酶工程技术论文 酶工程技术
中国酶工程半世纪辉煌巨变 程玉华:聚力传承壮大前行
中国酶工程半世纪辉煌巨变程玉华:聚力传承壮大前行酶在化学合成中的应用、用亲和层析技术分离纯化天冬氨酸酶、两亲分子解除乙醇对内切葡聚糖酶的抑制作用、鸭血清胆碱酯酶的纯化及性质研究、水溶性大分子—右旋糖苷对胰岛素的共价修饰及其某些性质研究、弹性蛋白酶化学修饰的研究……用现代网络流行语“不明觉厉”来形容多数人对以上著作或学术论文的读后感,一点也不为过。
但对于学习和从事生物化学、分子生物学、尤其是酶工程学的人士而言,这些或许是事业历程中必学必看的宝典级著作。
而它们,正是出自我国著名生物学家、国家级教授、中国酶工程创始人程玉华之手。
今天的中国生物学界领域,似乎已形成了一种潜移默化的概念。
犹如提到杂交水稻自然会想到袁隆平一样,而提到酶,人们首先会想到中国的酶工程,继而自然会想到它的创始人程玉华。
编者注:这位为中国酶工程事业做出巨大贡献的老人,至今九十多岁高龄仍奋斗在酶工程的第一线。
酶,一种生物催化剂,普通人对其的最大印象是促进新陈代谢。
事实上,随着中国酶工程不断的技术性突破,酶今天已被广泛应用在工业、农业、医药卫生、能源开发及环境工程等多个领域。
一如医疗保健领域,重组DNA技术促进了各种有医疗价值的酶的大规模生产;环境保护领域,产品加工过程中用酶来替代化学品可以降低生产活动中的污染水平,有利于实现工艺过程生态化或无废生产,真正实现清洁生产的目标;食品工业领域,酶用于淀粉糖的生产、水果蔬菜保藏、啤酒的发酵……以上种种似乎多数人都很熟知,但鲜为人知的是,现代生物酶解技术、活性酶培养、提取技术等都是起源于这位程玉华教授的研究和指导。
事实上,酶现今已无形中出现在身边各个角落,并全面影响着大众的生活。
当然,这些都归功于在一批又一批默默无闻科学家们不断的努力下,中国酶工程在技术创新中取得了令人惊讶的突破和发展。
所谓酶工程,就是将酶或者微生物细胞,动植物细胞,细胞器等在一定的生物反应装置中,利用酶所具有的生物催化功能,借助工程手段将相应的原料转化成有用物质并应用于社会生活的一门科学技术。
生物工程专业介绍及就业公司慨况论文
所谓生物工程,一般认为是以生物学(特别是其中的微生物学、遗传学、生物化学和细胞学)的理论和技术为基础,结合化工、机械、电子计算机等现代工程技术,充分运用分子生物学的最新成就,自觉地操纵遗传物质,定向地改造生物或其功能,短期内创造出具有超远缘性状的新物种,再通过合适的生物反应器对这类“工程菌”或“工程细胞株”进行大规模的培养,以生产大量有用代谢产物或发挥它们独特生理功能一门新兴技术。
生物工程包括五大工程,即遗传工程(基因工程)、细胞工程、微生物工程(发酵工程)、酶工程(生化工程)和生物反应器工程。
在这五大领域中,前两者作用是将常规菌(或动植物细胞株)作为特定遗传物质受体,使它们获得外来基因,成为能表达超远缘性状的新物种——“工程菌”或“工程细胞株”。
后三者的作用则是这一有巨大潜在价值的新物种创造良好的生长与繁殖条件,进行大规模的培养,以充分发挥其内在潜力,为人们提供巨大的经济效益和社会效益。
生物工程的应用领域非常广泛,包括农业、工业、医学、药物学、能源、环保、冶金、化工原料等。
它必将对人类社会的政治、经济、军事和生活等方面产生巨大的影响,为世界面临的资源、环境和人类健康等问题的解决提供美好的前景。
生物工程专业研究涉及微生物工程、生化工程、基因工程、细胞工程、发酵工程和工艺及生物制药、环境治理等方面,主要解决工程菌的筛选、细胞的大规模培养、生物大分子的分离、发酵工艺的设计和过程控制以及基因工程在发酵、化工、制药、环境生物治理等方面的应用问题,生物工程及其相关产业在新产品的开发、科研成果的转化和产业化过程中具有举足轻重的作用。
生物工程专业的人才培养方面,从这些专业的名称上并不能看出其确切的学习内容和研究方向,望文生义容易产生误会。
如,生物医学工程通常被误认为是“生物”与“医学”的简单相加,甚至以为它是医学类专业。
那么生物医学工程到底是个怎样的学科?其就业领域和就业前景如何?报考物医学工程专业应该注意哪些问题?实际上,生物医学工程不归医学类专业管辖,而是不折不扣的工科专业。
酶分子的改造方法及研究进展
酶分子的改造方法及研究进展裴蓓10生物技术及应用班摘要:酶工程的研究已经发展到分子水平,在体外通过基因工程、化学、物理等手段改造酶分子结构与功能,大幅提高了酶分子的进化效率和催化效率,生产有价值的非天然酶。
本文对常见的酶分子的改造方法做了一个简单的介绍化学修饰法、生物酶工程法、定点突变法,最后结合当今的形式对酶改造的发展前景做了描述。
关键词:酶分子改造方法前景正文:1 酶分子改造的目标1.1 提高酶的稳定性1.2 提高酶的活性1.3 增强酶的选择性1.4 改变酶的表面特性2 改造酶分子的方法近年来,特别是随着蛋白质工程的(protein engineering)应用,即把分子生物学、结构生物学、计算生物化学结合起来,根据蛋白质结构与功能关系的知识,经过计算机辅助的分子设计,按照人类的需要,产生性能优良的酶分子。
就目前情况来看,现在常用的酶分子修饰方法有:2.1化学修饰法在应用过程中,有时会因酶的稳定性差、活力不够理想及具有抗原性等缺点而使其应用受到一定的限制,为此常需对酶进行适当再修饰加工,以改善酶的性能。
酶的修饰可分为化学修饰和选择性遗传修饰两类。
酶分子的化学修饰是指通过主链的剪接切割和侧链的化学修饰对酶分子进行改造,造的目的在于改变酶的一些性质,创造出天然酶不具备的某些优良性状扩大酶的应用以达到较高的经济效益。
酶分子的化学修饰常见的方法有:部分水解酶蛋白的非活性主链,利用小分于或大分子物质对活性部位或活性部位以外的侧链基团进行共价修饰,酶辅因子的置换等。
2.2生物酶工程法酶的化学修饰法并非改造酶的惟一手段。
随着人们对酶的深入研究以及氨基酸一级结构的测定、基因重组技术的应用等,可以彻底地改造、合成并且模拟酶。
这也就是生物酶工程的主要内容。
生物酶工程主要包括基因工程技术生产酶和蛋白质工程技术改造酶两方面内容。
对自然酶的化学结构进行修饰以改善酶的性能的方法很多。
例如,a一淀粉酶一般有 Ca2+,Mg等金属离子,属于杂离子型,若通过离子置换法将其他离子都换成Ca2=,则酶的活性提高3倍,稳定性也大大增加;胰凝乳蛋白酶与水溶性大分子化合物右旋糖酐结合,酶的空间结构发生某些细微改变,使其催化活力提高4倍;还有对抗白血病药物——天冬酰胺酶的游离氨基进行修饰后,该酶在血浆中的稳定性也得到很大的提高。
生物工程的内容和意义论文
生物工程的内容和意义论文生物工程是一门利用生物学、化学、工程学等多学科知识,对生物体进行改造、优化和开发的学科领域。
生物工程的研究内容涉及基因工程、蛋白质工程、细胞工程、酶工程等多个方面。
其主要意义在于促进生物技术的发展,推动社会进步和经济发展。
首先,生物工程可以应用于农业领域。
通过基因工程技术,可以对作物的基因进行改良,提高其耐逆性、抗病虫害能力以及产量和品质等方面的表现,从而实现农作物的高效产出和优质产出。
此外,生物工程还可以用于开发新型农药、育种改良和土壤修复等方面的研究,为农业生产提供支持。
其次,生物工程在药物研发和医学领域也有重要意义。
通过基因工程和细胞工程技术,可以大规模合成和表达重组蛋白质药物,如生长激素、免疫球蛋白等,为药物研发提供了新的途径和方法。
此外,生物工程还可以应用于组织工程、人工器官等领域的研究,为医学治疗和健康管理提供新的解决方案。
此外,生物工程在能源和环境领域也发挥着重要作用。
通过酶工程和微生物工程等技术手段,可以开发利用生物质能源、生物燃料等可再生能源,并减少对传统能源资源的依赖,从而实现可持续发展。
同时,生物工程还可以应用于废水处理、污染物降解和环境修复等方面的研究,为环境保护和资源循环利用提供支持。
生物工程不仅在以上领域有重要应用,还在食品工业、纺织工业等多个领域具有广泛应用。
通过生物工程技术,可以生产出具有特殊功能和性能的食品和纺织品,如功能性食品、抗菌纺织品等,为市场提供多样化和高附加值的产品。
总之,生物工程作为一门交叉学科,其内容广泛且穿越多个领域,其意义和应用广泛而深远。
通过不断推动生物工程的发展,我们将能够更好地利用生物资源,推动科技创新,提高生产效率,并为可持续发展和人类福利做出更大贡献。
嗜热磷脂酶A2和酯酶工程菌的构建、表达及其酶学性质研究
提 要 Aeropyrum pernix K1 ,是1993年从日本海岸火山口分离的一种超嗜热古细菌,它最适生长温度为95℃,并能产生多种嗜热酶。
近年来,随着嗜热酶相继得到开发,使其在许多领域发挥了重要作用。
嗜热酶不仅具有化学催化剂无法比拟的优点,而且稳定性极好,可以克服中温酶及低温酶在应用中常常出现的生物学性质不稳定的现象,从而可用于催化很多高温化学反应。
这将极大地促进生物技术产业的发展,从而带动技术水平和生活质量的提高。
目前,超嗜热古细菌嗜热酶的研究还处于初期阶段,其中既具有磷脂酶A2活力又具有酯酶活力的嗜热酶APE 2325的研究具有重要意义。
磷脂酶A2(phospholipase A2,EC3.1.1.4,简称PLA2)具有很多生物学功能,参与许多生理活动,近年来发现它还具有广泛的心血管药理效应,从而引起人们新的研究兴趣。
正是PLA2这种相对简单的化学结构和复杂的药理生理功能之间的反差,使之成为研究脂质代谢、脂蛋白代谢、生物膜磷脂结构以及脂-蛋白相互作用的结构和功能的重要工具酶。
近年来,随着分子生物学技术的迅速发展,国外对酯酶基因的克隆研究很活跃,促进了酯酶的生物特性及相关功能的研究,而国内这方面的研究则起步较晚。
基于古细菌的进化位置和嗜热磷脂酶A2和酯酶的重要作用,我们开展了对嗜热酶APE 2325的性质、结构和功能进行了研究。
第一章 前言 1.古细菌 1977年Woese等人根据200多种细菌和真核生物的核糖体小亚基RNA(SSU rRNA)的部分序列进行相似矩阵分析,结果发现产甲烷菌、极端嗜盐菌和硫依赖嗜热菌与其它细菌、真核生物不同,于是他们提出古细菌说法。
又因为典型代表产甲烷菌的生存环境与想象中原始地球的厌氧环境类似,故称为古细菌,其余细菌称为真细菌。
把地球上的生物分为真细菌、古细菌和真核生物三超界,代替目前普遍接受的生物的五界系统。
5S rRNA序列和肽链延长因子EF-1α/Tu,EF-2/G,H+-ATPase等蛋白质序列,都说明古细菌与真核生物的亲缘关系比真细菌近(1-4)。
产纤维素酶工程菌株的构建及其在醇化烟叶中的应用
生物技术进展 2024 年 第 14 卷 第 2 期 263 ~ 270Current Biotechnology ISSN 2095‑2341研究论文Articles产纤维素酶工程菌株的构建及其在醇化烟叶中的应用孔蒙蒙1 , 卢鹏1 , 陈千思1 , 乔学义1 , 陈善义2 , 金静静1 , 郑雪坳1 , 曹培健1 , 陶界锰1*1.中国烟草总公司郑州烟草研究院,郑州 450001;2.福建中烟工业有限责任公司技术中心,福建 厦门 361021摘 要:烟叶中过高的纤维素含量使烟叶组织容易破碎,影响加工过程中烟叶的可塑性,使烟叶杂气变重等。
为了获得产纤维素酶的优良菌株,实现醇化烟叶纤维素的有效降解,利用同源重组法成功构建了10株纤维素降解的枯草芽孢杆菌(Bacillus subtilis )工程菌株。
通过刚果红平板筛选、羧甲基纤维素钠酶活、滤纸酶活及滤纸崩解率等检测,共筛选出C36、CM 、KF 和GH5 4株产纤维素酶能力较强的重组菌株。
将醇化烟叶作为底物进行纤维素降解,发现重组菌株CM 的产纤维酶效率最高,其羧甲基纤维素钠酶活和滤纸酶活分别为39.55和23.52 U ·mL -1。
结果表明,构建的重组菌株能够利用醇化烟叶中的纤维素产生纤维素酶,可为工业生产中醇化烟叶纤维素降解提供理论支撑。
关键词:工程菌株;醇化烟叶;纤维素降解;枯草芽孢杆菌DOI :10.19586/j.20952341.2023.0159中图分类号:Q814, S572 文献标志码:AConstruction of Cellulase Producing Engineering Strains and the Application in Aged Tobacco LeavesKONG Mengmeng 1 , LU Peng 1 , CHEN Qiansi 1 , QIAO Xueyi 1 , CHEN Shanyi 2 , JIN Jingjing 1 ,ZHENG Xueao 1 , CAO Peijian 1 , TAO Jiemeng 1*1.Zhengzhou Tobacco Research Institute , China National Tobacco Corporation , Zhengzhou 450001, China ;2.Technology Center , China Tobacco Fujian Industrial Co., Ltd., Fujian Xiamen 361021, ChinaAbstract :High cellulose content make the tissue of tobacco leaves broken easily , affect the plasticity of tobacco leaves during processing , and make the heavy impurity of tobacco leaves. In order to obtain excellent cellulase producing strains and achieve effective degradation of cellulose in aged tobacco leaves , ten Bacillus subtilis engineering strains of cellulose -degrading were suc‐cessfully constructed by homologous recombination method. Four recombinant strains C36, CM , KF and GH5 with strong cellu‐lase production capacity were screened by the Congo red plate method , carboxymethyl cellulose sodium enzyme activity assay , filter paper enzyme activity assay and filter paper disintegration rate detection. When aged tobacco leaves were used as substa‐rate , the recombinant strain CM showed the highest cellulase production efficiency , and its carboxymethyl cellulose sodium en‐zyme activity was 39.55 U ·mL -1 and filter paper enzyme activity was 23.52 U ·mL -1, respectively. The results indicated that the recombinant strains could utilize cellulose in aged tobacco leaves to produce cellulase , which could provide theoretical support for cellulose degradation of aged tobacco leaves in industrial production.Key words :engineered strains ; aged tobacco leaves ; cellulose degradation ; Bacillus subtilis纤维素是一种具有重复单位的多糖聚合物,可看作是植物聚合网络的刚性支架,广泛存在于收稿日期:2023‐12‐12; 接受日期:2024‐01‐05基金项目:烟草行业烟草工艺重点实验室引领计划专项项目(202022AWHZ08);中国烟草总公司重点研发项目(110202102017;110202201004)。
酶工程实验报告三( 纤维素酶最适反应pH值的测定)
实验方式 小组合作
小组成员 XX XX XX XX
掌握酶最适 pH 值的测定方法及原理。
2、 实验仪器、试剂和溶液:
A 2 仪器: 紫外分光光度计、比色皿(3个)、恒温水浴锅(4台)、试管架(1个)、1ml移液管(1 根)、10ml移液管(1根)、玻璃棒(1根)、1000ml烧杯(1个)、500ml烧杯(2个)、 1000ml容量瓶(1个)、洗耳球(1个)、标签(若干)等。
本科学生实验报告
学号 104120440 姓 名
孙永升
学院 生命科学学院 专业、班级 10 生物技术
实验课程名称
酶 工 程 <实验>
教师及职称
李俊俊 <讲师>
开课学期 2012 至 2013 学年 第二学期
填报时间 2013 年 月 24 日
云南师范大学教务处编印
1
实验名称 实验三 纤维素酶最适反应 pH 值的测定
5 实验处理
A 5 葡萄糖标准曲线如 图 1:
OD540nm值
0.7 0.6 0.5 0.4 0.3 0.2 0.1
0 0
y = 0.7023x - 0.0747
葡萄糖标准曲线
R2 = 0.9992
系列1 线性 (系列1)
0.2
0.4
0.6
0.8
1
1.2
葡萄糖浓度(mg/ml)
图 1 标准曲线 葡萄糖标准曲线如上图所示,得回归直线方程 y=kx-0.0747,k=0.7023, R2=0.9992>0.99,该标准曲线相关性很好。式中 Y 表示表示测定的吸光度(OD)值,X 表示还原糖的浓度, 0.0747 表示补偿参数。
pH 与酶活性关系的测定是在其它条件(如底物浓度、酶浓度、反应温度等)恒定的 最适情况下,选用一系列变化的 pH 环境中进行初速度测定,其图形一般为钟形曲线。
食品酶学文献综述酶在食品加工中的应用
食品酶学文献综述论文题目酶在食品加工中的应用学生姓名许超班级****** 学号******** 学院生物与农业工程学院专业食品科学与工程指导教师周亚军摘要:介绍了现代酶工程、酶制剂在食品加工中的应用现状,以及最新研究近况。
现代酶学将为食品工业的发展起重要推动作用。
关键词:酶;食品工业;应用Application and Prospect of Development of Enzymatic Technology in the Food IndustryAbstracts:This paper introduces important effect of enzyme in food industry,summarizes the application of enzyme in the production of flesh,fish,eggs,milk,vegetable,beverage,vintage,toast food and refine suger,and gives development prospectof enzyme in food industry.Key words:enzyme;food industry;application;1.前言酶是一类具有生物催化特性的蛋白质,是一类生物催化剂,一切生物的新陈代谢都是在各种各样酶的作用下进行的[1]。
由于酶反应温和,专一性强,催化效率高,反应容易控制,因此十分适宜食品加工应用[2]。
酶用于食品加工中具有以下优点:改进食品加工方法;改进食品加工条件,降低成本;提高食品质量;改善食品风味、颜色等。
目前酶工程、酶制剂已在食品加工多个领域得到了广泛应用。
2.酶在食品加工中的应用几千年前,人们就在不知不觉中将酶应用于制作发酵饮料等生产中,我国早在夏禹时代酿酒就已出现。
近年来,随着食品工业科学技术的不断提高,酶已广泛应用于食品行业的各个领域,如制糖工业、饮料工业、焙烤工业、乳品工业等[3]。
化工总控工论文
化工总控工论文众所周知,21世纪最具发展潜力的两大产业是信息技术(IT)和生物技术。
信息技术发展迅猛,并已渗透到社会生活的各个角落。
有关信息技术的报道——多媒体、互联网、信息全球化等,不但频频亮相于媒体,而且与我们的日常生活息息相关。
而与IT的轰轰烈烈相比,生物技术看起来却平平淡淡,虽然基因、克隆、人类基因组计划、生物多样性等字眼经常见诸报端,但离我们的生活似乎还很遥远。
所以,也有专家这样评论:20世纪不是生物技术的世纪,而是生物工程蓄势待发的世纪,21世纪才是生物工程的世纪。
克隆羊多利的诞生,人类基因组90%测序工作的完成,欧美、日本等发达国家对生物技术产业投资的逐年加大,世界各大公司生命科学产业的合并浪潮一浪高过一浪,所有这一切,都使我们相信,21世纪的的确确是生物技术的时代。
生物化学工程(又叫生化工程或生物化工)是化学工程与生物技术相结合的产物。
生物化工是生物技术的重要分支。
与传统化学工业相比,生物化工有某些突出特点:①主要以可再生资源作原料;②反应条件温和,多为常温、常压、能耗低、选择性好、效率高的生产过程;③环境污染较少;④投资较小;⑤能生产目前不能生产的或用化学法生产较困难的性能优异的产品。
由于这些特点,生物化工已成为化工领域重点发展的行业。
1化工工业发展1.首先,突出重点,抓好产品结构调整,继续发展农用化学品。
化肥要向高浓度方向发展,提高复合肥的比例;发展高效、低毒、低残留品种农药,要增大除草剂的比例,并积极发展生物农药。
其次,要大力发展石油化工。
石油化工是我国国民经济的支柱产业之一。
我国石油化工是在近20年来发展起来的,石油化工产值尚不足30%(一般发达国家在60%左右),预计2000年乙烯能力可望达到500万吨/a,2010年至少要翻一番。
同时,立足现有企业改扩建,提高产品产量,优化品种牌号,开发新品种,如合成树脂专用料、差别化纤维和功能性纤维及合成橡胶等国急需但属空白的品种等。
酶工程论文
酶工程论文酶的生产和应用的技术过程称为酶工程。
其主要任务是通过预先设计,经人工操作而获得大量所需的酶,并利用各种方法使酶发挥其最大的催化功能。
本文意在阐述近年来酶工程在分子水平的研究进展,展示酶工程在医药、农业、食品、环境保护等领域的应用进展,并对其未来前景进行了展望。
一、酶工程技术在医药工业中的应用现代酶工程具有技术先进、投资小、工艺简单、能耗粮耗低、产品收率高、效率高、效益大和污染小等优点,成为化学、医药工业应用方面的主力军。
以往采用化学合成、微生物发酵及生物材料提取等传统技术生产的药品,皆可通过现代酶工程生产,甚至可获得传统技术不可能得到的昂贵药品,如人胰岛素、McAb、IFN、6一APA、7一ACA及7一ADCA等固定化基因工程菌、工程细胞以及固定化技术与连续生物反应器的巧妙结合,将导致整个发酵工业和化学合成工业的根本性变革1、应用酶工程生产抗生素应用酶工程可以制备青霉素酞化酶、头抱菌素酞化酶、头抱菌素、头抱菌素酞化酶、青 2014下半年教师资格证统考大备战中学教师资格考试小学教师资格考试幼儿教师资格考试教师资格证面试霉素酞化酶、脱乙酸头抱菌素、头抱菌素乙酸醋酶,近年来还进行固定化产黄青霉青霉素合成酶系细胞生产青霉素的研究,合成青霉索和头抱菌素前体物的最新工艺也采用酶工程的方法。
2、应用酶工程生产维生素制造2一酮基一L—古龙糖酸【山梨糖脱氢酶及L一山梨糖醛氧化酶】、肌醇【肌醇合成酶】、L—肉毒碱【胆碱脂酶】、CoA 【CoA合成酶系】等。
由山梨醇和葡萄糖生产维生素及丙烯酸胺的生产也采用酶工程的方法四。
二、酶工程技术在农业中的应用由于酶制剂主要作为催化剂与添加剂使用,从而带动了许多产业的发展。
应用酶工程对农产品进行深加工,是人们努力的一个方向。
乳制品加工则需要用凝乳酶和乳糖酶。
此外,酶工程在饲料加工领域也有重大应用。
1、酶工程应用于农产品的深加工利用α-淀粉酶、葡萄糖淀粉酶和葡萄糖异构酶的催化功能,以玉米淀粉等为原料生产高果糖浆等。
蛋白酶及其在食品工业中应用(论文)
蛋白酶及其在食品工业中应用09化本3班2009364308 梁容摘要:随着科学技术的发展,食品加工的精度越来越高,食品加工的方法越来愈多,人们对食品的要求也越来越高。
蛋白酶作为具有高效性、转移性而且有非常安全的生物催化剂,在食品加工和生产中备受关注。
本文介绍了蛋白酶的种类及其在食品工业中的应用,以其在制糖工业、蛋白制品加工、果蔬加工、焙烤食品、酿酒工业中以及生产油脂中的应用为代表。
关键词:蛋白酶、制糖、鱼、啤酒一、蛋白酶1.蛋白酶是一类由活细胞产生的具有生物催化功能的分子量适中的蛋白质,具有极高的催化效率、高度的特异性及控制的灵敏性。
大多数酶是水溶性的。
由于酶催化反应具有底物专一性、催化高效性、反应条件温和等优点,符合绿色化学的要求,从而被大家高度重视,已在许多领域得到广泛的应用[1]。
蛋白酶广泛的存在于动物、植物以及微生物体内。
蛋白酶主要来源于高等植物的种子和果实, 动物的内脏和腺体, 以及某些微生物如酵母、霉菌和杆菌等。
目前已商品化的酶制剂中, 植物来源的蛋白酶有木瓜蛋白酶、菠萝蛋白酶和生姜蛋白酶等。
动物来源的蛋白酶有从家畜胰脏和胃中提取的胰蛋白酶和胃蛋白酶等。
微生物来源的蛋白酶是商品化酶的主体。
2.种类木瓜蛋白酶,是一种蛋白水解酶,可将抗体分子水解为3个片段。
是番木瓜中含有的一种低特异性蛋白水解酶,活性中心含半胱氨酸,属巯基蛋白酶,是一种在酸性、中性、碱性环境下均能分解蛋白质的蛋白酶。
它的外观为白色至浅黄色的粉末,微有吸湿性。
胃蛋白酶(英文名称:Pepsin),是一种消化性蛋白酶,由胃部中的胃粘膜主细胞所分泌,功能是将食物中的蛋白质分解为小的肽片段。
胃蛋白酶原由胃底主细胞分泌,在pH1.5~5.0条件下,被活化成胃蛋白酶,将蛋白质分解为胨,而且一部分被分解为酪氨酸、苯丙氨酸等氨基酸。
可分解蛋白质中苯丙氨酸或酪氨酸与其他氨基酸形成的肽键,产物为蛋白胨及少量的多肽和氨基酸,该酶的最适pH为2左右。
酶工程课程教学实践与体会
从 整体上来看 , 酶工程可划分 为三部分 内 提 问 、 后 作 业 与 课 程 论 文 。 堂 提 问 占 课 课
许多高校并未开 设单 独的酶学课 程 , 学生的 酶 随机提 问, 问内容主要 为上 次教学 内容 中 提 学基础 知识仅 来 自于 生物化 学课 。 因此 , 必 的基础 知识 , 有 以督 促学生 及时 复 习 , 强化所 学 要 将酶 学基础 知识 的回顾 作为 酶工程 教学 内 知识 , 为进 一步学习掌握新 的课程 内容 提供保 容 的 重要部 分 。 酶工 程部 分 的 内容是 课程 的 证 ; 作业 占1%, 课后 0 主要是布置一些较 为灵活 重 点 , 要 包 括 酶 的 发酵 生 产 、 的分 离 纯 的思考题 , 主 酶 考查学 生对课堂知识 的掌握 与运 用
济 发 展 中 的地 位 、 发展 的现 状 和 方 向 、 要 主
识 的记 忆情 况 , 知 识应 用 能力 的考 查 不够 对
[ 4 J
。
思 考[ . 国地 质教育 , 0 6 2 :3 4 J中 ] 2 0 ()7 ~7 .
的 工 业 产 品 、 究 的热 点 与 难 点 等 。 研 一个 精
i 毛墓 口 翟 目
ii ; i! — ;】 l} f・
+。 。 。。 。
科 教 研 究
酶 工程课程教学实践与体会
李艳 宾 龚 明福 ( 塔里木 大学生命 科学学 院 新 疆阿拉尔 8 3 0) 43 0
摘 要: 酶工程是一 门高等院校 生物技 术专业 , 重要 的专业课 程 。 该课程 信息量大 , 涵盖 面广, 学任 务繁重 。 教 如何教 好酶 工程 , 高教 学 提 效 果 , 为酶 工程专 业课程教 学所 面临的 问题 。 文根据 笔者 的课 程教 学实践 , 结 出 了一些教 学体会 。 成 本 总 关键词 : 工程 课程教学 教 学内容 教 学方法 酶 中图分类 号 : 4 G 2 6 文献标 识 码 : A 文章编号 : 3 9 9 ( o o () O 4 - 1 1 7 - 7 5 2 1 ) 2 b- 0 O 0 6 o 生 物技 术是 当前 世界 各 国优先发 展 的高 的 工业 化应用放在 最后一章 , 进一步让学 生 篇 , 中5 能 其 年以 内的文献 不得低于 7 %。 0 通过 这 新技 术 领域 之一 。 工程 是生 物技 术 的基 础 认 识酶 对现 代社 会 生活 的影 响 。 酶 和 重要 组成 部分 。 它是 从应 用 的 目的 出发 研 究酶 , 在一 定生物反应装 置中利用酶的催 化性 2采用多媒体教学, 加强课堂互动 质, 将相应原料转 化成 有用物质 的技 术_ 具 有 1 】 ,
现代生物化工中酶工程技术研究-工程技术论文-工程论文
现代生物化工中酶工程技术研究-工程技术论文-工程论文——文章均为WORD文档,下载后可直接编辑使用亦可打印——摘要:酶是人体新陈代谢中不可或缺的催化剂,在加快新陈代谢速度、促进化学反应等方面发挥着巨大的作用,随着现代生物化工技术的进步发展,以及人们对基因工程和细胞工程的研究不断深入,酶工业化量产不断取得突破进展,并为生物工程的应用提供了更大的发展空间。
在酶工程的实施过程中,其主要是通过使用蛋白质工程技术或化学修饰法改变酶分子,继而改变酶的性质,从而使酶产生不同的作用,并在环境、医药、农业、工业等领域发挥着重要的作用。
基于此,本文就现代生物化工中酶工程技术研究与应用进行了分析。
关键词:生物化工;酶工程技术;应用酶在各行各业中的应用是通过酶工程技术对原料进行生物催化,通过生物催化制备使酶在不同的产业领域发挥不同的作用。
目前,酶工程技术在在现代生物化工中研究不断深入,酶工程的主要任务已经从最开始的单纯提高酶产量过渡到对酶的生物学性质进行特征性研究与改变,其在提升各行业经济效益上具有十分重要的现实意义。
一、酶工程技术概述(一)生物酶(1)生物酶特点。
生物酶其本质属于蛋白质,主要成分为DNA。
生物酶的酶分子结构由氨基酸长链组成,与蛋白质类似,并且具有极强的催化功能。
生物酶具体的特点主要有以下几点:一是能够随时调节酶的活力,由于存活的蛋白酶具有较好的特性,因此类型不同的蛋白酶可以利用一定的机制来达到个体之间的彼此结合,从而提高其催化活力的效果;二是生物酶具有专一性,只是对于一种化合物将自身的催化作用作用于此;三是生物酶的催化效率较高,酶的催化效率比其高1013倍,是一般催化剂不可达到的效率;四是酶的稳定性能较差,其正常的催化作用中交易受到一些因素的影响而导致蛋白质问题,造成酶活性消失。
(2)生物酶作用。
生物酶的主要作用是催化,它包括分解系酶、合成系酶两大类,每类又包含不同种的生物酶。
不同的生物酶有着不同的催化作用。
我国制药分离工程现状及发展方向
我国制药分离纯化技术现状和发展方向引言:制药分离过程主要利用待分离的物质中的有效活性成分与共存杂质之间在物理、化学及生物学性质上的差异进行分离,是一个复杂的过程。
制药工程的主要目标是医药产品的高效生产,分离和纯化是最终获得商业产品的重要环节,是各种新医药产品实现产业化的必经之路,在整个医药行业中具有举足轻重的地位。
近20年来,制药分离技术取得了长足发展,出现了许多新概念和新技术。
有些技术已经在工业上得到了应用,有的虽然还在研究中,但已经显示出良好的应用前景。
一、现状:近年来,我国的医药产业虽然得了比较大的发展,但是分离纯化技术的发展与其他生物技术的发展相比是不平衡的,与发达国家仍有很大的差距。
其原因是多方面的,但最主要的原因来自于生产过程中的工艺技术和装备问题,药品提取分离纯化过程作为医药生产过程中最关键的环节,自然而然的成为了首要原因。
目前,在我国制药领域,很多先进的提取分离纯化技术已经得到了发展和应用,但是依然是以传统落后的提取技术为主导,在制药过程中存在着提取分离技术装备简单,工艺流程单一等缺陷。
我国目前的分离提取技术还存在很多不足。
制药提取分离技术及其装备关系到三个问题:(1)能否最大限度地从药材中提取有效成分,并保证无用的物质不能被同时转移。
(2)能否尽量使所提取物质的量相对平均;(3)能否在尽量满足最大产能的情况下,把成本降到最低。
简单来说是产率、工艺条件稳定和效率三个问题。
若这些问题如果能得到有效的解决,就能为后续生产环节制提供良好的生产环境,实现提高生产质量的最终目的。
目前,我国大部分所使用的传统提取工艺和装备都难以解决以上的几个问题,集成优化和高效节能的成套装备虽然已经开发出来,但是并没有得到广泛应用。
因此,充分利用各种先进的提取分离纯化技术,先进的装备及自动化控制与在线检测系统的优势,开发出先进、适用的中药提取分离技术流程,并使其得到推广和广泛的应用。
传统的分离纯化方法主要有水提醇沉法(水醇法)、醇提水沉法(醇水法)、酸碱法、盐析法、离子交换法和结晶法等。
现代生物技术的应用及发展趋势论文
现代生物技术的应用及发展趋势论文现代生物技术的应用及发展趋势论文随着农业革命、手工业革命、工业革命、商品国际化革命和信息产业化革命的推进,很多科学家预言21世纪将会有一场生物技术革命,而这场革命的主战场就是农业。
现代生物技术可以有效提高作物产量,改善作物营养品质。
因此,现代生物技术必然成为未来农业发展的重要趋势。
1现代生物技术在农业中的应用1.1基因工程在农业中的应用基因工程是利用分子生物学和微生物学技术,设计不同来源的基因序列,在体外成功构建杂交DNA分子,然后导入受体细胞,使受体细胞表现出人所需要的表型,产生人所需要的物质。
将基因工程技术应用于农业,可以获得优质、高产、抗逆性强的作物,以及具有特殊功能的畜禽品种和动植物。
比如,经过7年的艰苦攻关,2011年成功突破大规模示范(即6.67hm2示范)平均产量13500kg/hm2的超级杂交稻第三阶段目标,达到13899kg/hm2[1];利用转基因技术将相应基因导入油菜,有望培育出转基因抗病油菜品种[2];利用基因工程技术,可以将抗除草剂基因导入作物,使作物不受除草剂的影响。
目前已培育出许多抗除草剂作物品种,并得到广泛应用[3]。
1.2细胞工程在农业中的应用细胞工程是指在体外培养细胞,将不同作物或动物的细胞进行杂交,以改变细胞的某些生物学特性为目的,从而加速植物或动物的个体繁殖,从而获得优良品种或变种以及一些具有特殊功能的物质的技术[4]。
细胞工程技术在植物快速繁殖和植物品种选择中发挥着重要作用。
目前,体细胞杂交在植物中有许多应用。
例如,马铃薯细胞可以与番茄细胞杂交,得到“番茄马铃薯”,既结番茄,又结马铃薯。
豆科和向日葵的细胞杂交,可以培育出营养价值很高的“葵花豆”[5]。
1.3发酵工程在农业中的应用发酵是利用微生物的特殊功能生产对人类生产有用的产品,或直接将微生物应用于工业生产的技术。
发酵工程主要可应用于农业的两个方面,一是生产传统发酵产品,如酒、砖茶、醋等。
酶的固定化技术及其应用
酶工程课程论文题目:酶的固定化技术及其应用学院:食品学院专业:食品科学与工程班级:食品101(35)2012-11-21酶的固定化技术及其应用摘要:酶的固定化技术是酶工程研究领域的一项重点和热点技术之一,酶的固定化技术可以显著提高酶的利用率,降低酶生产的成本。
本文主要研究酶的固定化技术,酶固定化的优缺点,以及在食品,医药,环境中的应用。
并对其研究的前景进行了简洁的预测。
关键字:酶固定化技术应用酶作为一种生物催化剂,因其催化作用具有高度专一性、催化条件温和、无污染等特点,广泛应用于食品加工、医药和精细化工等行业。
但在使用过程中,人们也注意到酶的一些不足之处,如酶稳定性差、不能重复使用,并且反应后混入产品,纯化困难,使其难以在工业中更为广泛的应用。
因此为适应工业化生产的需要,人们模仿人体酶的作用方式,通过固定化技术对酶加以固定改造,来克服游离酶在使用过程中的一些缺陷。
固定化酶,是指在一定的空间范围内起催化作用,并能反复和连续使用的酶。
与传统的酶相比,固定化酶具有游离酶所不可比拟的优点.同一批固定化酶能在工艺流程中重复多次地使用;固定化后,和反应物分开,有利于控制生产过程,同时也省去了热处理使酶失活的步骤;稳定性显著提高;可长期使用,并可预测衰变的速度;提供了研究酶动力学的良好模型等一系列的优点。
用于固定化的酶,起初都是采用经提取和分离纯化后的酶,随着固定化技术的发展,也可采用含酶细胞或细胞碎片进行固定化,直接应用细胞或细胞碎片中的酶或酶系进行催化反应.由于微生物细胞可直接作为酶源,所以逐渐产生了固定化细胞技术.固定化细胞的优点是:(1)省去了酶分离纯化的时间和费用;(2)可进行多酶反应;(3)保持了酶的原始状态,从而增加了酶的稳定性.但固定化细胞与固定化酶相比,也存在一些不足之处:(1)因为产生副反应和所需生化产物的进一步代谢,使固定化完整细胞生产的产物纯度可能比固定化酶低;(2)细胞使用相当长的时间后,常常会发生自溶,尤其是在细胞有可能进行增殖时,细胞的漏出就特别明显:(3)单位体积反应器内固定化细胞的活性总是比相应的固定化酶活性低.酶的固定化方法主要可分为四类:吸附法、包埋法、共价键结合法和交联法等。
酶工程技术在医药制药领域的应用论文(共2篇)
酶工程技术在医药制药领域的应用论文(共2篇)本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!第1篇:酶工程技术在医药制药领域的应用一、酶工程技术研究进展1固定化酶酶工程的最初10年,主要兴趣在发展固定化方法和载体,探索其应用的可能性。
第一代固定化生物催化剂的特征是单酶的固定化,发展了吸附、共价、交联和包埋等数十种固定化方法。
现已有20多种利用单酶活力的固定化生物催化剂在世界上获得工业应用。
2多酶系统的固定化固定化单酶不可能引起发酵工业的根本变革。
大多数生物化学产品的合成和转化必须依赖一连串酶反应,而且需要辅助因子和ATP的参与。
早在70年代初已尝试将催化顺序反应的几种酶共固定,发现物质转化的速度比溶液中酶混合物高。
70年代后期,辅酶的保持和再生又特别受到重视。
ATP和NAD在大分子化后可保持在半透膜内,往返于催化合成的酶与再生它们的酶之间。
已知的酶有50%以上需要辅因的存在参与酶促反应。
ATP、FAD、NAD、PLP与PQQ的再生都可能通过固定化技术获得不同程度的解决,其中包括这些辅因的固定化与其他酶促反应相偶联或对辅因进行化学修饰及利用这些辅因的类似物与衍生物等。
实验发现应用固定化辅因及其衍生物对酶的活力具有良好作用,如thioNAD与A-PAD对马肝醇脱氢酶的活力比NAD更有效。
亚细胞成份都是天然地巧妙定位的多酶集合体,从理论上推测,固定化各种细胞器就可能有效地利用各种多酶系统。
我们曾固定化了羊精囊微粒体、鼠肝微粒体、线粒体和细胞质,为了克服固定化细胞器不够稳定的缺点,KangFuGu等人《构建了一种含有固定化多酶系统和NAD的人工细胞,用于将氨或尿素转变成必需的氨基酸,取得了良好结果。
3固定化细胞从单酶-多酶-细胞器固定化的进一步延伸就是进行完整细胞的固定化,其中包括微生物细胞,动物细胞与植物细胞的固定化。
酶的应用与发展论文
摘要:生物工程是现代科技的一项高新技术,是当今最有发展前景的学科之一。
而酶工程是生物工程的重要组成部分,酶作为生物催化剂,它广泛应用于食品、酿造、淀粉糖、制革、纺织、印刷、医药、石油化工等20多个领域。
它可提高产品品质、改进产品工艺、降低劳动强度、节约原料和能源、保护环境,并产生巨大的经济效益和社会效益。
关键字:酶工程酶的固定化酶的应用前景从世界范围而言,酶制剂总量的55%是水解酶,主要用于焙烤食品、酿酒、淀粉加工、酒精和纺织等工业;35%是蛋白酶,主要用于洗涤剂、制革和乳品工业;其余是药用酶制剂、试剂级酶制剂和工具酶。
1酶工程酶工程技术是利用酶和细胞或细胞器所具有的催化功能来生产人类所需产品的技术,包括酶的研制与生产,酶和细胞或细胞器的固定化技术,酶分子的修饰改造,以及生物传感器。
1.1酶的生产酶的生产是各种生物技术优化与组合的过程,分为生物提取法、生物合成法和化学合成法三种,其中生物提取法是最早采用而沿用至今的方法,它是指采用各种提取、分离、纯化技术从动物、植物、器官、细胞或微生物细胞中将酶提取出来;生物合成法是20世纪60年代以来酶生产的主要方法,是指利用微生物细胞、植物细胞或动物细胞的生命活动而获得人们所需酶的技术过程;而化学合成法因其成本高,且只能合成那些已经弄清楚化学结构的酶,所以难以进行工业化生产,至今仍处在实验室研究的阶段。
1.2酶的纯化酶的纯化属于一种后处理工艺,包括粗制工艺与精制工艺,对超酶液进行浓缩精制是生产高质量酶制剂的重要环节。
其提纯手段一般是依据酶的分析大小、形状、电荷性质、溶解度、专一结合位点等性质而建立。
要得到纯酶,一般需要将各种方法联合使用。
最常用的纯化方法有根据溶解度特性的沉淀法;根据电荷极性的离子交换层析、等电点聚焦电泳等;根据大小或重量的离心分离、透析、超滤等;根据亲和部位的亲和层析、共价层析等。
1.3酶的固定化技术酶的固定化技术是把从生物体内提取出来的酶,用人工方法固定在载体上,这是是酶工程的核心,它使酶工程提高到一个新水平。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
酶工程技术论文酶工程技术
发达国家所掌握的酶工程技术比较熟练,近些年来人们加快了对新酶源的开发,使功能性食品添加剂得到了迅速的发展。
下面小编给大家分享一些酶工程技术论文,大家快来跟小编一起欣赏吧。
酶工程技术论文篇一
酶工程技术在食品添加剂生产中的应用
摘要:近些年来,由于固定化细胞技术、固定化酶反应器的推广与使用,使得食品新产品得到了开发,食品的品种数量与质量都得到了明显的提高,这为食品工业带来了巨大的经济效益。
本文就酶工程技术在食品添加剂中的应用情况作进一步的说明。
关键词:酶工程食品添加剂
引言
利用酶和细胞或者是细胞器所具有的催化功能为人类提供服务,生产所需产品的技术统称为酶工程技术。
作为生物工程的一个重要组成部分,酶工程技术被广泛地应用在食品添加剂的生产中。
一、开发新的酶源
发达国家所掌握的酶工程技术比较熟练,近些年来人们加快了对新酶源的开发,使功能性食品添加剂得到了迅速的发展。
我国对于这方面的研究起步比较晚,但是随着近几年的探究与摸索也取得了明显的进步。
比如说,华南理工大学利用微生物发酵的技术可以产生一种特定的酶,这种酶具有很强的催化的作用,它可以进行两步酶法催化分子果糖转移反应而产生低聚果糖,这是一项巨大的突破;其次比较有名的就是江苏化工学院自制出了选择性优良以及非常廉价的糖化酶和胰淀粉酶,它们经过一系列的催化作用可以生产出低糖度、低热量、高粘度且不会被微生物发酵的麦芽糖醇。
脂肪酶是大家比较熟悉的一种水解酶,它是一种只能在异相系统或者不溶性系统的油-水界面上来进行水解的酶。
但是由于脂肪酶的不稳定性、酶的来源较少、提纯比较困难的种种原因使得它长期以来得不到充足的发展。
但是近年来随着细胞工程、固定化技术以及基因工程的兴起,人们逐渐解开了脂肪酶的神秘面纱,对于脂肪酶的研究也取得了飞跃式的发展,其中甘油胆汁及其衍生物在食品行业中是应用最广泛的,它改善了食品工业中面包的质量与口感,它可以诱导或快速形成巧克力面包的香味,为国内外食品的发展奠定了良好的基础。
二、固定化酶技术与细胞技术的发展
通常所谓的固定化技术就是通过一系列的物理或者化学的方法将酶或者是细胞固定在水溶性或者是非水溶性的膜状、颗粒状、管状的载体上,在这样的情况下能明显的提高酶对热度以及对酸碱度的稳定性;而且利用固定化技术在连续反应的过程中不会造成流失的现象,利用非常简单的方法就可以进行回收再生,为生产的可持续化、节约能耗、降低生产成本提供了技术上的支持。
早在70年代,中国科学院生物研究所就对固定化酶或者固定化细胞技术开始了长时间的研究,现在许多的科研单位、高等学校和大型企业已经掌握了固定化酶技术,并取得了明显的效果,现在固定化酶和细胞技术已经广泛地应用于食品添加剂中。
固定化酶技术在甜味剂的生产中采用固定化葡萄糖异构酶在生物反应器中的连续生产,可以制造出葡萄糖浆,这项技术在整个的酶工程工业生产中是最成功的,同时也是应用范围最广的;利用酶技术方法可以将便宜的无水马来酸制作成酒石酸,现在的市场上几乎都是运用这种方法来生产酒石酸,因为它具有操作过程简单、酒石酸纯度高、经济效益高的特点。
利用固定化酶和细胞技术还可以生产营养强化剂,营养强化剂主要包括氨基酸、维生素和一些微量的元素,L-天门冬安是最早应用固定化细胞在工业上大规模生产的氨基酸,这项技术随着时间的推移以及科学界的研究已经使它得到了充足的发展,它可以连续数周进行生产,这种方法转化效率极高,对生成的产物易分离,同时产物的纯度也很高。
三、非水相酶催化反应技术
80年代后期,人们对于界面酶学和非水酶学的研究取得了突破性的发展,这样就极大地促进了脂肪酶多功能催化作用的开发。
在食品添加剂生产的领域中,利用固定在有机物中的脂肪酶催化作用可以将廉价的棕榈油变成香味袭人的可可脂,可可脂可以大量的运用在巧克力糖果的生产中。
日本富士油脂公司已经取得了这方面有关生产的发明专利,国外利用酶促脂交换反应可以将便宜的油脂改成高品质的食用油,而且含有高不饱和脂肪酸的卵磷脂具有细胞分化的诱导作用,它是一种可以治疗癌症的药物。
总之,非水溶剂中酯催化反应技术在食品添加剂生产中具有很大的发展潜力。
四、固定化载体材料不断的更新,生物反应器不断更新
固定化细胞的制备方法大体可以分为吸附法、包埋法、共价结合法、交联法、多孔物质包络法等,其中包埋法是使用最普遍的。
采用戊二醛、甲苯二氰酸酯、双重氮联苯胺等物质直接与细胞表面的反应基团进行反应,这样就会使细胞彼此交联形成网状结构而固定化细胞的方法也是固定化细胞方法的一种。
利用金属丝、棉网等多孔载体固定丝状真菌和放线菌,这样就可以组成转盘式生物反应器,可以使酶的活性长期保持下去。
这种技术已经在糖浆、糖化酶等产品的生产中得到大范围的应用。
目前在食品添加剂的生产中常见的生物反应器大致可以分为:连续搅拌全混反应器、鼓泡式反应器以及填充床反应器等等。
由于每一种生物反应器都有各自的特点,所以到目前为止没有一种可以通用的比较理想的反应器,还有就是生物反应器的结构设计要不断地进行更新才能不断地满足细胞生产技术中的工艺需要,这同样也是科学界与生物学界需要共同研究的方向。
结论:
从本文可以明显地看出,酶工程技术在食品添加剂的生产中已经得到了广泛的推广与应用,人们对于酶和细胞固定化技术的掌握以及使用,已经给食品的生产带来了巨大的经济效益以及社会效益。
科学界与生物学界对于酶不同用途的研究,对固定化方法以及载体材料的不断更新为食品添加剂在工业生产中的连续化和自动化提供了有力的条件,实现了降低生产成本的可能。
总之,随着科学的不断发展,酶工程技术在食品添加剂生产中的应用前景是可观的。