专题05 圆的标准方程与一般方程(重难点突破)原卷版
高三数学圆的标准方程与一般方程试题答案及解析
高三数学圆的标准方程与一般方程试题答案及解析1.以点为圆心且与直线相切的圆的方程是()A.B.C.D.【答案】C【解析】由已知,,故选.【考点】1.圆的方程;2.直线与圆的位置关系;3.点到直线的距离.2.某圆的圆心在直线上,并且在两坐标轴上截得的弦长分别为4和8,则该圆的方程为()A.B.C.或D.或【答案】C【解析】由已知分析可设圆心为,半径为,则有或,解得,故选C.【考点】圆的标准方程以及弦长的基本知识.3.设点,若在圆上存在点N,使得,则的取值范围是( ) A.B.C.D.【答案】A【解析】过M作⊙O切线交⊙O于R,根据圆的切线性质,有∠OMR≥∠OMN=30°.反过来,如果∠OMR≥30°,则⊙O上存在一点N使得∠OMN=30°.∴若圆O上存在点N,使∠OMN=30°,则∠OMR≥30°.∵|OR|=1,∴|OM|>2时不成立,∴|OM|≤2,即=≤4,解得,≤≤,故选A. 考点:直线与圆的位置关系4.若圆C:关于直线对称,则由点向圆所作的切线长的最小值是()A.2B.4C.3D.6【答案】B【解析】由题知圆C的圆心C(-1,2),半径为,因为圆C关于直线对称,所以圆心C在直线上,所以,即,所以由点向圆所作的切线长为===,当时,切线长最小,最小值为4,故选B.【考点】圆的标准方程,圆的切线问题,二次函数最值5.已知M(-2,0),N(2,0),则以MN为斜边的直角三角形的直角顶点P的轨迹方程为() A.x2+y2=2B.x2+y2=4C.x2+y2=2(x≠±2)D.x2+y2=4(x≠±2)【答案】D【解析】MN的中点为原点O,易知|OP|=|MN|=2,∴P的轨迹是以原点O为圆心,以r=2为半径的圆,除去与x轴的两个交点.6.已知圆C:x2+y2+mx-4=0上存在两点关于直线x-y+3=0对称,则实数m的值为() A.8B.-4C.6D.无法确定【答案】C【解析】圆上存在关于直线x-y+3=0对称的两点,则x-y+3=0过圆心(-,0),即-+3=0,∴m=6.7.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是()A.(x-2)2+(y-1)2=1B.(x-2)2+(y-3)2=1C.(x-3)2+(y-2)2=1D.(x-3)2+(y-1)2=1【答案】A【解析】设圆心坐标为(a,b),由题意知a>0,且b=1.又∵圆和直线4x-3y=0相切,∴=1,即|4a-3|=5,∵a>0,∴a=2.所以圆的方程为(x-2)2+(y-1)2=1.8.已知圆C的圆心在曲线y=上,圆C过坐标原点O,且与x轴、y轴交于A、B两点,则△OAB的面积是()A.2 B.3 C.4 D.8【答案】C【解析】设圆心C的坐标是(t,).∵圆C过坐标原点,∴|OC|2=t2+,设圆C的方程是(x-t)2+(y-)2=t2+.令x=0,得y1=0,y2=,故B点的坐标为(0,).令y=0,得x1=0,x2=2t,故A点的坐标为(2t,0),∴S△OAB=|OA|·|OB|=×||×|2t|=4,即△OAB的面积为4.故选C.9.若圆的半径为1,其圆心与点关于直线对称,则圆的标准方程为_______.【答案】【解析】因为圆心与点关于直线对称,所以圆心坐标为,所以圆的标准方程为:,故答案为【考点】圆的标准方程.10.已知直线与圆心为的圆相交于两点,且,则实数的值为_________.【答案】0或6【解析】圆的标准方程为:所以圆的圆心在,半径又直线与圆交于两点,且所以圆心到直线的距离所以,,整理得:解得:或所以答案应填:0或6.【考点】1、圆的标准方程;2、直线与圆的位置关系;3、点到直线的距离公式.11.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是()A.(x-2)2+(y-1)2=1B.(x-2)2+(y+1)2=1C.(x+2)2+(y-1)2=1D.(x-3)2+(y-1)2=1【答案】A【解析】设圆心为,半径为,则=1,解得,所以,解得,故圆心坐标为(2,1),所以该圆的标准方程是(x-2)2+(y-1)2=1,选A.12.若圆x2+y2-2kx+2y+2=0(k>0)与两坐标轴无公共点,那么实数k的取值范围为( ) A.-1<k<1B.1<k<C.1<k<2D.<k<2【答案】B【解析】圆的方程为(x-k)2+(y+1)2=k2-1,圆心坐标为(k,-1),半径r=,若圆与两坐标无公共点,即,解得1<k<.故选B.13.若圆的半径为1,圆心在第一象限,且与直线和轴相切,则该圆的标准方程是________.【答案】【解析】由于圆的半径为1且与轴相切,所以可以假设圆心.又圆与直线相切.所以可得.解得,由圆心在第一象限.所以.所以圆的方程为.【考点】1.直线与圆的位置关系.2.直线与圆相切的判定.3.圆的标准方程.14.方程x2+y2-6x=0表示的圆的圆心坐标是________;半径是__________.【答案】(3,0),3【解析】(x-3)2+y2=9,圆心坐标为(3,0),半径为3.15.方程x2+y2+4mx-2y+5m=0表示圆的充要条件是________.【答案】m<或m>1.【解析】由(4m)2+4-4×5m>0得m<或m>1.16.圆心在y轴上,半径为1,且过点(1,2)的圆的方程为______________.【答案】x2+(y-2)2=1【解析】设圆的方程为x2+(y-b)2=1,此圆过点(1,2),所以12+(2-b)2=1,解得b=2.故所求圆的方程为x2+(y-2)2=1.17.如图,已知直角坐标平面上点Q(2,0)和圆C:x2+y2=1,动点M到圆C的切线长与|MQ|的比等于.求动点M的轨迹方程,并说明它表示什么.【答案】(x-4)2+y2=7.它表示圆,【解析】设直线MN切圆于N,则动点M组成的集合是P={M||MN|=|MQ|}.因为圆的半径|ON|=1,所以|MN|2=|MO|2-1.设点M的坐标为(x,y),则,整理得(x-4)2+y2=7.它表示圆,该圆圆心的坐标为(4,0),半径为.18. P(x,y)在圆C:(x-1)2+(y-1)2=1上移动,试求x2+y2的最小值.【答案】3-2【解析】由C(1,1)得OC=,则OPmin =-1,即()min=-1.所以x2+y2的最小值为(-1)2=3-2.19.已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与直线x+y+3=0相切,则圆C的方程为()A.(x+1)2+y2=2B.(x-1)2+y2=2C.(x+1)2+y2=4D.(x-1)2+y2=4【答案】A【解析】直线x-y+1=0,令y=0得x=-1,所以直线x-y+1=0与x轴的交点为(-1,0),因为直线x+y+3=0与圆相切,所以圆心到直线的距离等于半径,即r==,所以圆C的方程为(x+1)2+y2=2.20.求圆心在抛物线x2=4y上,且与直线x+2y+1=0相切的面积最小的圆的方程.【答案】(x+1)2+=【解析】设圆心坐标为,半径为r.根据已知得r== (t2+2t+2)= [(t+1)2+1]≥,当t=-1时取等号,此时r最小为,圆心坐标为(-1,),故所求的圆的方程是(x+1)2+=.21.已知点A(-3,0),B(3,0),动点P满足|PA|=2|PB|.(1)若点P的轨迹为曲线C,求此曲线的方程;(2)若点Q在直线l1:x+y+3=0上,直线l2经过点Q且与曲线C只有一个公共点M,求|QM|的最小值.【答案】(1)(x-5)2+y2=16(2)4【解析】(1)设点P的坐标为(x,y),且|PA|=2|PB|,则=2,化简得曲线C:(x-5)2+y2=16.(2)曲线C是以点(5,0)为圆心,4为半径的圆,如图.是此圆的切线,连接CQ,由直线l2则|QM|=,时,|CQ|取最小值,|CQ|=,此时|QM|的最小值为=4.当CQ⊥l122.已知圆C经过A(5,1),B(1,3)两点,圆心在x轴上,则圆C的方程为________.【答案】(x-2)2+y2=10【解析】依题意设所求圆的方程为(x-a)2+y2=r2,把所给两点坐标代入方程,得解得所以所求圆的方程为(x-2)2+y2=10.23.已知半径为2,圆心在直线上的圆C.(Ⅰ)当圆C经过点A(2,2)且与轴相切时,求圆C的方程;(Ⅱ)已知E(1,1),F(1,-3),若圆C上存在点Q,使,求圆心的横坐标的取值范围.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)因为原心在直线上故可设原心为,则可根据圆心和圆上的点的距离为半径列出方程。
高二数学圆的标准方程与一般方程试题答案及解析
高二数学圆的标准方程与一般方程试题答案及解析1.已知圆C过点(1,0),且圆心在x轴的正半轴上,直线l:y=x﹣1被该圆所截得的弦长为,则圆C的标准方程为_________.【答案】【解析】设圆心为(a,0),半径为r,由弦长为可得,又圆心在x轴的正半轴上,所以a>1,由已知可知半径、半弦长、弦心距围成一等腰三角形,所以有,答案为.【考点】1.圆的标准方程;2.直线与圆的位置关系2..已知直线:,若以点为圆心的圆与直线相切于点,且在轴上,则该圆的方程为()A.B.C.D.【答案】A【解析】由于圆心坐标,只有选项符合,故选【考点】圆的标准方程.3.已知曲线C上的动点P()满足到定点A(-1,0)的距离与到定点B(1,0)距离之比为(1)求曲线C的方程。
(2)过点M(1,2)的直线与曲线C交于两点M、N,若|MN|=4,求直线的方程。
【答案】(1):(或);(2)或【解析】(1)根据动点P(x,y)满足到定点A(-1,0)的距离与到定点B(1,0)距离之比为,建立方程,化简可得曲线C的方程.(2)分类讨论,设出直线方程,求出圆心到直线的距离,利用勾股定理,即可求得直线l的方程.试题解析:(1)由题意得|PA|=|PB| 2分;故 3分;化简得:(或)即为所求。
5分;(2)当直线的斜率不存在时,直线的方程为,将代入方程得,所以|MN|=4,满足题意。
8分;当直线的斜率存在时,设直线的方程为+2由圆心到直线的距离 10分;解得,此时直线的方程为综上所述,满足题意的直线的方程为:或. 12分.【考点】(1)圆的标准方程;(2)点到直线的距离公式.4.已知圆C经过直线与坐标轴的两个交点,且经过抛物线的焦点,则圆C的方程为.【答案】.【解析】与坐标轴的两个交点是:(4,0),(0,2),抛物线的焦点是(2,0),所以可以设圆的一般方程,把上面三个点坐标带入,解得D=-6,E=-6,F=8.【考点】求圆的方程.5.有一圆与直线l:4x-3y+6=0相切于点A(3,6),且经过点B(5,2),求此圆的方程.【答案】【解析】本题解法有4种,①由直线与圆相切于点A可设方程,再过点B可求出,即求出圆的方程.②可以设圆的标准方程,由圆心和切点连线与切线垂直且圆过A,B两点可找到三个关系式求出从而得到圆的方程.③可设所求圆的方程的一般式,写出圆心坐标,由圆心和切点连线与切线垂直且圆过A,B两点可找到三个关系式求出从而得到圆的方程.④设出圆心坐标,由几何意义可以由圆心和切点连线与切线垂直先求出直线CA方程,再由A,B坐标求出直线AB的方程,由AB的垂直平分线与CA相交于点C,再CA的长度即为圆的半径从而得到圆的方程.试题解析:法一:由题意可设所求的方程为,又因为此圆过点,将坐标代入圆的方程求得,所以所求圆的方程为.法二:设圆的方程为,则圆心为,由,得解得所以所求圆的方程为.法三:设圆的方程为,由,,在圆上,得解理所以所求圆的方程为.法四:设圆心为C,则,又设AC与圆的另一交点为P,则CA的方程为,即.又因为,所以,所以直线BP的方程为.解方程组得所以.所以圆心为AP的中点,半径为,所以所求圆的方程为.【考点】圆的标准方程, 直线与圆相切.6.已知和是平面内互相垂直的两条直线,它们的交点为A,异于点A的两动点B、C分别在、上,且BC=,则过A、B、C三点的动圆所形成的图形面积为()A. B. C. D.【答案】B【解析】学生作此题时应注意:过A 、B 、C 三点的动圆所形成的区域面积,不是过A 、B 、C 三点的圆的面积.而是将所有圆的面积(只能算不重合的部分)即半径为BC 最大圆的面积.此题是一道易错题.直角三角形外接圆的直径就是斜边长, 中斜边不变,所以过A 、B 、C 三点的动圆所形成的图形是以A 为圆心,以3为半径的圆, 过A 、B 、C 三点的动圆所形成的图形面积为故选C【考点】直角三角形外接圆7. 在平面直角坐标系内,若圆:的圆心在第二象限内,则实数的取值范围为( )A .B .C .D .【答案】C【解析】圆:化成标准方程为:,可知圆心坐标为,因为圆心在第二象限内,故,得到.【考点】圆的方程.8. 一束光线从点出发,经x 轴反射到圆上的最短路径是( )A .4B .5C .D .【答案】A【解析】依题意可得,在x 轴上找一点使得到点A 与C 的距离和最短,这最短距离减去半径1,就是所求的值.点A 关于x 轴的对称点A--1(-1,-1),圆心C (2,3),A--1C 的距离为,所以到圆上的最短距离为5-1=4.故选A. 【考点】1.最短距离的知识点.2.两点间的距离公式. 9. 圆的圆心坐标是( ) A .(2,3) B .(-2,3) C .(-2,-3)D .(2,-3)【答案】D【解析】把圆的一般方程通过配方法转化为标准方程,就可以很快得出圆心坐标及圆的半径.【考点】圆的标准方程.10. 已知点是圆上的点 (1)求的取值范围. (2)若恒成立,求实数的取值范围. 【答案】(1);(2) 【解析】(1)圆配方为,设,把代入中,转化为三角函数的值域问题,或者可设=,再与圆的方程联立,消去,得关于的一元二次方程,利用列不等式,得的范围;(2)把代入中,转化为三角函数的最小值问题,且最小值,该题还可以数形结合,表示直线=0上方的平面区域,只要让圆落在区域内即可. 试题解析:(1)圆可化为依题意:设∴即:的取值范围是6分(2)依题意:设∴∴又∵恒成立∴∴a的取值范围是 12分【考点】1、圆的方程;2、利用恒成立问题确定参数的取值范围.11.如果圆x2+y2+Dx+Ey+F=0与x轴切于原点, 那么()A.D=0,E≠0, F≠0;B.E=F=0,D≠0;C.D="F=0," E≠0;D.D=E=0,F≠0;【答案】A【解析】解:圆与x轴相切于原点,则圆心在y轴上,D=0,圆心的纵坐标的绝对值等于半径,F≠0,E≠0.故选A【考点】圆的一般式方程点评:本题考查圆的一般式方程,直线与圆的位置关系,是基础题.12.圆的圆心是()A.(-3,4)B.(-3,-4)C.(3 ,4)D.(3,-4)【答案】D【解析】由于圆的一般方程为,所以配方法可知,因此可知圆心坐标为(3,-4),故选D.【考点】本试题考查了圆的一般方程的运用。
专题05 平面解析几何(选择题、填空题)-三年(2022–2024)高考数学真题分类汇编(原卷版)
专题05平面解析几何(选择题、填空题)考点三年考情(2022-2024)命题趋势考点1:直线方程与圆的方程2022年全国II卷、2022年全国甲卷(文)2022年全国乙卷(理)近三年高考对解析几何小题的考查比较稳定,考查内容、频率、题型难度均变化不大,备考时应熟练以下方向:(1)要重视直线方程的求法、两条直线的位置关系以及点到直线的距离公式这三个考点.(2)要重视直线与圆相交所得弦长及相切所得切线的问题.(3)要重视椭圆、双曲线、抛物线定义的运用、标准方程的求法以及简单几何性质,尤其是对离心率的求解,更是高考的热点问题,因方法多,试题灵活,在各种题型中均有体现.考点2:直线与圆的位置关系2024年北京卷、2022年全国甲卷(理)2022年天津卷、2022年北京卷2023年全国Ⅰ卷、2024年北京卷考点3:圆与圆的位置关系2022年全国I卷考点4:轨迹方程及标准方程2023年北京卷、2023年天津卷2024年全国Ⅱ卷、2022年天津卷2022年全国甲卷(文)考点5:椭圆的几何性质2022年全国I卷2023年全国甲卷(理)2023年全国甲卷(文)考点6:双曲线的几何性质2022年北京卷2023年全国乙卷(理)考点7:抛物线的几何性质2024年北京卷、2024年天津卷2023年全国乙卷(理)2023年天津卷、2023年全国Ⅱ卷2024年全国Ⅱ卷、2022年全国I卷考点8:弦长问题2022年全国乙卷(理)2023年全国甲卷(理)考点9:离心率问题2024年全国Ⅰ卷、2022年全国甲卷(文)2023年全国Ⅰ卷、2022年浙江卷2022年全国乙卷(理)2024年全国甲卷(理)2023年全国Ⅰ卷、2022年全国甲卷(理)考点10:焦半径、焦点弦问题2022年全国II卷、2023年北京卷考点11:范围与最值问题2022年全国II卷2024年全国甲卷(文)2023年全国乙卷(文)考点12:面积问题2024年天津卷、2023年全国Ⅱ卷2023年全国Ⅱ卷考点13:新定义问题2024年全国Ⅰ卷考点1:直线方程与圆的方程1.(2022年新高考全国II 卷数学真题)已知直线l 与椭圆22163x y +=在第一象限交于A ,B 两点,l 与x 轴,y 轴分别交于M ,N 两点,且||||,||23MA NB MN ==l 的方程为.2.(2022年高考全国甲卷数学(文)真题)设点M 在直线210x y +-=上,点(3,0)和(0,1)均在M 上,则M 的方程为.3.(2022年高考全国乙卷数学(理)真题)过四点(0,0),(4,0),(1,1),(4,2)-中的三点的一个圆的方程为.考点2:直线与圆的位置关系4.(2024年北京高考数学真题)若直线()3y k x =-与双曲线2214xy -=只有一个公共点,则k 的一个取值为.5.(2022年高考全国甲卷数学(理)真题)若双曲线2221(0)x y m m-=>的渐近线与圆22430x y y +-+=相切,则m =.6.(2022年新高考天津数学高考真题)若直线()00x y m m -+=>与圆()()22113x y -+-=相交所得的弦长为m ,则m =.7.(2022年新高考北京数学高考真题)若直线210x y +-=是圆22()1x a y -+=的一条对称轴,则=a ()A .12B .12-C .1D .1-8.(2023年新课标全国Ⅰ卷数学真题)过点()0,2-与圆22410x y x +--=相切的两条直线的夹角为α,则sin α=()A .1B .154C .104D 649.(2024年北京高考数学真题)圆22260x y x y +-+=的圆心到直线20x y -+=的距离为()A 2B .2C .3D .32考点3:圆与圆的位置关系10.(2022年新高考全国I 卷数学真题)写出与圆221x y +=和22(3)(4)16x y -+-=都相切的一条直线的方程.考点4:轨迹方程及标准方程11.(2023年北京高考数学真题)已知双曲线C 的焦点为(2,0)-和(2,0),离心率为2,则C 的方程为.12.(2023年天津高考数学真题)已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为12F F 、.过2F 向一条渐近线作垂线,垂足为P .若22PF =,直线1PF 的斜率为24,则双曲线的方程为()A .22184x y -=B .22148x y -=C .22142x y -=D .22124x y -=13.(2022年新高考天津数学高考真题)已知抛物线21245,,y F F =分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,抛物线的准线过双曲线的左焦点1F ,与双曲线的渐近线交于点A ,若124F F A π∠=,则双曲线的标准方程为()A .22110x y -=B .22116y x -=C .2214y x -=D .2214x y -=14.(2022年高考全国甲卷数学(文)真题)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为13,12,A A 分别为C 的左、右顶点,B 为C 的上顶点.若121BA BA ⋅=-,则C 的方程为()A .2211816x y +=B .22198x y +=C .22132x y +=D .2212x y +=15.(2024年新课标全国Ⅱ卷数学真题)已知曲线C :2216x y +=(0y >),从C 上任意一点P 向x 轴作垂线段PP ',P '为垂足,则线段PP '的中点M 的轨迹方程为()A .221164x y +=(0y >)B .221168x y +=(0y >)C .221164y x +=(0y >)D .221168y x +=(0y >)考点5:椭圆的几何性质16.(2022年新高考全国I 卷数学真题)已知椭圆2222:1(0)x y C a b a b+=>>,C 的上顶点为A ,两个焦点为1F ,2F ,离心率为12.过1F 且垂直于2AF 的直线与C 交于D ,E 两点,||6DE =,则ADE V 的周长是.17.(2023年高考全国甲卷数学(理)真题)设O 为坐标原点,12,F F 为椭圆22:196x yC +=的两个焦点,点P 在C 上,123cos 5F PF ∠=,则||OP =()A .135B .302C .145D .35218.(2023年高考全国甲卷数学(文)真题)设12,F F 为椭圆22:15x C y +=的两个焦点,点P 在C 上,若120PF PF ⋅=,则12PF PF ⋅=()A .1B .2C .4D .5考点6:双曲线的几何性质19.(2022年新高考北京数学高考真题)已知双曲线221x y m +=的渐近线方程为3y =,则m =.20.(2023年高考全国乙卷数学(理)真题)设A ,B 为双曲线2219y x -=上两点,下列四个点中,可为线段AB 中点的是()A .()1,1B .()1,2-C .()1,3D .()1,4--考点7:抛物线的几何性质21.(2024年北京高考数学真题)抛物线216y x =的焦点坐标为.22.(2024年天津高考数学真题)圆22(1)25-+=x y 的圆心与抛物线22(0)y px p =>的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为.23.(2023年高考全国乙卷数学(理)真题)已知点(5A 在抛物线C :22y px =上,则A 到C 的准线的距离为.24.(2023年天津高考数学真题)已知过原点O 的一条直线l 与圆22:(2)3C x y ++=相切,且l 与抛物线22(0)y px p =>交于点,O P 两点,若8OP =,则p =.25.(多选题)(2024年新课标全国Ⅱ卷数学真题)抛物线C :24y x =的准线为l ,P 为C 上的动点,过P 作22:(4)1A x y +-=⊙的一条切线,Q 为切点,过P 作l 的垂线,垂足为B ,则()A .l 与A 相切B .当P ,A ,B 三点共线时,||15PQ =C .当||2PB =时,PA AB⊥D .满足||||PA PB =的点P 有且仅有2个26.(多选题)(2022年新高考全国I 卷数学真题)已知O 为坐标原点,点(1,1)A 在抛物线2:2(0)C x py p =>上,过点(0,1)B -的直线交C 于P ,Q 两点,则()A .C 的准线为1y =-B .直线AB 与C 相切C .2|OP OQ OA⋅>D .2||||||BP BQ BA ⋅>27.(多选题)(2023年新课标全国Ⅱ卷数学真题)设O 为坐标原点,直线)31y x =--过抛物线()2:20C y px p =>的焦点,且与C 交于M ,N 两点,l 为C 的准线,则().A .2p =B .83MN =C .以MN 为直径的圆与l 相切D .OMN 为等腰三角形考点8:弦长问题28.(2022年高考全国乙卷数学(理)真题)设F 为抛物线2:4C y x =的焦点,点A 在C 上,点(3,0)B ,若AF BF =,则AB =()A .2B .22C .3D .3229.(2023年高考全国甲卷数学(理)真题)已知双曲线2222:1(0,0)x y C a b a b-=>>5C 的一条渐近线与圆22(2)(3)1x y -+-=交于A ,B 两点,则||AB =()A 55B .255C .355D .455考点9:离心率问题30.(2024年新课标全国Ⅰ卷数学真题)设双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为.31.(2022年高考全国甲卷数学(文)真题)记双曲线2222:1(0,0)x y C a b a b -=>>的离心率为e ,写出满足条件“直线2y x =与C 无公共点”的e 的一个值.32.(2023年新课标全国Ⅰ卷数学真题)已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为12,F F .点A 在C 上,点B 在y 轴上,11222,3F A F B F A B ⊥=- ,则C 的离心率为.33.(2022年新高考浙江数学高考真题)已知双曲线22221(0,0)x y a b a b -=>>的左焦点为F ,过F 且斜率为4b a的直线交双曲线于点()11,A x y ,交双曲线的渐近线于点()22,B x y 且120x x <<.若||3||FB FA =,则双曲线的离心率是.34.(多选题)(2022年高考全国乙卷数学(理)真题)双曲线C 的两个焦点为12,F F ,以C 的实轴为直径的圆记为D ,过1F 作D 的切线与C 交于M ,N 两点,且123cos 5F NF ∠=,则C 的离心率为()A 52B .32C .132D .17235.(2024年高考全国甲卷数学(理)真题)已知双曲线的两个焦点分别为()()0,4,0,4-,点()6,4-在该双曲线上,则该双曲线的离心率为()A .4B .3C .2D 236.(2023年新课标全国Ⅰ卷数学真题)设椭圆2222122:1(1),:14x x C y a C y a +=>+=的离心率分别为12,e e .若213e e =,则=a ()A 233B 2C 3D 637.(2022年高考全国甲卷数学(理)真题)椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C上,且关于y 轴对称.若直线,AP AQ 的斜率之积为14,则C 的离心率为()A 32B .22C .12D .13考点10:焦半径、焦点弦问题38.(多选题)(2022年新高考全国II 卷数学真题)已知O 为坐标原点,过抛物线2:2(0)C y px p =>焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点(,0)M p ,若||||AF AM =,则()A .直线AB 的斜率为26B .||||OB OF =C .||4||AB OF >D .180OAM OBM ∠+∠<︒39.(2023年北京高考数学真题)已知抛物线2:8C y x =的焦点为F ,点M 在C 上.若M 到直线3x =-的距离为5,则||MF =()A .7B .6C .5D .4考点11:范围与最值问题40.(2022年新高考全国II 卷数学真题)设点(2,3),(0,)A B a -,若直线AB 关于y a =对称的直线与圆22(3)(2)1x y +++=有公共点,则a 的取值范围是.41.(2024年高考全国甲卷数学(文)真题)已知直线20ax y a ++-=与圆2241=0C x y y ++-:交于,A B 两点,则AB 的最小值为()A .2B .3C .4D .642.(2023年高考全国乙卷数学(文)真题)已知实数,x y 满足224240x y x y +---=,则x y -的最大值是()A .3212+B .4C .132+D .7考点12:面积问题43.(2024年天津高考数学真题)双曲线22221()00a x y a bb >-=>,的左、右焦点分别为12.F F P 、是双曲线右支上一点,且直线2PF 的斜率为2.12PF F △是面积为8的直角三角形,则双曲线的方程为()A .22182y x -=B .22184x y -=C .22128x y -=D .22148x y -=44.(2023年新课标全国Ⅱ卷数学真题)已知直线:10l x my -+=与()22:14C x y -+= 交于A ,B 两点,写出满足“ABC 面积为85”的m 的一个值.45.(2023年新课标全国Ⅱ卷数学真题)已知椭圆22:13x C y +=的左、右焦点分别为1F ,2F ,直线y x m =+与C 交于A ,B 两点,若1F AB △ 面积是2F AB △ 面积的2倍,则m =().A .23B 23C .23D .23-考点13:新定义问题46.(多选题)(2024年新课标全国Ⅰ卷数学真题)设计一条美丽的丝带,其造型可以看作图中的曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足:横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则()A .2a =-B .点(22,0)在C 上C .C 在第一象限的点的纵坐标的最大值为1D .当点()00,x y 在C 上时,0042y x ≤+。
高考数学一轮复习例题解析 15.3 圆的标准方程和一般方程 试题
高中数学一轮(y ī l ún)复习资料第十五章 解析几何(ji ě x ī j ǐh é)第三节 圆的HY 方程(f āngch éng)和一般方程A 组1.假设圆x 2+y 2-2kx +2y +2=0(k >0)与两坐标轴无公一共点,那么实数k 的取值范围为________.解析:圆的方程为(x -k )2+(y +1)2=k 2-1,圆心坐标为(k ,-1),半径r =k 2-1,假设圆与两坐标无公一共点,即⎩⎪⎨⎪⎧ k 2-1<|k |k 2-1<1,解得1<k < 2. 2.假设圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,那么该圆的HY 方程是________.解析:由题意,设圆心(x 0,1),∴|4x 0-3|42+(-3)2=1,解得x 0=2或者x 0=-12(舍), ∴所求圆的方程为(x -2)2+(y -1)2=1.3.(2021年调研)D 是由不等式组⎩⎪⎨⎪⎧x -2y ≥02x +y ≥0,所确定的平面区域,那么圆x 2+y 2=4在区域D 内的弧长为________.答案:π4.(2021年高考宁夏、卷改编)圆C 1:(x +1)2+(y -1)2=1,圆C 2与圆C 1关于直线x -y -1=0对称,那么圆C 2的方程为________________.解析:圆C 1:(x +1)2+(y -1)2=1的圆心为(-1,1).圆C 2的圆心设为(a ,b ),C 1与C 2关于直线x -y -1=0对称,∴⎩⎪⎨⎪⎧ b -1a +1=-1,a -12-b +12-1=0,解得⎩⎪⎨⎪⎧a =2,b =-2,圆C 2的半径为1,∴圆C 2的方程为(x -2)2+(y +2)2=1.5.(原创题)圆x 2+y 2-4x +2y +c =0与y 轴交于A 、B 两点,其圆心为P ,假设∠APB =90°,那么实数c 的值是________.解析:当∠APB =90°时,只需保证圆心到y 轴的间隔 等于半径的22倍.由于圆的HY 方程为(x -2)2+(y +1)2=5-c ,即2=22×5-c ,解得c =-3.6.点A (-3,0),B (3,0),动点P 满足(mǎnzú)|P A |=2|PB |.(1)假设(jiǎshè)点P 的轨迹(guǐjì)为曲线C ,求此曲线(qūxiàn)的方程;(2)假设点Q 在直线l :x +y +3=0上,直线l 2经过点Q 且与曲线C 只有一个公一共点M ,求|QM |的最小值,并求此时直线l 2的方程.解:(1)设点P 的坐标为(x ,y ),那么(x +3)2+y 2=2(x -3)2+y 2,化简可得(x -5)2+y 2=16即为所求.(2)曲线C 是以点(5,0)为圆心,4为半径的圆,如图那么直线l 2是此圆的切线,连结CQ ,那么|QM |=|CQ |2-|CM |2=|CQ |2-16, 当CQ ⊥l 1时,|CQ |取最小值,|CQ |=|5+3|2=42, 此时|QM |的最小值为32-16=4,这样的直线l 2有两条,设满足条件的两个公一共点为M 1,M 2,易证四边形M 1CM 2Q 是正方形,∴l 2的方程是x =1或者y =-4.B 组1.(2021年质检)圆心在直线2x -3y -1=0上的圆与x 轴交于A (1,0),B (3,0)两点,那么圆的方程为________________.解析:所求圆与x 轴交于A (1,0),B (3,0)两点,故线段AB 的垂直平分线x =2过所求圆的圆心,又所求圆的圆心在直线2x -3y -1=0上,所以两直线的交点坐标即为所求圆的圆心坐标,解之得圆心坐标为(2,1),进一步可求得半径为2,所以圆的HY 方程为(x -2)2+(y -1)2=2.2.(2021年调研)假设直线ax +by =1过点A (b ,a ),那么以坐标原点O 为圆心,OA 长为半径的圆的面积的最小值是___.解析:∵直线ax +by =1过点A (b ,a ),∴ab +ab =1,∴ab =12,又OA =a 2+b 2,∴以O 为圆心,OA 长为半径的圆的面积:S =π·OA 2=(a 2+b 2)π≥2ab ·π=π,∴面积的最小值为π.3.(2021年高考卷改编(gǎibiān))点P (4,-2)与圆x 2+y 2=4上任一点(yī diǎn)连线的中点轨迹方程是________________.解析(jiě xī):设圆上任一点(yī diǎn)坐标为(x 0,y 0),那么x 02+y 02=4,连线中点坐标为(x ,y ),那么⎩⎪⎨⎪⎧ 2x =x 0+4,2y =y 0-2,⇒⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y +2,代入x 02+y 02=4中得(x -2)2+(y +1)2=1. 4.点P (1,4)在圆C :x 2+y 2+2ax -4y +b =0上,点P 关于直线x +y -3=0的对称点也在圆C 上,那么a =________,b =________.解析:点P (1,4)在圆C :x 2+y 2+2ax -4y +b =0上,所以2a +b +1=0,点P 关于直线x+y-3=0的对称点也在圆C上,所以圆心(-a,2)在直线x+y-3=0上,即-a+2-3=0,解得a=-1,b=1.5.圆的方程为x2+y2-6x-8y=0.设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,那么四边形ABCD的面积为___________.解析:由题意知,圆心坐标为(3,4),半径r=5,故过点(3,5)的最长弦为AC=2r=10,最短弦BD=252-12=46,四边形ABCD的面积为20 6.6.过圆x2+y2=4外一点P(4,2)作圆的两条切线,切点为A、B,那么△ABP的外接圆的方程是____________________.解析:∵圆心为O(0,0),又∵△ABP的外接圆就是四边形OAPB的外接圆.其直径d=OP=25,∴半径r= 5.而圆心C为(2,1),∴外接圆的方程为(x-2)2+(y-1)2=5.7.动点P(x,y)满足x2+y2-|x|-|y|=0,O为坐标原点,那么PO的取值范围是______.解析:方程x2+y2-|x|-|y|=0可化为(|x|-12)2+(|y|-12)2=12.所以动点P(x,y)的轨迹如图:为原点和四段圆孤,故PO的取值范围是{0}∪[1, 2 ].8.(2021年质检)曲线f(x)=x ln x在点P(1,0)处的切线l与坐标轴围成的三角形的外接圆方程是____________.解析(jiě xī):曲线(qūxiàn)f(x)=x ln x在点P(1,0)处的切线(qiēxiàn)l方程(fāngchéng)为x-y-1=0,与坐标轴围成的三角形的外接圆圆心为(12,-12),半径为22,所以方程为(x-12)2+(y+12)2=12.答案:(x-12)2+(y+12)2=129.设实数x 、y 满足x 2+(y -1)2=1,假设对满足条件的x 、y ,不等式y x -3+c ≥0恒成立,那么c 的取值范围是________.解析:由题意,知-c ≤y x -3恒成立,又y x -3=y -0x -3表示圆上的点与定点(3,0)连线的斜率,范围为[-34,0],所以-c ≤-34,即c 的取值范围是c ≥34. 10.如图,在平面直角坐标系xOy 中,A (a,0)(a >0),B (0,a ),C (-4,0),D (0,4),设△AOB 的外接圆圆心为E .(1)假设⊙E 与直线CD 相切,务实数a 的值;(2)设点P 在圆E 上,使△PCD 的面积等于12的点P 有且只有三个,试问这样的⊙E 是否存在,假设存在?求出⊙E 的HY 方程;假设不存在,说明理由.解:(1)直线CD 方程为y =x +4,圆心E (a 2,a 2),半径r =22a . 由题意得|a 2-a 2+4|2=22a ,解得a =4. (2)∵|CD |=(-4)2+42=42,∴当△PCD 面积为12时,点P 到直线CD 的间隔 为3 2.又圆心E 到直线CD 间隔 为22(定值),要使△PCD 的面积等于12的点P 有且只有三个,只须圆E 半径2a 2=52,解得a =10, 此时,⊙E 的HY 方程为(x -5)2+(y -5)2=50.11.在Rt △ABO 中,∠BOA =90°,OA =8,OB =6,点P 为它的内切圆C 上任一点,求点P 到顶点A 、B 、O 间隔 的平方和的最大值和最小值.解:如下(rúxià)图,以O 为原点,OA 所在(suǒzài)直线为x 轴,OB 所在(suǒzài)直线为y 轴,建立(jiànlì)直角坐标系xOy ,那么A (8,0),B (0,6),内切圆C 的半径r =12(OA +OB -AB )=8+6-102=2.∴内切圆C 的方程为(x -2)2+(y -2)2=4. 设P (x ,y )为圆C 上任一点,点P 到顶点A 、B 、O 的间隔 的平方和为d ,那么d =P A 2+PB 2+PO 2=(x -8)2+y 2+x 2+(y -6)2+x 2+y 2=3x 2+3y 2-16x -12y +100=3[(x -2)2+(y -2)2]-4x +76.∵点P (x ,y )在圆C 上,∴(x -2)2+(y -2)2=4.∴d =3×4-4x +76=88-4x .∵点P (x ,y )是圆C 上的任意点,∴x ∈[0,4].∴当x =0时,d max =88;当x =4时,d min =72.12.(2021年高考卷)在平面直角坐标系xOy 中,设二次函数f (x )=x 2+2x +b (x ∈R )的图象与两个坐标轴有三个交点,经过这三个交点的圆记为C .(1)务实数b 的取值范围;(2)求圆C 的方程;(3)问圆C 是否经过某定点(其坐标与b 无关)?请证明你的结论.解:(1)显然b ≠0.否那么,二次函数f (x )=x 2+2x +b 的图象与两个坐标轴只有两个交点(0,0),(-2,0),这与题设不符.由b ≠0知,二次函数f (x )=x 2+2x +b 的图象与y 轴有一个非原点的交点(0,b ),故它与x 轴必有两个交点,从而方程x 2+2x +b =0有两个不相等的实数根,因此方程的判别式4-4b >0,即b <1.所以(suǒyǐ)b 的取值范围(fànwéi)是(-∞,0)∪(0,1).(2)由方程(fāngchéng)x 2+2x +b =0,得x =-1±1-b .于是(yúshì),二次函数f (x )=x 2+2x +b 的图象与坐标轴的交点是(-1-1-b ,0),(-1+1-b ,0),(0,b ).设圆C 的方程为x 2+y 2+Dx +Ey +F =0.因圆C 过上述三点,将它们的坐标分别代入圆C 的方程,得 ⎩⎪⎨⎪⎧ (-1-1-b )2+D (-1-1-b )+F =0,(-1+1-b )2+D (-1+1-b )+F =0,b 2+Eb +F =0.解上述方程组,因b ≠0,得⎩⎪⎨⎪⎧ D =2,E =-(b +1),F =b .所以,圆C 的方程为x 2+y 2+2x -(b +1)y +b =0.(3)圆C 过定点.证明如下:假设圆C 过定点(x 0,y 0)(x 0,y 0不依赖于b ),将该点的坐标代入圆C 的方程,并变形为x 02+y 02+2x 0-y 0+b (1-y 0)=0.(*)为使(*)式对所有满足b <1(b ≠0)的b 都成立,必须有1-y 0=0,结合(*)式得x 02+y 02+2x 0-y 0=0.解得⎩⎪⎨⎪⎧ x 0=0,y 0=1,或者⎩⎪⎨⎪⎧x 0=-2,y 0=1.经检验知,点(0,1),(-2,1)均在圆C 上, 因此,圆C 过定点. 内容总结。
高考数学备考艺体生辅导专题05《解析几何的第一问》(原卷版)
【高考备考艺体生文化课精选好题突围系列】专题五 解析几何的第一问圆的概念与方程【背一背基础知识】1. 标准方程:圆心坐标(,)a b ,半径r ,方程222()()x a y b r -+-=,一般方程:22x y Dx Ey ++++0F =(其中2240D E F +->);2.直线与圆的位置关系:相交、相切、相离 ,代数判断法与几何判断法; 3. 圆与圆的位置关系:相交、相切、相离、内含,代数判断法与几何判断法. 【讲一讲基本技能】 1. 必备技能:① 会用配方法把圆的一般方程化为标准方程;② 直线和圆的位置可用方程组的解来判断,但主要是应用圆心到直线的距离d 和圆半径r 比较,d r >⇔相离,d r =⇔相切,d r <⇔相交;③圆与圆的位置关系一般也是用圆心距12O O 与两圆的半径之和(或差)比较,12OO R r >+⇔相离,12OO R r =+⇔外切,12R r OO R r -<<+⇔相交,12OO R r =-⇔内切,12OO R r <-⇔内含. ④直线和圆的位置关系是这部分的重点考查内容.⑤对直线被圆截得弦长问题,求出圆的半径r ,圆心到直线的距离为d ,则直线被圆截得弦长为222r d -2.典型例题例1 在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l ,设圆C 的半径为1,圆心在l 上. 若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线,求切线的方程;【分析】求圆的切线方程,一般设出直线方程为y kx b =+(斜率存在),再利用圆心到切线的距离等于圆的半径来求出其中的参数值. 【解析】例2 已知圆22:4230P x y x y +-+-=和圆外一点(4,8)M -.(1)过点M 作圆的割线交圆于,A B 两点,若||4AB =,求直线AB 的方程; (2)过点M 作圆的两条切线,切点分别为,C D ,求切线长及CD 所在直线的方程. 【答案】(1)4528440x y ++=或4x =;(2)27190x y --=.【分析】(1)先将圆的方程化成标准方程,求出圆心和半径,在根据弦长为4,结合垂径定理得到圆心到直线AB 的距离,则可以利用点到直线的距离公式求出直线AB 的斜率,求得直线方程;(2)利用切线的性质可知,切线长、半径、M 到圆心的距离满足勾股定理,则切线长可求;求出以PM 为直径的圆,与已知圆的方程,两式相减即可求得CD 所在的直线方程. 【解析】【练一练趁热打铁】1. 已知圆C 过点A (1,3),B (2,2),并且直线m: 320x y -=平分圆C 的面积. (Ⅰ)求圆C 的方程;2. 已知圆O 2:22460x y y +--=,求圆心在x-y-4=0,且过圆O 1与圆O 2交点的圆的方程。
高三数学圆的标准方程与一般方程试题
高三数学圆的标准方程与一般方程试题1.已知M(-2,0),N(2,0),则以MN为斜边的直角三角形的直角顶点P的轨迹方程为()A.x2+y2=2B.x2+y2=4C.x2+y2=2(x≠±2)D.x2+y2=4(x≠±2)【答案】D【解析】MN的中点为原点O,易知|OP|=|MN|=2,∴P的轨迹是以原点O为圆心,以r=2为半径的圆,除去与x轴的两个交点.2.设圆的方程是x2+y2+2ax+2y+(a-1)2=0,若0<a<1,则原点与圆的位置关系是()A.原点在圆上B.原点在圆外C.原点在圆内D.不确定【答案】B【解析】将原点代入x2+y2+2ax+2y+(a-1)2=(a-1)2>0,所以原点在圆外.3.已知x,y满足x2+y2=1,则的最小值为________.【答案】【解析】表示圆上的点P(x,y)与点Q(1,2)连线的斜率,∴的最小值是直线PQ与圆相切时的斜率.设直线PQ的方程为y-2=k(x-1),即kx-y+2-k=0,由=1,得k=,结合图形可知≥,∴所求最小值为.4.已知平面上点其中,当,变化时,则满足条件的点在平面上所组成图形的面积是()A.B.(C.D.【答案】C【解析】圆心在圆上运动一周,点在平面上所组成图形为以坐标原点为圆心,6为半径的实心圆减去以坐标原点为圆心,2为半径的实心圆的一个圆环,面积是.【考点】圆的方程,动点轨迹5.以抛物线y2=4x的焦点为圆心,且过坐标原点的圆的方程为()A.x2+y2+2x=0B.x2+y2+x=0C.x2+y2﹣x=0D.x2+y2﹣2x=0【答案】D【解析】因为已知抛物线的焦点坐标为(1,0),即所求圆的圆心,又圆过原点,所以圆的半径为r=1,故所求圆的方程为(x﹣1)2+y2=1,即x2﹣2x+y2=0,故选D.6.若圆x2+y2-2kx+2y+2=0(k>0)与两坐标轴无公共点,那么实数k的取值范围为( )A.-1<k<1B.1<k<C.1<k<2D.<k<2【答案】B【解析】圆的方程为(x-k)2+(y+1)2=k2-1,圆心坐标为(k,-1),半径r=,若圆与两坐标无公共点,即,解得1<k<.故选B.7.已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一个圆.(1)求实数m的取值范围;(2)求该圆半径r的取值范围;(3)求圆心的轨迹方程.【答案】(1)-<m<1(2)0<r≤(3)y=4(x-3)2-1【解析】(1)方程表示圆的充要条件是D2+E2-4F>0,即有4(m+3)2+4(1-4m2)2-4(16m4+9) >0-<m<1.(2)半径r=0<r≤.(3)设圆心坐标为(x,y),则消去m,得y=4(x-3)2-1.由于-<m<1,所以<x<4.故圆心的轨迹方程为y=4(x-3)2-18. P(x,y)在圆C:(x-1)2+(y-1)2=1上移动,试求x2+y2的最小值.【答案】3-2【解析】由C(1,1)得OC=,则OPmin =-1,即()min=-1.所以x2+y2的最小值为(-1)2=3-2.9.设定点M(-3,4),动点N在圆x2+y2=4上运动,以OM,ON为邻边作平行四边形MONP,则点P的轨迹方程为.【答案】(x+3)2+(y-4)2=4,但应除去两点(-,)和(-,)【解析】设P(x,y),圆上的动点N(x0,y),则线段OP的中点坐标为(,),线段MN的中点坐标为(,),又因为平行四边形的对角线互相平分,所以有可得又因为N(x0,y)在圆上,所以N点坐标应满足圆的方程.即有(x+3)2+(y-4)2=4,但应除去两点(-,)和(-,).10.当a为任意实数时,直线(a-1)x-y+a+1=0恒过定点C,则以C为圆心,为半径的圆的方程为()A.x2+y2-2x+4y=0B.x2+y2+2x+4y=0C.x2+y2+2x-4y=0D.x2+y2-2x-4y=0【答案】C【解析】由(a-1)x-y+a+1=0得(x+1)a-(x+y-1)=0,∴该直线恒过点(-1,2),∴所求圆的方程为(x+1)2+(y-2)2=5.即x2+y2+2x-4y=0.11.设二次函数y=x2-x+1与x轴正半轴的交点分别为A,B,与y轴正半轴的交点是C,则过A,B,C 三点的圆的标准方程是.【答案】(x-2)2+(y-2)2=5【解析】【思路点拨】先由已知求出A,B,C三点坐标,再根据坐标特点选出方程,求方程.由已知三个交点分别为A(1,0),B(3,0),C(0,1),易知圆心横坐标为2,则令圆心为E(2,b),由|EA|=|EC|得b=2,半径为,故圆的方程为(x-2)2+(y-2)2=5.12.已知点P(a,b)关于直线l的对称点为P′(b+1,a-1),则圆C:x2+y2-6x-2y=0关于直线l对称的圆C′的方程为________.【答案】(x-2)2+(y-2)2=10【解析】由圆C:x2+y2-6x-2y=0得,圆心坐标为(3,1),半径r=,所以对称圆C′的圆心为(1+1,3-1)即(2,2),所以(x-2)2+(y-2)2=10.13.已知圆C经过A(5,1),B(1,3)两点,圆心在x轴上,则圆C的方程为________.【答案】(x-2)2+y2=10【解析】依题意设所求圆的方程为(x-a)2+y2=r2,把所给两点坐标代入方程,得解得所以所求圆的方程为(x-2)2+y2=10.14.已知圆:,则下列命题:①圆上的点到的最短距离的最小值为;②圆上有且只有一点到点的距离与到直线的距离相等;③已知,在圆上有且只有一点,使得以为直径的圆与直线相切.真命题的个数为A.B.C.D.【答案】D【解析】已知动圆的圆心的轨迹方程为:,所以动圆构成的轨迹为夹在抛物线和抛物线之间的部分(包括边界),所以①②③都满足题意【考点】圆的方程的性质、点、直线与圆的位置关系及其判断.15.若点为圆的弦的中点,则弦所在直线方程为( )A.B.C.D.【答案】D【解析】化为标准方程为,为圆的弦的中点,∴圆心与点P确定的直线斜率为,∴弦所在直线的斜率为2,∴弦所在直线的方程为,即,故选D.【考点】圆的方程,直线与圆的位置关系,直线的斜率,直线的方程.16.能够把圆:的周长和面积同时分为相等的两部分的函数称为圆的“和谐函数”,下列函数不是圆的“和谐函数”的是()A.B.C.D.【答案】D【解析】只有D答案是偶函数,这个圆的圆心是,则奇函数会是该圆的“和谐函数”.【考点】1.对称性;2.奇偶性.17.已知P是圆C:上的一个动点,A(,1),则的最小值为______.【答案】2(-1) .【解析】如图:作PQ^OA于Q,CD^OA于D,根据向量数量积的几何意义得min =|OA|·|OQ|min=|OA|·|OT|="2" (|OD|-1)=2(-1) .【考点】圆的标准方程及向量数量积.18.已知圆C经过两点,圆心在x轴上,则圆C的方程是A.B.C.D.【答案】D【解析】根据题意,由于圆C经过两点,圆心在x轴上,那么圆心在线段AB的垂直平分线上,可中点为(2,3),斜率为3,则方程为y-3=3(x-2).可知,3x-y-3=0,同时令y=0,x=1,故可知圆心为(1,0),半径为,因此可知方程为,选D.【考点】圆的方程点评:主要是考查了圆的方程的求解,属于基础题。
圆的一般方程(重难点突破)原卷版
专题2.4.2 圆的一般方程知识点一:圆的一般方程当2240D E F +->时,方程220x y Dx Ey F ++++=叫做圆的一般方程.,22D E ⎛⎫-- ⎪⎝⎭为圆心,为半径. 知识点诠释:由方程220x y Dx Ey F ++++=得22224224D E D E F x y +-⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭(1)当2240D E F +-=时,方程只有实数解,22D E x y =-=-.它表示一个点. (2)当2240D E F +-<时,方程没有实数解,因而它不表示任何图形.(3)当2240D E F +->时,可以看出方程表示以,22D E ⎛⎫-- ⎪⎝⎭为半径的圆. 知识点二:用待定系数法求圆的方程的步骤求圆的方程常用“待定系数法”.用“待定系数法”求圆的方程的大致步骤是:(1)根据题意,选择标准方程或一般方程.(2)根据已知条件,建立关于a b r 、、或D E F 、、的方程组.(3)解方程组,求出a b r 、、或D E F 、、的值,并把它们代入所设的方程中去,就得到所求圆的方程. 知识点三:轨迹方程求符合某种条件的动点的轨迹方程,实质上就是利用题设中的几何条件,通过“坐标法”将其转化为关于变量,x y 之间的方程.1.当动点满足的几何条件易于“坐标化”时,常采用直接法;当动点满足的条件符合某一基本曲线的定义(如圆)时,常采用定义法;当动点随着另一个在已知曲线上的动点运动时,可采用代入法(或称相关点法).2.求轨迹方程时,一要区分“轨迹”与“轨迹方程”;二要注意检验,去掉不合题设条件的点或线等.3.求轨迹方程的步骤:(1)建立适当的直角坐标系,用(,)x y 表示轨迹(曲线)上任一点M 的坐标;(2)列出关于,x y 的方程; (,)22D E --(3)把方程化为最简形式;(4)除去方程中的瑕点(即不符合题意的点);(5)作答.重难点题型1 求圆的一般方程例1、(1)、(2022秋·山东泰安·高二统考期中)已知圆M 的方程为222410x y x y ++-+=,则圆心M 的坐标为( )A .1,2B .1,2C .()2,4-D .()2,4-(2)、(2021秋·陕西·高二校考阶段练习)若方程22450x y mx y ++-+=表示圆,则实数m 的取值范围是( ) )()2,+∞)()3,+∞()1,+∞ ()2,∞⋃+(3)、(2023秋·高一单元测试)以()1,1C 为圆心,且经过()2,3M 的圆的方程是 .(4)、(2022秋·高二课时练习)过三点()()()4,2,1,1,14A B C --,的圆的一般方程为( ) A .227320x y x y ++-+=B .227320x y x y ++++=C .227320x y x y +-++=D .227320x y x y +--+=(2023秋·广东广州·高二广州市白云中学校考期末)已知圆224240x y x y +-+-=,则圆心坐标、圆的半径分别是( )A .2,1,3B .()2,1-,3C .()2,1--,3D .2,1,9(2021春·河北·高三统考学业考试)若圆C :220x y x y m +-++=的半径为1,则实数m =(2021秋·高二课时练习)圆心在y 轴上,经过点()3,1且与x 轴相切的圆的方程是 .(2022秋·高二课时练习)圆过点()1,2A -、()1,4B -,求面积最小的圆的一般方程为 .例2、(2023春·江苏常州·高一华罗庚中学校考期末)已知方程222440x y x y m +-++=.(1)若此方程表示圆,求实数m 的取值范围;(2)若m 的值为(1)中能取到的最大整数,则得到的圆设为圆E ,若圆E 与圆F 关于y 轴对称,设(),P x y 为圆F 上任意一点,求(),P x y 到直线10x y +-=的距离的最大值和最小值.例3、(2022秋·江西宜春·高二校考阶段练习)已知方程()2222410621190x y kx k y k k +++++++=表示圆,其圆心为C .(1)求圆心坐标以及该圆半径r 的取值范围;(2)若2k =-,线段AB 的端点A 的坐标为()0,4,端点B 在圆C 上运动,求线段AB 中点M 的轨迹方程. 例4、(2022秋·新疆克拉玛依·高二克拉玛依市高级中学校考期中)求适合下列条件的圆的方程:(1)圆心在直线230x y --=上,且过点()()2,3,2,5A B ---的圆;(2)过三点()()()1,0,1,2,3,2A B C ---的圆.例5、(2022秋·山西大同·高一山西省阳高县第一中学校校考阶段练习)(1)已知ABC 的三个顶点(3,0),(3,2),(0,1)A B C --,求ABC 外接圆的方程.(2)已知圆心C 在直线=+2y x 上,且过点(1,0)(2,1)A B 、.求圆C 标准方程;。
2025高考数学一轮复习-圆的方程-专项训练【含解析】
课时过关检测(四十八)圆的方程【原卷版】1.圆心为(2,1)且和x轴相切的圆的方程是()A.(x-2)2+(y-1)2=1B.(x+2)2+(y+1)2=1C.(x-2)2+(y-1)2=5D.(x+2)2+(y+1)2=52.设a∈R,则“a>2”是“方程x2+y2+ax-2y+2=0的曲线是圆”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.若x2+y2=8,则2x+y的最大值为()A.8B.4C.210D.54.已知圆C:(x-3)2+(y-1)2=1和两点A(-t,0),B(t,0)(t>0),若圆C上存在点P,使得∠APB=90°,则t的取值范围是()A.(0,2]B.[1,2]C.[2,3]D.[1,3]5.点M为圆C:(x+2)2+(y+1)2=1上任意一点,直线(1+3λ)x+(1+2λ)y=2+5λ过定点P,则|MP|的最大值为()A.23B.13C.23+1D.13+16.(多选)已知圆x2+y2-4x-1=0,则下列关于该圆说法正确的有()A .关于点(2,0)对称B .关于直线y =0对称C .关于直线x +3y -2=0对称D .关于直线x -y +2=0对称7.(多选)已知圆C 关于y 轴对称,经过点(1,0)且被x 轴分成两段,弧长比为1∶2,则圆C 可能的方程为()A .x 2=43B .x 2=43C .(x -3)2+y 2=43D .(x +3)2+y 2=438.已知三个点A (0,0),B (2,0),C (4,2),则△ABC 的外接圆的圆心坐标是________.9.已知点P 为圆C :x 2+y 2-4x -2y +1=0上任意一点,A ,B 为直线3x +4y +5=0上的两动点,且|AB |=2,则△ABP 的面积的取值范围是________.10.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410.(1)求直线CD 的方程;(2)求圆P 的方程.11.瑞士数学家欧拉在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.若已知△ABC 的顶点A (-4,0),B (0,4),其欧拉线方程为x -y +2=0,则顶点C 的坐标可以是()A .(1,3)B .(3,1)C .(-2,0)D .(0,-2)12.写出一个关于直线x +y -1=0对称的圆的方程____________.13.已知A (-2,0),B (2,0),动点M 满足|MA |=2|MB |,则点M 的轨迹方程是____________________;又若MA ―→·MB ―→=0,此时△MAB 的面积为________.14.已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求点M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积.15.(多选)设有一组圆C k :(x -k )2+(y -k )2=4(k ∈R ),下列命题正确的是()A .不论k 如何变化,圆心C 始终在一条直线上B .所有圆C k 均不经过点(3,0)C .经过点(2,2)的圆C k 有且只有一个D .所有圆的面积均为4π16.已知曲线T :F (x ,y )=0,对坐标平面上任意一点P (x ,y ),定义F [P ]=F (x ,y ),若两点P ,Q 满足F [P ]·F [Q ]>0,称点P ,Q 在曲线T 同侧;F [P ]·F [Q ]<0,称点P ,Q 在曲线T 两侧.(1)直线过l 原点,线段AB 上所有点都在直线l 同侧,其中A (-1,1),B (2,3),求直线l 的斜率的取值范围;(2)已知曲线F (x ,y )=(3x +4y -5)4-x 2-y 2=0,O 为坐标原点,求点集S ={P |F [P ]·F [O ]>0}的面积.课时过关检测(四十八)圆的方程【解析版】1.圆心为(2,1)且和x 轴相切的圆的方程是()A .(x -2)2+(y -1)2=1B .(x +2)2+(y +1)2=1C .(x -2)2+(y -1)2=5D .(x +2)2+(y +1)2=5解析:A 圆心为(2,1)且和x 轴相切的圆,它的半径为1,故它的方程是(x -2)2+(y -1)2=1,故选A .2.设a ∈R ,则“a >2”是“方程x 2+y 2+ax -2y +2=0的曲线是圆”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:A方程x 2+y 2+ax -2y +2=0的曲线是圆,则有D 2+E 2-4F =a 2+4-8>0,解得a >2或a <-2,则“a >2”是“a >2或a <-2”的充分不必要条件,所以“a >2”是“方程x 2+y 2+ax -2y +2=0的曲线是圆”的充分不必要条件.故选A .3.若x 2+y 2=8,则2x +y 的最大值为()A .8B .4C .210D .5解析:C 设2x +y =t ,则y =t -2x ,当直线y =t -2x 与x 2+y 2=8相切时,t 取到最值,所以|t |5≤22,解得-210≤t ≤210,所以2x +y 的最大值为210,故选C .4.已知圆C :(x -3)2+(y -1)2=1和两点A (-t,0),B (t,0)(t >0),若圆C 上存在点P ,使得∠APB =90°,则t 的取值范围是()A .(0,2]B .[1,2]C .[2,3]D .[1,3]解析:D圆C :(x -3)2+(y -1)2=1的圆心C (3,1),半径为1,因为圆心C 到O (0,0)的距离为2,所以圆C 上的点到O (0,0)的距离最大值为3,最小值为1,又因为∠APB =90°,则以AB 为直径的圆和圆C 有交点,可得|PO |=12|AB |=t ,所以有1≤t ≤3,故选D .5.点M 为圆C :(x +2)2+(y +1)2=1上任意一点,直线(1+3λ)x +(1+2λ)y =2+5λ过定点P ,则|MP |的最大值为()A .23B .13C .23+1D .13+1解析:D 整理直线方程得:(x +y -2)+(3x +2y -5)λ=0+y -2=0,x +2y -5=0得=1,=1,∴P (1,1),由圆的方程知圆心C (-2,-1),半径r =1,∴|MP |max =|CP |+r =(-2-1)2+(-1-1)2+1=13+1.故选D .6.(多选)已知圆x 2+y 2-4x -1=0,则下列关于该圆说法正确的有()A .关于点(2,0)对称B .关于直线y =0对称C .关于直线x +3y -2=0对称D .关于直线x -y +2=0对称解析:ABCx 2+y 2-4x -1=0⇒(x -2)2+y 2=5,所以圆心的坐标为(2,0),半径为5.A项,圆是关于圆心对称的中心对称图形,而点(2,0)是圆心,所以本选项正确;B 项,圆是关于直径所在直线对称的轴对称图形,直线y =0过圆心,所以本选项正确;C 项,圆是关于直径所在直线对称的轴对称图形,直线x +3y -2=0过圆心,所以本选项正确;D 项,圆是关于直径所在直线对称的轴对称图形,直线x -y +2=0不过圆心,所以本选项不正确.故选A 、B 、C .7.(多选)已知圆C 关于y 轴对称,经过点(1,0)且被x 轴分成两段,弧长比为1∶2,则圆C 可能的方程为()A .x 2=43B .x 2=43C .(x -3)2+y 2=43D .(x +3)2+y 2=43解析:AB由题意知圆心在y 轴上,且被x 轴所分劣弧所对圆心角为2π3,设圆心C (0,a ),半径为r ,则r sin π3=1,r cos π3=|a |,解得r =23,即r 2=43,|a |=33,即a =±33,故圆C的方程为x 2=43.8.已知三个点A (0,0),B (2,0),C (4,2),则△ABC 的外接圆的圆心坐标是________.解析:设圆的方程为x 2+y 2+Dx +Ey +F =0,则=0,+2D +F =0,+4D +2E +F =0,解得=-2,=-6,=0,所以圆的方程为x 2-2x +y 2-6y =0,即(x -1)2+(y -3)2=10,所以圆心坐标为(1,3).答案:(1,3)9.已知点P 为圆C :x 2+y 2-4x -2y +1=0上任意一点,A ,B 为直线3x +4y +5=0上的两动点,且|AB |=2,则△ABP 的面积的取值范围是________.解析:圆C 的标准方程为(x -2)2+(y -1)2=4,圆心C (2,1),半径r =2,圆心C 到直线3x +4y +5=0的距离d =|6+4+5|32+42=3,设P 到直线AB 的距离为h ,则S △ABP =12·|AB |·h=h ,∵d -r ≤h ≤d +r ,∴1≤h ≤5,∴S △ABP ∈[1,5],即△ABP 的面积的取值范围为[1,5].答案:[1,5]10.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410.(1)求直线CD 的方程;(2)求圆P 的方程.解:(1)直线AB 的斜率k =1,AB 的中点坐标为(1,2).所以直线CD 的方程为y -2=-(x -1),即x +y -3=0.(2)设圆心P (a ,b ),则由点P 在CD 上得a +b -3=0.①又直径|CD |=410,所以|PA |=210.所以(a +1)2+b 2=40.②=-3,=6=5,=-2,所以圆心P (-3,6)或P (5,-2),所以圆P 的方程为(x +3)2+(y -6)2=40或(x -5)2+(y +2)2=40.11.瑞士数学家欧拉在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.若已知△ABC 的顶点A (-4,0),B (0,4),其欧拉线方程为x -y +2=0,则顶点C 的坐标可以是()A .(1,3)B .(3,1)C .(-2,0)D .(0,-2)解析:D ∵A (-4,0),B (0,4),∴AB 的垂直平分线方程为x +y =0,又外心在欧拉线x-y +2=0+y =0,-y +2=0,解得三角形ABC 的外心为G (-1,1),又r =|GA |=(-1+4)2+(1-0)2=10,∴△ABC 外接圆的方程为(x +1)2+(y -1)2=10.设C (x ,y ),则三角形ABC 即x -43-y +43+2=0.整理得x -y -2=0.联x +1)2+(y -1)2=10,-y -2=0,=0,=-2=2,=0.∴顶点C 的坐标可以是(0,-2).故选D .12.写出一个关于直线x +y -1=0对称的圆的方程____________.解析:设圆心坐标为C (a ,b ),因为圆C 关于x +y -1=0对称,所以C (a ,b )在直线x +y -1=0上,则a +b -1=0,取a =1⇒b =0,设圆的半径为1,则圆的方程(x -1)2+y 2=1.答案:(x -1)2+y 2=1(答案不唯一)13.已知A (-2,0),B (2,0),动点M 满足|MA |=2|MB |,则点M 的轨迹方程是____________________;又若MA ―→·MB ―→=0,此时△MAB 的面积为________.解析:设M (x ,y ),由|MA |=2|MB |,得(x +2)2+y 2=2(x -2)2+y 2,整理得3x 2+3y 2-20x +12=0.以AB 为直径的圆的方程为x 2+y 2=4,x 2+3y 2-20x +12=0,2+y 2=4,解得|y |=85.即M 点的纵坐标的绝对值为85.此时△MAB 的面积为S =12×4×85=165.答案:3x 2+3y 2-20x +12=016514.已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求点M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积.解:圆C :x 2+(y -4)2=42,故圆心为C (0,4),半径为4.(1)当C ,M ,P 三点均不重合时,∠CMP =90°,所以点M 的轨迹是以线段PC 为直径的圆(除去点P ,C ),线段PC 中点为(1,3),12|PC |=12(2-0)2+(2-4)2=2,故M 的轨迹方程为(x -1)2+(y -3)2=2(x ≠2,且y ≠2或x ≠0,且y ≠4).当C ,M ,P 三点中有重合的情形时,易求得点M 的坐标为(2,2)或(0,4).综上可知,点M 的轨迹是一个圆,轨迹方程为(x -1)2+(y -3)2=2.(2)由(1)可知点M 的轨迹是以点N (1,3)为圆心,2为半径的圆.法一(几何法):由于|OP |=|OM |,故O 在线段PM 的垂直平分线上.又P 在圆N 上,从而ON⊥PM.因为ON的斜率为3,所以直线l的斜率为-13,故直线l的方程为y=-13x+83,即x+3y-8=0.又易得|OM|=|OP|=22,点O到直线l的距离为812+32=4105,|PM|==4105,所以△POM的面积为12×4105×4105=165.法二(代数法):设M(x,y),由|OM|=|OP|=22得x2+y2=8,2+y2=8,①-1)2+(y-3)2=2,②①-②得直线l方程为x+3y-8=0,将x=8-3y代入①得5y2-24y+28=0,解得y1=145,y2=2.从而x1=-25,x2=2.所以M-25,|PM|==4105.又点O到l距离d=812+32=4105,所以△POM的面积S=12|PM|·d=12×4105×4105=165.15.(多选)设有一组圆C k:(x-k)2+(y-k)2=4(k∈R),下列命题正确的是()A.不论k如何变化,圆心C始终在一条直线上B.所有圆C k均不经过点(3,0)C.经过点(2,2)的圆C k有且只有一个D.所有圆的面积均为4π解析:ABD圆心坐标为(k,k),在直线y=x上,A正确;令(3-k)2+(0-k)2=4,化简得2k2-6k+5=0,∵Δ=36-40=-4<0,∴2k2-6k+5=0无实数根,B正确;由(2-k)2+(2-k)2=4,化简得k2-4k+2=0,∵Δ=16-8=8>0,有两不等实根,∴经过点(2,2)的圆C k有两个,C错误;由圆的半径为2,得圆的面积为4π,D正确.故选A、B、D.16.已知曲线T:F(x,y)=0,对坐标平面上任意一点P(x,y),定义F[P]=F(x,y),若两点P,Q满足F[P]·F[Q]>0,称点P,Q在曲线T同侧;F[P]·F[Q]<0,称点P,Q在曲线T 两侧.(1)直线过l原点,线段AB上所有点都在直线l同侧,其中A(-1,1),B(2,3),求直线l 的斜率的取值范围;(2)已知曲线F(x,y)=(3x+4y-5)4-x2-y2=0,O为坐标原点,求点集S={P|F[P]·F[O]>0}的面积.解:(1)由题意,显然直线l斜率存在,设方程为y=kx,则F(x,y)=kx-y=0,因为A(-1,1),B(2,3),线段AB上所有点都在直线l同侧,则F[A]·F[B]=(-k-1)(2k-3)>0,解得-1<k<3 2.(2)因为F[O]<0,所以F[P]=(3x+4y-5)·4-x2-y2<0,x+4y-5<0,2+y2<4,点集S为圆x2+y2=4在直线3x+4y-5=0下方内部,如图所示,设直线与圆的交点为A,B,则O到AB的距离为1,故∠AOB=2π3,因此,所求面积为S=12·4π3·22+12·32·22=8π3+3.。
高二数学圆的标准方程与一般方程试题答案及解析
高二数学圆的标准方程与一般方程试题答案及解析1.以为圆心且过原点的圆的方程为_____________.【答案】.【解析】由题意,得所求圆的半径,则所求圆的标准方程为.【考点】圆的标准方程.2.已知以点为圆心的圆与直线相切,过点的动直线与圆相交于两点.(1)求圆的方程;(2)当时,求直线的方程.【答案】(1);(2)或.【解析】(1)由直线与以为圆心的圆相切得到该圆的半径,然后根据圆心的坐标与半径即可写出圆的标准方程;(2)先由弦的长与圆的半径得到圆心到直线的距离,进而设出直线的方程(注意检验直线斜率不存在的情况),由点到直线的距离公式即可算出的取值,从而可写出直线的方程.试题解析:(1)由题意知到直线的距离为圆半径圆的方程为(2)设线段的中点为,连结,则由垂径定理可知,且,在中由勾股定理易知当动直线的斜率不存在时,直线的方程为时,显然满足题意;当动直线的斜率存在时,设动直线的方程为:由到动直线的距离为1得或为所求方程.【考点】1.圆的标准方程;2.点到直线的距离公式;3.直线与圆的位置关系.3.已知圆的圆心与点关于直线对称,直线与圆相交于两点,且,求圆的方程.【答案】.【解析】先设点,根据对称的特征,直线的斜率与直线的斜率互为负倒数,且线段的中点在直线上,列出方程组,求解可得圆心,接着计算圆心到直线的距离,最后由弦长、圆心到直线的距离及的平方关系:计算出半径,根据圆心的坐标与半径即可写出圆的标准方程.试题解析:设点关于直线的对称点为则由 4分故圆心到直线的距离 6分所以圆的半径的平方 8分故圆的方程为 10分.【考点】1.圆的标准方程;2.直线与圆的位置关系.4.圆心为,且经过点的圆的标准方程为.【答案】.【解析】由题得半径r=,根据圆的标准方程公式可得圆的标准方程为:.【考点】圆的标准方程.5.已知圆经过坐标原点和点,且圆心在轴上.(1)求圆的方程;(2)设直线经过点,且与圆相交所得弦长为,求直线的方程.【答案】(1);(2)或【解析】(1)本题求圆的方程,已知圆上两点即圆心的纵坐标,所以需要求出圆的半径和圆心的横坐标两个值即可确定圆的方程,通过列解方程即可求出相应的量,该题的半径的长刚好就是圆心的横坐标的值,这个条件要用上.(2)该小题是直线与圆的位置关系问题,特别要先判断直线的斜率不存在的时候的情况,通过画图可知符合条件,其次是斜率存在时,通过重点三角形(弦心距,半弦长,半径)的关系可以求出弦心距的长,从而再用圆心到直线的距离公式求出直线的斜率,又过已知点即可写出直线方程.试题解析:(1)设圆的圆心坐标为,依题意,有,即,解得,所以圆的方程为.(2)依题意,圆的圆心到直线的距离为,所以直线符合题意.另,设直线方程为,即,则,解得,所以直线的方程为,即.综上,直线的方程为或.【考点】1.直线与圆的关系.2.圆的标准方程.3.分类归纳思想.4.运算能力的锻炼.6.圆关于A(1,2)对称的圆的方程为【答案】【解析】圆关于点对称圆,先找圆心关于点的对称点,半径不变,可以得到对称圆的方程【考点】圆关于点对称7.已知圆过直线和圆的交点,且原点在圆上.则圆的方程为.【答案】【解析】根据题意可设圆的方程为:,因为原点在圆上,故.所以所求圆的方程为.【考点】直线与圆的位置关系,圆的标准方程.8.已知圆:+=1,圆与圆关于直线对称,则圆的方程为()A.+=1B.+=1C.+=1D.+=1【解析】由两圆关于直线对称可知两圆心与关于直线对称,且半径相等,因(-1,1)关于直线的对称点(2,-2),故圆:+=1,选B.【考点】圆的标准方程.9.已知圆方程为.(1)求圆心轨迹的参数方程C;(2)点是(1)中曲线C上的动点,求的取值范围.【答案】(1)(2)-≤2x+y≤。
圆的标准方程与一般方程(含参考答案)
圆的标准方程与一般方程知识要点:1. 平面内与定点距离等于定长的点的集合(轨迹)是圆,定点是圆心,定长是半径。
2.以()b a C ,为圆心,r 为半径的圆的标准方程是: 。
3. 过圆222r y x =+上一点()00,y x P 的圆的切线是:200r y y x x =+。
4.圆的一般方程:()0402222>-+=++++F E D F Ey Dx y x ;5.点与圆的位置关系:点在圆上: 圆内: 圆外:例1. 已知一圆与直线3x+4y-2=0相切于点P (2,-1),且截x 轴的正半轴所得的弦的长为8,求此圆的标准方程. ()()253522=-+-y x例2、求过点A (2,-3)、B (-2,-5)且圆心在直线x-2y-3=0上的圆的方程.()()102122=+++y x例3、求过三点A (1,1)B (3,1)和C (5,3)的圆的方程.0108422=+--+y x y x一、选择题1、若一圆的标准方程为(x-1)2+(y+5)2=3,则此圆的的圆心和半径分别为 (b ) A.(-1,5),3 B.(1,-5), 3 C.(-1,5),3 D.(1,-5),32、圆13)2()3(22=++-y x 的周长是( b )A.π13B. π132C. π2D. π323、圆x 2+y 2+Dx+Ey+F=0的圆心坐标为(-2,3)半径为4,则D ,E ,F 分别是( d )A.-4、-6、3B.-4、6、3C.-4、6、–3D. 4、-6、-34、已知圆的方程是122=+y x ,则它的在y 轴上的截距为2的切线方程是(c)A 、02=+-y xB 、02=-+y xC 、02=+-y x 与02=-+y xD 、02=++y x 与02=-+y x5.点)5,(2m 与圆2422=+y x 的位置关系是(A) A.点在圆外 B.点在圆内 C.点在圆上 D.不能确定6. 已知直线l 的方程为34250x y +-=,则圆221x y +=上的点到直线l 的距离的最小值是(B)A. 3B. 4C. 5D. 67.已知圆:M 2)2()3(22=-+-y x ,直线03:=-+y x l ,点)1,2(P ,那么(C) A.点P 在直线l 上,但不在圆M 上 B. 点P 在圆M 上,但不在直线l 上C. 点P 既在圆M 上,又在直线l 上D. 点P 既不在圆M 上,又不在直线l 上8.过两点P(2,2),Q(4,2) 且圆心在直线0x y -=上的圆的标准方程是(A)A .22(3)(3)2x y -+-= B. 22(3)(3)2x y +++= C. 22(3)(3)2x y -+-= D. 22(3)(3)2x y +++=二、填空题1、圆()003322222>=+--+a a ay ax y x 的半径为 ;圆心坐标为 。
高中数学 (知识导学+例题解析+达标训练)4.1 圆的标准方程与圆的一般方程 新人教A版必修2
4.1 圆的标准方程与圆的一般方程一、知识导学:1、掌握圆的标准方程、一般方程的代数特征,能根据圆心、半径写出圆的标准方程,会用待定系数法求圆的标准方程和一般方程;2、会根据圆的一般方程确定圆的圆心、半径;3、能通过配方等手段,把圆的一般方程化为标准方程,掌握方程220x y Dx Ey F ++++=表示圆的条件.二、基础知识(圆的标准方程):1、确定圆的两种方法:(1)圆心半径定圆:圆心确定圆的________,半径确定圆的________。
(2)____________________________的三点确定一个圆。
引例:求过三点O (0,0),A (1,1),B (4,2)的圆的圆心坐标和半径长。
2、圆是到定点的距离等于定长的点的集合。
在平面直角坐标系中:圆心A (a ,b ),半径为r (a ,b ,r 都是常数),点M (x ,y )为圆上任意一点,则该圆可用集合表示为_________________________。
圆的标准方程为:_________________________________。
当圆的圆心在原点时,圆的方程为________________________。
引例中的圆的标准方程为_______________________________。
3、点M (00,x y )与圆222()()x a y b r -+-=的位置关系:(1)22200()()x a y b r -+->,点M 在圆外;(2)22200()()x a y b r -+-=,点M 在圆上;(3)22200()()x a y b r -+-<,点M 在圆内。
例1、写出圆心为A (2,-3),半径长等于5的圆的方程,并判断点1M (5,-7),2(1)M -是否在这个圆上.例2、△ABC 的三个顶点的坐标是A (5,1),B (7,-3),C (2,-8),求它的外接圆的方程。
10.2 圆的方程(精讲)(基础版)(原卷版)
10.2 圆的方程(精讲)(基础版)思维导图考点呈现考点一 圆的方程【例1-1】(2021白云期末)已知圆C 的方程为222440x y x y ++--=,则圆心C 的坐标为( )A .()12-, B .()12-, C .()24-,D .()24-,【例1-2】(2022成都)已知圆C 的圆心在直线0x y +=上,且圆C 与y 轴的交点分别为()()0402A B -,,,,则圆C 的标准方程为( ) A .22(1)(1)10x y -++= B .22(1)(1)10x y ++-= C .22(1)(1)10x y -++=D .22(1)(1)10x y ++-=【一隅三反】1.(2022·江西模拟)设甲:实数0a <;乙:方程2230x y x y a +-++=是圆,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.(2022和平)圆心在x 轴上,半径为2,且过点()12,的圆的方程为( ) A .224x y += B .22(1)4x y -+= C .22(2)4x y -+=D .22(3)4x y -+=3.(2022杭州)过点(7,-2)且与直线2360x y -+=相切的半径最小的圆方程是( )A .()()22515x y -++=B .()()225113x y -+-=例题剖析C .()()224413x y -++=D .()()221652x y -++=考点二 直线与圆的位置关系【例2-1】(2022高二下·玉溪期末)已知直线l 经过点(13)P ,,且l 与圆2210x y +=相切,则l 的方程为( ) A .3100x y +-=B .380x y -+=C .360x y +-=D .23110x y +-=【例2-2】(2022·温州)已知直线10kx y k -+-=与圆22(2)1x y -+=有两个不同的交点,则实数k 的取值范围是( )A .304⎡⎤-⎢⎥⎣⎦,B .304⎛⎫ ⎪⎝⎭,C .304⎡⎤⎢⎥⎣⎦, D .304⎛⎫- ⎪⎝⎭,【例2-3】(2022·柳州模拟)已知直线 (0)y kx k => 与圆 ()()22214C x y -+-=: 相交于A ,B 两点 AB =,则k =( ) A .15B .43C .12D .512【一隅三反】1.(2022·秦皇岛二模)直线0l x y +=:被圆226430C x y x y +---=:截得的弦长为( )A B C D2.(2022·呼和浩特模拟)直线l : 12y kx k =+- 与函数 y =的图象有两个公共点,则k 的取值范围为( ) A .13k >B .03k <<C .103k <≤D .30k -≤<3.(2022·贵阳模拟)已知直线10l x my -=:和22(1)0(R)l x my m m -+-=∈:与圆C 都相切,则圆C 的面积的最大值是( ) A .2π B .4π C .8π D .16π4.(2022·鞍山模拟)(多选)已知M 为圆C :()2212x y ++=上的动点,P 为直线l :40x y -+=上的动点,则下列结论正确的是( )A .直线l 与圆C 相切B .直线l 与圆C 相离C .|PM|的最大值为2 D .|PM|的最小值为2考点三 圆与圆的位置关系【例3-1】(2022高一下·汉中期中)已知2212220C x y x y +++-=:,2224210C x y x y +--+=:,那么它们的位置关系是( )A .外离B .相切C .相交D .内含【例3-2】(2022·吉林模拟)已知两圆方程分别为224x y +=和()()22349x y -+-=.则两圆的公切线有( )A .1条B .2条C .3条D .4条【一隅三反】1.(2022·石家庄模拟)(多选)已知圆221(1)(3)11C x y -+-=:与圆22222230C x y x my m ++-+-=:,则下列说法正确的是( )A .若圆2C 与x 轴相切,则2m =B .若3m =-,则圆1C 与圆2C 相离C .若圆1C 与圆2C 有公共弦,则公共弦所在的直线方程为24(62)20x m y m +-++=D .直线210kx y k --+=与圆1C 始终有两个交点2.(2022·徐汇期末)已知圆221(2)(2)1C x y -+-=:和圆2222()(0)C x y m m m +-=>:内切,则m 的值为 .3(2022广安期末)若圆221()(1)10(0)C x m y m -+-=>:平分圆222(1)(1)2C x y +++=:的周长,则直线3420x y +-=被圆1C 所截得的弦长为 .考点四 切线问题【例4-1】(2022·天津市模拟)过点()31M ,作圆222620x y x y +--+=的切线l ,则l 的方程为( ) A .40x y +-= B .40x y +-=或3x = C .20x y --=D .20x y --=或3x =【例4-2】(2022·湖北模拟)若圆22C 4230x y x y +-++=:关于直线260ax by ++=对称,则从点()a b ,向圆C 作切线,切线长最小值为( ) A .2B .3C .4D .6【一隅三反】1.(2022·朝阳模拟)过点(12),作圆225x y +=的切线,则切线方程为( ) A .1x = B .3450x y -+= C .250x y +-=D .1x =或250x y +-=2.(2022·广西模拟)过圆221x y +=上一点A 作圆22(4)4x y -+=的切线,切点为B ,则||AB 的最小值为( )A .2B C D3.(2022高二下·番禺期末)写出与圆221x y +=和圆()()224316x y -++=都相切的一条切线方程 .。
高一数学圆的标准方程与一般方程试题答案及解析
高一数学圆的标准方程与一般方程试题答案及解析1.已知曲线C:(1)当为何值时,曲线C表示圆;(2)在(1)的条件下,若曲线C与直线交于M、N两点,且,求的值.(3)在(1)的条件下,设直线与圆交于,两点,是否存在实数,使得以为直径的圆过原点,若存在,求出实数的值;若不存在,请说明理由.【答案】(1);(2);(3)存在实数使得以为直径的圆过原点,.【解析】(1)二元二次方程表示圆的充要条件为(2)(2)直线和圆相交,根据半径,弦长的一半,圆心距求弦长.(3)圆的弦长的常用求法:(1)几何法:求圆的半径,弦心距,弦长,则(2)代数方法:运用根与系数的关系及弦长公式;(3)与圆有关的探索问题:第一步:假设符合条件的结论存在;第二步:从假设出发,利用直线与圆的位置关系求解;第三步,确定符合要求的结论存在或不存在;第四步:给出明确结果;第五步:反思回顾,查看关键点.试题解析:解:(1)由D2+E2-4F=4+16-4m=20-4m>0,得m<5. 3分(2),即,所以圆心C(1,2),半径, 4分圆心C(1,2)到直线的距离 5分又,,即,. 6分(3)假设存在实数使得以为直径的圆过原点,则,设,则, 7分由得, 8分,即,又由(1)知,故 9分10分11分12分故存在实数使得以为直径的圆过原点,. 13分【考点】(1)二元二次方程表示圆的条件;(2)弦长公式的应用;(3)探索性问题.2.求圆心在直线2x﹣y﹣3=0上,且过点A(5,2)和点B(3,2)的圆的方程.【答案】.【解析】(1)确定圆的方程常用待定系数法,其步骤为:一根据题意选择标准方程或一般方程;二是根据题设条件列出关于的方程或一般方程;三是由方程组求出待定的系数,代入所设的圆的方程;(2)在求圆的方程时,常用到圆的以下几个性质:一是圆心在过切点且与切线垂直的直线上;二是圆心在任一弦的中垂线上;两圆内切或外切时,切点与两圆圆心三点共线;(3)解方程组时,把所求的值代入检验一下是否正确.试题解析:解:设圆心的坐标为(,2﹣3),由点(5,2)、点(3,2),=,可得(﹣5)2+(2﹣3﹣2)2=(﹣3)2+(2﹣3﹣2)2,求得=4,故圆心为(4,5),半径为=,故所求的圆的方程为.【考点】圆的方程的求法.3.若方程表示圆心在第四象限的圆,则实数的范围为 .【答案】【解析】由方程可得,因为圆心在第四象限,则有,解得.故答案为.【考点】圆的方程.4.已知圆与直线相切于点,其圆心在直线上,求圆的方程.【答案】【解析】设圆的方程为,再设过圆心及点且与直线垂直的直线,即可求出直线,再将圆心带入直线和直线可列方程组,即可求得圆心坐标,最后再将点带入圆的方程即可求出半径.试题解析:设圆的方程为,其中圆心,半径为,由题意知圆心在过点且与直线垂直的直线上,设上,把点代入求得.由,得圆心..所以圆的方程为.【考点】圆的方程.5.已知圆心为C的圆经过点和,且圆心C在直线:上,求圆心为C的圆的标准方程.【答案】【解析】利用,圆心在上,建立关于圆心坐标的方程组,求出圆心坐标,进而求得半径,可得圆的标准方程.解:设圆心C的坐标为,由题可得,与联立解得;,故圆的标准方程为.【考点】圆的标准方程.6.求圆心在直线上,与轴相切,且被直线截得的弦长为的圆的方程.【答案】或【解析】设圆心,由题意可得半径,求出圆心到直线的距离d,再利用垂径定理,解得的值,从而得到圆心坐标和半径,由此求出圆的方程.试题解析:解:设所求圆的圆心为,半径为,依题意得:且,(2分)圆心到直线的距离,(4分)由“,,半弦长”构成直角三角形,得,(6分)解得:,(7分)当时,圆心为,半径为,所求圆的方程为;当时,圆心为,半径为,所求圆的方程为;(11分)综上所述,所求圆的方程为或.(12分)【考点】求圆的方程7.圆的面积为;【答案】【解析】写成标准方程,所以,那么圆的面积公式等于.【考点】圆的标准方程与圆的一般方程8.圆:与圆:的位置关系是( )A.相交B.外切C.内切D.相离【答案】A【解析】因为圆:与圆:分别化为.所以两圆心坐标分别为,.半径分别为5,.因为,又.所以两圆相交故选A.【考点】1.两圆的位置关系.2.圆的标准方程.3.配方法的思想.9.已知圆经过点和,且圆心在直线上.(1)求圆的方程;(2)若点为圆上任意一点,求点到直线的距离的最大值和最小值.【答案】(1);(2).【解析】(1)求圆的方程只要找出圆心和半径即可,本题圆心为线段AB的中垂线和已知直线x-y=0的交点,求出圆心后再求出半径即可;(2)圆上点P到直线的距离最大值为圆心到直线距离加半径.试题解析:(1) 的中点坐标为,∴圆心在直线上, 1分又知圆心在直线上,∴圆心坐标是,圆心半径是, 4分∴圆方程是; 7分(2)设圆心到直线的距离,∴直线与圆相离, 9分∴点到直线的距离的最大值是, 12分最小值是. 15分【考点】圆的方程,圆的性质,点到直线距离.10.求半径为,圆心在直线:上,且被直线:所截弦的长为的圆的方程.【答案】圆的方程为:和.【解析】由圆心在直线:上,设出圆心C的坐标为,则,又圆的半径为2,且被直线:所截弦的长为,利用点到直线的距离公式表示出圆心到直线:的距离,解得到的值,进而确定出圆心C的坐标,由圆心和半径写出圆的方程即可.试题解析:.解:设所求圆的圆心为,则圆心到直线的距离根据题意有:解方程组得:,所以,所求的圆的方程为:和(或和)(12分)【考点】本题考查直线与圆相交的性质、圆的标准方程、点到直线的距离公式,当直线与圆相交时,由弦长的一半,圆的半径及弦心距构造直角三角形,利用勾股定理来解决问题.11.已知点动点P满足.(Ⅰ)若点的轨迹为曲线,求此曲线的方程;(Ⅱ)若点在直线:上,直线经过点且与曲线有且只有一个公共点,求的最小值.【答案】(Ⅰ) ;(Ⅱ)【解析】(Ⅰ)本题属直接法求轨迹方程,即根据题意列出方程,化简整理即可。
圆的标准方程、圆的一般方程+高二上学期数学北师大版(2019)选择性必修第一册
学习重点
圆的一般方程的代数特征,一般方程与标准方程间的互化, 根据已知条件确定方程中的系数,求得圆的标准方程
学习难点
对圆的一般方程的认识、掌握和运用,用待定系数法求圆的标 准方程
新课导入
在上一节课中,我们又重新学习了直线. 我们通过在平面直角坐标系中,建 立了直线上的点与方程的解一一对应的关系,从而得到了直线的方程, 实现 了用代数运算来解决直线的位置关系和距离关系等几何问题.
思考一下
以方程①的解为坐标点一定在圆 C 上吗?
设以方程①的任意解x, y为坐标的点记为点Q ,
因为 x, y是方程①的解,代入方程①可得:x a2 y b2 r 2
等式两边同时开方得: x a2 y b2 r r.
所以 QC r 即点Q 在圆 C 上 综上所述,以 C 为圆心,r 为半径的圆与方程①是一一对应的.故我们称方程①
(1)求以点 A 为圆心,且经过点 B 的圆的方程;
(2)求以 AB 为直径的圆的方程.
解:
(1)根据已知条件,设圆的标准方程为 x a2 y b2 r 2
由圆 A 经过点 B 3, 2 ,得 3 1 2 2 2 2 r2 , 解得 r2 =20 , 所以圆 A 的方程为 x 1 2 y 2 2 20
弦 AB 的中垂线
总结:一个圆是由圆心和半径确定,也是由其方程中 的唯一值确定
例 3. 求经过 A1,3, B4,2 两点,且圆心C 在直线 l : x y 3 0 上的圆的标准方
程.
解:解法1
设该圆的标准方程为 x a 2 y b 2 r2 .
由圆经过 A,B 两点且圆心 C 在直线 l 上,可得方程组 1 a 2 3 b 2 r 2; (1) 4 a 2 2 b 2 r 2; (2) a b 3 0;(3)
高二数学圆的标准方程与一般方程试题答案及解析
高二数学圆的标准方程与一般方程试题答案及解析1.已知圆的圆心在直线上,且与轴交于两点,.(1)求圆的方程;(2)求过点的圆的切线方程.【答案】(1);(2).【解析】(1)先联立直线的中垂线方程与直线方程,求出交点的坐标即圆心的坐标,然后再计算出,最后就可写出圆的标准方程;(2)求过点的圆的切线方程问题,先判断点在圆上还是在圆外,若点在圆上,则所求直线的斜率为,由点斜式即可写出切线的方程,若点在圆外,则可设切线方程为(此时注意验证斜率不存在的情形),然后由圆心到切线的距离等于半径,求出即可求出切线的方程.试题解析:(1)因为圆与轴交于两点,,所以圆心在直线上由得即圆心的坐标为 2分半径所以圆的方程为 4分(2)由坐标可知点在圆上,由,可知切线的斜率为 6分故过点的圆的切线方程为 8分.【考点】1.圆的方程;2.直线与圆的位置关系.2.已知圆C经过A(1,1)、B(2,)两点,且圆心C在直线l:x-y+1=0上,求圆C的标准方程.【答案】(x+3)2+(y+2)2=25.【解析】设圆心坐标为C(a,a+1),根据A、B两点在圆上利用两点的距离公式建立关于a的方程,解出a值,从而算出圆C的圆心和半径,可得圆C的方程.试题解析:∵圆心在直线x-y+1=0上,∴设圆心坐标为C(a,a+1),根据点A(1,1)和B(2,-2)在圆上,可得(a−1)2+(a+1−1)2=(a−2)2+(a+1+2)2,解之得a=-3,∴圆心坐标为C(-3,2),半径r2=(−3−1)2+(−3+1−1)2=25,r=5,∴此圆的标准方程是(x+3)2+(y+2)2=25.【考点】圆的标准方程.3.(本题11分)已知圆,过原点的直线与圆相交于两点(1) 若弦的长为,求直线的方程;(2)求证:为定值。
【答案】(1);(2)当不存在时,直线为,此时,当存在时,设直线,设,所以。
【解析】(1)设直线方程,所以,………3分解得所以直线方程为……………………………5分(2)当不存在时,直线为,此时……6分当存在时,设直线,设,消y得,……7分所以综上:……………………………11分另法:三点共线,(=【考点】直线与圆的综合应用。
圆的标准方程与一般方程题型归纳总结
圆的标准方程与一般方程【重难点精讲】重点一、圆重点二、点与圆的位置关系圆C:(x— a)2 + (y —b)2=r2(r>0),其圆心为(a,b),半径为r,点P(x。
,y o),设d = |PC|= J(X o a)2(y° b)2 .重点三、圆的一般方程(1)方程:当D2 + E2—4F>0时,方程x2 + y2 + Dx + Ey+F=0叫做圆的一般方程,其中圆心为C( —D,-f), 半径为「=N D2+E2_4F.(2)说明:方程x2+y2+Dx+Ey+F=0不一定表示圆.当且仅当D2+E2—4F>0时,表示圆:当D2+E2-4F=0时,表示一个点(—2, — E);当D2+E2—4F<0时,不表示任何图形.⑶用待定系数法”求圆的方程的大致步骤:①根据题意,选择圆的标准方程或圆的一般方程;②根据条件列出关于a、b、r或D、E、F的方程组;③解出a、b、r或D、E、F,代入标准方程或一般方程.重点四、二元二次方程Ax2+Bxy+Cy2 + Dx+Ey+F = 0 表示圆的条件是:A= C^O, B=0, D2+E2—4F>0.重点五、求轨迹方程的五个步骤: ①建系:建立适当的坐标系,用(x, y)表示曲线上任意一点M的坐标;②设点:写出适合条件P的点M的集合P={M|p(M)};③列式:用坐标(x, y)表本条件p(M),列出方程F(x, y)=0;④化简:化方程F(x, y) = 0为最简形式;⑤查漏、剔假:证明以化简后的方程的解为坐标的点都是曲线上的点.【典题精练】考点1、求圆的标准方程例1.已知三角形ABC的顶点坐标分别为A (4,1), B(1,5), C((1)求直线AB方程的一般式;(2)证明AABC为直角三角形;(3)求祥BC外接圆方程.准方程也能直接得到圆的圆心坐标和半径;(2)求解圆的标准方程时,一般先求出圆心和半径,再写方程. 考点2、判断点与圆的位置关系例2.已知圆过两点A 1,4、B 3,2,且圆心在直线y 0上.(1)求圆的标准方程;3,2);(1)直线AB方程为: y 15-1x-41-45,化简得:4x 3y-19=0;1- (-3)…k AB k BC=-1 ,贝U AB BC. .△ABC为直角三角形(3) ABC为直角三角形, ・.△ ABC外接圆圆心为AC中点半径为r=|ACL。
高三数学圆的标准方程与一般方程试题答案及解析
高三数学圆的标准方程与一般方程试题答案及解析1.已知点,圆:,过点的动直线与圆交于两点,线段的中点为,为坐标原点.(1)求的轨迹方程;(2)当时,求的方程及的面积【答案】(1);(2)的方程为; 的面积为.【解析】(1)先由圆的一般方程与标准方程的转化可将圆C的方程可化为,所以圆心为,半径为4,根据求曲线方程的方法可设,由向量的知识和几何关系:,运用向量数量积运算可得方程:;(2)由第(1)中所求可知M的轨迹是以点为圆心,为半径的圆,加之题中条件,故O在线段PM的垂直平分线上,又P在圆N上,从而,不难得出的方程为;结合面积公式可求又的面积为.试题解析:(1)圆C的方程可化为,所以圆心为,半径为4,设,则,,由题设知,故,即.由于点P在圆C的内部,所以M的轨迹方程是.(2)由(1)可知M的轨迹是以点为圆心,为半径的圆.由于,故O在线段PM的垂直平分线上,又P在圆N上,从而.因为ON的斜率为3,所以的斜率为,故的方程为.又,O到的距离为,,所以的面积为.【考点】1.曲线方程的求法;2.圆的方程与几何性质;3.直线与圆的位置关系2.圆心在直线上的圆与轴的正半轴相切,圆截轴所得弦的长为,则圆的标准方程为 .【答案】【解析】因为圆心在直线上,所以,可设圆心为.因为圆与轴相切,所以,半径,又因为圆截轴所得弦长为所以,.解得,故所求圆的方程为.【考点】圆的方程,直线与圆的位置关系.3.(2011•湖北)如图,直角坐标系xOy所在平面为α,直角坐标系x′Oy′(其中y′与y轴重合)所在的平面为β,∠xOx′=45°.(1)已知平面β内有一点P′(2,2),则点P′在平面α内的射影P的坐标为_________;(2)已知平面β内的曲线C′的方程是(x′﹣)2+2y2﹣2=0,则曲线C′在平面α内的射影C的方程是_________.【答案】(2,2);(x﹣1)2+y2=1.【解析】(1)由题意知点P′在平面上的射影P距离x轴的距离不变是2,距离y轴的距离变成2cos45°=2,∴点P′在平面α内的射影P的坐标为(2,2)(2)设(x′﹣)2+2y2﹣2=0上的任意点为A(x0,y),A在平面α上的射影是(x,y)根据上一问的结果,得到x=x0,y=y,∵,∴∴(x﹣1)2+y2=1,故答案为:(2,2);(x﹣1)2+y2=1.4.以抛物线y2=4x的焦点为圆心,且过坐标原点的圆的方程为()A.x2+y2+2x=0B.x2+y2+x=0C.x2+y2﹣x=0D.x2+y2﹣2x=0【答案】D【解析】因为已知抛物线的焦点坐标为(1,0),即所求圆的圆心,又圆过原点,所以圆的半径为r=1,故所求圆的方程为(x﹣1)2+y2=1,即x2﹣2x+y2=0,故选D.5.已知圆C1:(x+1)2+(y-1)2=1,圆C2与圆C1关于直线x-y-1=0对称,则圆C2的方程为()A.(x-1)2+(y+1)2=1 B.(x+2)2+(y-2)2=1 C.(x+1)2+(y-1)2=1 D.(x-2)2+(y+2)2=1【答案】D【解析】圆C1:(x+1)2+(y-1)2=1的圆心为(-1,1).圆C2的圆心设为(a,b),C1与C2关于直线x-y-1=0对称,∴解得圆C2的半径为1,∴圆C2的方程为(x-2)2+(y+2)2=1,选D6.点(1,1)在圆(x-a)2+(y+a)2=4内,则实数a的取值范围是________.【答案】(-1,1)【解析】∵点(1,1)在圆的内部,∴(1-a)2+(1+a)2<4,∴-1<a<1.7.在平面直角坐标系xOy中,二次函数f(x)=x2+2x+b(x∈R)与两坐标轴有三个交点.记过三个交点的圆为圆C.(1)求实数b的取值范围;(2)求圆C的方程;(3)圆C是否经过定点(与b的取值无关)?证明你的结论.【答案】(1)<1且b≠0.(2)x2+y2+2x-(b+1)y+b=0(3)C必过定点(-2,1)【解析】(1)令x=0,得抛物线与y轴的交点是(0,b),令f(x)=0,得x2+2x+b=0,由题意b≠0且Δ>0,解得b<1且b≠0.(2)设所求圆的一般方程为x2+y2+Dx+Ey+F=0,令y=0,得x2+Dx+F=0,这与x2+2x+b =0是同一个方程,故D=2,F=b,令x=0,得y2+Ey+b=0,此方程有一个根为b,代入得E=-b-1,所以圆C的方程为x2+y2+2x-(b+1)y+b=0.(3)圆C必过定点(0,1),(-2,1).证明:将(0,1)代入圆C的方程,得左边=02+12+2×0-(b+1)×1+b=0,右边=0,所以圆C 必过定点(0,1);同理可证圆C必过定点(-2,1).8. P(x,y)在圆C:(x-1)2+(y-1)2=1上移动,试求x2+y2的最小值.【答案】3-2【解析】由C(1,1)得OC=,则OPmin =-1,即()min=-1.所以x2+y2的最小值为(-1)2=3-2.9.若圆心在x轴上、半径为的圆C位于y轴左侧,且被直线x+2y=0截得的弦长为4,则圆C的方程是()A.(x-)2+y2=5B.(x+)2+y2=5C.(x-5)2+y2=5D.(x+5)2+y2=5【答案】B【解析】设圆心为(a,0)(a<0),因为截得的弦长为4,所以弦心距为1,则d==1,解得a=-,所以,所求圆的方程为(x+)2+y2=5.10.与直线l:x+y-2=0和曲线x2+y2-12x-12y+54=0都相切的半径最小的圆的标准方程是.【答案】(x-2)2+(y-2)2=2【解析】【思路点拨】数形结合得最小圆的圆心一定在过x2+y2-12x-12y+54=0的圆心与直线x+y-2=0垂直的垂线段上.解:∵圆A:(x-6)2+(y-6) 2=18,∴A(6,6),半径r1=3,且OA⊥l,A到l的距离为5,显然所求圆B的直径2r2=2,即r2=,又OB=OA-r1-r2=2,由与x轴正半轴成45°角,∴B(2,2),∴方程为(x-2)2+(y-2)2=2.11.点P(4,-2)与圆x2+y2=4上任一点连线的中点的轨迹方程是() A.(x-2)2+(y+1)2=1B.(x-2)2+(y+1)2=4 C.(x+4)2+(y-2)2=4D.(x+2)2+(y-1)2=1【答案】A【解析】设圆上任一点为Q(x0,y),PQ的中点为M(x,y),则解得又因为点Q在圆x2+y2=4上,所以+=4,即(2x-4)2+(2y+2)2=4,即(x-2)2+(y+1)2=1.12.已知圆的方程为x2+y2-6x-8y=0,设该圆中过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积是().A.10B.20C.30D.40【答案】B【解析】配方可得(x-3)2+(y-4)2=25,其圆心为C(3,4),半径为r=5,则过点(3,5)的最长弦AC=2r=10,最短弦BD=2=4,且有AC⊥BD,则四边形ABCD的面积为S=AC×BD=20.13.已知点A(-3,0),B(3,0),动点P满足|PA|=2|PB|.(1)若点P的轨迹为曲线C,求此曲线的方程;(2)若点Q在直线l1:x+y+3=0上,直线l2经过点Q且与曲线C只有一个公共点M,求|QM|的最小值.【答案】(1)(x-5)2+y2=16(2)4【解析】(1)设点P的坐标为(x,y),且|PA|=2|PB|,则=2,化简得曲线C:(x-5)2+y2=16.(2)曲线C是以点(5,0)为圆心,4为半径的圆,如图.是此圆的切线,连接CQ,由直线l2则|QM|=,当CQ⊥l时,|CQ|取最小值,|CQ|=,此时|QM|的最小值为=4.114.过点引直线与曲线相交于两点,O为坐标原点,当的面积取最大值时,直线的斜率等于.【答案】-【解析】由得:;表示圆心在原点,半径的圆位于轴下方的部分(含端点);如下图:直线的方程为:,即,所以,当,即,整理得:又因为,所以,.故答案填:【考点】1、圆的标准方程;2、直线与圆的位置关系;3、数形结合.15.圆心在曲线上,且与直线相切的面积最小的圆的方程是_______。
高中数学圆与圆的方程圆的一般方程学案含解析北师大版必修
2.2 圆的一般方程考 纲 定 位重 难 突 破1.正确理解圆的一般方程及其特点.2.会由圆的一般方程求其圆心、半径.3.会依据不同条件利用待定系数法求圆的一般方程,并能简单应用.4.初步掌握点的轨迹方程的求法,并能简单应用.重点:用二元二次方程表示圆的条件及圆的一般方程解题.难点:圆与方程、不等式结合命题. 方法:数形结合思想在解题中的应用.授课提示:对应学生用书第49页[自主梳理]圆的一般方程1.方程:当D 2+E 2-4F >0时,方程x 2+y 2+Dx +Ey +F =0叫作圆的一般方程,其圆心为C (-D 2,-E 2),半径为r =12D 2+E 2-4F .2.说明:方程x 2+y 2+Dx +Ey +F =0不一定表示圆,当且仅当D 2+E 2-4F >0时,表示圆;当D 2+E 2-4F =0时,表示一个点(-D 2,-E2);当D 2+E 2-4F <0时,不表示任何图形.[双基自测]1.方程x 2+y 2+2x -4y -6=0表示的图形是( ) A .以(1,-2)为圆心,11为半径的圆 B .以(1,2)为圆心,11为半径的圆 C .以(-1,-2)为圆心,11为半径的圆 D .以(-1,2)为圆心,11为半径的圆解析:方程可化为(x +1)2+(y -2)2=11,可知该方程表示圆心为(-1,2),半径为11的圆. 答案:D2.如果方程2x 2+2y 2-ax +12=0表示的曲线是圆,则实数a 的取值范围是( )A .(-∞,-2)∪(2,+∞)B .RC .(-2,2)D .(-∞,-2]∪[2,+∞)解析:原方程可化为x 2+y 2-a 2x +14=0,所以方程表示圆的条件是⎝⎛⎭⎫-a 22-4×14>0,即a 2>4,解得a >2或a <-2.答案:A3.圆x 2+y 2-2x +6y +6=0的周长是________. 解析:圆的半径r =124+36-24=2.∴周长为2πr =4π. 答案:4π4.到两定点O (0,0),A (0,3)距离的比为12的点的轨迹方程为________.解析:设点P (x ,y )是所求轨迹上任意一点,则由题意可知|PO ||P A |=12,由两点间距离公式,上式可表示为x 2+y 2x 2+(y -3)2=12,化简整理得x 2+y 2+2y -3=0. 答案:x 2+y 2+2y -3=05.求过点A (1,2),B (1,0)且圆心在直线x -2y +1=0上的圆的方程. 解析:设所求圆的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0). 依题意得⎩⎪⎨⎪⎧D +2E +F +5=0,D +F +1=0,D 2-E -1=0,解得⎩⎪⎨⎪⎧D =-2,E =-2,F =1,所以圆的方程为x 2+y 2-2x -2y +1=0.授课提示:对应学生用书第49页探究一 判断二元二次方程是否表示圆[典例1] 判断方程x 2+y 2-4mx +2my +20m -20=0能否表示圆.若能表示圆,求出圆心和半径.[解析] 解法一 由方程x 2+y 2-4mx +2my +20m -20=0, 可知D =-4m ,E =2m ,F =20m -20,∴D 2+E 2-4F =16m 2+4m 2-80m +80=20(m -2)2, 因此,当m =2时,它表示一个点; 当m ≠2时,原方程表示圆的方程, 此时,圆的圆心为(2m ,-m ), 半径为r =12D 2+E 2-4F =5|m -2|.解法二 原方程可化为(x -2m )2+(y +m )2=5(m -2)2, 因此,当m =2时,它表示一个点; 当m ≠2时,表示圆的方程,此时,圆的圆心为(2m ,-m ),半径为r =5|m -2|.1.解决这种类型的题目,一般先看这个方程是否具备圆的一般方程的特征,即(1)x 2与y 2的系数是否相等;(2)不含xy 项.当它具有圆的一般方程的特征时,再看D 2+E 2-4F >0是否成立,也可以通过配方化成“标准”形式后,观察等号右边是否为正数.2.(1)圆的标准方程平方展开整理配方圆的一般方程.(2)由公式求半径和圆心坐标时,一定要注意圆的一般方程的形式,二次项系数相等且为1.1.已知方程x 2+y 2-2(t +3)x +2(1-4t 2)y +16t 4+9=0表示圆. (1)求实数t 的取值范围; (2)求该圆的半径r 的取值范围.解析:(1)∵方程x 2+y 2-2(t +3)x +2(1-4t 2)y +16t 4+9=0表示圆, ∴4(t +3)2+4(1-4t 2)2-4(16t 4+9)>0, 即7t 2-6t -1<0,解得-17<t <1.故实数t 的取值范围为(-17,1).(2)r 2=(t +3)2+(1-4t 2)2-(16t 4+9) =-7t 2+6t +1 =-7(t -37)2+167,∴r 2∈(0,167],∴r ∈(0,477],即r 的取值范围为(0,477]. 探究二 求圆的一般方程[典例2] (1)已知点A (2,-2),B (5,3),C (3,-1),求△ABC 的外接圆的方程; (2)已知一个圆经过P (4,-2),Q (-1,3)两点,且圆心到直线PQ 的距离为22,求该圆的方程.[解析] (1)设圆的方程为x 2+y 2+Dx +Ey +F =0, 依题意有⎩⎪⎨⎪⎧2D -2E +F =-8,5D +3E +F =-34,3D -E +F =-10,解得⎩⎪⎨⎪⎧D =8,E =-10F =-44.于是圆的方程为x 2+y 2+8x -10y -44=0.(2)依题意,设所求圆的方程为(x -a )2+(y -b )2=r 2(r >0), 则有(4-a )2+(-2-b )2=r 2,① (-1-a )2+(3-b )2=r 2,②又k PQ =3-(-2)-1-4=-1,于是PQ 所在直线的方程为y -3=-(x +1),即x +y -2=0, 因此有|a +b -2|2=22.③解①②③组成的方程组可得⎩⎪⎨⎪⎧ a =1,b =0,r =13或⎩⎪⎨⎪⎧a =2,b =1,r =13.于是所求圆的方程为(x -1)2+y 2=13或(x -2)2+(y -1)2=13.1.用待定系数法求圆的一般方程的步骤:(1)设出一般方程x 2+y 2+Dx +Ey +F =0;(2)根据题意,列出关于D ,E ,F 的方程组;(3)解出D ,E ,F 的值代入即得圆的一般方程.2.对圆的一般方程和标准方程的选择:(1)如果由已知条件容易求得圆心坐标和半径或需用到圆心坐标或半径来列方程组时,通常设圆的标准方程求解;(2)如果已知条件与圆心坐标和半径均无直接的关系,可通过设圆的一般方程求解.2.在平面直角坐标系xOy 中,曲线y =x 2-6x +1与坐标轴的交点都在圆C 上,求圆C 的方程.解析:法一:曲线y =x 2-6x +1与y 轴的交点为(0,1),与x 轴的交点为(3+22,0),(3-22,0),设圆的方程是x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),则有⎩⎪⎨⎪⎧1+E +F =0,(3+22)2+D (3+22)+F =0,(3-22)2+D (3-22)+F =0,解得⎩⎪⎨⎪⎧D =-6,E =-2,F =1,满足D 2+E 2-4F >0,故圆的方程是x 2+y 2-6x -2y +1=0.法二:曲线y =x 2-6x +1与y 轴的交点为(0,1),与x 轴的交点为(3+22,0),(3-22,0).故可设圆C 的圆心为(3,t ),则有32+(t -1)2=(22)2+t 2,解得t =1.则圆C 的半径为32+(t -1)2=3,所以圆C 的方程为(x -3)2+(y -1)2=9.探究三 圆的方程的综合应用[典例3] 如图所示,一座圆拱桥,当水面在图示位置时,拱顶离水面2 m ,水面宽12 m ,当水面下降1 m 后,水面宽多少米?[解析] 以圆拱桥顶为坐标原点,以过拱顶的竖直直线为y 轴,建立直角坐标系,设圆心为C ,水面所在弦的端点为A ,B ,则由已知得A (6,-2),B (-6,-2),设圆拱所在的圆的方程为x 2+y 2+Dx +Ey +F =0, 因为原点在圆上,所以F =0,另外点A ,点B 在圆上,所以⎩⎪⎨⎪⎧40+6D -2E =0,40-6D -2E =0.∴D =0,E =20,∴圆的方程为x 2+y 2+20y =0.当水面下降1 m 后,可设点A ′的坐标为(x 0,-3)(x 0>0),如图所示,将A ′的坐标(x 0,-3)代入圆的方程,求得x 0=51,所以,水面下降1 m 后,水面宽为2x 0=251(m).在解决圆在实际生活中的应用问题时,借助坐标系,利用方程求解可取得简便、精确的效果.应用解析法的关键是建系,合理适当的建系对问题的解决会有很大帮助.3.一辆卡车宽3 m ,要经过一个半径为5 m 的半圆形隧道(双车道,不得违章),则这辆卡车的平顶车篷篷顶距离地面的距离不得超过4 m ,试用数学知识进行验证.解析:建立如图所示的平面直角坐标系,则圆的方程为x 2+y 2=25(y >0),当x =3时,y =4,即高度不得超过4 m.圆的一般方程的应用[典例] (本题满分12分)已知方程x 2+y 2+ax +2ay +2a 2+a -1=0. (1)若此方程表示圆,求实数a 的取值范围;(2)求此方程表示的圆的面积最大时a 的值及此时圆的方程. [规范解答] (1)由条件知a 2+(2a )2-4(2a 2+a -1)>0.①2分 即3a 2+4a -4<0,所以-2<a <23.即实数a 的取值范围为⎝⎛⎭⎫-2,23.6分 (2)要使圆的面积最大,只需圆的半径最大即可, 由于r =12D 2+E 2-4F =12-3a 2-4a +4=12-3⎝⎛⎭⎫a +232+163.②9分 因为-2<a <23,所以a =-23时,r 取得最大值,从而圆的面积取得最大值,此时圆的方程为x 2+y 2-23x -43y -79=0.12分[规范与警示] (1)解题过程中①处根据一般式确定出关于a 的不等式是解题的关键,也是失分点.(2)在求圆的面积的最大值时,将面积问题转化为求半径的函数问题,利用函数最值的求法求圆的面积最大时a 的值,如②处,是又一失分点.[随堂训练] 对应学生用书第50页1.方程x 2+y 2-4x +4y +10-k =0表示圆,则k 的取值范围是( ) A .k <2 B .k >2 C .k ≥2D .k ≤2解析:依题意有(-4)2+42-4×(10-k )>0,解得k >2. 答案:B2.圆x 2+y 2-4x =0的圆心坐标和半径分别为( ) A .(0,2),2 B .(2,0),4 C .(-2,0),2D .(2,0),2解析:圆的方程可化为(x -2)2+y 2=4,可知圆心坐标为(2,0),半径为2.故选D. 答案:D3.若圆经过两点(2,0)和(0,-4),且圆心在直线y =-x 上,则其方程为________.解析:设圆的方程为x 2+y 2+Dx +Ey +F =0,依题意得⎩⎪⎨⎪⎧4+0+2D +F =0,0+16-4E +F =0,-D 2=-⎝⎛⎭⎫-E 2,解得⎩⎪⎨⎪⎧D =-6,E =6,F =8,所以圆的方程是x 2+y 2-6x +6y +8=0.答案:x 2+y 2-6x +6y +8=04.已知一个圆过点A (4,2),B (-1,3),且它在坐标轴上的截距之和为2,求此圆的方程. 解析:设该圆的一般方程为x 2+y 2+Dx +Ey +F =0, 令y =0,得x 2+Dx +F =0,所以该圆在x 轴上的截距之和为x 1+x 2=-D ; 令x =0,得y 2+Ey +F =0,所以该圆在y 轴上的截距之和为y 1+y 2=-E . 由题意,知x 1+x 2+y 1+y 2=-(D +E )=2, 所以D +E =-2.①又A (4,2),B (-1,3)两点在圆上, 所以16+4+4D +2E +F =0,② 1+9-D +3E +F =0,③由①②③,得D =-2,E =0,F =-12. 故所求圆的方程为x 2+y 2-2x -12=0.。
圆的一般方程及标准方程的转换(含每步提示及答案——原创材料)
圆的标准方程与一般方程的转换1. 已知方程x ²+y ²+Dx+Ey+F=0是圆的一般方程,则其标准方程为__________。
答案:(x+2D )²+(y+2E)²=2244D E F +-提示①:将原方程配方并整理 x ²+Dx+(2D )²+y ²+Ex+(2E )²—(2D )²—(2E)²+F=0 (x+2D )²+(y+2E)²—2244D E F +-=0提示②:将常数项移至方程右边.(x+2D )²+(y+2E)²=2244D E F +-2. 将圆的方程(x-a )²+(x-b )²=r ²化为一般方程的形式,结果为___________。
答案:x ²+y ²—2ax-2by+a ²+b ²—r ²=0 提示①:将原方程去掉括号并整理x ²+y ²—2ax —2by+a ²+b ²=r ²提示②:将方程右边化为0x ²+y ²—2ax —2by+a ²+b ²—r ²=03. 已知圆的一般方程为x ²+y ²+6x-8y=0,则其标准方程为___。
A 、(x —3)²+(y —4)²=25 B 、(x-3)²+(y-4)²=5 C 、(x+3)²+(y-4)²=25 D 、(x-3)²+(y —4)²=5 答案:C提示①:将原方程配方x ²+6x+3²+y ²—8y+4²-3²—4²=0(x+3)²+(y—4)²-25=0提示②:将常数项移至方程右边(x+3)²+(y—4)²=254.方程2(x+5)²+2y²=3表示一个圆,则这个圆的一般方程为___。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题05 圆的标准方程与一般方程 一、考情分析 二、考点梳理 知识点一圆的定义及方程 定义平面内到定点的距离等于定长的点的轨迹叫做圆 标准方程(x -a )2+(y -b )2=r 2 (r >0) 圆心C :(a ,b ) 半径:r 一般方程 x 2+y 2+Dx +Ey +F =0 (D 2+E 2-4F >0) 圆心:⎝⎛⎭⎫-D 2,-E 2 半径:r =D 2+E 2-4F 2 知识点二点与圆的位置关系(1)理论依据:点与圆心的距离与半径的大小关系.(2)三种情况圆的标准方程(x -a )2+(y -b )2=r 2,点M (x 0,y 0).①(x 0-a )2+(y 0-b )2=r 2⇔点在圆上;②(x 0-a )2+(y 0-b )2>r 2⇔点在圆外;③(x 0-a )2+(y 0-b )2<r 2⇔点在圆内.三、题型突破重难点1 圆的方程求圆的标准方程的常用方法包括几何法和待定系数法.〔1〕由圆的几何性质易得圆心坐标和半径长时,用几何法可以简化运算.对于几何法,常用到圆的以下几何性质:①圆中任意弦的垂直平分线必过圆心;②圆内的任意两条弦的垂直平分线的交点一定是圆心. 〔2〕由于圆的标准方程中含有三个参数a ,b ,r ,运用待定系数法时,必须具备三个独立的条件才能确定圆的方程.这三个参数反映了圆的几何性质,其中圆心〔a ,b 〕是圆的定位条件,半径r 是圆的定形条件.例1.〔1〕〔2021·江苏高二专题练习〕〔多项选择〕点()1,1在圆()()224x a y a -++=的内部,那么a 的取值不可能是〔〕A .2-B .12-C .12D .2〔2〕.〔2021福建莆田一中高二月考〕过点()()1,1,1,1A B --,且圆心在直线20x y +-=上的圆的方程是〔〕A .()()22314x y -++=B .()()22314x y ++-= C .()()22114x y -+-= D .()()22114x y +++= 〔3〕.〔2021·河南许昌市·高一期末〕以点(3,4)A -为圆心,且与y 轴相切的圆的标准方程为〔〕 A .22(3)(4)16x y ++-=B .22(3)(4)16x y -++=C .22()(34)9x y ++-=D .22(3)(4)9x y -++=〔4〕.〔2021·湖北〕以()3,1A --,()5,5B 两点为直径端点的圆的方程是〔〕A .()()2212100x y -++=B .()()221225x y +++= C .()()2212100x y -+-= D .()()221225x y -+-= 【变式训练1】.〔1〕〔2021·全国高二课时练习〕圆224630x y x y ++--=的标准方程为〔〕A .22(2)(3)16x y -+-=B .22(2)(3)16x y -++=C .22(2)(3)16x y ++-=D .22(2)(3)16x y +++=〔2〕.〔2021·全国高二课时练习〕过点(4,1)A 的圆C 与直线10x y --=相切于点(2,1)B ,那么圆C 的方程是〔〕A .22(5)2x y -+=B .22(3)4x y -+=C .22(5)4x y -+=D .22(3)2x y -+=例 2.〔2021·全国高二课时练习〕求以下各圆的方程:〔1〕圆心为()5,3M -且过点()8,1A --;〔2〕过()2,4A -,()1,3B -,()2,6C 三点;〔3〕圆心在直线350x y +-=上,且经过原点和点()3,1-.【变式训练2-1】.〔2021·全国高二课时练习〕分别根据以下条件,求圆的方程:〔1〕过点(4,0),(0,2)A B -和原点;〔2〕与两坐标轴均相切,且圆心在直线2350x y -+=上.重难点2 直线与圆的位置关系 判定直线与圆位置关系的常用方法:〔1〕几何法:根据圆心到直线的距离d 与圆半径r 的大小关系判断.〔2〕代数法:根据直线与圆的方程组成的方程组的解的个数判断.〔3〕直线系法:假设动直线过定点P ,那么点P 在圆内时,直线与圆相交;当P 在圆上时,直线与圆相切或相交;当P 在圆外时,直线与圆位置关系不确定.例3.〔1〕〔2021·全国高二课时练习〕直线l :10x y -+=与圆C :224210x y x y +--+=交于A 、B 两点,那么||AB =〔〕A .2B .22C .4D .42〔2〕.〔2021·全国高二单元测试〕〔多项选择题〕圆22410x y x +--=,那么以下说法正确的有〔〕 A .关于点(2,0)对称B .关于直线0y =对称C .关于直线320x y +-=对称D .关于直线20x y -+=对称〔3〕.〔2021·全国高二单元测试〕圆C :224210x y x y +--+=上的点到直线2140x y +-=距离的最大值为______.【变式训练3-1】.假设直线x -y +m =0被圆(x -1)2+y 2=5截得的弦长为23,那么m 的值为()A .1B .-3C .1或-3D .2【变式训练3-2】.圆C 的方程是x 2+y 2-8x -2y +8=0,直线y =a (x -3)被圆C 截得的弦最短时,直线方程为________.【变式训练3-3】.〔2021·上海高二课时练习〕假设圆22(1)(4)5x y -+-=的圆心到直线0x y a -+=的距离为22,那么a 的值为_________. 例4.〔2021·全国高二课时练习〕圆22:8120C x y y +-+=,直线:20l ax y a ++=.〔1〕当a 为何值时,直线l 与圆C 相切;〔2〕当直线l 与圆C 相交于A ,B 两点,且22AB =时,求直线l 的方程.【变式训练4-1】.〔2021·全国高二单元测试〕直线:340l x y +-=,圆C 的圆心在x 轴的负半轴上,半径为3,且圆心C 到直线l 的距离为3105. 〔1〕求圆C 的方程;〔2〕由直线l 上一点Q 作圆C 的两条切线,切点分别为M ,N ,假设120MQN ︒∠=,求点Q 的坐标. 重难点3 直线、圆方程的综合应用〔1〕判断或处理直线和圆的位置的问题,一般有两种方法,一是几何法,利用圆的几何性质解题,二是代数法,联立圆与直线的方程,利用判别式,根与系数关系来处理,在做题时要用心作图,很多题目要用到数形结合的思想.〔2〕假设,()P x y 是定圆222()()Cx a y b r -+-=:上的一动点,那么m x n y +和这两种形式的最值,一般都有两种求法,分别是几何法和代数法. ①几何法.m x n y +的最值:设m x n y t +=,圆心(,)C a b 到直线mx n y t +=的距离为22||m a n b t d m n +-=+,由d r =即可解得两个值,一个为最大值,一个为最小值. 的最值:即点P 与原点连线的斜率,数形结合可求得斜率的最大值和最小值.②代数法.m x n y +的最值:设m x n y t +=,与圆的方程联立,化为一元二次方程,由判别式等于0,求得的两个值,一个为最大值,一个为最小值.的最值:设y t x=,那么y tx =,与圆的方程联立,化为一元二次方程,由判别式等于0,求得的两个值,一个为最大值,一个为最小值.例5.〔2021·江苏南京师大附中高二开学考试〕〔多项选择题〕点A 〔2,0〕,圆22:(1)(3)1C x a y a --+-=,圆上的点P 满足2210PA PO +=,那么a 的取值可能是〔〕A .1B .-1C .12D .0【变式训练5-1】.〔2021·全国高二专题练习〕圆C 1:x 2+y 2=1与圆C 2:x 2+(y -3)2=1的内公切线有且仅有〔〕A .1条B .2条C .3条D .4条【变式训练5-2】.〔2021·全国高二专题练习〕以圆1C :22410x y x +++=与圆2C :222210x y x y ++++=相交的公共弦为直径的圆的方程为〔〕A .22(1)(1)1x y -+-=B .22(1)(1)1x y +++=C .22364555x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭D .22364555x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭例6.〔2021·全国高二课时练习〕()M m n ,为圆C :22414450x y x y +--+=上任意一点.(1)求2m n +的最大值;(2)求32n m -+的最大值和最小值; (3)求22m n +的最大值和最小值. 【变式训练6-1】.〔2021·全国高二课时练习〕实数x ,y 满足方程22(2)3x y -+=. 〔1〕求y x的最大值和最小值; 〔2〕求y x -的最大值和最小值;〔3〕求22x y +的最大值和最小值.四、定时训练〔30分钟〕1.〔2021·全国高二专题练习〕圆()()22232x y -++=的圆心和半径分别是〔〕 A .()2,3,1- B .()2,3,3- C .()2,3,2- D .()2,23,- 2.〔2021·全国高三专题练习〕〔多项选择题〕曲线22:0C Ax By Dx Ey F ++++=〔〕 A .假设1A B ==,那么C 是圆B .假设0A B =≠,22 40D E AF +->,那么C 是圆C .假设0A B ==,220DE +>,那么C 是直线D .假设0A ≠,0B =,那么C 是抛物线3.〔2021·全国高二专题练习〕假设圆C 1:22(1)(1)1x y -+-=与圆C 2:222(2)(3)x y r +++=外切,那么正数r 的值是〔〕A .2B .3C .4D .6 4.〔2021·安徽省舒城中学〔文〕〕点(,)P x y 是圆22(2)1x y -+=上任意一点,那么y x 的最大值是〔〕 A .3 B .33 C .12 D .325.〔2021·全国高二单元测试〕假设圆2221:24C x y mx m +-+=和2222:2484C x y x my m ++-=-相交,那么m的取值范围是〔〕A .02m <<B .1225m -<<C .0m >或25m <-D .02m <<或12255m -<<-6.〔2021·重庆复旦中学高二月考〕直线0ax by -=与圆22220x y ax by +-+=的位置关系是〔〕 A .相交 B .相切 C .相离 D .不能确定7.〔2021·全国高二课时练习〕圆221:20C x y x +-=与圆222:40C x y y ++=的公共弦所在的直线方程为〔〕A .x +2y =0B .x -2y =0C .y -2x =0D .y +2x =0 8.〔2021·全国高二课时练习〕对任意实数m ,圆2224620x y mx my m +--+-=恒过定点,那么其坐标为______.9.〔2021·全国高二课时练习〕圆221:1C x y +=,圆222:(4)25C x y -+=,那么两圆公切线的方程为________.10.〔2021·全国高二课时练习〕圆222x y +=与圆224440x y x y +-+-=的公共弦长为________.11.〔2021·全国高二专题练习〕圆221:5C x y +=与圆222:430C x y x +-+=相交于A 、B 两点.〔1〕求过圆1C 的圆心与圆2C 相切的直线方程;〔2〕求圆1C 与圆2C 的公共弦长||AB .12.〔2021·全国高二专题练习〕点()()1,2,1,4A B --,求〔1〕过点A,B 且周长最小的圆的方程;〔2〕过点A,B 且圆心在直线240x y --=上的圆的方程.13.〔2021·全国高二课时练习〕点(,)P x y 满足方程2266160x y x y +--+=. 〔1〕求31x y x +--的取值范围; 〔2〕求21x y +-的取值范围.。