BC ⊥PB ;(Ⅱ)求二面角P CD A --的余弦值. 解:(Ⅰ)∵点D A 、分别是RB 、RC 的中点,∴ BC AD BC AD 21//=且. …… 2分∴ ∠090=∠=∠=RBC RAD PAD . ∴ AD PA ⊥又PA ⊥AB ,DA AB A =∴ ABCD PA 面⊥ ∴BC PA ⊥ ∵ A AB PA AB BC =⊥ ,,∴ BC ⊥平面PAB . …… 4分 ∵ ⊂PB 平面PAB ,∴ PB BC ⊥. …… 6分 (Ⅱ)法一:取RD 的中点F ,连结AF 、PF .PCADBR(第18题图)∵ 1==AD RA ,∴ RC AF ⊥.又由(Ⅰ)知ABCD PA 面⊥, 而⊂RC 平面ABCD ,∴ RC PA ⊥. ………………… 8分 ∵ ,A PA AF= ∴ ⊥RC 平面PAF .∴ ∠AFP 是二面角P CD A --的平面角. ………………10分 在Rt △RAD 中, 22212122=+==AD RA RD AF , 在Rt △PAF 中, 2622=+=AF PA PF , ∴ 332622cos ===∠PF AF AFP . ………………11分 ∴ 二面角P CD A --的平面角的余弦值是33. ………………12分 (Ⅱ)法二:建立如图所示的空间直角坐标系xyz A -. 则D (-1,0,0),C (-2,1,0),P (0,0,1).∴=(-1,1,0), =(1,0,1), ……8分 设平面PCD 的法向量为),,(z y x n =,则n DC x y n DP x z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩……10分 令1=x ,得1,1-==z y , ∴ )1,1,1(-=n.FR ADBCP (第18题图)R(第18题图)显然,是平面ACD 的一个法向量=(,0,01-).∴ cos<n ,33131=⨯=. ∴ 二面角P CD A --的余弦值是33. ………………12分 19.(本小题满分12分)已知数列{}n a 的首项15a =,前n 项和为n S ,且125n n S S n +=++()n N *∈.(Ⅰ)设1n n b a =+,求数列{}n b 的通项公式; (Ⅱ)求数列{}n a 的前n 项和n S . 解:(Ⅰ)由125n n S S n +=++()n N *∈得 ()1215n n S S n -=+-+(,2)n N n *∈≥两式相减得 121n n a a +=+ ……………………………… 3分 ∴ ()1121n n a a ++=+即 n n b b 21=+(,2)n N n*∈≥ …………………………………… 4分 又1165111122=+=++=-=a S S S a ∴ 12122=+=a b ,6111=+=a b∴ 122b b = …………………………………… 6分 ∴ 数列{}n b 是首项为6,公比为2的等比数列 ∴ n n n b 23261⋅=⋅=- ………………………………… 8分(Ⅱ)法一由(Ⅰ)知321nn a =⋅- ……………………………… 9分 ∴ 12n n S a a a =++⋅⋅⋅+2323232nn =⨯+⨯+⋅⋅⋅+⋅- ……………………………10分()221321n n -=⨯--1626326n n n n +=⋅--=⋅--. ……………………… 12分(Ⅱ)法二由已知125n n S S n +=++()n N *∈ ① 设()()112n n S c n d S cn d ++++=++ 整理得 12n n S S cn d c +=++- ②对照① 、②,得 1,6c d == ……………………………………8分 即①等价于 ()()11626n n S n S n ++++=++∴ 数列{}6n S n ++是等比数列,首项为11161612S a ++=++=,公比为2q = ∴ 11612232n n n S n -+++=⋅=⋅∴ 1326n n S n +=⋅--. …………………………………… 12分20.(本小题满分12分)如图所示,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求B 点在AM 上,D 点在AN 上,且对角线MN 过C 点,已知3=AB 米,2=AD 米.(I )要使矩形AMPN 的面积大于32平方米,则DN 的长应在什么范围内? (II )当DN 的长度是多少时,矩形花坛AMPN 的面积最小?并求出最小值. 解:(I )设DN 的长为x (0x >)米,则2AN x =+米∵AMDC ANDN =,∴()32x AM x+=, ……………………2分∴ ()232AMPN x S AN AM x+=⋅=由32>AMPN S 得()23232x x+> ,(第20题图)又0x >,得 2320120x x -+>,解得:2063x x <<> 或 即DN 长的取值范围是2(0)(6)3∞ ,,+ ……………………7分(II )矩形花坛AMPN 的面积为()22323121212312x x x y x xx x+++===++1224≥= ……………………10分 当且仅当1232x x ,x==即时矩形花坛AMPN 的面积取得最小值24. 故,DN 的长度是2米时,矩形AMPN 的面积最小,最小值为24平方米.…12分 21.(本小题满分12分)已知函数22()ln ()f x x a x ax a R =-+∈.(Ⅰ)当1a =时,证明函数()f x 只有一个零点;(Ⅱ)若函数()f x 在区间()1,+∞上是减函数,求实数a 的取值范围. 解:(Ⅰ)当1a =时,2()ln f x x x x =-+,其定义域是(0,)+∞∴ 2121()21x x f x x x x --'∴=-+=- …………2分令()0f x '=,即2210x x x ---=,解得12x =-或1x =. 0x >Q ,∴ 12x ∴=-舍去. 当01x <<时,()0f x '>;当1x >时,()0f x '<.∴ 函数()f x 在区间()01,上单调递增,在区间()1,+∞上单调递减 ∴ 当x =1时,函数()f x 取得最大值,其值为2(1)ln1110f =-+=. 当1x ≠时,()(1)f x f <,即()0f x <.∴ 函数()f x 只有一个零点. ……………………6分(Ⅱ)显然函数22()ln f x x a x ax =-+的定义域为(0,)+∞∴ 222121(21)(1)()2a x ax ax ax f x a x a x x x-++-+-'=-+== ………7分① 当0a =时,1()0,()f x f x x'=>∴在区间()1,+∞上为增函数,不合题意……8分 ② 当0a >时,()()00f x x '≤>等价于()()()21100ax ax x +-≥>,即1x a≥ 此时()f x 的单调递减区间为1,a ⎡⎫+∞⎪⎢⎣⎭.依题意,得11,0.a a ⎧≤⎪⎨⎪>⎩解之得1a ≥.………10分③ 当0a <时,()()00f x x '≤>等价于()()()21100ax ax x +-≥>,即12x a≥- 此时()f x 的单调递减区间为12,a ⎡⎫-+∞⎪⎢⎣⎭, ∴1120a a ⎧-≤⎪⎨⎪<⎩得12a ≤-综上,实数a 的取值范围是1(,][1,)2-∞-+∞U …………12分 法二:①当0a =时,1()0,()f x f x x'=>∴在区间()1,+∞上为增函数,不合题意……8分 ②当0a ≠时,要使函数()f x 在区间()1,+∞上是减函数,只需()0f x '≤在区间()1,+∞上恒成立,0x > ∴只要22210a x ax --≥恒成立,2214210aa a a ⎧≤⎪∴⎨⎪--≥⎩解得1a ≥或12a ≤-综上,实数a 的取值范围是1(,][1,)2-∞-+∞U …………12分 22.(本小题满分14分)已知椭圆C 中心在原点、焦点在x 轴上,椭圆C 上的点到焦点的最大值为3,最小值为1.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线l :()0y kx m k =+≠与椭圆交于不同的两点M N 、(M N 、不是左、右顶点),且以MN 为直径的圆经过椭圆的右顶点A .求证:直线l 过定点,并求出定点的坐标. 解:(Ⅰ)设椭圆的长半轴为a ,半焦距为c ,则31a c a c +=⎧⎨-=⎩ 解得 21a c =⎧⎨=⎩∴ 椭圆C 的标准方程为 22143x y +=. ………………… 4分(Ⅱ)由方程组22143x y y kx m⎧⎪+=⎨⎪=+⎩ 消去y ,得()2223484120k xk m x m +++-= 由题意:△()()()22284344120km km=-+->整理得:22340k m +-> ① ……7分 设()()1122,,M x y N x y 、,则122834kmx x k+=-+, 212241234m x x k -=+………………… 8分 由已知,AM AN ⊥ , 且椭圆的右顶点为A (2,0) ∴()()1212220x x y y --+=………………… 10分即 ()()()2212121240kx x km x x m++-+++=也即 ()()22222412812403434m km k km m k k--+⋅+-⋅++=++ 整理得: 2271640m mk k ++= 解得: 2m k =- 或 27km =-,均满足① ……………………… 12分 当2m k =-时,直线l 的方程为 2y kx k =-,过定点(2,0),舍去当27k m =-时,直线l 的方程为 27y k x ⎛⎫=- ⎪⎝⎭,过定点2(,0)7,故,直线l 过定点,且定点的坐标为2(,0)7.……………………… 14分。

河南省2023届高三上学期第一次考试数学理科试题(解析版)

河南省2023届高三上学期第一次考试数学理科试题(解析版)

“顶尖计划”2023届高中毕业班第一次考试理科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}223,N ,18400A x x n nB x x x ==+∈=--<∣∣,则A B 中的元素个数为()A.8B.9C.10D.11【答案】B 【解析】【分析】解一元二次不等式化简集合B ,再根据已知列出不等式,求解判断作答.【详解】解不等式218400x x --<得:220x -<<,即{|220}B x x =-<<,而{}23,N A x x n n ==+∈∣,由22320n -<+<解得:51722n -<<,又N n ∈,显然满足51722n -<<的自然数有9个,所以A B 中的元素个数为9.故选:B 2.已知复数33i2i z =+,则z =()A.1B.35C.355D.3【答案】C 【解析】【分析】利用复数的除法化简复数z ,利用复数的模长公式可求得结果.【详解】因为()()()33i 2i 3i 3i 36i 2i 2i 2i 2i 55z +====-++--+,因此,5z ==.故选:C.3.已知非零向量a 、b满足a b =r r ,且()2a b b +⊥ ,则,a b <>= ()A.π6B.π3C.2π3D.5π6【答案】C 【解析】【分析】由已知可得出()20a b b +⋅= ,利用平面向量数量积的运算性质求出cos ,a b <> 的值,结合平面向量夹角的取值范围可求得结果.【详解】因为()2a b b +⊥ ,则()222cos ,0a b b a b a b b +⋅=⋅<>+= ,a b = ,可得1cos ,2a b <>=- ,因为0,πa b ≤<>≤ ,因此,2π,3a b <>= .故选:C.4.某士兵进行射击训练,每次命中目标的概率均为34,且每次命中与否相互独立,则他连续射击3次,至少命中两次的概率为()A.2732B.916C.2764D.932【答案】A 【解析】【分析】根据相互独立事件的概率乘法公式及互斥事件的概率加法公式即可求解.【详解】解:因为每次命中目标的概率均为34,且每次命中与否相互独立,所以连续射击3次,至少命中两次的概率322333327C 144432P ⎛⎫⎛⎫⎛⎫=+-= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,故选:A.5.已知函数()2sin 3cos f x x x =+在x ϕ=处取得最大值,则cos ϕ=()A.13 B.13C.13-D.31313-【答案】A 【解析】【分析】根辅助角公式和正弦函数最值求解即可.【详解】()()2sin 3cos f x x x x θ=+=+,其中θ为锐角,sin 13θ=.因为当x ϕ=处取得最大值,所以22πϕθπ+=+k ,k Z ∈,即22πϕθπ=-+k ,k Z ∈,所以313cos cos 2sin 213πϕθπθ⎛⎫=-+== ⎪⎝⎭k .故选:A6.已知定义域为R 的偶函数()f x 满足()(4)0f x f x +-=,且当[2,2)x ∈-时,2()4f x x =-,则(2021)f =()A.3-B.1- C.1D.3【答案】D 【解析】【分析】根据给定条件,探讨出函数()f x 的周期,再结合已知函数式求解作答.【详解】因R 上的偶函数()f x 满足()(4)0f x f x +-=,即有()()()4f x f x f x -=-=--,则(8)(4)()f x f x f x -=--=-,因此,函数()f x 是周期为8的周期函数,2(2021)(25285)(5)(1)[(1)4]3f f f f =⨯+==--=---=.故选:D7.我国古代经典数学名著《九章算术》中有一段表述:“今有圆堡壔(dăo ),周四丈八尺,高一丈一尺”,意思是有一个圆柱,底面周长为4丈8尺,高为1丈1尺.则该圆柱的外接球的表面积约为()(注:1丈=10尺,π取3)A.1185平方尺B.1131平方尺C.674平方尺D.337平方尺【答案】B 【解析】【分析】根据题意作图,再由底面周长求得底面半径,连接上下底面圆心,取中点为外接圆的圆心,根据勾股定理,可得外接圆半径,可得答案.【详解】由1丈=10尺,则4丈8尺=48尺,1丈1尺=11尺,如下图:则11,2·48BC AB π==,即8AB =,假设点D 为圆柱外接圆的圆心,即AD 为外接圆的半径,且112BD DC ==,在Rt ABD △中,222AB BD AD +=,解得294.25AD =,则外接球的表面积241131S AD π=⋅=,故选:B.8.甲、乙、丙、丁、戊五名志愿者去,,A B C 三个不同的小区参加新冠疫情防控志愿服务,每个小区至少去1人,每人只去1个小区,且甲、乙去同一个小区,则不同的安排方法有()A.28种B.32种C.36种D.42种【答案】C 【解析】【分析】先将甲、乙看成一个元素,然后先分组后排列可得.【详解】将甲、乙看成一个元素A ,然后将A 、丙、丁、戊四个元素分为3组,共有21142122C C C 6A =种,再将3组分到3个不同小区有33A =6种,所以满足条件的安排方法共有66=36⨯种.故选:C9.已知角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点(,4)m -,其中0m <,若7cos 225α=-,则πtan 2m α⎛⎫+= ⎪⎝⎭()A.2B.12-C.43-D.34-【答案】D 【解析】【分析】利用三角函数定义求出tan α,再利用二倍角的余弦公式结合齐次式法求解作答.【详解】依题意,4tan 0mα=->,又22222222cos sin 1tan 7cos 2cos sin cos sin 1tan 25ααααααααα--=-===-++,解得4tan 3α=,从而得3m =-,所以3πsin()π3πcos 132tan(tan()3π22sin tan 4cos(2m ααααααα-+=-===-=---.故选:D10.过抛物线()2:20C y px p =>的焦点F 且斜率为1-的直线交C 于A 、B (其中A 在x轴上方)两点,交C 的准线于点M ,且16AB =,O 为坐标原点,则OM =()A.2B.C.D.【答案】D 【解析】【分析】将直线AB 的方程与抛物线的方程联立,利用韦达定理结合抛物线的焦点弦长公式求出p 的值,可求得点M 的坐标,再利用平面间两点间的距离公式可求得OM 的值.【详解】抛物线C 的焦点为,02p F ⎛⎫⎪⎝⎭,准线方程为2p x =-,直线AB 的方程为2⎛⎫=--⎪⎝⎭p y x ,设点()11,A x y 、()22,B x y ,联立222p y x y px⎧⎛⎫=--⎪ ⎪⎝⎭⎨⎪=⎩可得22304p x px -+=,2290p p ∆=->,由韦达定理可得123x x p +=,则12416x x p A p B =++==,可得4p =,联立22p x p y x ⎧=-⎪⎪⎨⎛⎫⎪=-- ⎪⎪⎝⎭⎩可得2p x y p ⎧=-⎪⎨⎪=⎩,即点()2,4M -,因此,OM ==.故选:D.11.已知32()2(2)3f x x a x x =+--是奇函数,则过点(1,2)P -向曲线()y f x =可作的切线条数是()A.1B.2C.3D.不确定【答案】C 【解析】【分析】根据给定条件,求出a ,再求出函数()f x 的导数,设出切点坐标,借助导数的几何意义列出方程求解作答.【详解】因函数()f x 是奇函数,则由()()0f x f x -+=得()2220a x -=恒成立,则2a =,即有3()23f x x x =-,2()63'=-f x x ,设过点(1,2)P -向曲线()y f x =所作切线与曲线()y f x =相切的切点为3000(,23)Q x x x -,而点(1,2)P -不在曲线()y f x =上,则320000232631x x x x ---=+,整理得32004610x x +-=,即2000(21)(221)0x x x ++-=,解得012x =-或0132x -±=,即符合条件的切点有3个,所以过点(1,2)P -向曲线()y f x =可作的切线条数是3.故选:C12.设双曲线2222:1(0,0)x y a b a bΓ-=>>的左、右焦点分别为点12(,0),(,0)F c F c -,过点(2,0)P c -且斜率为12的直线与双曲线的左、右两支分别交于,M N 两点,若||3||PN PM =,且直线2F N 的斜率为3,则Γ的离心率为()A.132B.2C.2D.2【答案】B 【解析】【分析】通过题意可以得到直线PN 和直线2NF 的方程,两条方程联立可以得到N 的坐标,代入双曲线即可求出答案【详解】解:由题意可得直线PN 的方程为()122y x c =+,直线2NF 的方程为()3y x c =-,所以()()1223y x c y x c ⎧=+⎪⎨⎪=-⎩,解得8595c x cy ⎧=⎪⎪⎨⎪=⎪⎩,即89,55c c N ⎛⎫ ⎪⎝⎭,将89,55c c N ⎛⎫ ⎪⎝⎭代入双曲线可得2222648112525c c a b-=即()22222648112525c c a c a -=-,所以2264811125251e e -=⎛⎫- ⎪⎝⎭,因为1,e >所以e =故选:B二、填空题:本题共4小题,每小题5分,共20分.13.已知函数2()log (1)f x x a =-+在区间(2,3)上有且仅有一个零点,则实数a 的取值范围为_____.【答案】(1,0)-【解析】【分析】结合函数的单调性和零点的存在定理,即可求解【详解】解:由对数函数的性质,可得()f x 为单调递增函数,且函数()f x 在(2,3)上有且仅有一个零点,所以()()230f f ⋅<,即(1)0a a ⋅+<,解得10a -<<,所以实数a 的取值范围是(1,0)-,故答案为:(1,0)-14.写出一个同时具有下列性质①②③的函数:()f x =_____.①()()()1212f x x f x f x =+;②当,()0x ∈+∞时,()f x 单调递减;③()f x 为偶函数.【答案】12log x (不唯一)【解析】【分析】根据对数函数性质即可做出判断.【详解】性质①显然是和对数有关,性质②只需令对数的底01a <<即可,性质③只需将自变量x 加绝对值即变成偶函数.故答案为:12log x (不唯一)15.已知平面上的动点P 到点(0,0)O 和(2,0)A 的距离之比为32,则点P 到x 轴的距离最大值为_____.【答案】【解析】【分析】设(,)P x y ,然后根据题意列方程化简可得点P 的轨迹是以(6,0)-为圆心,为半径的圆,从而可求得答案.【详解】设(,)P x y ,因为动点P 到点(0,0)O 和(2,0)A 的距离之比为32,2=,22223(2)4x y x y +=-+,2222443(44)3x y x x y +=-++,221212x y x ++=22(6)48x y ++=,所以点P 的轨迹是以(6,0)-为圆心,所以点P 到x 轴的距离最大值为故答案为:16.微型航空遥感技术以无人机为空中遥感平台,为城市经济和文化建设提供了有效的技术服务手段.如图所示,有一架无人机在空中P 处进行航拍,水平地面上甲、乙两人分别在,A B 处观察该无人机(两人的身高忽略不计),C 为无人机在水平地面上的正投影.已知甲乙两人相距100m ,甲观察无人机的仰角为45︒,若再测量两个角的大小就可以确定无人机的飞行高度PC ,则这两个角可以是_____.(写出所有符合要求的编号)①BAC ∠和ABC ∠;②BAC ∠和PAB ∠;③PAB ∠和PBA ∠;④PAB ∠和ABC ∠.【答案】①③④【解析】【分析】①:根据已知先解ABC 得AC ,然后可得;②:根据已知直接判断可知;③:先解PAB △得PA ,然后可得;④:先由最小角定理的BAC ∠,解ABC 可得AC ,然后可得.【详解】①:当已知BAC ∠和ABC ∠时,在ABC 利用内角和定理和正弦定理可得AC ,然后在Rt PAC △中,由三角函数定义可得PC ,故①正确;②:当已知BAC ∠和PAB ∠时,在ABC 已知一角一边,在PAB △中已知一角一边,显然无法求解,故②错误;③:当已知PAB ∠和PBA ∠时,在PAB △中已知两角一边,可解出PA ,然后在Rt PAC △中,由三角函数定义可得PC ,故③正确;④:当已知PAB ∠和ABC ∠时,可先由最小角定理求得BAC ∠,然后解ABC 可得AC ,最后在Rt PAC △中,由三角函数定义可得PC ,故④正确.故答案为:①③④三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题:共60分.17.设等差数列{}n a 的前n 项和为n S ,已知251,15a S ==.(1)求数列{}n a 的通项公式;(2)若23log 2n n n b a a +=,求数列{}n b 的前n 项和n T .【答案】(1)23n a n =-(2)1(25)210n n T n +=-⨯+【解析】【分析】(1)根据等差数列的通项公式和前n 项和公式列方程组直接求解可得;(2)由错位相减法可得.【小问1详解】设数列{}n a 的公差为d ,由题设可得111,51015a d a d +=⎧⎨+=⎩解得112,a d =-⎧⎨=⎩所以1(1)223n a n n =-+-⨯=-.【小问2详解】由(1)知2log 23n b n n =-,所以223nn bn =-可得(23)2nn b n =-⨯,所以231121232(25)2(23)2n n n T n n -=-⨯+⨯+⨯++-⨯+-⨯ ①23412121232(25)2(23)2n n n T n n +=-⨯+⨯+⨯++-⨯+-⨯ ②②减①可得:341112222(23)2n n n T n ++=⨯----+-⨯ 118(12)(23)2212n n n -+⨯-=-⨯+--1(25)210n n +=-⨯+18.某工厂共有甲、乙两个车间,为了比较两个车间的生产水平,分别从两个车间生产的同一种零件中各随机抽取了100件,它们的质量指标值m 统计如下:质量指标值m [)0,20[)20,40[)40,60[)60,80[]80,100甲车间(件)152025319乙车间(件)510153931(1)估计该工厂生产这种零件的质量指标值m 的平均数;(同一组中的数据用该组区间的中点值作代表)(2)根据所给数据,完成下面的22⨯列联表(表中数据单位:件),并判断是否有99%的把握认为甲、乙两个车间的生产水平有差异.60m <60m ≥合计甲车间乙车间合计附:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()2P K k≥0.050.010.001k3.8416.63510.828【答案】(1)58;(2)列联表见解析,有99%把握认为甲乙两个车间的生产水平有差异.【解析】【分析】(1)根据给定的数表,求出各组数据的频率,再列式计算作答.(2)完善22⨯列联表,计算2K 的观测值,再与临界值比对作答.【小问1详解】由所给数据,各组的频率分别为0.1,0.15,0.2,0.35,0.2,所以该工厂生产这种零件的质量指标值m 的平均数的估计值为:100.1300.15500.2700.35900.258⨯+⨯+⨯+⨯+⨯=.【小问2详解】22⨯列联表如下:60m <60m ≥合计甲车间6040100乙车间3070100合计90110200所以22200(60704030)18.18210010090110K ⨯⨯-⨯=≈⨯⨯⨯因为18.182大于6.635,所以有99%把握认为甲乙两个车间的生产水平有差异.19.如图,在直三棱柱111ABC A B C -中,190,24,ACB AA AC BC M ︒∠====为棱1AA 上靠近1A 的三等分点,N 为棱AC 的中点,点P 在棱BC 上,且直线PN ∥平面1BMC .(1)求PC 的长;(2)求二面角1P BM C --的余弦值.【答案】(1)23PC =(2)22110【解析】【分析】(1)在1CC 上取一点Q ,使得CP CQ =,根据面面平行判定定理证明平面PQN平面1BMC ,再根据面面平行性质定理确定CQ 的长即可,(2)建立空间直角坐标系,求出平面PBM ,平面1BC M 的法向量,根据二面角向量公式求二面角1P BM C --的余弦值.【小问1详解】在1CC 上取一点Q ,使得CP CQ =,连接,PQ NQ .由已知得11CC AA CB ==,所以1CQ CPCC CB=所以1PQ BC ∥.因为PQ ⊄平面1BMC ,1BC ⊂平面1BMC ,所以PQ ∥平面1BMC .又因为PN ∥平面1,BMC PN PQ P ⋂=,,PN NQ ⊂平面PQN ,所以平面PQN 平面1BMC .平面11ACC A 平面PQN QN =,平面11ACC A 平面11BC M MC =,根据面面平行的性质可知1//MC QN .在矩形11ACC A 中,可得11CQN A MC ∽,所以11123A M CQ CN A C ==,所以2233PC CQ CN ===.【小问2详解】以C 为坐标原点,分别以1,,CA CB CC 所在直线为,,x y z 轴建立空间直角坐标系.则182(0,0,0),(0,0,4),(0,4,0),2,0,,0,,033C C B M P ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭.114(0,4,4),2,0,3C B C M ⎛⎫=-=- ⎪⎝⎭ ,8102,4,,0,,033BM BP ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭ ,设平面1C MB 的法向量为()111,,m x y z =r,则110,0,C B m C M m ⎧⋅=⎪⎨⋅=⎪⎩ ,所以1111440,420,3y z x z -=⎧⎪⎨-=⎪⎩,取13z =得()2,3,3.m = 设平面PMB 的法向量为()222,,n x y z =r ,则0,0,BM n BP n ⎧⋅=⎨⋅=⎩ 所以22228240,3100,3x y z y ⎧-+=⎪⎪⎨⎪-=⎪⎩取23z =-,得()4,0,3.n =- 所以22cos ,110m n m n m n ⨯++⨯-⋅===-⋅结合图可知二面角1PBM C --的余弦值为110.20.过椭圆22:143x y C +=上任意一点P 作直线:l y kx p=+(1)证明:2234p k + ;(2)若0,p O ≠为坐标原点,线段OP 的中点为M ,过M 作l 的平行线,l l ''与C 交于,A B 两点,求ABP △面积的最大值.【答案】(1)证明见解析(2)32.【解析】【分析】(1)联立椭圆方程与直线方程,消元整理一元二次方程,由题意,该方程有解,则判别式大于等于零,可得答案.(2)设出题目中的两点,根据平行,设出另一条直线,根据中点,找出两直线的截距之间的关系,联立椭圆方程与直线方程,消元整理一元二次方程,写出韦达定理,根据三角形的等积变换,利用分割法,整理函数,根据(1),可得答案.【小问1详解】联立221,43,x y y kx p ⎧+=⎪⎨⎪=+⎩,消去y 整理得:()2223484120k x kpx p +++-=,因为点P 在C 上,所以()()2222644412340,k p p k ∆=--+ 化简得2234p k + .【小问2详解】设:l y kx m '=+,点()00,P x y ,则00,22x y M ⎛⎫⎪⎝⎭.由已知得00y kx p =+,所以00222y x p k =⋅+,即点00,22x y M ⎛⎫⎪⎝⎭满足方程2p y kx =+,所以2p m =.由221,43,x y y kx m ⎧+=⎪⎨⎪=+⎩得()2223484120k x kmx m +++-=,设()()1122,,,A x y B x y ,则21212228412,3434km m x x x x k k-+=-=++.所以122.34x x k-==+∣所以121||2ABPABOSS m x x ==-==令2234m t k =+,因为2223444p k m += ,所以10,4t ⎛⎤∈ ⎥⎝⎦.所以32ABPS ==所以ABP △面积的最大值为32.21.设函数()()e xf x mx m m =--∈R .(1)讨论()f x 的单调性;(2)若()f x 有两个零点1x 和2x ,设1202x x x +=,证明:()00f x '>(()f x '为()f x 的导函数).【答案】(1)答案见解析(2)证明见解析【解析】【分析】(1)分0m ≤、0m >两种情况讨论,分析导数的符号变化,由此可得出函数()f x 的增区间和减区间;(2)由函数零点的定义可得出1212e 0e 0x x mx m mx m ⎧--=⎨--=⎩,可得出1212e e x x m x x -=-,将所证不等式等价变形为12212212eex x x x x x --->-,令1202x x t -=>,即证e e 2t t t -->,构造函数()e e 2t t g t t -=--,其中0t >,利用导数分析函数()g t 的单调性,即可证得结论成立.【小问1详解】解:因为()e x f x mx m =--,则()e xf x m '=-,若0m ≤,对任意的x ∈R ,则()0f x '<,函数()f x 的单调递减区间为(),-∞+∞;若0m >,令()e 0xf x m '=-=,得ln x m =,当ln x m <时,()0f x '>,当ln x m >时,()0f x '<.所以()f x 的增区间为(),ln m -∞,减区间为()ln ,m +∞.综上所述,当0m ≤时,函数()f x 的单调递减区间为(),-∞+∞;当0m >时,函数()f x 的增区间为(),ln m -∞,减区间为()ln ,m +∞.【小问2详解】证明:不妨令12x x >,由题设可得1212e 0e 0x x mx m mx m ⎧--=⎨--=⎩,两式相减整理可得1212e e x x m x x -=-.所以()1212121222012e e ee 2x x x x x x x xf x f m x x ++''+-⎛⎫==-=- ⎪-⎝⎭,要证()00f x '>,即证1212212e e e 0x x x x x x +-->-,即证12212212eex x x x x x --->-,令1202x x t -=>,即证e e 2t t t -->,其中0t >,构造函数()e e 2ttg t t -=--,其中0t >,则()e e 220t t g t -'=+->=,所以,函数()g t 在()0,∞+上单调递增,所以,当0t >时,()()00g t g >=,即e e 2t t t -->,故原不等式得证.【点睛】方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式()()f x g x >(或()()f x g x <)转化为证明()()0f x g x ->(或()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.(二)选考题:共10分.请考生在22,23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,曲线C 的参数方程为2(cos sin )(,0),(cos sin )x m m y m ϕϕϕϕϕ=-⎧≠⎨=+⎩为参数以O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 504πθ⎛⎫+-= ⎪⎝⎭.(1)写出l 的直角坐标方程;(2)若l 与C 只有一个公共点,求m 的值.【答案】(1)50x y +-=(2)102=±m 【解析】【分析】(1)利用和差化积的正弦公式把直线l 的极坐标方程展开,再利用极坐标与直角坐标的互化公式即可求解.(2)先得出曲线C 的普通方程,再联立方程,利用判别式等于0即可求解.【小问1详解】由l 的极坐标方程可得sin cos 50ρθρθ+-=,由cos sin x y ρθρθ=⎧⎨=⎩可知,直角坐标方程为:50x y +-=.【小问2详解】由C 的参数方程可得2222x y m m ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,即C 的普通方程为222480x y m +-=.联立方程22250480x y x y m +-=⎧⎨+-=⎩得:2254010080x x m -+-=,因为直线l 与曲线C 只有一个公共点,所以()222404510081604000m m∆=-⨯⨯-=-=,解得:2=±m .[选修4-5:不等式选讲]23.已知,,a b c 均为正实数,且1abc =.(1)求124a b c++的最小值;(2)证明:222++≥+++++bc ac ab b c a c a b.【答案】(1)6(2)证明见解析【解析】【分析】(1)利用三元基本不等式求解即可.(2)利用基本不等式证明即可得到答案.【小问1详解】由基本不等式可知1246++≥==a b c ,当且仅当124a b c ==,即1,1,22a b c ===时等号成立,所以124a b c++的最小值为6.【小问2详解】因为1abc =,所以111bc ac ab a b c++=++.11242+≥=≥=++a b a b a b .同理可得114b c b c+≥+,114a c a c+≥+所以4111442⎛⎫++≥++⎪+++⎝⎭a b c b c a c a b,当且仅当a b c==时等号成立.所以111222++≥+++++a b c b c a c a b,即222. ++≥+++++ bc ac abb c a c a b。

高三数学(理)联考试卷

高三数学(理)联考试卷

2023届高三年级11月联考试题理科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={(x ,y )|x -y =0},B ={(x ,y )|x -y 2=0},则A ∩B =A .{0,1}B .{(0,1)}C .{(0,0),(1,1)}D .∅2.若a >b >0>c ,则A .(a -b )c >0B .c a >cb C .a -b >a -cD .1a c +<1b c+3.已知等差数列{n a }的前n 项和为n S ,且n a >0,则6328S S a a -+=A .2B .32C .1D .124.已知α为第三象限角,且1cos23α=,则cos α=A.-3B.-3C.3D.35.已知数列{n a }是1a >0的无穷等比数列,则“{n a }为递增数列”是“k ∀≥2且k N *∈,k a >1a ”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.已知非零向量a ,b的夹角正切值为,且(a +3b )⊥(2a -b ),则ab=A .2B .23C .32D .17.已知△ABC 的角A ,B ,C 的对边分别为a ,b ,c ,且a :b :c =2:3:4,则△ABC的面积为A .21512a B .21512b C .212a D .212b 8.已知函数f (x )=x 3+bx 2+cx ,不等式()f x x<0的解集为((312,0)∪(0,()312),则不等式f (x )≤-27的解集为A .{x |x ≤-3或x =3}B .{x |x ≤3}C .{x |x ≥-3}D .{x |x ≥3或x =-3}9.若2a =3b =6c 且abc ≠0,则A .a c -a b=1B .b a -bc =1C .a c -b c=1D .a b -b c=110.已知函数f (x )=sin 3x πω⎛⎫⎪⎝⎭-(ω>0)的最小正周期为π,则A .f (2)<f (0)<f (-2)B .f (0)<f (-2)<f (2)C .f (-2)<f (0)<f (2)D .f (0)<f (2)<f (-2)11.对任意实数x ,定义[x]为不大于x 的最大整数,如[0.2]=0,[1.5]=1,[2]=2.已知函数f (x )=[x]·sin x π,则方程|f (x )|=3-50x在(0,+∞)上的实根个数为A .290B .292C .294D .29612.已知点P 在曲线y =-1x(x >0)上运动,过P 点作一条直线与曲线y =e x 交于点A ,与直线y )1x -交于点B ,则||PA |-|PB ||的最小值为A .1B +1C D 二、填空题:本题共4小题,每小题5分,共20分.13.在等比数列{n a }中,3a =2,5a =4,则11a =__________.14.在平行四边形ABCD 中,AE =AD λ ,AF=AB μ ,λμ>0,且E ,C ,F 三点共线,则λ+μ的最小值为__________.15.已知函数f (x )是定义在R 上的奇函数,满足f (2π+x )=f (2π-x ),f (2π)=3,且()sin f x x '+f (x )cosx >0在(0,2π)内恒成立(()f x '为f (x )的导函数),若不等式f (4π+x )sin (3π-x )≤a 恒成立,则实数a 的取值范围为__________.16.设-1=a 1≤a 2≤…≤a 7,其中a 1,a 3,a 5,a 7成公差为d 的等差数列,a 2,a 4,a 6成公比为3的等比数列,则d 的最小值为__________.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.(10分)在直角坐标系xOy 中,角α,β,γ(α,β,γ∈(0,2π))的顶点在原点,始边均与x 轴正半轴重合,角α的终边经过点A (-1,2),角β的终边经过点B (3,4).(Ⅰ)求tan (α-β)的值;(Ⅱ)若角γ的终边为∠AOB (锐角)的平分线,求2sin γ的值.18.(12分)已知数列{n a }的各项均不为0,其前n 项的乘积n T =12n -·1n a +.(Ⅰ)若{n a }为常数列,求这个常数;(Ⅱ)若1a =4,设n b =2log n a ,求数列{n b }的通项公式.19.(12分)如图所示,在平面四边形ABCD 中,∠ADC =2π,∠BCD =4π,5BC =CD ,AB,AD =3.(Ⅰ)求tan ∠BDC 的值;(Ⅱ)求BD .20.(12分)已知数列{n a }的前n 项和为n S ,1a =1,1n S +=4n a .(Ⅰ)证明:数列{12nn S -}为等差数列;(Ⅱ)求数列{n S }的前n 项和n T .21.(12分)已知函数f (x )=2x -1+x ae的最小值为1.(Ⅰ)求实数a 的值;(Ⅱ)若直线l :y =kx -1与曲线y =f (x )没有公共点,求实数k 的取值范围.22.(12分)已知函数f(x)=ln x+x(x-3).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若存在x1,x2,x3∈(0,+∞),且x1<x2<x3,使得f(x1)=f(x2)=f(x3),求证:2x1+x2>x3.。

高三数学试题(理科)

高三数学试题(理科)

高三理科数学试题说明:试题满分150分,时间120分钟。

分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷为第1页至第2页,选项按要求涂在答题卡,第Ⅱ卷为第3页至第4页,按要求写在答题卡指定位置。

一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 定义集合运算:|xA B z z x A y B y ⎧⎫*==∈∈⎨⎬⎩⎭,,.设{}02A =,,{}12B =,,则集合A B *的所有元素之和为( )A .0B .2C .3D .62. 设集合{}12S x x =->,{}6T x a x a =<<+,S T =R ,则a 的取值范围是( ) A .31a -<<-B .31a --≤≤C .3a -≤或1a -≥D .3a <-或1a >-3. 在等差数列{}n a 中,若2006200720086a a a ++=,则该数列的前2013项的和为 ( ) A .2012 B .2013C . 4024D .40264. 在△ABC 中,cos cos A bB a=,则△ABC 一定是 ( ) A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形 5. 已知a 、b 、c∈R,下列命题正确的是( ) A .a >b ⇒ ac 2>bc 2B .b a cbc a >⇒> C .110a b ab a b >⎫⇒>⎬<⎭ D .110a b ab a b>⎫⇒>⎬>⎭ 6. 定义在R 上的偶函数()f x 满足:对任意的1212,[0,)()x x x x ∈+∞≠,有2121()()0f x f x x x -<-.则( )A. (5)(3)(1)f f f <-<B. (1)(3)(5)f f f <-<C. (3)(1)(5)f f f -<<D. (5)(1)(3)f f f <<-7. 设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2 B .12 C .12- D .2-8. 若函数()(21)()x f x x x a =+- 为奇函数,则sin 3a π=( ).A.12B.2C.34D. 19. 已知实数x ,y 满足条件5003x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,i z x y =+ (i 为虚数单位),则|12i |z -+的最小值是( ) AB.1C.2D.1210. 已知函数2sin(2)(0)y x ωϕω=+>)在区间[]02π,的图像如下:那么ω=( ) A .1B .2C .21D .31 11. 函数()sin lg f x x x =-零点的个数( )A .3B. 4C. 5D. 612. 函数3,0()log 1,0xex f x x x ⎧<⎪=⎨-≥⎪⎩的图像的是( )二、填空题:本大题共4小题,每小题4分,共16分.将答案填在题中的横线上. 13. 函数lg(5)2x y x -=-的定义域是 .14. 40(2)2x a x x ++≥>-恒成立,则a 的取值范围是______________. 15. 已知等比数列{}n a 的前n 项和为n S ,其中252,16a a ==,则2182n n nS S ++的最小值是 .16. 在下列命题中:①对于任意实数x ,有()(),()(),f x f x g x g x -=--=且x>0时,()0,()0,f x g x ''>>则x<0时()().f x g x ''> ②函数sin(2)6y x π=-图象的一个对称中心为点(,0)3π;③若函数()f x 在R 上满足1(2)()f x f x +=-,则()f x 是周期为4的函数; ④在ABC ∆中,若20OA OB OC ++=,则AOC BOC S S ∆= ;其中正确命题的序号为_________________________________。

2024届高三第一次统一考试(全国乙卷)理科数学试题(3)

2024届高三第一次统一考试(全国乙卷)理科数学试题(3)

一、单选题二、多选题1.已知函数在上的图象如图所示,现将其图象上所有点的横坐标缩短为原来的倍,纵坐标不变,得到函数的图象,则()A.B.C.D.2. 已知定义域为的偶函数满足,且当时,,则 ( )A.B.C .1D .33. 已知(为虚数单位,),,则( )A .3B.C.D .14. 已知圆锥的顶点和底面圆周均在球的球面上.若该圆锥的底面半径为,高为6,则球的表面积为( )A.B.C.D.5. 在四棱锥中,,则四棱锥的体积为( )A.B.C.D .36. 已知函数,且图象的相邻两对称轴间的距离为.若将函数的图象向右平移个单位后得到的图象,且当时,不等式恒成立,则的取值范围为( )A.B.C.D.7. 已知,则等于( )A.B.C.D.8. 已知函数,若关于的方程有两个不相等的实数根,则实数的取值范围是A.B.C.D.9. 已知函数,则( )A .函数在区间上单调递增B .直线是函数图象的一条对称轴C .函数的值域为D .方程最多有8个根,且这些根之和为10. 在平行六面体中,已知,则下列说法错误的是( )2024届高三第一次统一考试(全国乙卷)理科数学试题(3)2024届高三第一次统一考试(全国乙卷)理科数学试题(3)三、填空题四、解答题A.为中点,为中点,则与为异面直线B .线段的长度为C.为中点,则平面D .直线与平面所成角的正弦值为11. 函数,下列说法正确的是( )A.的定义域为B.在定义域内单调递增C.不等式的解集为D.函数的图象关于直线对称12.已知直线,则( )A.直线过定点B.当时,C .当时,D.当时,两直线之间的距离为113.若正实数满足,则的最大值是________.14. 在中,角A ,B ,C 所对的边分别是a ,b ,c .若,,则______.15.已知圆,的圆心都在坐标原点,半径分别为与.若圆的圆心在轴正半轴上,且与圆,均内切,则圆C 的标准方程为_________.16. 已知椭圆与抛物线交于y 轴上的同一点M ,过坐标原点O 的直线l与相交于点A ,B ,直线MA ,MB 分别与相交于点D ,E .(1)①求椭圆与抛物线的方程;②证明:MD ,ME 的斜率之积为定值.(2)记△MAB 、△MDE 的面积分别为、,求的最小值,并求取最小值时直线MA 的方程.17. 如图,正四棱锥的底面边长和高均为2,,分别为,的中点.(1)若点是线段上的点,且,判断点是否在平面内,并证明你的结论;(2)求直线与平面所成角的正弦值.18. 如图所示,在空间几何体ABCDE 中,△ABC 与△ECD 均为等边三角形,AB =DE ,且平面ABC 和平面CDE 均与平面BCD 垂直.(1)若,求证:平面ABC⊥平面ECD;(2)求证:四边形AEDB为梯形.19. 在中,角所对的边分别为,.(1)求;(2)若,求边上的中线的长.20. 已知函数.(1)若,求曲线在处的切线方程;(2)当时,证明:.21. 已知椭圆()的离心率为,直线经过椭圆右焦点与上顶点,原点到直线的距离为.(1)求椭圆的方程;(2),是椭圆上两动点,是一定点,且满足,证明:直线过定点.。

河南省九师联盟2022届高三上学期9月质量检测 数学Word版含答案(理)

河南省九师联盟2022届高三上学期9月质量检测 数学Word版含答案(理)

河南省九师联盟2022届高三上学期9月质量检测理科数学试题考生注意:1.本试卷分选择题和非选择题两部分。

满分150分,考试时间120分钟。

2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚。

3.考生作答时,请将答案答在答题卡上。

选择题每小题选出答案后,用2B 铅笔把答题卡上对目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效...........................。

4.本试卷主要命题范围:集合、常用逻辑用语、函数、导数及其应用。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设命题p :∀x>0,x 2>0,则¬p 为A.∃x 0≤0,x 02≤0B.∀x ≤0,x 2>0C.∀x>0,x 2≤0D.∃x 0>0,x 02≤02.已知集合A ={x|x 2-x -6<0},B ={x|0<x<1},则A ∩(∁R B)=A.{x|-2<x ≤0}B.{x|-2<x<0,或1≤x<3}C.{x|1≤x<3}D.{x|-2<x<0,或1<x<<3}3.若函数f(x)的定义域为[1,3],则函数g(x)f 2x 1-的定义域为A.(1,2]B.(1,5]C.[1,2]D.[1,5]4.我们知道,人们对声音有不同的感觉,这与声音的强度有关系。

声音的强度常用I(单位:瓦/米2,即W/m 2)表示,但在实际测量时,声音的强度水平常用L(单位:分贝)表示,它们满足换算公式:L =10lg 0I I (L ≥0,其中I 0=1×10-12W/m 2是人们能听到的最小声音的强度,是听觉的开端)。

若使某小区内公共场所声音的强度水平降低10分贝,则声音的强度应变为原来的A.15B.1100C.110D.120 5.已知命题p :∃x 0>0,lnx 0<0;命题q :∀x ∈R ,e x >1,则下列命题为真命题的是A.¬p ∨qB.p ∧¬qC.p ∧qD.¬(p ∨q)6.甲、乙、丙、丁四位学生中,其中有一位做了一件好事,但不知道是哪一位学生。

届高三理科数学六大专题训练题含详解

届高三理科数学六大专题训练题含详解

届高三理科数学六大专题训练题含详解IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】高三数学(理科)专题训练一《三角函数、三角恒等变换与解三角形》一、选择题1.α为三角形的一个内角,,125tan -=α则=αcos ()A .1312-B .135-C .135D .13122.函数x y sin =和函数x y cos =都是增函数的区间是()A .)](22,232[Z k k k ∈++ππππB.)](232,2[Z k k k ∈++ππππC .)](22,2[Z k k k ∈+πππD .)](2,22[Z k k k ∈++ππππ3.已知,51)25sin(=+απ那么=αcos ()A .52-B .51-C .51D .524.在图中,A 、B 是单位圆O 上的点,C 是圆与x 轴正半轴的交点,A点的坐标为),54,53(且AOB ∆是正三角形.则COB ∠cos 的值为()A .10334+B .10334- C .10343+D .10343-5.将函数)(sin cos 3R x x x y ∈+=的图象向左平移)0(>m m 个长度单位后,所得到的图象关于y 轴对称,则m 的最小值是() A .12πB .6πC .3πD .65π6.下列关系式中正确的是() A .︒<︒<︒168sin 10cos 11sin B .︒<︒<︒10cos 11sin 168sinC .︒<︒<︒10cos 168sin 11sinD .︒<︒<︒11sin 10cos 168sin7.在锐角ABC ∆中,角A ,B 所对的边长分别为b a ,.若,3sin 2b B a =则角A 等于()A .3πB .4πC .6πD .12π8.已知函数),,0,0)(cos()(R A x A x f ∈>>+=ϕωϕω则“)(x f 是奇函数”是“=ϕ2π”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 二、填空题9.已知扇形AOB 的周长是6cm ,该扇形中心角是1弧度,则该扇形面积是____.10.设,sin 2sin αα-=),,2(ππα∈则α2tan 的值是________. 11.在锐角ABC ∆中,,1=BC ,2A B ∠=∠则AACcos 的值等于___,AC 的取值范围为___. 12.函数)cos(sin 2)2sin()(ϕϕϕ+-+=x x x f 的最大值为________. 三、解答题 13.已知函数)22,0)(sin(3)(πϕπωϕω<≤->+=x x f 的图象关于直线3π=x 对称,且图象上相邻两个最高点的距离为.π(1)求ω和ϕ的值;(2)若),326(43)2(παπα<<=f 求)23cos(πα+的值.14.已知向量),21,(cos -=x a ),2cos ,sin 3(x x b =,R x ∈设函数.)(b a x f ⋅=(1)求)(x f 的最小正周期; (2)求)(x f 在]2,0[π上的最大值和最小值.15.已知函数,),4sin()(R x x A x f ∈+=π且.23)125(=πf (1)求A 的值;(2)若),2,0(,23)()(πθθθ∈=-+f f 求).43(θπ-f16.已知函数,2cos 21cos sin 3)(x x x x f ωωω-=,0>ω,R x ∈且函数)(x f 的最小正周期为.π(1)求ω的值和函数)(x f 的单调增区间;(2)在ABC ∆中,角C B A ,,所对的边分别是,,,c b a 又,54)32(=+πA f ,2=b ABC ∆的面积等于3,求边长a 的值. 17.已知函数⋅+=2cos 34cos 4sin 2)(xx x x f(1)求函数)(x f 的最小正周期及最值;(2)令),3()(π+=x f x g 判断函数)(x g 的奇偶性,并说明理由. 18.在ABC ∆中,内角C B A 、、所对的边分别为.c b a 、、已知,3,==/c b a(1)求角C 的大小;(2)若,54sin =A 求ABC ∆的面积.高三数学(理科)专题训练二数列一、选择题1.数列,,11,22,5,2 的一个通项公式是()A .33-=n a nB .13-=n a n C .13+=n a n D .33+=n a n 2.已知等差数列}{n a 中,,1,16497==+a a a 则12a 的值是() A .15B .30C .31D .64 3.等比数列}{n a 中,,20,647391=+=a a a a 则11a 的值是()A .1B .64C .1或64D .1或324.ABC ∆的三边c b a ,,既成等差数列又成等比数列,则此三角形是()A .等腰三角形B .直角三角形C .等腰直角三角形D .等边三角形 5.已知数列}{n a 满足),2(11≥-=-+n a a a n n n ,3,121==a a 记,321n n a a a a S ++++= 则下列结论正确的是()A .2,120142014=-=S aB .5,320142014=-=S aC .2,320142014=-=S aD .5,120142014=-=S a6.如果在等差数列}{n a 中,,12543=++a a a 那么=+++721a a a ()A .14B .21C .28D .357.数列}{n a 中,,,10987,654,32,14321 +++=++=+==a a a a 那么=10a ()A .495B .505C .550D .5958.各项均为实数的等比数列}{n a 的前n 项和为,n S 若,1010=S ,7030=S 则=40S ()A .150B .200-C .150或200-D .400或50- 二、填空题9.在等差数列}{n a 中,,8,12543531=-=++a a a a a a 则通项=n a ________.10.设等比数列}{n a 的前n 项和为,n S 若,336=S S 则=69S S________.11.设平面内有n 条直线),2(≥n 其中任意两条直线都相交且交点不同;若用)(n f 表示这n 条直线把平面分成的区域个数,则=)2(f ______,=)3(f ______,=)4(f ______.当4>n 时,=)(n f ________. 12.已知数列}{n a 的通项公式为*).(21log 2N n n n a n ∈++=设其前n 项和为,n S 则使5-<n S 成立的最小自然数n 是________. 三、解答题13.等差数列}{n a 的前n 项和为,23,1=a S n 公差d 为整数,且第6项为正,从第7项起变为负. (1)求d 的值;(2)求n S 的最大值;(3)当n S 是正数时,求n 的最大值.14.设d a ,1为实数,首项为、1a 公差为d 的等差数列}{n a 的前n 项和为n S ,满足.01565=+S S(1)若,55=S 求6S 及;1a(2)求d 的取值范围.15.已知数列}{n a 的首项n S a a ,1=是数列}{n a 的前n 项和,且满足,0,32122=/+=-n n n n a S a n S (1)若数列}{n a 是等差数列,求a的值;(2)确定a 的取值集合M ,使M a 时,数列}{n a 是递增数列.16.已知}{n a 为递增的等比数列,且}.16,4,3,1,0,2,6,10{},,{531---⊆a a a(1)求数列}{n a 的通项公式; (2)是否存在等差数列},{n b 使得221123121--=+++++--n b a b a b a b a n n n n n 对一切*N n ∈都成立?若存在,求出n b ;若不存在,说明理由. 17.等差数列}{n a 各项均为正整数,,31=a 前n 项和为n S ,等比数列}{n b 中,,11=b 且,6422=S b }{n a b 是公比为64的等比数列. (1)求n a 与;n b(2)证明:⋅<+++4311121n S S S 18.已知数列},{n a n S 为其前n 项的和,,9+-=n n a n S .*N n ∈(1)证明数列}{n a 不是等比数列;(2)令,1-=n n a b 求数列}{n b 的通项公式n b ;(3)已知用数列}{n b 可以构造新数列.例如:},3{n b },12{+n b },{2nb },1{nb },2{n b },{sin n b …,请写出用数列}{n b 构造出的新数列}{n p 的通项公式,使数列}{n p 满足以下两个条件,并说明理由.①数列}{n p 为等差数列;②数列}{n p 的前n 项和有最大值.高三数学(理科)专题训练三<概率>一、选择题1.对满足B A ⊆的非空集合B A 、有下列四个命题:其中正确命题的个数为()①若任取,A x ∈则B x ∈是必然事件②若,A x ∉则B x ∈是不可能事件③若任取,B x ∈则A x ∈是随机事件④若,B x ∉则A x ∉是必然事件 A .4B .3C .2D .12.从1,2,…,9中任取两个数,其中在下列事件中,是对立事件的是()①恰有一个是偶数和恰有一个是奇数②至少有一个是奇数和两个都是奇数③至少有一个是奇数和两个都是偶数④至少有一个奇数和至少有一个偶数A .①B .②④C .③D .①③ 3.如图所示,设D 是图中边长为4的正方形区域,E 是D 内函数2x y =图象下方的点构成的区域,向D 中随机投一点,则该点落入E 中的概率为() A .21B .31C .41D .51 4.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A ,“骰子向上的点数是3”为事件B ,则事件A 、B 中至少有一件发生的概率是() A .125B .21C .127D .43 5.如图所示,圆C 内切于扇形,3,π=∠AOB AOB 若在扇形AOB内任取一点,则该点在圆C 内的概率为() A .21B .31C .32D .43 6.已知随机变量ξ服从正态分布),,0(2σN 若,023.0)2(=>ξP 则)22(≤≤-ξP 的值为()A ....7.把半径为2的圆分成相等的四弧,再将四弧围成星形放在半径为2的圆内,现在往该圆内任投一点,此点落在星形内的概率为() A .14-πB .π2C .214-πD .218.某市组织一次高三调研考试,考试后统计的数学成绩服从正态分布)10,80(~2N ξ,则下列命题中不正确的是()A .该市这次考试的数学平均成绩为80分B .分数在120分以上的人数与分数在60分以下的人数相同C .分数在110分以上的人数与分数在50分以下的人数相同D .该市这次考试的数学成绩标准差为10 二、填空题9.盒子里共有大小相同的三只白球、一只黑球,若从中随机摸出两只球,则它们颜色不同的概率是__________. 10.在集合}10,,3,2,1,6|{ ==n n x x π中任取1个元素,所取元素恰好满足方程21cos =x 的概率是__________.11.在区间]3,3[-上随机取一个数x ,使得1|2||1|≤--+x x 成立的概率为______.12.在一次教师联欢会上,到会的女教师比男教师多12人,从这些教师中随机挑选一人表演节目,若选到男教师的概率为,209则参加联欢会的教师共有____人. 13.已知,4|),{(},0,0,6|),{(≤=≥≥≤+=Ωx y x A y x y x y x 若向区域Ω上随机投一点P ,则P 落入区域A 的概率是________. 三、解答题14.袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,已知得到红球的概率是,31得到黑球或黄球的概率是,125得到黄球或绿球的概率也是,125试求得到黑球、黄球、绿球的概率分别是多少?15.某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别是32和53.现安排甲组研发新产品A ,乙组研发新产品B.设甲、乙两组的研发相互独立.(1)求至少有一种新产品研发成功的概率;(2)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获得利润100万元.求该企业可获利润的分布列和数学期望. 16.一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示:将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立. (1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另一天的日销售量低于50个的概率; (2)用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的分布列,期望()E X 及方差()D X . 17设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.60.50.50.4、、、,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)X 表示同一工作日需使用设备的人数,求X 的数学期望. 18乒乓球台面被球网分成甲、乙两部分.如图,甲上有两个不相交的区域,A B ,乙被划分为两个不相交的区域,C D .某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在C 上记3分,落点在D 上记1分,其它情况记0分,落点在C 上的概率为15,在D 上的概率为35.假设共有两次来球且落在,A B 上各一次,小明的两次回球互不影响.求:(I )小明两次回球的落点中恰有一次的落点在乙上的概率;(II )两次回球结束后,小明得分之和 的分布列与数学期望.高三数学(理科)专题训练四《立体几何初步》一、选择题1.已知ABC ∆的三个顶点为、、)7,3,4()2,3,3(-B A ),1,5,0(C 则BC 边上的中线长为() A .5B .4C .3D .22.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A .6B .9C .12D .183.一个几何体的三视图形状都相同,大小均相等,那么这个几何体不可能是()A .球B .三棱锥C .正方体D .圆柱4.已知n m 、表示两条不同直线,α表示平面,下列说法中正确的是()A .若αα//,//n m ,则n m //B .若,,//n m m ⊥α,则α⊥nC .若,,n m m ⊥⊥α,则α//nD .若,,αα⊂⊥n m ,则n m ⊥ 5.已知一个几何体的三视图如图所示(单位:cm ),则该几何体的体积为() A .310cm πB .320cm πC .3310cm πD .3320cm π6.已知过球面上C B A ,,三点的截面和球心的距离等于球半径的一半,且,2===CA BC AB 则球的半径是()A .32B .34C .36D .17.用c b a ,,表示三条不同的直线,α表示平面,给出下列命题:其中正确的命题是()①若,//,//c b b a 则;//c a ②若,,c b b a ⊥⊥则;c a ⊥③若,//,//ααb a 则;//b a ④若,,αα⊥⊥b a 则.//b aA .①②B .②③C .①④D .③④ 8.一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥的轴截面顶角的余弦值是() A .43B .54C .53D .53-二、填空题9.已知三棱柱111C B A ABC -的6个顶点都在球O 的球面上,若,4,3==AC AB,AC AB ⊥,121=AA 则球O 的半径为_______.10.在三棱锥ABC P -中,,1====BC PC PB PA 且,2π=∠BAC 则PA 与底面ABC 所成角为______.11.在长方体1111D C B A ABCD -中,,2,31cm AA cm AD AB ===则四棱锥D D BB A 11-的体积为____cm 3. 三、解答题12.如图所示,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,求切削掉部分的体积与原来毛坯体积的比值.ABCD P -与ABCD Q -的高都是2,.4=AB(1)求证:⊥PQ 平面;ABCD (2)求四面体QAD P -的体积. 14.如图所示,在直三棱柱111C B A ABC -中,,,901CC BC AC ACB o ===∠点M 为AB 的中点,点D 在11B A 上,且.311DB D A =(1)求证:平面⊥CMD 平面;11A ABB(2)求二面角M BD C --的余弦值.中,底面ABCD 为矩形,,ABCD PA 平面⊥E 为PD 的中点. (1)证明:AEC PB 平面//;(2)设二面角C AE D --为60°,,3,1==AD AP求三棱锥ACD E -的体积.16.如图所示,直二面角E AB D --中,四边形ABCD 是边长为2的正方形,,EB AE =点F 为CE 上的点,且⊥BF 平面.ACE (1)求证:⊥AE 平面;BCE (2)求二面角E AC B --的余弦值;(3)求点D 到平面ACE 的距离. 17.如图所示,AB 是圆的直径,PA 垂直圆所在的平面,C 是圆上的点.(1)求证:平面PAC ⊥平面PBC . (2)若,1,1,2===PA AC AB 求二面角A PB C --的余弦值.18.如图所示,平行四边形ABCD中,.4,2,60===∠AD AB DAB 将CBD ∆沿BD 折起到EBD ∆的位置,使平面⊥EDB 平面ABD. (1)求证:⊥AB 平面;EBD (2)求三棱锥ABD E -的侧面积.高三数学(理科)专题训练五《圆锥曲线方程》一、选择题 1.已知双曲线)0,0(1:2222>>=-b a by a x C 的离心率为,25则C 的渐近线方程为()A .x y 41±=B .x y 31±=C .x y 21±=D .x y ±=2.已知,40πθ<<则双曲线1cos sin :22221=-θθy x C 与1sin cos :22222=-θθx y C ()A .实轴长相等B .虚轴长相等C .离心率相等D .焦距相等 3.椭圆1422=+y x的两个焦点为,,21F F 过1F 作垂直于x 轴的直线与椭圆相交,一个交点为P ,则=||2PF ()A .23B .3C .27D .4 4.已知双曲线14222=-b y x 的右焦点与抛物线x y 122=的焦点重合,则该双曲线的焦点到其渐近线的距离等于() A .5B .24C .3D .5 5.设1F 和2F 为双曲线)0,0(12222>>=-b a b y a x 的两个焦点,若)2,0(,,21b P F F 是正三角形的三个顶点,则双曲线的离心率为() A .23B .2C .25D .36.已知双曲线1222=-y x 的焦点为,,21F F 点M 在双曲线上,且,021=⋅则点M 到x 轴的距离为() A .34B .35C .332D .37.设双曲线的左焦点为F ,虚轴的一个端点为B ,右顶点为A ,如果直线FB 与BA 垂直,那么此双曲线的离心率为()A .2B .3C .213+D .215+ 8.已知F 是抛物线x y =2的焦点,点A 、B 在该抛物线上,且位于x 轴的两侧,2=⋅(其中O 为坐标原点),则ABO ∆与AFO ∆面积之和的最小值是() A .2B .3C .8217D .10 二、填空题9.已知抛物线x y 82=的准线过双曲线)0,0(12222>>=-b a by a x 的一个焦点,双曲线的离心率为2,则该双曲线的方程为_________. 10.已知21,F F 是椭圆)0(1:2222>>=+b a by a x C 的两个焦点,P 为椭圆C 上一点,且.21PF ⊥若21F PF ∆的面积为9,则=b _________.11.抛物线)0(22>=p py x 的焦点为F ,其准线与双曲线13322=-y x 相交于A ,B 两点,若ABF ∆为等边三角形,则=p _________. 12.椭圆12222=+by a x 的四个顶点为,,,,D C B A 若菱形ABCD 的内切圆恰好经过它的焦点,则此椭圆的离心率是____. 三、解答题13.如图所示,动圆)31(:2221<<=+t t y x C 与椭圆19:222=+y x C 相交于DC B A ,,,四点,点21,A A 分别为2C 的左、右顶点,当t 为何值时,矩形ABCD 的面积取得最大值?并求出其最大面积.14.已知双曲线)0,0(12222>>=-b a b y a x 的两条渐近线方程为,33x y ±=若顶点到渐近线的距离为1,求双曲线方程.15.如图,在平面直角坐标系xOy中,21,F F 分别是椭圆)0(12222>>=+b a b y a x 的左右焦点,顶点B 的坐标是),,0(b 连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结.1C F(1)若点C 的坐标为),31,34(且,2||2=BF 求椭圆的方程;(2)若,1AB C F ⊥求椭圆离心率e 的值.16.椭圆)0(1:2222>>=+b a by a x C 的两个焦点分别为,,21F F 点P 在椭圆C 上,且,211F F PF ⊥ (1)求椭圆C 的方程;(2)若直线l 过圆02422=-++y x y x 的圆心M ,交椭圆C 于A ,B 两点,且A ,B 关于点M 对称,求直线l 的方程.17.若点O 和点F 分别为椭圆13422=+y x 的中心和左焦点,点P 为椭圆上的任意一点,求FP OP ⋅的最大值.18.已知抛物线C 的顶点为原点,其焦点)0)(,0(>c c F 到直线02:=--y x l 的距离为.223设P 为直线l 上的点,过点P 作抛物线C 的两条切线PA ,PB ,其中A ,B 为切点. (1)求抛物线C 的方程;(2)当点),(00y x P 为直线l 上的定点时,求直线AB 的方程;(3)当点P 在直线l 上移动时,求||||BF AF ⋅的最小值.高三数学(理科)专题训练六《导数及其应用》一、选择题1.若,)(3x x f =,6)('0=x f 则=0x () A .2B .2-C .2±D .1± 2.函数133+-=x x y 的单调递减区间是()A .)2,1(B .)1,1(-C .)1,(--∞D .),1(+∞3.与直线052=+-y x 平行的抛物线2x y =的切线方程是()A .032=+-y xB .032=--y x C .012=+-y x D .012=--y x4.已知曲线x x y ln 342-=的一条切线的斜率为,21则切点的横坐标为()A .3B .2C .1D .215.曲线x y cos =与x 轴在区间]23,2[ππ-上所围成的图形的面积是()A .1B .2C .3D .46.设)(),(x g x f 是定义域为R 的恒大于零的可导函数,且,0)(')()()('<-x g x f x g x f 则当x a <b <时,有()A .)()()()(b g b f x g x f >B .)()()()(x g a f a g x f >C .)()()()(x g b f b g x f >D .)()()()(a g a f x g x f >7.若)2ln(21)(2++-=x b x x f 在区间),1(+∞-内是减函数,则实数b 的取值范围是()A .),1[+∞-B .),1(+∞-C .]1,(--∞D .)1,(--∞8.如图,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处下降,已知下降飞行轨迹为某三次函数图象的一部分,则函数的解析式为()A .x x y 5312513-=B .x x y 5412523-= C .x x y -=31253D .x x y 5112533+-=二、填空题9.若曲线)1ln(+-=x ax y 在点)0,0(处的切线方程为,2x y =则=a ______. 10.若曲线xbax y +=2(a 、b 为常数)过点),5,2(-P 且该曲线在点P 处的切线与直线++y x 2703=平行,则=+b a ______. 11.若,)(2)(12dx x f x x f ⎰+=则=⎰dx x f )(1______.12.设,R a ∈若函数)(3R x x e y ax ∈+=有大于零的极值点,则a 的取值范围是______. 三、解答题13.设函数)0()(=/=k xe x f kx .(1)求曲线)(x f y =在点))0(,0(f 处的切线方程;(2)求函数)(x f 的单调区间.14.已知函数x=xxxf-+ln.1()1)(+(1)若,1xxf求实数ax)('2++≤ax的取值范围;(2)证明:.0f-xx)()1(≥15.设,12321ln )(+++=x x x a x f 其中,R a ∈曲线)(x f y =在点))1(,1(f 处的切线垂直于y 轴. (1)求a 的值;(2)求函数)(x f 的极值.16.如图所示,已知曲线21:x y C =与曲线)1(2:22>+-=a ax x y C 交于点O 、A ,直线)10(≤<=t t x 与曲线21C C 、分别相交于点D 、B ,联结.AB DA OD 、、(1)写出曲边四边形ABOD (阴影部分)的面积S 与t 的函数关系式);(t f S =(2)求函数)(t f S =在区间]1,0(上的最大值.17.某村庄拟修建一个无盖圆柱形蓄水池(不计厚度),设该蓄水池的底面半径为r 米,高为h 米,体积为V 立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为π12000(π为圆周率).(1)将V 表示成r 的函数V (r ),并求该函数的定义域;(2)讨论函数V (r )的单调性,并确定r 和h 为何值时该蓄水池的体积最大.18.已知函数.)2(ln )(2x a ax x x f -+-=(1)讨论)(x f 的单调性;(2)设,0>a 证明:当ax 10<<时,);1()1(x ax a f ->+(3)若函数)(x f y =的图象与x 轴交于A 、B 两点,线段AB 中点的横坐标为,0x证明:.0)('0<x f高三数学(理科)专题训练一《三角函数、三角恒等变换与解三角形》参考答案9.2cm 210.311.2,)3,2(12.1 三、解答题13.(1)因)(x f 的图象上相邻两个最高点的距离为,π所以)(x f 的最小正周期,π=T 从而.22==Tπω又因)(x f 的图象关于直线3π=x 对称,所以,,2,1,0,232 ±±=+=+⋅k k ππϕπ因≤-2π2πϕ≤得,0=k 所以⋅-=-=6322πππϕ(2)由(1)得=-⋅=)622sin(3)2(πααf ,43所以⋅=-41)6sin(πα由326παπ<<得,260ππα<-< 所以=--=-)6(sin 1)6cos(2παπα⋅=-415)41(12 因此+-==+)6sin[(sin )23cos(πααπα6sin )6cos(6cos )6sin(]6ππαππαπ-+-= 14.(1)π=T (2)21)(,1)(min max -==x f x f15.(1)==+=32sin )4125sin()125(ππππA A f ,23233sin )3sin(===-A A A πππ所以=A ,3所以).4sin(3)(π+=x x f(2))()(θθ-+f f )4sin(3)4sin(3πθπθ+-++=,23cos 6==θ所以,46cos =θ因为,0sin ),2,0(>∈θπθ则=θsin ,410)46(1cos 122=-=-θ 故=+-=-]4)43sin[(3)43(πθπθπf ⋅=⨯==-4304103sin 3)sin(3θθπ16.(1)1=ω)](3,6[Z k k k ∈+-ππππ(2)13=a17.(1)因),32sin(22cos 32sin)(π+=+=x x x x f 故)(x f 的最小正周期.4212ππ==T当1)32sin(-=+πx 时,)(x f 取得最小值;2-当1)32sin(=+πx 时,)(x f 取得最大值2.(2)由(1)知⋅+=)32sin(2)(πx x f 又⋅+=)3()(πx f x g故]3)3(21sin[2)(ππ++=x x g ⋅=+=2cos 2)22sin(2xx π故).(2cos 2)2cos(2)(x g xx x g ==-=-所以函数)(x g 是偶函数. 18.(1)由题意得,=+-+22cos 122cos 1BA ,2sin 232sin 23B A - 即=-A A 2cos 212sin 23-=--B A B B 2sin()62sin(,2cos 212sin 23π),6π 由b a =/得,,B A =/又),,0(π∈+B A 得,6262πππ=-+-B A 即,32π=+B A 所以⋅=3πC(2)由,3=c Cc A a A sin sin ,54sin ==得58=a ,由,c a <得,C A <从而,53cos =A故=+=+=C A C A C A B sin cos cos sin )sin(sin ,10334+ 所以ABC ∆的面积为==B ac S sin 21⋅+251838高三数学(理科)专题训练二《数列》参考答案9.133-n 10.3711.4;7;11;222++n n 12.63 三、解答题13.(1)由已知,0076⎩⎨⎧<>a a 得,06230523⎩⎨⎧<+>+d d 解得,623523-<<-d 又d 为整数,故.4-=d (2)nn n n n S n 252)4(2)1(232+-=-⨯-+=,8625)425(22+--=n当6=n 时,;78=n S 当7=n 时,.77=n S 取最大值为78. (3)令,0>n S 得,02522>+-n n 解得<<n 0*),(225N n ∈ 故n 的最大值为12. 14.(1)由题意知:.31556-=-=S S .8566-=-=S S a所以,85510511⎩⎨⎧-=+=+d a d a 解得,71=a 所以.7,316=-=a S(2)因为,01565=+S S 所以,015)156)(105(11=+++d a d a即.0110922121=+++d da a 故.8)94(221-=+d d a 所以.82≥d故d 的取值范围为22-≤d 或.22≥d15.(1)在21223-+=n n n S a n S 中分别令,2=n 3=n 及,1a a =得++=+a a a a a (,12)(2222.)(27)223232a a a a a ++=+因为,0=/n a 所以2a ,212a -=.233a a +=因为数列}{n a 是等差数列,所以+1a ,223a a =即,23)212(2a a a ++=-解得.3=a经检验3=a 时,,2)1(3,3+==n n S n a n n ,2)1(31-=-n n S n 满足.32122-+=n n n S a n S(2)由,32122-+=n n n S a n S 得,32212n n n a n S S =--即,3))((211n n n n n a n S S S S =-+--因为,0=/n a ,2≥n 所以,321n S S n n =+-①所以,)1(321+=++n S S n n ② ②-①得,361+=++n a a n n 所以=+-1n n a a ,3)1(6+-n两式相减得:).2(611≥=--+n a a n n即数列 642,,a a a 及数列 ,,,753a a a 都是公差为6的等差数列,因为,23,21232a a a a +=-=所以⎪⎩⎪⎨⎧+-≥-+==.,623,3,623,1,为偶数为奇数且n a n n n a n n a a n要使数列}{n a 是递增数列,须有,21a a <且当n 为大于或等于3的奇数时,1+<n n a a且当n 为偶数时,1+<n n a a 即⎪⎩⎪⎨⎧-++<+-≥+-+<-+-<为偶数为奇数且n a n a n n n a n a n a a ,62)1(36233,62)1(3623,212 解得⋅<<41549a所以M 为),415,49(当Ma ∈时,数列}{n a 是递增数列.16.(1)12-n (2)存在17.(1)设}{n a 公差为d ,由题意易知,0>d 且∈d *,N则,)1(3d n a n -+=.2)1(3d n n n S n -+=设}{n b 公比为q ,则.1-=n n q b 由,6422=S b 可得64)6(=+d q …①又}{n a b 是公比为64的等比数列,所以6411111====---+++d a a a a a a q q qq b b n n n n n n …② 由①②,且*,N d >,0>d 可解得.2,8==d q所以,12+=n a n .*,81N n b n n ∈=- (2)由(1)知),2(22)1(3+=⨯-+=n n n n n S n .*N n ∈所以),211(21)2(11+-=+=n n n n S n 所以+-=+++)311[(2111121n S S S )]211()5131()4121(+-++-+-n n 18.(1)略(2)1)21(4-=n n b (3)=n p )1(log >a b n a高三数学(理科)专题训练三《概率》参考答案一、选择题BCBCCCAB 二、填空题9.2110.5111.3212.120人13.278三、解答题14.设得到黑球、黄球的概率分别为,y x 、由题意得⎪⎪⎩⎪⎪⎨⎧=---+=+,125)311(,125y x y y x 解得⎪⎪⎩⎪⎪⎨⎧==,61,41y x 故41)6141311(=---,所以得到黑球、黄球、绿球的概率分别是⋅416141、、15解:记E ={甲组研发新产品成功},F ={乙组研发新产品成功},由题可知32)(=E P ,31)(=E P ,53)(=F P ,52)(=F P .且事件E 与F ,E 与F ,E 与F ,E 与F 都相互独立.(1)记H ={至少有一种新产品研发成功},则F E H =,于是1525231)()()(=⨯==F P E P H P ,故所求概率为15131521)(1)(=-=-=H P H P .(2)设企业可获利润为X (万元),则X 的可能取值为0,100,120,220.又因1525231)()0(=⨯===F E P X P ,1535331)()100(=⨯===F E P X P ,1545232)()120(=⨯===F E P X P ,1565332)()220(=⨯===EF P X P .11521001562201541201531001520)(==⨯+⨯+⨯+⨯=X E .16(Ⅰ)设1A 表示事件“日销售量不低于100个”,2A 表示事件“日销售量低于50个”,B 表示事件“在未来连续3天里有连续2天日销售量不低于100个且另一天的日销售量低于50个”.因此1()(0.0060.0040.002)500.6P A =++⨯=.2()0.003500.15P A =⨯=.()0.60.60.1520.108P B =⨯⨯⨯=. (Ⅱ)X 的可能取值为0,1,2,3.相应的概率为033(0)(10.6)0.064P X C ==⋅-=,123(1)0.6(10.6)0.288P X C ==⋅-=,223(2)0.6(10.6)0.432P X C ==⋅-=,333(3)0.60.216P X C ==⋅=,=,方差D (X )=3××()= 17解:记i A 表示事件:同一工作日乙、丙中恰有i 人需使用设备,0,1,2i =B 表示事件:甲需使用设备C 表示事件:丁需使用设备D 表示事件:同一工作日至少3人需使用设备(1)122D A B C A B A B C =⋅⋅+⋅+⋅⋅ 所以122()()P D P A B C A B A B C =⋅⋅+⋅+⋅⋅122()()()P A B C P A B P A B C =⋅⋅+⋅+⋅⋅ (2)X 的可能取值为0,1,2,3,40(0)()P X P B C A ==⋅⋅0()()()P B P C P A =2(10.6)(10.4)0.50.06=-⨯-⨯=. 0.25=,2(4)()P X P B C A ==⋅⋅2()()()P B P C P A =20.50.60.40.06=⨯⨯=,(3)()(4)0.25P X P D P X ==-==, 所以(X)(2)0(0)1(1)2(3)3(3)4(4)E P X P X P X P X P X P X ===⨯=+⨯=+⨯=+⨯=+⨯=0.2520.3830.2540.06=+⨯+⨯+⨯2=.18解:(I )设恰有一次的落点在乙上这一事件为A高三数学(理科)专题训练四《立体几何初步》参考答案9.21310.3π11.6三、解答题12.底面半径为3cm ,高为6cm 的圆柱体的体积为:1211h R V ⋅=π632⋅⋅=π.54π=从某零件的三视图可知:该几何体为左边是一个底面半径为2cm 、高为4cm 的圆柱体,右边是一个底面半径为3cm 、高为2cm 的圆柱体.其中左边的圆柱体的体积为:所以切削掉部分的体积为:.204322ππ=-⋅⋅=V V因此切削掉部分的体积与原来毛坯体积的比值为:⋅==271054201ππV V 13.(1)如图所示,取AD 的中点M ,连接.,QM PM因为ABCD P -与ABCDQ -都是正四棱锥,所以,,QM AD PM AD ⊥⊥ 从而.PQM AD 平面⊥又,PQM PQ 平面⊂所以.AD PQ ⊥同理,AB PQ ⊥所以.ABCD PQ 平面⊥(2)连接OM ,则,21221PQ AB OM ===所以,90o PMQ =∠即⋅⊥MQ PM由(1)知,PM AD ⊥所以,QAD PM 平面⊥从而PM 就是四面体QAD P -的高,在直角PMO ∆中,.22222222=+=+=OM PO PM又,242242121=⋅⋅=⋅=∆QM AD S QAD故⋅=⋅⋅=⋅=∆-31622243131PM S V QAD QAD P14.(1)在ABC ∆中,,BC AC =点M 为AB 的中点,故.AB CM ⊥又因三棱柱111C B A ABC -是直三棱柱,故,11ABC A ABB 平面平面⊥又,ABC CM 平面⊂故11A ABB CM 平面⊥,而,CMD CM 平面⊂故11A ABB CMD 平面平面⊥ (2)以点C 为原点,分别以1,,CC CB CA 所在直线为z y x ,,轴,建立如图所示的空间直角坐标系,令,11===CC BC AC则),0,0,0(C ),0,0,1(A ),1,0,1(1A ),0,1,0(B ),1,1,0(1B故),0,1,0(=CB )1,43,41(=CD设平面CBD 的法向量为),,,(z y x n =则⎪⎩⎪⎨⎧=⋅=⋅00CD n CB n ⇒⎪⎩⎪⎨⎧=++=043410z y x y ⇒⎩⎨⎧=+=040z x y ,取,1-=z 则,4=x ,0=y 故)1,0,4(-=n ,而平面MBD 的法向量是),0,21,21(=CM故>=<n ,cos 1722)1,0,4()0,21,21(⨯-⋅⋅=17342 即二面角M BD C --的余弦值为⋅17342 15.(1)连结BD 交AC 于点O ,连结EO .因为ABCD 为矩形,所以O 为BD 的中点.又E 为PD 的中点,所以.//PB EO又,AEC EO 平面⊂,AEC PB 平面⊂/所以.//AEC PB 平面(2)因为,ABCD PA 平面⊥ABCD 为矩形,所以AP AD AB ,,两两垂直.如图所示,以A 为坐标原点,的方向为x 轴的正方向,||AP 为单位长,建立空间直角坐标系,xyz A -则),21,23,0(),0,3,0(E D ⋅=)21,23,0( 设),0)(0,0,(>m m B 则),0,3,(m C ).0,3,(m =设),,(1z y x n =为平面ACE 的法向量,则⎪⎩⎪⎨⎧=⋅=⋅011n n ,即⎪⎩⎪⎨⎧=+=+.02123,03z y y mx 可取),3,1,3(1-=m n 又)0,0,1(2=n 为平面DAE 的法向量,由题设,21|,cos |21=><n n 即=+2433m ,21解得⋅=23m因为E 为PD 的中点,所以三棱锥ACD E -的高为⋅21所以三棱锥ACD E -的体积为:⋅=⨯⨯⨯⨯=83212332131V16.(1)因⊥BF 平面.ACE 故.AE BF ⊥又因二面角E AB D --为直二面角,且,AB CB ⊥故⊥CB 平面.ABE故.AE CB ⊥⊥AE 平面.BCE (2)以点A 为原点,建立如图所示的空间直角坐标系.因⊥AE 面,BCE ⊂BE 面,BCE故.BE AE ⊥则),0,0,0(A ),0,1,1(E ,2,0(C ).2),0,1,1(=AE ⋅=)2,2,0(AC设平面AEC 的法向量为),,,(z y x n =则⎪⎩⎪⎨⎧=⋅=⋅00AC n AE n ,即,0220⎩⎨⎧=+=+z y y x 解得⋅⎩⎨⎧=-=xz x y令,1=x 得=n )1,1,1(-是平面AEC 的一个法向量,又平面BAC 的一个法向量为),0,0,1(=m且n m ,所成的角就是二面角E AC B --的平面角,因>=<n m ,cos ||||n m n m ⋅⋅,3331==故二面角E AC B --的余弦值为⋅33 (3)因),2,0,0(=AD 故点D 到平面ACE 的距离=d .33232||||==⋅n n 17.(1)略(2)4618.(1)证明:如图所示,在ABD ∆中,因,60,4,2o DAB AD AB =∠==故=∠⋅-+=DAB AD AB AD AB BD cos 2222,32故,222AD BD AB =+故.BD AB ⊥又因,ABD EBD 平面平面⊥,BD ABD EBD =平面平面,ABD AB 平面⊂故.EBD AB 平面⊥(2)解:由(1)知,//,AB CD BD AB ⊥故,BD CD ⊥从而.DB DE ⊥在DBE Rt ∆中, 因,2,32====AB DC DE DB 故.3221=⋅=∆DE DB s BDE又因,EBD AB 平面⊥,EBD BE 平面⊂故.BE AB ⊥因,4===AD BC BE 故.421=⋅=∆BE AB S ABE 因,BD DE ⊥平面EBD ⊥平面ABD ,故.ABD ED 平面⊥而,ABD AD 平面⊂故,AD ED ⊥故.421=⋅=∆DE AD S ADE 综上得三棱锥ABDE -的侧面积为.328+=S高三数学(理科)专题训练五《圆锥曲线方程》参考答案9.1322=-y x 10.3=b 11.612.215-三、解答题13.设),,(00y x A 则矩形ABCD 的面积||40x S =.||0y由192020=+y x 得,,912020x y -=故202020x y x =,49)29(91)91(22020---=-x x当21,292020==y x 时,,6max =S故当5=t 时,矩形ABCD 的面积最大,最大面积为6.14.根据几何性质有.1=cab又因,33=a b 解得⎪⎩⎪⎨⎧==34422b a 故双曲线的方程为.143422=-y x15.(1)由题意,),,0(),0,(2b B c F =||2BF ,222==+a c b又)31,34(C 在椭圆上,所以,1)31(2)34(222=+b 解得.1=b 所以椭圆方程为.1222=+y x(2)直线2BF 方程为,1=+byc x 与椭圆方程12222=+by a x 联立方程组,解得A 点坐标为),,2(223222c a b c a c a +-+则C 点坐标为,2(222c a c a +),223ca b + 又,c bk AB -=由AB C F ⊥1得⋅+3233c c a b ,1)(-=-cb 即,34224c c a b += 所以=-222)(c a ,3422c c a +化简得.55==ac e 16.(1)由于点P 在椭圆上,故.3,6||||221==+=a PF PF a 在21F PF Rt ∆中,.52||||||212221=-=PF PF F F 解得,5=c 从而.4222=-=c a b因此椭圆C 的方程为.14922=+y x (2)设A ,B 的坐标分别为).,(),,(22]1y x y x已知圆的方程为,5)1()2(22=-++y x 圆心).1,2(-设直线l 方程为,1)2(++=x k y代入椭圆C 的方程得273636)1836()94(2222-+++++k k x k k x k 0=由于A ,B 关于点M 对称,所以,29491822221-=++-=+k kk x x 解得98=k因此直线l 的方程为,1)2(98++=x y 即.02598=+-y x 17.由题意,),0,1(-F 设点),,(00y x P 则有,1342020=+y x 解得)41(32020x y -=因为),,1(00y x +=),,(00y x =所以200)1(y x x ++=⋅,34)41(3)1(0202000++=-++=x x x x x此二次函数对应的抛物线的对称轴为.20-=x因为,220≤≤-x 所以当20=x 时,⋅取得最大值.632422=++ 18.(1)y x 42=(2)02200=--y y x x (3)29高三数学(理科)专题训练六《导数及其应用》参考答案9.310.-311.31-12.)3,(--∞三、解答题13.(1),)1()('kx e kx x f +=,1)0('=f ,0)0(=f故曲线)(x f y =在点))0(,0(f 处的切线方程为.x y =(2)由0)1()('=+=kx e kx x f 得).0(1=/-=k kx ①若,0>k 则当)1,(kx --∞∈时,,0)('<x f 函数)(x f 单调递减;当),1(+∞-∈kx 时,,0)('>x f 函数)(x f 单调递增,②若,0<k 则当)1,(kx --∞∈时,,0)('>x f 函数)(x f 单调递增;当),1(+∞-∈kx 时,,0)('<x f 函数)(x f 单调递减.14.(1)因为),0(1ln 1ln 1)('>+=-++=x xx x x x x f 所以.1ln )('+=x x x xf 由,1)('2++≤ax x x xf 得.ln x x a -≥令,ln )(x x x g -=则11)('-=xx g 当10<<x 时,;0)('>x g 当1>x 时,.0)('<x g所以1=x 是最大值点,.1)1()(max -==g x g 故,1-≥a即a 的取值范围是).,1[+∞- (2)由(1)知,1)1(ln )(-=≤-=g x x x g 故.01ln ≤+-x x当10<<x 时,x x x x x x f ln 1ln )1()(=+-+=;01ln ≤+-+x x当1≥x 时,+=+-+=x x x x x f ln 1ln )1()(.0)111(ln ln 1ln ≥-+-=+-xx x x x x x综上,.0)()1(≥-x f x15.(1)因为,12321ln )(+++=x x x a x f 故⋅+-=2321)('2x x a x f由于曲线)(x f y =在点))1(,1(f 处的切线垂直于y 轴,故该切线斜率为0,即,0)1('=f 从而,02321=+-a 解得.1-=a(2)由(1)知)0(12321ln )(>+++-=x x x x x f 令,0)('=x f 解得,11=x 312-=x (因312-=x 不在定义域内,舍去).当)1,0(∈x 时,,0)('<x f 故)(x f 在)1,0(上为减函数;当),1(+∞∈x 时,,0)('>x f 故)(x f 在,1()∞+上为增函数.故)(x f 在1=x 处取得极小值.3)1(=f16.(1)由⎩⎨⎧+-==axx y x y 222得点).,(),0,0(2a a A O又由已知得).,(),2,(22t t D at t t B +-故)(t f S =+⋅⋅-+-=⎰2221)2(t t dx ax x t)()2(2122t a t at t -⋅-+-(2).221)('22a at t t f +-=令,0)('=t f即,022122=+-a at t 解得a t )22(-=或.)22(a t +=因为,10≤<t ,1>a 所以a t )22(+=舍去.若,1)22(≥-a 即222221+=-≥a 时,对,10≤<t 有.0)('≥t f故)(t f 在区间]1,0(上单调递增,S 的最大值是⋅+-=61)1(2a a f若,1)22(<-a 即2221+<<a 时,对,)22(0a t -<<有;0)('>t f当t a <+)22(1≤时,有.0)('<t f 故)(t f 在))22(,0(a -上单调递增,在]1,)22((a +上单调递减,)(t f 的最大值是.3222))22((3a a f -=- 综上所述,=max)]([t f ⎪⎪⎩⎪⎪⎨⎧+<<-+≥+-222132222226132a a a a a 17.(1)),4300(5)(3r r r V -=π定义域为);35,0((2))(r V 在区间)5,0(上单调递增,在区间)35,5(上单调递减;当,5=r 8=h 时,蓄水池的体积最大18.(1))(x f 的定义域为-=+∞xx f 1)('),,0(⋅-+-=-+xax x a ax )1)(12()2(2若,0≤a 则,0)('>x f 所以)(x f 在),0(+∞单调递增.若,0>a 则由0)('=x f 得,1ax =且当∈x )1,0(a时,,0)('>x f 当ax 1>时,.0)('<x f 所以)(x f 在)1,0(a单调递增,在),1(+∞a单调递减.(2)设函数),1()1()(x af x a f xg --+=则,2)1ln()1ln()(ax ax ax x g ---+=.12211)('2223x a x a a axa ax a x g -=--++=当ax 10<<时,,0)('>x g 而,0)0(=g 所以.0)(>x g故当ax 10<<时,⋅->+)1()1(x af x a f (3)由(1)可得,当0≤a 时,函数)(x f y =的图象与x 轴至多有一个交点,故,0>a 从而)(x f 的最大值为),1(a f 且.0)1(>af 不妨设,0),0,(),0,(2121x x x B x A <<则⋅<<<2110x ax 由(2)得=>-+=-)()11()2(111x f x a a f x a f ).(02x f =又,1,1221ax a x a >>-从而,212x ax ->于是⋅>+=ax x x 12210由(1)知,.0)('0<x f。

高三数学理科试题参考答案

高三数学理科试题参考答案

高三理科数学试题参考答案CADDC ADACA BC 13.{}52x x x <≠且 14.6a ≥- 15. 9 16.①③④17答案:解:(Ⅰ)()1cos 22f x x x ωω=-π2sin 216x ω⎛⎫=-+ ⎪⎝⎭. 因为函数()f x 的最小正周期为π,且0ω>, 所以2ππ2ω=,解得1ω=. (Ⅱ)由(Ⅰ)得π()2sin 216f x x ⎛⎫=-+ ⎪⎝⎭. 因为2π03x ≤≤, 所以ππ7π2666x --≤≤, 所以π1sin 226x ⎛⎫-- ⎪⎝⎭≤2≤. 因此π0sin 216x ⎛⎫-+ ⎪⎝⎭≤≤3,即()f x 的取值范围为[]03,. 18解:(1)由3cos()cos 2A CB -+=及π()B AC =-+得 3cos()cos()2A C A C --+=,-------2分 3cos cos sin sin (cos cos sin sin )2A C A C A C A C +--=, 3sin sin 4A C =. 又由题知2b ac =及正弦定理得2sin sin sin B A C =, 故23sin 4B =,-------4分sin 2B =或sin 2B =-(舍去), 于是π3B =或2π3B =.又由2b ac =知b a ≤或b c ≤, 所以π3B =.------------6分 由以上知:π3B =代入3cos()cos 2A C B -+=得:cos()1A C -=; 即3A C π==;因此ABC △为等边三角形,-------9分(2)因为ABC △为等边三角形,π83b B ==,. 所以ABC △的面积为21sin 2ABCS b B ∆==分 19.解:设1(1)n a a n d =+-,则1125,613,a d a d +=⎧⎨+=⎩解得11,2a d ==.………………4分 所以}{n a 的通项公式为1(1)221n a n n =+-⨯=-.…………………………………6分(2)解:依题意得2133n a n n b -==.……………………………………………………8分 因为21121393n n n n b b ++-==,所以}{n b 是首项为1133b ==,公比为9的等比数列,……10分 所以}{n b 的前n 项和3(19)3(91)198n n n T ⨯-==--.………………………………12分 20解:(1)21,3nn n a n b =-=。

高三第一次联合考试理科数学试题(含答案)

高三第一次联合考试理科数学试题(含答案)

高三第一次联合考试理科数学命题学校:嘉峪关市酒钢三中 命题人:李宗平 陈建军 王 春一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项符合题目要求的.1.设全集U =R ,{}220A x x x =->,{}1B x y x =-,则U A C B =U ( )A .(2,+∞)B .(−∞,0)∪(2,+∞)C .(−∞,1)∪(2,+∞)D .(−∞,0) 2.已知复数z =312i-(i 是虚数单位),则z =( ) A .35+65i B .35−65i C .15−25i D .15+25i 3.已知向量(1,1),(2,2),()(),=m n m n m n λλλ=+=++⊥-u r r u r r u r r若则( )A .﹣4B .﹣3C .﹣2D .﹣14.下列有关命题的说法正确的是 ( )A.命题“若21=x ,则1=x ”的否命题为:“若21=x ,则1≠x ”.B.“1=-x ”是“2560--=x x ”的必要不充分条件.C.命题“R ∃∈x ,使得210x x ++<”的否定是:“R ∀∈x , 均有210x x ++<”.D.命题“若=x y ,则sin sin =x y ”的逆否命题为真命题. 5.如图所示的程序框图,程序运行时,若输入的12S =-, 则输出的S 的值为( ) A .4 B .5 C. 8 D .96.某学校为了更好地培养尖子生,使其全面发展,决定由3名教师对5个尖子生进行“包教”,要求每名教师的“包教”学生不超过2人,则不同的“包教”方案有( ) A .60B .90C .150D .1207.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为 ( )A.16π3 B.11π2 C.17π3D. 35π68.若11nx x ⎛⎫++ ⎪⎝⎭的展开式中各项的系数之和为81,则分别在区间[]0,π和0,4n ⎡⎤⎢⎥⎣⎦内任取两个实数x ,y ,满足sin y x >的概率为( )A .11π-B .21π-C .31π-D .12 9.已知函数()23sin()cos()(0)2828x x f x ωπωπω=-->的部分图象如图所示,EFG ∆是正三角形,为了得到()3)4g x x πω=+的图象,只需将()f x 的图象( )A .向左平移2π个单位长度 B .向右平移2π个单位长度C .向左平移1个单位长度D .向右平移1个单位长度10.《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥-P ABC 为鳖臑,PA ⊥平面ABC , 2PA AB ==,4AC =, 三棱锥-P ABC 的四个顶点都在球O 的球面上,则球O 的表面积为( )A.8πB.12πC.20πD.24π11.直线2y b =与双曲线()222210,0x y a b a b-=>>的左、右两支分别交于B,C 两点,A 为右顶点,O 为坐标原点,若AOC BOC ∠=∠,则该双曲线的离心率为( ) A.53 B. 52 C. 193 D.19212.已知定义在R 上的函数() y f x =对任意的x 都满足() 2() f x f x +=,当11x -≤<时,()sin 2f x x π=,若函数()() log a g x f x x =-至少有6个零点,则a 的取值范围是( )A .()10,5,5⎛⎤+∞ ⎥⎝⎦UB .[)10,5,5⎛⎫+∞ ⎪⎝⎭U C .()11,5,775⎛⎤⎥⎝⎦U D .[)11,5,775⎛⎫⎪⎝⎭U 二、填空题:本题共4小题,每小题5分.13.在△ABC 中,内角A ,B ,C 所对的边长分别为a ,b ,c .1sin cos sin cos 2a B C c B Ab +=且a >b ,则∠B = .14. 甲、乙、丙三名同学中只有一人考了满分,当他们被问到谁考了满分时,回答如下.甲说:丙没有考满分;乙说:是我考的;丙说:甲说的是真话.事实证明:在这三名同学中,只有一人说的是假话,那么得满分的同学是_____.15.已知点(),x y P 满足72x y y x x +≤⎧⎪≥⎨⎪≥⎩,过点P 的直线与圆2250x y +=相交于A ,B 两点,则AB 的最小值为 . 16.设函数()232(0)2f x x ax a =->与()2g x a lnx b =+有公共点,且在公共点处的切线方程相同,则实数b 的最大值为 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17. (本小题满分12分)设数列{}n a 的前n 项和12n n S a a =-,且123,1,a a a +成等差数列. (1)求数列{}n a 的通项公式; (2)记数列1{}na 的前n 项和n T ,求得1|1|1000n T -<成立的n 的最小值.某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取40名学生的测试成绩,整理数据并按分数段[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]进行分组,假设同一组中的每个数据可用该组区间的中点值代替,则得到体育成绩的折线图(如图).(Ⅰ)体育成绩大于或等于70分的学生常被称为“体育良好”.已知该校高一年级有1000名学生,试估计高一年级中“体育良好”的学生人数;(Ⅱ)现从体育成绩在[60,70)和[80,90)的样本学生中随机抽取2人,求在抽取的2名学生中,体育成绩在[60,70)的学生人数X的分布列及数学期望.19. (本小题满分12分)如图,矩形和等边三角形中,,平面平面.(1)在上找一点,使,并说明理由;(2)在(1)的条件下,求平面与平面所成锐二面角余弦值.已知椭圆C :22221x y a b +=(a >b >0)的离心率为12,以椭圆长、短轴四个端点为顶点的四边形的面积为43.(Ⅰ)求椭圆C 的方程;(Ⅱ)如图所示,记椭圆的左、右顶点分别为A 、B ,当动点M 在定直线x =4上运动时,直线AM 、BM 分别交椭圆于P 、Q 两点,求四边形APBQ 面积的最大值.21.(本小题满分12分)已知()ln f x x x mx =+,且曲线()y f x =在点(1,(1))f 处的切线斜率为1. (1)求实数m 的值; (2)设()()()22a g x f x x x a a =--+∈R 在其定义域内有两个不同的极值点1x ,2x ,且12x x <,已知0λ>,若不等式112e x x λλ+<⋅恒成立,求λ的范围.Xy请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分. 22. 选修4-4:坐标系与参数方程(本小题满分10分)已知平面直角坐标系中,曲线22:680C x y x y +--=,直线1:30l x y -=,直线2:30l x y -=,以坐标原点O 为极点,x 轴正半轴为极轴,建立极坐标系.(1)写出曲线的参数方程以及直线12,l l 的极坐标方程;(2)若直线1l 与曲线C 分别交于O ,A 两点,直线2l 与曲线C 分别交于O ,B 两点,求AOB ∆ 的面积.23. 选修4-5:不等式选讲(本小题满分10分) 已知函数()f x =2−2x ,()g x =|x −a |. (1)若a =1,解不等式()f x +()g x ≥3;(2)若不等式()f x >()g x 至少有一个负数解,求实数a 的取值范围.2018年2月甘肃省河西五市部分普通高中高三第一次联合考试数学答题卷(理科)二、填空题 (本大题共4小题,每小题5分,共20分)13. 14.__ ______. 15.____ ____. 16.____ ____. 三、解答题 (共70分,解答应写出文字说明和计算推理过程.)17.(本小题满分10分)18.(本小题满分12分)学校: 班级: 姓名:考号:请不 要在密 封线内答 题21.本小题满分12分(本小题满分12分)请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.请标清楚所做的题号.我所选做的题号是理科数学答案一、选择题:本大题共12小题,每小题5分,共60分.CBBDC BABCC DA二、填空题:本大题共4小题,每小题5分,共20分. 13.6π 14.甲15.22116.212e三、解答题:本大题共6小题,共70分. 【答案】(1)2n n a =;(2)10.【解析】(1)由已知12n n S a a =-,有1122(1)n n n n n a S S a a n --=-=->, 即12(1)n n a a n -=>…………………………………………….2分 从而21312,4a a a a ==.又因为123,1,a a a +成等差数列,即1322(1)a a a +=+.所以11142(21)a a a +=+,解得12a =………………………4分 所以,数列{}n a 是首项为2,公比为2的等比数列.故2n n a =…………………………………………………………6分 (2)由(1)得112n n a =. 所以2311[1()]1111122112222212n n n nT -=++++==--L …….9分 由1|1|1000n T -<,得11|11|21000n --<,即21000n>. 因为9102512100010242=<<=, 所以10n ≥. 于是,使1|1|1000n T -<成立的n 的最小值为10.………..12分 18.解:(Ⅰ)由折线图知,样本中体育成绩大于或等于70分的学生有30人 所以该校高一年级学生中,“体育良好”的学生人数大约为人…..5分(Ⅱ)X 的分布列为:X 012P310 35 1104E X .…………………….12分()519.【答案】(1)证明过程见解析;(2)平面与平面所成锐二面角的余弦值为.【解析】试题分析:(1)分别取的中点,利用三角形的中位线的性质,即可证明面,进而得到;(2)建立空间直角坐标系,利用平面与平面法向量成的角去求解.试题解析:(1)为线段的中点,理由如下:分别取的中点,连接,在等边三角形中,,又为矩形的中位线,,而,所以面,所以;(6分)(2)由(1)知两两互相垂直,建立空间直角坐标系如图所示,,三角形为等边三角形,.于是,设面的法向量,所以,得,[来源:]则面的一个法向量,又是线段的中点,则的坐标为,于是,且,又设面的法向量,由,得,取,则,平面的一个法向量,所以,平面与平面所成锐二面角的余弦值为.(12分)20.解:(Ⅰ)根据题意,椭圆C:=1(a>b>0)的离心率为,则有a=2c,以椭圆长、短轴四个端点为顶点的四边形的面积为4,则有2ab=4,又a2=b2+c2,解得a=2,b=,c=1,故椭圆C的方程为+=1;……..4分(Ⅱ)由于对称性,可令点M(4,t),其中t>0.将直线AM的方程y=(x+2)代入椭圆方程+=1,得(27+t2)x2+4t2x+4t2﹣108=0,由x A•x P=,x A=﹣2得x P=﹣,则y P=.………….6分再将直线BM的方程y=(x﹣2)代入椭圆方程+=1得(3+t2)x2﹣4t2x+4t2﹣12=0,由x B•x Q=,x B=2得x Q=,则y Q=.……………………8分故四边形APBQ 的面积为S =|AB ||y P ﹣y Q |=2|y P ﹣y Q |=2(+)===.…………………….10分由于296t t λ+=≥,且12λλ+在[6,+∞)上单调递增,故λ+≥8,从而,有S =≤6.当且仅当λ=6,即t =3,也就是点M 的坐标为(4,3)时,四边形APBQ 的面积取最大值6.(12分)21.【答案】(1)0m =;(2)1λ≥. 【解析】(1)()1ln f x x m '=++,由题意知()11f '=,即:11m +=,解得0m =.……….4分 (2)因为112e x x λλ+<⋅等价于121ln ln x x λλ+<+.由题意可知1x ,2x 分别是方程()0g x '=即ln 0x ax -=的两个根, 即11ln x ax =,22ln x ax =,所以原式等价于()12121ax ax a x x λλλ+<+=+, 因为0λ>,120x x <<,所以原式等价于121a x x λλ+>+.又由11ln x ax =,22ln x ax =作差得,()1122ln x a x x x =-,即1212lnx x a x x =-.所以原式等价于121212ln1x x x x x x λλ+>-+,……………6分 因为120x x <<,原式恒成立,即()()1212121lnx x x x x x λλ+-<+恒成立. 令12x t x =,()0,1t ∈,则不等式()()11ln t t t λλ+-<+在()0,1t ∈上恒成立.…8分令()()()11ln t h t t t λλ+-=-+,又2'2(1)()()()t t h t t t λλ--=+,当21λ≥时,可见()0,1t ∈时,()0h t '>,所以()h t 在()0,1t ∈上单调增,又()10h =,()0h t <在()0,1t ∈恒成立,符合题意.……………10分当21λ<时,可见()20,t λ∈时,()0h t '>,()2,1t λ∈时()0h t '<, 所以()h t 在()20,t λ∈时单调增,在()2,1t λ∈时单调减,又()10h =, 所以()h t 在()0,1t ∈上不能恒小于0,不符合题意,舍去.综上所述,若不等式112e x x λλ+<⋅恒成立,只须21λ≥,又0λ>,所以1λ≥.(12分) 22.【答案】(1)依题意,曲线,故曲线的参数方程是(为参数),因为直线,直线,故的极坐标方程为;……………………………………………..5分(2)易知曲线的极坐标方程为, 把代入,得,∴, 把代入,得, ∴,∴.…………………………5分23.【解析】(1)若a =1,则不等式()f x +()g x ≥3化为2−2x +|x −1|≥3.当x ≥1时,2−2x +x −1≥3,即2x −x +2≤0,(x −12)2+74≤0不成立; 当x <1时,2−2x −x +1≥3,即2x +x ≤0,解得−1≤x ≤0. 综上,不等式()f x +()g x ≥3的解集为{x |−1≤x ≤0}.(5分)(2)作出y=()f x 的图象如图所示,当a <0时,()g x 的图象如折线①所示,由22y x a y x =-⎧⎨=-⎩,得2x +x −a −2=0,若相切,则Δ=1+4(a +2)=0,得a =−94, 数形结合知,当a ≤−94时,不等式无负数解,则−94<a <0. 当a =0时,满足()f x >()g x 至少有一个负数解. 当a >0时,()g x 的图象如折线②所示, 此时当a =2时恰好无负数解,数形结合知, 当a ≥2时,不等式无负数解,则0<a <2.综上所述,若不等式()f x >()g x 至少有一个负数解, 则实数a 的取值范围是(−94,2).(10分)。

2020年高考试题高三数学全国卷2(理科)全解全析

2020年高考试题高三数学全国卷2(理科)全解全析

2020 年一般高等学校招生全国一致考试理科数学(全国 2 卷)全解全析一、选择题10i1、=2 i(A ) -2+4i (B) -2-4i (C) 2+4i (D)2-4i【答案】 A【分析】 运用复数基本运算化为复数代数形式、设会合A= { x | x 3}, ={ x |x12Bx 4(A ) (B ) (3,4) (C ) (-2,1)【答案】 B【分析】 解分式不等式并求交集3、已知 V ABC 中, cotA= 12 ,则 cosA=5(A )125 512( B )( C ) (D) 1313 13 13 【答案】 D0}则 A I B=(D ) (4+)【分析】 由 cotA=12A ,清除( A )、(B );若 cosA 5 12,知,213,则 sin A513则 cot Acos A 5 与题设不符,清除( C ),应选 Dsin A12或由 cotA=12 tan A5secA1 tan2 A13 ,512 12∴ cos A112secA13【易错提示】 同角三角函数基本关系并注意所在象限的符号x4、 .曲线 y=2x 1在点( 1, 1)处的切线方程为(A ) x-y-2=0 (B)x+y-2=0 (C)x+4y-5=0(D)x-4y-5=0【答案】 B【分析】 y'1( 2x 1) x 2 1 ,切线的斜率 k y' x 111( 2x ( 2 11)2( 2x 1)2 1)2∴切线方程为 y 1( x 1) x y 2 05.、已知正四棱柱 ABCD A 1 B 1C 1 D 1 中,AA 1 2AB ,E 为 AA 1 中点,则异面直线 BE 与 CD 1所成角的余弦值为(A )10(B)1(C)3 10 (D)3 105105【答案】 C【分析】如图,取DD 1的中点 F,连结 CF,则 CF ∥BE ,∴∠ D1CF为所求。

设 AB= 1,则CF 2.CD15, FD1=1由余弦定理得:cos D1CF( 2)2( 5)216310225 2 10。

理科数学目录

理科数学目录

第3课时
平面向量的数量积
目录
专题研究
高三数学 新课标版· 理
平面向量的综合应用
第4课时
第五章
复数
单元测试卷(word)
目录
第六章
第1课时
高三数学 新课标版· 理
数列
数列的基本概念
第2课时
第3课时
等差数列
等比数列
专题研究一 数列求和
专题研究二 数列的综合应用
第六章
单元测试卷(word)
目录
第七章
第八章
第1课时 第2课时
高三数学 新课标版· 理
立体几何
空间几何体的结构、三视图、直观图 空间几何体的表面积、体积
第3课时
第4课时
空间点、线、面间位置关系
直线、平面平行的判定及性质
目录
第5课时
高三数学 新课标版· 理
直线、平面垂直的判定及性质
第6课时
第7课时
空间向量及运算
空间向量的应用(一) 平行与垂直
第3课时
导数的应用(二)——极值与最值
目录
专题研究
高三数学 新课标版· 理
导数的应用
第4课时
第三章
定积分与微积分基本定理
单元测试卷(word)
目录
第四章
第1课时 第2课时
高三数学 新课标版· 理
三角函数
三角函数的基本概念 同角三角函数的基本关系式及诱导公式
第3课时
第4课时
两角和与差的三角函数
简单的三角恒等变换
第2课时
第3课时 第4课时 第5课时
排列、组合
二项式定理 随机事件的概率 古典概型
目录
第6课时 几何概型
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,因为 ,所以当且仅当 时,菱形 的面积取得最大值,最大值为 。
21解:⑴ ……1分, 时, ……3分,所以 ……4分
⑵函数 是奇函数,则 在区间 上单调减少,当且仅当 在区间 上单调减少……6分,当 时, , ……7分,由 得 ……8分, 在区间 的取值范围为 ……8分,所以 的取值范围为 ……10分
⑵直线 : ……7分,设 : ……8分,由方程组 得 ……9分,当 时……10分, 、 的中点坐标为 , ……12分, 是菱形,所以 的中点在 上,所以 ……13分,解得 ,满足 ,所以 的方程为 ……14分。
⑶(本小问不计入总分,仅供部分有余力的学生发挥和教学拓广之用)因为四边形 为菱形,且 ,所以 ,所以菱形 的面积 ,由⑵可得
⑵若将频率视为概率,对甲同学在今后3次数学竞赛成绩进行预测,记这3次成绩中高于80分的次数为 ,求 的分布列及数学期望 .


⒛(本小题满分14分)已知椭圆 : ( )的上顶点为 ,过 的焦点且垂直长轴的弦长为 .若有一菱形 的顶点 、 在椭圆 上,该菱形对角线 所在直线的斜率为 .
⑴求椭圆 的方程;
A. B.
C. D.
⒍两个正数 、 的等差中项是 ,一个等比中项是 ,则双曲线 的离心率是
A. B. C. D. 或
⒎如图2, 所在的平面 和四边形 所在的平面 互相垂直,且 , , , , .
若 ,则动点 在平面 内
的轨迹是
A.椭圆的一部分B.线段
C.双曲线的一部分D.以上都不是
⒏设 、 满足 ,则 的取值范围是
二、填空题⒐ ⒑ ⒒ ⒓ ⒔②④(填1个正确项2分,填2个正确项共5分;填入错项依次扣3分、2分,扣完本题得分为止)⒕ ⒖
三、解答题
⒗解:⑴依题意, ……1分,即
……3分,解得 ……5分
⑵由⑴得, ……8分,
……10分,所以 的最小正周期 ……12分,最大值 ……14分.
⒘解:⑴依题意, 是首项为 ,公差为 的等差数列的前 项和……2分,所以 ……4分;数列 的前 项和为 ……7分,
⑵若 是棱 上一点, 平面 ,求 ;
⑶求二面角 的平面角的余弦值.
⒚(本小题满分12分)甲、乙两同学参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,具体成绩如下茎叶图所示,已知两同学这8次成绩的平均分都是85分.
⑴求 ;并由图中数据直观判断,甲、乙两同学中哪一位的成绩比较稳定?
⒖(几何证明选讲选做题)如图4,点 、 、 是
圆 上的点,且 , , ,
则 对应的劣弧长为.
三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.
⒗(本小题满分14分)已知函数 , , .
⑴求常数 的值;
⑵求函数 的最小正周期和最大值.
⒘(本小题满分12分)某旅游景点利润为100万元,因市场竞争,若不开发新项目,预测从起每年利润比上一年减少4万元。初,该景点一次性投入90万元开发新项目,预测在未扣除开发所投入资金的情况下,第 年( 为正整数,为第1年)的利润为 万元.
②若 、 ,则不等式 成立的概率是 ;
③线性相关系数 的值越大,表明两个变量的线性相关程度越强;
④函数 在 上恒为正,则实数 的取值范围是 .
其中真命题的序号是(请填上所有真命题的序号).
(二)选做题(14、15题,考生只能从中选做一题)
⒕(坐标系与参数方程选做题)在极坐标系 中,过点 作圆 的切线,则切线的极坐标方程为.
江门市普通高中高三数学(理科)调研测试
本试卷共4页,21题,满分150分,测试用时120分钟.
参考公式:锥体的体积公式 ,其中 是锥体的底面积, 是锥体的高.
一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
⒈复数 ( 是虚数单位)的虚部是
A. B. C. D.
……8分
⑵由⑴得, ……9分, 是数集 上的单调递增数列…10分,观察并计算知 , ……11分,所以从第5年开始,开发新项目的累计利润更大……12分。
⒙证明与求 平面 ……3分。
⑵连接 ,记 ,在梯形 中,因为 , ,所以 ……4分,
, ……5分,从而 ,又因为 , ,所以 ……6分,连接 ,由 平面 得 ……7分,因为 是矩形,所以 ……8分。
⑵记“甲同学在一次数学竞赛中成绩高于80分”为事件 ,则
……6分,随机变量 的可能取值为0、1、2、3,且 , ,其中 0、1、2、3……8分。
0
1
2
3
P
所以变量 的分布列为:
……10分
(或 )……12分
⒛解:⑴依题意, ……1分,解 ……2分,得 ……3分,所以 , ……4分,椭圆 的方程为 ……5分。
⑶ ……11分,解
……12分,得 ……13分,因为 ,所以 为所求……14分。
⑴设从起的前 年,该景点不开发新项目的累计利润为 万元,开发新项目的累计利润为 万元(须扣除开发所投入资金),求 、 的表达式;
⑵依上述预测,该景点从第几年开始,开发新项目的累计利润超过不开发新项目的累计利润?
⒙(本小题满分14分)如图5,多面体 中, 是梯形, , 是矩形,面 面 , , .
⑴求证: 平面 ;
⑵当直线 过点 时,求直线 的方程;
⑶(本问只作参考,不计入总分)当 时,求菱形 面积的最大值.
(本小题满分14分)已知函数 是定义在实数集 上的奇函数,当 时, ,其中 .
⑴求函数 的解析式;
⑵若函数 在区间 上单调减少,求 的取值范围;
⑶试证明对 ,存在 ,使 .
理科数学评分参考
一、选择题ADCA BDCB
⒉设集合 , ,下列关系正确的是
A. B. C. D.
⒊以下命题正确的是
A. , B.
C. , D.
⒋已知 、 互相垂直, , , ,且 、 互相垂直,则实数 的值为
A. B. C. D.
⒌如图1,一个“半圆锥”的主视图是边长为2
的正三角形,左视图是直角三角形,俯视图是
半圆及其圆心,这个几何体的体积为
⑶以 为原点, 、 、 分别为 轴、 轴、 轴建立空间直角坐标系……9分,则 , , , , , ……10分,设平面 的一个法向量为 ,则有 ……11分,即 ,解得 ……12分,同理可得平面 的一个法向量为 ……13分,观察知二面角 的平面角为锐角,所以其余弦值为 ……14分。
⒚解:⑴依题意 ……2分,解得 ……3分,由图中数据直观判断,甲同学的成绩比较稳定……5分。
A. B. C. D.
二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.
(一)必做题(9~13题)
⒐曲线 与 轴围成图形的面积是.
⒑在程序框图3中输入 、 ,则输出 .
⒒ 展开式中, 的系数是.
⒓已知 、 、 分别是 的三个内角 、 、 所
对的边,若 ,则 .
⒔给出下列四个命题:
①命题“ , ”的否定是“ , ”;
相关文档
最新文档