中考数学专项复习《圆的综合题》练习题(附答案)
中考数学总复习《圆的综合题》练习题(附答案)

中考数学总复习《圆的综合题》练习题(附答案)班级:___________姓名:___________考号:_____________一、单选题1.在平面直角坐标系xOy中以点(3,4)为圆心,4为半径的圆()A.与x轴相交,与y轴相切B.与x轴相离,与y轴相交C.与x轴相切,与y轴相交D.与x轴相切,与y轴相离2.如图,在平面直角坐标系xOy中以原点O为圆心的圆过点A(13,0)直线y=kx-3k+4与⊙O交于B、C两点,则弦BC的长的最小值为()A.22B.24C.10√5D.12√33.如图,四边形ABCD内接于⊙O,若∠BOD=100°,则∠DCB等于()A.90°B.100°C.130°D.140°4.如图,在正五边形ABCDE中连接AD,则∠DAE的度数为()A.46°B.56°C.36°D.26°5.如图,PA、PB为∠O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交∠O 于点D.下列结论不一定成立的是()A.△BPA为等腰三角形B.AB与PD相互垂直平分C.点A,B都在以PO为直径的圆上D.PC为△BPA的边AB上的中线6.如图,四边形ABCD内接于半径为6的∠O中连接AC,若AB=CD,∠ACB=45°,∠ACD=12∠BAC,则BC的长度为()A.6 √3B.6 √2C.9 √3D.9 √27.如图,点A,B,D,C是∠O上的四个点,连结AB,CD并延长,相交于点E,若∠BOD=20°,∠AOC=90°,则∠E的度数为()A.30°B.35°C.45°D.55°8.∠ABC中∠C=Rt∠,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB,BC分别交于点E,D,则AE的长为()A.95B.125C.185D.3659.如图,AB为∠O的直径,点C在∠O上,若∠B=60°,则∠A等于()A.80°B.50°C.40°D.30°10.两个圆的半径分别是2cm和7cm,圆心距是5cm,则这两个圆的位置关系是() A.外离B.内切C.相交D.外切11.已知正三角形的边长为12,则这个正三角形外接圆的半径是()A.B.C.D.12.一个扇形的弧长为4π,半径长为4,则该扇形的面积为()A.4πB.6πC.8πD.12π二、填空题13.在Rt∠ABC中∠C=90°,AB=5,BC=4,求内切圆半径14.如图,∠C过原点,且与两坐标轴分别交于点A,点B,点A的坐标为(0,3),M是第三象限内弧OB上一点,∠BMO=120°,则∠C的半径为.15.一个立体图形的三视图如图所示,根据图中数据求得这个立体图形的侧面积为.16.一个半径为5cm的球形容器内装有水,若水面所在圆的直径为8cm,则容器内水的高度为cm.17.如图,在直角坐标系中以点P为圆心的圆弧与x轴交于A,B两点,已知P(4,2)和A(2,0),则点B的坐标是.18.下面是“作一个30°角”的尺规作图过程.已知:平面内一点A.求作:∠A,使得∠A=30°.作法:如图①作射线AB;②在射线AB取一点O,以O为圆心,OA为半径作圆,与射线AB相交于点C;③以C为圆心,OC C为半径作弧,与⊙O交于点D,作射线AD.则∠DAB即为所求的角.请回答:该尺规作图的依据是.三、综合题19.如图,在△ABC中AC=BC=BD,点O在AC边上,OC为⊙O的半径,AB是⊙O 的切线,切点为点D,OC=2,OA=2√2.(1)求证:BC是⊙O的切线;(2)求阴影部分的面积.20.如图,△ABC内接于⊙O,CD是直径,∠CBG=∠BAC,CD与AB相交于点E,过点E作EF⊥BC,垂足为F,过点O作OH⊥AC,垂足为H,连接BD、OA.(1)求证:直线BG与⊙O相切;(2)若BEOD=54,求EFAC的值.21.如图,四边形ABCD 内接于∠O,BD是∠O的直径,过点A作∠O的切线AE交CD的延长线于点E,DA平分∠BDE.(1)求证:AE∠CD;(2)已知AE=4cm,CD=6cm,求∠O的半径.22.如图,∠O是∠ABC的外接圆,BC为∠O的直径,点E为∠ABC的内心,连接AE并延长交∠O 于D点,连接BD并延长至F,使得BD=DF,连接CF、BE.(1)求证:DB=DE;(2)求证:直线CF为∠O的切线.23.公元前5世纪,古希腊哲学家阿那克萨哥拉因“亵渎神灵罪”而被投人监狱,在狱中他对方铁窗和圆月亮产生了兴趣.他不断变换观察的位置,一会儿看见圆比正方形大,一会儿看见正方形比圆大,于是伟大的古希腊尺规作图几何三大问题之--的化圆为方问题诞生了:作一个正方形,使它的面积等于已知圆的面积(1)设有一个半径为√3的圆,则这个圆的周长为,面积为,作化圆为方得到的正方形的边长为(计算结果保留π)(2)由于对尺规作图的限制(只能有限次地使用没有刻度的直尺和圆规进行作图),包括化圆为方在内的几何三大问题都已被证明是不可能的.但若不受标尺的限制,化圆为方并非难事。
初中圆综合试题及答案

初中圆综合试题及答案一、选择题(每题2分,共10分)1. 圆的周长公式是()。
A. C = πdB. C = 2πrC. C = πr^2D. C = 2πd2. 圆的面积公式是()。
A. A = πr^2B. A = 2πrC. A = πd^2D. A = πd3. 圆的直径是半径的()倍。
A. 1B. 2C. 3D. 44. 圆的半径增加1倍,面积增加()倍。
A. 1B. 2C. 4D. 85. 圆的半径为r,直径为d,周长为C,下列关系式正确的是()。
A. C = 2πrB. d = 2rC. C = πdD. A和B都正确二、填空题(每题2分,共10分)1. 圆的周长公式是C = 2πr,其中r代表圆的______。
2. 圆的面积公式是A = πr^2,其中r代表圆的______。
3. 圆的直径是半径的______倍。
4. 如果圆的半径为3厘米,那么它的周长是______厘米。
5. 圆的半径增加1倍,面积增加到原来的______倍。
三、解答题(每题10分,共20分)1. 已知圆的半径为5厘米,求该圆的周长和面积。
2. 一个圆的周长为25.12厘米,求该圆的半径。
四、证明题(每题15分,共30分)1. 证明圆的周长和直径的比值是一个常数。
2. 证明圆的面积与半径的平方成正比。
答案:一、选择题1. B2. A3. B4. C5. D二、填空题1. 半径2. 半径3. 24. 31.45. 4三、解答题1. 周长:C = 2πr = 2 × 3.14 × 5 = 31.4厘米面积:A = πr^2 = 3.14 × 5^2 = 78.5平方厘米2. 半径:r = C / (2π) = 25.12 / (2 ×3.14) = 4厘米四、证明题1. 证明:设圆的直径为d,半径为r,则d = 2r。
圆的周长C = πd = 2πr,所以C/d = 2πr / 2r = π,即圆的周长和直径的比值是一个常数π。
中考数学《圆》专项复习综合练习题-附带答案

中考数学《圆》专项复习综合练习题-附带答案一、单选题1.如图,圆O是△ABC的外接圆,∠A=68°,则∠BOC的大小是()A.22°B.32°C.136°D.68°2.已知两圆半径分别为4和7,圆心距为3 ,那么这两个圆的位置关系是()A.内含B.内切C.相交D.外切3.如图,已知线段OA交⊙O于点B,且OB=AB 点P是⊙O上的一个动点,那么∠OAP的最大值是A.90°B.60°C.45°D.30°4.如图,半径为5的⊙A中,DE=2 √5,∠BAC+∠EAD=180°,则弦BC的长为()A.√21B.√41C.4 √5D.3 √55.如图,点D E F分别在△ABC的三边上,AB=AC∠A=∠EDF=90°与∠EFD=30°AB=1下列结论正确的是()A.BD可求BE不可求B.BD不可求BE可求C.BD BE均可求D.BD BE均不可求6.如图,在Rt△ABC中,∠ACB=90° AC=3,以点C为圆心, CA为半径的圆与AB交于点D,若点D恰好为线段AB的中点,则AB的长度为()B.3 C.9 D.6A.327.如图,⊙O是△ABC的外接圆,弦BD交AC于点E,AE=DE, BC=CE,过点O作OF⊥AC于点F,延长FO 交BE于点G ,若DE=6,EG=4,则AB的长为()A.4√5B.8√3C.13 D.148.如图,把正六边形各边按同一方向延长,使延长的线段与原正六边形的边长相等,顺次连接这六条线段外端点可以得到一个新的正六边形…,重复上述过程,经过2018次后所得到的正六边形边长是原正六边形边长的()A.(√2)2016倍B.(√3)2017倍C.(√3)2018倍D.(√2)2019倍二、填空题9.如图,PA、PB切⊙O于点A、B ,已知⊙O半径为2 且∠APB=60°,则AB= .10.如图,矩形ABCD中,BC=4 CD=2 以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为.(结果保留π)11.如图,两边平行的刻度尺在圆上移动当刻度尺的一边与直径为6.5cm的圆相切时另一边与圆两个交点处的读数恰好为“2”和“8”(单位:cm)则刻度尺的宽为 cm.12.如图,两圆相交于A、B两点小圆经过大圆的圆心O 点C D分别在两圆上若∠ADB=100°则∠ACB的度数为。
中考数学总复习《圆综合解答题》专题训练-附答案

中考数学总复习《圆综合解答题》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________ 1.如图△ABC内接于⊙O AB、CD是⊙O的直径E是DA长线上一点且∠CED=∠CAB.(1)求证:CE是⊙O的切线;求线段CE的长.(2)若DE=3√5tanB=122.如图在△ABC中AB=AC以AB为直径作⊙O交BC于点D.过点D作DE⊥AC 垂足为E延长CA交⊙O于点F.(1)求证:DE是⊙O的切线;⊙O的半径为5 求线段CF的长.(2)若tanB=123.如图△ABC内接于⊙O直径DE⊙AB于点F交BC于点M DE的延长线与AC的延长线交于点N连接AM.(1)求证:AM=BM;(2)若AM⊙BM DE=8 ⊙N=15° 求BC的长.4.如图△ABC内接于⊙O AB是⊙O的直径D是⊙O上的一点CO平分∠BCD CE⊥AD垂足为E AB与CD相交于点F.(1)求证:CE是⊙O的切线;时求CE的长.(2)当⊙O的半径为5sinB=355.如图1 锐角△ABC内接于⊙O⊙BAC=60°若⊙O的半径为2√3.(1)求BC的长度;(2)如图2 过点A作AH⊙BC于点H若AB+AC=12 求AH的长度.6.如图AB是⊙O的直径M是OA的中点弦CD⊥AB于点M过点D作DE⊥CA交CA的延长线于点E.(1)连接AD则∠AOD=_______;(2)求证:DE 与⊙O 相切;(3)点F 在BC ⏜上 ∠CDF =45° DF 交AB 于点N .若DE =6 求FN 的长.7.如图 AB 是⊙O 的直径 点C 为⊙O 上一点 OF ⊥BC 垂足为F 交⊙O 于点E AE 与BC 交于点H 点D 为OE 的延长线上一点 且∠ODB =∠AEC .(1)求证:BD 是⊙O 的切线(2)求证:CE 2=EH ⋅EA(3)若⊙O 的半径为52 sinA =35 求BH 和DF 的长. 8.如图 在⊙ABC 中 ⊙C=90° 点O 在AC 上 以OA 为半径的⊙O 交AB 于点D BD 的垂直平分线交BC 于点E 交BD 于点F 连接DE .(1)求证:直线DE 是⊙O 的切线(2)若AB=5 BC=4 OA=1 求线段DE 的长.9.如图 AB 是⊙O 的直径 弦CD 与AB 交于点E 过点B 的切线BP 与CD 的延长线交于点P 连接OC CB .(1)求证:AE ·EB =CE ·ED(2)若⊙O 的半径为 3 OE =2BE CE DE =95 求tan∠OBC 的值及DP 的长.10.如图菱形ABCD中AB=4以AB为直径作⊙O交AC于点E过点E作EF⊥AD于点F.(1)求证:EF是⊙O的切线(2)连接OF若∠BAD=60°求OF的长.(3)在(2)的条件下若点G是⊙O上的一个动点则线段CG的取值范围是什么?11.如图点C在以AB为直径的半圆O上(点C不与A B两点重合)点D是弧AC的中点DE⊥AB于点E连接AC交DE于点F连接OF过点D作半圆O的切线DP 交BA的延长线于点P.(1)求证:AC∥DP(2)求证:AC=2DE的值.(3)连接CE CP若AE⊙EO=1⊙2求CECP12.如图1 AB为⊙O直径CB与⊙O相切于点B D为⊙O上一点连接AD OC若AD//OC.(1)求证:CD为⊙O的切线(2)如图2 过点A作AE⊥AB交CD延长线于点E连接BD交OC于点F若AB=3AE=12求BF的长.13.已知:如图在⊙O中∠PAD=∠AEP AF=CF AB是⊙O的直径CD⊥AB于点G.(1)求证:AP是⊙O的切线.(2)若AG=4tan∠DAG=2求△ADE的面积.(3)在(2)的条件下求DQ的长.14.如图已知AB是⊙O的直径点E是⊙O上异于A B的点点F是弧EB的中点连接AE AF BF过点F作FC⊙AE交AE的延长线于点C交AB的延长线于点D⊙ADC的平分线DG交AF于点G交FB于点H.(1)求证:CD是⊙O的切线(2)求sin⊙FHG的值(3)若GH=4√2HB=2 求⊙O的直径.15.如图⊙O的两条弦AB、CD互相垂直垂足为E且AB=CD.(1)求证:AC=BD.(2)若OF⊥CD于F OG⊥AB于G问四边形OFEG是何特殊四边形?并说明理由.(3)若CE=1,DE=3求⊙O的半径.16.【问题提出】如图1 △ABC为⊙O内接三角形已知BC=a圆的半径为R 探究a R sin∠A之间的关系.【解决问题】如图2 若∠A为锐角连接BO并延长交⊙O于点D连接DC则∠A=∠D在△DBC中BD为⊙O的直径BC=a所以BD=2R,∠BCD=90°.所以在Rt△DBC中建立a R sin∠D的关系为________________.所以在⊙O内接三角形△ABC中a R sin∠A之间的关系为________________.类比锐角求法当∠A为直角和钝角时都有此结论.【结论应用】已知三角形△ABC中∠B=60°,AC=4则△ABC外接圆的面积为________.17.已知AB为⊙O的直径PA PC是⊙O的的切线切点分别为A C过点C作CD//AB交⊙O于D.(1)如图当P D O共线时若半径为r求证CD=r(2)如图当P D O不共线时若DE=2CE=8求tan∠POA.18.如图1 已知矩形ABCD中AB=2√3AD=3 点E为射线BC上一点连接DE以DE为直径作⊙O(1)如图2 当BE=1时求证:AB是⊙O的切线(2)如图3 当点E为BC的中点时连接AE交⊙O于点F连接CF求证:CF=CD (3)当点E在射线BC上运动时整个运动过程中CF长度是否存在最小值?若存在请直接写出CF长度的最小值若不存在请说明理由.19.已知四边形ABCD为⊙O的内接四边形直径AC与对角线BD相交于点E作CH⊥BD于H CH与过A点的直线相交于点F∠FAD=∠ABD.(1)求证:AF为⊙O的切线(2)若BD平分∠ABC求证:DA=DC(3)在(2)的条件下N为AF的中点连接EN若∠AED+∠AEN=135°⊙O 的半径为2√2求EN的长.20.如图1 直线l1⊥l2于点M以l1上的点O为圆心画圆交l1于点A B交l2于点C D OM=4 CD=6 点E为弧AD上的动点CE交AB于点F AG⊙CE 于点G连接DG AC AD.(1)求⊙O的半径长(2)若⊙CAD=40° 求劣弧弧AD的长(3)如图2 连接DE是否存在常数k使CE−DE=k·EG成立?若存在请求出k的值若不存在请说明理由(4)若DG⊙AB则DG的长为(5)当点G在AD的右侧时请直接写出⊙ADG面积的最大值.参考答案1.(1)证明:⊙AB是⊙O的直径⊙∠ACB=90°⊙∠CAB+∠B=90°⊙∠CED=∠CAB∠B=∠D⊙∠CED+∠D=90°⊙∠DCE=∠ACB=90°⊙CD⊥CE⊙CD是⊙O的直径即OC是⊙O半径⊙CE是⊙O的切线(2)由(1)知CD⊥CE在Rt△ABC和Rt△DEC中⊙∠B=∠D tanB=12⊙tan∠B=tan∠D=CECD =12⊙CD=2CE在Rt△CDE中CD2+CE2=DE2DE=3√5⊙(2CE)2+CE2=(3√5)2解得CE=3(负值舍去)即线段CE的长为3.2.解:(1)⊙OB=OD⊙∠ABC=∠ODB⊙AB=AC⊙∠ABC=∠ACB⊙∠ODB=∠ACB⊙OD∥AC⊙DE⊥AC OD是半径⊙DE⊥OD⊙DE是⊙O的切线.(2)连接BF AD⊙⊙O的半径为5 AB为直径⊙AB=10∠ADB=90°∠BFC=90°⊙tanB=1设AD=x则BD=2x2在Rt△ABD中由勾股定理得:AD2+BD2=AB2即x2+(2x)2=102解得:x=2√5或x=−2√5(舍去)⊙BD=2x=4√5⊙AB=AC∠ADB=90°⊙BD=CD⊙BC=2BD=8√5由(1)知OD∥AC⊙∠ODB=∠C⊙OB=OD⊙∠B=∠ODB=∠C⊙tanC=tanB=1即CF=2BF2在Rt△BCF中BF2+CF2=BC2即BF2+(2BF)2=(8√5)2解得BF=8或BF=−8(舍去)⊙CF=2BF=16.3.(1)证明:⊙直径DE⊙AB于点F⊙AF=BF⊙AM=BM(2)连接AO BO如图由(1)可得AM=BM⊙AM⊙BM⊙⊙MAF=⊙MBF=45°⊙⊙CMN=⊙BMF=45°⊙AO=BO DE⊙AB∠AOB⊙⊙AOF=⊙BOF=12⊙⊙N=15°⊙⊙ACM=⊙CMN+⊙N=60° 即⊙ACB=60°∠AOB.⊙⊙ACB=12⊙⊙AOF=⊙ACB=60°.⊙DE=8⊙AO=4.得AF=2√3在Rt⊙AOF中由sin∠AOF=AFAO在Rt⊙AMF中AM=√2AF=2√6.得BM= AM=2√6得CM=2√2在Rt⊙ACM中由tan∠ACM=AMCM⊙BC=CM+BM=2√2+2√6.4.(1)证明:⊙弧AC=弧AC⊙∠ADC=∠B.⊙OB=OC⊙∠B=∠OCB.⊙CO平分∠BCD⊙∠OCB=∠OCD⊙∠ADC=∠OCD.⊙CE⊥AD⊙∠ADC+∠ECD=90°⊙∠OCD+∠ECD=90°即CE⊥OC.⊙OC为⊙O的半径⊙CE是⊙O的切线.(2)连接OD得OD=OC⊙∠ODC=∠OCD.⊙∠OCD=∠OCB=∠B⊙∠ODC=∠B⊙CO=CO⊙△OCD≌△OCB⊙CD=CB.⊙AB是⊙O的直径⊙∠ACB=90°⊙AC=AB⋅sinB=10×35=6⊙CB=√AB2−AC2=√102−62=8⊙CD=8⊙CE=CD⋅sin∠ADC=CD⋅sinB=8×35=245.5.解:(1)连接OB OC过点O作OD⊙BC于点D⊙BD =CD =12BC⊙⊙A =60°⊙⊙BOC =2⊙A =120°⊙OB =OC⊙⊙OBC =⊙OCB =180°−∠BOC2=30°⊙OB =2√3⊙BD =OB •cos30°=2√3×√32=3⊙BC =2BD =6.(2)设点G 为此三角形ABC 内切圆的圆心(角平分线的交点) 过G 分别向ABAC BC 作垂线GM GN GQ⊙GM =GN =GQ CQ =CN BQ =BM AM =AN⊙AM +AN =AB +AC -BC =6⊙AM =AN =3.在Rt △AGM 中⊙⊙GAM =30°⊙GM =√3⊙S △ABC =12BC •AH =S △ABG +S △BCG +S △ACG=12AB •GM +12BC •GQ +12AC •GN=12GM(AB+AC+CB)=9√3∵BC=6, S△ABC=12BC•AH⊙AH=3√3.6.(1)解:如图1 连接OD AD⊙AB是⊙O的直径CD⊥AB⊙AB垂直平分CD⊙M是OA的中点⊙OM=12OA=12OD⊙cos∠DOM=OMOD =12⊙∠DOM=60°即∠AOD=60°故答案为:60°(2)解:⊙CD⊥AB AB是⊙O的直径⊙CM=MD⊙M是OA的中点⊙AM=MO又⊙∠AMC=∠DMO⊙△AMC≌△OMD⊙∠ACM=∠ODM⊙CA∥OD⊙DE⊥CA⊙∠E=90°⊙∠ODE=180°−∠E=90°⊙DE⊥OD⊙DE与⊙O相切(3)如图2 连接CF CN⊙OA⊥CD于M⊙M是CD中点⊙NC=ND⊙∠CDF=45°⊙∠NCD=∠NDC=45°⊙∠CND=90°⊙∠CNF=90°由(1)可知∠AOD=60°∠AOD=30°⊙∠ACD=12在Rt△CDE中∠E=90°∠ECD=30°DE=6=12⊙CD=DEsin30°在Rt△CND中∠CND=90°∠CDN=45°CD=12⊙CN=CD•sin45°=6√2⊙∠AOD=60°,OA=OD⊙△OAD是等边三角形⊙∠OAD=60°∠CAD=2∠OAD=120°⊙∠CFD=180°−∠CAD=60°在Rt△CNF中∠CNF=90°∠CFN=60°CN=6√2 =2√6.⊙FN=CNtan60°7.(1)证明:如图1所示⊙∠ODB=∠AEC∠AEC=∠ABC⊙∠ODB=∠ABC⊙OF⊥BC⊙∠BFD=90°⊙∠ODB+∠DBF=90°⊙∠ABC+∠DBF=90°即∠OBD=90°⊙BD⊥OB⊙AB是⊙O的直径⊙BD是⊙O的切线(2)证明:连接AC如图2所示⊙OF⊥BC⊙弧BE=弧CE⊙∠CAE=∠ECB⊙∠CEA=∠HEC⊙△AEC ∽△CEH⊙CE EH =EACE⊙CE 2=EH ⋅EA(3)解:连接BE 如图3所示⊙AB 是⊙O 的直径⊙∠AEB =90°⊙⊙O 的半径为52 sin∠BAE =35 ⊙AB =5 BE =AB ⋅sin∠BAE =5×35=3 ⊙EA =√AB 2−BE 2=4⊙弧BE =弧CE⊙BE =CE =3⊙CE 2=EH ⋅EA⊙EH =94⊙在Rt △BEH 中 BH =√BE 2+EH 2=√32+(94)2=154 ⊙∠A =∠C⊙sinC =sinA⊙OF ⊥BC 垂足为F⊙在Rt △CFE 中 FE =CE ⋅sinC =3×35=95 ⊙CF =√CE 2−EF 2=√32−(95)2=125 ⊙BF =CF =125⊙OF =√BO 2−BF 2=√(52)2−(125)2=710 ⊙∠ODB =∠ABC⊙tan∠ODB =tan∠ABC⊙BFDF =OFBF⊙BF 2=OF ⋅DF⊙(125)2=710DF ⊙DF =28835.8.解:(1)连接OD 如图⊙EF 垂直平分BD⊙ED=EB⊙⊙EDB=⊙B⊙OA=OD⊙⊙A=⊙ODA⊙⊙A+⊙B=90°⊙⊙ODA+⊙EDB=90°⊙⊙ODE=90°⊙OD⊙DE⊙直线DE 是⊙O 的切线(2)作OH⊙AD 于H 如图 则AH=DH 在Rt △OAB 中 sinA=BC AB =45在Rt △OAH 中 sinA=OH OA =45⊙OH=45⊙AH=√12−(45)2=35⊙AD=2AH=65 ⊙BD=5﹣65=195⊙BF=12BD=1910在Rt⊙ABC 中 cosB=45 在Rt⊙BEF 中 cosB=BF BE =45⊙BE=54×1910=198 ⊙线段DE 的长为198.9.((1)证明:连接AD∵∠A =∠BCD ∠AED =∠CEB ∴ΔAED ∽ΔCEB∴ AECE =EDEB∴AE ·EB =CE ·ED(2)解:∵⊙O 的半径为 3 ∴OA =OB =OC =3∵OE =2BE∴OE =2 BE =1 AE =5 ∵ CEDE =95 ∴设CE =9x DE =5x∵AE ·EB =CE ·ED∴5×1=9x ·5x解得:x 1=13 x 2=−13(不 合题意舍去) ∴CE =9x =3 DE =5x =53 过点C 作CF ⊥AB 于F∵OC =CE =3∴OF =EF =12OE =1∴BF =2在RtΔOCF中∵∠CFO=90°∴CF2+OF2=OC2∴CF=2√2在RtΔCFB中∵∠CFB=90°∴tan∠OBC=CFBF =2√22=√2∵CF⊥AB于F∴∠CFB=90°∵BP是⊙O的切线AB是⊙O的直径∴∠EBP=90°∴∠CFB=∠EBP在ΔCFE和ΔPBE中{∠CFB=∠PBE EF=BE ∠FEC=∠BEP∴ΔCFE≅ΔPBE(ASA)∴EP=CE=3∴DP=EP−ED=3−53=43.10.:解:(1)证明:如图连接OE.⊙四边形ABCD是菱形∴∠CAD=∠CAB∵OA=OE∴∠CAB=∠OEA∴∠CAD=∠OEA∴OE∥AD∵EF⊥AD∴OE⊥EF又⊙OE是⊙O的半径⊙EF是⊙O的切线.(2)解:如图连接BE.⊙AB是⊙O的直径∴∠AEB=90°∵∠BAD=60°∴∠CAD=∠CAB=30°在Rt△ABE中AE=AB·cos30°=2√3在Rt△AEF中EF=AE·sin30°=√3AB=2在Rt△OEF中OE=12⊙OF=√OE2+EF2=√4+3=√7.(3)解:如图过点C作CM垂直AB交AB延长线于点M由(2)知∠BAD=60°∴∠ACB=∠CAB=30°,∠CBM=60°∴AB=BC=4,BM=2,CM=2√3∴AM=6,OM=6−2=4.⊙OC=√OM2+CM2=√42+(2√3)2=2√7⊙CG近=2√7−2CE远=2√7+2⊙线段CG的取值范围是:2√7−2≤CG≤2√7+211.(1)证明:连接OD∵D为弧AC的中点∴OD⊥AC又∵DP为⊙O的切线∴OD⊥DP∴AC∥DP(2)证明:∵DE⊥AB∴∠DEO=90°由(1)可知OD⊥AC设垂足为点M∴∠OMA=90°∴∠DEO=∠OMA AC=2AM又∵∠DOE=∠AOM OD=OA∴△ODE≌△OAM(AAS)∴DE=AM∴AC=2AM=2DE(3)解:连接OD OC CE CP∵∠ODP=∠OED=90°∠DOE=∠DOP ∴△DOE∽△POD∴ODOP =OEOD∴OD2=OE⋅OP ∵OC=OD∴OC2=OE⋅OP∴OCOE =OPOC又∵∠COE=∠POC ∴△COE∽△POC∴CECP =OEOC∵AE:EO=1:2∴OEOA =23∴OEOC =23∴CECP =23.12.解:(1)连接OD⊙CB与⊙O相切于点B⊙OB⊥BC⊙AD//OC⊙∠A=∠COB,∠ADO=∠DOC⊙OA=OD⊙∠A=∠ADO=∠COB=∠DOC⊙△DOC≌△BOC(SAS)⊙∠ODC=∠OBC=90°⊙OD⊥DC又OD为⊙O半径⊙CD为⊙O的切线(2)解:设CB=x⊙AE⊥EB⊙AE为⊙O的切线⊙CD CB为⊙O的切线⊙ED=AE=4,CD=CB=x,∠DOC=∠BCO⊙BD⊥OC过点E作EM⊥BC于M则EM=12,CM=x−4⊙(4+x)2=122+(x−4)2解得x=9⊙CB=9⊙OC=√62+92=3√13⊙AB是直径且AD⊙OC⊙⊙OFB=⊙ADB=⊙OBC=90°又⊙⊙COB=⊙BOF⊙⊙OBF⊙⊙OCB⊙OB BF =OCBC⊙BF=OB⋅BCOC =6×93√13=1813√1313.(1)证明:如图所示连接AC ⊙AB是⊙O的直径CD⊥AB⊙弧AD=弧AC⊙∠AEP=∠ADC⊙∠PAD=∠AEP⊙∠PAD=∠ADC⊙AP∥CD⊙AP⊥AB⊙AB是⊙O的直径⊙AP是⊙O的切线(2)解:如图所示连接BD⊙AF=CF⊙∠FAC=∠FCA⊙弧CE=弧AD⊙弧AD=弧AC⊙弧AD=弧AC=弧CE⊙∠ADG=∠QDG⊙AB⊥CD⊙∠AGD=∠QGD=90°又⊙OG=OG⊙△AGD≌△OGD(ASA)⊙QG=AG=4∠DQG=∠DAG=2在Rt△ADG中tan∠DAG=DGAG⊙DG=2AG=8⊙QD=√DG2+QG2=4√5连接OD过点E作EH⊥AB于H设圆O的半径为r则OG=r−4在Rt△ODG中由勾股定理得OD2=OG2+DG2⊙r2=(r−4)2+82解得r=10⊙AB=20⊙BQ=12⊙∠AEQ=∠DBQ,∠EAQ=∠BDQ⊙△AQE∽△DQB⊙QE BQ =AQDQ即QE12=84√5⊙QE=12√55⊙∠EQH=∠DQG=∠DAG⊙在Rt△EQH中tan∠EQH=EHQH=2⊙EH=2QH⊙EH2+QH2=QE2⊙4QH2+QH2=1445⊙QH=125⊙EH=245⊙S△ADE=S△ADQ+S△AEQ=12AQ⋅DG+12AQ⋅EH=12×8×8+12×8×245=70.4.(3)解:由(2)得DQ=4√5.14.(1)证明:连接OF.⊙OA=OF⊙⊙OAF=⊙OF A⊙EF̂=FB̂,⊙⊙CAF=⊙F AB⊙⊙CAF=⊙AFO⊙OF∥AC⊙AC⊙CD⊙OF⊙CD⊙OF是半径⊙CD是⊙O的切线.(2)⊙AB是直径⊙⊙AFB=90°⊙OF⊙CD⊙⊙OFD=⊙AFB=90°⊙⊙AFO=⊙DFB⊙⊙OAF=⊙OF A⊙⊙DFB=⊙OAF⊙GD平分⊙ADF⊙⊙ADG=⊙FDG⊙⊙FGH=⊙OAF+⊙ADG⊙FHG=⊙DFB+⊙FDG⊙⊙FGH=⊙FHG=45°⊙sin⊙FHG=sin45°=√22(3)解:过点H作HM⊙DF于点M HN⊙AD于点N.⊙HD平分⊙ADF⊙HM=HNS△DHF⊙S△DHB= FH⊙HB=DF ⊙DB⊙⊙FGH是等腰直角三角形GH=4√2⊙FH=FG=4⊙DF DB =42=2设DB=k DF=2k⊙⊙FDB=⊙ADF⊙DFB=⊙DAF ⊙⊙DFB⊙⊙DAF⊙DF2=DB•DA⊙AD=4k⊙GD平分⊙ADF⊙FG AG =DFAD=12⊙AG=8⊙⊙AFB=90° AF=12 FB=6∴AB=√AF2+BF2=√122+622=6√5⊙⊙O的直径为6√515.(1)证明:⊙AB=CD⊙弧AB=弧CD⊙弧AB−弧BC=弧CD−弧BC即弧AC=弧BD⊙AC=BD(2)解:四边形OFEG是正方形.理由如下:⊙AB⊥CD OF⊥CD OG⊥AB⊙∠AED=∠OGE=∠OFE=90°⊙四边形OFEG是矩形.如图连接OA OD.⊙OF⊥CD OG⊥AB⊙CF=DF AG=BG.⊙CD=AB⊙AG=DF.⊙OG=√OA2−AG2OF=√OD2−DF2OA=OD⊙OG=OF⊙四边形OFEG是正方形(3)解:⊙CE=1 DE=3⊙CD=4⊙CF=DF=2⊙EF=CF-CE=2-1=1.⊙四边形OFEG是正方形⊙OF=EF=1.在Rt△OED中OD=√OF2+DF2=√5⊙⊙O的半径为√5.16.:解:【解决问题】如图连接BO并延长交⊙O于点D连接DC则∠A=∠D 在△DBC中⊙BD为⊙O的直径BC=a⊙BD=2R,∠BCD=90°⊙sinD=BCBD =a2R⊙sinA=a2R故答案为:sinD=a2R sinA=a2R【结论应用】解:设△ABC外接圆的半径为R ⊙∠B=60°,AC=4⊙sinB=AC2R⊙√3 2=42R解得:R=43√3⊙△ABC外接圆的面积为π×(43√3)2=163π.故答案为:163π17.(1)证明:连接OC⊙PA PC是⊙O的切线切点分别为A C ⊙PA=PC∠PAO=∠PCO=90°在RtΔPAO和RtΔPCO中{PA=PCPO=PO⊙RtΔPAO≌RtΔPCO(HL)⊙∠POA=∠POC⊙CD//AB⊙∠CDO=∠DOA⊙∠CDO=∠COD⊙CD=OC=r(2)解:设OP交CD于E连接OC过O作OH⊥CD于点H由(1)可知RtΔPAO≌RtΔPCO⊙∠POA=∠POC⊙CD//AB⊙∠CEO=∠EOA⊙∠CEO=∠COE⊙CE=CO=8⊙CD=CE+ED=10⊙OH⊥CD⊙CH=DH=5⊙EH=DH−DE=3在RtΔCHO中⊙OH=√OC2−CH2=√82−52=√39在RtΔOHE中⊙tan∠POA=tan∠HEO=OHEH =√393⊙tan∠POA=√393.18.解:(1)如图过点O作OM⊥AB且OM的反向延长线交CD于点N.由题意可知四边形BCNM为矩形⊙MN=AD=3⊙O为圆心即O为DE中点⊙N为DC中点即线段ON为△DEC中位线又⊙CE=BC−BE=3−1=2⊙ON=12CE=1⊙OM=MN -ON=3-1=2.在Rt △DEC 中 DE =√CD 2+CE 2=√(2√3)2+22=4. ⊙OD=DE=OM=2.即AB 为⊙O 的切线.(2)设⊙O 与AD 交于点G 连接CG EG DF FG ⊙DE 为直径⊙∠EGD =∠EFD =90°.⊙∠GEC =90°⊙CG 为直径.⊙∠CFG =∠CDG =90°⊙E 为BC 中点⊙G 为AD 中点在Rt △AFD 中 FG 为中线⊙AG=DG=FG在Rt △CFG 和Rt △CDG 中 {FG =DG CG =CG⊙△CFG ≅△CDG(HL).⊙CF=CD .(3)如图 取AD 中点H 连接CH FH FD .由(2)可知FH =12AD =32 在Rt △CDH 中 CH =√CD 2+HD 2=√(2√3)2+(32)2=√572 ⊙CF ≥CH −FH =√572−32. ⊙当F 点在CH 上时CF 长有最小值 最小值为√572−32.19.解:(1)⊙AC 为⊙O 的直径⊙⊙ADC =90°⊙⊙DAC +⊙DCA =90°.⊙弧AD =弧AD⊙⊙ABD =⊙DCA .⊙⊙F AD =⊙ABD⊙⊙F AD =⊙DCA⊙⊙F AD +⊙DAC =90°⊙CA ⊙AF⊙AF 为⊙O 的切线.(2)连接OD .⊙弧AD =弧AD⊙⊙ABD=1⊙AOD.2⊙弧DC=弧DC⊙DOC.⊙⊙DBC=12⊙BD平分⊙ABC⊙⊙ABD=⊙DBC⊙⊙DOA=⊙DOC⊙DA=DC.(3)连接OD交CF于M作EP⊙AD于P.⊙AC为⊙O的直径⊙⊙ADC=90°.⊙DA=DC⊙DO⊙AC⊙⊙F AC=⊙DOC=90° AD=DC=√(2√2)2+(2√2)2=4 ⊙⊙DAC=⊙DCA=45° AF⊙OM.⊙AO=OCAF.⊙OM=12⊙⊙ODE+⊙DEO=90° ⊙OCM+⊙DEO=90°⊙⊙ODE=⊙OCM.⊙⊙DOE=⊙COM OD=OC⊙⊙ODE⊙⊙OCM⊙OE=OM.设OM=m⊙OE =m AE =2√2−m AP =PE =2−√22m⊙DP =2+√22m . ⊙⊙AED +⊙AEN =135° ⊙AED +⊙ADE =135°⊙⊙AEN =⊙ADE .⊙⊙EAN =⊙DPE⊙⊙EAN ⊙⊙DPE⊙AE DP =AN PE ⊙2√2−m 2+√22m =m2−√22m⊙m =2√23⊙AN =2√23 AE =4√23由勾股定理得:NE =2√103.20.解:(1)连接OD⊙AB 是⊙O 的直径 l 1⊥l 2 CD =6⊙CM =DM =12CD =3在Rt △DOM 中 OM =4⊙OD=√OM2+CM2=5即⊙O的半径长为5(2)⊙AB是⊙O的直径l1⊥l2⊙弧BC=弧BD⊙∠BAD=∠BAC=12∠CAD=20°⊙∠BOD=2∠BAD=40°⊙∠AOD=180°−∠BOD=140°⊙劣弧弧AD的长为140×π×5180=35π9(3)存在常数k=2理由如下:如图在CG上截取CH=DE连接AH AE⊙AB垂直平分CD⊙AC=AD又⊙⊙ACH=⊙ADE⊙⊙ACH⊙⊙ADE(SAS)⊙AH=AE⊙ AG⊙HE⊙HG=EG⊙CE-DE=2EG⊙k=2(4)⊙DG⊙AB⊙⊙CFM⊙⊙CGD⊙FM DG =CFCG=CMCD=12⊙CF=FG DG=2FM⊙⊙CMF=⊙AGF⊙CFM=⊙AFG ⊙⊙CFM⊙⊙AFG⊙CF AF =FMFG⊙FM×AF=CF×FG=CF2设FM=x则AF=9-x⊙x(9−x)=32+x2解得:x=32或3⊙DG=3或6(5)如图取AC的中点P当PG⊙AD时⊙ADG的面积最大在Rt△AMC中⊙CMA=90° CM=3 AM=OA+OM=5+4=9⊙AD=AC=√CM2+AM2=√32+92=3√10在Rt△AGC中⊙CGA=90° 点P为AC的中点⊙PG=12AC=3√102过点C作CN⊙AD于点N在Rt⊙CDN和Rt⊙ADM中⊙⊙CND=⊙AMD=90° ⊙CDN=⊙ADM ⊙Rt⊙CDN~Rt⊙ADM⊙CN AM =CDAD⊙CN=AM⋅CDAD =9×63√10=9√105设PG交AD于点K ⊙PK⊙AD CN⊙AD ⊙PK⊙CN⊙⊙APK⊙⊙CAN⊙PK CN =APAC=12⊙PK=12CN=9√1010⊙GK=PG−PK=3√102−9√1010=3√105⊙⊙ADG面积的最大值为12AD⋅GK=12×3√10×3√105=9.。
中考数学 圆的综合 综合题含详细答案

中考数学 圆的综合 综合题含详细答案一、圆的综合1.如图,已知△ABC 中,AC=BC ,以BC 为直径的⊙O 交AB 于E ,过点E 作EG ⊥AC 于G ,交BC 的延长线于F .(1)求证:AE=BE ;(2)求证:FE 是⊙O 的切线;(3)若FE=4,FC=2,求⊙O 的半径及CG 的长.【答案】(1)详见解析;(2)详见解析;(3).【解析】(1)证明:连接CE ,如图1所示:∵BC 是直径,∴∠BEC =90°,∴CE ⊥AB ;又∵AC =BC ,∴AE =BE .(2)证明:连接OE ,如图2所示:∵BE =AE ,OB =OC ,∴OE 是△ABC 的中位线,∴OE ∥AC ,AC =2OE =6.又∵EG ⊥AC ,∴FE ⊥OE ,∴FE 是⊙O 的切线.(3)解:∵EF 是⊙O 的切线,∴FE 2=FC •FB .设FC =x ,则有2FB =16,∴FB =8,∴BC =FB ﹣FC =8﹣2=6,∴OB =OC =3,即⊙O 的半径为3;∴OE =3.∵OE ∥AC ,∴△FCG ∽△FOE ,∴ ,即 ,解得:CG = .点睛:本题利用了等腰三角形三线合一定理,三角形中位线的判定,切割线定理,以及勾股定理,还有平行线分线段成比例定理,切线的判定等知识.2.如图,在ABC V 中,90ACB ∠=o ,BAC ∠的平分线AD 交BC 于点D ,过点D 作DE AD ⊥交AB 于点E ,以AE 为直径作O e .()1求证:BC 是O e 的切线;()2若3AC =,4BC =,求tan EDB ∠的值.【答案】(1)见解析;(2)1tan 2EDB ∠=. 【解析】【分析】 ()1连接OD ,如图,先证明OD//AC ,再利用AC BC ⊥得到OD BC ⊥,然后根据切线的判定定理得到结论;()2先利用勾股定理计算出AB 5=,设O e 的半径为r ,则OA OD r ==,OB 5r =-,再证明BDO V ∽BCA V ,利用相似比得到r :()35r =-:5,解得15r 8=,接着利用勾股定理计算5BD 2=,则3CD 2=,利用正切定理得1tan 12∠=,然后证明1EDB ∠∠=,从而得到tan EDB ∠的值.【详解】()1证明:连接OD ,如图,AD Q 平分BAC ∠,12∴∠=∠,OA OD =Q ,23∴∠=∠,13∴∠=∠,//OD AC ∴,AC BC ⊥Q ,OD BC ∴⊥,BC ∴是O e 的切线;()2解:在Rt ACB V 中,22345AB =+=,设O e 的半径为r ,则OA OD r ==,5OB r =-,//OD AC Q ,BDO V ∴∽BCA V ,OD ∴:AC BO =:BA ,即r :()35r =-:5,解得158r =, 158OD ∴=,258OB =, 在Rt ODB V 中,2252BD OB OD =-=, 32CD BC BD ∴=-=, 在Rt ACD V 中,312tan 132CD AC ∠===, AE Q 为直径,90ADE ∴∠=o ,90EDB ADC ∴∠+∠=o ,190ADC ∠+∠=o Q ,1EDB ∴∠=∠,1tan 2EDB ∴∠=. 【点睛】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;也考查了圆周角定理和解直角三角形.3.如图,PA 、PB 是⊙O 的切线,A ,B 为切点,∠APB=60°,连接PO 并延长与⊙O 交于C 点,连接AC 、BC .(Ⅰ)求∠ACB 的大小;(Ⅱ)若⊙O 半径为1,求四边形ACBP 的面积.【答案】(Ⅰ)60°;(Ⅱ33 【解析】分析:(Ⅰ)连接AO,根据切线的性质和切线长定理,得到OA⊥AP,OP平分∠APB,然后根据角平分线的性质和三角形的外角的性质,30°角的直角三角形的性质,得到∠ACB的度数;(Ⅱ)根据30°角的直角三角形的性质和等腰三角形的性质,结合等底同高的性质求三角形的面积即可.详解:(Ⅰ)连接OA,如图,∵PA、PB是⊙O的切线,∴OA⊥AP,OP平分∠APB,∴∠APO=12∠APB=30°,∴∠AOP=60°,∵OA=OC,∴∠OAC=∠OCA,∴∠ACO=12AOP=30°,同理可得∠BCP=30°,∴∠ACB=60°;(Ⅱ)在Rt△OPA中,∵∠APO=30°,∴33,OP=2OA=2,∴OP=2OC,而S△OPA=123∴S△AOC=12S△PAO3∴S△ACP33,∴四边形ACBP的面积=2S△ACP33.点睛:本题考查了切线的性质,解直角三角形,等腰三角形的判定,熟练掌握切线的性质是解题的关键.4.已知:AB是⊙0直径,C是⊙0外一点,连接BC交⊙0于点D,BD=CD,连接AD、AC.(1)如图1,求证:∠BAD=∠CAD(2)如图2,过点C 作CF ⊥AB 于点F,交⊙0于点E,延长CF 交⊙0于点G.过点作EH ⊥AG 于点H ,交AB 于点K,求证AK=2OF ;(3)如图3,在(2)的条件下,EH 交AD 于点L,若0K=1,AC=CG,求线段AL 的长.图1 图2 图3【答案】(1)见解析(2)见解析(3)12105 【解析】试题分析:(1)由直径所对的圆周角等于90°,得到∠ADB =90°,再证明△ABD ≌△ACD 即可得到结论;(2)连接BE .由同弧所对的圆周角相等,得到∠GAB =∠BEG .再证△KFE ≌△BFE ,得到BF =KF =BK .由OF =OB -BF ,AK =AB -BK ,即可得到结论. (3)连接CO 并延长交AG 于点M ,连接BG .设∠GAB =α.先证CM 垂直平分AG ,得到AM =GM ,∠AGC +∠GCM =90°.再证∠GAF =∠GCM =α.通过证明△AGB ≌△CMG ,得到BG =GM =12AG .再证明∠BGC =∠MCG =α.设BF =KF =a , 可得GF =2a ,AF =4a . 由OK =1,得到OF =a +1,AK =2(a +1),AF = 3a +2,得到3a +2=4a ,解出a 的值,得到AF ,AB ,GF ,FC 的值.由tanα=tan ∠HAK =12HK AH =, AK =6,可以求出 AH 的长.再由1tan tan 3BAD BCF ∠=∠= ,利用公式tan ∠GAD =tan tan 1tan tan GAF BAD GAF BAD∠+∠-∠⋅∠,得到∠GAD =45°,则AL =2AH ,即可得到结论.试题解析:解:(1)∵AB 为⊙O 的直径,∴∠ADB =90°,∴∠ADC =90°.∵BD =CD ,∠BDA =∠CDA ,AD =AD ,∴△ABD ≌△ACD ,∴∠BAD =∠CAD .(2)连接BE .∵BG =BG ,∴∠GAB =∠BEG .∵CF ⊥AB ,∴∠KFE =90°.∵EH ⊥AG ,∴∠AHE =∠KFE =90°,∠AKH =∠EKF ,∴∠HAK =∠KEF =∠BEF .∵FE =FE ,∠KFE =∠BFE =90°,∴△KFE ≌△BFE ,∴BF =KF =BK .∵ OF =OB -BF ,AK =AB -BK ,∴AK =2OF .(3)连接CO 并延长交AG 于点M ,连接BG .设∠GAB =α.∵AC =CG , ∴点C 在AG 的垂直平分线上.∵ OA =OG ,∴点O 在AG 的垂直平分线上, ∴CM 垂直平分AG ,∴AM =GM ,∠AGC +∠GCM =90°.∵AF ⊥CG ,∴∠AGC +∠GAF =90°,∴∠GAF =∠GCM =α.∵AB 为⊙O 的直径,∴∠AGB = 90°,∴∠AGB =∠CMG =90°.∵AB =AC =CG ,∴△AGB ≌△CMG ,∴BG =GM=12AG . 在Rt △AGB 中, 1tan tan 2GB GAB AG α∠=== . ∵∠AMC =∠AGB = 90°,∴BG ∥CM , ∴∠BGC =∠MCG =α.设BF =KF =a , 1tan tan 2BF BGF GF α∠===,∴GF =2a ,1tan tan 2GF GAF AF α∠=== ,AF =4a .∵OK =1,∴OF =a +1,AK =2OF =2(a +1),∴AF =AK +KF =a +2(a +1)=3a +2,∴3a +2=4a ,∴a =2, AK =6,∴AF =4a =8,AB =AC =CG =10,GF =2a =4,FC =CG -GF =6. ∵tanα=tan ∠HAK =12HK AH =,设KH =m ,则AH =2m ,∴AK 22(2)m m +=6,解得:m 65,∴AH =2m 125.在Rt △BFC 中,1tan 3BF BCF FC ∠== .∵∠BAD +∠ABD =90°, ∠FBC +∠BCF =90°,∴∠BCF =∠BAD ,1tan tan 3BAD BCF ∠=∠= ,∴tan ∠GAD =tan tan 1tan tan GAF BAD GAF BAD ∠+∠-∠⋅∠=1123111123+=-⨯,∴∠GAD =45°,∴HL=AH ,AL =2AH = 12105.5.阅读下列材料:如图1,⊙O 1和⊙O 2外切于点C ,AB 是⊙O 1和⊙O 2外公切线,A 、B 为切点,求证:AC ⊥BC证明:过点C 作⊙O 1和⊙O 2的内公切线交AB 于D ,∵DA 、DC 是⊙O 1的切线∴DA=DC .∴∠DAC=∠DCA .同理∠DCB=∠DBC .又∵∠DAC+∠DCA+∠DCB+∠DBC=180°,∴∠DCA+∠DCB=90°.即AC ⊥BC .根据上述材料,解答下列问题:(1)在以上的证明过程中使用了哪些定理?请写出两个定理的名称或内容;(2)以AB 所在直线为x 轴,过点C 且垂直于AB 的直线为y 轴建立直角坐标系(如图2),已知A 、B 两点的坐标为(﹣4,0),(1,0),求经过A 、B 、C 三点的抛物线y=ax 2+bx+c 的函数解析式;(3)根据(2)中所确定的抛物线,试判断这条抛物线的顶点是否落在两圆的连心O 1O 2上,并说明理由.【答案】(1)见解析;(2)213222y x x =+- ;(3)见解析 【解析】 试题分析:(1)由切线长相等可知用了切线长定理;由三角形的内角和是180°,可知用了三角形内角和定理;(2)先根据勾股定理求出C 点坐标,再用待定系数法即可求出经过、、A B C 三点的抛物线的函数解析式;(3)过C 作两圆的公切线,交AB 于点D ,由切线长定理可求出D 点坐标,根据,C D 两点的坐标可求出过,C D 两点直线的解析式,根据过一点且互相垂直的两条直线解析式的关系可求出过两圆圆心的直线解析式,再把抛物线的顶点坐标代入直线的解析式看是否适合即可.试题解析:(1)DA 、DC 是1O e 的切线,∴DA =DC .应用的是切线长定理;180DAC DCA DCB DBC ∠+∠+∠+∠=o ,应用的是三角形内角和定理.(2)设C 点坐标为(0,y ),则222AB AC BC =+, 即()()222224141y y --=-+++,即225172y =+,解得y =2(舍去)或y =−2.故C 点坐标为(0,−2),设经过、、A B C 三点的抛物线的函数解析式为2y ax bx c ,=++ 则164002,a b c a b c c -+=⎧⎪++=⎨⎪=-⎩ 解得12322a b c ⎧=⎪⎪⎪=⎨⎪=-⎪⎪⎩, 故所求二次函数的解析式为213 2.22y x x =+- (3)过C 作两圆的公切线CD 交AB 于D ,则AD =BD =CD ,由A (−4,0),B (1,0)可知3(,0)2D -, 设过CD 两点的直线为y =kx +b ,则 3022k b b ⎧-+=⎪⎨⎪=-⎩, 解得432k b ⎧=-⎪⎨⎪=-⎩,故此一次函数的解析式为423y x =--, ∵过12,O O 的直线必过C 点且与直线423y x =--垂直, 故过12,O O 的直线的解析式为324y x =-, 由(2)中所求抛物线的解析式可知抛物线的顶点坐标为325(,)28--,代入直线解析式得33252,428⎛⎫⨯--=-⎪⎝⎭故这条抛物线的顶点落在两圆的连心12O O上.6.如图,⊙O是△ABC的外接圆,AB是直径,过点O作OD⊥CB,垂足为点D,延长DO 交⊙O于点E,过点E作PE⊥AB,垂足为点P,作射线DP交CA的延长线于F点,连接EF,(1)求证:OD=OP;(2)求证:FE是⊙O的切线.【答案】(1)证明见解析;(2)证明见解析.【解析】试题分析:(2)证明△POE≌△ADO可得DO=EO;(3)连接AE,BE,证出△APE≌△AFE即可得出结论.试题解析:(1)∵∠EPO=∠BDO=90°∠EOP=∠BODOE=OB∴△OPE≌△ODB∴OD="OP"(2)连接EA,EB∴∠1=∠EBC∵AB是直径∴∠AEB=∠C=90°∴∠2+∠3=90°∵∠3=∠DEB∵∠BDE=90°∴∠EBC+∠DEB=90°∴∠2=∠EBC=∠1∵∠C=90°∠BDE=90°∴CF∥OE∴∠ODP=∠AFP∵OD=OP∴∠ODP=∠OPD∵∠OPD=∠APF∴∠AFP=∠APF∴AF=AP 又AE=AE∴△APE≌△AFE∴∠AFE=∠APE=90°∴∠FED=90°∴FE是⊙O的切线考点:切线的判定.7.如图,AB为⊙O的直径,且AB=m(m为常数),点C为»AB的中点,点D为圆上一动点,过A点作⊙O的切线交BD的延长线于点P,弦CD交AB于点E.(1)当DC⊥AB时,则DA DBDC+=;(2)①当点D在»AB上移动时,试探究线段DA,DB,DC之间的数量关系;并说明理由;②设CD长为t,求△ADB的面积S与t的函数关系式;(3)当9220PDAC=时,求DEOA的值.【答案】(12;(2)①DA+DB2DC,②S=12t2﹣14m2;(3)24235DEOA=.【解析】【分析】(1)首先证明当DC⊥AB时,DC也为圆的直径,且△ADB为等腰直角三角形,即可求出结果;(2)①分别过点A,B作CD的垂线,连接AC,BC,分别构造△ADM和△BDN两个等腰直角三形及△NBC和△MCA两个全等的三角形,容易证出线段DA,DB,DC之间的数量关系;②通过完全平方公式(DA+DB)2=DA2+DB2+2DA•DB的变形及将已知条件AB=m代入即可求出结果;(3)通过设特殊值法,设出PD的长度,再通过相似及面积法求出相关线段的长度,即可求出结果.【详解】解:(1)如图1,∵AB为⊙O的直径,∴∠ADB=90°,∵C为»AB的中点,∴»»AC BC=,∴∠ADC=∠BDC=45°,∵DC⊥AB,∴∠DEA=∠DEB=90°,∴∠DAE=∠DBE=45°,∴AE=BE,∴点E与点O重合,∴DC为⊙O的直径,∴DC=AB,在等腰直角三角形DAB中,DA=DB=22AB,∴DA+DB=2AB=2CD,∴DA DBDC+=2;(2)①如图2,过点A作AM⊥DC于M,过点B作BN⊥CD于N,连接AC,BC,由(1)知»»AC BC=,∴AC=BC,∵AB为⊙O的直径,∴∠ACB=∠BNC=∠CMA=90°,∴∠NBC+∠BCN=90°,∠BCN+∠MCA=90°,∴∠NBC=∠MCA,在△NBC和△MCA中,BNC CMANBC MCABC CA∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△NBC≌△MCA(AAS),∴CN =AM ,由(1)知∠DAE =∠DBE =45°, AM =2DA ,DN =2DB , ∴DC =DN+NC =22DB+22DA =22(DB+DA ), 即DA+DB =2DC ;②在Rt △DAB 中, DA 2+DB 2=AB 2=m 2,∵(DA+DB )2=DA 2+DB 2+2DA•DB , 且由①知DA+DB 2DC 2t , ∴2t )2=m 2+2DA•DB , ∴DA•DB =t 2﹣12m 2, ∴S △ADB =12DA•DB =12t 2﹣14m 2, ∴△ADB 的面积S 与t 的函数关系式S =12t 2﹣14m 2; (3)如图3,过点E 作EH ⊥AD 于H ,EG ⊥DB 于G , 则NE =ME ,四边形DHEG 为正方形,由(1)知»»AC BC=, ∴AC =BC ,∴△ACB 为等腰直角三角形, ∴AB 2AC , ∵92PD AC =, 设PD =2,则AC =20,AB =2, ∵∠DBA =∠DBA ,∠PAB =∠ADB , ∴△ABD ∽△PBA , ∴AB BD ADPB AB PA==, ∴20292202DB =+,∴DB =162, ∴AD =22AB DB -=122,设NE =ME =x , ∵S △ABD =12AD•BD =12AD•NE+12BD•ME , ∴12×122×162=12×122•x+12×162•x , ∴x =4827, ∴DE =2HE =2x =967, 又∵AO =12AB =102, ∴96242735102DE OA =⨯=.【点睛】本题考查了圆的相关性质,等腰直三角形的性质,相似的性质等,还考查了面积法及特殊值法的运用,解题的关键是认清图形,抽象出各几何图形的特殊位置关系.8.如图,⊙O 的直径AB =8,C 为圆周上一点,AC =4,过点C 作⊙O 的切线l ,过点B 作l 的垂线BD ,垂足为D ,BD 与⊙O 交于点E . (1)求∠AEC 的度数;(2)求证:四边形OBEC 是菱形.【答案】(1)30°;(2)详见解析. 【解析】 【分析】(1)易得△AOC 是等边三角形,则∠AOC =60°,根据圆周角定理得到∠AEC =30°;(2)根据切线的性质得到OC⊥l,则有OC∥BD,再根据直径所对的圆周角为直角得到∠AEB=90°,则∠EAB=30°,可证得AB∥CE,得到四边形OBE C为平行四边形,再由OB =OC,即可判断四边形OBEC是菱形.【详解】(1)解:在△AOC中,AC=4,∵AO=OC=4,∴△AOC是等边三角形,∴∠AOC=60°,∴∠AEC=30°;(2)证明:∵OC⊥l,BD⊥l.∴OC∥BD.∴∠ABD=∠AOC=60°.∵AB为⊙O的直径,∴∠AEB=90°,∴△AEB为直角三角形,∠EAB=30°.∴∠EAB=∠AEC.∴CE∥OB,又∵CO∥EB∴四边形OBEC为平行四边形.又∵OB=OC=4.∴四边形OBEC是菱形.【点睛】本题考查了切线的性质:圆的切线垂直于过切点的半径.也考查了圆周角定理及其推论以及菱形的判定方法.9.如图1,等腰直角△ABC中,∠ACB=90°,AC=BC,过点A,C的圆交AB于点D,交BC 于点E,连结DE(1)若AD=7,BD=1,分别求DE,CE的长(2)如图2,连结CD,若CE=3,△ACD的面积为10,求tan∠BCD(3)如图3,在圆上取点P使得∠PCD=∠BCD(点P与点E不重合),连结PD,且点D 是△CPF的内心①请你画出△CPF,说明画图过程并求∠CDF的度数②设PC=a,PF=b,PD=c,若(a-2c)(b-2c)=8,求△CPF的内切圆半径长.【答案】(1)DE=1,CE=32;(2)tan ∠BCD=14;(3)①135°;②2. 【解析】 【分析】(1)由A 、C 、E 、D 四点共圆对角互补为突破口求解;(2)找∠BDF 与∠ODA 为对顶角,在⊙O 中,∠COD=2∠CAD ,证明△OCD 为等腰直角三角形,从而得到∠EDC+∠ODA=45°,即可证明∠CDF=135°;(3)过点D 做DH CB ⊥于点H ,以D 为圆心,DH 为半径画圆,过点P 做D e 切线PF 交CB 的延长线于点F ,结合圆周角定理得出∠CPD=∠CAD=45°,再根据圆的内心是三角形三个内角角平分线的交点,得出∠CPF=90°,然后根据角平分线性质得出114522DCF CFD PCF PFC ∠+∠=∠+∠=︒,最后再根据三角形内角和定理即可求解;证明∠DCF+∠CFD=45°,从而证明∠CPF 是直角,再求证四边形PKDN 是正方形,最后以△PCF 面积不变性建立等量关系,结合已知(a-2c )(b-2c )=8,消去字母a ,b 求出c 值,即求出△CPF 的内切圆半径长为22c . 【详解】 (1)由图可知:设BC=x .在Rt △ABC 中,AC=BC .由勾股定理得: AC 2+BC 2=AB 2,∵AB=AD+BD ,AD=7,BD=1, ∴x 2+x 2=82, 解得:x=2.∵⊙O 内接四边形,∠ACD=90°, ∴∠ADE=90°, ∴∠EDB=90°, ∵∠B=45°,∴△BDE 是等腰直角三形. ∴DE=DB , 又∵DB=1, ∴DE=1, 又∵CE=BC-BE ,∴CE=42232-=. (2)如图所示:在△DCB 中过点D 作DM ⊥BE ,设BE=y ,则DM=12y , 又∵CE=3,∴BC=3+y , ∵S △ACB =S ACD +S DCB ,∴()1114242103y y 222⨯⨯=+⨯+⨯, 解得:y=2或y=-11(舍去). ∴EM=1,CM=CE+ME=1+3=4, 又∵∠BCD=∠MCD , ∴tan ∠BCD=tan ∠MCD ,在Rt △DCM 中,tan ∠MCD=DM CM =14, ∴tan ∠BCD=14. (3)①如下图所示:过点D 做DH CB ⊥于点H ,以D 为圆心,DH 为半径画圆,过点P 做D e 切线PF 交CB 的延长线于点F .∵∠CAD=45°, ∴∠CPD=∠CAD=45°,又∵点D 是CPF ∆的内心, ∴PD 、CD 、DF 都是角平分线,∴∠FPD=∠CPD =45°,∠PCD=∠DCF ,∠PFD=∠CFD ∴∠CPF=90° ∴∠PCF+∠PFC=90°∴114522DCF CFD PCF PFC ∠+∠=∠+∠=︒ ∴∠CDF=180°-∠DCF-∠CFD F=90°+45°=135°, 即∠CDF 的度数为135°. ②如下图所示过点D 分别作DK ⊥PC ,DM ⊥CF ,DN ⊥PF 于直线PC ,CF 和PF 于点K ,M ,N 三点, 设△PCF 内切圆的半径为m ,则DN=m , ∵点D 是△PCF 的内心, ∴DM=DN=DK ,又∵∠DCF+∠CFD+∠FDC=180°,∠FDC=45°, ∴∠DCF+∠CFD=45°,又∵DC ,DF 分别是∠PCF 和∠PFC 的角平分线, ∴∠PCF=2∠DCF ,∠PFC=2∠DFC , ∴∠PCF+∠PFC=90°, ∴∠CPF=90°.在四边形PKDN 中,∠PND=∠NPK=∠PKD=90°, ∴四边形PKDN 是矩形, 又∵KD=ND ,∴四边形PKDN 是正方形. 又∵∠MBD=∠BDM=45°, ∠BDM=∠KDP , ∴∠KDP=45°. ∵PC=a ,PF=b ,PD=c , ∴PN=PK=2C 2, ∴NF=2b -,CK=2a -,又∵CK=CM ,FM=FN ,CF=CM+FM , ∴CF=a b 2c +-, 又∵S △PCF =S △PDF +S △PDC +S △DCF , ∴112121ab a c b c (a b 2222222=⨯+⨯++-c )×2c 2, 化简得:ab=()22a b c c +-------(Ⅰ), 又∵若(a-2c )(b-2c )=8化简得:()2ab 2c a b 2c 8-++=------(Ⅱ),将(Ⅰ)代入(Ⅱ)得:c 2=8,解得:c 22=,或c 22=-(舍去), ∴m=22c 222=⨯=, 即△CPF 的内切圆半径长为2. 【点睛】本题考查圆的内接四边形性质,圆的内心,圆心角、圆周角,同弧(或等弧)之间的相互关系,同时也考查直角三角形,勾股定理,同角或等角的三角函数值相等和三角形的面积公式,正方形,对顶角和整式的运算等知识点;难点是作辅助线和利用等式求△CPF 的内切圆半径长.10.在中,,,,分别是边,的中点,若等腰绕点逆时针旋转,得到等腰,设旋转角为,记直线与的交点为.(1)问题发现 如图1,当时,线段的长等于_________,线段的长等于_________.(2)探究证明 如图2,当时,求证:,且.(3)问题解决 求点到所在直线的距离的最大值.(直接写出结果)【答案】(1);;(2)详见解析;(3)【解析】(1)利用等腰直角三角形的性质结合勾股定理分别得出BD1的长和CE1的长;(2)根据旋转的性质得出,∠D1AB=∠E1AC=135°,进而求出△D1AB≌△E1AC(SAS),即可得出答案;(3)首先作PG⊥AB,交AB所在直线于点G,则D1,E1在以A为圆心,AD为半径的圆上,当BD1所在直线与⊙A相切时,直线BD1与CE1的交点P到直线AB的距离最大,此时四边形AD1PE1是正方形,进而求出PG的长.【详解】(1)解:∵∠A=90°,AC=AB=4,D,E分别是边AB,AC的中点,∴AE=AD=2,∵等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1,设旋转角为α(0<α≤180°),∴当α=90°时,AE1=2,∠E1AE=90°,∴BD1=;故答案为:;;(2)证明:由题意可知,,,∵是由绕点逆时针旋转得到,∴,,在和中,,∴,∴,.∵,∴,∴,∴,且.(3)点的运动轨迹是在的上半圆周,点的运动轨迹是在的弧段.即当与相切时,有最大值.点到所在直线的距离的最大值为.此题主要考查了几何变换以及等腰腰直角三角形的性质和勾股定理以及切线的性质等知识,根据题意得出PG的最长时P点的位置是解题关键.11.如图,△ABC中,AC=BC=10,cosC=35,点P是AC边上一动点(不与点A、C重合),以PA长为半径的⊙P与边AB的另一个交点为D,过点D作DE⊥CB于点E.(1)当⊙P与边BC相切时,求⊙P的半径.(2)连接BP交DE于点F,设AP的长为x,PF的长为y,求y关于x的函数解析式,并直接写出x的取值范围.(3)在(2)的条件下,当以PE长为直径的⊙Q与⊙P相交于AC边上的点G时,求相交所得的公共弦的长.【答案】(1)409R=;(2)25880320xy x xx=-++(3)505-【解析】【分析】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=45,sinC=HPCP=10RR-=45,即可求解;(2)首先证明PD∥BE,则EB BFPD PF=,即:2024588x yxxx-+--=,即可求解;(3)证明四边形PDBE为平行四边形,则AG=EP=BD,即:AB=DB+AD=AG+AD=5【详解】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=45,sinC=HPCP=10RR-=45,解得:R=409;(2)在△ABC中,AC=BC=10,cosC=35,设AP=PD=x,∠A=∠ABC=β,过点B作BH⊥AC,则BH=ACsinC=8,同理可得:CH=6,HA=4,AB=45,则:tan∠CAB=2,BP=228+(4)x-=2880x x-+,DA=25x,则BD=45﹣25x,如下图所示,PA=PD,∴∠PAD=∠CAB=∠CBA=β,tanβ=2,则cosβ5,sinβ5,EB =BDcosβ=(45﹣25x )×5=4﹣25x , ∴PD ∥BE , ∴EB BF PD PF =,即:2024588x y x xx y -+--=, 整理得:y =25x x 8x 803x 20-++; (3)以EP 为直径作圆Q 如下图所示,两个圆交于点G ,则PG =PQ ,即两个圆的半径相等,则两圆另外一个交点为D , GD 为相交所得的公共弦,∵点Q 是弧GD 的中点, ∴DG ⊥EP ,∵AG 是圆P 的直径,∴∠GDA =90°,∴EP ∥BD ,由(2)知,PD ∥BC ,∴四边形PDBE 为平行四边形,∴AG =EP =BD ,∴AB =DB+AD =AG+AD =5设圆的半径为r ,在△ADG 中,AD =2rcosβ5DG 5AG =2r , 5=52r 51+, 则:DG 550﹣5 相交所得的公共弦的长为50﹣5【点睛】本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.12.如图,AB 为⊙O 的直径,BC 为⊙O 的弦,过O 点作OD ⊥BC ,交⊙O 的切线CD 于点D ,交⊙O 于点E ,连接AC 、AE ,且AE 与BC 交于点F .(1)连接BD ,求证:BD 是⊙O 的切线;(2)若AF :EF=2:1,求tan ∠CAF 的值.【答案】(1)证明见解析;(2)33. 【解析】【分析】 (1)根据全等三角形的性质得到∠OBD=∠OCD=90°,根据切线的判定定理即可得到结论; (2)根据已知条件得到AC ∥DE ,设OD 与BC 交于G ,根据平行线分线段成比例定理得到AC :EG=2:1,EG=12AC ,根据三角形的中位线的性质得到OG=12AC 于是得到AC=OE ,求得∠ABC=30°,即可得到结论.【详解】证明:(1)∵OC=OB ,OD ⊥BC ,∴∠COD=∠BOD ,在△COD 与△BOD 中, OC OB COD BOD OD OD ===⎧⎪∠∠⎨⎪⎩,∴△COD ≌△BOD ,∴∠OBD=∠OCD=90°,∴BD 是⊙O 的切线;(2)解:∵AB为⊙O的直径,AC⊥BC,∵OD⊥CB,∴AC∥DE,设OD与BC交于G,∵OE∥AC,AF:EF=2:1,∴AC:EG=2:1,即EG=12AC,∵OG∥AC,OA=OB,∴OG=12AC,∵OG+GE=12AC+12AC=AC,∴AC=OE,∴AC=12AB,∴∠ABC=30°,∴∠CAB=60°,∵¼¼CE BE=,∴∠CAF=∠EAB=12∠CAB=30°,∴tan∠CAF=tan30°=33.【点睛】本题考查了切线的判定和性质,垂径定理,全等三角形的判定与性质,三角形的中位线的性质,三角函数的定义,正确的识别图形是解题的关键.13.如图,四边形ABCD是⊙O的内接四边形,AC为直径,»»BD AD=,DE⊥BC,垂足为E.(1)判断直线ED与⊙O的位置关系,并说明理由;(2)若CE=1,AC=4,求阴影部分的面积.【答案】(1)ED 与O e 相切.理由见解析;(2)2=33S π-阴影. 【解析】【分析】 (1)连结OD ,如图,根据圆周角定理,由»»BD AD =得到∠BAD =∠ACD ,再根据圆内接四边形的性质得∠DCE =∠BAD ,所以∠ACD =∠DCE ;利用内错角相等证明OD ∥BC ,而DE ⊥BC ,则OD ⊥DE ,于是根据切线的判定定理可得DE 为⊙O 的切线;(2)作OH ⊥BC 于H ,易得四边形ODEH 为矩形,所以OD =EH =2,则CH =HE ﹣CE =1,于是有∠HOC =30°,得到∠COD =60°,然后根据扇形面积公式、等边三角形的面积公式和阴影部分的面积=S 扇形OCD ﹣S △OCD 进行计算即可.【详解】(1)直线ED 与⊙O 相切.理由如下:连结OD ,如图,∵»»BD AD =,∴∠BAD =∠ACD .∵∠DCE =∠BAD ,∴∠ACD =∠DCE .∵OC =OD ,∴∠OCD =∠ODC ,而∠OCD =∠DCE ,∴∠DCE =∠ODC ,∴OD ∥BC . ∵DE ⊥BC ,∴OD ⊥DE ,∴DE 为⊙O 的切线;(2)作OH ⊥BC 于H ,则四边形ODEH 为矩形,∴OD =EH .∵CE =1,AC =4,∴OC =OD =2,∴CH =HE ﹣CE =2﹣1=1.在Rt △OHC 中,∵OC =2,CH =1,∠OHC =90°,∠HOC =30°,∴∠COD =60°,∴阴影部分的面积=S 扇形OCD ﹣S △OCD26023360π⋅⋅=-•22 23=π3-.【点睛】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了扇形面积的计算.14.如图,AB是半圆⊙O的直径,点C是半圆⊙O上的点,连接AC,BC,点E是AC的中点,点F是射线OE上一点.(1)如图1,连接FA,FC,若∠AFC=2∠BAC,求证:FA⊥AB;(2)如图2,过点C作CD⊥AB于点D,点G是线段CD上一点(不与点C重合),连接FA,FG,FG与AC相交于点P,且AF=FG.①试猜想∠AFG和∠B的数量关系,并证明;②连接OG,若OE=BD,∠GOE=90°,⊙O的半径为2,求EP的长.【答案】(1)见解析;(2)①结论:∠GFA=2∠ABC.理由见解析;②PE=3.【解析】【分析】(1)证明∠OFA=∠BAC,由∠EAO+∠EOA=90°,推出∠OFA+∠AOE=90°,推出∠FAO=90°即可解决问题.(2)①结论:∠GFA=2∠ABC.连接FC.由FC=FG=FA,以F为圆心FC为半径作⊙F.因为»»AG AG,推出∠GFA=2∠ACG,再证明∠ACG=∠ABC.②图2﹣1中,连接AG,作FH⊥AG于H.想办法证明∠GFA=120°,求出EF,OF,OG即可解决问题.【详解】(1)证明:连接OC.∵OA=OC,EC=EA,∴OF⊥AC,∴FC=FA,∴∠OFA=∠OFC,∵∠CFA=2∠BAC,∴∠OFA=∠BAC,∵∠OEA=90°,∴∠EAO+∠EOA=90°,∴∠OFA+∠AOE=90°,∴∠FAO=90°,∴AF⊥AB.(2)①解:结论:∠GFA=2∠ABC.理由:连接FC.∵OF垂直平分线段AC,∴FG=FA,∵FG=FA,∴FC=FG=FA,以F为圆心FC为半径作⊙F.∵»»,AG AG∴∠GFA=2∠ACG,∵AB是⊙O的直径,∴∠ACB=90°,∵CD⊥AB,∴∠ABC+∠BCA=90°,∵∠BCD+∠ACD=90°,∴∠ABC=∠ACG,∴∠GFA=2∠ABC.②如图2﹣1中,连接AG,作FH⊥AG于H.∵BD=OE,∠CDB=∠AEO=90°,∠B=∠AOE,∴△CDB≌△AEO(AAS),∴CD=AE,∵EC=EA,∴AC=2CD.∴∠BAC =30°,∠ABC =60°,∴∠GFA =120°,∵OA =OB =2,∴OE =1,AE =,BA =4,BD =OD =1, ∵∠GOE =∠AEO =90°,∴OG ∥AC , 323DG OG ∴==, 22221AG DG AD ∴=+=, ∵FG =FA ,FH ⊥AG ,∴AH =HG 21∠AFH =60°, ∴AF =27sin 603AH ︒=, 在Rt △AEF 中,EF 2213AF AE -=, ∴OF =OE +EF =43 , ∵PE ∥OG , ∴PE EF OG 0F=, ∴134233=, ∴PE 3. 【点睛】圆综合题,考查了垂径定理,勾股定理,圆周角定理,全等三角形的判定和性质,锐角三角函数,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.15.如图,已知四边形ABCD 内接于⊙O ,点E 在CB 的延长线上,连结AC 、AE ,∠ACB =∠BAE =45°.(1)求证:AE 是⊙O 的切线;(2)若AB=AD ,AC =32tan ∠ADC=3,求BE 的长.【答案】(1)证明见解析;(2)52BE = 【解析】试题分析:(1)连接OA 、OB ,由圆周角定理得出∠AOB=2∠ACB=90°,由等腰直角三角形的性质得出∠OAB=∠OBA=45°,求出∠OAE=∠OAB+∠BAE=90°,即可得出结论;(2)过点A 作AF ⊥CD 于点F,由AB=AD ,得到∠ACD =∠ACB =45°,在Rt △AFC 中可求得AF =3,在Rt △AFD 中求得DF =1,所以AB =AD =10 ,CD = CF +DF =4,再证明△ABE ∽△CDA ,得出BE AB DA CD =,即可求出BE 的长度; 试题解析:(1)证明:连结OA ,OB ,∵∠ACB =45°,∴∠AOB =2∠ACB = 90°,∵OA=OB ,∴∠OAB =∠OBA =45°,∵∠BAE =45°,∴∠OAE =∠OAB +∠BAE =90°,∴OA ⊥AE .∵点A 在⊙O 上,∴AE 是⊙O 的切线.(2)解:过点A 作AF ⊥CD 于点F ,则∠AFC =∠AFD =90°.∵AB=AD , ∴AB u u u r =AD u u u r∴∠ACD =∠ACB =45°,在Rt △AFC 中,∵AC =32∠ACF =45°,∴AF=CF=AC ·sin ∠ACF =3,∵在Rt △AFD 中, tan ∠ADC=3AF DF=, ∴DF =1,∴22==+=,3110 AB AD且CD= CF+DF=4,∵四边形ABCD内接于⊙O,∴∠ABE=∠CDA,∵∠BAE=∠DCA,∴△ABE∽△CDA,∴BE AB=,DA CD∴10=,410∴5BE=.2。
中考数学《圆的综合题》专项练习题及答案

中考数学《圆的综合题》专项练习题及答案一、单选题1.如图,在一块正三角形飞镖游戏板上画一个正六边形(图中阴影部分),假设飞镖投中游戏板上的每一点是等可能的(若投中边界或没有投中游戏板,则重投1次),任意投掷飞镖1次,则飞镖投中阴影部分的概率为()A.13B.49C.12D.232.如图,AB为⊙O的直径,弦DC垂直AB于点E,⊙DCB=30°,EB=3,则弦AC的长度为()A.3 √3B.4√3C.5√3D.6√33.如图,AB是⊙O的弦,半径OC⊙AB于点D,且AB=6cm,OD=4cm。
则DC的长为()A.cm B.1cm C.2cm D.5cm4.如图,四边形ABCD内接于⊙ O,AB为⊙ O的直径,∠ABD=20∘,则∠BCD的度数是()A.90°B.100°C.110°D.120°5.如图,点A,B,C,D都在⊙O上,AC,BD相交于点E,则⊙ABD=()A.⊙ACD B.⊙ADB C.⊙AED D.⊙ACB6.如图,在⊙O中,弦AB⊙CD,若⊙ABC=40°,则⊙BOD=()A.20°B.40°C.50°D.80°7.下列判断结论正确的有()(1)直径是圆中最大的弦.(2)长度相等的两条弧一定是等弧.(3)面积相等的两个圆是等圆.(4)同一条弦所对的两条弧一定是等弧.(5)圆上任意两点间的部分是圆的弦.A.1个B.2个C.3个D.4个8.已知如图,PA、PB切⊙O于A,B,MN切⊙O于C,交PB于N;若PA=7.5cm,则⊙PMN的周长是()A.7.5cm B.10cm C.15cm D.12.5cm9.若小李同学掷出的铅球在场地航砸出一个直径为10厘米,深2厘米的小坑,则该铅球的直径为()A.20厘米B.19.5厘米C.14.5厘米D.10厘米10.如图,如果从半径为9cm的圆形纸片剪去13圆周的一个扇形,将留下的扇形(阴影部分)围成一个圆锥(接缝处不重叠),那么这个圆锥的高为()A.6cm B.5√3cm C.8cm D.3√5cm11.如图,△ABC内接于⊙O,∠B=65o,∠C=70o,若BC=2√2,则弧BC长为()A.πB.√2πC.2πD.√2π12.如下图,点B,C,D在⊙O上,若⊙BCD=130°,则⊙BOD的度数是()A.96°B.98°C.102°D.100°二、填空题13.如图,在扇形AOB中,OA=4,⊙AOB=90°,点P是弧AB上的动点,连接OP,点C是线段OP的中点,连接BC并延长交OA于点D,则图中阴影部分面积最小值为.14.如图,在边长为√2的正方形ABCD中,分别以四个顶点为圆心,以边长为半径画弧,分别与正方形的边和对角线相交,则图中阴影部分的面积为(结果保留π).15.如图,⊙ABC的顶点A,B,C均在⊙O上,若⊙ABC+⊙AOC=90°,则⊙AOC的大小是.16.如图:⊙O为⊙ABC的内切圆,⊙C=90°,AO的延长线交BC于点D,AC=4,CD=1,则⊙O的半径为.17.如图,在正八边形ABCDEFGH中,AC、GC是两条对角线,则tan⊙ACG=.18.如图,菱形ABCD中,已知AB=2,∠DAB=60°将它绕着点A逆时针旋转得到菱形ADEF,使AB与AD重合,则点C运动的路线CE⌢的长为.三、综合题19.如图,AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C,点D为AP的中点,连结AC.求证:(1)⊙P=⊙BAC(2)直线CD是⊙O的切线.20.如图,以△ABC的边AB为直径的⊙O交AC于点F,点E是BF⌢的中点,连接BE并延长交AC于点D,若∠CBD=12∠CAB.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为2,cos∠BAC=25,求CD的长.21.如图,⊙O是⊙ABC的外接圆,AC是O的直径,BD=BA=12,BC=5,BE⊙DC,交D的延长线于点E,BD交直径AC于点F.(1)求证:⊙BCA=⊙BAD.(2)求证:BE是⊙O的切线.(3)若BD平分⊙ABC,交⊙O于点D,求AD的长.22.如图,⊙OAB中,OA=OB=10cm,⊙AOB=80°,以点O为圆心,半径为6cm的优弧弧MN分别交OA,OB于点M,N.(1)点P在右半弧上(⊙BOP是锐角),将OP绕点O逆时针旋转80°得OP′.求证:AP=BP′;(2)点T在左半弧上,若AT与弧相切,求A T的长.23.如图,有一直径是√2米的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC,则:(1)AB的长为米;(2)用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为米.⌢的中点,CE⊥AB于点E,BD交CE于点F.24.如图,AB是⊙O的直径,C是BD(1)求证:CF=BF;(2)若CD﹦5,AC﹦12,求⊙O的半径和CE的长.参考答案1.【答案】D2.【答案】D3.【答案】B4.【答案】C5.【答案】A6.【答案】D7.【答案】B8.【答案】C9.【答案】C10.【答案】D11.【答案】A12.【答案】D13.【答案】4π−8√3314.【答案】4-π15.【答案】60°16.【答案】0.817.【答案】118.【答案】2√33π19.【答案】(1)解:证明:∵AB是⊙O的直径∴⊙ACB=90°∴⊙ACP=90°∴⊙P+⊙CAP=90°∵AP⊙O是切线∴⊙BAP=90°即⊙CAP+⊙BAC=90°∴⊙P=⊙BAC;(2)解:∵CD是Rt⊙PAC斜边PA的中线∴CD=AD∴⊙DCA=⊙DAC连接OC∵OC=OA∴⊙OCA=⊙OAC∴⊙DCO=⊙DAO=90°∴CD是⊙O的切线.20.【答案】(1)证明:连接AE,如图所示:∵AB是⊙O的直径∴∠AEB=90°∴∠BAE+∠ABE=90°.∵点E为弧BF的中点∴EF⌢=EB⌢∴∠BAE=∠DAE=12∠CAB.又∵∠CBD=12∠CAB∴∠BAE=∠CBD∴∠CBD+∠ABE=90°∴AB⊥CB∴BC是⊙O的切线.(2)解:∵∠BAE=∠DAE,∠AED=∠AEB=90°∴∠ADE=∠ABE∴AD=AB=2×2=4.∵cos∠BAC=2 5∴在Rt△ABC中即4AC=25,得AC=10∴CD=AC−AD=10−4=6.21.【答案】(1)证明:∵BD=BA ∴∠BDA=∠BAD.∵∠BCA=∠BDA∴∠BCA=∠BAD.(2)证明:连结OB,如图∵∠BCA=∠BAD又∵∠BCE=∠BAD∴∠BCA=∠BCE∵OB=OC∴∠BCO=∠CBO∴∠BCE=∠CBO∴OB//ED.∵BE⊥ED∴EB⊥BO.∴BE是⊙O的切线.(3)解:∵AC是⊙O的直径∴∠ABC=90°∴AC=√AB2+BC2=√122+52=13.∵∠BDE=∠CAB∴△BED∽△CBA∴BDAC=DEAB,即1213=DE12∴DE=14413∴BE=√BD2−DE2=6013∴CE=√BC2−BE2=2513∴CD=DE−CE=119 13∵BD平分⊙ABC ∴∠CBD=∠ABD∴AD=CD=119 13.22.【答案】(1)证明:∵⊙AOB=⊙POP′=80°∴⊙AOB+⊙BOP=⊙POP′+⊙BOP即⊙AOP=⊙BOP′在⊙AOP 与⊙BOP′中 OA=OB ⊙AOP=⊙BOP OP=OP′∴⊙AOP⊙⊙BOP′ ∴AP=BP′(2)解:∵A T 与弧相切,连结OT .∴OT⊙A T在Rt⊙AOT 中,根据勾股定理得,A T= √OA 2−OT 2 ∵OA=10,OT=6 ∴AT=823.【答案】(1)1 (2)1424.【答案】(1)证明:∵AB 是 ⊙O 的直径∴∠ACB =90° ∴∠A +∠ABC =90° 又∵CE ⊥AB ∴∠CEB =90° ∴∠BCE +∠ABC =90° ∴∠BCE =∠A∵C 是 BD ⌢ 的中点 ∴CD⌢=CB ⌢ ∴∠DBC =∠A ∴∠DBC =∠BCE ∴CF =BF(2)解:∵CD⌢=CB ⌢,CD =5 ∴∠DBC =∠BDC∴BC=CD=5∵∠ACB=90°∴AB=√AC2+BC2=√122+52=13∴AO=6.5∵∠BCE=∠A,∠ACB=∠CEB=90°∴△CEB⊙ △ACB∴CE=AC⋅BCAB=12×513=6013故⊙O的半径为6.5,CE的长是6013.第11页共11。
中考数学专题复习《圆与四边形的综合(圆的综合问题)》测试卷(附带答案)

中考数学专题复习《圆与四边形的综合(圆的综合问题)》测试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________ 1.如图AB是O的直径点C是BD的中点过点C的切线与AD的延长线交于E连接CD AC.(1)求证:CE AE⊥(2)若CD AB∥1DE=求O的面积.2.如图ABC内接O点A为BC的中点D为BC边上一点DAC ACE∠=∠AE是O的切线112AF BD AB===连接CF.(1)求证:CE CF=(2)当点A 到弦BC 的距离为1时 求AE 的值.3.如图1 已知AB 是O 的直径 弦CD AB ⊥于点E 点P 是线段DC 延长线上的一点 连结PA 交O 于点F 连接DF 交AB 于点G 连接AD 和CF .(1)求证:PFC AFD ∠=∠.(2)若91AE BE ==, 且CF CD = 求DF 的长.(3)如图2 连接OF OD , 若四边形FODC 为平行四边形 求PFC DFA S S △△的值(直接写出答案).4.如图 在平面直角坐标系中 AB OC ∥(0,A ()4,0C - 且2AB =.以BC为直径作1O 交OC 于点D 过点D 作直线DE 交线段OA 于点E 且30EDO ∠=︒.(1)求证:DE 是1O 的切线(2)若线段BC 上存在一点P 使以点P 为圆心 PC 为半径的P 与y 轴相切 求点P 的坐标.5.如图 以ABC 的边AB 为直径作O 交AC 于D 且OD BC ∥ O 交BC 于点E .(1)求证:CD DE =(2)若12AB = 4=AD 求CE 的长度.6.如图 四边形ABCD 是O 的内接四边形 点F 是CD 延长线上的一点 且AD 平分BDF ∠ AE CD ⊥于点E .(1)求证:AB AC =.(2)若9BD = 1DE = 求CD 的长.7.已知:A B C 三点不在同一直线上.(1)若点A B C 均在半径为R 的O 上(i )如图① 当45A ∠=︒ 1R =时 求BOC ∠的度数和BC 的长(ii )如图① 当A ∠为锐角时 求证:sin 2BC A R= (2)若定长线段BC 的两个端点分别在MAN ∠的两边AM AN (B C 均与A 不重合)滑动 如图① 当60MAN ∠=︒ 2BC =时 分别作BP AM ⊥ CP AN ⊥ 交点为P 试探索在整个滑动过程中 P A 两点间的距离是否保持不变?请说明理由.8.已知矩形ABCD 3AB = 3AD = 点O 是AD 的中点 以AD 为直径作圆 点A '是圆上的点.(1)如图1 连接A B ' 若A B '是圆O 的切线①求证:AB A B '=①设A O '与BC 交于点F 求OF 的长.(2)若动点G 从点B 向C 运动 连接OG 作四边形AOGB 关于直线GO 对称图形四边形A OGB '' 如图2.求点G 在运动过程中线段A B ''扫过的面积.9.定义:有一个角是其对角一半的圆的内接四边形叫做圆美四边形其中这个角叫做美角.∠的度数(1)如图1 若四边形ABCD是圆美四边形.求美角BAD(2)在(1)的条件下若O的半径为4.①求BD的长①连接CA若CA平分BCD∠如图2 请判断BC CD AC之间有怎样的数量关系并说明理由.10.如图点E为正方形ABCD的边BC上的一点O是ABE的外接圆与AD交于点F ∠=∠.G是CD上一点且DGF AEB(1)求证:FG是O的切线(2)若4AB=1DG=求O半径的长.11.如图在菱形ABCD中点P在对角线AC上且PA PD=O是PAD的外接圆.(1)求证:AB是O的切线(2)若18tan2AC BAC=∠=,求O的直径.(请用两种方法作答)12.已知 AB 为O 的直径 弦CD 与AB 交于点E 点A 为弧CD 的中点.(1)如图1 求证:AB CD ⊥(2)如图2 点F 为弧BC 上一点 连接BF BD 2FBA DBA ∠=∠ 过点C 作CG AB ∥交BF 于点G 求证:12CG AB =.(3)如图3 在(2)的条件下 连接DF 交OE 于点L 连接LG 若4FG = tan GLB =∠ 求线段LF 的长.13.已知O 为ABC 的外接圆 O 的半径为6.(1)如图AB是O的直径点C是AB的中点.①尺规作图:作ACB∠的角平分线CD交O于点D连接BD(保留作图痕迹不写作法):①求BD的长度.(2)如图AB是O的非直径弦点C在AB上运动60ACD BCD∠=∠=︒点C在运动的过程中四边形ADBC的面积是否存在最大值若存在请求出这个最大值若不存在请说明理由.14.如图以AB为直径的O与AH相切于点A点C在AB左侧圆弧上弦CD AB⊥交O于点D连接AC AD点A关于CD的对称点为E直线CE交O于点F交AH 于点G.(1)求证:CAG AGC∠=∠(2)当点E在AB上连接AF交CD于点P若25EFCE=求DPCP的值(3)当点E在射线AB上2AB=四边形ACOF中有一组对边平行时求AE的长.15.圆内接四边形若有一组邻边相等 则称之为等邻边圆内接四边形.(1)如图1 四边形ABCD 为等邻边圆内接四边形 AD CD = 60ADC ∠=︒ 则ABD ∠=________(2)如图2 四边形ABCD 内接于O AB 为O 的直径 10AB = 6AC = 若四边形ABCD 为等邻边圆内接四边形 求CD 的长(3)如图3 四边形ABCD 为等邻边圆内接四边形 BC CD = AB 为O 的直径 且48AB =.设BC x = 四边形ABCD 的周长为y 试确定y 与x 的函数关系式 并求出y 的最大值.参考答案:1.(1)证明:连接OC①OC CE ⊥①90OCE ∠=︒①点C 是BD 的中点①CD BC =①DAC CAB ∠=∠①OA OC =①CAB OCA ∠=∠①OCA DAC ∠=∠①OC AD ∥①180AEC OCE ∠+∠=︒①90AEC ∠=︒①CE AE ⊥.(2)解:连接OD①CD AB ∥ OC AE ∥①四边形AOCD 是平行四边形①OA OC =①平行四边形AOCD 是菱形①AD CD OA ==①AD OA OD ==①ADO △是等边三角形①60OAD ∠=︒①CD AB ∥①60CDE OAD ∠=∠=︒①30DCE ∠=︒①2212CD DE ==⨯=①2OA CD ==①O 的面积为:224ππ⨯=.2.(1)证明:如图 连接OA 交BC 于点M①点A 为BC 的中点①,OA BC AB AC ⊥=①AE 与O 相切①AE OA ⊥①,AE BC EAC ACB ABD∠=∠=∠∥又①BD AF =①()SAS ABD CAF ≌①AD CF =①DAC ACE ∠=∠①CE AD ∥①四边形ADCE 为平行四边形①AD CE =①CE CF =(2)解:如图①112AF BD AB ===①2AB AC ==①BM CM =①点A 到弦BC 的距离为1 即1AM =在Rt ABM 中 222A A M B M B -= ①22213BM -①|31DM BM BD =-=313231CD DM MC ∴=+==由(1)可知四边形ADCE 为平行四边形 ①231AE CD ==.3.(1)解:①弦CD AB ⊥于点E ①12CB DB CB DB CD ===, ①AB 是O 的直径①AB AB AB CB AB DB =-=-,即AC AD AFD ADC =∠=∠,①四边形ADCE 是O 的内接四边形①180AFC ADC ∠+∠=︒180PFC AFC ∠+∠=︒PFC ADC ∴∠=∠①PFC AFD ∠=∠(2)解:如图:连接OE OC OC ,,与FD 相交于一点H①91AE BE ==, ①1911052AB AE BE OC AB =+=+===, ①弦CD AB ⊥于点E①2CD CE =在Rt OCE 中 ()22222OC OE CE OB BE CE =+=-+即()222551CE =-+解得3CE =①236CD =⨯=①CF CD =①62H CF CD OC FD DF F =⊥==,,设5OH x HC x ==-,在Rt OFH △中 222FH OF OH =-在Rt CFH △中 222FH CF CH =-即2222OF OH CF CH -=-①()2225365x x -=-- 解得75x =①482225DF FH ==== (3)解:如图 连接BF①四边形FODC 为平行四边形 且易知OF OD =①四边形FODC 为菱形①四边形ADCE 是O 的内接四边形①180180FAD FCD FCD PCE ∠+∠=︒∠+∠=︒, ①FAD PCE ∠=∠①由(1)知PFC AFD ∠=∠①PFC DFA ∽ ①FC PF PC FA DF DA== ①AB 是O 的直径①90AFB ∠=︒①四边形FODC 为菱形①FC OF OF CD =,①CD AB ⊥①OF AB ⊥①45AF BF FAB FBA =∠=∠=︒,①()()222222222AF BF AF AB OF CF +==== ①22FC FA ①212PFC DFA S FC S FA ⎛⎫== ⎪⎝⎭ 4.(1)证明:连接1O D BD 如图①(0,3A ()4,0C -23OA ∴= 4OC =. ①以BC 为直径作1O 交OC 于点D90BDC ∴∠=︒.,AB OC OC OA ⊥∥AB OA ∴⊥①四边形ABDO 为矩形2,OD AB BD OA ∴====2CD OC OD ∴=-=4BC ∴112O C O D ∴==1O CD ∴为等边三角形1160O CD O DC ∴∠=∠=︒30EDO ∠=︒1118090O DE O DC EDO ∴∠=︒-∠-∠=︒1O D DE ∴⊥1O D 为1O 的半径DE ∴是1O 的切线(2)解:①线段BC 上存在一点P 使以点P 为圆心 PC 为半径的P 与y 轴相切①点P 到y 轴的距离等于PC .过点P 作PF y ⊥轴于点F PH x ⊥轴于点H 如图则PF PC =.由(1)知:60BCD ∠=︒12CH PC ∴= PH =.PF y ⊥轴 PH x ⊥轴 OA OC ⊥①四边形PHOF 为矩形OH PF PC ∴==142OC CH OH PC PC ∴=+=+= 83PC 83PF OH ∴== 84333PH == ①点P 的坐标为8433⎛- ⎝⎭.5.(1)证明:①四边形ABED 内接于O 180DEB A ∴∠+∠=︒又180DEB DEC ∠+∠=︒DEC A ∴∠=∠OD BC ∥C ADO ∴∠=∠①OA OD =①CAO ADO ∠=∠①C DEC ∠=∠①CD DE =(2)解:如图所示 连接AE①AB 为直径①90AEB ∠=︒90CAE C ∴∠+∠=︒ 90AED DEC ∠+∠=︒ 由(1)CD DE = C DEC ∠=∠CAE AED ∴∠=∠①AD DE =①AD DC =①28AC AD ==由(1)可得BAC ADO ∠=∠ C ADO ∠=∠ 则C BAC ∠=∠①12AB BC ==设CE x = 则12BE x =-2222AC CE AB BE -=-()222281212x x ∴-=-- 解得:83x = ①83CE =.6.(1)证明:①AD 平分BDF ∠∴ADF ADB ∠=∠ ①四边形ABCD 是O 的内接四边形∴180ABC ADC ∠+∠=︒180ADC ADF ∠+∠=︒ABC ADF ADB ∴∠=∠=∠ACB ADB ∠=∠ACB ABC ∴∠=∠AB AC ∴=.(2)解:过点A 作AG BD ⊥于点G90AGD ∴∠=︒①AD 平分BDF ∠∴ADF ADB ∠=∠AE CD ⊥90AED ∴∠=︒在AGD △和AED △中90AGD AED ADF ADBAD AD∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()AAS AGD AED ∴≌1GD DE ∴== AG AE =在Rt AEC △和Rt AGB △中AE AGAB AC =⎧⎨=⎩()Rt Rt HL AEC AGB ∴≌CE BG ∴=又9BD = 1DE =918BG BD GD ∴=-=-=8∴=CE817CD CE ED =-=-=7CD ∴=.7.(1)(i )证明:①A B C 均在O 上 ①224590BOC A ∠=∠=⨯︒=︒①1OB OC ==在Rt BOC 中 根据勾股定理 ①2BC =(ii )证法一:如图① 连接EB 作直径CE 则E A ∠=∠ 2CE R =①90EBC ∠=︒ ①sin sin 2BCA E R ==证法二:如图①.连接OB OC 作OH BC ⊥于点H 则12A BOC BOH ∠=∠=∠ 12BH BC = ①12sin sin 2BC BH BC A BOH OB R R=∠===.(2)如图① 连接AP 取AP 的中点K 连接BK CK 在Rt APC △中 12CK AP AK PK === 同理得:BK AK PK ==①CK BK AK PK ===①点A B P C 都在K 上①由(1)(ii )可知sin 60BC AP ︒=①2sin 60AP ==︒ 故在整个滑动过程中 P A 两点间的距离不变.8.(1)①①矩形ABCDAD = 点O 是AD 的中点①90AO DO A ==∠=︒①BA 是圆O 的切线①A B '是圆O 的切线。
中考数学《圆的综合》专题训练(含有答案)

中考数学《圆的综合》专题训练(含有答案)1.如图,:AB 是O 的直径:BC 是O 弦,OD CB ⊥于点E ,交BC 于点D .(1)请写出三个不同类型的正确结论(2)连结CD ,设BCD α∠= ABC β∠= 试找出α与β之间的一种关系式并给予证明.2.如图,,在ABC 中 AB AC = 以AB 为直径的O 交BC 于点D 交CA 的延长线于点E .(1)求证点D 为线段BC 的中点.(2)若63BC = 3AE = 求O 的半径及阴影部分的面积.3.如图,AB 为O 的直径 点C 在O 上 延长BC 至点D 使DC CB =.延长DA 与O 的另一个交点为E 连结AC CE ,.(1)求证D E ∠=∠(2)若42AB BC AC =-=, 求CE 的长.4.请仅用无刻度的直尺完成下列作图 不写作法 保留作图痕迹(1)如图1, ABC 与ADE 是圆内接三角形 AB AD = AE AC = 画出圆的一条直径.(2)如图2 , AB CD 是圆的两条弦 AB CD =且不相互平行 画出圆的一条直径. 5.如图,AB 是O 的直径 点D 在AB 的延长线上 点C 在O 上 ,30CA CD CDA =∠=︒.(1)求证CD 是O 的切线(2)若O 的半径为6 求点A 到CD 所在直线的距离.6.如图, 点C 在以AB 为直径的O 上 过C 作O 的切线交AB 的延长线于E AD CE ⊥于D 连接AC .(1)求证ACD ABC ∠=∠(2)若3tan 4CAD ∠= 8AD = 求O 直径AB 的长.7.如图, 已知以Rt ABC 的直角边AC 为直径作O 交斜边AB 于点E 连接EO 并延长交BC 的延长线于点D 连接AD 点F 为BC 的中点 连接EF .(1)求证EF 是O 的切线(2)若O 的半径为6 8CD = 求AB 的长.8.如图, AB 是半圆O 的直径 D 为半圆O 上的点(不与A B 重合) 连接AD 点C 为BD 的中点 过点C 作CF AD ⊥ 交AD 的延长线于点F 连接BF AC 交于点E .(1)求证FC 是半圆O 的切线(2)若3AF = 23AC = 求半圆O 的半径及AE 的长.9.如图, AB 为O 的直径 C 为BA 延长线上一点 CD 是O 的切线 D 为切点 OF AD ⊥于点E 交CD 于点F .(1)求证ADC AOF ∠=∠ (2)若53OC OB = 24BD = 求EF 的长. 10.如图,所示 AB 是O 的直径 点D 在AB 上 点C 在O 上 AD AC =CD 的延长线交O 于点E .(1)在CD 的延长线上取一点F 使BF BC = 求证BF 是O 的切线 (2)若2AB = 2CE 求图中阴影部分的面积.11.如图, ABC 内接于O AB 为O 的直径 D 为BA 延长线上一点 连接CD 过O 作OF BC ∥交AC 于点E 交CD 于点F ACD AOF ∠=∠.(1)求证CD 为圆O 的切线 (2)若1sin 4D =10BC = 求EF 的长. 12.如图, 四边形ABCD 是O 的内接四边形 AD CD = 70BAC ∠=︒ 50∠=°ACB .(1)求ABD ∠的度数 (2)求BAD ∠的度数.13.如图, 四边形ABCD 是O 的内接四边形 且对角线BD 为O 的直径 过点A 作AE CD ⊥ 与CD 的延长线交于点E 且DA 平分BDE ∠.(1)求证AE 是O 的切线(2)若O 的半径为5 6CD = 求DA 的长.14.如图, 在正方形ABCD 中有一点P 连接AP BP 旋转APB △到CEB 的位置.(1)若正方形的边长是8 4BP =.求阴影部分面积 (2)若4BP = 7AP = 135APB ∠=︒ 求PC 的长.15.如图, AB 是O 的直径 OD 垂直于弦AC 于点E 且交O 于点D F 是BA 延长线上一点 若CDB BFD ∠=∠.(1)求证 FD 是O 的一条切线(2)若15AB = 9BC = 求DF 的长. 16.如图,O 是ABC ∆的外接圆 AE 切O 于点A AE 与直径BD 的延长线相交于点E .(1)如图,① 若70C ∠=︒ 求E ∠的大小 (2)如图,① 若AE AB = 求E ∠的大小.17.已知 如图, 直线MN 交O 于A B 两点 AC 是直径 AD 平分CAM ∠交O 于D 过D 作DE MN ⊥于E .(1)求证DE 是O 的切线(2)若8cm DE = 4cm AE = 求O 的半径.18.已知四边形ABCD 内接于O C 是DBA 的中点 FC AC ⊥于C 与O 及AD 的延长线分别交于点,E F 且DE BC =.(1)求证~CBA FDC(2)如果9,4AC AB == 求tan ACB ∠的值.参考答案与解析1.(1)见解析(2)关系式为2=90αβ+︒ 证明见解析【分析】(1)AB 是O 的直径 BC 是弦 OD BC ⊥于E 本题满足垂径定理. (2)连接,CD DB 根据四边形ACDB 为圆内接四边形 可以得到290αβ+=︒. 【解析】(1)解不同类型的正确结论有 ①BE CE = ①BD CD = ①90BED ∠=︒ ①BOD A ∠=∠ ①AC OD ∥ ①AC BC ⊥ ①222OE BE OB += ①ABC S BC OE =⋅△ ①BOD 是等腰三角形 ①BOE BAC △∽△等等. (2)如图, 连接,CD DBα与β之间的关系式为290αβ+=︒证明AB 为圆O 的直径90A ABC ∴∠+∠=︒①又四边形ACDB 为圆内接四边形180A CDB ∠∠∴+=︒①∴①-①得90CDB ABC ∠∠-=︒①18021802CDB BCD α∠=︒-∠=︒- 即180290αβ︒--=︒ ①2=90αβ+︒.【点评】本题考查了圆的一些基本性质 且有一定的开放性 垂径定理 圆内接四边形的性质掌握圆的相关知识. 2.(1)见解析 (2)半径为3 39π324S =阴【分析】(1)连结AD 可得90ADB ∠=︒ 已知AB AC = 根据等腰三角形三线合一的性质即可得证点D 为线段BC 的中点(2)根据已知条件可证ABC DEC ∽△△ 得到ED ECAB BC= 22BD AB EC =⋅ 且EDC △是等腰三角形 进而得到ED DC BD == 设AB x = 则(()22333x x =+ 解方程即可求得O 的半径连接OE 可证AOE △是等边三角形 再根据AOEAOE S S S =-阴扇形即可求出阴影部分的面积【解析】(1)连结AD①AB 为O 的直径 ①90ADB ∠=︒ ①AB AC = ①BD CD =即点D 为线段BC 的中点. (2)①B E ∠=∠ C C ∠=∠ ①ABC DEC ∽△△ ①ED ECAB BC= ①AB AC = ①B C ∠=∠ ①C E ∠=∠ ①ED DC BD == ①22BD AB EC =⋅ 设AB x = 则 (()22333x x =+解得19x =-(舍去) 26x = ①O 的半径为3 连接OE ①60AOE =︒∠ ①AOE △是等边三角形 ①AE 33①AOEAOE S S S=-阴扇形260313333602π⨯⨯=-⨯ 39π324=【点评】本题主要考查等腰三角形的性质 相似三角形的判定和性质 不规则图形面积的计算 熟练掌握相关知识点是解题的关键. 3.(1)见解析 (2)CE 的长为17【分析】(1)由AB 为O 的直径得90ACB ∠=︒ 通过证明()ACD ACB ≌SAS 得到D B ∠=∠ 又由B E ∠=∠ 从而得到D E ∠=∠(2)设BC x = 则2AC x =- 在Rt ABC 中 由勾股定理可得222AC BC AB += 即()22224x x -+= 解一元二次方程得到BC 的长 由(1)知D E ∠=∠ 从而得到CD CE = 又由DC CB = 得到17CE CB ==【解析】(1)证明AB 为O 的直径90ACB ∴∠=︒180ACD ACB ∠+∠=︒90ACD ∴∠=︒在ACD 和ACB △中AC AC ACD ACB DC BC =⎧⎪∠=∠⎨⎪=⎩()ACD ACB ∴≌SASD B ∴∠=∠ BE ∠=∠D E ∴∠=∠(2)解设BC x =2BC AC -=∴2AC x =-在Rt ABC 中 由勾股定理可得222AC BC AB += 即()22224x x -+=解得117x = 217x = 17BC ∴=由(1)得D E ∠=∠ CD CE ∴= DC CB =17CE CB ∴==∴ CE 的长为17【点评】本题主要考查了圆周角定理 三角形全等的判定与性质 等腰三角形的性质 勾股定理解直角三角形 熟练掌握圆周角定理 三角形全等的判定与性质 等腰三角形的性质是解题的关键. 4.(1)见解析 (2)见解析【分析】(1)设BC DE 交于点G 连接AG 交圆于点F 即可作答(2)连接BC AD 交于点F 延长BA DC 两线交于点E 作直线EF 交圆于点M N 即可作答.【解析】(1)如图, 设BC DE 交于点G 连接AG 并延长 交圆于点F线段AF 即为所求证明如图, BC AE 交于点Q DE AC 交于点P 连接DB 交AF 于点H①AB AD = AE AC = ①C E ∠=∠ ADE ABC =∠∠ ①DAE BAC ∠=∠①DAE BAC ≌ ①BC DE = ①DAE BAC ∠=∠ ①BAE DAC ∠=∠①AB AD = ADE ABC =∠∠ ①DAP BAQ ≌ ①AQ AP = ①AE AC = ①QE PC =①QGE PGC ∠=∠ C E ∠=∠ ①QGE PGC ≌ ①QG PG =①AG AG = AQ AP = ①QAG PAG ≌ ①QAG PAG ∠=∠ ①BAE DAC ∠=∠ ①BAG DAG ∠=∠ ①AH AH = AB AD = ①BAH DAH ≌①BH DH = 90AHB AHD ∠=∠=° ①AF 垂直平分弦DB ①AF 是圆的直径(2)如图, 连接BC AD 交于点F 延长BA DC 两线交于点E 作直线EF 交圆于点M N线段MN 即为所求. 证明方法同(1).【点评】本题主要考查了垂径定理 圆周角定理以及全等三角形的判定与性质等知识 掌握圆周角定理以及垂径定理是解答本题的关键. 5.(1)见解析 (2)9【分析】(1)已知点C 在O 上 先连接OC 由已知CA CD = 30CDA ∠=︒ 得30CAO ∠=︒ 30ACO ∠=︒ 所以得到60COD ∠=︒ 根据三角形内角和定理得90DCO ∠=︒ 即能判断直线CD 与O 的位置关系.(2)要求点A 到CD 所在直线的距离 先作AE CD ⊥ 垂足为E 由30CDA ∠=︒ 得12AE AD = 在Rt OCD △中 半径6OD = 所以212OD OC == 18AD OA OD =+= 从而求出AE .【解析】(1)①ACD 是等腰三角形 30D ∠=︒①30CAD CDA ∠=∠=︒.连接OC①AO CO =①AOC 是等腰三角形①30CAO ACO ∠=∠=︒①60COD ∠=︒在COD △中 又①30CDO ∠=︒①90DCO ∠=︒①CD 是O 的切线 即直线CD 与O 相切.(2)过点A 作AE CD ⊥ 垂足为E .在Rt OCD △中 ①30CDO ∠=︒①212OD OC ==61218AD AO OD =+=+=在Rt ADE △中①30EDA ∠=︒①点A 到CD 边的距离为92AD AE ==. 【点评】此题考查的知识点是切线的判定与性质 解题的关键是运用直角三角形的性质及30°角所对直角边的性质.6.(1)见解析 (2)252AB =.【分析】(1)连接OC 由DE 为O 的切线 得到OC DE ⊥ 再由AD CE ⊥ 得到AD OC ∥ 得到OCA CAD ∠=∠ 根据OA OC = 利用等边对等角得到OCA CAB ∠=∠ 等量代换得到CAD CAB ∠=∠ 由AB 为O 的直径 可知90ACB ∠=︒ 最后根据等角的余角相等可得结论 (2)在Rt CAD △中 利用锐角三角函数定义求出CD 的长 根据勾股定理求出AD 的长 由(1)易证ADC ACB 得到AD AC AC AB= 即可求出AB 的长. 【解析】(1)解连接OC由题意可知DE 与O 的相切于COC DE ∴⊥AD CE ⊥AD OC ∴∥OCA CAD ∴∠=∠OA OC =OCA CAB ∴∠=∠CAD CAB ∴∠=∠ AB 为O 的直径90ACB ∴∠=︒90CAD ACD CAB ABC ∴∠+∠=∠+∠=︒ACD ABC ∴∠=∠(2)在Rt CAD △中3tan 4CDCAD AD ∠== 8AD =364CD AD ∴==22226810AC CD AD ∴+=+=由(1)可知CAD CAB ∠=∠90D ACB ∠=∠=︒ADC ACB ∴ADACAC AB ∴=81010AB∴= 252AB ∴=【点评】此题考查了切线的性质 以及解直角三角形 熟练掌握切线的判定与性质是解本题的关键. 7.(1)证明见解析 (2)125AB =【分析】(1)连接FO 可根据三角形中位线的性质可判断OF AB ∥ 然后根据直径所对的圆周角是直角 可得CE AE ⊥ 进而知OF CE ⊥ 然后根据垂径定理可得FEC FCE ∠=∠OEC OCE ∠=∠ 再通过Rt ABC 可知90OEC FEC ∠+∠=︒ 因此可证EF 为O 的切线(2)根据题意可先在Rt OCD △中求出OD 然后在Rt EFD 中求出FC 最终在Rt ABC 中求解AB 即可.【解析】(1)证连接FO 则由题意OF 为Rt ABC 的中位线①OF AB ∥①AC 是O 的直径①CE AE ⊥①OF AB ∥①OF CE ⊥①由垂径定理知 OF 所在直线垂直平分CE①FC FE = OE OC =①FEC FCE ∠=∠ OEC OCE ∠=∠①90ACB ∠=︒即90OCE FCE ∠+∠=︒①90OEC FEC ∠+∠=︒即90FEO ∠=︒①EF 是O 的切线(2)解①O 的半径为6 8CD = 90ACB ∠=︒①OCD 为直角三角形 6OC OE == 8CD = ①2210OD OC CD += 10616ED OD OE =+=+=由(1)知 EFD △为直角三角形 且FC FE =①设FC FE x == 则8FD FC CD x =+=+①由勾股定理 222EF ED FD +=即()222168x x +=+ 解得12x =即12FC FE ==①点F 为BC 的中点①224BC FC ==①212AC OC ==①在Rt ABC 中 22125AB BC AC +①125AB =【点评】本题考查切线的证明 圆的基本性质 以及勾股定理解三角形等 掌握切线的证明方法 熟练运用圆中的基本性质是解题关键.8.(1)见解析(2)半径为2 123AE =【分析】(1)根据点C 为弧BD 的中点 得出FAC CAB ∠∠= 然后得出FAC ACO ∠∠= 根据平行线的性质得出CF OC ⊥ 进而即可求解(2)连接BC 设OC 与BF 相交于点P 证明AFC ACB ∽ 得出4AB = 证明BOP BAF ∽得出1322OP AF == 进而证明ECP EAF ∽ 根据相似三角形的性质列出比例式 进而即可求解. 【解析】(1)证明连接OC 如图,点C 为弧BD 的中点∴CD CB =FAC CAB ∠∠∴=又OA OC =CAB ACO ∠∠∴=FAC ACO ∠∠∴=∴OC AF ∥又CF AD ⊥CF OC ∴⊥FC ∴是半圆O 的切线.(2)解连接BC 如图,AB 是半圆O 的直径90ACB ∠∴=︒90AFC ACB ∠∠∴==︒又FAC CAB ∠∠=AFC ACB ∴∽ ∴AFACAC AB = 23234AB ∴=∴半圆O 的半径为2.设OC 与BF 相交于点POC AF ∥BOP BAF ∴∽ ∴12OPOB AF AB == ∴1322OP AF == ∴12PC OC OP =-=OC AF ∥ECP EAF ∴∽ ∴EC PCAE AF = 即123AC AEAE -= 2316AE-=∴123AE = 【点评】本题考查了切线的性质与判定 相似三角形的性质与判定 掌握切线的判定以及相似三角形的性质与判定是解题的关键.9.(1)见解析(2)3【分析】(1)连接DO 根据CD 是O 的切线 OF AD ⊥ 证明ADC DOF ∠∠= 利用等腰三角形三线合一性质 证明ADC AOF ∠∠=.(2) 利用平行线分线段成比例定理 计算OE 证明CFO CDB △∽△ 计算OF两线段作差即可求解.【解析】(1)如图, 连接DO CD 是O 的切线OD DF ∴⊥90ADC ADO ∠∠∴+=︒OF AD ⊥ OA OD =90DOF ADO ∠∠∴+=︒ DOF AOF ∠∠=ADC DOF ∠∠∴=ADC AOF ∠∠∴=.(2)如图, 连接DO CD 是O 的切线OD DF ∴⊥90CDO ∠∴=︒53OC OB =设5(0)CO k k => 则3DO OB AO k ===4CD k ∴=538CB CO OB k k k ∴=+=+= AB 是O 的直径 24BD =AD DB ∴⊥OF AD ⊥∴OF BD ∥ ∴AO AE OB ED = CFO CDB △∽△ ∴OF CO BD CB= AE ED ∴=5524538OF k k k ==+ ∴1122OE BD == 15OF = 3EF OF OE ∴=-=.【点评】本题考查了切线的性质 等腰三角形的三线合一性质 平行线分线段成比例定理 相似三角形的性质与判定 熟练掌握切线的性质 相似三角形的性质与判定是解题的关键.10.(1)证明过程见解析 (2)142π-【分析】(1)AB 是O 的直径 AC AD = BF BC = 可求出90FBD ∠=︒ AB BF ⊥ 由此即可求证(2)如图,所示(见解析)连接,CO EO 可得1OC OE == 可证222CO O CE += 90COE ∠=︒ 根据扇形面积的计算方法即可求解.【解析】(1)证明①AB 是O 的直径①90ACB ∠=︒①90ACD BCD ∠+∠=︒①AC AD =①ACD ADC ∠=∠①ADC BDF ∠=∠①ACD BDF ∠=∠①BC BF =①BCD F ∠=∠①90BDF F ∠+∠=︒①180()90FBD FDB F ∠=︒-∠+∠=︒①AB BF ⊥ 且OB 是O 的半径①BF 是O 的切线.(2)解如图,所示 连接,CO EO①2AB =①1OC OE == ①2CE ①222CO EO += 2222CE == ①222CO O CE +=①90COE ∠=︒ ①29011111360242ππS ⨯=-⨯⨯=-阴影 ①图中阴影部分的面积为142π-. 【点评】本题主要考查圆的基础知识 掌握圆的切线的证明方法 扇形面积的计算方法是解题的关键.11.(1)见解析(2)3【分析】(1)连接CO 根据OF BC ∥可得B AOF ∠=∠ 根据直径所对的圆周角为直角可得90B CAB ∠+∠=︒ 再根据AO CO =得出CAB ACO ∠=∠ 最后证明90ACD ACO ∠+∠=︒即可 (2)根据中位线定理得出152OE BC == 证明DBC DOF ∽ 根据相似三角形对应边成比例 即可求解.【解析】(1)证明连接CO①OF BC ∥①B AOF ∠=∠①AB 为O 的直径①90ACB ∠=︒ 则90B CAB ∠+∠=︒①90AOF CAB ∠+∠=︒①AO CO =①CAB ACO ∠=∠①ACD AOF ∠=∠①90ACD ACO ∠+∠=︒ 即OC CD ⊥①CD 为圆O 的切线(2)①AB 为O 的直径①点O 为AB 中点①OF BC ∥①OE 为ABC 中位线 ①152OE BC == ①1sin 4D = OC CD ⊥ ①4OD OC = 则5BD OD OB OC =+=①OF BC ∥①DBC DOF ∽ ①OF OF BC BD = 即4510OC OF OC = 解得8OF =①853EF OF OE =-=-=.【点评】本题主要考查了切线的判定和性质 圆周角定理 相似三角形的判定和性质以及解直角三角形 解题的关键是掌握切线的判定和性质以及相似三角形的判定和性质.12.(1)30︒(2)100︒【分析】(1)根据三角形内角和定理可得60ABC ∠=︒ 再由AD CD = 可得ABD CBD ∠=∠ 即可求解(2)根据圆周角定理可得30ABD ACD ∠∠==︒ 从而得到80BCD ∠=︒ 再由圆内接四边形的性质 即可求解.【解析】(1)解①70,50BAC ACB ∠=︒∠=︒①18060ABC BAC ACB ∠=︒-∠-∠=︒①AD CD = ①1302ABD CBD ABC ∠=∠=∠=︒ (2)解由圆周角定理得30ABD ACD ∠∠==︒①80BCD ACB ACD ∠=∠+∠=︒①四边形ABCD 是O 的内接四边形①180100BAD BCD ∠=︒-∠=︒.【点评】本题主要考查了圆内接四边形的性质 圆周角定理等知识 熟练掌握圆内接四边形的性质 圆周角定理是解题的关键.13.(1)见解析(2)AD 的长是25【分析】(1)连接OA 根据已知条件证明OA AE ⊥即可解决问题(2)作OF CD ⊥ 则四边形OAEF 是矩形 且132DF CD ==由此可求得DE 的长 在Rt OFD △中 勾股定理求出OF 即AE 的长 在Rt AED △中利用勾股定理求DA . 【解析】(1)证明如图, 连接OA①AE CD ⊥①90DAE ADE ∠+∠=︒.①DA 平分BDE ∠①ADE ADO ∠=∠又①OA OD =①OAD ADO ∠=∠①90DAE OAD ∠+∠=︒①OA AE ⊥①AE 是O 的切线(2)解过点O 作OF CD ⊥于F .①90OAE AEF OFE ∠︒=∠=∠=①四边形OAEF 是矩形①5EF OA AE OF ===,.①OF CD ⊥ ①132DF FC CD ===①532DE EF DF =-=-=在Rt OFD △中 2222534OF OD DF --=①4AE OF ==在Rt AED △中 22224225AD AE DE ++=①AD 的长是25【点评】本题考查了切线的判定与性质 垂径定理 圆周角定理 勾股定理 解决本题的关键是掌握切线的判定与性质.14.(1)12π(2)9【分析】(1) 根据题意 CEB APB ABC PBE S S S S S =+--阴影扇形扇形 根据公式计算即可.(2) 连接PE 根据题意 45,135,90PEB CEP PEC ∠=︒∠=︒∠=︒ 根据勾股定理计算即可.【解析】(1)如图, ①正方形ABCD 旋转APB △到CEB 的位置①APB CEB ≌ 90ABC PBE ∠=∠=︒ =CEB APB S S ①CEB APB ABC PBE S S S S S =+--阴影扇形扇形①ABC PBE S S S =-阴影扇形扇形①48BP AB ==, ①9064901612360360S πππ︒⨯⨯︒⨯⨯=-=︒︒阴影. (2)连接PE根据题意 45,135PEB APB CEP ∠=︒∠=∠=︒ AP CE =①90PEC ∠=︒①4BP = 7AP =①2227,4432CE PE ==+=①222273281PC CE PE =+=+=解得9PC =.【点评】本题考查了正方形的性质 旋转的性质 阴影面积的计算 扇形面积公式 勾股定理 熟练掌握旋转的性质 阴影面积的计算 扇形面积公式 勾股定理是解题的关键.15.(1)证明见解析(2)10DF =【分析】(1)因为CDB CAB ∠=∠ CDB BFD ∠=∠ 所以CAB BFD ∠=∠ 即可得出FD ①AC 可得得出OD FD ⊥ 进而得出结论(2)利用勾股定理先求解AC 再利用垂径定理得出AE 的长 可得OE 的长 证明AEO FDO ∽ 再利用相似三角形的判定与性质得出DF 的长.【解析】(1)①CDB CAB ∠=∠ CDB BFD ∠=∠①CAB BFD ∠=∠①FD AC ∥①OD 垂直于弦AC 于点E①OD FD ⊥①FD 是O 的一条切线(2)①AB 为O 的直径①90ACB ∠=︒①15AB = 9BC = ①2215912AC -= 7.5AO OB OD ===①DO AC ⊥①6AE CE == ①227.56 4.5OE -①AC FD ∥①AEO FDO ∽ ①AE EO FD DO = ①4.567.5FD= 解得10DF =.经检验符合题意.【点评】本题主要考查了相似三角形的判定与性质 垂径定理 圆周角定理 切线的判定 以及平行线的判定 掌握相似三角形的判定与性质 垂径定理 圆周角定理以及平行线的判定是解题的关键.16.(1)50︒(2)30︒【分析】(1)连接OA 先由切线的性质得OAE ∠的度数 求出2142AOB C ∠=∠=︒ 进而得AOE ∠ 则可求出答案(2)连接OA 根据等腰三角形的性质及切线的性质列方程求解即可.【解析】(1)连接OA .如图,①AE 切O 于点AOA AE ∴⊥90OAE ∴∠=︒70C ∠=︒2270140AOB C ∴∠=∠=⨯︒=︒又180AOB AOE ∠+∠=︒40AOE ∴∠=︒90AOE E ∠+∠=︒904050E ∴∠=︒-︒=︒.(2)连接OA 如图,①设E x ∠=.AB AE =ABE E x ∴∠=∠=OA OB =OAB ABO x ∴∠=∠=2AOE ABO BAO x ∴∠=∠+∠=. AE 是O 的切线OA AE ∴⊥ 即90OAE ∠=︒在OAE ∆中 90AOE E ∠+∠=︒即290x x +=︒解得30x =︒30E ∴∠=︒.【点评】本题主要考查了切线的性质 等腰三角形的性质 圆周角的性质 三角形内角和的性质 用方程思想解决几何问题 关键是熟悉掌握这些性质.17.(1)见解析(2)10cm【分析】(1)连接OD 根据平行线的判定与性质可得90ODE DEM ∠=∠=︒ 又点D 在O 上 即可证得DE 是O 的切线(2)首先根据勾股定理可得AD 的长 再由ACD ADE ∽ 根据相似三角形的性质列出比例式 代入数据即可求得圆的半径.【解析】(1)证明如图,连接ODOA OD =OAD ODA ∠=∠∴ AD 平分CAM ∠OAD DAE ∴∠=∠ODA DAE ∴∠=∠DO MN ∴∥DE MN ⊥90ODE DEM ∴∠=∠=︒ 即OD DE ⊥ 又点D 在O 上 OD 为O 的半径DE ∴是O 的切线(2)解90AED ∠=︒ 8cm DE = 4cm AE =22228445AD DE AE ∴++如图,连接CDAC 是直径90ADC AED ∴∠=∠=︒CAD DAE ∠=∠ACD ADE ∴△∽△AD AC AE AD ∴= 4545=解得20AC =O ∴的半径为10cm .【点评】本题考查圆了切线的判定;等边对等角 平行线的判定与性质 圆周角定理 勾股定理 相似三角形的判定和性质等知识 在圆中学会正确添加辅助线是解决问题的关键.18.(1)见解析 (2)49【分析】(1)欲证~CBA FDC ,只要证明两个角对应相等就可以.可以转化为证明DE BC =就可以 (2)由~CBA FDC 可得814CF = ACB F ∠=∠ 进而即可得到答案. 【解析】(1)证明①四边形ABCD 内接于O①CBA CDF ∠=∠.①DE BC =①BCA DCE ∠=∠.①~CBA FDC(2)解①C 是DBA 的中点①9CD AC ==①~CBA FDC 4AB = ①AB AC CD CF = 即499CF= ①814CF = ①~CBA FDC ①94tan tan 8194AC ACB F CF ∠=∠===.【点评】本题考查的是圆的综合题;涉及弧、弦的关系;等腰三角形的性质;相似三角形的判定与性质;锐角三角函数;掌握相似三角形的判定和性质是解答此题的关键.。
中考数学复习《圆》专题训练-带有参考答案

中考数学复习《圆》专题训练-带有参考答案一、选择题1.已知⊙O 的半径是3cm ,则⊙O 中最长的弦长是( )A .3cmB .6cmC .1.5cmD .√3cm2.如图,AB 是⊙O 的直径,C 、D 在⊙O 上∠CAB =20°,则∠ADC 等于( )A .70°B .110°C .140°D .160°3.如图,AB 是⊙O 的直径,过点A 作⊙O 的切线AC ,连接BC ,与⊙O 交于点D ,E 是⊙O 上一点,连接AE ,DE .若∠C =48°,则∠AED 的度数为( )A .42°B .48°C .32°D .38°4.如图,线段AB 经过⊙O 的圆心,AC ,BD 分别与⊙O 相切于点C ,D .若AC =BD =2√3,∠A =30°,则CD⌢的长度为( )A .πB .23πC .√23πD .2π5.如图,⊙O 的半径为9,PA 、PB 分别切⊙O 于点A ,B 若P =60∘,则AB⌢的长为( )A .133πB .136πC .6πD .52π⌢的中点,点E是BC⌢上的一点,若∠ADC=110°,则∠DEC 6.如图,四边形ABCD是⊙O的内接四边形,点D是AC的度数是()A.35°B.45°C.50°D.55°7.如图,正六边形ABCDEF内接于00,若0 O的周长等于6π,则正六边形的边长为()A.√3B.3 C.2√3D.√68.如图,AB是⊙O的直径,将弦AC绕点A顺时针旋转30°得到AD,此时点C的对应点D落在AB上,延长CD,交⊙O于点E,若CE=4,则图中阴影部分的面积为()A.2πB.2√2C.2π−4D.2π−2√2二、填空题9.如图,AB为△ADC的外接圆⊙O的直径,若∠BAD=50°,则∠ACD= °.10.如图,等边三角形ABC内接于⊙O,BD为内接正十二边形的一边,CD=5√2cm,则⊙O的半径R为11.如图,秋千拉绳长3m,静止时踩板离地面(CD)0.5m.一名小朋友荡秋千时,秋千在最高处时踩板离地面(BE)2m(左右对称),则该秋千从B荡到A经过的圆弧长为m.12.如图,已知⊙O上三点A,B,C,切线PA交OC延长线于点P,若OP=2OC,则∠ABC=.13.如图,一个扇形纸片的圆心角为90°,半径为6,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,则阴影部分的面积为.三、解答题14.如图.为的直径,连接,点E在上,AB=BE.求证:(1)平分;(2).15.如图,P为⊙O外一点,PA,PB是⊙O的切线,A,B为切点,点C在⊙O上,连接OA,OC,AC.(1)求证:∠AOC=2∠PAC;(2)连接OB,若AC//OB,⊙O的半径为5,AC=6,求AP的长.16.如图,AB是⊙O的直径,BC是⊙O的弦,AE⊥OC于点D,交BC于F,与过点B的直线交于点E,且BE=EF.(1)求证:BE是⊙O的切线;(2)若⊙O的半径为10,OD=6求BE的长.17.如图,⊙O是△ABC的外接圆,直径BD与AC交于点E,过点D作⊙O的切线,与BC的延长线交于点F.(1)求证:∠F=∠BAC;(2)若DF∥AC,若AB=8,CF=2求AC的长.18.如图,在中,AB=AC以为直径的分别与、相交于点D、E,连接过点作,垂足为点(1)求证:是的切线;(2)若的半径为4,求图中阴影部分的面积.参考答案1.B2.B3.A4.B5.C6.A7.B8.C9.4010.511.2π12.30°13.9√3−3π14.(1)证明:∵∴∴∴平分(2)证明:∵∠BAD=∠DAC∴∴由(1)知∴∴∠ABC=∠ECB∴AB∥CE.15.(1)证明:过O作OH⊥AC于H∴∠OHA=90°∴∠AOH+∠OAC=90°∵PA是⊙O的切线∴∠OAP=90°∴∠OAC+∠PAC=90°∴∠AOH=PAC∵OA=OC∴∠AOC=2∠AOH∴∠AOC=2∠PAC;(2)解:连接OB,延长AC交PB于E∵PA,PB是⊙O的切线∴OB⊥PB,PA=PB∵AC//OB∴AC⊥PB∴四边形OBEH是矩形∴OH=BE,HE=OB=5∵OH⊥AC,OA=OC∴AH=CH=12AC=3∴OH=√OC2−CH2=4∴BE=OH=4,AE=AH+HE=8∵PA2=AE2+PE2∴PA2=82+(PA−4)2∴PA=10.16.(1)证明:∵BE=EF∴∠EBF=∠EFB∵∠CFD=∠EFB∴∠EBF=∠CFD∵OC=OB∴∠OCB=∠OBC∵AE⊥OC∴∠OCB+∠CFD=90°∴∠OBC+∠EBF=90°=∠ABE∴AB⊥BE∵AB是⊙O的直径∴BE是⊙O的切线;(2)解:∵⊙O的半径为10∴OA=OB=OC=10∴AB=20∵AE⊥OC∴∠ADO=90°∴在Rt△ADO中AD=√AO2−DO2∵OD=6∴AD=√AO2−DO2=√102−62=8∵结合(1),可知∠ABE=∠ADO=90°,∠BAE=∠DAO ∴△ADO∽△ABE∴BEAB =DOAD,即BE=DOAD×AB∵AD=8,AB=20,DO=6∴BE=DOAD ×AB=68×20=15即所求的值为15.17.(1)证明:∵DF是⊙O的切线∴OD⊥DF∴∠ODF=90°∴∠F+∠DBC=90°∵BD是⊙O的直径∴∠BAD=90°∴∠BAC+∠DAC=90°∵∠DBC=∠DAC∴∠F=∠BAC;(2)解:连接CD∵DF∥AC,∠ODF=90°∴∠BEC=∠ODF=90°∴直径BD⊥AC于E∴AE=CE=12AC∴AB=BC=8∵BD是⊙O的直径∴∠BCD=90°∴∠DBC+∠BDC=90°∵∠DBC+∠F=90°∴∠BDC=∠F∵∠BCD=∠FCD=90°∴△BCD∽△DCF∴BCDC =DCCF,即8DC=DC2∴DC=4∴BD=√BC2+CD2=√82+42=4√5∵在△BCD中SΔBCD=12BC⋅CD=12BD⋅CE∴12×8×4=12×4√5⋅CE∴CE=85√5∴AC=2CE=165√5.18.(1)证明:连接.是的直径.又AB=AC∴D是BC的中点.连接;由中位线定理,知又.是的切线;(2)解:连接的半径为。
中考数学总复习《圆的综合题》练习题-附带答案

中考数学总复习《圆的综合题》练习题-附带答案一、单选题(共12题;共24分)1.如图,AB是半圆O的直径,C,D是半圆上的两点,若∠BAC=20°.则∠D的大小为()A.100°B.110°C.120°D.130°2.如图,矩形ABCD为∠O的内接四边形,AB=2,BC=3,点E为BC上一点,且BE=1,延长AE交∠O于点F,则线段AF的长为()A.B.5C.+1D.3.如图,在⊙O中∠AOB=90°,点C是优弧AB上一点,则∠ACB的度数为()A.35°B.45°C.50°D.60°4.如图,∠O中弦AD∠BC,DA=DC,∠AOC=160°,则∠BCO等于()A.20°B.30°C.40°D.50°5.如图,∠O与正五边形ABCDE的边AB,DE分别相切于点B,D,则劣弧BD所对的圆心角∠BOD的大小为()A.108°B.118°C.144°D.120°6.已知AB,CD是两个不同圆的弦,如AB=CD,那么AB⏜与CD⏜的关系是()A.AB=CD B.AB>CD C.AB<CD D.不能确定7.如图,在△ABC中∠C=90°,AB=7 ,AC=4以点C为圆心、CA为半径的圆交AB于点D,求弦AD的长为()A.4√337B.327C.2√337D.1678.如图,AB是∠O的直径,弦MN∠AB,分别过M,N作AB的垂线,垂足为C,D.以下结论:①AC=BD;②AM⌢=BN⌢;③若四边形MCDN是正方形,则MN=12AB;④若M为AN⌢的中点,则D为OB中点;所有正确结论的序号是()A.①②③B.①②④C.①②D.①②③④9.将一个半径为8cm,面积为32πcm2的扇形铁皮围成一个圆锥形容器(不计接缝),那么这个圆锥形容器的高为()A.4B.4√3C.4√5D.2√14 10.如图,从一块直径是8m的圆形铁皮上剪出一个圆心角为90°的扇形,将剪下的扇形围成一个圆锥,圆锥的高是()m.A.4√2B.5 C.√30D.2√1511.如图,在矩形ABCD中AB=3cm,AD=4cm若以点B为圆心,以4cm长为半径作OB,则下列选项中的各点在⊙B外的是()A.点A B.点B C.点C D.点D 12.如图,⊙O的直径AB=6,CD是⊙O的弦,CD⊥AB,垂足为P,且BP:AP= 1:5,则CD的长为().A.3B.4C.2√5D.√5二、填空题(共6题;共7分)13.若圆弧的度数为60°,弧长为6π,则圆弧的半径为.14.如图,小明自制一块乒乓球拍,正面是半径为8cm的⊙O,AB⌢m__=90°,弓形ACB(阴影部分)粘贴胶皮,则胶皮面积为.15.如图,点E(0,3),O(0,0),C(4,0)在∠A上,BE是∠A上的一条弦.则sin∠OBE=.16.如图,在平面直角坐标系xOy中A(4,0),B(0,3),C(4,3),点I是∠ABC 的内心,则点I的坐标为;点I关于原点对称的点的坐标为.17.如图:P是∠O的直径BA延长线上一点,PD交∠O于点C,且PC=OD,如果∠P=24°,则∠DOB=18.已知AB是⊙O的弦,AB=8cm,OD⊥AB于点C,OC=3cm,则⊙O的半径是cm.三、综合题(共6题;共69分)19.如图,射线PG平分∠EPF,O为射线PG上一点,以O为圆心,10为半径作∠O,分别与∠EPF的两边相交于A、B和C、D,连接OA,此时有OA∠PE.(1)求证:AP=AO;(2)若tan∠OPB= 12,求弦AB的长;(3)若以图中已标明的点(即P、A、B、C、D、O)构造四边形,则能构成菱形的四个点为 ,能构成等腰梯形的四个点为 或 或 .20.如图,PA 、PB 是∠O 的切线,A 、B 为切点,∠APB=60°,连接PO 并延长与∠O交于C 点,连接AC ,BC .(1)求证:四边形ACBP 是菱形;(2)若∠O 半径为1,求菱形ACBP 的面积.21.已知,如图,在Rt∠ABC 中∠C =90°,AD 平分∠CAB .(1)按要求尺规作图:作AD 的垂直平分线(保留作图痕迹);(2)若AD 的垂直平分线与AB 相交于点O ,以O 为圆心作圆,使得圆O 经过AD 两点.①求证:BC 是∠O 的切线;②若 CD =2√2,AD =2√6 ,求∠O 的半径.22.如图,已知AB 是∠O 的直径,弦CD 与直径AB 相交于点F .点E 在∠O 外,作直线AE ,且∠EAC=∠D .(1)求证:直线AE 是∠O 的切线.(2)若∠BAC=30°,BC=4,cos∠BAD=34,CF=103,求BF 的长.23.如图,AH 是∠O 的直径,AE 平分∠FAH ,交∠O 于点E ,过点E 的直线FG∠AF ,垂足为F ,B 为半径OH 上一点,点E 、F 分别在矩形ABCD 的边BC 和CD上.(1)求证:直线FG是∠O的切线(2)若CD=10,EB=5,求∠O的直径24.如图,∠O是∠ABC的外接圆,AB为直径,D是∠O上一点,且弧CB=弧CD,CE∠DA交DA的延长线于点E.(1)求证:∠CAB=∠CAE;(2)求证:CE是∠O的切线;(3)若AE=1,BD=4,求∠O的半径长.参考答案1.【答案】B 2.【答案】A 3.【答案】B 4.【答案】B 5.【答案】C 6.【答案】D 7.【答案】B 8.【答案】B 9.【答案】B 10.【答案】C 11.【答案】D 12.【答案】C 13.【答案】1814.【答案】(32+48π)cm² 15.【答案】3516.【答案】(3,2);(-3,-2) 17.【答案】72° 18.【答案】519.【答案】(1)证明:∵PG 平分∠EPF∴∠DPO=∠BPO ∵OA∠PE ∴∠DPO=∠POA ∴∠BPO=∠POA ∴PA=OA(2)解:过点O 作OH∠AB 于点H ,则AH=HB= 12AB∵tan∠OPB= OH PH =12,∴PH=2OH设OH=x ,则PH=2x由(1)可知PA=OA=10,∴AH=PH ﹣PA=2x ﹣10 ∵AH 2+OH 2=OA 2,∴(2x ﹣10)2+x 2=102 解得x 1=0(不合题意,舍去),x 2=8 ∴AH=6,∴AB=2AH=12(3)P、A、O、C;A、B、D、C;P、A、O、D;P、C、O、B 20.【答案】(1)证明:连接AO,BO,∵PA、PB是∠O的切线,∴∠OAP=∠OBP=90°,PA=PB,∠APO=∠BPO= 1 2∠APB=30°∴∠AOP=60°,∵OA=OC,∴∠OAC=∠OCA,∴∠AOP=∠CAO+∠ACO,∴∠ACO=30°∴∠ACO=∠APO,∴AC=AP同理BC=PB,∴AC=BC=BP=AP,∴四边形ACBP是菱形(2)解:连接AB交PC于D∴AD∠PC,∴OA=1,∠AOP=60°,∴AD= √32OA= √32∴PD= 32,∴PC=3,AB= √3∴菱形ACBP的面积= 12AB•PC=2√32.21.【答案】(1)解:如图所示:(2)①证明:如图,连接OD,∵AD为∠BAC的角平分线∴∠CAD=∠BAD∵OA=OD,∴∠BAD=∠ODA∴∠CAD=∠ODA∴OD∠AC∴∠ODB=∠C=90°∴OD∠BC∵OD为∠O半径∴BC是∠O的切线.②如图,过点D作DH∠AB于H∵∠C=90°∴DC∠AC∵AD为∠BAC的角平分线∴DH=CD= 2√2在Rt∠ADH中AH=√AD2−DH2=√(2√6)2−(2√2)2=4设∠O半径为r,∴OA=OD=r∴OH=AH-OA=4-r在Rt∠OHD中∴r2=(4−r)2+(2√2)2∴r=3即∠O的半径为3.22.【答案】(1)解:连接BD ,如图∵AB 是∠O 的直径∴∠ADB=90°,即∠ADC+∠CDB=90° ∵∠EAC=∠ADC ,∠CDB=∠BAC ∴∠EAC+∠BAC=90°,即∠BAE=90° ∴直线AE 是∠O 的切线; (2)解:∵AB 是∠O 的直径∴∠ACB=90°在Rt∠ACB 中∠BAC=30° ∴AB=2BC=2×4=8由勾股定理得:AC=√82−42=4√3 在Rt∠ADB 中cos∠BAD =34=ADAB∴34=AD 8 ∴AD=6∴BD=√82−62 =2√7∵∠BDC=∠BAC ,∠DFB=∠AFC ∴∠DFB∠∠AFC ∴BF FC =BD AC∴BF103=2√74√3∴BF=5√219. 23.【答案】(1)【解答】解:如图1,连接OE∵OA=OE∴∠EAO=∠AEO∵AE 平分∠FAH∴∠EAO=∠FAE∴∠FAE=∠AEO∴AF∠OE∴∠AFE+∠OEF=180°∵AF∠GF∴∠AFE=∠OEF=90°∴OE∠GF∵点E 在圆上,OE 是半径∴GF 是∠O 的切线.(2)【解答】∵四边形ABCD 是矩形,CD=10∴AB=CD=10,∠ABE=90°设OA=OE=x ,则OB=10﹣x在Rt∠OBE 中∠OBE=90°,BE=5由勾股定理得:OB 2+BE 2=OE 2∴(10﹣x )2+52=x 2∴x =54AH =2×254=254∴∠O 的直径为252.24.【答案】(1)证明:连接BD∵弧CB=弧CD∴∠CDB=∠CBD,CD=BC∵四边形ACBD是圆内接四边形∴∠CAE=∠CBD,且∠CAB=∠CDB∴∠CAB=∠CAE(2)证明:连接OC∵AB为直径∴∠ACB=90°=∠AEC又∵∠CAB=∠CAE∴∠ABC=∠ACE∵OB=OC∴∠BCO=∠CBO∴∠BCO=∠ACE∴∠ECO=∠ACE+∠ACO=∠BCO+∠ACO=∠ACB=90°∴EC∠OC∵OC是∠O的半径∴CE是∠O的切线(3)证明:过点C作CF∠AB于点F又∵∠CAB=∠CAE,CE∠DA∴AE=AF在∠CED和∠CFB中∵∠DEC=∠BFC=90°∠EDC=∠BFCCD=BC∴∠CED∠∠CFB(AAS)∴ED=FB设AB=x,则AD=x﹣2在∠ABD中由勾股定理得,x2=(x﹣2)2+42解得,x=5∴∠O的半径的长为5 2。
中考数学 圆的综合 综合题及详细答案

中考数学圆的综合综合题及详细答案一、圆的综合1.如图,以O为圆心,4为半径的圆与x轴交于点A,C在⊙O上,∠OAC=60°.(1)求∠AOC的度数;(2)P为x轴正半轴上一点,且PA=OA,连接PC,试判断PC与⊙O的位置关系,并说明理由;(3)有一动点M从A点出发,在⊙O上按顺时针方向运动一周,当S△MAO=S△CAO时,求动点M所经过的弧长,并写出此时M点的坐标.【答案】(1)60°;(2)见解析;(3)对应的M点坐标分别为:M1(2,﹣3M2(﹣2,﹣3)、M3(﹣2,3M4(2,3).【解析】【分析】(1)由于∠OAC=60°,易证得△OAC是等边三角形,即可得∠AOC=60°.(2)由(1)的结论知:OA=AC,因此OA=AC=AP,即OP边上的中线等于OP的一半,由此可证得△OCP是直角三角形,且∠OCP=90°,由此可判断出PC与⊙O的位置关系.(3)此题应考虑多种情况,若△MAO、△OAC的面积相等,那么它们的高必相等,因此有四个符合条件的M点,即:C点以及C点关于x轴、y轴、原点的对称点,可据此进行求解.【详解】(1)∵OA=OC,∠OAC=60°,∴△OAC是等边三角形,故∠AOC=60°.(2)由(1)知:AC=OA,已知PA=OA,即OA=PA=AC;∴AC=1OP,因此△OCP是直角三角形,且∠OCP=90°,2而OC是⊙O的半径,故PC与⊙O的位置关系是相切.(3)如图;有三种情况:①取C点关于x轴的对称点,则此点符合M点的要求,此时M点的坐标为:M1(2,﹣23);劣弧MA的长为:6044 1803ππ⨯=;②取C点关于原点的对称点,此点也符合M点的要求,此时M点的坐标为:M2(﹣2,﹣23);劣弧MA的长为:12048 1803ππ⨯=;③取C点关于y轴的对称点,此点也符合M点的要求,此时M点的坐标为:M3(﹣2,23);优弧MA的长为:240416 1803ππ⨯=;④当C、M重合时,C点符合M点的要求,此时M4(2,23);优弧MA的长为:300420 1803ππ⨯=;综上可知:当S△MAO=S△CAO时,动点M所经过的弧长为481620,,,3333ππππ对应的M点坐标分别为:M1(2,﹣23)、M2(﹣2,﹣23)、M3(﹣2,23)、M4(2,23).【点睛】本题考查了切线的判定以及弧长的计算方法,注意分类讨论思想的运用,不要漏解.2.图1和图2,半圆O的直径AB=2,点P(不与点A,B重合)为半圆上一点,将图形延BP折叠,分别得到点A,O的对称点A′,O′,设∠ABP=α.(1)当α=15°时,过点A′作A′C∥AB,如图1,判断A′C与半圆O的位置关系,并说明理由.(2)如图2,当α= °时,BA′与半圆O相切.当α= °时,点O′落在上.(3)当线段BO′与半圆O只有一个公共点B时,求α的取值范围.【答案】(1)A′C与半圆O相切;理由见解析;(2)45;30;(3)0°<α<30°或45°≤α<90°.【解析】试题分析:(1)过O作OD⊥A′C于点D,交A′B于点E,利用含30°角的直角三角形的性质可求得DE+OE=A′B=AB=OA,可判定A′C与半圆相切;(2)当BA′与半圆相切时,可知OB⊥A′B,则可知α=45°,当O′在上时,连接AO′,则可知BO′=AB,可求得∠O′BA=60°,可求得α=30°;(3)利用(2)可知当α=30°时,线段O′B与圆交于O′,当α=45°时交于点B,结合题意可得出满足条件的α的范围.试题解析:(1)相切,理由如下:如图1,过O作OD过O作OD⊥A′C于点D,交A′B于点E,∵α=15°,A′C∥AB,∴∠ABA′=∠CA′B=30°,∴DE=A′E,OE=BE,∴DO=DE+OE=(A′E+BE)=AB=OA,∴A′C与半圆O相切;(2)当BA′与半圆O相切时,则OB⊥BA′,∴∠OBA′=2α=90°,∴α=45°,当O′在上时,如图2,连接AO′,则可知BO′=AB,∴∠O′AB=30°,∴∠ABO′=60°,∴α=30°,(3)∵点P,A不重合,∴α>0,由(2)可知当α增大到30°时,点O′在半圆上,∴当0°<α<30°时点O′在半圆内,线段BO′与半圆只有一个公共点B;当α增大到45°时BA′与半圆相切,即线段BO′与半圆只有一个公共点B.当α继续增大时,点P逐渐靠近点B,但是点P,B不重合,∴α<90°,∴当45°≤α<90°线段BO′与半圆只有一个公共点B.综上所述0°<α<30°或45°≤α<90°.考点:圆的综合题.3.已知▱ABCD的周长为26,∠ABC=120°,BD为一条对角线,⊙O内切于△ABD,E,F,G 为切点,已知⊙O的半径为3▱ABCD的面积.【答案】3【解析】【分析】首先利用三边及⊙O的半径表示出平行四边形的面积,再根据题意求出AB+AD=13,然后利用切线的性质求出BD的长即可解答.【详解】设⊙O分别切△ABD的边AD、AB、BD于点G、E、F;平行四边形ABCD的面积为S;则S=2S△ABD=2×12(AB·OE+BD·OF+AD·3(AB+AD+BD);∵平行四边形ABCD的周长为26,∴AB+AD=13,∴3;连接OA;由题意得:∠OAE=30°,∴AG=AE=3;同理可证DF=DG,BF=BE;∴DF+BF=DG+BE=13﹣3﹣3=7,即BD=7,∴S=3(13+7)=203.即平行四边形ABCD的面积为203.4.如图,PA、PB是⊙O的切线,A,B为切点,∠APB=60°,连接PO并延长与⊙O交于C 点,连接AC、BC.(Ⅰ)求∠ACB的大小;(Ⅱ)若⊙O半径为1,求四边形ACBP的面积.33【答案】(Ⅰ)60°;(Ⅱ)【解析】分析:(Ⅰ)连接AO,根据切线的性质和切线长定理,得到OA⊥AP,OP平分∠APB,然后根据角平分线的性质和三角形的外角的性质,30°角的直角三角形的性质,得到∠ACB的度数;(Ⅱ)根据30°角的直角三角形的性质和等腰三角形的性质,结合等底同高的性质求三角形的面积即可.详解:(Ⅰ)连接OA,如图,∵PA、PB是⊙O的切线,∴OA⊥AP,OP平分∠APB,∠APB=30°,∴∠APO=12∴∠AOP=60°,∵OA=OC,∴∠OAC=∠OCA,∴∠ACO=12AOP=30°,同理可得∠BCP=30°,∴∠ACB=60°;(Ⅱ)在Rt△OPA中,∵∠APO=30°,∴AP=3OA=3,OP=2OA=2,∴OP=2OC,而S△OPA=12×1×3,∴S△AOC=12S△PAO=3,∴S△ACP=33,∴四边形ACBP的面积=2S△ACP=33.点睛:本题考查了切线的性质,解直角三角形,等腰三角形的判定,熟练掌握切线的性质是解题的关键.5.如图,在⊙O中,直径AB⊥弦CD于点E,连接AC,BC,点F是BA延长线上的一点,且∠FCA=∠B.(1)求证:CF是⊙O的切线;(2)若AE=4,tan∠ACD=3,求FC的长.【答案】(1)见解析【解析】分析:(1)利用圆周角定理以及等腰三角形的性质得出∠OCF=90°,进而得出答案;(2)根据正切的性质求出EC的长,然后利用垂径定理求出圆的半径,再根据等边三角形的性质,利用勾股定理求出即可.详解:(1)证明:连接OC.∵AB是⊙O的直径,∴∠ACB=90°,∴∠OCB+∠ACO=90°.∵OB=OC,∴∠B=∠OCB.又∵∠FCA=∠B,∴∠FCA=∠OCB,∴∠FCA+∠ACO=90°,即∠FCO=90°,∴FC⊥OC,∴FC是⊙O切线.(2)解:∵AB⊥CD,∴∠AEC=90°,∴EC=AE43 tan ACE33∠==,设OA=OC=r,则OE=OA-AE=r-4.在Rt△OEC中,OC2=OE2+CE2,即r2=(r-4)2+(43)2,解得r=8.∴OE=r-4=4=AE.∵CE⊥OA,∴CA=CO=8,∴△AOC是等边三角形,∴∠FOC=60°,∴∠F=30°.在Rt△FOC中,∵∠OCF=90°,OC=8,∠F=30°,∴OF=2OC=16,∴FC=22OF OC83-=.点睛:此题主要考查了切线的判定、垂径定理的推论以及勾股定理等知识,得出BC的长是解题关键.6.如图,正三角形ABC内接于⊙O,P是BC上的一点,且PB<PC,PA交BC于E,点F 是PC延长线上的点,CF=PB,AB=13,PA=4.(1)求证:△ABP≌△ACF;(2)求证:AC2=PA•AE;(3)求PB和PC的长.【答案】(1)证明见解析;(2)证明见解析;(3)PB=1,PC=3.【解析】试题分析:(1)先根据等边三角形的性质得到AB=AC,再利用圆的内接四边形的性质得∠ACF=∠ABP,于是可根据“SAS”判断△ABP≌△ACF;(2)先根据等边三角形的性质得到∠ABC=∠ACB=60°,再根据圆周角定理得∠APC=∠ABB=60°,加上∠CAE=∠PAC,于是可判断△ACE∽△APC,然后利用相似比即可得到结论;(3)先利用AC2=PA•AE计算出AE=134,则PE=AP-AE=34,再证△APF为等边三角形,得到PF=PA=4,则有PC+PB=4,接着证明△ABP∽△CEP,得到PB•PC=PE•A=3,然后根据根与系数的关系,可把PB和PC看作方程x2-4x+3=0的两实数解,再解此方程即可得到PB和PC 的长.试题解析:(1)∵∠ACP+∠ABP=180°,又∠ACP+∠ACF=180°,∴∠ABP=∠ACF在ABP ∆和ACF ∆中,∵AB=AC ,∠ABP=∠ACF , CF PB =∴ABP ∆≌ACF ∆.(2)在AEC ∆和ACP ∆中,∵∠APC=∠ABC ,而ABC ∆是等边三角形,故∠ACB=∠ABC=60º,∴∠ACE =∠APC .又∠CAE =∠PAC ,∴AEC ∆∽ACP ∆ ∴AC AE AP AC=,即2AC PA AE =⋅. 由(1)知ABP ∆≌ACF ∆,∴∠BAP=∠CAF , CF PB =∴∠BAP+∠PAC=∠CAF+∠PAC∴∠PAF=∠BAC=60°,又∠APC =∠ABC =60°.∴APF ∆是等边三角形∴AP=PF∴4PB PC PC CF PF PA +=+===在PAB ∆与CEP ∆中,∵∠BAP=∠ECP ,又∠APB=∠EPC=60°,∴PAB ∆∽CEP ∆ ∴PB PA PE PC=,即PB PC PA PE ⋅=⋅ 由(2)2AC PA AE =⋅, ∴()22AC PB PC PA AE PA PE PA AE PE PA +⋅=⋅+⋅=+= ∴()22AC PB PC PA AE PA PE PA AE PE PA +⋅=⋅+⋅=+=∴22222243PB PC PA AC PA AB ⋅=-=-=-=因此PB 和PC 的长是方程2430x x --=的解.解这个方程,得11x =, 23x =.∵PB<PB ,∴PB=11x =,PC=23x =,∴PB 和PC 的长分别是1和3。
中考数学总复习《圆的综合题》专项测试卷-附参考答案

中考数学总复习《圆的综合题》专项测试卷-附参考答案一、单选题(共12题;共24分)1.已知⊙O的半径为5,点P到圆心O的距离为6,那么点P与⊙O的位置关系是A.点P在⊙O上B.点P在⊙O内C.点P在⊙O外D.无法确定2.如图,△ABC内接于⊙O,∠C=46°,连接OA,则∠OAB=()A.44°B.45°C.54°D.67°3.下列命题:①三点确定一个圆;②相等的圆周角所对的弧相等;③平分弦的直径垂直于弦;④等弧所对的圆心角相等;其中真命题的个数是()A.0B.1C.2D.34.若圆锥的底面半径长是5,母线长是13,则该圆锥的侧面面积是()A.60B.60πC.65D.65π5.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路径长度为()A.3π2B.4π3C.4D.2+ 3π26.下列命题正确的个数有()①长度相等的弧叫做等弧;②三点确定一个圆;③平分弦的直径垂直于弦;④弧相等,则弧所对的圆心角相等.A.1B.2C.3D.47.如图是一个几何体的三视图,则这个几何体的侧面积是()A.πcm2B.2 πcm2C.6πcm2D.3πcm28.如图,AB是⊙O的直径,DB、DE分别切⊙O于点B、C,若⊙ACE=25°,则⊙D的度数是()A.50°B.55°C.60°D.65°9.如图,一条公路的转变处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600米,E 为弧CD上一点,且OE⊙CD,垂足为F,OF=300√3米,则这段弯路的长度为A.200π米B.100π米C.400π米D.300π米10.如图,⊙O的直径AB与弦CD交于点,AE=6,BE=2,CD=2 ,则⊙AED的度数是()A.30°B.60°C.45°D.36°11.如图,AB是⊙O的直径,C,D是⊙O上的点,⊙CDB=30°,过点C作⊙O的切线交AB的延长线于点E,则sinE的值为()A.√32B.12C.√33D.√312.如图,⊙O的半径为3,四边形ABCD内接于⊙O,连接OB、OD,若⊙BOD=⊙BCD,则BD̂的长为()A.πB.32πC.2πD.3π二、填空题(共6题;共7分)13.如图,△ABC中AB=2,将△ABC绕点A逆时针旋转60°得到△AB1C1,AB1恰好经过点C,则阴影部分的面积为.14.如图,Rt⊙ABC中⊙C=90°,⊙A=30°,AB=4,以AC上的一点O为圆心OA为半径作⊙O,若⊙O与边BC始终有交点(包括B、C两点),则线段AO的取值范围是.15.如图所示一张圆形光盘,已知光盘内直径为2cm,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,则另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的外直径是cm,该光盘的面积是cm2.16.如图,⊙O是△ABC的外接圆OB=√13,BC=4则tanA的值为.R,则AC 17.已知半径为R的半圆O,过直径AB上一点C,作CD⊙AB交半圆于点D,且CD=√32的长为18.如图,在矩形ABCD中AB=2,BC=4点E为BC上一动点,过点B作AE的垂线交AE于点F,连接DF则DF的最小值是.三、综合题(共6题;共60分)19.如图,在△ABC中以△ABC的边AB为直径作⊙O,交AC于点D,DE是⊙O的切线,且DE⊥BC 垂足为点E.(1)求证:AB=BC;(2)若DE=3,CE=6,求直径AB长.20.如图,AB是⊙O的直径,点C在⊙O上,AD垂直于过点C的切线,垂足为D.(1)若⊙BAD=80°,求⊙DAC的度数;(2)如果AD=6,AB=8,求AC的长.21.如图,AB为⊙O的直径,点C是⊙O上的一点,AB=8cm,⊙BAC=30°,点D是弦AC上的一点.(1)若OD⊙AC,求OD长;(2)若CD=2OD,判断△ADO形状,并说明理由.22.如图,以⊙ABC的边AB为直径的⊙O与边AC相交于点D,BC是⊙O的切线,E为BC的中点,连接BD、DE.(1)求证:DE是⊙O的切线;(2)设⊙CDE的面积为S1,四边形ABED的面积为S2,若S2=5S1,求tan⊙BAC的值.23.如图,AB、AC是⊙O的两条弦,且AB=AC,点D是弧BC的中点,连接并延长BD、CD,分别交AC、AB的延长线于点E、F.(1)求证:DF=DE(2)若BD=6,CE=8求⊙O的半径.24.如图,AB是⊙O的直径,AC是弦,D是弧BC的中点,过点D作EF垂直于直线AC,垂足为F,交AB的延长线于点E.(1)求证: EF是⊙O的切线;(2)若AF=6,EF=8,求⊙O的半径.参考答案1.【答案】C 2.【答案】A 3.【答案】B 4.【答案】D 5.【答案】B 6.【答案】A 7.【答案】A 8.【答案】A 9.【答案】A 10.【答案】C 11.【答案】B 12.【答案】C 13.【答案】23π14.【答案】√3≤OA ≤43√3 15.【答案】10;24π 16.【答案】2317.【答案】12R 或32R 18.【答案】√17−119.【答案】(1)证明:连接OD .∵DE 是⊙O 的切线 ∴OD ⊥DE ∵DE ⊥BC ∴OD ∥BC ∴∠ODA =∠C又∵OD=OA∴∠ODA=∠OAD ∴∠OAD=∠C∴AB=BC(2)解:连接BD ∵AB为直径∴∠BDA=90°∴∠BDC=90°∴△DEB∼△CED∴DEBE=CEDE∴3BE=63∴BE=3 2∴BC=15 2∴AB=15 220.【答案】(1)解:如图,连接OC∵DC切⊙O于C∴OC⊙CF∴⊙ADC=⊙OCD=90°∴AD //OC∴⊙DAC=⊙OCA∵OA=OC∴⊙OAC=⊙OCA∴⊙DAC=⊙OAC∵⊙BAD=80°∴⊙DAC=12⊙BAD=12×80°=40°(2)解:连接BC.∵AB是直径∴⊙ACB=90°=⊙ADC ∵⊙DAC=⊙BAC∴⊙ADC⊙⊙ACB∴ACAB=ADAC∵AD=6,AB=8∴AC8=6AC∴AC=4 √3.21.【答案】(1)∵AB为⊙O的直径∴∠ACB=90°∵AB=8cm,⊙BAC=30°∴BC=4∵OD⊙AC∴OD//BC∵OA=OB∴OD=12BC=2(2)△ADO是等腰三角形.理由如下:如图,过O作OQ⊥AC于Q,连接OC,∵AB=8,∠BAC=30°∴AC=AB·cos30°=8×√32=4√3∴CQ=AQ=2√3∴OQ=12OA=2设OD=x,则CD=2OD=2x∴DQ=2x−2√3由勾股定理可得:x2=(2x−2√3)2+22∴(√3x−4)2=0∴x1=x2=4√3 3∴AD=4√3−2×4√33=4√33=OD∴△ADO是等腰三角形.22.【答案】(1)证明:连接OD∵OD=OB∴⊙ODB=⊙OBD.∵AB是直径∴⊙ADB=90°∴⊙CDB=90°.∵E为BC的中点∴DE=BE∴⊙EDB=⊙EBD∴⊙ODB+⊙EDB=⊙OBD+⊙EBD 即⊙EDO=⊙EBO.∵BC是以AB为直径的⊙O的切线∴AB⊙BC∴⊙EBO =90°∴⊙ODE =90°∴DE 是⊙O 的切线(2)解:连接AE∵S 2=5S 1,E 为BC 的中点∴S ⊙ACE =3S 1∴S ⊙ADE =2S 1∴AD =2DC∵⊙CBO =90°,⊙CDB =90° ∴⊙BDC⊙⊙ADB∴AD BD =DB DC∴DB 2=AD •DC ,即 DB =√2DC∴DB AD =√2DC 2DC =√22∴tan⊙BAC = DB AD =√2223.【答案】(1)解: ∵AB =AC AB ⏜=AC ⏜ ∵ 点 D 是 BC ⃗⃗⃗⃗⃗ 的中点∴BD ⏜=CD ⏜∴AB ⏜+BD ⏜=AC ⏜+CD ⏜∴ABD ⏜=ACD ⏜∴∠ACD =∠ABD =90°在 △ACF △ABE 中{∠A =∠A AB =AC ∠ABE =∠ACF∴△ACF ≌△ABE(ASA)∴CF =BE又 ∵BD ⏜=CD ⏜∴BD =CD∴CF −CD =BE −BD ,即 DF =DE (2)解:连接 AD由(1)知 ∠ACD =90°∴AD 是 ⊙O 的直径∴∠DCE =90°又 ∵CD =BD =6在 Rt △DCE 中令 AB =AC =x ,在 Rt △ABE 中由 AB 2+BE 2=AE 2 ,得 x 2+(6+10)2=(x +8)2 解得 x =12 ,即 AC =12在 Rt △ACD 中∴⊙O 的半径为 12AD =3√5 24.【答案】(1)证明:连接OD .∵EF⊙AF∴⊙F =90°.∵D 是 BC⌢ 的中点,∴BD ⌢=CD ⌢ . ∴⊙EOD =⊙DOC = 12⊙BOC ∵⊙A = 12⊙BOC ,∴⊙A =⊙EOD ∴OD⊙AF .∴⊙EDO =⊙F =90°.∴OD⊙EF∴EF 是⊙O 的切线;(2)解:在Rt⊙AFE 中∵AF =6,EF =8 ∴AE =√AF 2+EF 2 = √62+82 =10 设⊙O 半径为r ,∴EO =10﹣r . ∵⊙A =⊙EOD ,⊙E =⊙E∴⊙EOD⊙⊙EAF ,∴OD AF = OE EA ∴r 6=10−r 10 .∴r = 154 ,即⊙O 的半径为 154 .。
中考数学专题复习《圆与三角形的综合(圆的综合问题)》测试卷(附带答案)

中考数学专题复习《圆与三角形的综合(圆的综合问题)》测试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________1.如图 O 是ABC 的外接圆 AB 是O 的直径 FH 是O 的切线 切点为F FH BC ∥ 连接AF 交BC 于E 连接BF .(1)证明:AF 平分BAC ∠(2)若ABC ∠的平分线BD 交AF 于点D 4EF = 6DE = 求tan EBF ∠的值.2.如图① OA 是O 的半径 点P 是OA 上一动点 过P 作弦BD ⊥弦AC 垂足为E连结AB BC CD DA .(1)求证:BAO CAD ∠=∠.(2)当OA CD ∥时 求证:AC BC =.(3)如图① 在(2)的条件下 连结OC .①若ABC 的面积为12 4cos 5ADB求APD △的面积. ①当P 是OA 的中点时 求BD AC 的值.3.如图 ABC 内接于O AB ,是①O 的直径 过点C 作O 的切线交AB 的延长线于点D BE CD ⊥ EB 的延长线交O 于F CF ,交AB 于点G BCF BCD ∠=∠.(1)求证:BE BG =(2)若1BE = 求O 的半径.4.如图 O 是ABC 的外接圆 AB 是O 的直径 BD 是O 的切线 连接AD 交O 于点E 交BC 边于点F 若点C 是AE 的中点.(1)求证:ACF BCA ∽△△(2)若1CF = 2BF = 求DB 的长.5.如图1 锐角ABC 内接于O 点E 是AB 的中点 连结EO 并延长交BC 于D 点F 在AC 上 连结AD DF BAD CDF ∠=∠.(1)求证:DF AB .(2)当9AB = 4AF FD ==时①求tan CDF ∠的值①求BC 的长.(3)如图2 延长AD 交O 于点G 若::1:4:3GC CA AB = 求BED DFC S S△△的值.6.如图 AB 为O 的直径 弦CD AB ⊥于点E 连接AC BC .(1)求证:CAB BCD ∠=∠(2)若4AB = 2BC = 求CD 的长.7.如图 四边形ABCD 内接于O BC 为O 的直径 O 的切线AP 与CB 的延长线交于点P .(1)求证:PAB ACB ∠=∠(2)若12AB = 4cos 5ADB求PB 的长.8.在Rt ABC 中 90BCA ∠=︒ CA CB = 点D 是ABC 外一动点(点B 点D 位于AC 两侧) 连接CD AD .(1)如图1 点O 是AB 的中点 连接OC OD 当AOD △为等边三角形时 ADC ∠的度数是______(2)如图2 连接BD 当135ADC ∠=︒时 探究线段BD CD DA 之间的数量关系 并说明理由(3)如图3 O 是ABC 的外接圆 点D 在AC 上 点E 为AB 上一点 连接CE DE 当1AE = 7BE =时 直接写出CDE 面积的最大值及此时线段BD 的长.9.如图 AB 为O 的直径 AB AC = BC 交O 于点DAC 交O 于点E 45BAC ∠=︒.(1)求EBC ∠的大小(2)若O 的半径为2 求图中阴影部分的面积.10.如图 点C 是弧AB 的中点 直线EF 与O 相切于点C 直线AO 与切线EF 相交于点E 与O 相交于另一点D 连接AB CD .(1)求证:AB EF ∥(2)若3DEF D ∠=∠ 求DAB ∠的度数.11.如图1 BC 是O 的直径 点A 在O 上 AD ①BC 垂足为D AE AC = CE 分别交AD AB 于点F G .(1)求证:FA FG =(2)如图2 若点E 与点A 在直径BC 的两侧 AB CE 的延长线交于点G AD 的延长线交CG 于点F .①问(1)中的结论还成立吗?如果成立 请证明 如果不成立 请说明理由①若2tan3BAD∠=求cos BCE∠.12.如图1四边形ABCD内接于O连结BD AC交于点G点E是AB上一点连结CE交BD于点F且满足ACD ACF∠=∠.(1)求证:ACE ABD∠=∠(2)若点C是BD的中点①求证:CE CD=②若34CFCD=3tan4BDC∠=时求EFFD的值.(3)如图2当点F是BG的中点时若2AB=3AC=求CG的值.13.如图 四边形OABC 中90OAB OCB ∠=∠=︒ BA BC =.以O 为圆心 以OA 为半径作O .(1)求证:BC 是O 的切线(2)连接BO 形延长交O 于点D 延长AO 交O 于点E 与BC 的延长线交于点F ①补全图形①若AD AC = 求证:OF OB =.14.如图 在ABC 中 AB AC = AO BC ⊥于点O OE AB ⊥于点E 以点O 为圆心 OE 为半径作圆O 交AO 于点F .(1)求证:AC 是O 的切线(2)若60AOE =︒∠ 3OE = 在BC 边上是否存在一点P 使PF PE +有最小值 如果存在请求出PF PE +的最小值.15.如图1 在O 中 P 是直径AB 上的动点 过点P 作弦CD (点C 在点D 的左边) 过点C 作弦CE AB ⊥ 垂足为点F 连接BC 已知BE ED =.(1)求证:FP FB =.(2)当点P 在半径OB 上时 且OP FB = 求FPFC 的值.(3)连接BD 若55OA OP ==. ①求BD 的长.①如图2 延长PC 至点G 使得CG CP = 连接BG 求BCG 的面积.参考答案:1.(1)解:连接OF 如图所示:FH 是O 的切线OF FH ∴⊥①FH BC ∥OF BC ∴⊥BF CF ∴=BAF CAF ∴∠=∠AF ∴平分BAC ∠(2)解:如图作出ABC ∠的平分线BD 交AF 于点DABD CBD ∠=∠ BAF CAF CBF ∠=∠=∠ 且FBD CBD CBF ∠=∠+∠ BDF ABD BAF ∠=∠+∠FBD BDF ∴∠=∠4610BF DF EF DE ∴==+=+= AB 是O 的直径90AFB ∴∠=42tan 105EF EBF BF ∴∠===.2.(1)解:延长AO 交圆O 与F 连接BF .①90ABF ∠=︒①BD AC ⊥与E①90AED ABF ∠=∠=︒又AOE AFB ∠=∠①ABF AED ∽①BAF EAD ∠=∠即BAO CAD ∠=∠.(2)连接CF①AF 是O 的直径①90ACF ∠=︒①90AFC FAC ∠+∠=︒①OA CD ∥①FAC ACD ∠=∠①BD AC ⊥与E①90AED ∠=︒①90CDE ACD ∠+∠=︒①AFC CDE ∠=∠又①AFC CBA ∠=∠ CDE CAB ∠=∠①CBA CAB ∠=∠①AC BC =.(3)①①4cos 5ADB①45DE AD = ①45DE AD =①2235AE AD DE AD =- ①ACB ADB①45CE BC = 设4CE a = 则5BC a AC == ①223BE BC CE a -①5BC AC a ==①AE AC EC a =-=①53AD a = 43DE a = ①OP CD ①14OE AE DE CE == ①13PE a = 53PD a = ①211552236APD SPD AE a a a =⋅=⨯⨯= ①11531222ABC S AC BE a a =⋅=⨯⨯= 解得:22415a = ①25524466153APD S a ==⨯=. ①过点O 作OH AC ⊥于H①22AC AH CH ==①PE AC ⊥①PE OH ∥①P 是OA 的中点①E 是AH 的中点设AE k = 则2AH k = 4AC k= 3CE k = 4BC AC k ==①BE①ADB ACB ∠=∠ AED BEC∠=∠①AED BEC ∽ ①AEDEBE CE =①AE CEDE BE ⋅===①BD =①74BD AC k ==故BDAC3.(1)证明:如图 连接OC①CD 是①O 的切线①OC CD ⊥①90OCB BCD ∠+∠=︒①OC OB =①OCB OBC ∠=∠①BCF BCD ∠=∠①90BCF OBC ∠+∠=︒①90BGC ∠=︒ 即BG CF ⊥①BCF BCD ∠=∠,BE CF ⊥①BE BG =(2)解:①AB 是O 的直径 CF AB ⊥①BC BF =①BC BF =①BCF F ∠=∠①BE CD ⊥ BCF BCD ∠=∠①30BCF BCD F ∠=∠=∠=︒①60OBC ∠=︒①1BE =①2BC =①60OB OC OBC =∠=︒,①OBC △为等边三角形①2OB BC ==即O 的半径为2.4.(1)解:①AB 是O 的直径①090ACB FCA ∠=∠=①点C 是AE 的中点①AC EC =①CAE CBA ∠=∠①ACF BCA ∽△△(2)ACF BCA ∵∽△△2AC CF CB =⋅∴1CF = 2BF =23AC CF CB =⋅=∴AC ∴090ACB ∠=AB ∴==1sin 2CA ABC AB ∴∠=== 30CAE CBA =︒∠=∠∴903060BAC ∴∠=︒-︒=︒603030BAD ∴∠=︒-︒=︒BD 是O 的切线 90ABD ∴∠=︒tan D B B BA D A ∠==∴2DB ∴=5.(1)证明:①点E 是AB 的中点 且DE 过圆心①AB DE ⊥①AD BD =①B BAD ∠=∠有①BAD CDF ∠=∠①B CDF ∠=∠①DF AB . (2)①DFAB ①CDF CBA △△∽①DF CF BA CA=即:494CF CF=+ 解得:165CF = 又①AF FD =①CAD FDA ∠=∠①DF AB①FDA BAD CDF ∠=∠=∠①CAD CDF ∠=∠又C C ∠=∠①CDF CAD ∽ ①=CD CA CF CD①2161657645525CD CF AC ⎛⎫=⋅=⨯+= ⎪⎝⎭ ①245CD = ①CDF CBA △△∽①DC DF BC BA= 即24459BC = ①545BC = ①5424655BD BC DC =-=-= ①1922AE AB == 在ADE 中222293762DE AD AE ⎛⎫=-=- ⎪⎝⎭①3772tan tan 92DE CDF EAD AE ∠=∠=== 综上 17tan CDF ∠ 545BC =. (3)①::1:4:3GC CA AB =①它们所对圆心角度数比为1:4:3.根据同弧所对圆周角为原心角的一半 可知它们所对的圆周角度数比为1:4:3 即1::1:4:3B C ∠∠∠=设1∠=α 则4B α∠= 3C α∠=则14ADB C α∠=∠+∠=①AD BD =①4BAD B α∠=∠=①4ADB BAD B α∠=∠=∠=①ADB 为等边三角形①460α=︒①15α=︒①345C α∠==︒过点E 作EM BC ⊥交BC 于M 过点A 作⊥AP BC 交BC 于P 过点F 作FN BC ⊥交BC 于N设2BD m =①=60B ∠︒ 90BED ∠=︒①1cos6022BE BD m m =⋅︒=⨯= sin sin 60EM BE B m m =⋅=⋅︒==①211222BED S EM BD m =⋅=⋅=同理sin 2sin 602AP AB B m m =⋅=⨯︒== ①45C PAC ∠=∠=︒①PC AP == ①12PD BD m ==①)1CD PC PD m =-=①45C NFC ∠=∠=︒设FN CN n ==①DF AB60FDN B ∠=∠=︒ ①3tan 60FN DN ==︒ 又①CD DN NC =+ 即)331m n =+ 解得:()233n m = ①)()211953313322DFC S DC FN m m -=⋅=⨯⨯= ①2253332953BED DFC S m S -+△△. 6.(1)证明:①直径AB CD ⊥①BC BD =.①A BCD ∠=∠(2)解:连接OC①直径AB CD ⊥①CE ED =.①直径4AB =①2CO OB ==①2BC =①OCB 是等边三角形①60COE ∠=︒①30OCE ∠=︒ ①112OE OC == 在Rt COE △中①CE①2CD CE ==7.(1)证明:如图 连接OA①AP 为O 的切线①OA AP ⊥①90OAP ∠=︒①90OAB PAB ∠+∠=︒①OA OB =①OAB OBA ∠=∠①90OBA PAB①BC 为O 的直径①90ACB OBA ∠+∠=︒①PAB ACB ∠=∠(2)由(1)知PAB ACB ∠=∠ 且ADB ACB ∠=∠ ①ACB PAB ADB ∠=∠=∠ ①4cos cos cos 5ACB PAB ADB ∠=∠=∠= 在Rt ABC 中 3tan 4AB ACB AC ∠== ①12AB =①16AC =①2220BC AB AC +=①10OB =过B 作BF AP ⊥于F①ADB FAB ∠=∠ 4cos 5ADB①4cos 5FAB ∠=①3sin 5FAB ∠= ①在Rt ABF 中 36sin 5BF AB FAB =⋅∠=①OA AP BF AP ⊥⊥,,①BF OA ∥ ①PBF POA ∽①BF PB OA PO ①3651010PB PB =+①1807PB = 故PB 的长为1807. 8.(1)解:90BCA ∠=︒ BC AC = 点O 是AB 的中点 90COA ︒∴∠= 12CO AB OA == AOD 是等边三角形OD OA ∴= 60ODA DOA ∠=∠=︒OC OD ∴= 906030COD COA DOA ∠=∠-∠=︒-︒=︒ ()()11180180307522ODC COD ∴∠=︒-∠=⨯︒-︒=︒ 7560135ADC ODC ODA ∴∠=∠+∠=︒+︒=︒故答案为:135︒(2)解:线段BD CD DA 之间的数量关系为:BD DA =+ 理由如下: 过点C 作CH CD ⊥交AD 的延长线于点H 如图2所示:则180********CDH ADC ∠=︒-∠=︒-︒=︒ DCH ∴△是等腰直角三角形CH CD ∴= HD90BCA ∠=︒ACH BCD ∴∠=∠()ACH BCD SAS ∴≌BD AH HD DA AD ∴==+=+ (3)解:连接OC 如图3所示:90BCA ∠=︒ BC AC =ACB ∴是等腰直角三角形45ABC ∴∠=︒ O 是ABC 的外接圆O ∴是AB 的中点OC AB ∴⊥ ()()111174222OC OA AB AE BE ===+=⨯+= 413OE OA AE ∴=-=-=在Rt COE △中 由勾股定理得:2222435CE OC OE ++ CE 是定值∴点D 到CE 的距离最大时 CDE 面积的面积最大 AB 是O 的直径过点O 作ON CE ⊥于N 延长ON 与O 的交点恰好是点D 时 点D 到CE 的距离最大 CDE 面积的面积最大1122OCE S OC OE CE ON =⋅=⋅431255OC OE ON CE ⋅⨯∴===4OD OC ==128455DN OD ON ∴=-=-=此时 在直角CNO 中 222212164()55CN OC ON =-=-=在直角CND △中 222216885()()55CD CN DN +=+=在直角ABD △中 222228BD AB AD AD =-=- 由(2)知 8581022BD CD AD AD AD =+==2228108()AD AD ∴-=+610AD ∴=8108106101410BD AD ∴+=即CDE 面积的面积最大值为4 此时 1410BD .9.(1)解:①AB 为O 的直径①90AEB ∠=︒又①45BAC ∠=︒①=45ABE ∠︒.又①AB AC =①67.5ABC C ∠=∠=︒①22.5EBC ∠=︒.(2)解:连接OE 如图所示:①45ABE BAE ∠=∠=︒①AE BE =①OA OB =①OE AB ⊥①2OA OB OE ===①OBE OBE S S S =-阴影扇形29021223602π⨯⨯=-⨯⨯2π=-.10.(1)证明:连接OC 如图①直线EF 与O 相切于点C①OC EF ⊥.①点C 是AB 的中点①OC AB ⊥.①AB EF ∥.(2)解:①OC EF ⊥①90OCE ∠=︒.①90DEF EOC ∠+∠=︒.①2EOC D ∠=∠ 3DEF D ∠=∠①590D ∠=︒.①18D ∠=︒.①331854DEF D ∠=∠=⨯︒=︒.①AB EF ∥①54DAB DEF ∠=∠=︒.11.(1)证明:BC 为直径90BAC ∴∠=︒90ACE AGC ∴∠+∠=︒AD BC ⊥90ADB ∴∠=︒90ABD DAB ∴∠+∠=︒①AE AC =ACE ABD ∴∠=∠DAB AGC ∴∠=∠FA FG ∴=(2)解:①(1)中的结论成立理由如下: BC 为直径90BAC ∴∠=︒即:=90GAC ∠︒90ACG AGC ∴∠+∠=︒AD BC ⊥90ADB ∴∠=︒90ABD DAB ∴∠+∠=︒①AE AC =ACG ABD ∴∠=∠DAB AGC ∴∠=∠FA FG ∴=①如图2 过点G 作GM BC ⊥交CB 的延长线于点M90GMB ADB ∴∠=∠=︒又ABD GBM ∠=∠GBM ABD ∴∽ ∴BMMGBD DA = ∴BM BDMG DA =90BAD ABD ∠+∠=︒90BAD DAC ∠+∠=︒ABD DAC ∴∠=∠ACE ABD ∠=∠DAC ACE ∴∠=∠AF CF ∴=又AF GF =CF GF ∴=∴点F 为CG 的中点2tan 3BD BAD AD ∠== ∴23BMBD MG DA ==90ADB ADC ∠=∠=︒ABD CAD ∴∽ ①23BDAD AD CD ==设2BD x = 则3AD x =①233x x x CD= 解得:92CD x =AD BC ⊥ GM BC ⊥AD GM ∴∥①点D 为CM 的中点29CM CD x ∴==92DM CD x ∴== BM DM BD ∴=-52x = ①23BM MG = 32MG BM ∴=154x = CG ∴22MG CM +()221594x x ⎛⎫+ ⎪⎝⎭394x = cos BCE ∴∠CM CG =. 9394xx = 1213=. 12.(1)①ACD ACF ∠=∠ ACD ABD ∠=∠ ①ACE ABD ∠=∠(2)①①点C 是BD 的中点①BAC DAC ∠=∠ BC DC =①BAC DAC DBC ∠=∠=∠①BEC BAC ACE ∠=∠+∠ ABC ABD DBC ∠=∠+∠ ①BEC ABC ∠=∠①CE BC =①CE CD =②延长CE 交O 于点P 连接PB 连接CO 交BD 于点M由①得BAC DAC DBC ∠=∠=∠ BC DC = ①CM BD ⊥ ①12DM BM BD ==①BAC BPC ∠=∠①DBC DPC ∠=∠①BCF PCB ∠=∠①CBF CPB ∽ ①CB CF CP CB = ①34CF CD = 设3CF k = 4DC CE CB k === 则EF k = ①434k k CP k= 则163PC k = ①43PE PC CF EF k =--=①在Rt CMD 中 3tan 4CM BDC DM ∠== 设BDC ∠的对边为3CM m = 则4DM m = ①由勾股定理得5CD m = ①44cos 55DM m BDC CD m ∠=== ①4cos 5DM BDC DC ∠==①165DM k = 由12DM BM BD == ①3225BD DM k ==①BPF CDF ∠=∠ PBF DCF ∠=∠ ①BPF CDF ∽ ①PF BF DF CF= 设DF y = 由4733PF PE EF k k k =+=+= 325BF BD DF k y =-=- ①732353k k y y k-= 解得15y k = 275y k = ①155EF k DF k ==或5775EF k DF k == 综上可知EF DF 的值为15或57(3)过F 作FH AB ∥ 交AC 于点H同理FHG CHF ∽ ①FH HC HG FH= ①点F 是BG 的中点则设AH HG a == ①FH HC HG FH = 即131a a -= 整理得2310a a -+= 解得:135a +=(舍去) 235a -=①325CG a =-13.(1)证明:如图 连接BO90OAB OCB ∠=∠=︒ BA BC = BO BO =①()Rt Rt HL ABO CBO ≌①AO CO =CO ∴是O 的半径又①90BCO ∠=︒①BC 是O 的切线(2)①解:依照题意画出图形 如图所示①证明:①Rt Rt ABO CBO ≌ ①AOB BOC ∠=∠①AOD COD ∠=∠①AD AC =①AOC AOD ∠=∠①120AOC AOD COD ∠=∠=∠=︒ ①60AOB BOC ∠=∠=︒①90BCO ∠=︒①30OBC ∠=︒①60AOB OBC F ∠=∠+∠=︒①30F OBC ∠=︒=∠①OB OF =.⊥与点D如图14.(1)证明:过点O作OD AC⊥=AO BCAB AC∠∴平分BACAO⊥OE AB⊥OD AC∴=OD OEOE是圆的半径OD∴是圆的半径这样AC经过半径OD的外端且垂直于半径OD∴是O的切线AC(2)解:在BC边上存在一点P使PF PE+有最小值.延长AO交O于点G连接EG交BC于点P连接PF则此时PF PE+最小连接EF过点E作EH AO⊥于点H如图∠=︒OE OFAOE60=∴为等边三角形OEF∴===3EF OE OF⊥EH OF1322OH HF OF ∴=== 39322GH OG OH ∴=+=+= 在Rt EHO 中sin EH AOE OE ∠=EH OE ∴=在Rt EHG △中EG BC FG ⊥ OG OF = PG PF ∴=PE PF PE PG EG ∴+=+==∴在BC 边上存在一点P 使PF PE +有最小值.PF PE +的最小值为 15.(1)①BE ED = ①BCE DCE ∠=①CE AB ⊥①90CFP CFB ∠=∠=︒ 在CPF 和CBF 中 DCE BCE CF CFCFP CFB ∠=∠⎧⎪=⎨⎪∠=∠⎩①()ASA CPF CBF ≌ ①FP FB =.(2)由(1)得 FP FB = ①OP FB =①OP FB FP ==设3OA a =①OP FB FP a === ①2OF OP PF a =+= 连接OE①在Rt OFE △中 ()()225FE OE OF a - ①AB 为O 的直径 CE AB ⊥ ①5CF EF a == ①55FP FC a ==(3)①连接OE 如图①AB 为O 的直径 CE AB ⊥ ①CB BE =①BE ED =①BE ED CB == ①CB BE BE BD +=+ ①CE BD =①CE BD =①55OA OP == ①1OP =①FP FB = 5FP FB OP ++= ①2FP FB ==①3OF =在Rt OFE △中 FE =①4FE =①12CF FE CE == ①8CE = ①8BD = ①①CG CP = FP FB = ①点F 点C 是线段PB GO 的中点 ①CF 为PGB △的中位线 ①12CF GB = 12CF GB ∥ ①4CF = ①8GB = ①CF AB ⊥ ①BG AB ⊥ ①BCG 中BG 边上的高等于BF 的长①BCG 的面积为:1182822BG BF ⨯=⨯⨯=.。
中考数学圆的综合综合经典题附答案

中考数学圆的综合综合经典题附答案一、圆的综合1.如图,在⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,在AB的延长线上有点E,且EF=ED.(1)求证:DE是⊙O的切线;(2)若tan A=12,探究线段AB和BE之间的数量关系,并证明;(3)在(2)的条件下,若OF=1,求圆O的半径.【答案】(1)答案见解析;(2)AB=3BE;(3)3.【解析】试题分析:(1)先判断出∠OCF+∠CFO=90°,再判断出∠OCF=∠ODF,即可得出结论;(2)先判断出∠BDE=∠A,进而得出△EBD∽△EDA,得出AE=2DE,DE=2BE,即可得出结论;(3)设BE=x,则DE=EF=2x,AB=3x,半径OD=32x,进而得出OE=1+2x,最后用勾股定理即可得出结论.试题解析:(1)证明:连结OD,如图.∵EF=ED,∴∠EFD=∠EDF.∵∠EFD=∠CFO,∴∠CFO=∠EDF.∵OC⊥OF,∴∠OCF+∠CFO=90°.∵OC=OD,∴∠OCF=∠ODF,∴∠ODC+∠EDF=90°,即∠ODE=90°,∴OD⊥DE.∵点D在⊙O上,∴DE是⊙O的切线;(2)线段AB、BE之间的数量关系为:AB=3BE.证明如下:∵AB为⊙O直径,∴∠ADB=90°,∴∠ADO=∠BDE.∵OA=OD,∴∠ADO=∠A,∴∠BDE=∠A,而∠BED=∠DEA,∴△EBD∽△EDA,∴DE BE BDAE DE AD==.∵Rt△ABD中,tan A=BDAD=12,∴DE BEAE DE==12,∴AE=2DE,DE=2BE,∴AE=4BE,∴AB=3BE;(3)设BE=x,则DE=EF=2x,AB=3x,半径OD=32x.∵OF=1,∴OE=1+2x.在Rt△ODE中,由勾股定理可得:(32x)2+(2x)2=(1+2x)2,∴x=﹣29(舍)或x=2,∴圆O的半径为3.点睛:本题是圆的综合题,主要考查了切线的判定和性质,等腰三角形的性质,锐角三角函数,相似三角形的判定和性质,勾股定理,判断出△EBD ∽△EDA 是解答本题的关键.2.如图,AB 为O e 的直径,弦//CD AB ,E 是AB 延长线上一点,CDB ADE ∠=∠.()1DE 是O e 的切线吗?请说明理由; ()2求证:2AC CD BE =⋅.【答案】(1)结论:DE 是O e 的切线,理由见解析;(2)证明见解析. 【解析】 【分析】(1)连接OD ,只要证明OD DE ⊥即可;(2)只要证明:AC BD =,CDB DBE V V ∽即可解决问题. 【详解】()1解:结论:DE 是O e 的切线.理由:连接OD .CDB ADE ∠=∠Q , ADC EDB ∴∠=∠, //CD AB Q ,CDA DAB ∴∠=∠, OA OD =Q ,OAD ODA ∴∠=∠,ADO EDB ∴∠=∠, AB Q 是直径, 90ADB ∴∠=o ,90ADB ODE ∴∠=∠=o ,DE OD ∴⊥,DE ∴是O e 的切线.()2//CD AB Q ,ADC DAB ∴∠=∠,CDB DBE ∠=∠,AC BD ∴=nn,AC BD ∴=,DCB DAB ∠=∠Q ,EDB DAB ∠=∠, EDB DCB ∴∠=∠, CDB ∴V ∽DBE V , CD DB BD BE∴=, 2BD CD BE ∴=⋅, 2AC CD BE ∴=⋅.【点睛】本题考查相似三角形的判定和性质、圆周角定理、切线的判定等知识,解题的关键是学会添加常用辅助线,准确寻找相似三角形解决问题,属于中考常考题型.3.如图,AB 是半圆O 的直径,C 是的中点,D 是的中点,AC 与BD 相交于点E .(1)求证:BD 平分∠ABC ; (2)求证:BE =2AD ; (3)求DEBE的值. 【答案】(1)答案见解析(2)BE=AF=2AD (3)212【解析】试题分析:(1)根据中点弧的性质,可得弦AD=CD ,然后根据弦、弧、圆周角、圆心角的性质求解即可;(2)延长BC 与AD 相交于点F, 证明△BCE ≌△ACF, 根据全等三角形的性质可得BE=AF=2AD;(3)连接OD,交AC于H.简要思路如下:设OH为1,则BC为2,OB=OD=2,DH=21-, 然后根据相似三角形的性质可求解.试题解析:(1)∵D是的中点∴AD=DC∴∠CBD=∠ABD∴BD平分∠ABC(2)提示:延长BC与AD相交于点F,证明△BCE≌△ACF,BE=AF=2AD(3)连接OD,交AC于H.简要思路如下:设OH为1,则BC为2,OB=OD=2,DH=21-, DEBE=DHBCDE BE =212-4.已知:如图,在矩形ABCD中,点O在对角线BD上,以OD的长为半径的⊙O与AD,BD分别交于点E、点F,且∠ABE=∠DBC.(1)判断直线BE与⊙O的位置关系,并证明你的结论;(2)若sin∠ABE=3,CD=2,求⊙O的半径.【答案】(1)直线BE与⊙O相切,证明见解析;(2)⊙O的半径为32.【解析】分析:(1)连接OE,根据矩形的性质,可证∠BEO=90°,即可得出直线BE与⊙O相切;(2)连接EF,先根据已知条件得出BD的值,再在△BEO中,利用勾股定理推知BE的长,设出⊙O的半径为r,利用切线的性质,用勾股定理列出等式解之即可得出r的值.详解:(1)直线BE 与⊙O 相切.理由如下:连接OE ,在矩形ABCD 中,AD ∥BC ,∴∠ADB =∠DBC . ∵OD =OE ,∴∠OED =∠ODE . 又∵∠ABE =∠DBC ,∴∠ABE =∠OED , ∵矩形ABDC ,∠A =90°,∴∠ABE +∠AEB =90°,∴∠OED +∠AEB =90°,∴∠BEO =90°,∴直线BE 与⊙O 相切;(2)连接EF ,方法1:∵四边形ABCD 是矩形,CD =2,∴∠A =∠C =90°,AB =CD =2. ∵∠ABE =∠DBC ,∴sin ∠CBD =33sin ABE ∠= ∴23DCBD sin CBD∠==在Rt △AEB 中,∵CD =2,∴22BC =.∵tan ∠CBD =tan ∠ABE ,∴2222DC AE AEAE BC AB ,,==∴=, 由勾股定理求得6BE =在Rt △BEO 中,∠BEO =90°,EO 2+EB 2=OB 2.设⊙O 的半径为r ,则222623r r +=()(),∴r 3, 方法2:∵DF 是⊙O 的直径,∴∠DEF =90°. ∵四边形ABCD 是矩形,∴∠A =∠C =90°,AB =CD =2. ∵∠ABE =∠DBC ,∴sin ∠CBD =33sin ABE ∠=. 设3DC x BD x ==,,则2BC x =.∵CD =2,∴22BC =. ∵tan ∠CBD =tan ∠ABE ,∴2222DC AE AEAE BC AB ,,==∴=, ∴E 为AD 中点.∵DF 为直径,∠FED =90°,∴EF ∥AB ,∴132DF BD ==∴⊙O 3点睛:本题综合考查了切线的性质、勾股定理以及三角函数的应用等知识点,具有较强的综合性,有一定的难度.5.如图,在⊙O中,直径AB⊥弦CD于点E,连接AC,BC,点F是BA延长线上的一点,且∠FCA=∠B.(1)求证:CF是⊙O的切线;(2)若AE=4,tan∠ACD=33,求FC的长.【答案】(1)见解析【解析】分析:(1)利用圆周角定理以及等腰三角形的性质得出∠OCF=90°,进而得出答案;(2)根据正切的性质求出EC的长,然后利用垂径定理求出圆的半径,再根据等边三角形的性质,利用勾股定理求出即可.详解:(1)证明:连接OC.∵AB是⊙O的直径,∴∠ACB=90°,∴∠OCB+∠ACO=90°.∵OB=OC,∴∠B=∠OCB.又∵∠FCA=∠B,∴∠FCA=∠OCB,∴∠FCA+∠ACO=90°,即∠FCO=90°,∴FC⊥OC,∴FC是⊙O切线.(2)解:∵AB⊥CD,∴∠AEC=90°,∴EC=AE43 tan ACE3∠==设OA=OC=r,则OE=OA-AE=r-4.在Rt△OEC中,OC2=OE2+CE2,即r2=(r-4)2+32,解得r=8.∴OE=r-4=4=AE.∵CE⊥OA,∴CA=CO=8,∴△AOC是等边三角形,∴∠FOC=60°,∴∠F=30°.在Rt△FOC中,∵∠OCF=90°,OC=8,∠F=30°,∴OF=2OC=16,∴FC=22OF OC83-=.点睛:此题主要考查了切线的判定、垂径定理的推论以及勾股定理等知识,得出BC的长是解题关键.6.如图1,已知AB是⊙O的直径,AC是⊙O的弦,过O点作OF⊥AB交⊙O于点D,交AC于点E,交BC的延长线于点F,点G是EF的中点,连接CG(1)判断CG与⊙O的位置关系,并说明理由;(2)求证:2OB2=BC•BF;(3)如图2,当∠DCE=2∠F,CE=3,DG=2.5时,求DE的长.【答案】(1)CG与⊙O相切,理由见解析;(2)见解析;(3)DE=2【解析】【分析】(1)连接CE,由AB是直径知△ECF是直角三角形,结合G为EF中点知∠AEO=∠GEC=∠GCE,再由OA=OC知∠OCA=∠OAC,根据OF⊥AB可得∠OCA+∠GCE=90°,即OC⊥GC,据此即可得证;(2)证△ABC∽△FBO得BC ABBO BF=,结合AB=2BO即可得;(3)证ECD∽△EGC得EC EDEG EC=,根据CE=3,DG=2.5知32.53DEDE=+,解之可得.【详解】解:(1)CG与⊙O相切,理由如下:如图1,连接CE,∵AB 是⊙O 的直径, ∴∠ACB =∠ACF =90°, ∵点G 是EF 的中点, ∴GF =GE =GC ,∴∠AEO =∠GEC =∠GCE , ∵OA =OC , ∴∠OCA =∠OAC , ∵OF ⊥AB ,∴∠OAC +∠AEO =90°,∴∠OCA +∠GCE =90°,即OC ⊥GC , ∴CG 与⊙O 相切;(2)∵∠AOE =∠FCE =90°,∠AEO =∠FEC , ∴∠OAE =∠F , 又∵∠B =∠B , ∴△ABC ∽△FBO ,∴BC ABBO BF =,即BO •AB =BC •BF , ∵AB =2BO , ∴2OB 2=BC •BF ;(3)由(1)知GC =GE =GF , ∴∠F =∠GCF , ∴∠EGC =2∠F , 又∵∠DCE =2∠F , ∴∠EGC =∠DCE , ∵∠DEC =∠CEG , ∴△ECD ∽△EGC ,∴EC EDEG EC =, ∵CE =3,DG =2.5, ∴32.53DEDE =+,整理,得:DE 2+2.5DE ﹣9=0, 解得:DE =2或DE =﹣4.5(舍), 故DE =2. 【点睛】本题是圆的综合问题,解题的关键是掌握圆周角定理、切线的判定、相似三角形的判定与性质及直角三角形的性质等知识点.7.如图1,等边△ABC 的边长为3,分别以顶点B 、A 、C 为圆心,BA 长为半径作¶AC 、¶CB、¶BA ,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对称图形,设点l 为对称轴的交点.(1)如图2,将这个图形的顶点A 与线段MN 作无滑动的滚动,当它滚动一周后点A 与端点N 重合,则线段MN 的长为 ;(2)如图3,将这个图形的顶点A 与等边△DEF 的顶点D 重合,且AB ⊥DE ,DE =2π,将它沿等边△DEF 的边作无滑动的滚动当它第一次回到起始位置时,求这个图形在运动过程中所扫过的区域的面积;(3)如图4,将这个图形的顶点B 与⊙O 的圆心O 重合,⊙O 的半径为3,将它沿⊙O 的圆周作无滑动的滚动,当它第n 次回到起始位置时,点I 所经过的路径长为 (请用含n 的式子表示)【答案】(1)3π;(2)27π;(3)3. 【解析】试题分析:(1)先求出¶AC 的弧长,继而得出莱洛三角形的周长为3π,即可得出结论; (2)先判断出莱洛三角形等边△DEF 绕一周扫过的面积如图所示,利用矩形的面积和扇形的面积之和即可;(3)先判断出莱洛三角形的一个顶点和O 重合旋转一周点I 的路径,再用圆的周长公式即可得出.试题解析:解:(1)∵等边△ABC 的边长为3,∴∠ABC =∠ACB =∠BAC =60°,¶¶¶AC BC AB ==,∴¶¶AC BCl l ==¶AB l =603180π⨯=π,∴线段MN 的长为¶¶¶AC BC ABl l l ++=3π.故答案为3π;(2)如图1.∵等边△DEF的边长为2π,等边△ABC的边长为3,∴S矩形AGHF=2π×3=6π,由题意知,AB⊥DE,AG⊥AF,∴∠BAG=120°,∴S扇形BAG=21203360π⨯=3π,∴图形在运动过程中所扫过的区域的面积为3(S矩形AGHF+S扇形BAG)=3(6π+3π)=27π;(3)如图2,连接BI并延长交AC于D.∵I是△ABC的重心也是内心,∴∠DAI=30°,AD=12AC=32,∴OI=AI=3230ADcos DAI cos∠=︒=3,∴当它第1次回到起始位置时,点I所经过的路径是以O为圆心,OI为半径的圆周,∴当它第n次回到起始位置时,点I所经过的路径长为n•2π•3=23nπ.故答案为23nπ.点睛:本题是圆的综合题,主要考查了弧长公式,莱洛三角形的周长,矩形,扇形面积公式,解(1)的关键是求出¶AC的弧长,解(2)的关键是判断出莱洛三角形绕等边△DEF 扫过的图形,解(3)的关键是得出点I第一次回到起点时,I的路径,是一道中等难度的题目.8.如图1,在Rt△ABC中,∠ABC=90°,BA=BC,直线MN是过点A的直线CD⊥MN于点D,连接BD.(1)观察猜想张老师在课堂上提出问题:线段DC,AD,BD之间有什么数量关系.经过观察思考,小明出一种思路:如图1,过点B作BE⊥BD,交MN于点E,进而得出:DC+AD= BD.(2)探究证明将直线MN绕点A顺时针旋转到图2的位置写出此时线段DC,AD,BD之间的数量关系,并证明(3)拓展延伸在直线MN绕点A旋转的过程中,当△ABD面积取得最大值时,若CD长为1,请直接写BD的长.【答案】(1)2;(2)AD ﹣DC=2BD ;(3)BD=AD=2+1.【解析】【分析】(1)根据全等三角形的性质求出DC ,AD ,BD 之间的数量关系(2)过点B 作BE ⊥BD ,交MN 于点E .AD 交BC 于O ,证明CDB AEB ∆∆≌,得到CD AE =,EB BD =,根据BED ∆为等腰直角三角形,得到2DE BD =,再根据DE AD AE AD CD =-=-,即可解出答案.(3)根据A 、B 、C 、D 四点共圆,得到当点D 在线段AB 的垂直平分线上且在AB 的右侧时,△ABD 的面积最大.在DA 上截取一点H ,使得CD=DH=1,则易证2CH AH ==,由BD AD =即可得出答案.【详解】解:(1)如图1中,由题意:BAE BCD ∆∆≌,∴AE=CD ,BE=BD ,∴CD+AD=AD+AE=DE ,∵BDE ∆是等腰直角三角形,∴2BD ,∴2BD ,2.(2)2AD DC BD -=.证明:如图,过点B 作BE ⊥BD ,交MN 于点E .AD 交BC 于O .∵90ABC DBE ∠=∠=︒,∴ABE EBC CBD EBC ∠+∠=∠+∠,∴ABE CBD ∠=∠.∵90BAE AOB ∠+∠=︒,90BCD COD ∠+∠=︒,AOB COD ∠=∠,∴BAE BCD ∠=∠,∴ABE DBC ∠=∠.又∵AB CB =,∴CDB AEB ∆∆≌,∴CD AE =,EB BD =,∴BD ∆为等腰直角三角形,2DE BD =. ∵DE AD AE AD CD =-=-, ∴2AD DC BD -=.(3)如图3中,易知A 、B 、C 、D 四点共圆,当点D 在线段AB 的垂直平分线上且在AB 的右侧时,△ABD 的面积最大.此时DG ⊥AB ,DB=DA ,在DA 上截取一点H ,使得CD=DH=1,则易证2CH AH == ∴21BD AD ==+.【点睛】 本题主要考查全等三角形的性质,等腰直角三角形的性质以及图形的应用,正确作辅助线和熟悉图形特性是解题的关键.9.如图,⊙O 是△ABC 的外接圆,AB 是直径,过点O 作OD ⊥CB ,垂足为点D ,延长DO 交⊙O 于点E ,过点E 作PE ⊥AB ,垂足为点P ,作射线DP 交CA 的延长线于F 点,连接EF,(1)求证:OD=OP;(2)求证:FE是⊙O的切线.【答案】(1)证明见解析;(2)证明见解析.【解析】试题分析:(2)证明△POE≌△ADO可得DO=EO;(3)连接AE,BE,证出△APE≌△AFE即可得出结论.试题解析:(1)∵∠EPO=∠BDO=90°∠EOP=∠BOD OE=OB∴△OPE≌△ODB∴OD="OP"(2)连接EA,EB∴∠1=∠EBC∵AB是直径∴∠AEB=∠C=90°∴∠2+∠3=90°∵∠3=∠DEB∵∠BDE=90°∴∠EBC+∠DEB=90°∴∠2=∠EBC=∠1∵∠C=90°∠BDE=90°∴CF∥OE∴∠ODP=∠AFP∵OD=OP∴∠ODP=∠OPD∵∠OPD=∠APF∴∠AFP=∠APF∴AF=AP 又AE=AE∴△APE≌△AFE∴∠AFE=∠APE=90°∴∠FED=90°∴FE是⊙O的切线考点:切线的判定.10.如图,已知AB 是⊙O 的直径,P 是BA 延长线上一点,PC 切⊙O 于点C ,CD ⊥AB ,垂足为D .(1)求证:∠PCA =∠ABC ;(2)过点A 作AE ∥PC 交⊙O 于点E ,交CD 于点F ,交BC 于点M ,若∠CAB =2∠B ,CF =3,求阴影部分的面积.【答案】(1)详见解析;(2)633π-. 【解析】【分析】(1)如图,连接OC ,利用圆的切线的性质和直径对应的圆周角是直角可得∠PCA=∠OCB ,利用等量代换可得∠PCA=∠ABC.(2)先求出△OCA 是等边三角形,在利用三角形的等边对等角定理求出FA=FC 和CF=FM,然后分别求出AM 、AC 、MO 、CD 的值,分别求出0A E S ∆、BOE S 扇形 、ABM S ∆ 的值,利用0A E ABM BOE S S S S ∆∆=+-阴影部分扇形,然后通过计算即可解答.【详解】解:(1)证明:连接OC ,如图,∵PC 切⊙O 于点C ,∴OC ⊥PC,∴∠PCA+∠ACO=90º,∵AB 是⊙O 的直径,∴∠ACB=∠ACO+OCB=90º∴∠PCA=∠OCB,∵OC=OB,∴∠OBC=∠OCB,∴∠PCA=∠ABC ;(2)连接OE ,如图,∵△ACB 中,∠ACB =90º,∠CAB =2∠B,∴∠B =30º,∠CAB =60º,∴△OCA 是等边三角形,∵CD ⊥AB,∴∠ACD+∠CAD =∠CAD +∠ABC =90º,∴∠ACD =∠B =30º,∵PC ∥AE,∴∠PCA =∠CAE =30º,∴FC=FA,同理,CF =FM,∴AM =2CF=23, Rt △ACM 中,易得AC=23×32=3=OC, ∵∠B =∠CAE =30º,∴∠AOC=∠COE=60º,∴∠EOB=60º,∴∠EAB=∠ABC=30º,∴MA=MB,连接OM,EG ⊥AB 交AB 于G 点,如图所示,∵OA=OB,∴MO ⊥AB,∴MO =3∵△CDO ≌△EDO(AAS),∴332 ∴1332ABM S AB MO ∆=⨯= 同样,易求934AOE S ∆=, 260333602BOE S ππ⨯==扇形 ∴0A E ABM BOE S S S S ∆∆=+-阴影部分扇形933633332ππ-+-=. 【点睛】本题考查了切线的性质、解直角三角形、扇形面积和识图的能力,综合性较强,有一定难度,熟练掌握定理并准确识图是解题的关键.11.如图,在Rt △ABC 中,∠ACB=60°,☉O 是△ABC 的外接圆,BC 是☉O 的直径,过点B 作☉O 的切线BD ,与CA 的延长线交于点D ,与半径AO 的延长线交于点E ,过点A 作☉O 的切线AF ,与直径BC 的延长线交于点F.(1)连接EF ,求证:EF 是☉O 的切线;(2)在圆上是否存在一点P ,使点P 与点A ,B ,F 构成一个菱形?若存在,请说明理由.【答案】(1)见解析;(2)存在,理由见解析【解析】【分析】(1)过O作OM⊥EF于M,根据SAS证明△OAF≌△OBE,从而得到OE=OF,再证明EO平分∠BEF,从而得到结论;(2)存在,先证明△OAC为等边三角形,从而得出∠OAC=∠AOC=60°,再得到AB=AF,再证明AB=AF=FP=BP,从而得到结论.【详解】(1)证明:如图,过O作OM⊥EF于M,∵OA=OB,∠OAF=∠OBE=90°,∠BOE=∠AOF,∴△OAF≌△OBE,∴OE=OF,∵∠EOF=∠AOB=120°,∴∠OEM=∠OFM=30°,∴∠OEB=∠OEM=30°,即EO平分∠BEF,又∠OBE=∠OME=90°,∴OM=OB,∴EF为☉O的切线.(2)存在.∵BC为☉O的直径,∴∠BAC=90°,∵∠ACB=60°,∴∠ABC=30°,又∵∠ACB=60°,OA=OC,∴△OAC为等边三角形,即∠OAC=∠AOC=60°,∵AF 为☉O 的切线,∴∠OAF=90°,∴∠CAF=∠AFC=30°,∴∠ABC=∠AFC ,∴AB=AF.当点P 在(1)中的点M 位置时,此时∠OPF=90°,∴∠OAF=∠OPF=90°,又∵OA=OP ,OF 为公共边,∴△OAF ≌△OPF ,∴AF=PF ,∠BFE=∠AFC=30°.又∵∠FOP=∠OBP=∠OPB=30°,∴BP=FP ,∴AB=AF=FP=BP ,∴四边形AFPB 是菱形.【点睛】考查了切线的判定定理和菱形的判定,经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.12.对于平面直角坐标系xoy 中的图形P ,Q ,给出如下定义:M 为图形P 上任意一点,N 为图形Q 上任意一点,如果M ,N 两点间的距离有最小值,那么称这个最小值为图形P ,Q 间的“非常距离”,记作d (P ,Q ).已知点A (4,0),B (0,4),连接AB .(1)d (点O ,AB )= ;(2)⊙O 半径为r ,若d (⊙O ,AB )=0,求r 的取值范围;(3)点C (-3,-2),连接AC ,BC ,⊙T 的圆心为T (t ,0),半径为2,d (⊙T ,△ABC ),且0<d <2,求t 的取值范围.【答案】(1)222)224r ≤≤;(3)25252t -<<-或6<r <8.【解析】【分析】(1)如下图所示,由题意得:过点O 作AB 的垂线,则垂线段即为所求;(2)如下图所示,当d (⊙O ,AB )=0时,过点O 作OE ⊥AB ,交AB 于点E ,则:OB=2, OE=22,即可求解; (3)分⊙T 在△ABC 左侧、⊙T 在△ABC 右侧两种情况,求解即可.【详解】(1)过点O 作OD ⊥AB 交AB 于点D ,根据“非常距离”的定义可知,d (点O ,AB )=OD=2AB =22442+=22; (2)如图,当d (⊙O ,AB )=0时,过点O 作OE ⊥AB,则OE=22,OB=OA=4,∵⊙O 与线段AB 的“非常距离”为0,∴224r ≤≤;(3)当⊙T 在△ABC 左侧时,如图,当⊙T 与BC 相切时,d=0,BC=2236+=35,过点C 作CE ⊥y 轴,过点T 作TF ⊥BC,则△TFH ∽△BEC,∴TF TH BE BC=, 即2=635TH , ∴TH=5,∵HO ∥CE,∴△BHO ∽△BEC,∴HO=2,此时T(-5-2,0);当d=2时,如图,同理可得,此时T (252--);∵0<d <2,∴25252t --<<--;当⊙T 在△ABC 右侧时,如图,当p=0时,t=6,当p=2时,t=8.∵0<d <2,∴6<r <8; 综上,25252t --<<--或6<r <8.【点睛】本题主要考查圆的综合问题,解题的关键是理解并掌握“非常距离”的定义与直线与圆的位置关系和分类讨论思想的运用.13.如图, Rt △ABC 中,∠B=90°,它的内切圆分别与边BC 、CA 、AB 相切于点D 、E 、F , (1)设AB=c, BC=a, AC=b, 求证: 内切圆半径r =12(a+b-c). (2) 若AD 交圆于P , PC 交圆于H, FH//BC, 求∠CPD; (3)若r=310, PD =18, PC=272. 求△ABC 各边长.【答案】(1)证明见解析(2)45°(3)1010,1510,12【解析】【分析】(1)根据切线长定理,有AE=AF ,BD=BF ,CD=CE .易证四边形BDOF 为正方形,BD=BF=r ,用r 表示AF 、AE 、CD 、CE ,利用AE+CE=AC 为等量关系列式.(2)∠CPD 为弧DH 所对的圆周角,连接OD ,易得弧DH 所对的圆心角∠DOH=90°,所以∠CPD=45°.(3)由PD=18和10,联想到垂径定理基本图形,故过圆心O 作PD 的垂线OM ,求得弦心距OM=3,进而得到∠MOD 的正切值.延长DO 得直径DG ,易证PG ∥OM ,得到同位角∠G=∠MOD .又利用圆周角定理可证∠ADB=∠G ,即得到∠ADB 的正切值,进而求得AB .再设CE=CD=x ,用x 表示BC 、AC ,利用勾股定理列方程即求出x .【详解】解:(1)证明:设圆心为O ,连接OD 、OE 、OF ,∵⊙O 分别与BC 、CA 、AB 相切于点D 、E 、F∴OD ⊥BC ,OE ⊥AC ,OF ⊥AB ,AE=AF ,BD=BF ,CD=CE∴∠B=∠ODB=∠OFB=90°∴四边形BDOF 是矩形∵OD=OF=r∴矩形BDOF 是正方形∴BD=BF=r∴AE=AF=AB-BF=c-r ,CE=CD=BC-BD=a-r∵AE+CE=AC∴c-r+a-r=b整理得:r=12(a+b-c )(2)取FH 中点O ,连接OD∵FH ∥BC∴∠AFH=∠B=90°∵AB 与圆相切于点F ,∴FH 为圆的直径,即O 为圆心∵FH ∥BC∴∠DOH=∠ODB=90°∴∠CPD=12∠DOH=45°(3)设圆心为O ,连接DO 并延长交⊙O 于点G ,连接PG ,过O 作OM ⊥PD 于M ∴∠OMD=90°∵PD=18∴DM=12PD=9 ∵10∴22OD DM -22(310)9-9081-3∴tan ∠MOD=DM OM=3 ∵DG 为直径∴∠DPG=90°∴OM∥PG,∠G+∠ODM=90°∴∠G=∠MOD∵∠ODB=∠ADB+∠ODM=90°∴∠ADB=∠G∴∠ADB=∠MOD∴tan∠ADB=ABBD=tan∠MOD=3∴AB=3BD=3r=910∴AE=AF=AB-BF=910−310=610设CE=CD=x,则BC=310+x,AC=610+x∵AB2+BC2=AC2∴(910)2.+(310+x)2=(610+x)2解得:x=910∴BC=1210,AC=1510∴△ABC各边长AB=910,AC=1510,BC=1210【点睛】本题考查切线的性质,切线长定理,正方形的判定,圆周角定理,垂径定理,勾股定理.切线长定理的运用是解决本题的关键,而在不能直接求得线段长的情况下,利用勾股定理作为等量关系列方程解决是常用做法.14.已知:如图,四边形ABCD为菱形,△ABD的外接圆⊙O与CD相切于点D,交AC于点E.(1)判断⊙O与BC的位置关系,并说明理由;(2)若CE=2,求⊙O的半径r.【答案】(1)相切,理由见解析;(2)2.【解析】试题分析:(1)根据切线的性质,可得∠ODC的度数,根据菱形的性质,可得CD与BC 的关系,根据SSS,可得三角形全等,根据全等三角形的性质,可得∠OBC的度数,根据切线的判定,可得答案;(2)根据等腰三角形的性质,可得∠ACD=∠CAD,根据三角形外角的性质,∠COD=∠OAD+∠AOD,根据直角三角形的性质,可得OC与OD的关系,根据等量代换,可得答案.(1)⊙O与BC相切,理由如下连接OD、OB,如图所示:∵⊙O与CD相切于点D,∴OD⊥CD,∠ODC=90°.∵四边形ABCD为菱形,∴AC垂直平分BD,AD=CD=CB.∴△ABD的外接圆⊙O的圆心O在AC上,∵OD=OB,OC=OC,CB=CD,∴△OBC≌△ODC.∴∠OBC=∠ODC=90°,又∵OB为半径,∴⊙O与BC相切;(2)∵AD=CD,∴∠ACD=∠CAD.∵AO=OD,∴∠OAD=∠ODA.∵∠COD=∠OAD+∠AOD,∠COD=2∠CAD.∴∠COD=2∠ACD又∵∠COD+∠ACD=90°,∴∠ACD=30°.∴OD=12OC,即r=12(r+2).∴r=2.【点睛】运用了切线的判定与性质,利用了切线的判定与性质,菱形的性质,直角三角形的性质.15.如图,在△ABC 中,AB =AC ,以AC 为直径作⊙O 交BC 于点D ,过点D 作FE ⊥AB 于点E ,交AC 的延长线于点F .(1)求证:EF 与⊙O 相切;(2)若AE =6,sin ∠CFD =35,求EB 的长.【答案】(1)见解析(2)32【解析】【分析】 ()1如图,欲证明EF 与O e 相切,只需证得OD EF ⊥.()2通过解直角AEF V 可以求得AF 10.=设O e 的半径为r ,由已知可得△FOD ∽△FAE ,继而得到OF OD AF AE =,即10r r 106-=,则易求15AB AC 2r 2===,所以153EB AB AE 622=-=-=. 【详解】(1)如图,连接OD ,OC OD =Q ,OCD ODC ∠∠∴=.AB AC =Q ,ACB B ∠∠∴=,ODC B ∠∠∴=,OD //AB ∴,ODF AEF ∠∠∴=,EF AB ⊥Q ,ODF AEF 90∠∠∴==o ,OD EF ∴⊥,OD Q 是O e 的半径,EF ∴与O e 相切;()2由()1知,OD//AB ,OD EF ⊥.在Rt AEF V 中,AE 3sin CFD AF 5∠==,AE 6=, 则AF 10=, OD //AB Q ,∴△FOD ∽△FAE ,OF OD AF AE∴=, 设O e 的半径为r ,10r r 106-∴=, 解得,15r 4=, 15AB AC 2r 2∴===, 153EB AB AE 622∴=-=-=. 【点睛】本题考查了切线的判定、相似三角形的判定与性质、解直角三角形的应用等,正确添加辅助线、灵活应用相关知识是解题的关键.。
初中圆的综合试题及答案

初中圆的综合试题及答案一、选择题(每题3分,共30分)1. 圆的半径为r,直径为d,则d与r的关系是()。
A. d = 2rB. d = rC. d = r/2D. d = 4r答案:A2. 圆的周长C与半径r的关系是()。
A. C = 2πrB. C = πrC. C = 4πrD. C = 2r答案:A3. 圆的面积S与半径r的关系是()。
A. S = πr^2B. S = 2πrC. S = πrD. S = r^2答案:A4. 圆心角为90°的扇形面积是整个圆面积的()。
A. 1/4B. 1/2C. 3/4D. 1答案:A5. 已知圆的半径为5cm,那么圆的直径是()。
A. 10cmB. 15cmC. 20cmD. 25cm答案:A6. 圆的切线与半径的关系是()。
A. 垂直B. 平行C. 相交D. 重合答案:A7. 圆的内接正方形的对角线长度等于圆的()。
A. 半径B. 直径C. 周长D. 面积答案:B8. 圆的外切正方形的边长等于圆的()。
A. 半径B. 直径C. 周长D. 面积答案:A9. 两个半径相等的圆是()。
A. 同心圆B. 等圆C. 相切圆D. 相交圆答案:B10. 圆的直径是半径的()倍。
A. 1B. 2C. 4D. 8答案:B二、填空题(每题3分,共30分)11. 圆的周长公式为C=2πr,其中r代表圆的________。
答案:半径12. 圆的面积公式为S=πr^2,其中r代表圆的________。
答案:半径13. 一个圆的半径为3cm,那么它的周长是________cm。
答案:18.8414. 一个圆的半径为4cm,那么它的面积是________cm^2。
答案:50.2415. 圆的切线垂直于经过切点的________。
答案:半径16. 圆的内接正六边形的边长等于圆的________。
答案:半径17. 圆的外切正六边形的边长等于圆的________。
答案:半径18. 两个圆的半径之和等于它们圆心距的圆是________圆。
中考数学 圆的综合 综合题含答案解析

中考数学 圆的综合 综合题含答案解析一、圆的综合1.如图,AB 为⊙O 的直径,点E 在⊙O 上,过点E 的切线与AB 的延长线交于点D ,连接BE ,过点O 作BE 的平行线,交⊙O 于点F ,交切线于点C ,连接AC(1)求证:AC 是⊙O 的切线;(2)连接EF ,当∠D= °时,四边形FOBE 是菱形.【答案】(1)见解析;(2)30.【解析】【分析】(1)由等角的转换证明出OCA OCE ∆∆≌,根据圆的位置关系证得AC 是⊙O 的切线. (2)根据四边形FOBE 是菱形,得到OF=OB=BF=EF ,得证OBE ∆为等边三角形,而得出60BOE ∠=︒,根据三角形内角和即可求出答案.【详解】(1)证明:∵CD 与⊙O 相切于点E ,∴OE CD ⊥,∴90CEO ∠=︒,又∵OC BE P ,∴COE OEB ∠=∠,∠OBE=∠COA∵OE=OB ,∴OEB OBE ∠=∠,∴COE COA ∠=∠,又∵OC=OC ,OA=OE ,∴OCA OCE SAS ∆∆≌(), ∴90CAO CEO ∠=∠=︒,又∵AB 为⊙O 的直径,∴AC 为⊙O 的切线;(2)解:∵四边形FOBE 是菱形,∴OF=OB=BF=EF ,∴OE=OB=BE ,∴OBE ∆为等边三角形,∴60BOE ∠=︒,而OE CD ⊥,∴30D ∠=︒.故答案为30.【点睛】本题主要考查与圆有关的位置关系和圆中的计算问题,熟练掌握圆的性质是本题的解题关键.2.如图,已知△ABC 中,AB=AC ,∠A=30°,AB=16,以AB 为直径的⊙O 与BC 边相交于点D ,与AC 交于点F ,过点D 作DE ⊥AC 于点E .(1)求证:DE 是⊙O 的切线;(2)求CE 的长;(3)过点B 作BG ∥DF ,交⊙O 于点G ,求弧BG 的长.【答案】(1)证明见解析(2)33)4π【解析】【分析】(1)如图1,连接AD ,OD ,由AB 为⊙O 的直径,可得AD ⊥BC ,再根据AB=AC ,可得BD=DC ,再根据OA=OB ,则可得OD ∥AC ,继而可得DE ⊥OD ,问题得证;(2)如图2,连接BF ,根据已知可推导得出DE=12BF ,CE=EF ,根据∠A=30°,AB=16,可得BF=8,继而得DE=4,由DE 为⊙O 的切线,可得ED 2=EF•AE ,即42=CE•(16﹣CE ),继而可求得CE 长;(3)如图3,连接OG ,连接AD ,由BG ∥DF ,可得∠CBG=∠CDF=30°,再根据AB=AC ,可推导得出∠OBG=45°,由OG=OB ,可得∠OGB=45°,从而可得∠BOG=90°,根据弧长公式即可求得»BG的长度. 【详解】(1)如图1,连接AD ,OD ;∵AB 为⊙O 的直径,∴∠ADB=90°,即AD ⊥BC ,∵AB=AC ,∴BD=DC ,∵OA=OB ,∴OD ∥AC ,∵DE ⊥AC ,∴DE ⊥OD ,∴∠ODE=∠DEA=90°,∴DE 为⊙O 的切线;(2)如图2,连接BF ,∵AB 为⊙O 的直径,∴∠AFB=90°,∴BF ∥DE ,∵CD=BD ,∴DE=12BF ,CE=EF , ∵∠A=30°,AB=16,∴BF=8,∴DE=4,∵DE 为⊙O 的切线,∴ED 2=EF•AE , ∴42=CE•(16﹣CE ),∴CE=8﹣43,CE=8+43(不合题意舍去);(3)如图3,连接OG ,连接AD ,∵BG ∥DF ,∴∠CBG=∠CDF=30°,∵AB=AC ,∴∠ABC=∠C=75°,∴∠OBG=75°﹣30°=45°,∵OG=OB ,∴∠OGB=∠OBG=45°,∴∠BOG=90°,∴»BG 的长度=908180π⨯⨯=4π.【点睛】本题考查了圆的综合题,涉及了切线的判定、三角形中位线定理、圆周角定理、弧长公式等,正确添加辅助线、熟练掌握相关的性质与定理是解题的关键.3.如图,AB 为⊙O 的直径,点D 为AB 下方⊙O 上一点,点C 为弧ABD 的中点,连接CD,CA.(1)求证:∠ABD=2∠BDC;(2)过点C作CH⊥AB于H,交AD于E,求证:EA=EC;(3)在(2)的条件下,若OH=5,AD=24,求线段DE的长度.【答案】(1)证明见解析;(2)见解析;(3)92 DE=.【解析】【分析】(1)连接AD,如图1,设∠BDC=α,∠ADC=β,根据圆周角定理得到∠CAB=∠BDC=α,由AB为⊙O直径,得到∠ADB=90°,根据余角的性质即可得到结论;(2)根据已知条件得到∠ACE=∠ADC,等量代换得到∠ACE=∠CAE,于是得到结论;(3)如图2,连接OC,根据圆周角定理得到∠COB=2∠CAB,等量代换得到∠COB=∠ABD,根据相似三角形的性质得到OH=5,根据勾股定理得到AB=22AD BD+=26,由相似三角形的性质即可得到结论.【详解】(1)连接AD.如图1,设∠BDC=α,∠ADC=β,则∠CAB=∠BDC=α,∵点C为弧ABD中点,∴¶AC=¶CD,∴∠ADC=∠DAC=β,∴∠DAB=β﹣α,∵AB为⊙O直径,∴∠ADB=90°,∴α+β=90°,∴β=90°﹣α,∴∠ABD=90°﹣∠DAB=90°﹣(β﹣α),∴∠ABD=2α,∴∠ABD=2∠BDC;(2)∵CH⊥AB,∴∠ACE+∠CAB=∠ADC+∠BDC=90°,∵∠CAB=∠CDB,∴∠ACE=∠ADC,∵∠CAE=∠ADC,∴∠ACE=∠CAE,∴AE=CE;(3)如图2,连接OC,∴∠COB=2∠CAB,∵∠ABD=2∠BDC,∠BDC=∠CAB,∴∠COB=∠ABD,∵∠OHC =∠ADB =90°,∴△OCH ∽△ABD ,∴12OH OC BD AB ==, ∵OH =5,∴BD =10,∴AB =22AD BD +=26,∴AO =13,∴AH =18, ∵△AHE ∽△ADB ,∴AH AE AD AB =,即1824=26AE ,∴AE =392,∴DE =92.【点睛】本题考查了垂径定理,相似三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.4.如图,已知AB 是⊙O 的直径,点C ,D 在⊙O 上,BC=6cm,AC=8cm,∠BAD=45°.点E 在⊙O 外,做直线AE ,且∠EAC=∠D .(1)求证:直线AE 是⊙O 的切线.(2)求图中阴影部分的面积.【答案】(1)见解析;(2)25-504π. 【解析】 分析:(1)根据圆周角定理及推论证得∠BAE=90°,即可得到AE 是⊙O 的切线; (2)连接OD ,用扇形ODA 的面积减去△AOD 的面积即可.详解:证明:(1) ∵AB 是⊙O 的直径,∴∠ACB=90°,即∠BAC+∠ABC=90°,∵∠EAC=∠ADC ,∠ADC=∠ABC ,∴∠EAC=∠ABC∴∠BAC+∠EAC =90°,即∠BAE= 90°∴直线AE 是⊙O 的切线;(2)连接OD∵ BC=6 AC=8∴ 226810AB =+=∴ OA = 5又∵ OD = OA∴∠ADO =∠BAD = 45°∴∠AOD = 90°∴AOD ODA S S S ∆-阴影扇形==90155553602π⨯⨯-⨯⨯ 25504π-= (2cm )点睛:此题主要考查了圆周角定理和圆的切线的判定与性质,关键是利用圆周角定理和切线的判定与性质,结合勾股定理的和弓形的面积的求法求解,注意数形结合思想的应用.5.如图,△ABC 内接于⊙O ,弦AD ⊥BC 垂足为H ,∠ABC =2∠CAD .(1)如图1,求证:AB =BC ;(2)如图2,过点B 作BM ⊥CD 垂足为M ,BM 交⊙O 于E,连接AE 、HM ,求证:AE ∥HM; (3)如图3,在(2)的条件下,连接BD 交AE 于N ,AE 与BC 交于点F ,若NH =25,AD =11,求线段AB 的长.【答案】(1)证明见解析;(2)证明见解析;(3)AB 的长为10.【解析】分析:(1)根据题意,设∠CAD=a ,然后根据直角三角形的两锐角互余的关系,推导出∠BAC=∠ACB ,再根据等角对等边得证结论;(2)延长AD 、BM 交于点N ,连接ED.根据圆周角定理得出∠N=∠DEN=∠BAN ,进而根据等角对等边,得到DE=DN,BA=BN,再根据等腰三角形和直角三角形的性质,求得MH∥AE;(3)连接CE,根据(2)的结论,由三角形全等的判定与性质证得HF=HC,然后结合勾股定理求出AC2-AH2=CD2-DH2,解得CD=5,CH=4,AH=8,最后根据锐角三角函数的性质得到AB.详解:(1)证明:设∠CAD=a,则∠ABC=2a,∠C=90°-a,∠BAD=90°-2a,∴∠BAC=90°-2a+a=90°-a∴∠BAC=∠ACB.∴AB=BC(2)证明:延长AD、BM交于点N,连接ED.∵∠DEN=∠DAB,∠N=∠BCD,∠BCD=∠BAN∴∠N=∠DEN=∠BAN∴DE=DN,BA=BN又∵BH⊥AN,DM⊥EN∴EM=NM,HN=HA,∴MH∥AE(3)连接CE.∠BDA=∠BCA,∠BDM=∠BAC,由(1)知∠BCA=∠BAC∴∠BDA=∠BDM,∴△BDM≌△BDH,∴DH=MH,∠MBD=∠HBD,∴BD⊥MH又∵MH∥AE,∴BD⊥EF,∴△FNB≌△ENB,同理可证△AFH≌△ACH,∴HF=HC,又∵FN=NE∴NH∥EC,EC=2NH,又∵NH=25∴EC=45∠EAC=2∠AEC=2a=∠ABC,可证弧AC=弧EC,∴AC=EC=5设HD=x,AH=11-x,∵∠ADC=2∠CAD,翻折△CHD 至△CHG,可证CG=CD=AGAH=CD+DH,CD=AH-DH=11-x-x=11-2x又∵AC 2-AH 2=CD 2-DH 2,∴(45)2-(11-x)2=(11-2x)2-x 2∴x 1=3,x 2=272(舍去)∴CD=5,CH=4,AH=8. 又∵tan2AH CH a BH DH==,∴BH=6 ∴AB=22226810BM AH +=+= 点睛:此题主要考查了圆的综合,结合圆周角定理,勾股定理,全等三角形的判定与性质,解直角三角形的性质,综合性比较强,灵活添加辅助线,构造方程求解是解题关键.6.如图,已知平行四边形OABC 的三个顶点A 、B 、C 在以O 为圆心的半圆上,过点C 作CD ⊥AB ,分别交AB 、AO 的延长线于点D 、E ,AE 交半圆O 于点F ,连接CF .(1)判断直线DE 与半圆O 的位置关系,并说明理由;(2)若半圆O 的半径为6,求¶AC 的长.【答案】(1)直线CE 与半圆O 相切(2)4π【解析】试题分析:(1)结论:DE 是⊙O 的切线.首先证明△ABO ,△BCO 都是等边三角形,再证明四边形BDCG 是矩形,即可解决问题;(2)只要证明△OCF 是等边三角形即可解决问题,求AC 即可解决问题.试题解析:(1)直线CE 与半圆O 相切,理由如下:∵四边形OABC 是平行四边形,∴AB ∥OC.∵∠D=90°,∴∠OCE=∠D=90°,即OC ⊥DE ,∴直线CE 与半圆O 相切.(2)由(1)可知:∠COF=60°,OC=OF ,∴△OCF 是等边三角形,∴∠AOC=120°∴¶AC 的长为1206180π⨯⨯=4π.7.已知:AB 是⊙0直径,C 是⊙0外一点,连接BC 交⊙0于点D ,BD=CD,连接AD 、AC .(1)如图1,求证:∠BAD=∠CAD(2)如图2,过点C 作CF ⊥AB 于点F,交⊙0于点E,延长CF 交⊙0于点G.过点作EH ⊥AG 于点H ,交AB 于点K,求证AK=2OF ;(3)如图3,在(2)的条件下,EH 交AD 于点L,若0K=1,AC=CG,求线段AL 的长.图1 图2 图3【答案】(1)见解析(2)见解析(3)12105 【解析】试题分析:(1)由直径所对的圆周角等于90°,得到∠ADB =90°,再证明△ABD ≌△ACD 即可得到结论;(2)连接BE .由同弧所对的圆周角相等,得到∠GAB =∠BEG .再证△KFE ≌△BFE ,得到BF =KF =BK .由OF =OB -BF ,AK =AB -BK ,即可得到结论. (3)连接CO 并延长交AG 于点M ,连接BG .设∠GAB =α.先证CM 垂直平分AG ,得到AM =GM ,∠AGC +∠GCM =90°.再证∠GAF =∠GCM =α.通过证明△AGB ≌△CMG ,得到BG =GM =12AG .再证明∠BGC =∠MCG =α.设BF =KF =a , 可得GF =2a ,AF =4a . 由OK =1,得到OF =a +1,AK =2(a +1),AF = 3a +2,得到3a +2=4a ,解出a 的值,得到AF ,AB ,GF ,FC 的值.由tanα=tan ∠HAK =12HK AH =, AK =6,可以求出 AH 的长.再由1tan tan 3BAD BCF ∠=∠= ,利用公式tan ∠GAD =tan tan 1tan tan GAF BAD GAF BAD∠+∠-∠⋅∠,得到∠GAD =45°,则AL =2AH ,即可得到结论.试题解析:解:(1)∵AB 为⊙O 的直径,∴∠ADB =90°,∴∠ADC =90°.∵BD =CD ,∠BDA =∠CDA ,AD =AD ,∴△ABD ≌△ACD ,∴∠BAD =∠CAD .(2)连接BE .∵BG =BG ,∴∠GAB =∠BEG .∵CF ⊥AB ,∴∠KFE =90°.∵EH ⊥AG ,∴∠AHE =∠KFE =90°,∠AKH =∠EKF ,∴∠HAK =∠KEF =∠BEF .∵FE =FE ,∠KFE =∠BFE =90°,∴△KFE ≌△BFE ,∴BF =KF =BK .∵ OF =OB -BF ,AK =AB -BK ,∴AK =2OF .(3)连接CO 并延长交AG 于点M ,连接BG .设∠GAB =α.∵AC =CG , ∴点C 在AG 的垂直平分线上.∵ OA =OG ,∴点O 在AG 的垂直平分线上, ∴CM 垂直平分AG ,∴AM =GM ,∠AGC +∠GCM =90°.∵AF ⊥CG ,∴∠AGC +∠GAF =90°,∴∠GAF =∠GCM =α.∵AB 为⊙O 的直径,∴∠AGB = 90°,∴∠AGB =∠CMG =90°.∵AB =AC =CG ,∴△AGB ≌△CMG ,∴BG =GM=12AG . 在Rt △AGB 中, 1tan tan 2GB GAB AG α∠=== . ∵∠AMC =∠AGB = 90°,∴BG ∥CM , ∴∠BGC =∠MCG =α.设BF =KF =a , 1tan tan 2BF BGF GF α∠===,∴GF =2a ,1tan tan 2GF GAF AF α∠=== ,AF =4a .∵OK =1,∴OF =a +1,AK =2OF =2(a +1),∴AF =AK +KF =a +2(a +1)=3a +2,∴3a +2=4a ,∴a =2, AK =6,∴AF =4a =8,AB =AC =CG =10,GF =2a =4,FC =CG -GF =6. ∵tanα=tan ∠HAK =12HK AH =,设KH =m ,则AH =2m ,∴AK 22(2)m m +=6,解得:m 65,∴AH =2m 125.在Rt △BFC 中,1tan 3BF BCF FC ∠== .∵∠BAD +∠ABD =90°, ∠FBC +∠BCF =90°,∴∠BCF =∠BAD ,1tan tan 3BAD BCF ∠=∠= ,∴tan ∠GAD =tan tan 1tan tan GAF BAD GAF BAD ∠+∠-∠⋅∠=1123111123+=-⨯,∴∠GAD=45°,∴HL=AH,AL=2AH= 1210.58.如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.【答案】(1) B(,2).(2)证明见解析.【解析】试题分析:(1)在Rt△ABN中,求出AN、AB即可解决问题;(2)连接MC,NC.只要证明∠MCD=90°即可试题解析:(1)∵A的坐标为(0,6),N(0,2),∴AN=4,∵∠ABN=30°,∠ANB=90°,∴AB=2AN=8,∴由勾股定理可知:NB=,∴B(,2).(2)连接MC,NC∵AN是⊙M的直径,∴∠ACN=90°,∴∠NCB=90°,在Rt△NCB中,D为NB的中点,∴CD=NB=ND,∴∠CND=∠NCD , ∵MC=MN , ∴∠MCN=∠MNC , ∵∠MNC+∠CND=90°, ∴∠MCN+∠NCD=90°, 即MC ⊥CD .∴直线CD 是⊙M 的切线.考点:切线的判定;坐标与图形性质.9.如图,在Rt △ABC 中,90C ∠=︒,AD 平分∠BAC ,交BC 于点D ,点O 在AB 上,⊙O 经过A 、D 两点,交AC 于点E ,交AB 于点F . (1)求证:BC 是⊙O 的切线;(2)若⊙O 的半径是2cm ,E 是弧AD 的中点,求阴影部分的面积(结果保留π和根号)【答案】(1)证明见解析 (2)233π【解析】 【分析】(1)连接OD ,只要证明OD ∥AC 即可解决问题;(2)连接OE ,OE 交AD 于K .只要证明△AOE 是等边三角形即可解决问题. 【详解】 (1)连接OD .∵OA=OD,∴∠OAD=∠ODA.∵∠OAD=∠DAC,∴∠ODA=∠DAC,∴OD∥AC,∴∠ODB=∠C=90°,∴OD⊥BC,∴BC是⊙O的切线.(2)连接OE,OE交AD于K.∵¶¶AE DE=,∴OE⊥AD.∵∠OAK=∠EAK,AK=AK,∠AKO=∠AKE=90°,∴△AKO≌△AKE,∴AO=AE=OE,∴△AOE是等边三角形,∴∠AOE=60°,∴S阴=S扇形OAE﹣S△AOE26023360π⋅⋅=-⨯22233π=-.【点睛】本题考查了切线的判定、扇形的面积、等边三角形的判定和性质、平行线的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.10.如图,等边△ABC内接于⊙O,P是弧AB上任一点(点P不与A、B重合),连AP,BP,过C作CM∥BP交PA的延长线于点M,(1)求证:△PCM为等边三角形;(2)若PA=1,PB=2,求梯形PBCM的面积.【答案】(1)见解析;(2153 4【解析】【分析】(1)利用同弧所对的圆周角相等即可求得题目中的未知角,进而判定△PCM为等边三角形;(2)利用上题中得到的相等的角和等边三角形中相等的线段证得两三角形全等,进而利用△PCM为等边三角形,进而求得PH的长,利用梯形的面积公式计算梯形的面积即可.【详解】(1)证明:作PH⊥CM于H,∵△ABC是等边三角形,∴∠APC=∠ABC=60°, ∠BAC=∠BPC=60°, ∵CM ∥BP , ∴∠BPC=∠PCM=60°, ∴△PCM 为等边三角形;(2)解:∵△ABC 是等边三角形,△PCM 为等边三角形, ∴∠PCA+∠ACM=∠BCP+∠PCA , ∴∠BCP=∠ACM , 在△BCP 和△ACM 中,BC AC BCP ACM CP CM =⎧⎪∠=∠⎨⎪=⎩, ∴△BCP ≌△ACM (SAS ), ∴PB=AM ,∴CM=CP=PM=PA+AM=PA+PB=1+2=3, 在Rt △PMH 中,∠MPH=30°, ∴PH=332,∴S 梯形PBCM =12(PB+CM )×PH=12×(2+3)×332=1534.【点睛】本题考查圆周角定理、等边三角形的判定、全等三角形的性质及梯形的面积计算方法,是一道比较复杂的几何综合题.11.如图,四边形为菱形,且,以为直径作,与交于点.请仅用无刻度的直尺按下列要求画图.(保留作图痕迹)(1)在如图中,过点作边上的高. (2)在如图中,过点作的切线,与交于点.【答案】(1)如图1所示.(答案不唯一),见解析;(2)如图2所示.(答案不唯一),见解析.【解析】【分析】(1)连接AC交圆于一点F,连接PF交AB于点E,连接CE即为所求.(2)连接OF交BC于Q,连接PQ即为所求.【详解】(1)如图1所示.(答案不唯一)(2)如图2所示.(答案不唯一)【点睛】本题考查作图-复杂作图,菱形和圆的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.12.如图,AB为⊙O的直径,BC为⊙O的弦,过O点作OD⊥BC,交⊙O的切线CD于点D,交⊙O于点E,连接AC、AE,且AE与BC交于点F.(1)连接BD,求证:BD是⊙O的切线;(2)若AF:EF=2:1,求tan∠CAF的值.【答案】(1)证明见解析;(2)3 3.【解析】【分析】(1)根据全等三角形的性质得到∠OBD=∠OCD=90°,根据切线的判定定理即可得到结论; (2)根据已知条件得到AC ∥DE ,设OD 与BC 交于G ,根据平行线分线段成比例定理得到AC :EG=2:1,EG=12AC ,根据三角形的中位线的性质得到OG=12AC 于是得到AC=OE ,求得∠ABC=30°,即可得到结论. 【详解】证明:(1)∵OC=OB ,OD ⊥BC , ∴∠COD=∠BOD , 在△COD 与△BOD 中,OC OB COD BOD OD OD ===⎧⎪∠∠⎨⎪⎩, ∴△COD ≌△BOD , ∴∠OBD=∠OCD=90°, ∴BD 是⊙O 的切线;(2)解:∵AB 为⊙O 的直径,AC ⊥BC , ∵OD ⊥CB , ∴AC ∥DE , 设OD 与BC 交于G , ∵OE ∥AC ,AF :EF=2:1, ∴AC :EG=2:1,即EG=12AC , ∵OG ∥AC ,OA=OB , ∴OG=12AC , ∵OG+GE=12AC+12AC=AC , ∴AC=OE ,∴AC=12AB , ∴∠ABC=30°,∴∠CAB=60°,∵¼¼CE BE=,∴∠CAF=∠EAB=12∠CAB=30°,∴tan∠CAF=tan30°=33.【点睛】本题考查了切线的判定和性质,垂径定理,全等三角形的判定与性质,三角形的中位线的性质,三角函数的定义,正确的识别图形是解题的关键.13.如图,已知△ABC,AB=2,3BC=,∠B=45°,点D在边BC上,联结AD,以点A 为圆心,AD为半径画圆,与边AC交于点E,点F在圆A上,且AF⊥AD.(1)设BD为x,点D、F之间的距离为y,求y关于x的函数解析式,并写出定义域;(2)如果E是»DF的中点,求:BD CD的值;(3)联结CF,如果四边形ADCF是梯形,求BD的长.【答案】(1) 2442y x x=-+45; (3) BD的长是11+5.【解析】【分析】(1)过点A作AH⊥BC,垂足为点H.构造直角三角形,利用解直角三角形和勾股定理求得AD的长度.联结DF,点D、F之间的距离y即为DF的长度,在Rt△ADF中,利用锐角三角形函数的定义求得DF的长度,易得函数关系式.(2)由勾股定理求得:22AH DH+.设DF与AE相交于点Q,通过解Rt△DCQ和Rt△AHC推知12DQCQ=.故设DQ=k,CQ=2k,AQ=DQ=k,所以再次利用勾股定理推知DC的长度,结合图形求得线段BD的长度,易得答案.(3)如果四边形ADCF是梯形,则需要分类讨论:①当AF∥DC、②当AD∥FC.根据相似三角形的判定与性质,结合图形解答.【详解】(1)过点A作AH⊥BC,垂足为点H.∵∠B =45°,AB 2∴·cos 1BH AH AB B ===. ∵BD 为x ,∴1DH x =-.在Rt △ADH 中,90AHD ∠=︒,∴22222AD AH DH x x =+=-+.联结DF ,点D 、F 之间的距离y 即为DF 的长度.∵点F 在圆A 上,且AF ⊥AD ,∴AD AF =,45ADF ∠=︒. 在Rt △ADF 中,90DAF ∠=︒,∴2442cos ADDF x x ADF==-+∠∴2442y x x =-+.()03x ≤≤ ;(2)∵E 是DF 的中点,∴AE DF ⊥,AE 平分DF . ∵BC=3,∴312HC =-=.∴225AC AH HC +=.设DF 与AE 相交于点Q ,在Rt △DCQ 中,90DQC ∠=︒,tan DQDCQ CQ∠=. 在Rt △AHC 中,90AHC ∠=︒,1tan 2AH ACH HC ∠==. ∵DCQ ACH ∠=∠,∴12DQ CQ =. 设,2DQ k CQ k ==,AQ DQ k ==, ∵35k =5k =,∴2253DC DQ CQ =+=.∵43BD BC DC =-=,∴4:5BD CD =. (3)如果四边形ADCF 是梯形则①当AF ∥DC 时,45AFD FDC ∠=∠=︒.∵45ADF ∠=︒,∴AD BC ⊥,即点D 与点H 重合. ∴1BD =. ②当AD ∥FC 时,45ADF CFD ∠=∠=︒. ∵45B ∠=︒,∴B CFD ∠=∠.∵B BAD ADF FDC ∠+∠=∠+∠,∴BAD FDC ∠=∠. ∴ABD ∆∽DFC ∆.∴AB ADDF DC=. ∵2DF AD =,DC BC BD =-.∴2AD BC BD =-.即()222-23x xx +=-,整理得 210x x --=,解得 152x ±=(负数舍去). 综上所述,如果四边形ADCF 是梯形,BD 的长是1或1+5. 【点睛】此题属于圆的综合题,涉及了平行四边形的性质、相似三角形的判定与性质、三角函数值以及勾股定理等知识,综合性较强,解答本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来.14.如图,AB 是O e 的直径,DF 切O e 于点D ,BF DF ⊥于F ,过点A 作AC //BF 交BD 的延长线于点C . (1)求证:ABC C ∠∠=;(2)设CA 的延长线交O e 于E BF ,交O e 于G ,若¼DG的度数等于60o ,试简要说明点D 和点E 关于直线AB 对称的理由.【答案】(1)见解析;(2)见解析. 【解析】 【分析】(1)作辅助线,连接OD ,由DF 为⊙O 的切线,可得OD ⊥DF ,又BF ⊥DF ,AC ∥BF ,所以OD ∥AC ,∠ODB=∠C ,由OB=OD 得∠ABD=∠ODB ,从而可证∠ABC=∠C ;(2)连接OG ,OD ,AD ,由BF ∥OD ,»GD =60°,可求证»BG =»»GD AD ==60°,由平行线的性质及三角形的内角和定理可求出∠OHD=90°,由垂径定理便可得出结论. 【详解】 (1)连接OD , ∵DF 为⊙O 的切线, ∴OD ⊥DF . ∵BF ⊥DF ,AC ∥BF , ∴OD ∥AC ∥BF . ∴∠ODB=∠C . ∵OB=OD ,∴∠ABD=∠ODB.∴∠ABC=∠C.(2)连接OG,OD,AD,DE,DE交AB于H,∵BF∥OD,∴∠OBG=∠AOD,∠OGB=∠DOG,∴»»GD AD==»BG.∵»GD=60°,∴»BG=»»GD AD==60°,∴∠ABC=∠C=∠E=30°,∵OD//CE∴∠ODE=∠E=30°.在△ODH中,∠ODE=30°,∠AOD=60°,∴∠OHD=90°,∴AB⊥DE.∴点D和点E关于直线AB对称.【点睛】本题考查的是切线的性质、圆周角定理及垂径定理,解答此题的关键是作出辅助线,利用数形结合解答.15.如图,在⊙O中,直径AB垂直弦CD于E,过点A作∠DAF=∠DAB,过点D作AF的垂线,垂足为F,交AB的延长线于点P,连接CO并延长交⊙O于点G,连接EG.(1)求证:DF是⊙O的切线;(2)若AD=DP,OB=3,求»BD的长度;(3)若DE=4,AE=8,求线段EG的长.【答案】(1)证明见解析(2)π(3)213【解析】试题分析:(1)连接OD,由等腰三角形的性质得出∠DAB=∠ADO,再由已知条件得出∠ADO=∠DAF,证出OD∥AF,由已知DF⊥AF,得出DF⊥OD,即可得出结论;(2)易得∠BOD=60°,再由弧长公式求解即可;(3)连接DG,由垂径定理得出DE=CE=4,得出CD=8,由勾股定理求出DG,再由勾股定理求出EG即可.试题解析:(1)证明:连接OD,如图1所示:∵OA=OD,∴∠DAB=∠ADO,∵∠DAF=∠DAB,∴∠ADO=∠DAF,∴OD∥AF,又∵DF⊥AF,∴DF⊥OD,∴DF是⊙O的切线;(2)∵AD=DP∴∠P=∠DAF=∠DAB =x0∴∠P+∠DAF+∠DAB =3x o=90O∴x0=300∴∠BOD=60°,∴»BD的长度=(3)解:连接DG,如图2所示:∵AB⊥CD,∴DE=CE=4,∴CD=DE+CE=8,设OD=OA=x,则OE=8﹣x,在Rt△ODE中,由勾股定理得:OE2+DE2=OD2,即(8﹣x)2+42=x2,解得:x=5,∴CG=2OA=10,∵CG是⊙O的直径,∴∠CDG=90°,∴DG=2222-=-=6,108CG CD∴EG=2222+=+=213.DG DE64。
中考数学圆的综合综合题附详细答案

一、圆的综合 1.如图,⊙M 交 x 轴于 B、C 两点,交 y 轴于 A,点 M 的纵坐标为 2.B(﹣3 3 ,O), C( 3 ,O).
(1)求⊙M 的半径; (2)若 CE⊥AB 于 H,交 y 轴于 F,求证:EH=FH. (3)在(2)的条件下求 AF 的长.
【点睛】 本题考查的是垂径定理、圆周角定理、直角三角形的性质及平行四边形的判定与性质,根 据题意作出辅助线是解答此题的关键.
2.如图,⊙A 过▱OBCD 的三顶点 O、D、C,边 OB 与⊙A 相切于点 O,边 BC 与⊙O 相交于 点 H,射线 OA 交边 CD 于点 E,交⊙A 于点 F,点 P 在射线 OA 上,且∠ PCD=2∠ DOF,以 O 为原点,OP 所在的直线为 x 轴建立平面直角坐标系,点 B 的坐标为(0,﹣2). (1)若∠ BOH=30°,求点 H 的坐标; (2)求证:直线 PC 是⊙A 的切线;
AFH AEH ∵ AHF AHE ,
AH AH
∴ △ AEH≌ △ AFH(AAS), ∴ EH=FH; (3)由(1)易知,∠ BMT=∠ BAC=60°, 作直径 BG,连 CG,则∠ BGC=∠ BAC=60°, ∵ ⊙O 的半径为 4, ∴ CG=4, 连 AG, ∵ ∠ BCG=90°, ∴ CG⊥x 轴, ∴ CG∥ AF, ∵ ∠ BAG=90°, ∴ AG⊥AB, ∵ CE⊥AB, ∴ AG∥ CE, ∴ 四边形 AFCG 为平行四边形, ∴ AF=CG=4.
∴ MH= 1 OH=1,OM= 3 MH= 3 , 2
∴ 点 H 的坐标为(1,﹣ 3 ),
(2)连接 AC. ∵ OA=AD, ∴ ∠ DOF=∠ ADO ∴ ∠ DAE=2∠ DOF ∵ ∠ PCD=2∠ DOF, ∴ ∠ PCD=∠ DAE ∵ OB 与⊙O 相切于点 A ∴ OB⊥OF ∵ OB∥ CD ∴ CD⊥AF ∴ ∠ DAE=∠ CAE ∴ ∠ PCD=∠ CAE ∴ ∠ PCA=∠ PCD+∠ ACE=∠ CAE+∠ ACE=90°
中考数学圆的综合综合题含详细答案

中考数学圆的综合综合题含详细答案一、圆的综合1.如图,四边形OABC 是平行四边形,以O 为圆心,OA 为半径的圆交AB 于D ,延长AO 交O 于E ,连接CD ,CE ,若CE 是⊙O 的切线,解答下列问题:(1)求证:CD 是⊙O 的切线;(2)若BC=4,CD=6,求平行四边形OABC 的面积.【答案】(1)证明见解析(2)24【解析】试题分析:(1)连接OD ,求出∠EOC=∠DOC ,根据SAS 推出△EOC ≌△DOC ,推出∠ODC=∠OEC=90°,根据切线的判定推出即可;(2)根据切线长定理求出CE=CD=4,根据平行四边形性质求出OA=OD=4,根据平行四边形的面积公式=2△COD 的面积即可求解.试题解析:(1)证明:连接OD ,∵OD=OA ,∴∠ODA=∠A ,∵四边形OABC 是平行四边形,∴OC ∥AB ,∴∠EOC=∠A ,∠COD=∠ODA ,∴∠EOC=∠DOC ,在△EOC 和△DOC 中,OE OD EOC DOC OC OC =⎧⎪∠=∠⎨⎪=⎩∴△EOC ≌△DOC (SAS ),∴∠ODC=∠OEC=90°,即OD ⊥DC ,∴CD 是⊙O 的切线;(2)由(1)知CD 是圆O 的切线,∴△CDO 为直角三角形,∵S △CDO =12CD•OD , 又∵OA=BC=OD=4,∴S△CDO=12×6×4=12,∴平行四边形OABC的面积S=2S△CDO=24.2.如图,点P在⊙O的直径AB的延长线上,PC为⊙O的切线,点C为切点,连接AC,过点A作PC的垂线,点D为垂足,AD交⊙O于点E.(1)如图1,求证:∠DAC=∠PAC;(2)如图2,点F(与点C位于直径AB两侧)在⊙O上,»»BF FA=,连接EF,过点F作AD 的平行线交PC于点G,求证:FG=DE+DG;(3)在(2)的条件下,如图3,若AE=23DG,PO=5,求EF的长.【答案】(1)证明见解析;(2)证明见解析;(3)2.【解析】【分析】(1)连接OC,求出OC∥AD,求出OC⊥PC,根据切线的判定推出即可;(2)连接BE交GF于H,连接OH,求出四边形HGDE是矩形,求出DE=HG,FH=EH,即可得出答案;(3)设OC交HE于M,连接OE、OF,求出∠FHO=∠EHO=45°,根据矩形的性质得出EH∥DG,求出OM=12AE,设OM=a,则HM=a,AE=2a,AE=23DG,DG=3a,求出ME=CD=2a,BM=2a,解直角三角形得出tan∠MBO=12MOBM=,tanP=12COPO=,设OC=k,则PC=2k,根据5求出5a,即可求出答案.【详解】(1)证明:连接OC,∵PC为⊙O的切线,∴OC⊥PC,∵AD⊥PC,∴OC∥AD,∴∠OCA=∠DAC,∵OC=OA,∴∠PAC=∠OCA,∴∠DAC=∠PAC;(2)证明:连接BE交GF于H,连接OH,∵FG∥AD,∴∠FGD+∠D=180°,∵∠D=90°,∴∠FGD=90°,∵AB为⊙O的直径,∴∠BEA=90°,∴∠BED=90°,∴∠D=∠HGD=∠BED=90°,∴四边形HGDE是矩形,∴DE=GH,DG=HE,∠GHE=90°,∵»»BF AF=,∴∠HEF=∠FEA=12∠BEA=1902o⨯=45°,∴∠HFE=90°﹣∠HEF=45°,∴∠HEF=∠HFE,∴FH=EH,∴FG=FH+GH=DE+DG;(3)解:设OC交HE于M,连接OE、OF,∵EH=HF,OE=OF,HO=HO,∴△FHO≌△EHO,∴∠FHO=∠EHO=45°,∵四边形GHED是矩形,∴EH∥DG,∴∠OMH=∠OCP=90°,∴∠HOM=90°﹣∠OHM=90°﹣45°=45°,∴∠HOM=∠OHM,∴HM=MO,∵OM⊥BE,∴BM=ME,∴OM=12 AE,设OM=a,则HM=a,AE=2a,AE=23DG,DG=3a,∵∠HGC=∠GCM=∠GHE=90°,∴四边形GHMC是矩形,∴GC=HM=a,DC=DG﹣GC=2a,∵DG=HE,GC=HM,∴ME=CD=2a,BM=2a,在Rt△BOM中,tan∠MBO=122 MO aBM a==,∵EH∥DP,∴∠P=∠MBO,tanP=12 COPO=,设OC=k,则PC=2k,在Rt△POC中,5,解得:55在Rt△OME中,OM2+ME2=OE2,5a2=5,a=1,∴HE=3a=3,在Rt△HFE中,∠HEF=45°,∴22.【点睛】考查了切线的性质,矩形的性质和判定,解直角三角形,勾股定理等知识点,能综合运用性质进行推理是解此题的关键.3.如图,点A、B、C分别是⊙O上的点, CD是⊙O的直径,P是CD延长线上的一点,AP=AC.(1)若∠B=60°,求证:AP是⊙O的切线;(2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE·AB的值.【答案】(1)证明见解析;(2)8.【解析】(1)求出∠ADC的度数,求出∠P、∠ACO、∠OAC度数,求出∠OAP=90°,根据切线判定推出即可;(2)求出BD长,求出△DBE和△ABD相似,得出比例式,代入即可求出答案.试题解析:连接AD,OA,∵∠ADC=∠B,∠B=60°,∴∠ADC=60°,∵CD是直径,∴∠DAC=90°,∴∠ACO=180°-90°-60°=30°,∵AP=AC,OA=OC,∴∠OAC=∠ACD=30°,∠P=∠ACD=30°,∴∠OAP=180°-30°-30°-30°=90°,即OA⊥AP,∵OA为半径,∴AP是⊙O切线.(2)连接AD,BD,∵CD是直径,∴∠DBC=90°,∵CD=4,B为弧CD中点,∴BD=BC=,∴∠BDC=∠BCD=45°,∴∠DAB=∠DCB=45°,即∠BDE=∠DAB,∵∠DBE=∠DBA,∴△DBE∽△ABD,∴,∴BE•AB=BD•BD=.考点:1.切线的判定;2.相似三角形的判定与性质.4.如图,在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.(1)求证:PA是⊙O的切线;(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AG•AB=12,求AC的长.【答案】(1)证明见解析(2)3【解析】试题分析:(1)根据圆周角定理得出∠ACD=90°以及利用∠PAC=∠PBA得出∠CAD+∠PAC=90°进而得出答案;(2)首先得出△CAG∽△BAC,进而得出AC2=AG·AB,求出AC即可.试题解析:(1)连接CD,如图,∵AD是⊙O的直径,∴∠ACD=90°,∴∠CAD+∠D=90°,∵∠PAC=∠PBA,∠D=∠PBA,∴∠CAD+∠PAC=90°,即∠PAD=90°,∴PA⊥AD,∴PA是⊙O的切线;(2)∵CF⊥AD,∴∠ACF+∠CAF=90°,∠CAD+∠D=90°,∴∠ACF=∠D,∴∠ACF=∠B,而∠CAG=∠BAC,∴△ACG∽△ABC,∴AC:AB=AG:AC,∴AC2=AG•AB=12,∴AC=23.5.如图,AB是⊙O的直径,点C,D是半圆O的三等分点,过点C作⊙O的切线交AD的延长线于点E,过点D作DF⊥AB于点F,交⊙O于点H,连接DC,AC.(1)求证:∠AEC=90°;(2)试判断以点A,O,C,D为顶点的四边形的形状,并说明理由;(3)若DC=2,求DH的长.【答案】(1)证明见解析;(2)四边形AOCD为菱形;(3)DH=2.【解析】试题分析:(1)连接OC,根据EC与⊙O切点C,则∠OCE=90°,由题意得,∠DAC=∠CAB,即可证明AE∥OC,则∠AEC+∠OCE=180°,从而得出∠AEC=90°;(2)四边形AOCD为菱形.由(1)得,则∠DCA=∠CAB可证明四边形AOCD是平行四边形,再由OA=OC,即可证明平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);(3)连接OD.根据四边形AOCD为菱形,得△OAD是等边三角形,则∠AOD=60°,再由DH⊥AB于点F,AB为直径,在Rt△OFD中,根据sin∠AOD=,求得DH的长.试题解析:(1)连接OC,∵EC与⊙O切点C,∴OC⊥EC,∴∠OCE=90°,∵点CD是半圆O的三等分点,∴,∴∠DAC=∠CAB,∵OA=OC,∴∠CAB=∠OCA,∴∠DAC=∠OCA,∴AE∥OC(内错角相等,两直线平行)∴∠AEC+∠OCE=180°,∴∠AEC=90°;(2)四边形AOCD为菱形.理由是:∵,∴∠DCA=∠CAB,∴CD∥OA,又∵AE∥OC,∴四边形AOCD是平行四边形,∵OA=OC,∴平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);(3)连接OD.∵四边形AOCD为菱形,∴OA=AD=DC=2,∵OA=OD,∴OA=OD=AD=2,∴△OAD是等边三角形,∴∠AOD=60°,∵DH⊥AB于点F,AB为直径,∴DH=2DF,在Rt△OFD中,sin∠AOD=,∴DF=ODsin∠AOD=2sin60°=,∴DH=2DF=2.考点:1.切线的性质2.等边三角形的判定与性质3.菱形的判定与性质4.解直角三角形.6.函数是描述客观世界运动变化的重要模型,理解函数的本质是重要的任务。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学专项复习《圆的综合题》练习题(附答案)一、单选题1.连接圆上的任意两点的线段叫做圆的().A.半径B.直径C.弦D.弧2.如图为△ABC和一圆的重叠情形,此圆与直线BC相切于C点,且与AC交于另一点D.若∠A=70∘,∠B=60°,则CD̂的度数为何()A.50∘B.60∘C.100∘D.120∘3.挂钟分针的长10cm,经过20分钟,它的针尖转过的路程是() A.20π3cm B.10πcm C.20πcm D.5πcm 4.已知,AB是∠O的直径,且C是圆上一点,小聪透过平举的放大镜从正上方看到水平桌面上的三角形图案的∠B(如图所示),那么下列关于∠A与放大镜中的∠B关系描述正确的是()A.∠A+∠B=900B.∠A=∠BC.∠A+∠B>900D.∠A+∠B的值无法确定5.已知圆内接正三角形的边心距为1,则这个三角形的面积为()A.2√3B.3√3C.4√3D.6√3 6.若一圆锥的底面圆的周长是4πcm,母线长是6cm,则该圆锥的侧面展开图的圆心角的度数是()A.40°B.80°C.120°D.150°7.如图,AB是∠O的直径,∠CDB=40°,则∠ABC=()A.40°B.50°C.60°D.80°8.如图,在平面直角坐标系中已知B(2,0),四边形ABCD和AEFG都是正方形,点A、D、E共线,点G、A、B在x轴上,点C,E,F在以O为圆心OC为半径的圆⌢的长为().上,则FCA.√5πB.√5πC.5π2D.5π29.如图所示,矩形纸片ABCD中AB=4cm,把它分割成正方形纸片ABFE和矩形纸片EFCD后,分别裁出扇形ABF和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则底面圆的直径的长为()A.2cm B.3cm C.4cm D.5cm 10.如图,半径为5的⊙O中有两条互相垂直的弦AB、CD,垂足为点E,且AB=CD=8,则OE的长为()A.3B.√3C.2 √3D.3 √2 11.已知在∠ABC中AB=AC=13,BC=10,那么∠ABC的内切圆的半径为()A.103B.125C.2D.3 12.如图,AB为∠O直径,∠BCD=30°,则∠ABD为()A.30°B.40°C.50°D.60°二、填空题13.在∠O中已知半径为5,弦AB的长为8,那么圆心O到AB的距离为. 14.如图,AB是∠O的直径,AC是∠O的切线,OC交∠O于点D,若∠C=40°,⌢的长为.(结果保留π)OA=9,则BD15.如果圆O的半径为3,圆P的半径为2,且OP=5,那么圆O和圆P的位置关系是.16.如图,由边长为1的小正方形构成的网格中点A,B,C都在格点上,以AB为直径的圆经过点C,D,则tan∠ADC的值为.17.小红要过生日了,为了筹备生日聚会,准备自己动手用纸板制作一个底面半径为9cm,母线长为30cm的圆锥形生日礼帽,则这个圆锥形礼帽的侧面积为cm2.(结果保留π)18.将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、B的读数分别为86°、30°,则∠ACB =.三、综合题19.如图,扇形OAB的半径OA=3,圆心角∠AOB=90°,点C是AB⌢上异于A、B 的动点,过点C作CD∠OA于点D,作CE∠OB于点E,连接DE,点G、H在线段DE上,且DG=GH=HE.(1)求证:四边形OGCH是平行四边形;⌢上运动时在CD、CG、DG中是否存在长度不变的线段?若存(2)当点C在AB在,请求出该线段的长度;(3)若CD=x,直接写出CD2+3CH2的结果.20.如图,∠ABC为等腰三角形,O是底边BC的中点,腰AB与∠O相切于点D,OB与∠O相交于点E.(1)求证:AC是∠O的切线;(2)若BD= √3,BE=1.求阴影部分的面积.21.在数学活动课中同学们准备了一些等腰直角三角形纸片,从每张纸片中剪出一个扇形制作圆锥玩具模型.如图,已知∠ABC是腰长为4的等腰直角三角形.(1)在等腰直角三角形ABC纸片中以C为圆心,剪出一个面积最大的扇形(要求:尺规作图,保留作图痕迹,不写作法);(2)请求出所制作圆锥底面的半径长.22.如图,是一个地下排水管的横截面图,已知∠O的半径OA等于50cm,水的深度等于25cm(水的深度指AB⌢的中点到弦AB的距离).求:(1)水面的宽度AB.(2)横截面浸没在水中的AB⌢的长(结果保留π).23.如图,AB是∠O的直径,CD与∠O相切于点C,与AB的延长线交于D.(1)求证:∠ADC∠∠CDB;(2)若AC=2,AB= 32CD,求∠O半径.24.如图1,BC是∠O的直径,点A在∠O上,AD∠BC,垂足为D,AE⌢=AB⌢BE 分别交AD、AC于点F、G.(1)判断∠FAG的形状,并说明理由;(2)如图2,若点E和点A在BC的两侧,BE、AC的延长线交于点G,AD的延长线交BE于点F,其余条件不变,(1)中的结论还成立吗?请说明理由;(3)在(2)的条件下,若BG=26,BD﹣DF=7,求AB的长.参考答案1.【答案】D 2.【答案】C 3.【答案】A 4.【答案】A 5.【答案】B 6.【答案】C 7.【答案】B 8.【答案】A 9.【答案】A 10.【答案】D 11.【答案】A 12.【答案】D 13.【答案】3 14.【答案】132π15.【答案】外切 16.【答案】2317.【答案】270π 18.【答案】28°19.【答案】(1)证明:连接OC 交DE 于M .由矩形得OM =CM ,EM =DM . ∵DG =HE .∴EM ﹣EH =DM ﹣DG . ∴HM =GM .∴四边形OGCH 是平行四边形 (2)解:DG 不变.在矩形ODCE 中∵DE =OC =3. ∴DG =1(3)证明:设CD =x ,则CE = √9−x 2 .过C 作CN∠DE 于N . 由DE•CN =CD•EC 得CN = x √9−x 23 .∴√x 2−(x √9−x 23)2= x 23 .∴HN =3﹣1﹣ x 23 = 6−x 23.∴3CH 2=3[( 6−x 23 )2+( x √9−x 23 )2]=12﹣x 2. ∴CD 2+3CH 2=x 2+12﹣x 2=12.20.【答案】(1)证明:连接OD ,作OF∠AC 于F ,如图,∵∠ABC 为等腰三角形,O 是底边BC 的中点 ∴AO∠BC ,AO 平分∠BAC ∵AB 与∠O 相切于点D ,∴OD∠AB 而OF∠AC ∴OF=OD∴AC 是∠O 的切线(2)解:在Rt∠BOD 中设∠O 的半径为r ,则OD=OE=r ,∴r 2+( √3 )2=(r+1)2,解得r=1,∴OD=1,OB=2,∴∠B=30°,∠BOD=60°,∴∠AOD=30°,在Rt∠AOD 中AD= √33 OD= √33∴阴影部分的面积=2S∠AOD ﹣S 扇形DOF=2× 12 ×1× √33 ﹣ 60⋅π⋅12360= √33 ﹣ π621.【答案】(1)解:如图所示:扇形CEF 为所求作的图形;(2)解:∵∠ABC是等腰直角三角形,且AC=BC=4∴AB= 4√2由(1)可知CD平分∠ACB∴CD∠AB∴CD= 2√2设圆锥底面的半径长为r,依题意得:2πr= 90π×2√2180∴r= √22答:所制作圆锥底面的半径长为√2222.【答案】(1)解:过O作OH∠AB于H,并延长交∠O于D∴∠OHA=90°,AH=12AB∵水的深度等于25cm,即HD=25cm又∵OA=OD=50cm∴OH=OD-HD=25cm∴AH=√OA2−OH2=√502−252=25√3cm ∴AB=50 √3cm;(2)解:连接OB∵OA =50cm ,OH =25cm∴OH = 12OA∵∠OHA =90° ∴∠OAH =30° ∴∠AOH =60° ∵OA =OB ,OH∠AB ∴∠BOH =∠AOH =60° ∴∠AOB =120°∴AB⌢ 的长是: 120π×50180=100π3 cm . 23.【答案】(1)证明:如图,连接CO∵CD 与∠O 相切于点C ∴∠OCD=90° ∵AB 是圆O 的直径 ∴∠ACB=90° ∴∠ACO=∠BCD ∵∠ACO=∠CAD ∴∠CAD=∠BCD 在∠ADC 和∠CDB 中{∠CAD =∠BCD ∠ADC =∠CDB∴∠ADC∠∠CDB . (2)解:设CD 为x则AB= 32 x ,OC=OB= 34 x∵∠OCD=90°∴OD= √OC 2+CD 2 = √(34x)2+x 2 = 54 x∴BD=OD ﹣OB= 54x ﹣ 34 x= 12 x由(1)知,∠ADC∠∠CDB∴AC CB = CD BD即 2CB =x 12x解得CB=1∴AB= √AC 2+BC 2 = √5∴∠O 半径是 √5224.【答案】(1)解:结论:∠FAG 是等腰三角形;理由:如图1∵BC 为直径∴∠BAD +∠CAD =90° ∴∠BAD =∠C ∵AE⌢=AB ⌢ ∴∠ABE =∠C ∴∠ABE =∠BAD ∴AF =BF∵∠BAD +∠CAD =90° ∴∠DAC =∠AGB ∴FA =FG∴△FAG 是等腰三角形; (2)解:(1)中的结论成立; ∵BC 为直径∴∠BAD +∠CAD =90°∴∠BAD=∠C∵AE⌢=AB⌢∴∠ABE=∠C∴∠ABE=∠BAD∴AF=BF∵∠BAD+∠CAD=90°∴∠DAC=∠AGB∴FA=FG∴△FAG是等腰三角形;(3)解:由(2)得:AF=BF=FG∵BG=26∴FB=13∴{BD−DF=7BD2+DF2=169解得:BD=12∴AD=AF−DF=13−5=8∴AB=√AD2+BD2=√82+122=4√13.第11页共11。