概率与统计中的事件的互斥与包含关系
概率论与统计1-2事件的关系和运算
独立事件的概率计算公式
若事件A和B独立,则$P(A cap B) = P(A)P(B)$。
独立事件的概率性质
若事件A和B独立,则$P(A cup B) = P(A) + P(B) - P(A cap B)$。
独立事件的概率计算实例
在掷骰子游戏中,若事件A为掷出偶数点,事件B为掷出3 点,由于A和B是独立的,所以$P(A cap B) = P(A)P(B) = frac{1}{2} times frac{1}{6} = frac{1}{12}$。
贝叶斯公式则是在已知某些其他事件发生的条件 下,重新评估某个事件发生的概率。
全概率公式用于计算一个事件发生的概率,考虑 了所有可能的情况和它们发生的概率。
全概率公式和贝叶斯公式在应用上有所不同,全 概率公式更适用于对整个事件进行分类和计算, 而贝叶斯公式则更适用于在已知某些条件下对事 件进行预测和推断。
完备事件组中的所有事件的概率之和 为1。
完备事件组中的任意两个事件都是互 斥的。
利用完备事件组计算概率
利用完备事件组计算概率的基本思想
将复杂事件分解为若干个互斥事件的并集,然后利用概率的加法公式计算复杂事 件的概率。
利用完备事件组计算概率的方法
首先确定完备事件组,然后确定所求事件的概率,最后利用概率的加法公式计算 出所求事件的概率。
差运算的应用
在概率论中,差运算常用于计算某个事件发生的概率减去其他事件 同时发生的概率。
03
条件概率与贝叶斯公式
条件概率的定义与性质
条件概率的定义
在概率论中,条件概率是指在某 个事件B已经发生的情况下,另一 个事件A发生的概率,记作P(A|B) 。
条件概率的性质
条件概率具有一些重要的性质, 包括非负性、规范性、可加性等 ,这些性质在概率论和统计中有 着广泛的应用。
概率论与数理统计ch1-2
试验二:掷色子
设A=“出现1点”
P(A) 1 0.16& 6
试验次数 10 100 1000 5000 10000 20000 50000
A出现的频数 2 15 153 850 1719 3381 8204
摩根法则:
A B A B ; AB A B
★用简单事件的运算来表示复杂事件!
CH1 随机事件及其概率
§1.2 事件的概率
研究随机试验,仅仅知道所有可能结果是不 够的,还需要了解各种结果出现的可能性大小。
概率就是描述事件A发生可能性大小的一个量。
本节给出概率的四种定义:
一、概率的统计定义
二、概率的古典定义★
概率的古典定义仅适用于具有下述特点的试验模型: (1) 试验中所有基本事件的总数是有限的; —有限性 (2) 每次试验中,各基本事件的发生是等可能的。 —等可能性
——古典概型(等可能性模型)
定义: 如果古典概型中,所有基本事件的总数为n,而
A所包含的基本事件数为m,则事件A发生的 概率为:
公理1(非负性):0 P(A) 1; 公理2(规范性): P() 1;
公理3(可列可加性): 对于两两互斥的事件列A1, A2,L , An,L ,有 P( A1 A2 L An L ) P( A1) P( A2) L P( An ) L 概率则是称非P负(A的)为、事规件范A的的、概可率列。可加的集函数。
m1 m2 m1 m2
fn(A+B)= fn(A) +fn(B)
m1 m2 m1 m2
n
nn
概率事件的关系与运算知识点总结
概率事件的关系与运算知识点总结一、事件的关系。
1. 包含关系。
- 定义:如果事件A发生必然导致事件B发生,那么称事件B包含事件A,记作A⊆ B。
例如,在掷骰子试验中,设事件A=“掷出的点数为1”,事件B=“掷出的点数为奇数”,那么A发生时B一定发生,所以A⊆ B。
- 特殊情况:如果A⊆ B且B⊆ A,那么A = B,即这两个事件是同一个事件。
2. 互斥关系(互不相容关系)- 定义:如果事件A与事件B不能同时发生,即A∩ B=varnothing (varnothing为空集),那么称A与B是互斥事件。
例如,掷一枚硬币,事件A=“正面朝上”,事件B=“反面朝上”,A和B不可能同时发生,所以A与B互斥。
3. 对立关系。
- 定义:如果A∩ B=varnothing且A∪ B=varOmega(varOmega为样本空间),那么称A与B是对立事件,B叫做A的对立事件,记作B=¯A。
例如,在掷骰子试验中,设事件A=“掷出的点数为偶数”,事件B=“掷出的点数为奇数”,A∩ B=varnothing且A∪ B={1,2,3,4,5,6}(整个样本空间),所以A与B是对立事件。
- 关系:对立事件一定是互斥事件,但互斥事件不一定是对立事件。
4. 独立关系(如果涉及到选修内容)- 定义:设A,B是两个事件,如果P(AB)=P(A)P(B),则称事件A与事件B相互独立。
例如,连续掷两次硬币,事件A=“第一次正面朝上”,事件B=“第二次正面朝上”,P(A)=(1)/(2),P(B)=(1)/(2),P(AB)=(1)/(4),满足P(AB) = P(A)P(B),所以A与B相互独立。
二、事件的运算。
1. 事件的并(和)运算。
- 定义:事件A与事件B的并(和)事件A∪ B是由所有A发生或B发生的基本事件组成的集合。
例如,掷骰子试验中,设事件A=“掷出的点数为1或2”,事件B=“掷出的点数为3或4”,那么A∪ B=“掷出的点数为1、2、3或4”。
概率包含关系
概率包含关系
概率论是统计学的重要组成部分,用来研究行为的不确定性的概
率发生变化的可能性。
概率关系包括有互斥关系、余弦关系、条件概
率关系和独立性关系。
互斥关系是两个事件之间不可能共存的关系,它们发生时,另一
个可能就不会发生了。
以抛硬币来说,朝上事件和朝下事件之间就存
在互斥关系。
余弦关系指的是两个概率变量之间的关系,通常用了表示某件事
情的几率是在两个变量之间的某个值。
比如一次抛硬币时出现朝上发
生的概率值可以通过朝上出现的概率和朝下出现的概率的乘积来表示,这就是余弦关系。
条件概率关系引入其他条件后,来测量两个事件之间的关系。
它
表示A在知道B发生时发生的几率,它和余弦关系有些类似。
比如说,知道第一次抛硬币就是朝下出现时,朝上出现的概率,就是一个条件
概率关系。
最后,独立性关系是讨论两个事件发生时,是否它们之间存在联
系的关系。
即A和B事件之间发生的顺序不重要,不会影响它们的概率,两个事件之间时相互独立的关系,抛掷硬币就可以表示一个独立
性关系。
概率关系是概率学中极为重要的一种概念,它们可以在统计学中
应用到很多地方,把难以测量的概率计算出来,进而得出最后结论。
对于概率关系的理解,对于更好地研究行为的不确定性和概率发生变
化有着极大的好处。
概率论与数理统计笔记(重要公式)
r = A 中样本点数 / Ω 中样本点总数 n
= A 所包含的基本事件数 / 基本事件总数 条件概率:
对偶律: A B = A B , P ( AB ) 设 A, B 是两个事件, 且 P(B)>0, 称 P(A|B)= 为 贝叶斯公式: P( B) 在事件 B 发生条件下事件 A 发生的条件概率。显然, 当 P(A)>0 时,P(B|A)=
二项分布 X ~ B(n, p): 指数分布 X ~ E(λ) 若随机变量 X 只取两个可能值 0, 1, …, n, 而 X 的分布律为 e x x 0 若随机变量 X 的概率密度为 f ( x) k k nk pk =P {X= xk }= Cn p q , k=0, 1, 2, …, n, x0 0
设 X 为离散型随机变量, 可能取值为 x1, x2, …, xk, … 且 P 概率密度的性质: (1) f(x)≥0 {X= xk }= pk, k=1, 2, …, 则称{pk}为 X 的分布律 表格形式: f ( x)dx =1 (2) X x1, x2, …, xk, … b P p1, p2, …, pk, … (3) P{a<X≤b}= F(b)-F(a)= f ( x)dx , a≤b a {pk}性质: (4) 设 x 为 f(x)的连续点,则 F’(x)存在,且 (1) pk≥0, k=1, 2, … F’(x)= f(x) (2) pk =1 均匀分布 X ~ U (a, b) k 1 若随机变量 X 的概率密度为 在求离散型随机变量的分布律时,首先要找出其所有可能 1 , a≤x≤b 的取值,然后再求出每个值相应的概率 ba f(x) = 在实际应用中,有时还要求“X 满足某一条件”这样事件的 概率, 求法就是把满足条件的 xk 所对应的概率 pk 相加可得 0, 其他 则称 X 服从区间[a,b]上的均匀分布,其分布函数为 其分布函数 F(x) = pk xk x 0, x≤a 0-1 分布: xa F(x) = , a<x<b 若随机变量 X 只取两个可能值 0, 1,且 ba P {X=1}=p, P{X=0}=q 1, x≥b 其中 0<p<1, q=1-p, 则称 X 服从 0-1 分布. X 的分布律为 设 X ~ U (a, b), a≤c<d≤b,即[a,b] [c,d],则 X 0 1 d c P{c≤X≤d}= P q p ba
概率事件的关系与运算知识点
概率事件的关系与运算知识点一、知识概述《概率事件的关系与运算知识点》①基本定义:概率事件就是在一定条件下可能发生也可能不发生的事情。
事件之间有各种关系和运算呢。
比如说,包含关系,就像大盒子装小盒子一样,如果事件A发生时事件B一定发生,那就说A包含于B。
还有相等关系,简单讲就是两个事件其实是一回事,发生的情况完全相同。
互斥事件啊,就是两个事件不能同时发生,就像白天和黑夜不能同时出现一样。
对立事件是特殊的互斥事件,除了不能同时发生,而且这两个事件的概率之和为1,就好比成功和失败加起来就是所有可能的按我的经验这是概率里很基础的东西,能帮我们更清楚地分析事情发生的可能性。
②重要程度:在概率学科里,这可是基础中的基础。
如果不懂事件的关系与运算,后面好多更复杂的概率计算和分析都没法弄,就像是盖房子,这是地基。
③前置知识:得先知道什么是概率,比如某个事情发生可能性的大小量化表示,像抛硬币正面朝上的概率是这种。
还得有点简单集合的概念,因为事件关系有点像集合间的关系。
④应用价值:在实际中超级有用。
比如彩票中奖的概率计算,不同奖项之间的关系就涉及到事件关系与运算。
还有保险理赔的概率评估,不同风险事件之间怎么相互影响。
二、知识体系①知识图谱:在概率学科的体系里,这是刚开始学概率就得掌握的内容,是后续学习概率分布、数字特征等知识的基石。
②关联知识:和概率计算、条件概率、贝叶斯公式等知识点都有联系。
因为要计算概率很多时候得先理清楚事件之间的关系。
③重难点分析:- 掌握难度:对于初学者来说,感觉有点抽象,特别是那种包含关系、互斥和对立关系的区分。
我当时刚学的时候就有点迷糊。
- 关键点:理解事件关系的定义,多从实际例子去感受。
④考点分析:- 在考试中的重要性:非常重要,不管是小测验还是大考试,都会考。
- 考查方式:选择题考概念辨析,大题可能让你计算考虑事件关系后的概率。
三、详细讲解【理论概念类】①概念辨析:- 包含关系:如果事件A发生必然导致事件B发生,就说A包含于B。
事件间的关系与事件的运算
第一周随机事件及其概率运算1.3事件间的关系与事件的运算事件关系(包含,相等,互不相容,对立)(1)包含关系:若事件,A B 满足A B⊂,则称事件B 包含事件A ,用示性函数表示为()()ωω≤A B I I .(2)相等关系:若A B ⊂,且A B ⊂,即B A =,则称事件A 与事件B 相等(或等价),为同一事件。
用示性函数表示为()()A B I I ωω=.(3)互不相容关系,也称互斥关系:对于事件A 、B ,如果不可能同时发生,则A 、B 称为互不相容事件,此时AB =Φ。
用示性函数表示为()()0A B I I ωω=.(4)对立关系:如果两个事件A 、B 中,=B “A 不发生”,则A 、B 称为具有对立关系(或互逆关系),又称B 为A 的对立事件,记为A B =。
用示性函数表示为()()1ωω+=A B I I .ΩΩ*********************************************************事件运算(和,积,差,交换律,结合律,分配律,结合律,对偶律)(1)事件的和:事件A 与事件B 的并集构成的事件称为事件A 与事件B 的和事件,记为A B 或A B +,即{}|A B x x A x B =∈∈ 或,如图所示的阴影部分.显然,当且仅当事件A 与事件B 至少有一个发生时,事件A B 才发生。
n 个事件n A A A ,,,21 的和事件,即为n 个集合的并集 n k k A 1=。
(2)事件的积(或交):事件A 与事件B 的交集构成的事件称为事件A 与事件B 的积(或交)事件,事件A 与事件B 同时发生。
记为A B 或AB 。
n 个事件n A A A ,,,21 的积事件,即为n 个集合的交集 nk k A 1=。
(3)事件的差:事件A 与事件B 的差集所构成的事件称为事件A 与事件B 的差事件,记为B A -。
{}|A B x x A x B AB -=∈∉=且。
概率论与数理统计整理(一二章)
一、随机事件和概率考试内容:随机事件(可能发生可能不发生的事情)与样本空间(包括所有的样本点) 事件的关系(包含相等和积差互斥对立)与运算(交换分配结合德摸根对差事件文氏图) 完全事件组(所有基本事件的集合) 概率的概念概率的基本性质(非负性规范性可列可加性) 古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求:1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系与运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率(弄清几何意义),掌握概率的加法公式(PAUB=PA+PB--PAB)、减法公式(P(A--B)=PA--PAB)、乘法公式(PAB=PA*PB|A)、全概率公式(关键是对S进行正确的划分),以及贝叶斯公式.3.理解事件的独立性(PAB=PA*PB)的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.整理重点:1. 随机事件:可能发生也可能给不发生的事件。
0<概率<1。
2. 样本空间:实验中的结果的每一个可能发生的事件叫做实验的样本点,实验的所有样本点构成的集合叫做样本空间,大写字母S表示。
3. 事件的关系:(1)包含:事件A发生必然导致事件B发生,称事件B包含事件A。
(2)相等:事件A包含事件B且事件B包含事件A。
(3)和:事件的并,记为A∪B。
(4)差:A-B称为A与B的差,A发生而B不发生,A-B=A-AB。
(5)积:事件的交,事件A与B都发生,记为AB或A∩B。
(6)互斥:事件A与事件B不能同时发生,AB=空集。
(7)对立:A∪B=S。
4. 集合的运算:(1)交换律:A∪B=B∪A AB=BA (2结合律:(A∪B)∪C=A∪(B∪C) (AB)C=A(B C) (3)分配率:A (B∪C)=AB∪AC A∪(BC)=(A∪B)(A∪C) (4)德*摩根定律5. 完全事件组:如果n个事件中至少有一个事件一定发生,则称这n个事件构成完全事件组(特别地:互不相容的完全事件组)。
数学学科知识与教学能力·考点精编
4
版权所有
翻印必究
◢考题汇编◣
一、选择题 1.某十字路口的交通信号灯每分钟红灯亮 30 秒,绿灯亮 25 秒, 黄灯亮 5 秒,当你抬头看信号灯时,是黄灯的概率为( )
1 A. 12
5 B. 12
1 C. 6
1 D. 2
【答案】A。解析:抬头看信号灯时,是黄灯的概率为:5÷
1 (30+25+5)=5÷60= 12 故选:A.
lim
1 [1 + 2 + 3 + ... + n] = n2 ( )
B.0 C.1
∞
1 D. 2
【答案】D。解析:
n ( n + 1) 1 1 2 = lim 2 [1 + 2 + = 3 + ... + n] lim 2 x→+ ∞ n x →∞ n 2 ,故选 D。 由
3x3 + 2 x − 1 = 3 2 7.计算: x →∞ 7 x − 5 x + 2 ( ). lim
2.如图,在矩形区域 ABCD 的 A,C 两点处各有一个通信基站,假 设其信号的覆盖范围分别是扇形区域 ADE 和扇形区域 CBF(该矩形 区域内无其他信号来源,基站工作正常) 。若在该矩形区域内随机的 选一点,则该地点无信号的概率是( ) 。
A.
1− 2−
π
4
π
B. 2
−1
π
π
2 C. D. 4 【答案】A. 解析:此题是几何概型问题。矩形内无信号的区域 面 积 是 矩形减 去 两 个扇形 的 面 积,所 以 该 地点无 信 号 的概 率 为
1 1 sin x 1+ = e x lim = 1 lim lim(1 + x ) = e ∞ x →∞ x →0 x 0 → x x , (或 ) (1 ) 等 价 无 穷 小 替 换 : 当 x → 0 时 , sin x ~ x ~ arcsin x ,
概率论与统计1-2 事件的关系和运算
AB = ∅
A发生则 发生则 B必发生 必发生
集合论
A是B的 是 的 子集 A与B相等 与 相等
Venn图 Venn图
A⊂ B 且B ⊂ A
事件A与 不 与 不 事件 与B不 A与B不 能同时发生 相交 A的余集 A的对立事件 ① A U A = Ω ② AA = ∅
A
A
包含关系 出现, 若事件 A 出现 必然导致 B 出现 , 则称 事件 B 包含事件 A, 记作 B ⊃ A 或 A ⊂ B . 实例 “长度不合格” 必然导致 “产品不合 长度不合格” 格”“产品不合格” “长度不合格”. 所以“ 包含“ 所以 产品不合格” 包含 长度不合格” 图示 B 包含 A. A B
抛掷一枚骰子, 实例 抛掷一枚骰子 观察出现的点数 . “骰子出现 点” 互斥 骰子出现1点 骰子出现 “骰子出现2点” 骰子出现 点
图示 A与B互斥 与 互斥 A B
Ω
可将A∪ 记为 直和” 记为“ 说明 当A∩B= ∅时,可将 ∪B记为“直和”形式 ∩ 可将 A+B. 任意事件A与不可能事件 为互斥. 与不可能事件∅ 任意事件 与不可能事件∅为互斥
“二事件 A, B至少发生一个”也是一 个事件, 至少发生一个” 称为事件 A 与事件B的和事件.记作A U B,显然 A U B = {e | e ∈ A或e ∈ B }.
实例 某种产品的合格与否是由该产品的长度与 直径是否合格所决定,因此 产品不合格” 直径是否合格所决定 因此 “产品不合格”是“长度 不合格” 不合格”与“直径不合格”的并. 直径不合格”的并 的并. 图示事件 A 与 B 的并 B AU BA
( 3 ) A, B, C中恰有两个发生 .
概率的基本性质
一、知识概述(一)事件的关系与运算1、包含关系对于事件A与事件B,如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B),记作B A(或A B).事件的包含关系与集合的包含关系:与集合的包含关系类似,B包含事件A(B A或A B)可用下图表示.不可能事件记作,显然(C为任一事件).事件A也包含于事件A,即A A.例如:在投掷骰子的试验中,{出现1点}{出现的点数为奇数}.2、相等事件如果B A且B A,那么称事件A与事件B相等,记作A=B.(1)两个相等的事件A、B总是同时发生或同时不发生;(2)所谓A=B,就是A、B是同一事件,这在验证两个事件是否相等时,是非常有用的,在许多情况中可以说是唯一的一种方法.例如事件C发生,那么事件D一定发生,反之亦然,则C=D.3、并(和)事件若某事件发生当且仅当事件A发生或事件B发生,则称此事件为事件A与事件B的并事件(或和事件),记作A∪B(或A+B).并(和)事件与集合的并集的关系:与两个集合的并集类似,并事件A∪B(或A+B)可用下图表示.并事件具有三层意思:①事件A发生,事件B不发生;②事件B发生,事件A不发生;③事件A、B同时发生.即事件A、B至少有一个发生.事件A与事件B的并事件等于事件B与事件A的并事件.即A∪B=B∪A.例如:在投掷骰子的试验中,事件C、D分别表示投掷骰子出现1点、5点,则C∪D={出现1点或5点}.4、交(积)事件若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件),记作A∩B(或AB).交(积)事件与两个集合的交集类似,交事件A∩B(或AB)可用下图表示.事件A与事件B的交事件等于事件B与事件A的交事件,即A∩B=B∩A.例如:在投掷骰子的试验中,{出现的点数大于3}∩{出现的点数小于5}={出现的点数为4}.5、互斥事件若A∩B为不可能事件,即A∩B=,那么称事件A与事件B互斥.思考:如何判断两个事件互斥?探究:在任何条件下都不可能同时发生的事件才是互斥事件.互斥事件与集合的关系:与两个集合类似,互斥事件可用下图表示.(1)A、B互斥是指事件A与事件B在一次试验中不会同时发生;(2)如果A与B是互斥事件,那么A与B两个事件同时发生的概率为0;(3)推广:如果事件A1,A2,…,A n中的任何两个事件互斥,就称事件A1,A2,…,A n彼此互斥.从集合角度看,n个事件互斥是指各个事件所含结果的集合彼此不相交.例如:在投掷骰子的试验中,若C1={出现1点},C2={出现2点},C3={出现3点},C4={出现4点},C5={出现5点},C6={出现6点},则事件C1与事件C2互斥,C1,C2,C3,C4,C5,C6彼此互斥.6、对立事件若A∩B为不可能事件,A∪B为必然事件,那么事件A与事件B互为对立事件.对立事件与集合:与两个集合类似,对立事件可用下图表示.(1)从集合角度看,事件A的对立事件,是全集中由事件A所包含结果组成的集合的补集;例如:在投掷骰子的试验中,C={出现2点},则C的对立事件是D={出现1,3,4,5,6点}.(2)事件A、B对立是指事件A与事件B在一次试验中有且仅有一个发生.事件A 与事件B在一次试验中不会同时发生.(3)对立事件是针对两个事件来说的,一般地,两个事件对立,则两个事件必为互斥事件,反之,两个事件是互斥事件,但未必是对立事件.(4)对立事件是一种特殊的互斥事件,若A与B是对立事件,则A与B互斥且A ∪B(或A+B)为必然事件.(5)在一次试验中,事件A与它的对立事件只能发生其中之一,并且也必然发生其中之一.(二)概率的几个基本性质1、概率P(A)的取值范围由于事件的频数总小于或等于试验的次数,所以频率在0到1之间,从而任何事件的概率都在0到1之间,即0≤P(A)≤1.联想·引申:(1)必然事件B一定发生,则P(B)=1;(2)不可能事件C一定不发生,则P(C)=0;(3)若A B,则P(A)≤P(B).2、概率的加法公式当事件A与B事件互斥时,A∪B发生的频数等于A发生的频数与B发生的频数之和,从而A∪B的频率f n(A∪B)=f n(A)+f n(B),则概率的加法公式为:P(A∪B)=P(A)+P(B)联想·发散:(1)事件A与事件B互斥,如果没有这一条件,加法公式将不能应用.例如:抛掷一颗骰子,观察掷出点数,记事件A=“出现奇数”,事件B=“出现的点数不超过3”,那么A与B就不互斥.因为如果出现1或3,就表示A与B同时发生了.事件A∪B包括4种结果:出现1,2,3和5,因而P(A∪B)=,而P(A)=,P(B)=,显然,P(A∪B)≠P(A)+P(B);(2)如果事件A1,A2,…,A n彼此互斥,那么P(A1+A2+…+A n)=P(A1)+P(A2)+…+P(A n),即彼此互斥事件的概率等于各事件概率的和;(3)在求某些稍复杂的事件的概率时,可将其分解成一些概率较易求的彼此互斥的事件,化整为零,化难为易.3、对立事件的概率公式若事件A与事件B为对立事件,则A∪B为必然事件,所以P(A∪B)=1,又P(A ∪B)=P(A)+P(B),故P(A)=1-P(B).注:两个互斥事件不一定是对立事件,而两个对立事件一定是互斥事件,即两个事件对立是这两个事件互斥的充分不必要条件.二、例题讲解:例1、判断下列事件是否是对立事件,是否是互斥事件.从扑克牌40张(黑红梅方各10张)中任取一张.(1)抽出的是红桃与抽出的是黑桃;(2)抽出的红色牌与抽出的是黑色牌;(3)抽出的牌点数为5的倍数与抽出的牌点数大于9.答案:互斥不对立,互斥对立,不互斥不对立例2、福娃是北京2008年第29届奥运会吉祥物,每组福娃都由“贝贝”、“晶晶”、“欢欢”、“迎迎”和“妮妮”这五个福娃组成.甲、乙两位好友分别从同一组福娃中各随机选择一个福娃留作纪念,按先甲选再乙选的顺序不放回地选择,则在这两位好友所选择的福娃中,“贝贝”和“晶晶”恰好只有一个被选中的概率为________.例3、某地区的年降水量在下列范围内的概率如下表所示:(1)求年降水量在[100,200)(mm)内的概率;(2)求年降水量在[150,300)(mm)内的概率.解:(1)记这个地区的年降水量在、、、范围内分别为事件,这4个事件是彼此互斥的,根据互斥事件的概率加法公式,年降水量在[100,200)(mm)范围内的概率是,∴年降水量在[100,200)(mm)范围内的概率是0.37.(2)年降水量在[150,300)(mm)范围内的概率是,∴年降水量在[150,300)(mm)范围内的概率是0.55.例4、某工厂的产品中,出现二级品的概率是0.07,出现三级品的概率是0.03,其余都是一级品和次品,并且一级品数量是次品的9倍,求出现一级品的概率.解:设出现一级品的概率是P(A),因为一级品数量是次品的9倍,故出现一级品的概率也是次品的概率的9倍,出现次品的概率为P(A).根据题意,应有P(A)+P(A)+0.07+0.03=1,解得P(A)=0.81.∴出现一级品的概率是0.81.例5、同时抛掷两个骰子(各个面上分别标有数字1,2,3,4,5,6).计算:(1)向上的数相同的概率;(2)向上的数之积为偶数的概率.解:每掷一个骰子都有6种情况,所以同时掷两个骰子总的结果数为6×6=36种.(1)向上的数相同的结果有6种,故其概率为.(2)向上的数之积为偶数的情况比较多,可以先考虑其对立事件,即向上的数之积为奇数.向上的数之积为奇数的基本事件有:(1,1),(1,3),(1,5),(3,1),(3,3),(3,5),(5,1),(5,3),(5,5),共9个,故向上的数之积为奇数的概率为;根据对立事件的性质知,向上的数之积为偶数的概率为.例6、射手在一次射击训练中,射中10环、9环、8环、7环的概率分别为0.21、0.23、0.25、0.28,计算这个射手在一次射击中:(1)射中10环或7环的概率;(2)不够7环的概率.解:(1)记:“射中10环”为事件A,记“射中7环”为事件B,由于在一次射击中,A 与B不可能同时发生,故A与B是互斥事件.“射中10环或7环”的事件为A+B,故P(A+B)=P(A)+P(B)=0.21+0.28=0.49.(2)记“不够7环”为事件E,则事件为“射中7环或8环或9环或10环”,由(1)可知“射中7环”“射中8环”等是彼此互斥事件.∴=0.21+0.23+0.25+0.28=0.97,从而P(E)=1-=1-0.97=0.03,所以不够7环的概率为0.03.。
2020年高中数学必修第二册“统计与概率”讲义精练:第五章 5.3 5.3.2(人教B版)
5.3.2事件之间的关系与运算(教师独具内容)课程标准:1.了解随机事件的并、交、互斥与对立的含义,能结合实例进行随机事件的并、交运算.2.通过实例,理解概率的性质,掌握随机事件概率的运算法则.教学重点:事件的关系和运算,互斥事件、对立事件的概念,用概率的性质求事件的概率.教学难点:区别互斥事件和对立事件,事件的混合运算.知识点错误!未指定书签。
一事件的包含(1)一般地,如果事件A发生时,事件B一定发生,则称“□01A包含于□02 B”(或“□03B包含□04A”),记作□05A⊆B(或□06B⊇A),这一关系可用下图表示.(2)□07A⊆B也可用充分必要的语言表述为:A发生是B发生的□08充分条件,B发生是A发生的□09必要条件.(3)如果A⊆B,则P(A)□10≤P(B).知识点错误!未指定书签。
二事件的相等(1)如果事件A发生时,事件B一定发生;而且事件B发生时,事件A也一定发生,则称“□01A与B相等”,记作□02A=B.(2)A=B⇔□03A⊆B且B⊆A.A=B也可用充分必要的语言表述为:A发生是B发生的□04充要条件.(3)当A=B时,有P(A□05=P(B).知识点错误!未指定书签。
三事件的和(并)(1)给定事件A,B,由所有A中的样本点与B中的样本点组成的事件称为□01 A与B的和(或并),记作□02A+B(或□03A∪B).事件A与B的□04和可以用如图所示的阴影部分表示.(2)由定义可知:①事件A+B发生时,当且仅当□05事件A与事件B中至少有一个发生;②A□06⊆(A+B)且B□07⊆(A+B).因此,P(A)□08≤P(A+B)且P(B)□09≤P(A+B),P(A+B)□10≤P(A)+P(B).知识点错误!未指定书签。
四事件的积(交)(1)给定事件A,B,由A与B中的公共样本点组成的事件称为□01A与B的积(或□02交),记作□03AB(或□04A∩B).事件A与B的□05积可以用如图所示的阴影部分表示.(2)由定义可知:①事件AB发生时,当且仅当□06事件A与事件B都发生.②AB□07⊆A,AB□08⊆B.因此,P(AB)□09≤P(A),P(AB)□10≤P(B).知识点错误!未指定书签。
人教高中数学B版必修二事件之间的关系与运算 (2)
课堂篇探究学习
探究一
探究二
探究三
探究四
思维辨析 当堂检测
解:(1)设“射中10环”为事件A,“射中7环”为事件B,由于在一次射击
中,A与B不可能同时发生,故A与B是互斥事件.“射中10环或7环”的
思维脉络
一
二
课前篇自主预习
一、事件的关系
1.填空.
定义
表示法
包含 关系
相等 关系
一般地,如果事件 A 发生,则 事件 B 一定发生,则称“A 包 B⊇A(或 A⊆B) 含于 B”(或“B 包含 A”)
A⊆B 且 B⊆A
A=B
图示
一
二
课前篇自主预习
2.做一做:掷一枚硬币三次,得到如下三个事件:事件A为3次正面 向上,事件B为只有1次正面向上,事件C为至少有1次正面向上.试判 断A,B,C之间的包含关系.
课前篇自主预习
一
二
2.如何理解互斥事件与对立事件?
提示:(1)事件A与事件B互斥表示事件A与事件B不可能同时发生,
即A与B两个事件同时发生的概率是0.
(2)互斥事件是指事件A与事件B在任何一次试验中都不会同时发
生,具体包括三种不同情形:①事件A发生且事件B不发生;②事件A
不发生且事件B发生;③事件A与事件B均不发生.
课前篇自主预习
一
二
(2)互斥事件与对立事件
互 定义 斥 事 符号
件 图示
给定事件 A,B,若事件 A 与 B 不能同时发生,则称 A 与 B 互斥 AB=⌀(或 A∩B=⌀)
定义
对 符号 立 事 图示 件
注意 事项
给定样本空间 Ω 与事件 A,则由 Ω 中所有不属于 A 的 样本点组成的事件称为 A 的对立事件 A∩B=⌀,且 A∪B=Ω
概率论高数知识点总结归纳
概率论高数知识点总结归纳概率论高数知识点总结归纳概率论是数学中的一个重要分支,研究随机事件的发生概率以及相关统计问题。
在高等数学中,概率论占据着重要的位置,涉及到许多重要的知识点。
本文将对概率论高数中的主要知识点进行总结归纳,帮助读者更好地理解和掌握这一领域的知识。
一、概率的基本概念1. 随机试验:具有不确定的结果的试验称为随机试验,例如掷硬币、抛骰子等。
2. 样本空间:随机试验的所有可能结果构成的集合称为样本空间,记作Ω。
3. 事件:样本空间的子集称为事件,通常用大写字母A、B、C等表示。
4. 概率:概率是一个函数,它将事件映射到实数,表示事件发生的可能性,通常用P(A)表示事件A的概率。
二、事件的关系与运算1. 包含关系:事件A包含事件B,表示为B⊆A。
2. 互斥事件:事件A和事件B不可能同时发生,即A∩B=∅。
3. 和事件:事件A和事件B都发生的集合,表示为A∪B。
4. 差事件:事件A发生而事件B不发生的集合,表示为A-B。
三、概率的性质1. 非负性:对于任意事件A,P(A)≥0。
2. 可加性:对于互斥事件A和B,P(A∪B)=P(A)+P(B)。
3. 完备性:对于样本空间Ω,P(Ω)=1。
4. 减法公式:对于事件A和事件B,P(A-B)=P(A)-P(A∩B)。
四、条件概率与独立性1. 条件概率:在事件B发生的条件下事件A发生的概率,表示为P(A|B),计算公式为:P(A|B)=P(A∩B)/P(B)。
2. 独立事件:事件A和事件B相互独立,表示为P(A∩B)=P(A)·P(B)。
五、全概率公式与贝叶斯公式1. 全概率公式:设B₁、B₂、…、Bn为一组互不相容事件,且它们的并集构成了样本空间Ω,事件A与B₁、B₂、…、Bn有关,求事件A的概率,计算公式为:P(A)=P(A|B₁)·P(B₁)+P(A|B₂)·P(B₂)+…+P(A|Bn)·P(Bn)。
2022年新教材高中数学第五章统计与概率 事件之间的关系与运算课件新人教B版必修第二册 课件
图形表示
事件的和 (或并)
事件的积 (或交)
互斥事件
对立事件
给定事件A,B,由所有A A+B(或A∪B) 中的样本点与B中的样 本点组成的事件称为A 与B的① 和 (或② 并 )
给定事件A,B,由A与B 中的公共样本点组成 的事件称为A与B的③
积 (或④ 交 )
AB(或A∩B)
给定事件A,B,若事件A AB=∅(或A∩B=∅) 与B不能⑤同时发生,则 称A与B互斥
互斥事件和对立事件的判断方法: 1.判断两个事件是不是互斥事件,主要看它们在一次试验中能否同时发生,若不能 同时发生,则这两个事件是互斥事件,若能同时发生,则这两个事件不是互斥事件. 2.判断两个事件是不是对立事件,主要看在一次试验中这两个事件是否同时满足 两个条件:一是不能同时发生;二是必有一个发生.如果这两个条件同时成立,那么 这两个事件是对立事件,只要有一个条件不成立,这两个事件就不是对立事件. 事实上,解决此类问题的关键是明晰“恰”“至少”“至多”“都”等关键词.
方法总结 (1)包含关系、相等关系的判定: ①事件的包含关系与集合的包含关系相似; ②两事件相等的实质为相同事件,即同时发生或同时不发生. (2)判断事件是否互斥的两个步骤: 第一步,确定每个事件包含的结果; 第二步,确定是否有一个结果发生会意味着两个事件都发生,若是,则两个事件不 互斥,否则就是互斥的. (3)判断事件是否对立的两个步骤: 第一步,判断是不是互斥事件; 第二步,确定两个事件必然有一个发生,否则只有互斥,但不对立.
5.3.2 事件之间的关系与运算
1.理解事件之间的关系,了解随机事件的并、交、互斥与对立的含义. 2.能结合实例进行随机事件的并、交运算. 3.能够用概率的加法公式求互斥事件发生的概率.
[高等教育]期末复习重点之概率论与数理统计
i1?
i2? …
?
ik?
n
,具有等式
P(Ai1A
i2 …
A )=P(A )P(A )…P(A )
ik
i1
i2
ik
则称n个事件A1,A2,…,An相互独立。 (注意P23
的性质 )
第一章 小结
本章由六个概念(随机试验、事件、概率、条件概率 、独立性),四个公式(加法公式、乘法公式、全概 率公式、贝叶斯公式)和一个概型(古典概型)组成
当且仅当属于集合的某一个样 本点在实验中出现 .
既然事件是一个集合,因此有关事 件间的关系、运算及运算规则也就按集 合间的关系、运算及运算规则来处理。
事件之间的关系
1.包含关系“ 事件 A发生必有事件 B发生” 记为A? B
A =B ? A? B且B? A.
2.和事件: “事件A与事件B至少有一个发生” ,记作A? B
n
2'n个事件A1, A2,…, An至少有一个发生,记作 ? Ai
i?1
3.积事件 : 事件 A与事件 B同时发生,记作 A? B=AB
3'n个事件A1, A2,…, An同时发生,记作 A1A2…An
4.差事件:A-B称为A与B的差事件,表示事件 A发生而 事件B不发生
5互. 斥的事件(也称互不相容事件)即 事件与事件不可能同时发生。 AB= ?
Pk n
k!
?
n! k!(n? k)!
种取法 .
1 、抽球问题
例1:设合中有 3个白球, 2个红球,现从合中 任抽 2 个球,求取到一红一白的概率。
解 : 设 A----- 取到一红一白
N(? ) ? C2 5
N( A) ? C1C1 32
概率的基本性质
4、抛掷骰子,事件A= “朝上一面的数是奇数”, 事件B = “朝上一面的数不超过3”,
求P(A∪B)
解法一: 因为P(A)=3/6=1/2,P(B)=3/6=1/2 所以P(A∪B)= P(A)+ P(B)=1 解法二: A∪B这一事件包括4种结果,即出现1,2,3和5 所以P(A∪B)= 4/6=2/3
试验的可能结果 A 事件 A 事件A的对立事件 A B 事件B包含事件A A=B 事件B与事件A相等 A∪B(或A+B) 事件A与事件B的并
A∩B(或AB)
集合A的补集 集合B包含集合A
集合B与集合A相等 集合B与集合A的并
A∩B=
事件A与事件B的交 集合B与集合A的交 事件A与事件B互斥 集合B与A的交集为空集
排队人数 概率 0 0.1 1 0.16 2 0.3 3 0.3 4 0.1 5人以上 0.04
求至多2个人排队的概率。 解:设事件Ak={恰好有k人排队}, 事件A={至多2个人排队}, 因为A=A0∪A1∪A2,且A0,A1,A2这三个事件是
互斥事件,
所以 P(A)=P(A0)+P(A1)+P(A2)=0.1+0.16+0.3=0.56。
特别地,当事件A与事件B是对立事件时,有 P(A)=1- P(B)
练习:1.如果某士兵射击一次,未中靶的概率为0.05,
求中靶概率。 解:设该士兵射击一次,“中靶”为事件A,“未中靶” 为事件B,则A与B互为对立事件, 故P(A)=1-P(B)=1-0.05=0.95。
2. 甲、乙两人下棋,若和棋的概率是0.5,乙获胜的概率 是0.3. 求:(1)甲获胜的概率;(2)甲不输的概率。
概率的基本性质
2 事件之间的关系与运算
(3)不是互斥事件,也不是对立事件. 理由是:从 40 张扑克牌中任意抽取 1 张,“抽出的牌点数为 5 的倍 数”与“抽出的牌点数大于 9”这两个事件可能同时发生,如抽得 点数为 10,因此,二者不是互斥事件,当然也不可能是对立事件.
事件的运算
盒子里有 6 个红球,4 个白球,现从中任取 3 个球,设事件 A={3 个球中有 1 个红球 2 个白球},事件 B={3 个球中有 2 个红球 1 个白球},事件 C={3 个球中至少有 1 个红球},事件 D={3 个球 中既有红球又有白球}. 求:(1)事件 D 与 A、B 是什么样的运算关系? (2)事件 C 与 A 的交事件是什么事件?
互斥事件与对立事件的判断 某小组有 3 名男生和 2 名女生,从中任选 2 名同学参加 演讲比赛,判断下列每对事件是不是互斥事件,如果是,再判 断它们是不是对立事件. (1)恰有 1 名男生与恰有 2 名男生; (2)至少有 1 名男生与全是男生; (3)至少有 1 名男生与全是女生; (4)至少有 1 名男生与至少有 1 名女生.
1.事件的关系及运算
定义
表示法
包含 关系
一般地,对于事件 A 与事件
B,如果事件 A 发生,则事件 __B_⊇_A____
B_一__定_发__生____,称事件 B 包含
(或
事件 A(或事件 A 包含于事件 _A_⊆__B___)
B)
图示
定义
表示法
给定事件 A,B,由所
并事件
有 A 中的样本点与 B ___A_+__B____ (或
(3)因为“至少有 1 名男生”与“全是女生”不可能同时发生,所以 它们互斥;由于它们必有一个发生,所以它们是对立事件. (4)由于选出的是 1 名男生 1 名女生时“至少有 1 名男生”与“至少 有 1 名女生”同时发生,所以它们不是互斥事件.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率与统计中的事件的互斥与包含关系
概率与统计是一个应用广泛的数学分支,在各个领域中起着重要的
作用。
在概率与统计的理论中,事件的互斥与包含关系是两个基础概念。
本文将介绍概率与统计中事件的互斥与包含关系的概念、特点以
及实际应用。
一、事件的互斥关系
在概率与统计中,事件的互斥关系指的是两个事件之间不同时发生
的情况。
当两个事件之间不存在交集时,我们称它们为互斥事件。
以
掷骰子为例,事件A是掷出1点,事件B是掷出2点,显然A和B是
互斥事件,因为在一次掷骰子的结果中,只能同时出现其中之一。
数
学上常用符号“∩”来表示两个事件的交集,而“∪”表示两个事件的并集,互斥事件的特点是它们的交集为空集。
互斥事件在实际应用中有很多例子。
比如在抛硬币的实验中,正面
朝上和反面朝上就是互斥事件。
在一次考试中,及格和不及格也是互
斥事件。
互斥事件的概念为我们提供了一种简单清晰的分析方法,可
以帮助我们更好地理解和解决实际问题。
二、事件的包含关系
与互斥关系相对应,事件的包含关系指的是一个事件包含或者包含
于另一个事件的情况。
当事件A的发生意味着事件B必然发生时,我
们称事件A包含事件B。
以生日概率为例,事件A是在五个人中至少
有两个人生日相同,事件B是至少有一个人生日与你相同。
显然,事件A包含事件B,因为只要事件B发生,事件A也一定会发生。
包含关系在统计学领域中有很多应用。
在市场调查中,我们常常需要找到一部分消费者的特征,而这部分消费者是另一部分消费者的子集。
在医学研究中,我们也常常需要确定一部分疾病患者具有一些共同特征,这些疾病患者是总体患者的子集。
事件的包含关系为我们提供了一种层次化分析方法,可以更好地理解和描述事件之间的关系。
三、互斥事件与包含事件的关系
互斥事件和包含事件是概率与统计中常见的事件关系。
它们之间并非是完全独立的关系,而是可以相互转化和关联的。
当事件A和事件B是互斥事件时,我们可以通过求它们的并集来计算发生A或者B事件的概率。
当事件A包含事件B时,我们可以通过求B事件在A事件中发生的条件概率来计算两个事件的关系。
在实际问题中,我们需要根据具体情况分析事件之间的互斥与包含关系,并灵活运用概率与统计的理论方法。
通过深入理解事件的互斥与包含关系,我们可以更好地解决现实生活中的问题,提高决策的准确性和有效性。
结语
概率与统计中的事件的互斥与包含关系是基础概念,对于理解和应用概率与统计理论具有重要意义。
本文从概念、特点以及实际应用三
个方面对互斥事件和包含事件进行了介绍。
希望读者通过本文的阅读,能够更好地理解事件之间的关系,为实际问题的解决提供有益的参考。