常见数列递推公式

合集下载

高中数学必修5数列的递推公式

高中数学必修5数列的递推公式

典型例题解析
例题1
已知等差数列{an}中, a1=2,d=3,求a10。
解析
根据等差数列的通项公 式an=a1+(n-1)d,代 入n=10,a1=2,d=3 ,可得a10=2+(101)×3=29。
例题2
已知等差数列{an}中, a3=7,a7=15,求a5 。
解析
根据等差数列的性质, a5=(a3+a7)/2=(7+15 )/2=11。
递推关系性质
递推关系具有确定性,即对于给 定的初始条件和递推公式,数列 的每一项都是唯一确定的。
递推关系建立
01
等差数列递推关系
等差数列的递推关系为an=a1+(n-1)d,其中a1为首项 ,d为公差,n为项数。
02
等比数列递推关系
等比数列的递推关系为an=a1×qn-1,其中a1为首项, q为公比,n为项数。
,r是公比。
调和数列
调和数列是每一项都是其前一项 的倒数与1的和的数列。递推公 式为1/a_n = 1/a_(n-1) + 1/b,
其中a_1 = b。
05 递推公式在实际问题中应用
数学问题应用举例
等差数列求和
数列通项公式求解
利用递推公式可以快速求解等差数列 的前n项和,如求1+2+3+...+n的和 。
03
其他类型数列递推关系
对于非等差非等比数列,需要根据具体题目条件建立相 应的递推关系。
初始条件确定
初始条件定义
初始条件是数列中已知的第一项或前 几项,用于启动递推过程。
初始条件确定方法
根据题目给出的条件或已知信息,确 定数列的初始条件。例如,题目中可 能会直接给出首项a1和公差d或公比q 等参数。

等差数列与等比数列的递推公式

等差数列与等比数列的递推公式

等差数列与等比数列的递推公式在数学中,等差数列和等比数列是两种常见的数列形式。

它们的递推公式分别用于描述数列中各项之间的关系。

本文将就等差数列和等比数列的递推公式展开探讨。

一、等差数列的递推公式等差数列是指数列中相邻两项之间的差值保持恒定。

假设等差数列的首项为a₁,公差为d,第n项为aₙ,则等差数列的递推公式可表示为:aₙ = a₁ + (n-1)d这个公式表示第n项等于首项a₁加上前n-1个公差d的和。

这样,我们就可以根据已知的首项和公差来求解数列中的任意一项。

例如,考虑等差数列3,6,9,12,15...,其中首项a₁ = 3,公差d = 3。

我们可以使用递推公式计算第5项:a₅ = 3 + (5-1)3= 3 + 12= 15二、等比数列的递推公式等比数列是指数列中相邻两项之间的比值保持恒定。

假设等比数列的首项为a₁,公比为r,第n项为aₙ,则等比数列的递推公式可表示为:aₙ = a₁ * r^(n-1)这个公式表示第n项等于首项a₁乘以公比r的n-1次幂。

同样地,我们可以利用已知的首项和公比来求解等比数列中的任意一项。

例如,考虑等比数列2,6,18,54,162...,其中首项a₁ = 2,公比r = 3。

我们可以使用递推公式计算第5项:a₅ = 2 * 3^(5-1)= 2 * 81= 162通过等差数列和等比数列的递推公式,我们可以轻松计算数列中的任意一项。

这些公式在数学和实际问题中具有极大的应用价值。

总结:等差数列的递推公式为 aₙ = a₁ + (n-1)d,其中a₁为首项,d为公差。

等比数列的递推公式为 aₙ = a₁ * r^(n-1),其中a₁为首项,r为公比。

以上就是等差数列和等比数列的递推公式的相关内容。

通过理解和应用这些公式,我们能够更好地处理数列问题,并在实际应用中发挥出它们的作用。

希望本文对您有所帮助!。

数列的递推公式与通项公式

数列的递推公式与通项公式
a1 = 1 a1 = 1 如: a = a + 2 n ≥ 2, n ∈ N* 和 a = 2a n ≥ 2, n ∈ N* n n n+1 n+1
一 、 察 法 : 据 前 若 干项 观 察 结 果 ( 不完 全 归 纳 法 ) 观 根
例1. 数列{an }的前5项依次为下列数, 试写出 数列的一个通项公式. (1)3, 5, 9, 17, 33, …… 3 1 1 3 1 (2) − , , − , , − , …… 2 2 4 20 10 n−1 n (1)an − an−1 = 2 ⇒ an = 2 + 1 3 3 3 3 3 (2) − , , − , , − ,… 2 2× 3 3× 4 4× 5 5× 6 n 3 × (−1) ⇒ an = n(n + 1)
、 用 a n n 二 利 Sn求 n :分 =1与 ≥2两 情 讨 , 种 况 论 案 否 写 分 的 式 答 是 要 成 段 形 . 2 列 的 n 和 S 分 满 下 条 , 例 . 数 {an} 前 项 为 n且 别 足 列 件 n=1 求 列 通 公 an (1)a = 3 数 的 项 式 n 2 6n − 5 n ≥ 2 (1)Sn =3n −2n+2 n 8 n=1 (2)Sn =5 +3 (2)an = n −1 4× 5 n≥ 2 2 (3)a1 =1 2Sn =2anSn −an, ≥2 n , an +1 2 (4)an >0 Sn =( , ) 2 n=1 −2 (3) − = 2 ⇒ Sn = ⇒ an = n≥ 2 Sn Sn − 1 2n − 1 (2n − 1)(2n − 3) (4)an = an−1 + 2 ⇒ an = 2n − 1

最全的递推数列求通项公式方法

最全的递推数列求通项公式方法

最全的递推数列求通项公式方法递推数列是指数列中的每一项都由前一项通过其中一种规律得出。

求递推数列的通项公式是数学中的重要问题,可以通过多种方法实现。

下面将介绍最常用的几种方法。

1.等差数列通项公式等差数列是指数列中的每一项与前一项之差都相等的数列。

设等差数列的第一项为a1,公差为d,则第n项为an=a1+(n-1)d。

这是等差数列的通项公式。

2.等比数列通项公式等比数列是指数列中的每一项与前一项之比都相等的数列。

设等比数列的第一项为a1,公比为r,则第n项为an=a1*r^(n-1)。

这是等比数列的通项公式。

3.斐波那契数列通项公式斐波那契数列是指数列中的每一项都是前两项之和。

设斐波那契数列的第一项为a1,第二项为a2,则第n项为an=a(n-1)+a(n-2)。

但通常情况下,我们将斐波那契数列的第一项设为0,第二项设为1,此时的通项公式为an=F(n-1),其中F(n-1)表示第n-1个斐波那契数。

4.龙贝尔数列通项公式龙贝尔数列是指数列中的每一项都是前一项与当前项索引之和。

设龙贝尔数列的第一项为a1,则第n项为an=a(n-1)+n。

这是龙贝尔数列的通项公式。

5.通项公式的递推法有些数列并没有明确的通项公式,但可以通过递推法求得通项公式。

递推法的核心思想是找到数列中的其中一种规律,通过前面的项得出后面的项。

这种方法比较灵活,可以适用于各种类型的数列。

总结起来,以上是求递推数列通项公式的几种常见方法。

在实际中,我们可以观察数列的规律,推测出通项公式,然后通过数学推导证明其正确性。

对于复杂的递推数列,我们可能需要运用更多的数学知识和技巧,如离散数学、线性代数等。

九类常见递推数列求通项公式方法

九类常见递推数列求通项公式方法

九类常见递推数列求通项公式方法递推数列通项求解方法类型一:an1panq(p1)思路1(递推法):anpan1qp(pan2q)qpppan3qqq……pn1a1q(1pp2…pn2qqn1。

)a1pp11p思路2(构造法):设an1pan,即p1q得qp1,数列an是以a1为首项、p为公比的等比数列,则anqn1qana1pp11pqn1a1p,即p1p1q例1已知数列an满足an2an13且a11,求数列an的通项公式。

解:方法1(递推法):an2an132(2an23)3222an3333……2n13(122…22n23n13n1)1223。

2112方法2(构造法):设an12an,即3,数列an3是以a134n1n1n1为首项、2为公比的等比数列,则an3422,即an23。

类型二:an1an思路1(递推法):f(n)anan1f(n1)an2f(n2)f(n1)an3f(n3)f(n2)f(n1)…a1f(n)。

i1n1思路2(叠加法):anan1f(n1),依次类推有:an1an2f(n2)、n1an2an3f(n3)、…、a2a1f(1),将各式叠加并整理得ana1i1f(n),即n1ana1i1f(n)。

例2已知a11,anan1n,求an。

解:方法1(递推法):anan1nan2(n1)nan3(n2)(n1)nn……a1[23…(n2)(n1)n]i1nn(n1)2。

方法2(叠加法):anan1n,依次类推有:an1an2n1、an2an3n2、…、nnna2a12,将各式叠加并整理得ana1i2n,ana1i2ni1nn(n1)2。

类型三:an1f(n)an思路1(递推法):anf(n1)an1f(n1)f(n2)an2f(n1)f(n2)f(n3)an3…f(1)f(2)f(3)…f(n2)f(n1)a1。

anan1a2a1an1an2ana1思路2(叠乘法):f(n1),依次类推有:f(n2)、an2an3f(n3)、…、f(1),将各式叠乘并整理得f(1)f(2)f(3)…f(n2)f(n1),即anf(1)f(2)f(3)…f(n2)f(n1)a1。

数列的递推公式与通项公式前n项和公式

数列的递推公式与通项公式前n项和公式

二、数列的递推公式与通项公式、前n 项和公式一、知识点回顾:1、递推公式定义:如果已知数列{}n a 的第1项(或前几项),且任一项n a 与它的前一项1n a -(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式。

2、数列前n 项和S n 与通项a n 的关系式:a n =⎩⎨⎧--11s s s n n 12=≥n n 。

在数列{a n }中,前n 项和S n 与通项公式a n 的关系,是本讲内容一个重点,要认真掌握之。

注意:(1)用1--=n n n S S a 求数列的通项公式时,你注意到此等式成立的条件了吗?(2n ≥,当1n =时,11S a =);若a 1 适合由a n 的表达式,则a n 不必表达成分段形式,可化统一为一个式子。

(2)一般地当已知条件中含有n a 与n S 的混合关系时,常需运用关系式1--=n n n S S a ,先将已知条件转化为只含n a 或n S 的关系式,然后再求解。

3、数列的通项的求法:⑴公式法:①等差数列通项公式;②等比数列通项公式。

⑵已知n S (即12()n a a a f n +++= )求n a ,用作差法:{11,(1),(2)n nn S n a S S n -==-≥。

一般地当已知条件中含有n a 与n S 的混合关系时,常需运用关系式1--=n n n S S a ,先将已知条件转化为只含n a 或n S 的关系式,然后再求解。

⑶已知12()n a a a f n = 求n a ,用作商法:(1),(1)(),(2)(1)n f n f n a n f n =⎧⎪=⎨≥⎪-⎩。

⑷若1()n n a a f n +-=求n a 用累加法:11221()()()n n n n n a a a a a a a ---=-+-++- 1a +(2)n ≥。

⑸已知1()n n a f n a +=求n a ,用累乘法:121121n n n n n a a aa a a a a ---=⋅⋅⋅⋅ (2)n ≥。

数列的递推公式和通项公式总结

数列的递推公式和通项公式总结

数列的递推公式和通项公式总结一、数列的概念1.数列:按照一定顺序排列的一列数。

2.项:数列中的每一个数。

3.项数:数列中数的个数。

4.首项:数列的第一项。

5.末项:数列的最后一项。

6.公差:等差数列中,相邻两项的差。

7.公比:等比数列中,相邻两项的比。

二、数列的递推公式1.等差数列的递推公式:an = a1 + (n-1)d–an:第n项–a1:首项2.等比数列的递推公式:an = a1 * q^(n-1)–an:第n项–a1:首项3.斐波那契数列的递推公式:an = an-1 + an-2–an:第n项–an-1:第n-1项–an-2:第n-2项三、数列的通项公式1.等差数列的通项公式:an = a1 + (n-1)d–an:第n项–a1:首项2.等比数列的通项公式:an = a1 * q^(n-1)–an:第n项–a1:首项3.斐波那契数列的通项公式:an = (1/√5) * [((1+√5)/2)^n - ((1-√5)/2)^n]–an:第n项四、数列的性质1.收敛性:数列的各项逐渐接近某个固定的数。

2.发散性:数列的各项无限增大或无限减小。

3.周期性:数列的各项按照一定周期重复出现。

五、数列的应用1.数学问题:求数列的前n项和、某项的值、数列的收敛性等。

2.实际问题:人口增长、贷款利息计算、等差数列的求和等。

六、数列的分类1.有限数列:项数有限的数列。

2.无限数列:项数无限的数列。

3.交错数列:正负交替出现的数列。

4.非交错数列:同号连续出现的数列。

5.常数数列:所有项都相等的数列。

6.非常数数列:各项不相等的数列。

综上所述,数列的递推公式和通项公式是数列学中的重要知识点,通过这些公式,我们可以求解数列的各种问题。

同时,了解数列的性质和分类,有助于我们更好地理解和应用数列。

习题及方法:1.习题一:已知等差数列的首项为3,公差为2,求第10项的值。

答案:a10 = 3 + (10-1) * 2 = 3 + 18 = 21解题思路:利用等差数列的递推公式an = a1 + (n-1)d,将给定的首项和公差代入公式,求得第10项的值。

常见数列递推公式

常见数列递推公式

数列求和常用公式:1)1+2+3+......+n=n(n+1)÷22)1^2+2^2+3^2+......+n^2=n(n+1)(2n+1)÷63)1^3+2^3+3^3+......+n^3=( 1+2+3+......+n)^2=n^2*(n+1)^2÷44)1*2+2*3+3*4+......+n(n+1)=n(n+1)(n+2)÷35)1*2*3+2*3*4+3*4*5+......+n(n+1)(n+2)=n(n+1)(n+2)(n+3)÷46)1+3+6+10+15+......=1+(1+2)+(1+2+3)+(1+2+3+4)+......+(1+2+3+...+n)=[1*2+2*3+3*4+......+n(n+1)]/2=n(n+1)(n+2) ÷67)1+2+4+7+11+......=1+(1+1)+(1+1+2)+(1+1+2+3)+......+(1+1+2+3+...+n) =(n+1)*1+[1*2+2*3+3*4+......+n(n+1)]/2=(n+1)+n(n+1)(n+2) ÷68)1/2+1/2*3+1/3*4+......+1/n(n+1)=1-1/(n+1)=n÷(n+1)9)1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+......+1/1+2+3+...+n) =2/2*3+2/3*4+2/4*5+......+2/n(n+1)=(n-1) ÷(n+1)10)1/1*2+2/2*3+3/2*3*4+......+(n-1)/2*3*4*...*n=(2*3*4*...*n- 1)/2*3*4*...*n11)1^2+3^2+5^2+..........(2n-1)^2=n(4n^2-1) ÷312)1^3+3^3+5^3+..........(2n-1)^3=n^2(2n^2-1)13)1^4+2^4+3^4+..........+n^4=n(n+1)(2n+1)(3n^2+3n-1) ÷3014)1^5+2^5+3^5+..........+n^5=n^2 (n+1)^2 (2n^2+2n-1) ÷ 1215)1+2+2^2+2^3+......+2^n=2^(n+1) – 1ps:数列的性质:等差数列的基本性质⑴公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d.⑵公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd.⑶若{ a }、{ b }为等差数列,则{ a ±b }与{ka +b}(k、b为非零常数)也是等差数列.⑷对任何m、n ,在等差数列{ a }中有:a = a + (n-m)d,特别地,当m = 1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性.⑸、一般地,如果l,k,p,…,m,n,r,…皆为自然数,且l + k + p + … = m + n + r + … (两边的自然数个数相等),那么当{a }为等差数列时,有:a + a +a + … = a + a + a + … .⑹公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd( k为取出项数之差).⑺如果{ a }是等差数列,公差为d,那么,a ,a ,…,a 、a 也是等差数列,其公差为-d;在等差数列{ a }中,a -a = a -a = md .(其中m、k、)⑻在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项.⑼当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数.⑽设a ,a ,a 为等差数列中的三项,且a 与a ,a 与a 的项距差之比= (≠-1),则a = .5.等差数列前n项和公式S 的基本性质⑴数列{ a }为等差数列的充要条件是:数列{ a }的前n项和S 可以写成S = an + bn的形式(其中a、b为常数).⑵在等差数列{ a }中,当项数为2n (n N )时,S -S = nd,= ;当项数为(2n -1) (n )时,S -S = a ,= .⑶若数列{ a }为等差数列,则S ,S -S ,S -S ,…仍然成等差数列,公差为.⑷若两个等差数列{ a }、{ b }的前n项和分别是S 、T (n为奇数),则= .⑸在等差数列{ a }中,S = a,S = b (n>m),则S = (a-b).⑹等差数列{a }中,是n的一次函数,且点(n,)均在直线y = x + (a -)上.⑺记等差数列{a }的前n项和为S .①若a >0,公差d<0,则当a ≥0且a ≤0时,S 最大;②若a <0 ,公差d>0,则当a ≤0且a ≥0时,S 最小.3.等比数列的基本性质⑴公比为q的等比数列,从中取出等距离的项,构成一个新数列,此数列仍是等比数列,其公比为q ( m为等距离的项数之差).⑵对任何m、n ,在等比数列{ a }中有:a = a · q ,特别地,当m = 1时,便得等比数列的通项公式,此式较等比数列的通项公式更具有普遍性.⑶一般地,如果t ,k,p,…,m,n,r,…皆为自然数,且t + k,p,…,m + … = m + n + r + … (两边的自然数个数相等),那么当{a }为等比数列时,有:a .a .a .… = a .a .a .… ..⑷若{ a }是公比为q的等比数列,则{| a |}、{a }、{ka }、{ }也是等比数列,其公比分别为| q |}、{q }、{q}、{ }.⑸如果{ a }是等比数列,公比为q,那么,a ,a ,a ,…,a ,…是以q 为公比的等比数列.⑹如果{ a }是等比数列,那么对任意在n ,都有a ·a = a ·q >0.⑺两个等比数列各对应项的积组成的数列仍是等比数列,且公比等于这两个数列的公比的积.⑻当q>1且a >0或0<q<1且a <0时,等比数列为递增数列;当a >0且0<q<1或a <0且q>1时,等比数列为递减数列;当q = 1时,等比数列为常数列;当q<0时,等比数列为摆动数列.4.等比数列前n项和公式S 的基本性质⑴如果数列{a }是公比为q 的等比数列,那么,它的前n项和公式是S =也就是说,公比为q的等比数列的前n项和公式是q的分段函数的一系列函数值,分段的界限是在q = 1处.因此,使用等比数列的前n项和公式,必须要弄清公比q是可能等于1还是必不等于1,如果q可能等于1,则需分q = 1和q≠1进行讨论.⑵当已知a ,q,n时,用公式S = ;当已知a ,q,a 时,用公式S = .⑶若S 是以q为公比的等比数列,则有S = S +qS .⑵⑷若数列{ a }为等比数列,则S ,S -S ,S -S ,…仍然成等比数列.⑸若项数为3n的等比数列(q≠-1)前n项和与前n项积分别为S 与T ,次n项和与次n项积分别为S 与T ,最后n项和与n项积分别为S 与T ,则S ,S ,S 成等比数列,T ,T ,T 亦成等比数列。

数列问题详解

数列问题详解

数列问题详解数列是指根据一定的规律依次排列的一系列数。

数列问题是指在给定规律下,求解数列中某一项的值或者数列的通项公式等。

下面将详细介绍几种常见的数列问题及其解法。

1. 等差数列:等差数列是指数列中每一项与它的前一项之差都相等的数列。

例如,1, 3, 5, 7, 9就是一个等差数列,其中公差为2。

解决等差数列问题的核心是找到数列的通项公式。

通项公式为:an = a1 + (n - 1)d其中,an表示数列的第n项,a1表示数列的第一项,d表示公差,n表示项数。

例如,求等差数列1, 3, 5, 7, 9的第10项:a1 = 1d = 2n = 10使用通项公式:a10 = 1 + (10 - 1)2 = 1 + 18 = 19所以,等差数列1, 3, 5, 7, 9的第10项为19。

2. 等比数列:等比数列是指数列中每一项与它的前一项之比都相等的数列。

例如,1, 2, 4, 8, 16就是一个等比数列,其中公比为2。

解决等比数列问题的核心是找到数列的通项公式。

通项公式为:an = a1 * q^(n - 1)其中,an表示数列的第n项,a1表示数列的第一项,q表示公比,n表示项数。

例如,求等比数列1, 2, 4, 8, 16的第10项:a1 = 1q = 2n = 10使用通项公式:a10 = 1 * 2^(10 - 1) = 1 * 2^9 = 512所以,等比数列1, 2, 4, 8, 16的第10项为512。

3. 斐波那契数列:斐波那契数列是指数列中每一项等于前两项之和的数列。

例如,1, 1, 2, 3, 5, 8就是一个斐波那契数列。

解决斐波那契数列问题的核心是找到数列的递推公式。

递推公式为:an = an-1 + an-2其中,an表示数列的第n项,an-1表示数列的第n-1项,an-2表示数列的第n-2项。

例如,求斐波那契数列的第10项:a1 = 1a2 = 1n = 10根据递推公式,可以计算出数列的前10项:1, 1, 2, 3, 5, 8, 13, 21, 34, 55所以,斐波那契数列的第10项为55。

数列的求和与递推公式

数列的求和与递推公式

数列的求和与递推公式在数学中,数列是由一系列按照特定规律排列的数字组成的序列。

求解数列的和以及找到递推公式是数学中常见的问题,本文将介绍数列求和的方法以及递推公式的推导过程。

一、等差数列的求和与递推公式等差数列是指数列中相邻两项之间的差值保持相等的数列。

设等差数列的首项为a,公差为d,第n项为an。

1.1 求和公式对于等差数列来说,我们可以通过求和的方法来快速计算数列的和。

等差数列的前n项和Sn可以通过下式计算得到:Sn = (n/2) * (a + an)其中,n为项数,a为首项,an为第n项。

1.2 递推公式递推公式是求解等差数列中第n项的常用方法。

根据等差数列的性质,可以得出递推公式为:an = a + (n-1) * d其中,an为第n项,a为首项,d为公差,n为项数。

二、等比数列的求和与递推公式等比数列是指数列中相邻两项之间的比值保持相等的数列。

设等比数列的首项为a,公比为r,第n项为an。

2.1 求和公式对于等比数列而言,我们可以通过求和的公式来计算数列的和。

等比数列的前n项和Sn可以通过下式计算得到:Sn = a * (1 - r^n) / (1 - r)其中,n为项数,a为首项,r为公比。

2.2 递推公式递推公式是求解等比数列中第n项的常用方法。

根据等比数列的定义和性质,可以得出递推公式为:an = a * r^(n-1)其中,an为第n项,a为首项,r为公比,n为项数。

三、斐波那契数列的求和与递推公式斐波那契数列是一种特殊的数列,在数学和自然界中都有广泛的应用。

斐波那契数列的定义如下:首项为1,第二项为1,之后的每一项都是前两项的和。

3.1 求和公式斐波那契数列的前n项和Sn可以通过下式计算得到:Sn = Fn+2 - 1其中,Fn为斐波那契数列的第n项。

3.2 递推公式递推公式是求解斐波那契数列中第n项的常用方法。

根据斐波那契数列的定义和性质,可以得出递推公式为:Fn = Fn-1 + Fn-2其中,Fn为第n项,Fn-1为第n-1项,Fn-2为第n-2项。

数字的变化规律数列的递推与通项公式

数字的变化规律数列的递推与通项公式

数字的变化规律数列的递推与通项公式数字的变化规律:数列的递推与通项公式数学中,我们经常会遇到各种数列,它们是由数字按照一定规律排列得到的。

了解数列的变化规律对于我们深入理解数学问题、解决实际问题非常重要。

本文将介绍数列的递推与通项公式,帮助读者更好地理解数字的变化规律。

一、递推关系与递推公式在数列中,我们常常会发现后一项与前一项之间存在某种规律。

根据这种规律,我们可以得到两个重要的概念:递推关系和递推公式。

递推关系是指数列中相邻两项之间的关系。

这种关系可以通过一个或多个常数、变量以及运算符等表示。

例如,对于等差数列1,4,7,10,13,...,我们可以观察到每一项与前一项之间的差为3。

因此,递推关系可以表示为an = an-1 + 3,其中an表示第n项。

递推公式是指数列中的递推关系用代数表达方式表示的结果。

递推公式可以通过观察数列前几项的特点,或者利用已知的数学定理来求得。

对于等差数列1,4,7,10,13,...,我们可以发现第n项可以表示为an = 1 + 3(n-1),其中n表示项数。

二、等差数列的递推与通项公式等差数列是一种常见的数列,它的递推关系和递推公式非常简单明确。

等差数列的特点是每一项与前一项之间的差是一个常数,这个常数称为公差。

对于等差数列,我们可以通过已知的两项或者项数来推导出递推关系和通项公式。

1. 递推关系:对于等差数列an = a1 + (n-1)d,其中a1表示首项,d 表示公差,n表示项数。

2. 通项公式:对于等差数列,通项公式可以通过观察前几项的规律得到。

通项公式为an = a1 + (n-1)d,其中a1表示首项,d表示公差,n 表示项数。

例如,对于等差数列1,4,7,10,13,...,我们可以得到递推关系an = a1 + 3(n-1),其中a1 = 1,d = 3。

同时,我们可以通过观察前几项的规律得到通项公式an = 1 + 3(n-1)。

三、等比数列的递推与通项公式除了等差数列,还有一种常见的数列是等比数列。

常见递推数列通项公式的求法

常见递推数列通项公式的求法

(5)累乘法:
an1 an

f (n) ( f (1) f (2)
i 1
f (n)可求)
(6)构造法 an1 kan b
(7)作商法( a1a2 an cn 型);
(8)数学归纳法.
类型1 an1 an f (n)
类型1 an1 an f (n)
求法:累加法
类型3 an1 pan q( p 0, p 1)
求法 : 待定系数法.令an1 p(an ), 其中为待定系数,化为等比数列 {an }求通项.
例3 已知数列{an }中,若a1 1, an1 2an 3(n 1),求数列{an }的通项公式.
为首项, 公比为
(1)n1. 2
1 2
的等比数列.

an

1 2
an1

1,
an 2 21n.
【1】设数列{an}的前 n 项和为 Sn , 已知 a1 5 ,且 nSn1 2n(n 1) (n 1)Sn (n N ) , 则数列 an 的通项公式 是( A)
1 3 (an1 2an2 )(n 3,4, ) (1)求证 : 数列{an1 an }是等比数列; (2)求数列{an }的通项公式an .
【1】已知数列 {an} 中,
a1=1,
an+1=
1 2
an+1 (nN*),
则an =___2___2__1_n____.
Q
an1
类型6
an1

pan qan
r
(
p, q,
r均不为零)
类型6
an1

数列公式汇总

数列公式汇总

数列公式汇总数列是数学中常见的一种序列。

它是由一系列数字按照一定的规律排列组成的序列。

数列的规律可以通过数列公式来表示,该公式可以用来计算出数列中的任意一项。

在本文中,我们将汇总一些常见的数列公式。

1.等差数列(Arithmetic Sequence):等差数列是一种最简单的数列,其中每一项与前一项之间的差值是一个常数。

等差数列的常用公式如下:an = a1 + (n-1)d其中,an 表示第 n 项,a1 表示首项,d 表示公差,n 表示项数。

2.等比数列(Geometric Sequence):等比数列是一种每一项与前一项之间的比值相等的数列。

等比数列的常用公式如下:an = a1 * r^(n-1)其中,an 表示第 n 项,a1 表示首项,r 表示公比,n 表示项数。

3. 斐波那契数列(Fibonacci Sequence):斐波那契数列是一个以递推的方式生成的数列。

它的前两项是0和1,从第三项开始,每一项都是前两项的和。

斐波那契数列的公式如下:Fn=Fn-1+Fn-2其中,Fn表示第n项。

4. 幂次数列(Power Sequence):幂次数列是一种具有公比为幂指数的等比数列。

幂次数列的公式如下:an = a * r^(n-1)其中,an 表示第 n 项,a 表示首项,r 表示公比,n 表示项数。

5. 调和数列(Harmonic Sequence):调和数列是一种其每一项都是倒数的数列。

调和数列的公式如下:an = 1/n其中,an 表示第 n 项。

6.等差-等比混合数列(Arithmetic-Geometric Sequence):等差-等比混合数列是一种既具有等差又具有等比的特性的数列。

等差-等比混合数列的公式如下:an = a + (n-1)b + c*r^(n-1)其中,an 表示第 n 项,a 表示首项,b 表示公差,c 表示公比,n表示项数。

7. 几何数列(Geometric Progression):几何数列是一种等比数列,其公比为实数。

数列的求和公式和递推公式

数列的求和公式和递推公式

数列的求和公式和递推公式一、数列的求和公式1.等差数列求和公式:设等差数列的首项为a1,末项为an,公差为d,项数为n,则等差数列的求和公式为:S = n/2 * (a1 + an) = n/2 * (2a1 + (n -1)d)。

2.等比数列求和公式:设等比数列的首项为a1,公比为q(q≠1),项数为n,则等比数列的求和公式为:S = a1 * (1 - q^n) / (1 - q),当q=1时,S = n * a1。

3.斐波那契数列求和公式:设斐波那契数列的前n项和为S,则有S =F(n+2) - 1,其中F(n)为斐波那契数列的第n项。

4.平方数列求和公式:设平方数列的前n项和为S,则有S = n(n +1)(2n + 1) / 6。

5.立方数列求和公式:设立方数列的前n项和为S,则有S = n^2(n + 1)/ 2。

二、数列的递推公式1.等差数列递推公式:设等差数列的第n项为an,首项为a1,公差为d,则等差数列的递推公式为:an = a1 + (n - 1)d。

2.等比数列递推公式:设等比数列的第n项为an,首项为a1,公比为q(q≠1),则等比数列的递推公式为:an = a1 * q^(n-1)。

3.斐波那契数列递推公式:设斐波那契数列的第n项为F(n),则有F(n)= F(n-1) + F(n-2),其中F(1)=1,F(2)=1。

4.线性递推公式:设数列的第n项为an,首项为a1,公差为d,则线性递推公式为:an = an-1 + d。

5.多项式递推公式:设数列的第n项为an,首项为a1,多项式系数为c1, c2, …, cm,则多项式递推公式为:an = c1 * an-1 + c2 * an-2 + … + c m * an-m。

通过以上知识点的学习,学生可以掌握数列的求和公式和递推公式的基本概念和方法,为高中数学学习打下基础。

习题及方法:1.等差数列求和习题:已知等差数列的首项为3,末项为20,公差为2,求该数列的前10项和。

数列的递推公式

数列的递推公式

等比数列的递推公式
$a_n = a_{n-1} times r$, 其中 $r$ 是公比,表示相邻 两项的比。
递推公式的应用
通过递推公式可以快速地求 出数列中任意一项的值,也 可以用于证明数列的性质。
拓展延伸:非线性递推关系简介
非线性递推关系的
定义
如果数列的递推公式中包含了非 线性运算(如乘法、除法、指数 等),则称该递推关系为非线性 递推关系。
02
CATALOGUE
常见数列递推公式类型
等差数列递推公式
01
一般形式
$a_n = a_{n-1} + d$,其中 $d$ 为公差。
初始条件
02
03
求解方法
给出首项 $a_1$ 和公差 $d$。
通过递推关系逐步计算每一项的 值。
等比数列递推公式
一Байду номын сангаас形式
$a_n = a_{n-1} times r$,其中 $r$ 为公比 。
非线性递推关系的
求解
对于非线性递推关系,通常没有 通用的求解方法,需要根据具体 情况进行分析和求解。常用的方 法包括迭代法、数学归纳法、特 征根法等。
非线性递推关系的
应用
非线性递推关系在数学、物理、 计算机科学等领域都有广泛的应 用,如分形、混沌、密码学等。
THANKS
感谢观看
方法求解。
03
CATALOGUE
递推公式求解方法
迭代法求解
初始条件确定
根据递推公式中的初始条件,确定数列的前几 项。
结果输出
输出计算得到的数列各项。
迭代计算
从初始条件出发,利用递推公式逐项计算数列 的后续项。
特征根法求解

数列常见数列公式(超全的数列公式及详细解法编撰)

数列常见数列公式(超全的数列公式及详细解法编撰)

数列常见数列公式(超全的数列公式及详细解法编撰)1.等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,即n a -1-n a =d ,(n ≥2,n ∈N +),这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d ”表示)2.等差数列的通项公式:d n a a n )1(1-+==n a d m n a m )(-+或n a =pn+q (p 、q 是常数))3.有几种方法可以计算公差d ① d=n a -1-n a ② d=11--n a a n ③ d=mn a a mn -- 4.等差中项:,,2b a ba A ⇔+=成等差数列 5.等差数列的性质: m+n=p+q ⇒q p n m a a a a +=+ (m, n, p, q ∈N ) 等差数列前n 项和公式 6.等差数列的前n 项和公式 (1)2)(1n n a a n S +=(2)2)1(1dn n na S n -+=(3)n )2d a (n 2d S 12n -+=,当d ≠0,是一个常数项为零的二次式8.对等差数列前项和的最值问题有两种方法:(1) 利用n a :当n a >0,d<0,前n 项和有最大值可由n a ≥0,且1+n a ≤0,求得n 的值当n a <0,d>0,前n 项和有最小值可由n a ≤0,且1+n a ≥0,求得n 的值(2) 利用n S :由n )2da (n 2d S 12n -+=二次函数配方法求得最值时n 的值 等比数列1.等比数列:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母q 表示(q ≠0),即:1-n na a =q (q ≠0) 2.等比数列的通项公式: )0(111≠⋅⋅=-q a q a a n n ,)0(1≠⋅⋅=-q a q a a m n m n 3.{n a }成等比数列⇔nn a a 1+=q (+∈N n ,q ≠0)“n a ≠0”是数列{n a }成等比数列的必要非充分条件 4.既是等差又是等比数列的数列:非零常数列.5.等比中项:G 为a 与b 的等比中项. 即G =±ab (a ,b 同号).6.性质:若m+n=p+q ,q p n m a a a a ⋅=⋅7.判断等比数列的方法:定义法,中项法,通项公式法 8.等比数列的增减性:当q>1, 1a >0或0<q<1, 1a <0时, {n a }是递增数列; 当q>1, 1a <0,或0<q<1, 1a >0时, {n a }是递减数列; 当q=1时, {n a }是常数列; 当q<0时, {n a }是摆动数列; 等比数列前n 项和等比数列的前n 项和公式:∴当1≠q 时,qq a S n n --=1)1(1①或q qa a S n n --=11②当q=1时,1na S n =当已知1a , q, n 时用公式①;当已知1a , q, n a 时,用公式②.数列通项公式的求法一、定义法直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目.例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.解:设数列{}n a 公差为)0(>d d∵931,,a a a 成等比数列,∴9123a a a =,即)8()2(1121d a a d a +=+d a d 12=⇒∵0≠d ,∴d a =1………………………………①∵255a S =∴211)4(2455d a d a +=⋅⨯+…………② 由①②得:531=a ,53=d∴n n a n 5353)1(53=⨯-+=点评:利用定义法求数列通项时要注意不用错定义,设法求出首项与公差(公比)后再写出通项。

六种常见数列递推公式

六种常见数列递推公式
课题导入
已知a1=1/2, 3an+1-2an=an+公式求通项公式 方法(2)
目标引领
• (1)可变型为“an+1=an∙f(n)"数列递推公式 求通项公式 • (2)可变型为“pan+1-pan=an+1∙an"(p不为 0,p为常数)的数列递推公式求通项公式。 • (3)可变型为‘‘pan+1-qan=an+1∙an’’ (p、q不相等,且均不为0的常数)的数列 递推公式求通项公式。
当堂诊学(10分钟)
【必做题】
1 an an=_______. n
2 n
1.设{an}是首项为1的正项数列,且满足 2 2 (n 1)an na ,2,3) ,则 1 n an1an 0(n 1
2. 数列{an}中a1=1,当 n 2 时,其前n项和
1 Sn满足S an ( S n ), 求{an }的通项公式 . 21 (n 1) an 2 ( n 2) (2n 1)(2n 3)
( pq 0, p q, p、q为常数)
目标再现
• (1)可变型为“an+1=an∙f(n)"(p不为0,p为常数)的数列递 推公式求通项公式 方法1:迭代 方法2:累乘 • (2)可变型为“pan+1-pan=an+1∙an"(p不为0,p为常数)的数 列递推公式求通项公式。 1 方法:两边同除pan+1an,则{ } 成等差.
1
(n 1)
强化补请
• 完成《全品》上的题目.(晚自习)
当堂诊学(10分钟)
• 【提高题】 • 设Sn为数列{bn}的前n项和,且满足
2bn b1=1, 1(n 2). 2 bn S n S n

高中数学中最常见的数列通项公式推导

高中数学中最常见的数列通项公式推导

高中数学中最常见的数列通项公式推导高中数学中数列是一个非常基础的概念,在化学、物理、计算机等多个领域中都有着广泛的应用。

在数列中,通项公式是最常用的概念之一,可以让我们通过一个公式来计算任意一个数列的第n项。

在本文中,我们将介绍一些高中数学中最常见的数列通项公式推导方法,希望能够帮助大家更好地理解数学中的这个概念。

一、等差数列通项公式推导等差数列是指一个数列中每一项与其前一项的差都相等的数列,其通项公式可以通过以下四种方法来推导:1.微积分法考虑等差数列的通项公式为an=a1+(n-1)d,其中a1为首项,n为项数,d为公差。

因此,我们可以在每一项上面加上一个微小的增量dx,这样我们可以得到如下的一元微积分式子:$$\lim_{dx \to 0} \frac{a_{n+dx}-a_n}{dx}=\lim_{dx \to 0}\frac{[a_1+(n+dx-1)d]-[a_1+(n-1)d]}{dx}$$$$\lim_{dx \to 0} \frac{[n+dx-1]d-dx}{dx}=\lim_{dx \to 0}\frac{nd-dx}{dx}+d$$当dx无限趋近于0时,上式等于d,因此这个数列的导数d。

因此,对于等差数列an=a1+(n-1)d,其中d为常数,我们可以将其看做一个一元函数,其导数为常数d。

根据微积分的基本定理,我们可以得到其积分形式为an(n)=a1+d×∫(n-1)dx,即an=a1+nd-n(n-1)d/2。

2.通项公式的递推公式考虑等差数列的递推公式an=an-1+d,我们可以将上式变形得到an-1=an-d。

我们将an替换成an-1中的值,得到an-1=a1+d(n-2)。

接着我们将an-2替换为an-1中的值,得到an-2=a1+d(n-3),以此类推,则得到an-k=a1+d(n-k-1),k=0,1,2,……,n-1。

因此,当k=0时,即n-k-1=0时,我们有an=a1+dn-d=n(a1+d)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列求和常用公式:
1)1+2+3+......+n=n(n+1)÷2
2)1^2+2^2+3^2+......+n^2=n(n+1)(2n+1)÷6
3)1^3+2^3+3^3+......+n^3=( 1+2+3+......+n)^2
=n^2*(n+1)^2÷4
4)1*2+2*3+3*4+......+n(n+1)
=n(n+1)(n+2)÷3
5)1*2*3+2*3*4+3*4*5+......+n(n+1)(n+2)
=n(n+1)(n+2)(n+3)÷4
6)1+3+6+10+15+......
=1+(1+2)+(1+2+3)+(1+2+3+4)+......+(1+2+3+...+n)
=[1*2+2*3+3*4+......+n(n+1)]/2=n(n+1)(n+2) ÷6
7)1+2+4+7+11+......
=1+(1+1)+(1+1+2)+(1+1+2+3)+......+(1+1+2+3+...+n) =(n+1)*1+[1*2+2*3+3*4+......+n(n+1)]/2
=(n+1)+n(n+1)(n+2) ÷6
8)1/2+1/2*3+1/3*4+......+1/n(n+1)
=1-1/(n+1)=n÷(n+1)
9)1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+......+1/1+2+3+...+n) =2/2*3+2/3*4+2/4*5+......+2/n(n+1)
=(n-1) ÷(n+1)
10)1/1*2+2/2*3+3/2*3*4+......+(n-1)/2*3*4*...*n
=(2*3*4*...*n- 1)/2*3*4*...*n
11)1^2+3^2+5^2+..........(2n-1)^2=n(4n^2-1) ÷3
12)1^3+3^3+5^3+..........(2n-1)^3=n^2(2n^2-1)
13)1^4+2^4+3^4+..........+n^4
=n(n+1)(2n+1)(3n^2+3n-1) ÷30
14)1^5+2^5+3^5+..........+n^5
=n^2 (n+1)^2 (2n^2+2n-1) ÷ 12
15)1+2+2^2+2^3+......+2^n=2^(n+1) – 1
ps:数列的性质:
等差数列的基本性质
⑴公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d.
⑵公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd.
⑶若{ a }、{ b }为等差数列,则{ a ±b }与{ka +b}(k、b为非零常数)也是等差数列.
⑷对任何m、n ,在等差数列{ a }中有:a = a + (n-m)d,特别地,当m = 1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性.
⑸、一般地,如果l,k,p,…,m,n,r,…皆为自然数,且l + k + p + … = m + n + r + … (两边的自然数个数相等),那么当{a }为等差数列时,有:a + a +
a + … = a + a + a + … .
⑹公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd( k为取出项数之差).
⑺如果{ a }是等差数列,公差为d,那么,a ,a ,…,a 、a 也是等差数列,其公差为-d;在等差数列{ a }中,a -a = a -a = md .(其中m、k、)
⑻在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项.
⑼当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数.
⑽设a ,a ,a 为等差数列中的三项,且a 与a ,a 与a 的项距差之比= (≠-1),则a = .
5.等差数列前n项和公式S 的基本性质
⑴数列{ a }为等差数列的充要条件是:数列{ a }的前n项和S 可以写成S = an + bn的形式(其中a、b为常数).
⑵在等差数列{ a }中,当项数为2n (n N )时,S -S = nd,= ;当项数为(2n -1) (n )时,S -S = a ,= .
⑶若数列{ a }为等差数列,则S ,S -S ,S -S ,…仍然成等差数列,公差为.
⑷若两个等差数列{ a }、{ b }的前n项和分别是S 、T (n为奇数),则= .
⑸在等差数列{ a }中,S = a,S = b (n>m),则S = (a-b).
⑹等差数列{a }中,是n的一次函数,且点(n,)均在直线y = x + (a -)上.
⑺记等差数列{a }的前n项和为S .①若a >0,公差d<0,则当a ≥0且a ≤0时,S 最大;②若a <0 ,公差d>0,则当a ≤0且a ≥0时,S 最小.
3.等比数列的基本性质
⑴公比为q的等比数列,从中取出等距离的项,构成一个新数列,此数列仍是等比数列,其公比为q ( m为等距离的项数之差).
⑵对任何m、n ,在等比数列{ a }中有:a = a · q ,特别地,当m = 1时,便得等比数列的通项公式,此式较等比数列的通项公式更具有普遍性.
⑶一般地,如果t ,k,p,…,m,n,r,…皆为自然数,且t + k,p,…,m + … = m + n + r + … (两边的自然数个数相等),那么当{a }为等比数列时,有:
a .a .a .… = a .a .a .… ..
⑷若{ a }是公比为q的等比数列,则{| a |}、{a }、{ka }、{ }也是等比数列,其公比分别为| q |}、{q }、{q}、{ }.
⑸如果{ a }是等比数列,公比为q,那么,a ,a ,a ,…,a ,…是以q 为公比的等比数列.
⑹如果{ a }是等比数列,那么对任意在n ,都有a ·a = a ·q >0.
⑺两个等比数列各对应项的积组成的数列仍是等比数列,且公比等于这两个数列的公比的积.
⑻当q>1且a >0或0<q<1且a <0时,等比数列为递增数列;当a >0
且0<q<1或a <0且q>1时,等比数列为递减数列;当q = 1时,等比数列为常数列;当q<0时,等比数列为摆动数列.
4.等比数列前n项和公式S 的基本性质
⑴如果数列{a }是公比为q 的等比数列,那么,它的前n项和公式是S =
也就是说,公比为q的等比数列的前n项和公式是q的分段函数的一系列函数值,分段的界限是在q = 1处.因此,使用等比数列的前n项和公式,必须要弄清公比q是可能等于1还是必不等于1,如果q可能等于1,则需分q = 1和q≠1进行讨论.
⑵当已知a ,q,n时,用公式S = ;当已知a ,q,a 时,用公式S = .
⑶若S 是以q为公比的等比数列,则有S = S +qS .⑵
⑷若数列{ a }为等比数列,则S ,S -S ,S -S ,…仍然成等比数列.
⑸若项数为3n的等比数列(q≠-1)前n项和与前n项积分别为S 与T ,次n项和与次n项积分别为S 与T ,最后n项和与n项积分别为S 与T ,则S ,S ,S 成等比数列,T ,T ,T 亦成等比数列。

相关文档
最新文档