数学分析课后习题答案--高教第二版(陈纪修)--2章
陈纪修主编的《数学分析》(第2版)辅导书-第2章 数列极限【圣才出品】
不能随便舍去。
(2)数列极限
设{xn}是一给定数列,a 是一个实常数。如果对于任意给定的 ε>0,可以找到正整数
N,使得当 n>N 时,成立
|xn-a| < ε,
则称数列{xn}收敛于 a(或 a 是数列{xn}的极限),记为
有时也记为
如果不存在实数 a,使{xn}收敛于 a,则称数列{xn}发散。 注:在上述的收敛定义中,ε 既是任意的,又是给定的: ①只有当 ε 确定时,才能找到相应的正整数 N。这时 ε 是给定的; ②改变数列前面的有限项,不影响数列的收敛性。这时 ε 是任意的; (3)无穷小量 在收敛的数列中,称极限为 0 的数列为无穷小量。无穷小量是一个变量,而不是一个
(1)定义
,则{xnyn}与 都是无穷大量。
如∞±∞,(+∞)-(+∞),(+∞)+(-∞),0·∞,
等极限,其结果可以是无穷
小量,或非零极限,或无穷大量,也可以没有极限。我们称这种类型的极限为待定型。
5 / 44
圣才电子书
十万种考研考证电子书、题库视频学习平
台
(2)如果数列{xn}满足 xnxn+1,n=1,2,3,…,则称{xn}为单调增加数列;若进一
1 / 44
圣才电子书
十万种考研考证电子书、题库视频学习平
台
max S 是这有限个数中的最大数,min S 是这有限个数中的最小数;
②当 S 是无限集时,最大数及最小数不一定存在。
3.上确界与下确界
(1)上界、下界与有界集
设 S 是一个非空数集,如果 M∈R,使得 x ∈S ,都有 x≤M,则称 M 是 S 的一个
但它并不收敛。
陈纪修《数学分析》配套题库【课后习题】(数列极限)
第2章数列极限§1 实数系的连续性1.(1)证明不是有理数;(2)是不是有理数?证明:(1)可用反证法若是有理数,则可写成既约分数.由可知m是偶数,设,于是有,从而得到n是偶数,这与是既约分数矛盾.(2)不是有理数.若是有理数,则可写成既约分数,于是,即是有理数,这与(1)的结论矛盾.2.求下列数集的最大数、最小数,或证明它们不存在:解:min A=0;因为,有,所以max A不存在.;因为,使得,于是有,所以min B不存在.max C与min C都不存在,因为,所以max C与min C都不存在.3.A,B是两个有界集,证明:(1)A∪B是有界集;(2)也是有界集.证明:(1)设,有,有,则,有.(2)设,有,有,则,有.4.设数集S有上界,则数集有下界.且.证明:设数集S的上确界为sup S,则对,有-x≤sup S,即;同时对,存在,使得,于是.所以-sup S为集合T的下确界,即.5.证明有界数集的上、下确界惟一.证明:设sup S既等于A,又等于B,且A<B.取,因为B为集合S的上确界,所以,使得,这与A为集合S的上确界矛盾,所以A=B,即有界数集的上确界惟一.同理可证有界数集的下确界惟一.6.对任何非空数集S,必有.当时,数集S有什么特点?解:对于,有,所以.当时,数集S 是由一个实数构成的集合.7.证明非空有下界的数集必有下确界.证:参考定理2.1.1的证明.具体过程略.8.设并且,证明:(1)S没有最大数与最小数;(2)S在Q内没有上确界与下确界.证:(1).取有理数r>0充分小,使得,于是.即,所以S没有最大数.同理可证S没有最小数.(2)反证法.设S在Q内有上确界,记(m,n∈N+且m,n互质),则显然有.由于有理数平方不能等于3,所以只有两种可能:(i),由(1)可知存在充分小的有理数r>0,使得,这说明,与矛盾;(ii),取有理数r>0充分小,使得,于是,这说明也是S的上界,与矛盾.所以S没有上确界.同理可证S没有下确界.§2 数列极限1.按定义证明下列数列是无穷小量:(1);(2);(3);(4);(5);(6);(7)(8).证明:(1),取,当n>N时,成立.(2),取,当时,成立.(3),取,当时,成立;取,当时,成立,则当时,成立.(4),取,当n>N时,成立.(5)当n>11时,有.于是,取,当n>N时,成立.(6)当n>5,有.于是,取,当n>N时,成立.(7),取,当n>N时,成立(8)首先有不等式,取,当n>N时,成立.2.按定义证明下述极限:证明:(1),取,当时,成立(2),取,当时,成立(3),取,当n>N时,成立(4)令,则.当n>3时,有所以,取,当时,成立.(5),取,当n>N时,若n是偶数,则成立;若z是奇数,则成立.3.举例说明下列关于无穷小量的定义是不正确的:(1)对任意给定的,存在正整数N,使当n>N时,成立;(2)对任意给定的,存在无穷多个,使.解:(1)例如,则满足条件,但不是无穷小量.(2)例如则满足条件,但不是无穷小量.4.设k是一正整数,证明:的充分必要条件是.证明:设,则,成立,于是也成立,所以;设,则,成立,取,则,成立,所以.5.设,证明:.证明:由可知,成立,成立.于是,成立.6.设.且,证明:.证明:首先有不等式.由,可知,成立,于是.7.是无穷小量,是有界数列,证明也是无穷小量.证明:设对一切.因为是无穷小量,所以,,成立.于是,成立,所以也是无穷小量.。
陈纪修《数学分析》(第2版)(上册)名校考研真题【圣才出品】
但
(
也可说
明)。
2.对数列 和
若 是有界数列,则 是有界数列。( )[北京大学研]
【答案】对
【解析】设|Sn|<M,则
3.数列
存在极限
的充分必要条件是:对任一自然数 p,都有
( )[北京大学研]
【答案】错
【解析】反例:
,但 不存在.
1 / 82
圣才电子书
二、解答题
十万种考研考证电子书、题库视频学习平台
圣才电子书 十万种考研考证电子书、题库视频学习平台
陈纪修《数学分析》(第 2 版)(上册)名校考研真题
第 2 章 数列极限
一、判断题
1.对任意的 p 为正整数,如果
,则
存在。( )[重
庆大学研]
【答案】错
【解析】根据数列收敛的 Cauchy 收敛准则,可举出反例:
,虽然对任意的
n p1
对任意 0, 存在正整数 N ,使得对任意正整数 p ,成立 ak , kN
(N p)aN p ln(N p) (N p)aN p ln N ,
在上式中,令 p ,取极限,则得
0
lim ( N
p
p)aN p
ln( N
p)
,
由 0 的任意性,则得
lim ( N
.[南开大学
3 / 82
圣才电子书
2011 研]
十万种考研考证电子书、题库视频学习平台
证明:(1)因为
{nan}
为正的单调递减数列,由单调有界定理得
lim
n
nan
L
存在,
由 an 收敛,可知必有 L 0 n1
an
n1
复旦大学数学系陈纪修《数学分析》 第二版 习题答案ex
⑻
⎧1
⎨ ⎩
n
−1+ n +1
1 n+2
−
+ (−1)n
1
⎫ ⎬
。
2n ⎭
证
(1) ∀ε
(0 < ε
< 2) ,取 N
=
⎡2⎤ ⎢⎣ε ⎥⎦
,当
n
>
N
时,成立
0
<
n +1 n2 +1
<
2 n
<
ε
。
(2)
∀ε
(0
<
ε
<
1)
,取
N
=
⎡ lg ε ⎤
⎢ ⎣
lg
0.99
⎥ ⎦
,当
n
>
N
时,成立
lg ε
(−1)n (0.99)n < (0.99)lg0.99 = ε 。
n
(2) 3 + 2 不是有理数。若 3 + 2 是有理数,则可写成既约分数
3 + 2 = m ,于是 3 + 2 6 + 2 = m2 , 6 = m2 − 5 ,即 6 是有理数,与
n
n2
2n2 2
(1)的结论矛盾。
2. 求下列数集的最大数、最小数,或证明它们不存在:
A = {x|x ≥ 0};
>
N
,成立
xn
−a
<
ε
,所以 lim n→∞
xn
=
a
。
5.
设 lim n→∞
x2n
= lim n→∞
x2n+1
复旦大学数学系陈纪修数学分析(第二版)习题答案ex2-3,4
一解 a = 0 舍去),因此
lim
n→∞
xn
=
2。
(3)首先有 x1 =
2 > −1,设 xk > −1,则 xk+1 =
−1 > −1 ,由数学
2 + xk
25
归纳法可知 ∀n ,xn
> −1。由 xn+1
− xn
=
−1 2 + xn
− xn
=
−
(xn + 1)2 2 + xn
< 0 ,可知{xn}
)n
= 0。
证(1)设
lim
n→∞
an
=
+∞ ,则 ∀G
>
0, ∃N1
>
0, ∀n
>
N1
: an
>
3G
。对固定的
N1 ,
∃N > 2N1,∀n > N :
a1 + a2 + " + aN1 n
< G ,于是
2
a1 + a2 + " + an ≥ aN1+1 + aN1+2 + " + an − a1 + a2 + " + aN1 > 3G − G = G 。
n→∞ ⎝ n ⎠
⑴ lim ⎜⎛1 − 1 ⎟⎞n ;
n→∞ ⎝ n ⎠
⑵ lim ⎜⎛1 + 1 ⎟⎞n ;
n→∞ ⎝ n + 1⎠
⑶ lim ⎜⎛1 + 1 ⎟⎞n ;
n→∞ ⎝ 2n ⎠
数学分析原理答案
数学分析原理答案数学分析原理答案【篇一:数学分析教材和参考书】:《数学分析》(第二版),陈纪修,於崇华,金路编高等教育出版社, 上册:2004年6月,下册:2004年10月参考书:(1)《数学分析习题全解指南》,陈纪修,徐惠平,周渊,金路,邱维元高等教育出版社, 上册:2005年7月,下册:2005年11月(2)《高等数学引论》(第一卷),华罗庚著科学出版社(1964)(3)《微积分学教程》,菲赫金哥尔兹编,北京大学高等数学教研室译,人民教育出版社(1954)(4)《数学分析习题集》,吉米多维奇编,李荣译高等教育出版社(1958)(5)《数学分析原理》,卢丁著,赵慈庚,蒋铎译高等教育出版社(1979)(6)《数学分析》,陈传璋等编高等教育出版社(1978)(7)《数学分析》(上、下册),欧阳光中,朱学炎,秦曾复编,上海科学技术出版社(1983)(8)《数学分析》(第一、二、三卷),秦曾复,朱学炎编,高等教育出版社(1991)(9)《数学分析新讲》(第一、二、三册),张竹生编,北京大学出版社(1990)(10)《数学分析简明教程》(上、下册),邓东皋等编高等教育出版社(1999)(11)《数学分析》(第三版,上、下册),华东师范大学数学系,高等教育出版社(2002)(12)《数学分析教程》常庚哲,史济怀编,江苏教育出版社(1998)(13)《数学分析解题指南》林源渠,方企勤编,北京大学出版社(2003)(14)《数学分析中的典型问题与方法》裴礼文编,高等教育出版社(1993)复旦大学数学分析全套视频教程全程录像,asf播放格式,国家级精品课程,三学期视频全程教师简介:陈纪修-基本信息博士生导师教授姓名:陈纪修任教专业:理学-数学类在职情况:在性别:男所在院系:数学科学学院陈纪修-本人简介姓名:陈纪修性别:男学位:博士职称:教授(博士生导师)高校教龄22年,曾获2001年上海市教学成果一等奖、获2001年国家级教学成果二等奖、获2002年全国普通高等学校优秀教材一等奖、2002年获政府特殊津贴;获宝钢教育奖(优秀教师奖);被评为“九五”国家基础科学人才培养基金实施和基地建设先进工作者。
陈纪修《数学分析》配套题库【名校考研真题】(数列极限)
n 2 3
n
解:一方面显然 I 1,
另一方面 1
1
1
...
1
1
n ,且 lim nn
1,
23
n
n
由迫敛性可知 I 1.
1
注:可用如下两种方式证明 lim nn 1 . n
(1)令 n n 1 hn ,则
n
(1
hn )n
1
n(n 1) 2
hn2
hn2
2 n
(n
2)
,
1
所以
limnBiblioteka hn0 ,从而 lim nn n
,假设
则
又因为
5 / 17
圣才电子书 十万种考研考证电子书、题库视频学习平台
所以 单调递增有上界,故极限存在。设
现对 所以
两边取极限可得
因为
,
7.设数列 满足下面的条件:
其中 0<k<1,证明:
[深圳大学 2006 研]
证明:易有
,n=1,2,…。又因为 0<k<1,所以
由
an 收敛,可知必有 L 0 ;
n2 ln n
an
ln n
n1 an dx n ln n
n1 n
n
1 ln
n
nan
dx
n1 n
x
1 ln
x
nan
dx
nan
n1 1 dx n x ln x
(n p)an p (ln ln(n 1) ln ln n),
假若数列an 有界,即存在 M 0 ,使得 0 an M ,
则由条件知
lim
n
an
数学分析第二版答案
数学分析第二版答案LtD数学分析第二版答案【篇一:?数学分析?第三版全册课后答案(1)】class=txt>------------------------------------------------- 密---------------------------------- 封----------------------------- 线---------------------------------------------------------第页(共)------------------------------------------------- 密---------------------------------- 封----------------------------- 线---------------------------------------------------------【篇二:复旦大学数学分析课后习题解陈纪修】> 4.〔1〕?x|?2?x?3?;〔2〕?(x,y)|x?0且y?0?;〔3〕?x|0?x?1且x?q?;〔4〕?x|x?k2,k?z?.?7.〔1〕不正确。
x?a?b?x?a或者x?b;〔2〕不正确。
x?a?b?x?a并且x?b.第2节2.〔1〕f:[a,b]?[0,1] x?y?x?ab?a.〔2〕f:(0,1)?(??,??) x?tan[x(?12)?]3.〔1〕y?log2a(x?3),定义域:,?33,,值域:(??,??);〔2〕y?arcsin3x,定义域:,0?,值域:???0,??;2??〔3〕y?tanx,定义域:k?k?z?2,k2?,值域:??0,;〔4〕y?x?1x?1,定义域:,?11,,值域:?0,11,. 5.〔1〕定义域:??2k?,(2k?1)??,值域:,0?;k?z〔2〕定义域:?2k??,2k,值域:?0,1?;k?z?22?1〔3〕定义域:??4,1?,值域:0,;?25??32 〔4〕定义域:,00,,值域:?,???2??. ??7.〔1〕f(x)?2x3?21x2?77x?97;〔2〕f(x)?2x?14x?1。
数学分析课后习题答案 高教第二版 陈纪修 章
D
D
(2)因为在 D 上成立 x + y ≥ 3 ,所以 ln(x + y) < [ln(x + y)]2 ,于是
∫∫ln(x + y)dxdy < ∫∫[ln(x + y)]2 dxdy 。
D
D
3.用重积分的性质估计下列重积分的值:
(1) ∫∫ xy(x + y)dxdy ,其中 D 为闭矩形[0,1] × [0,1] ;
Ω
Ω
Ω
当 ∫ g(x)dV = 0 ,积分中值定理显然成立。当 ∫ g(x)dV ≠ 0 ,则
Ω
Ω
∫ f (x)g(x)dV
m≤ Ω
≤M,
∫ g(x)dV
Ω
m 所以存在 µ ∈[m, M ],使得
co ∫ f (x)g(x)dV
. Ω
=µ,
w ∫ g(x)dV
a Ω
d 即
.kh ∫ f (x)g(x)dV = µ ∫ g(x)dV 。
D
(2)
∫∫
D
100
+
dxdy cos2 x +
cos 2
y
,其中 D 为区域 {(x,
y)| | x|+| y|≤
10} ;
1
(3)
∫∫∫ Ω
1
+
dxdxdz x2 + y2 + z2
,其中
Ω
为单位球 {(x, y, z)| x2
+
y2
+
z2
≤ 1} 。
解(1)因为在 D 上成立 0 ≤ xy(x + y) ≤ 2 ,所以
网 ( )( ) ∫∫ ∫ ∫ (2) xy e x2+y2 dxdy = b xe x2 dx d ye y2 dy = 1 eb2 − ea2 ed2 − ec2 。
数学分析陈纪修答案
数学分析陈纪修答案【篇一:陈纪修教授《数学分析》九讲学习笔记与心得】class=txt>云南分中心 ? 昆明学院 ? 周兴伟此次听陈教授的课,收益颇多。
陈教授的这些讲座,不仅是在教我们如何处理《数学分析》中一些教学重点和教学难点,更是几堂非常出色的示范课。
我们不妨来温习一下。
第一讲、微积分思想产生与发展的历史法国著名的数学家h.庞加莱说过:“如果我们想要预见数学的将来,适当的途径是研究这门科学的历史和现状。
” 那么,如果你要学好并用好《数学分析》,那么,掌故微积分思想产生与发展的历史是非常必要的。
陈教授就是以这一专题开讲的。
在学校中,我不仅讲授《数学分析》,也讲授《数学史》,所以我非常赞同陈教授在教学中渗透数学史的想法,这应该也是提高学生数学素养的有效途径。
在这一讲中,陈教授脉络清晰,分析精当,这是我自叹不如的。
讲《数学史》也有些年头,但仅满足于史料的堆砌,没有对一些精彩例子加以剖析。
如陈教授对祖暅是如何用“祖暅原理”求出球的体积的分析,这不仅对提高学生的学习兴趣是有益的(以疑激趣、以奇激趣),而且有利于提高学生的民族自豪感(陈教授也提到了这一点)。
第二讲、实数系的基本定理在这一讲中,陈教授从《实变函数》中对集合基数的讨论展开,对实数系的连续性作了有趣的讨论。
首先是从绅士开party的礼帽问题,带我们走进了“无穷的世界”。
光来看无限,只能是‘只在此山中,云深不知处’”。
当然,我还是会进一步考虑如何来讲好这一讲。
若陈教授或其他老师有好的建议,能指点一下,则不胜感激。
对于集合[0,1]与(0,1)的对等关系,包括q与R的对等关系,或者说他们之间双射的构造。
关键在于“求同存异”,找一个可数集来“填补”他们之间的差距,这相当于希尔伯特无穷旅馆问题中来了两个人和来了可数个人。
从可数集到不可数集,再加上无最大基数定理,让我们看到了“无穷的层次性”,由此我们不难理解“人外有人,天外有天,无穷之外有无穷”。
数学分析课后习题答案--高教第二版(陈纪修)--10章
第十章 函数项级数习 题 10. 1 函数项级数的一致收敛性1. 讨论下列函数序列在指定区间上的一致收敛性。
⑴ S n (x ) = , (i) x nx −e ∈)1,0(, (ii) x ∈; ),1(+∞ ⑵ S n (x ) = x , x nx −e ∈),0(+∞;⑶ S n (x ) = sin nx , (i)x ∈),(+∞−∞, (ii) x ∈],[A A −(); 0>A ⑷ S n (x ) = arctan nx , (i)x ∈)1,0(, (ii) x ∈; ),1(+∞ ⑸ S n (x ) =221nx +, x ∈),(+∞−∞; ⑹ S n (x ) = nx (1 - x )n , x ∈]1,0[;⑺ S n (x ) =n x ln n x, (i) x ∈)1,0(, (ii) x ∈);),1(+∞ ⑻ S n (x ) = nnx x +1, (i) x ∈)1,0(, (ii) x ∈;),1(+∞ ⑼ S n (x ) = (sin x )n , x ∈],0[π;⑽ S n (x ) = (sin x )n1, (i) x ∈[0,]π, (ii) x ∈],[(0>δ);δπδ− ⑾ S n (x ) = nn x ⎟⎠⎞⎜⎝⎛+1, (i) x ∈),0(+∞, (ii)x ∈],0(A (); 0>A ⑿ S n (x ) = ⎟⎟⎠⎞⎜⎜⎝⎛−+x n x n 1, (i) x ∈),0(+∞, (ii)[)0,,>+∞∈δδx 。
解 (1)(i) ,0)(=x S )()(sup ),()1,0(x S x S S S d n x n −=∈1= ─/→ 0(∞→n ), 所以{}()n S x 在上非一致收敛。
(0,1) (ii) ,0)(=x S )()(sup ),(),1(x S x S S S d n x n −=+∞∈n e −=)(0∞→→n ,所以{}()n S x 在上一致收敛。
数学分析原理答案
数学分析原理答案【篇一:数学分析教材和参考书】:《数学分析》(第二版),陈纪修,於崇华,金路编高等教育出版社, 上册:2004年6月,下册:2004年10月参考书:(1)《数学分析习题全解指南》,陈纪修,徐惠平,周渊,金路,邱维元高等教育出版社, 上册:2005年7月,下册:2005年11月(2)《高等数学引论》(第一卷),华罗庚著科学出版社(1964)(3)《微积分学教程》,菲赫金哥尔兹编,北京大学高等数学教研室译,人民教育出版社(1954)(4)《数学分析习题集》,吉米多维奇编,李荣译高等教育出版社(1958)(5)《数学分析原理》,卢丁著,赵慈庚,蒋铎译高等教育出版社(1979)(6)《数学分析》,陈传璋等编高等教育出版社(1978)(7)《数学分析》(上、下册),欧阳光中,朱学炎,秦曾复编,上海科学技术出版社(1983)(8)《数学分析》(第一、二、三卷),秦曾复,朱学炎编,高等教育出版社(1991)(9)《数学分析新讲》(第一、二、三册),张竹生编,北京大学出版社(1990)(10)《数学分析简明教程》(上、下册),邓东皋等编高等教育出版社(1999)(11)《数学分析》(第三版,上、下册),华东师范大学数学系,高等教育出版社(2002)(12)《数学分析教程》常庚哲,史济怀编,江苏教育出版社(1998)(13)《数学分析解题指南》林源渠,方企勤编,北京大学出版社(2003)(14)《数学分析中的典型问题与方法》裴礼文编,高等教育出版社(1993)复旦大学数学分析全套视频教程全程录像,asf播放格式,国家级精品课程,三学期视频全程教师简介:陈纪修-基本信息博士生导师教授姓名:陈纪修任教专业:理学-数学类在职情况:在性别:男所在院系:数学科学学院陈纪修-本人简介姓名:陈纪修性别:男学位:博士职称:教授(博士生导师)高校教龄22年,曾获2001年上海市教学成果一等奖、获2001年国家级教学成果二等奖、获2002年全国普通高等学校优秀教材一等奖、2002年获政府特殊津贴;获宝钢教育奖(优秀教师奖);被评为“九五”国家基础科学人才培养基金实施和基地建设先进工作者。
数学分析简明教程第二版第二篇课后答案.doc
第二章函数§1 函数概念1.证明下列不等式:(1) y x y x -≥-;(2) n n xx x x x x +++≤+++ΛΛ2121;(3))(2121n n x x x x x x x x +++-≥++++ΛΛ.证明(1)由y y x y y x x +-≤+-=)(,得到y x y x -≤-,在该式中用x 与y 互换,得到x y x y -≤-,即y x y x --≥-,由此即得,y x y x -≥-.(2)当2,1=n 时,不等式分别为212111,x x x x x x +≤+≤,显然成立.假设当k n =时,不等式成立,即k k xx x x x x +++≤+++ΛΛ2121,则当1+=k n 时,有121121121121121)()(+++++++++=++++≤++++≤++++=++++k k k k k k k k k k x x x x x x x x x x x x x x x x x x x x ΛΛΛΛΛ有数学归纳法原理,原不等式成立.(3)nn n x x x x x x x x x x x x +++-≥++++=++++ΛΛΛ212121)()(21n x x x x +++-≥Λ.2.求证bba ab a ba +++≤+++111.证明由不等式b a b a +≤+,两边加上)(b a b a ++后分别提取公因式得,)1()()1(b a b a b a b a +++≤+++,即bb a a b a b b a a b a b a b a b a +++≤+++++=+++≤+++111111.3.求证.求证22),max (b a b a b a -++=;22),min(ba ba b a --+=.证明 若b a ≥,则由于b a b a -=-,故有,故有22),max (b a b a a b a -++==,22),min(b a b a b b a --+==,若b a <,则由于)(b a b a --=-,故亦有,故亦有22),max (b a b a b b a -++==,22),min(b a b a a b a --+==,因此两等式均成立.因此两等式均成立.4.已知三角形的两条边分别为a 和b ,它们之间的夹角为θ,试求此三角形的面积)(θs ,并求其定义域.,并求其定义域.解 θθsin 21)(ab s =,定义域为开区间),0(π.5.在半径为r 的球内嵌入一内接圆柱,试将圆柱的体积表为其高的函数,并求此函数的定义域.的定义域.解 设内接圆柱高为x ,则地面半径为422x r r -=',因而体积,因而体积)4(222x r x x r V -='=ππ,定义域为开区间)2,0(r .6.某公共汽车路线全长为km 20,票价规定如下:乘坐km 5以下(包括km 5)者收费1元;超过km 5但在km 15以下(包括km 15)者收费2元;元;其余收费其余收费2元5角. 试将票价表为路程的函数,并作出函数的图形.为路程的函数,并作出函数的图形.解 设路程为x ,票价为y ,则,则⎪⎩⎪⎨⎧≤<≤<≤<=.2015,5.2,155,2,50,1x x x y函数图形见右图.函数图形见右图.7.一脉冲发生器产生一个三角波.若记它随时间t 的变化规律为)(t f ,且三个角分别有对应关系0)0(=f ,20)10(=f ,0)20(=f ,求)200()(≤≤t t f ,并作出函数的图形.形.解 ⎩⎨⎧≤<-≤≤=.2010,240,100,2)(t t t t t f函数图形如右图所示.函数图形如右图所示.8.判别下列函数的奇偶性:.判别下列函数的奇偶性: (1)12)(24-+=x x x f ;(2)x x x f sin )(+=; (3)22)(xex x f -=;(4))1lg()(2x x x f ++=.解(1)定义域为),(∞+-∞,由于),(∞+-∞∈∀x ,有),(∞+-∞∈-x ,且有,且有)(121)(2)()(2424x f x x x x x f =-+=--+-=-,即得12)(24-+=x xx f 是偶函数.是偶函数.(2)定义域为),(∞+-∞,由于),(∞+-∞∈∀x ,有),(∞+-∞∈-x ,且有,且有)()sin (sin )sin()()(x f x x x x x x x f -=+-=--=-+-=-,因此,x x x f sin )(+=是奇函数.是奇函数.(3)定义域为),(∞+-∞,由于),(∞+-∞∈∀x ,有),(∞+-∞∈-x ,且有,且有)()()(222)(2x f ex ex x f x x ==-=----,即22)(xex x f -=是偶函数.是偶函数.(4)定义域为),(∞+-∞,由于),(∞+-∞∈∀x ,有),(∞+-∞∈-x ,且有,且有,)()1lg(11lg)1lg())(1lg()(2222x f x x x x x x x x x f -=++-=++=++-=-++-=-因此,)1lg()(2x x x f ++=是奇函数.是奇函数.9.判别下列函数是否是周期函数,若是,试求其周期:.判别下列函数是否是周期函数,若是,试求其周期: (1)2cos )(x x f =; (2)3sin22cos)(x x x f +=;(3)x x f 4cos )(π=;(4)x x f tan )(=.解(1)不是.若为周期函数,设周期为T ,则R x ∈∀,有)()(x f T x f =+,即22cos )cos(x T x =+,移项并使用三角公式化简得,0)2sin()2sin(222=+++T Tx T Tx x ,由R x ∈的任意性知道这是不可能的,故2cos )(x x f =不是周期函数.不是周期函数.(2)是.周期为ππ4212=和ππ6312=的最小公倍数π12.(3)是.周期是842=ππ.(4)定义域是使0tan ≥x 的一切x 的取值,即},2{)(Z k k x k x f D ∈+<≤=πππ,由于)(f D x ∈∀,必有)(f D x ∈+π,且)(tan )tan()(x f x x x f ==+=+ππ,因此x x f tan )(=是周期函数,周期为π.10.证明21)(x xx f +=在),(∞+-∞有界.有界. 证明 实际上,),(∞+-∞∈∀x ,都有,都有21112111)(2222=++⋅≤+=+=x x x xx xx f , 由定义,21)(x xx f +=在),(∞+-∞有界.有界. 11.用肯定语气叙述函数无界,并证明21)(xx f =在)1,0(无界.无界.解 叙述:若X x M M ∈∃>∀,0,使得M x f M >)(,则称函数)(x f 在X 无界.无界.0>∀M ,要使M xx f >=21)(,只须Mx 1<,取)1,0(11∈+=M x M ,则有M M xx f MM >+==11)(2,所以21)(xx f =在)1,0(无界.无界.12.试证两个偶函数的乘积是偶函数,试证两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数,两个奇函数的乘积是偶函数,两个奇函数的乘积是偶函数,一个奇函数和一个一个奇函数和一个偶函数的乘积是奇函数.偶函数的乘积是奇函数.证明 设)(,)(x g x f 是定义于X 偶函数,)(,)(x x h ϕ是定义于X 奇函数.则由于以下事实下事实)()()()(x g x f x g x f =--,)()()]()][([)()(x x h x x h x x h ϕϕϕ=--=--, )()()]()[()()(x h x f x h x f x h x f -=-=--,知两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数,一个奇函数和一个偶函数的乘积是奇函数.积是奇函数.13.设)(x f 为定义在),(∞+-∞内的任何函数,证明)(x f 可分解成奇函数和偶函数之和.之和.证明 由于)(x f 的定义域为),(∞+-∞,故)(,),(x f x -∞+-∞∈∀有意义.有意义. 令2)()()(x f x f x g -+=,2)()()(x f x f x h --=,则)(x g 是偶函数,)(x h 是奇函数,且有)()()(x h x g x f +=.14.用肯定语气叙述:在),(∞+-∞上 (1) )(x f 不是奇函数;不是奇函数; (2) )(x f 不是单调上升函数;不是单调上升函数; (3) )(x f 无零点;无零点; (4) )(x f 无上界.无上界.解 (1)),(0∞+-∞∈∃x ,使得)()(00x f x f -≠-,则)(x f 在),(∞+-∞不是奇函数;函数;(2)),(,21∞+-∞∈∃x x ,虽然21x x <,但)()(21x f x f >,则)(x f 在),(∞+-∞不是单调上升函数;不是单调上升函数;(3)),(∞+-∞∈∀x ,均有0)(≠x f ,则)(x f 在),(∞+-∞无零点;无零点; (4)),(,),(∞+-∞∈∃∞+-∞∈∀b x b ,使得b x f b >)(,则)(x f 在),(∞+-∞无上界.上界.§2 复合函数与反函数1.设xx x f +-=11)(,求证x x f f =))((.证明 ()x f 定义域为1-≠x 的一切实数,因此1-≠∀x ,有,有()()()()x x x x x xx xx x x xf x f x f f =+-++++-+=+-++--=+-=11111111111111.2.求下列函数的反函数及其定义域:.求下列函数的反函数及其定义域:(1) +∞<<⎪⎭⎫ ⎝⎛+=x x x y 1,121;(2) ()+∞<<∞--=-x ee y xx,21;(3) ⎪⎩⎪⎨⎧+∞<<≤≤<<∞-=.x x x x x y x4,2,41,,1,2解(1)变形为0122=+-yx x ,解得12-+=y y x ,由于()+∞∈∀=⋅⋅≥⎪⎭⎫ ⎝⎛+=,1,11221121x x x x x y成立,因此函数⎪⎭⎫ ⎝⎛+=x x y 121,+∞<<x 1的反函数为()∞+∈-+=,1,12x x x y .(2)变形得,0122=--xxye e,解出1244222++=++=y y y y e x,即()1ln 2++=y yx ,因此原来函数的反函数为()∞+∞-∈++=,,)1ln(2x x x y.(3)当1<<∞-x 时,1,<<∞-=y y x ,当41≤≤x 时,161,≤≤=y y x ,而当+∞<<x 4时,16,log 2>=y y x .所以反函数为.所以反函数为⎪⎩⎪⎨⎧+∞<<≤≤<<∞-=.x x x x x x y 16,log ,161,,1,2定义域为()+∞∞-,.3.设()x f ,()x g 为实轴上的单调函数,求证))((x g f 也是实轴上的单调函数.也是实轴上的单调函数.证明 设()x f ,()x g 为实轴上的单调增函数,即()2,1,,=+∞∞-∈∀i x i ,且,21x x <有()()()()2121,x g x g x f x f ≤≤,因此))(())((21x g f x g f ≤,即))((x g f 也是单调增函数.数.同理可证:当()x f ,()x g 为实轴上的单调减函数时,))((x g f 也是单调增函数;当()xf 为增函数,而()xg 为减函数或()x f 为减函数,而()x g 为增函数时,))((x g f 均为减函数.因此,()x f ,()x g 为实轴上的单调函数时,))((x g f 也是实轴上的单调函数.也是实轴上的单调函数.4.设.设()⎩⎨⎧>≤--=.0,,0,1x x x x x f ()⎩⎨⎧>-≤=.0,,0,2x x x x x g ,求复合函数))((x g f ,))((x f g .解 有复合函数的定义,立即可得有复合函数的定义,立即可得⎩⎨⎧>-≤--=,0,1,0,1))((2x x x x x g f()⎪⎩⎪⎨⎧>-≤≤----<<∞-+-=.0,,01,1,1,1))((22x x x x x x x f g5.设21)(xx x f +=,求))((x f f f n 4434421οΛοο次.解 2222221111)(1)())((xxxx xxx f x f x f f +=+++=+=ο,归纳法假设,归纳法假设21))((kxxx f f f k +=4434421οΛοο次, 则有则有222)1(111)1()))((())((kx x kx xkx xf x f f f f x f f f k k +++=+==+4434421οΛοο4434421οΛοο次次2)1(1xk x ++=,依归纳法原理,知21))((nxx x f f f n +=4434421οΛοο次.6.设x x x f --+=11)(,试求))((x f f f n 4434421οΛοο次.解 ⎪⎩⎪⎨⎧>≤≤--<-=1,2,11,2,1,2)(x x x x x f , ⎪⎪⎪⎩⎪⎪⎨⎧>≤≤--<-=21,2,2121,4,21,2))((x x x x x f f ο ,归纳法假设归纳法假设 ⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤-<-=----111121,2,2121,2,21,2))((k k k k kk x x x x x f f f 4434421οΛοο次 ,则当1+=k n 时,有时,有 ⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤-<-==++,21,2,2121,2,21,2)))((())((1)1(k k k k k k k x x x x x f f f f x f f f 4434421οΛοο4434421οΛοο次次所以,所以,⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤-<-=----.次111121,2,2121,2,21,2))((n n n nn n x x x x x f f f 4434421οΛοο 7.设xx f -=11)(,求))((x f f ,)))(((x f f f ,))(1(x f f .解 xx f -=11)(定义域1≠x 的一切实数,)(11))((x f x f f -=要求1)(≠x f 且1≠x ,因此,因此xxxx f x f f -=--=-=11111)(11))((,0≠x 且1≠x ; ))((11)))(((x f f x f f f -=要求1))((≠x f f 且0≠x ,1≠x ,因此,因此x xx x f f xf f f =--=-=111))((11)))(((,21≠x ,0≠x 且1≠x ; )(111))(1(x f x f f -=要求1≠x 且1)(1≠x f ,因此,因此x x x f x f f 1)1(11)(111))(1(=--=-=,0≠x 且1≠x .§3 初等函数1.对下列函数分别讨论函数的定义域和值域,奇偶性,周期性,有界性,并作出函数的图形:的图形:(1) x y =;(2) ][x x y -=;(3) x y tan =; (4) )2(x x y -=;(5) x y 2sin =;(6) x x y cos sin +=.解(1)定义域),(∞+-∞=D ,值域),0[)(∞+=X f ,是偶函数,无界非周期函数; (2)定义域),(∞+-∞=D ,值域)1,0[)(=X f ,既非奇函数也非偶函数,是周期为1的有界周期函数;的有界周期函数;(1)题图)题图 (2)题图)题图(3)定义域),(∞+-∞=D ,值域),()(∞+-∞=X f ,是偶函数,无界非周期函数; (4)定义域]2,0[=D ,值域]1,0[)(=X f ,既非奇函数也非偶函数,是有界非周期函数;函数;(3)题图)题图 (4)题图)题图(5)定义域),(∞+-∞=D ,值域]1,0[)(=X f ,是偶函数,是周期为π的有界周期函数;函数;(6)定义域),(∞+-∞=D ,是偶函数.,是偶函数.由于x x x x x y 2sin 1cos sin 2cos sin 222+=++=,所以212≤≤y ,并注意到0≥y ,得到函数的值域]2,1[)(=X f ,因而是有界函数.因为,因而是有界函数.因为)(cos sin sin cos )2cos()2sin()2(x y x x x x x x x y =+=-+=+++=+πππ,所以函数x x y cos sin +=是周期为2π的周期函数.的周期函数.2.若已知函数)(x f y =的图形,作函数的图形,作函数)(1x f y =,)(2x f y -=,)(3x f y --=的图形,并说明321,,y y y 的图形与y 的图形的关系.的图形的关系.解 由于⎩⎨⎧<-≥==0)(,)(,0)(,)()(1x f x f x f x f x f y ,故其图形是将函数)(x f y =的图形在x轴上方部分的不动,在x 轴下方的部分绕x 轴旋转ο180后即得;后即得;)(2x f y -=的图形是将函数)(x f y =的图形绕y 轴旋转ο180后得到的;后得到的; )(3x f y --=的图形是将函数)(x f y =的图形在坐标平面内绕坐标原点旋转ο180后得到的.得到的.3.若已知函数)(x f ,)(x g 的图形,试作函数的图形,试作函数 ])()()()([21x g x f x g x f y -±+= 的图形,并说明y 的图形与)(x f 、)(x g 图形的关系.图形的关系.解 由于由于 )}(),(max{)()(,)(,)()(,)(])()()()([21x g x f x g x f x g x g x f x f x g x f x g x f =⎩⎨⎧<≥=-++, )}(),(min{)()(,)(,)()(,)(])()()()([21x g x f x g x f x f x g x f x g x g x f x g x f =⎩⎨⎧<≥=--+, 因而极易由函数)(x f ,)(x g 的图形作出两函数])()()()([21x g x f x g x f y -±+=的图形,也知其关系.形,也知其关系.4. 作出下列函数的图形:作出下列函数的图形:(1) x x y sin =;(2) x y 1sin =. 解 图形如下.图形如下.(1)题图)题图 (2)题图)题图5.符号函数.符号函数 ⎪⎩⎪⎨⎧<-=>==,0,1,0,0,0,1sgn x x x x y 试分别作出x sgn ,)2sgn(x ,)2sgn(-x 的图形.的图形.解x sgn)2sgn(x)2sgn(-x6.作出下列函数的图形:.作出下列函数的图形:(1) x y cos sgn =;(2) ⎥⎦⎤⎢⎣⎡-=22][x x y . 解(1)(2)。
数学分析课后习题答案--高教第二版(陈纪修)--10章
第十章 函数项级数习 题 10. 1 函数项级数的一致收敛性1. 讨论下列函数序列在指定区间上的一致收敛性。
⑴ S n (x ) = , (i) x nx −e ∈)1,0(, (ii) x ∈; ),1(+∞ ⑵ S n (x ) = x , x nx −e ∈),0(+∞;⑶ S n (x ) = sin nx , (i)x ∈),(+∞−∞, (ii) x ∈],[A A −(); 0>A ⑷ S n (x ) = arctan nx , (i)x ∈)1,0(, (ii) x ∈; ),1(+∞ ⑸ S n (x ) =221nx +, x ∈),(+∞−∞; ⑹ S n (x ) = nx (1 - x )n , x ∈]1,0[;⑺ S n (x ) =n x ln n x, (i) x ∈)1,0(, (ii) x ∈);),1(+∞ ⑻ S n (x ) = nnx x +1, (i) x ∈)1,0(, (ii) x ∈;),1(+∞ ⑼ S n (x ) = (sin x )n , x ∈],0[π;⑽ S n (x ) = (sin x )n1, (i) x ∈[0,]π, (ii) x ∈],[(0>δ);δπδ− ⑾ S n (x ) = nn x ⎟⎠⎞⎜⎝⎛+1, (i) x ∈),0(+∞, (ii)x ∈],0(A (); 0>A ⑿ S n (x ) = ⎟⎟⎠⎞⎜⎜⎝⎛−+x n x n 1, (i) x ∈),0(+∞, (ii)[)0,,>+∞∈δδx 。
解 (1)(i) ,0)(=x S )()(sup ),()1,0(x S x S S S d n x n −=∈1= ─/→ 0(∞→n ), 所以{}()n S x 在上非一致收敛。
(0,1) (ii) ,0)(=x S )()(sup ),(),1(x S x S S S d n x n −=+∞∈n e −=)(0∞→→n ,所以{}()n S x 在上一致收敛。
数值分析简明教程第二版课后习题答案 高等教育出版社
算法1、 (,题1)用二分法求方程013=--x x 在[1,2]内的近似根,要求误差不超过10-3.【解】 由二分法的误差估计式311*10212||-++=≤=-≤-εk k k a b x x ,得到100021≥+k .两端取自然对数得96.812ln 10ln 3≈-≥k ,因此取9=k ,即至少需2、(,题2) 证明方程210)(-+=x e x f x在区间[0,1]内有唯一个实根;使用二分法求这一实根,要求误差不超过21021-⨯。
【解】 由于210)(-+=x e x f x ,则)(x f 在区间[0,1]上连续,且012010)0(0<-=-⨯+=e f ,082110)1(1>+=-⨯+=e e f ,即0)1()0(<⋅f f ,由连续函数的介值定理知,)(x f 在区间[0,1]上至少有一个零点.又010)('>+=x e x f ,即)(x f 在区间[0,1]上是单调的,故)(x f 在区间[0,1]内有唯一实根.由二分法的误差估计式211*1021212||-++⨯=≤=-≤-εk k k a b x x ,得到1002≥k .两端取自然对数得6438.63219.322ln 10ln 2=⨯≈≥k ,因此取7=k ,即至少需二分误差1.(,题8)已知e=…,试问其近似值7.21=x ,71.22=x ,x 2=,718.23=x 各有几位有效数字?并给出它们的相对误差限。
【解】有效数字:因为11102105.001828.0||-⨯=<=-K x e ,所以7.21=x 有两位有效数字; 因为12102105.000828.0||-⨯=<=-K x e ,所以71.22=x 亦有两位有效数字;因为3310210005.000028.0||-⨯=<=-K x e ,所以718.23=x 有四位有效数字;%85.17.205.0||111=<-=x x e r ε; %85.171.205.0||222=<-=x x e r ε; %0184.0718.20005.0||333=<-=x x e r ε。
陈纪修《数学分析》配套题库【课后习题】(集合与映射)
第 1 章 集合与映射
§1 集 合
1.证明由 n 个元素组成的集合 证明:由 k 个元素组成的子集的个数可列式为
有 个子集.
2.证明:
(1)任意无限集必包含一个可列子集;
(2)设 A 不 B 都是可列集,证明 A U B 也是可列集.
6.举例说明集合运算丌满足消去律: (1) (2) 其中符号 表示左边的命题丌能推出右边的命题. 解:(1)设 A={a,b,c},B={b,c,d},C={c,d},则 (2)设 A={a,b,c},B={c,d,e},C={c,d},则
,但 B≠C. ,但 B≠C.
7.下述命题是否正确?丌正确的话,请改正.
(4){a,b,{a,b}}={a,b}.
解:(1){0}是由元素 0 构成的集合,丌是空集.
(2)a 是集合{a,b,c}的元素,应表述为 a∈{a,b,c}.
(3){a,b}是集合{a,b,c}的子集,应表述为
.
(4){a,b,{a,b}}是由 a,b 和{a,b}为元素构成的集合,故
,
或{a,b}∈{a,b,{a,b}},但{a,b,{a,b}}≠{a,b}.
4.用集合符号表示下列数集:
(1)满足
的实数全体;
(2)平面上第一象限的点的全体;
(3)大于 0 并且小于 1 的有理数全体;
(4)方程 sinxcot x=0 的实数解全体.
解:(1){x|-2<x≤3}.
(2){(x,y)|x>0 且 y>0}.
(3){x|0<x<1 且 x∈Q}|.
(4)
.
5.证明下列集合等式: (1) (2)
故
.
陈纪修《数学分析》(第2版)(上册)课后习题(第1~4章)【圣才出品】
13.试求定义在[0,1]上的函数,它是[0,1]与[0,1]之间的一一对应,但在[0,1]的 任一子区间上都不是单调函数.
解:
8 / 96
圣才电子书
十万种考研考证电子书、题库视频学习平台
第 2 章 数列极限
§1 实数系的连续性
(2)
;
十万种考研考证电子书、题库视频学习平台
(3){a,b}∈{a,b,c};
(4){a,b,{a,b}}={a,b}.
解:(1){0}是由元素 0 构成的集合,不是空集.
(2)a 是集合{a,b,c}的元素,应表述为 a∈{a,b,c}.
(3){a,b}是集合{a,b,c}的子集,应表述为
.
(4){a,b,{a,b}}是由 a,b 和{a,b}为元素构成的集合,故
=(1,-1),C=(3,2),D=(4,0).
解:
11.设 f(x)表示图 1-1 中阴影部分面积,写出函数 y=f(x),x∈[0,2]的表达式.
解:
图 1-1
7 / 96
圣才电子书 十万种考研考证电子书、题库视频学习平台
12.一玻璃杯装有汞、水、煤油三种液体,密度分别为 13.6g/cm3,1g/cm3,0.8g /cm3,如图 1-2,上层煤油液体高度为 5cm,中层水液体高度为 4cm,下层汞液体高度 为 2cm,试求压强 P 与液体深度 x 之间的函数关系.
,但 B≠C. ,但 B≠C.
7.下述命题是否正确?不正确的话,请改正.
3 / 96
圣才电子书 十万种考研考证电子书、题库视频学习平台
(1)
并且 x∈B;
(2)
数学分析习题答案(陈纪修第二版)
解(1)不正确。 x ∈ A ∩ B ⇔ x ∈ A 或者 x ∈ B 。 (2)不正确。 x ∈ A ∪ B ⇔ x ∈ A 并且 x ∈ B 。
(A ∪ B)C ⊃ AC ∩ BC 。 ⒍ 举例说明集合运算不满足消去律:
(1) A ∪ B = A ∪ C ≠> B = C ; (2) A ∩ B = A ∩ C ≠> B = C 。 其中符号“ ≠> ”表示左边的命题不能推出右边的命题。
解 (1)设 A = {a,b,c},B = {b,c, d},C = {c, d},则 A∪ B = A ∪ C ,但 B ≠ C 。 (2)设 A = {a,b,c}, B = {c, d,e}, C = {c, d},则 A∩ B = A ∩ C ,但 B ≠ C 。
并且或者 x ∈ B ,或者 x ∈ D ,即 x ∈ A ∩ (B ∪ D) ,因此
A ∩ (B ∪ D) ⊃ (A ∩ B) ∪ (A ∩ D) 。
2
(2)设 x ∈ ( A ∪ B)C ,则 x∈A ∪ B ,即 x∈A 且 x∈B ,于是 x ∈ AC ∩ BC ,因 此
(A ∪ B)C ⊂ AC ∩ BC ; 设 x ∈ AC ∩ BC ,则 x∈A 且 x∈B ,即 x∈A ∪ B ,于是 x ∈ ( A ∪ B)C ,因此
解(1){x | −2 < x ≤ 3}。
(2){(x, y) | x > 0且 y > 0}。
(3){x | 0 < x <1且 x ∈Q}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有 an <
9⎤ 2(3n + 1) 3 ,所以 ∀ε > 0 ,取 N = ⎡ ,当 n > N 时,成立 < ⎢ n(n − 1) n ⎣ε 2 ⎥ ⎦
n
3n + 2 − 1 = a n <
3 n
<ε。
.k
hd
(5) ∀ε (0 < ε < 1) ,取 N = max⎨⎡ ⎢ 则成立 xn − 1 =
α
2
案 网
(1)的结论矛盾。
ww w
9
3+ 2 =
m2 m2 5 m ,于是 3 + 2 6 + 2 = 2 , 6 = 2 − ,即 6 是有理数,与 2 n n 2n
.k
hd
aw .c om
max C 与 min C 都不存在,因为 ∀
n n n +1 ,所以 max C 与 min C 都不存在。 < < m +1 m m +1
hd
(2) ∀ε (0 < ε < 1) ,取 N = ⎢
n n
⎡ lg ε ⎤ ⎥ ,当 n > N 时,成立 ⎣ lg 0.99 ⎦
lg ε lg 0.99
案 网
(−1) (0.99) < (0.99)
后 答
2⎤ 2⎤ 1 ε ⎡ n > N 取 N1 = ⎡ , 当 时, 成立 ; 取 (3) = ∀ε (0 < ε < 2) , N log < 1 2 5 ⎢ ⎥ ⎢ ⎥, ⎣ε ⎦ n 2 ⎣
8. 设 S = {x| x ∈ Q并且 x 2 < 3} ,证明: (1) S 没有最大数与最小数; (2) S 在 Q 内没有上确界与下确界。
⎛q⎞ q q q ⎟ < 3 , < 2 。取有理数 r > 0 充分小, 证 (1) ∀ ∈ S , > 0 ,则 ⎜ ⎜ ⎟ p p p ⎝ p⎠
2 2
n +1
2
=ε 。
ε⎦
课
当 n > N 2 时,成立 5− n < ;则当 n > N = max{N1 , N 2 }时,成立 + 5− n < ε 。
2 ⎤ ,当 n > N 时,成立 (4) ∀ε (0 < ε < 1) ,取 N = ⎡ ⎢ ⎣ε ⎥ ⎦ 1
ε
1 n
0<
1+ 2 + + n n +1 1 = < <ε。 n3 2n 2 n
2
⎝m⎠
2n n ⎛n ⎞ ⎛n⎞ ⎛n⎞ r + r 2 > ⎜ ⎟ − 4r + r 2 > 3 ,这说明 − r 也是 S 的上 ⎜ − r⎟ = ⎜ ⎟ − m m ⎝m ⎠ ⎝m⎠ ⎝m⎠
2
2
界,与 sup S =
n 矛盾。所以 S 没有上确界。 m
同理可证 S 没有下确界。
11
习
题
2.2
2
2
2
2
n ( m, n ∈ N + 且 m , n 互 m
这说明
课
n n + r ∈ S ,与 sup S = 矛盾; m m
2 2
n⎞ ⎛n⎞ 2 ( ii ) ⎛ ⎜ ⎟ > 3 ,取有理数 r > 0 充分小,使得 4r − r < ⎜ ⎟ − 3 ,于是 ⎝m⎠
2
后 答
n ⎛n⎞ ⎞ 由 ( 1) 可知存在充分小的有理数 r > 0 , 使得 ⎛ (i) ⎜ ⎟ < 3, ⎜ + r⎟ < 3, ⎝m⎠ ⎝m ⎠
⎧n ⎫ C=⎨ m, n ∈ N + 并且n < m ⎬ 。 ⎩m ⎭
解
min A = 0 ;因为 ∀x ∈ A ,有 x + 1 ∈ A , x + 1 > x ,所以 max A 不存在。
max B = sin
课
sin
α
2
∈ B , sin
后 答
π
⎛ π⎤ = 1 ;因为 ∀x ∈ B , ∃α ∈ ⎜ 0, ⎥ ,使得 x = sin α ,于是有 2 ⎝ 2⎦ < x ,所以 min B 不存在。
使得 x > B − ε > A , 这与 A 为集合 S 的 集合 S 的上确界, 所以存在 x ∈ S , 上确界矛盾,所以 A = B ,即有界数集的上确界唯一。同理可证有界 数集的下确界唯一。 6. 对任何非空数集 S ,必有 sup S ≥ inf S 。当 sup S = inf S 时,数集 S 有什 么特点? 解 对 于 任 意 的 x ∈ S , 有 inf S ≤ x ≤ sup S , 所 以 sup S ≥ inf S 。 当
aw .c om
Khdaw团队一直秉承用心为大家服务的宗旨,以关注学生的学习生活为出发点,
第二章
习 题 2.1
数列极限
实数系的连续性
1. (1) 证明 6 不是有理数; (2)
3 + 2 是不是有理数?
m 。 由 m 2 = 6n 2 , n
证 (1) 反证法。 若 6 是有理数, 则可写成既约分数 6 =
课后答案网,用心为你服务!
大学答案 --- 中学答案 --- 考研答案 --- 考试答案 最全最多的课后习题参考答案,尽在课后答案网()!
旨在为广大学生朋友的自主学习提供一个分享和交流的平台。
课
后 答
案 网
ww w
.k
hd
爱校园() 课后答案网() 淘答案()
n n n +1 ∈ C ,有 ∈C , ∈C , m m +1 m +1
3. A, B 是两个有界集,证明: (1) A ∪ B 是有界集; (2) S = { x + y | x ∈ A, y ∈ B} 也是有界集。 证 (1)设 ∀x ∈ A ,有 x ≤ M 1 , ∀x ∈ B ,有 x ≤ M 2 ,则 ∀x ∈ A ∪ B ,有
3
12
(6)当 n > 5 ,有
3 n 35 ≤ n! 5!
⎛1⎞ ⋅⎜ ⎟ ⎝2⎠
n −5
⎛1⎞ < 3⋅⎜ ⎟ ⎝2⎠
n −5
。于是 ∀ε (0 < ε < 3) ,取
⎡ ε⎤ n −5 ⎢ lg 3 ⎥ 3n ⎛1⎞ N = 5+ ⎢ ,当 n > N 时,成立 0 < < 3 ⋅ ⎜ ⎟ < ε 。 1⎥ n! ⎝2⎠ ⎢ lg ⎥ ⎣ 2⎦
即
hd
q + r ∈ S ,所以 S 没有最大数。同理可证 S 没有最小数。 p
质) ,则显然有 0 < 可能:
2
n < 2 。由于有理数平方不能等于3,所以只有两种 m
案 网
ww w
.k
(2)反证法。设 S 在 Q 内有上确界,记 sup S =
aw .c om
⎛q⎞ ⎛q ⎞ ⎛q⎞ ⎛q⎞ 2q 2 2 于是 ⎜ 使得 r + 4r < 3 − ⎜ ⎜ p⎟ ⎟ , ⎜ p + r⎟ ⎟ =⎜ ⎜ p⎟ ⎟ +r + p r <⎜ ⎜ p⎟ ⎟ + r + 4r < 3 , ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
n2 + n −1 = n
1
1 n2 + n + n
<
1 <ε 。 2n
⎤ (3) ∀ε > 0 ,取 N = ⎡ ,当 n > N 时,成立 ⎢ ⎣ 8ε ⎥ ⎦
( n 2 + n − n) −
1 n 1 = < <ε。 2 2( n 2 + n + n) 2 8n
2 2 a n 。当 n > 3 时, (4)令 n 3n + 2 = 1 + a n ,则 a n > 0 ,3n + 2 = (1 + an ) n > 1 + C n
sup S = inf S 时,数集 S 是由一个实数构成的集合。
10
课
案 网
ww w
存在 y ∈ S , 使得 y > sup S − ε , 即 x ≥ − sup S ; 同时对任意 ε > 0 , − x ≤ sup S ,
.k
hd
aw .c om
7. 证明非空有下界的数集必有下确界。 证 参考定理2.1.1的证明。
.k
1
1
1
hd
1
n →∞
( 8 )首先有不等式 0 < −
1 n
1 1 + −பைடு நூலகம்n +1 n + 2
+ (−1) n
⑵ lim
后 答
lim ( n 2 + n − n) = ; ⑶ n →∞
1 2
lim n 3n + 2 = 1 ; ⑷ n →∞
⎧n + n ⎪ lim x n =1,其中 x n = ⎨ n , n是偶数, 。 ⑸ n →∞ −n ⎪ ⎩1 − 10 , n是奇数,
1⎞ n! n (7)记 的整数部分为 m ,则有 n <⎛ ⎜ ⎟ 。 ∀ε (0 < ε < 1) , 取 2 n ⎝2⎠
m
n! ⎛ 1 ⎞ 0< n <⎜ ⎟ <ε 。 n ⎝2⎠
m
2. 按定义证明下述极限: ⑴ lim
n →∞
2n 2 − 1 2 = ; 3n 2 + 2 3