一元一次方程单元知识总结

合集下载

一元一次方程知识点总结

一元一次方程知识点总结

一元一次方程知识点总结一、一元一次方程的定义1. 等式:用“=”号连接而成的式子叫等式。

2. 方程:含未知数的等式,叫方程。

3. 一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

注:1、方程一定是等式,但等式不一定是方程。

2、方程中的未知数可以用x 表示,也可以用其他字母表示,如a 、y 、b 等。

3、方程中可含有多个未知数。

4、一元一次方程的等号两边都是整式。

二、一元一次方程的解1. 方程的解:使等式左右两边相等的未知数的值叫方程的解。

2. 解方程:求出方程的解的过程叫做解方程。

3. 方程的解与解方程的关系:方程的解是一个数,而解方程是一个解题过程。

三、等式的性质1. 等式性质1:等式两边都加上(或减去)同一个数(或式子),结果仍相等。

如果a =b,那么a ±c =b ±c2. 等式性质2:等式两边都乘以(或除以)同一个不为零的数,结果仍相等。

如果a =b ,那么ac=bc ;如果a =b (c ≠0),那么cb c a =。

四、解一元一次方程(移项、合并同类项)1. 解方程:求出方程的解的过程叫做解方程。

2. 移项:根据等式性质1,把等式一边的某项变号后移到另一边。

一般地,把未知项移到左边,常数项移到右边。

注:移项一定要改变符号。

3. 合并同类项:分别将未知项的系数相加、常数项相加,化为最简形式b ax =。

4. 系数化为1:根据等式性质2,在方程两边同除以未知数的系数a,得到a bx =五、解一元一次方程(去括号、去分母)1. 去括号:用乘法分配律,先去小括号,再去大括号的顺序。

2. 去分母:在方程的两边同时乘以所有分母的最小公倍数。

注:1、不含分母的项也要乘以最小公倍数;2、分子是多项式的一定要先用括号括起来。

六、一元一次方程的应用题(路程、利润、费用、工程、配套、调配)1. 列一元一次方程解应用题的一般步骤:(1)审题:通过读题,弄清题意(提取已知量和未知量等信息);(2)找等量关系:用文字表示出包含题目相、关数量关系的等量关系;(3)设未知数:选设一个未知量(可以是直接或间接未知量,还可以是辅助元)(4)列方程:用代数式表示出等量关系中的相关量;(5)解方程: 仔细解出方程;(6)检验:看是否是原方程的解,再看是否符合实际意义;(7)回答:完整回答题目中的问题.2. 路程问题:速度×时间=路程(1)相遇问题:速度和×相遇时间=两者间路程(2)追及问题:速度差×追上时间=两者间路程(3)行船问题:静水的速度+水流的速度=顺水的速度静水的速度-水流的速度=逆水的速度(4)火车过桥问题3. 利润问题:单个商品利润=商品销售价-商品进价(成本)总利润=销售总额-总成本=单个商品利润×商品数量利润率=成本利润×100% 现价=原价×折扣4. 费用问题:总价=单价×数量5. 工程问题:工作总量=工作效率×工作时间6. 配套问题:配套问题中根据已知条件分清数量关系,尤其是倍数关系。

一元一次方程(知识点完整版)

一元一次方程(知识点完整版)

第三章:一元一次方程本章板块⎪⎪⎪⎩⎪⎪⎪⎨⎧程实际问题与一元一次方方程的解解方程等式的基本性质定义一元一次方程.5.4.3.2.1 知识梳理【知识点一:方程的定义】方程:含有未知数的等式就叫做方程.注意未知数的理解,n m x ,,等,都可以作为未知数。

题型:判断给出的代数式、等式是否为方程 方法:定义法例1、判定下列式子中,哪些是方程?(1)4=+y x (2)2>x (3)642=+(4)92=x (5)211=x【知识点二:一元一次方程的定义】一元一次方程:①只含有一个未知数(元);②并且未知数的次数都是1(次); ③这样的整式方程叫做一元一次方程。

题型一:判断给出的代数式、等式是否为一元一次方程 方法:定义法例2、判定下列哪些是一元一次方程?0)(22=+-x x x ,712=+x π,0=x ,1=+y x ,31=+xx ,x x 3+,3=a题型二:形如一元一次方程,求参数的值方法:2x 的系数为0;x 的次数等于1;x 的系数不能为0. 例3、如果()051=+-mx m 是关于x 的一元一次方程,求m 的值例4、若方程()05122=+--ax x a 是关于x 的一元一次方程,求a 的值【知识点三:等式的基本性质】等式的性质1:等式两边都加上(或减去)同个数(或式子),结果仍相等.即:若a=b ,则a ±c=b ±c等式的性质2:等式两边同时乘以同一个数,或除以同一个不为0的数,结果仍相等.即:若b a =,则bc ac =;若b a =,0≠c 且cb c a = 例5、运用等式性质进行的变形,不正确的是( )A 、如果a=b,那么a —c=b-cB 、如果a=b,那么a+c=b+cC 、如果a=b ,那么cbc a = D 、如果a=b,那么ac=bc 【知识点四:解方程】方程的一般式是:()00≠=+a b ax 题型一:不含参数,求一元一次方程的解例7、解方程284=-练习1、()()()35123452+--=-+-x x x x练习2、14.01.05.06.01.02.0=+--x x 练习3、x =+⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+221413223题型二:解方程的题中,有相同的含x 的代数式方法:利用整体思想解方程,将相同的代数式用另一个字母来表示,从而先将方程化简,并求值。

初中数学知识点总结 一元一次方程

初中数学知识点总结 一元一次方程

初中数学知识点总结一元一次方程一元一次方程知识点总结一、从算式到方程(一)方程:含有未知数的等式叫做方程。

1、方程必须具备的两个条件(1)是等式。

(2)含有未知数。

(二)解方程:就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。

二、等式的性质(一)等式的性质1:等式两边同加(或减)司一个数(或式子),结果仍相等。

符号语言:如果a=b,那么B土C=B土C。

(二)等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

符号语言:如果a=b,那么ac=bc;(三)等式的性质是解方程的依据。

三、一元一次方程(一)定义:只含有一个未知数(元),并且未知数的次数都是1,等号两边都是整式,形如ax+b=0,这样的方程就叫一元一次方程。

(二)列一元一次方程(三)解一元一次方程1、去分母:解含有分母的一元一次方程时,方程两边乘各自分母的最小分倍数,从而约去分母,这个过程叫做去分母。

依据:等式的性质2;2、去括号:解一元一次方程式时,按照去括号法则把方程中的括号去掉,这个过程叫做去括号。

依据:乘法分配律、去括号法则;3、移项:把等号一边的某项变号后移到另一边,叫做移项。

(1)依据:等式的性质1;(2)目的:将含有未知数的项移到等号的一边,将常数项移到等号的另一边;移项时,一般都习惯把含未知数的项数到等号的左边,把常数项移到等号的右边。

4、合并同类项:即将等号同侧的含未知数的项、常数项分别合并,把方程式转化为ax=b(a不等于0)的形式。

依据:合并同类项法则;5、系数化为1:即在方程两边同时除以未知数的系数(或乘以未知数系数的倒数,将未知数的系数为1,得到=—a不等于0)。

依据:等式的性质2;四、实际问题与一元一次方程(一)列一元一次方程解决实际问题的一般步骤1.审题找相等关系2、设未知数3、列方程4、解方程5、检验(1)检验所得结果是不是方程的解。

(2)检验方程的解是否符合实际意义。

6、写出答案。

一元一次方程笔记整理

一元一次方程笔记整理

一元一次方程笔记整理摘要:一、一元一次方程的定义和基本概念1.一元一次方程的定义2.方程中各部分的名称3.解方程的基本方法二、一元一次方程的解法1.移项法2.合并同类项法3.系数化为1 法三、一元一次方程的应用1.实际问题中的应用2.行程问题中的应用3.工程问题中的应用四、一元一次方程的检验1.代入法检验2.带回原方程检验正文:一、一元一次方程的定义和基本概念一元一次方程是指形如ax+b=0 的方程,其中a 和b 是已知数,x 是未知数。

在解一元一次方程时,我们需要将方程移项,使未知数x 的项单独出现在等式的一边,从而求得x 的值。

方程中各部分的名称包括:未知数(x)、系数(a 和b)、常数项(b)和等式(=)。

解一元一次方程的基本方法有移项法、合并同类项法和系数化为1 法。

这些方法各有特点,适用于不同类型的方程。

二、一元一次方程的解法1.移项法:通过加减法操作,将方程中的未知数项移到等式的一边,从而求得未知数的值。

2.合并同类项法:将方程中的同类项合并,简化方程,然后通过移项求解未知数。

3.系数化为1 法:通过除以系数,将方程的系数化为1,从而简化方程并求解未知数。

三、一元一次方程的应用一元一次方程在实际问题中有广泛的应用,例如在商品销售、工程建设和行程规划等方面。

通过建立一元一次方程,我们可以更直观地理解问题,并求解未知数,为实际问题的解决提供依据。

四、一元一次方程的检验在求解一元一次方程后,我们通常需要检验求得的解是否符合原方程。

检验方法有代入法检验和带回原方程检验。

1.代入法检验:将求得的解代入原方程,看是否能使方程成立。

2.带回原方程检验:将求得的解带回原方程,进行加减乘除等运算,看是否能得到原方程。

一元一次方程知识点及经典例题

一元一次方程知识点及经典例题

一、知识要点梳理知识点一:一元一次方程及解的概念 1、 一元一次方程:一元一次方程的标准形式是:ax+b=0(其中x 是未知数,a,b 是已知数,且a≠0)。

要点诠释:一元一次方程须满足下列三个条件: (1) 只含有一个未知数; (2) 未知数的次数是1次; (3) 整式方程. 2、方程的解:判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等. 知识点二:一元一次方程的解法1、方程的同解原理(也叫等式的基本性质)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

如果,那么;(c 为一个数或一个式子)。

等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

如果,那么;如果,那么要点诠释:分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。

即:(其中m≠0)特别须注意:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如方程:-=1.6,将其化为: -=1.6。

方程的右边没有变化,这要与“去分母”区别开。

2、解一元一次方程的一般步骤:解一元一次方程的一般步骤变形步骤 具 体 方 法 变 形 根 据注 意 事 项去分母方程两边都乘以各个分母的最小公倍数等式性质21.不能漏乘不含分母的项;2.分数线起到括号作用,去掉分母后,如果分子是多项式,则要加括号去括号先去小括号,再去中括号,最后去大括号 乘法分配律、去括号法则 1.分配律应满足分配到每一项 2.注意符号,特别是去掉括号移 项 把含有未知数的项移到方程的一边,不含有未知数的项移到另一边等式性质11.移项要变号;2.一般把含有未知数的项移到方程左边,其余项移到右边合并同 类 项 把方程中的同类项分别合并,化成“b ax =”的形式(0≠a )合并同类项法则合并同类项时,把同类项的系数相加,字母与字母的指数不变未知数的系数化成“1”方程两边同除以未知数的系数a ,得a b x = 等式性质2 分子、分母不能颠倒要点诠释:理解方程ax=b 在不同条件下解的各种情况,并能进行简单应用:①a≠0时,方程有唯一解;②a=0,b=0时,方程有无数个解;③a=0,b≠0时,方程无解。

一元一次方程知识点及经典例题

一元一次方程知识点及经典例题

一元一次方程单元复习与巩固 一元一次方程单元复习与巩固一元一次方程单元复习与巩固一、知识网络二、知识要点梳理知识点一:一元一次方程及解的概念1、一元一次方程: 一元一次方程的标准形式是:ax+b=0(其中x 是未知数,a,b 是已知数,且a ≠0)。

要点诠释:一元一次方程须满足下列三个条件: (1) 只含有一个未知数;(2) 未知数的次数是1次;(3) 整式方程.2、方程的解: 判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等.知识点二:一元一次方程的解法 1、方程的同解原理(也叫等式的基本性质)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

如果b a =,那么c b c a ±=±;(c 为一个数或一个式子)。

等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

如果b a =,那么bc ac =;如果)0(≠=c b a ,那么cb c a =要点诠释: 分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。

即:mb ma bm amb a ÷÷==(其中m ≠0)特别须注意:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如方程:6.12.045.03=+--x x ,将其化为:6.1241053010=+--x x 。

方程的右边没有变化,这要与“去分母”区别开。

2、解一元一次方程的一般步骤:解一元一次方程的一般步骤常用步骤 具体做法 依据 注意事项去分母 在方程两边都乘以各分母的最小公倍数等式基本性质2防止漏乘(尤其整数项),注意添括号;去括号 一般先去小括号,再去中括号,最后去大括号 去括号法则、分配律 注意变号,防止漏乘;移项 把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(记住移项要变号) 等式基本性质1 移项要变号,不移不变号;合并同类项 把方程化成ax =b(a ≠0)的形式 合并同类项法则计算要仔细,不要出差错; 系数化成1 在方程两边都除以未知数的系数a ,得到方程的解 a bx =等式基本性质2计算要仔细,分子分母勿颠倒 要点诠释: 理解方程ax=b 在不同条件下解的各种情况,并能进行简单应用:一元一次方程单元复习与巩固 一元一次方程单元复习与巩固①a ≠0时,方程有唯一解a b x =;②a=0,b=0时,方程有无数个解; ③a=0,b ≠0时,方程无解。

初中一元一次方程知识点归纳

初中一元一次方程知识点归纳

初中一元一次方程知识点归纳
初中一元一次方程知识点归纳如下:
1. 一元一次方程的定义:一元一次方程是指方程中只有一个变量,且变量的最高次数为1的方程。

2. 方程的基本形式:一元一次方程的基本形式为ax+b=0,其
中a和b是已知实数,且a≠0。

3. 解方程的步骤:解一元一次方程的步骤主要包括去括号、合并同类项、移项、合并同类项、化简等。

4. 解方程的性质:一元一次方程的解具有唯一性,即要么无解,要么有唯一解。

5. 方程的解表示形式:一元一次方程的解有三种表示形式,即唯一解、无解和无穷多解。

6. 解方程的方法:解一元一次方程的方法主要包括正向代入、逆向代入、等式交换等。

7. 使用方程解实际问题:一元一次方程可以应用于实际问题中,通过建立方程并解方程可以求解实际问题。

8. 方程的应用领域:一元一次方程在代数、几何、物理等领域中都有广泛的应用。

9. 方程的相关概念:一元一次方程与方程的根、方程的系数、方程的次数等相关概念有着密切的联系。

10. 方程的扩展:一元一次方程是一元线性方程的特殊情况,线性方程还有更高次数的形式,如二次方程、三次方程等。

一元一次方程所有知识点

一元一次方程所有知识点

一元一次方程所有知识点一、一元一次方程的概念。

1. 定义。

- 只含有一个未知数(元),未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程。

- 例如:2x + 3=5x - 1是一元一次方程,它只含有一个未知数x,x的次数是1,等号两边2x + 3和5x-1都是整式。

- 一般形式:ax + b = 0(a≠0),其中a是未知数x的系数,b是常数项。

2. 方程的解。

- 使方程左右两边相等的未知数的值叫做方程的解。

- 例如:对于方程2x+3 = 7,当x = 2时,左边=2×2 + 3=4 + 3 = 7,右边=7,所以x = 2就是方程2x+3 = 7的解。

二、一元一次方程的解法。

1. 移项。

- 把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫做移项。

- 例如:在方程2x+3 = 5x - 1中,为了求解x,我们将5x移到左边变为-5x,3移到右边变为-3,得到2x-5x=-1 - 3。

- 移项的依据是等式的基本性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

2. 合并同类项。

- 将方程中含有相同字母且相同字母的指数也相同的项合并在一起。

- 例如:在2x-5x=-1 - 3中,2x-5x=-3x,-1-3 = -4,方程变为-3x=-4。

3. 系数化为1。

- 在方程ax = b(a≠0)的形式下,将方程两边同时除以a,得到x=(b)/(a)。

- 例如:对于方程-3x=-4,两边同时除以-3,得到x=(4)/(3)。

三、一元一次方程的应用。

1. 行程问题。

- 基本公式:路程=速度×时间。

- 相遇问题:两者路程之和等于总路程。

例如:甲、乙两人分别从A、B两地同时出发相向而行,甲的速度是v_1,乙的速度是v_2,经过t小时相遇,AB两地间的距离s=(v_1 + v_2)t。

- 追及问题:两者路程之差等于初始距离。

例如:甲、乙两人同向而行,甲的速度是v_1,乙的速度是v_2(v_1>v_2),开始时甲、乙相距s_0,经过t小时甲追上乙,则s_0=(v_1 - v_2)t。

人教版七年级数学上册 第五章 一元一次方程知识归纳与题型突破(单元复习 8类题型清单)

人教版七年级数学上册  第五章 一元一次方程知识归纳与题型突破(单元复习 8类题型清单)

1第五章一元一次方程知识归纳与题型突破(题型清单)01思维导图02知识速记一、基本概念1、等式的概念:含有等号,表示相等关系的式子2、方程的概念:含有未知数的等式3、一元一次方程的概念:(1)只含有1个未知数;(2)未知数的最高次数为1次;(3)等式两边都是整式.二、等式的性质若b a =,则c b c a +=+、c b c a -=-、bc ac =、cbc a =.特别注意:等式两边须同时乘以或除以一个不为0的数.三、解一元一次方程1、去分母(不漏乘不含分母的项,去分母应加括号)2、去括号(带着符号计算,不要漏乘)3、移项(移项要变号;未知数移到左边,常数移到右边;先后顺序不重要)4、合并同类项5、系数化为1(系数不能为0,若未知数的系数含有字母则需要讨论)四、列方程解应用题的步骤①审:审题,分析题中已知什么,求什么,明确各数量之间关系②设:设未知数(一般求什么,就设什么为x )③找:找出能够表示应用题全部意义的一个相等关系④列:根据这个相等关系列出需要的代数式,进而列出方程⑤解:解所列出的方程,求出未知数的值⑥答:检验所求解是否符合题意,写出答案(包括单位名称)五、一元一次方程的应用(4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);(5)行程问题(路程=速度×时间);(6)等值变换问题;(7)和,差,倍,分问题;(8)分配问题;(9)比赛积分问题;(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度).03题型归纳题型一判断是否是一元一次方程例题:(24-25七年级上·全国·单元测试)下列各式:①236x y -=;②2430x x --=;③()2353x x +=-;④310x+=;⑤()3425x x --.其中,一元一次方程有()A .1个B .2个C .3个D .4个巩固训练1.(23-24七年级下·全国·期中)下列各式中,属于一元一次方程的是()A .6518x y -=B .242715x x =+-C .438x x+=D .94x x-=2.(23-24七年级上·全国·单元测试)在方程①231325x +=,②=0,③235x y +=,④3120x+=中,一元一次方程共有()A .1个B .2个C .3个D .4个3.(23-24七年级上·全国·单元测试)①12x x -=;②0.31x ≤;③243x x -=;④512x x =-;⑤6x =;⑥20x y +=.其中一元一次方程的个数是()A .2B .3C .4D .5题型二根据一元一次方程的定义求参数的值例题:(24-25七年级上·黑龙江哈尔滨·阶段练习)已知1320m x --=是关于x 的一元一次方程,则m 的值是.巩固训练1.(23-24七年级上·全国·单元测试)若()1246a a x--+=-是关于x 的一元一次方程,则a =.2.(23-24七年级上·河南漯河·期中)已知关于x 的方程()||233m m x m --+=是一元一次方程,则m 的值为.3.(23-24七年级上·全国·单元测试)若关于x 的方程()21120m mx m x -+--=是一元一次方程,则m 的值为.题型三已知一元一次方程的解求参数的值例题:(23-24七年级下·全国·期中)关于x 的一元一次方程213mx x -=-有解,则m 的值为.巩固训练1.(23-24七年级上·浙江金华·期末)已知3x =是方程26ax a -=-+的解,则a =.2.(23-24七年级下·四川宜宾·期中)整式ax b +的值随着x 的取值的变化而变化,下表是当x 取不同的值时对应的整式的值:x 1-0123ax b+8-4-048则关于x 的方程8ax b +=的解是.3.(23-24七年级上·浙江·期末)若关于x 的方程30ax +=的解为2x =,则方程()130a x -+=的解为.题型四列一元一次方程例题:(23-24六年级下·全国·单元测试)设某数为x ,如果某数的2倍比它的相反数大1,那么列方程是.巩固训练1.(23-24七年级上·福建福州·期末)“x 的5倍与2的和等于x 的13与4的差”,用等式表示为2.(2024·湖南益阳·模拟预测)《孙子算经》中有一道题,原文是:今有三人共车,二车空:二人共车,九人步,问人车各几何?译文为:今有若干人乘车,每3人共乘一车,刚好每车坐满后还剩余2辆车没人坐;若每2人共乘一车,最终剩余9个人无车可乘只能步行,问共有多少人,多少辆车?设共有x 辆车,则可列方程.3.(2023·吉林长春·模拟预测)《算法统宗》是中国古代重要的数学著作,其中记载:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空,其大意为:今有若干人住店,若每间住7人,则余下7人无房可住:若每间住9人,则余下一间无人住,设店中共有x 间房,可列方程为.题型五等式的基本性质例题:(23-24七年级上·天津·期中)下列说法错误的是()A .若22x y -=-,则x y =B .若25x x =,则5x =C .若a b =,则66a b -=-D .若2211a bc c =++,则a b =巩固训练1.(23-24七年级下·广西南宁·开学考试)下列是根据等式的性质进行变形,正确的是()A .若x y =,则33x y -=+B .若a b =,则32a b =C .若22x y=,则x y =D .若ax ay =,则x y=2.(23-24七年级上·安徽·单元测试)下列运用等式的性质变形中正确的是()A .如果a b =,则a c b c +=-B .如果23x x =,则3x =C .如果a b =,则22a bc c =D .如果22a b c c =,则a b =3.(22-23七年级上·山东济南·阶段练习)下列变形正确的是()A .4532x x -=+变形得4325x x -=-+B .211332x x -=+变形得4633x x -=+C .3(1)2(3)x x -=+变形得3126x x -=+D .32x =变形得23x =4.(2024·贵州贵阳·一模)用“□”“△”“○”表示三种不同的物体,现用天平称了两次,情况如图所示.设a ,b ,c 均为正数,则能正确表示天平从左到右变化过程的等式变形为()A .如果a c b c +=+,那么a b =B .如果a b =,那么a c b c +=+C .如果22a b =,那么a b=D .如果a b =,那么22a b=题型六解一元一次方程巩固训练题型七解一元一次方程中的错解复原问题巩固训练(2)仿照上例解方程:0.2 0.3x+题型八用一元一次方程解决实际问题例题:(2024上·辽宁大连·七年级统考期末)某车间生产一批螺钉和螺母,由一个人操作机器做需要200h完成.现计划由一部分人先做4h,然后增加5人与他们一起做6h,完成这项工作.假设这些人的工作效率相同.(1)求具体应先安排多少人工作?(2)在增加5人一起工作后,若每人每天使用机器可以生产1200个螺钉或2000个螺母,1个螺钉需要配2个螺母成为一个完整的产品,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?(3)若该车间有10台A型和11台B型机器可以生产这种产品,每台A型机器比B型机器一天多生产1个产品.已知5台A型机器一天的产品装满8箱后还剩4个,7台B型机器一天的产品装满11箱后还剩1个,且每箱装的产品数相同.某天有6台A型机器和m台B型机器同时开工,请问一天生产的产品能否恰好装满29箱.若能,请计算出m的值;若不能,请说明理由.巩固训练1.(2024上·甘肃酒泉·七年级统考期末)合肥庐阳区实验学校七(6)班为迎接学校秋季运动会计划购买30支签字笔,若干本笔记本(笔记本数量超过签字笔数量),用来奖励运动会中表现出色的运动员和志愿者,甲、乙两家文具店的标价都是签字笔8元/支、笔记本2元/本,甲店的优惠方式是签字笔打九折,笔记本打八折;乙店的优惠方式是每买5支签字笔送1本笔记本,签字笔不打折,购买的笔记本打七五折.(1)请用含x的代数式分别表示学校在甲、乙两家店购物所付的费用;(2)如果购买笔记本数量为60本,并且只在一家店购买的话,请通过计算说明,到哪家店购买更合算?(2)小亮家—年缴纳水费1180元,则小亮家这一年用水多少立方米?(3)小红家去年和今年共用水520立方米,共缴纳水费2950元,并且今年的用水量超过去年的用水量,则小红家今年和去年各用水多少立方米?第五章一元一次方程知识归纳与题型突破(题型清单)01思维导图02知识速记一、基本概念1、等式的概念:含有等号,表示相等关系的式子2、方程的概念:含有未知数的等式3、一元一次方程的概念:(1)只含有1个未知数;(2)未知数的最高次数为1次;(3)等式两边都是整式.二、等式的性质若b a =,则c b c a +=+、c b c a -=-、bc ac =、cbc a =.特别注意:等式两边须同时乘以或除以一个不为0的数.三、解一元一次方程1、去分母(不漏乘不含分母的项,去分母应加括号)2、去括号(带着符号计算,不要漏乘)3、移项(移项要变号;未知数移到左边,常数移到右边;先后顺序不重要)4、合并同类项5、系数化为1(系数不能为0,若未知数的系数含有字母则需要讨论)四、列方程解应用题的步骤①审:审题,分析题中已知什么,求什么,明确各数量之间关系②设:设未知数(一般求什么,就设什么为x )③找:找出能够表示应用题全部意义的一个相等关系④列:根据这个相等关系列出需要的代数式,进而列出方程⑤解:解所列出的方程,求出未知数的值⑥答:检验所求解是否符合题意,写出答案(包括单位名称)五、一元一次方程的应用(4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);(5)行程问题(路程=速度×时间);(6)等值变换问题;(7)和,差,倍,分问题;(8)分配问题;(9)比赛积分问题;(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度).03题型归纳题型一判断是否是一元一次方程例题:(24-25七年级上·全国·单元测试)下列各式:①236x y -=;②2430x x --=;③()2353x x +=-;④310x+=;⑤()3425x x --.其中,一元一次方程有()A .1个B .2个C .3个D .4个【答案】A【知识点】一元一次方程的定义【分析】本题考查的是一元一次方程的定义,掌握一元一次方程的定义是解题的关键.根据一元一次方程的定义进行判定.【详解】解:①是二元一次方程,不符合题意;②是一元二次方程,不符合题意;③是一元一次方程,符合题意;④是分式方程,不符合题意;⑤是代数式,不是方程,不符合题意.故选:A .巩固训练1.(23-24七年级下·全国·期中)下列各式中,属于一元一次方程的是()A .6518x y -=B .242715x x =+-C .438x x+=D .94x x-=2.(23-24七年级上·全国·单元测试)在方程①231325x +=,②=0,③235x y +=,④120x+=中,一元一次方程共有()A .1个B .2个C .3个D .4个【答案】A【知识点】一元一次方程的定义3.(23-24七年级上·全国·单元测试)①2x x -=;②0.31x ≤;③243x x -=;④512x x =-;⑤6x =;⑥20x y +=.其中一元一次方程的个数是()A .2B .3C .4D .5题型二根据一元一次方程的定义求参数的值例题:(24-25七年级上·黑龙江哈尔滨·阶段练习)已知1320m x --=是关于x 的一元一次方程,则m 的值是.【答案】2【知识点】一元一次方程的定义【分析】本题考查了一元一次方程的概念,根据一元一次方程的定义得到11m -=,求出m 即可.【详解】解:根据题意得:11m -=,解得:2m =,故答案为:2.巩固训练1.(23-24七年级上·全国·单元测试)若()1246a a x --+=-是关于x 的一元一次方程,则a =.2.(23-24七年级上·河南漯河·期中)已知关于x 的方程()||233m m x m --+=是一元一次方程,则m 的值为.故答案为:13.(23-24七年级上·全国·单元测试)若关于x 的方程()21120m mx m x -+--=是一元一次方程,则m 的值为.【答案】1或0【知识点】一元一次方程的定义【分析】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.根据一元一次方程的一般形式即可判定有3种情况,分别讨论①当0m ≠且10m -≠时,②当0m =且10m -≠时,③当10m -=时是否满足该方程为一元一次方程即可.【详解】解: 关于x 的方程()21120m mxm x -+--=是一元一次方程,可考虑三种情况,①当0m ≠且10m -≠时,即0m ≠且1m ≠,则211m -=,解得:1m =,此时1m ≠,故排除;②当0m =且10m -≠时,即0m =且1m ≠,∴0m =,符合条件;③当10m -=即1m =时,211m -=,符合条件;综上:m 的值为1或0,故答案为:1或0.题型三已知一元一次方程的解求参数的值例题:(23-24七年级下·全国·期中)关于x 的一元一次方程213mx x -=-有解,则m 的值为.1.(23-24七年级上·浙江金华·期末)已知3x =是方程26ax a -=-+的解,则a =.【答案】2【知识点】方程的解【分析】本题考查了方程解的定义,使方程的左右两边相等的未知数的值,叫做方程的解.将3x =代入原方程,可得出关于a 的一元一次方程,解之即可得出a 的值.【详解】解:将3x =代入原方程得326a a -=-+,解得:2a =,∴a 的值为2.故答案为:2.2.(23-24七年级下·四川宜宾·期中)整式ax b +的值随着x 的取值的变化而变化,下表是当x 取不同的值时对应的整式的值:x 1-0123ax b+8-4-048则关于x 的方程8ax b +=的解是.【答案】3x =【知识点】方程的解【分析】此题考查了方程的解,根据表格中的数据求解即可.【详解】根据题意可得,当3x =时,8ax b +=∴关于x 的方程8ax b +=的解是3x =.故答案为:3x =.3.(23-24七年级上·浙江·期末)若关于x 的方程30ax +=的解为2x =,则方程()130a x -+=的解为.题型四列一元一次方程例题:(23-24六年级下·全国·单元测试)设某数为x ,如果某数的2倍比它的相反数大1,那么列方程是.【答案】21x x =-+【知识点】列方程【分析】本题主要考查了一元一次方程的应用,数x 的2倍为2x ,相反数为x -,据此根据题意列出方程即可.【详解】解:由题意得,21x x =-+,故答案为:21x x =-+.巩固训练1.(23-24七年级上·福建福州·期末)“x 的5倍与2的和等于x 的13与4的差”,用等式表示为2.(2024·湖南益阳·模拟预测)《孙子算经》中有一道题,原文是:今有三人共车,二车空:二人共车,九人步,问人车各几何?译文为:今有若干人乘车,每3人共乘一车,刚好每车坐满后还剩余2辆车没人坐;若每2人共乘一车,最终剩余9个人无车可乘只能步行,问共有多少人,多少辆车?设共有x 辆车,则可列方程.【答案】()3229x x -=+【知识点】古代问题(一元一次方程的应用)【分析】本题考查了由实际问题抽象出一元一次方程.根据人数不变,即可得出关于x 的一元一次方程,此题得解.【详解】解:依题意,得:()3229x x -=+.故答案为:()3229x x -=+.3.(2023·吉林长春·模拟预测)《算法统宗》是中国古代重要的数学著作,其中记载:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空,其大意为:今有若干人住店,若每间住7人,则余下7人无房可住:若每间住9人,则余下一间无人住,设店中共有x 间房,可列方程为.【答案】()7791x x +=-【知识点】古代问题(一元一次方程的应用)【分析】本题考查一元一次方程的应用,理清题中的等量关系是解题的关键.由等量关系“一房七客多七客,一房九客一房空”,即可列出一元一次方程即可.【详解】解: 每间住7人,则余下7人无房可住:若每间住9人,则余下一间无人住,∴客人可表示为()77x +个,也可表示为()91x -个,()7791x x ∴+=-,故答案为:()7791x x +=-.题型五等式的基本性质例题:(23-24七年级上·天津·期中)下列说法错误的是()A .若22x y -=-,则x y =B .若25x x =,则5x =C .若a b =,则66a b -=-D .若2211a bc c =++,则a b =【答案】B1.(23-24七年级下·广西南宁·开学考试)下列是根据等式的性质进行变形,正确的是()A .若x y =,则33x y -=+B .若a b =,则32a b =C .若22x y=,则x y =D .若ax ay =,则x y=2.(23-24七年级上·安徽·单元测试)下列运用等式的性质变形中正确的是()A .如果a b =,则a c b c+=-B .如果23x x =,则3x =C .如果a b =,则22a b c c =D .如果22a b c c =,则a b =3.(22-23七年级上·山东济南·阶段练习)下列变形正确的是()A .4532x x -=+变形得4325x x -=-+B .211332x x -=+变形得4633x x -=+C .3(1)2(3)x x -=+变形得3126x x -=+D .32x =变形得23x =4.(2024·贵州贵阳·一模)用“□”“△”“○”表示三种不同的物体,现用天平称了两次,情况如图所示.设a ,b ,c 均为正数,则能正确表示天平从左到右变化过程的等式变形为()A .如果a c b c +=+,那么a b=B .如果a b =,那么a c b c +=+C .如果22a b =,那么a b=D .如果a b =,那么22a b=【答案】A【知识点】等式的性质【分析】本题考查等式的性质,根据天平两端相等即可求得答案.【详解】解:由图形可得如果a c b c +=+,那么a b =,故选:A .题型六解一元一次方程例题1:解方程:(1)25433x x -=-;(2)576132x x -=-+.【答案】(1)35x =(2)415x =【分析】()1方程移项合并,把x 系数化为1,即可求解;()2方程移项合并,把x 系数化为1,即可求解.【详解】(1)移项,得24353x x -+=-,合并同类项,得1023x -=-,系数化为1,得35x =.(2)移项,得756123x x -+=-,合并同类项,得5223x -=-,系数化为1,得415x =.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.例题2:解方程:(1)5(1)2(31)41---=-x x x ;(2)23(1)12(10.5)-+=-+x x .题型七解一元一次方程中的错解复原问题巩固训练(2)仿照上例解方程:0.2 0.3x+【答案】(1)③④①②(2)3x=-题型八用一元一次方程解决实际问题1.(2024上·甘肃酒泉·七年级统考期末)合肥庐阳区实验学校七(6)班为迎接学校秋季运动会计划购买30支签字笔,若干本笔记本(笔记本数量超过签字笔数量),用来奖励运动会中表现出色的运动员和志愿者,甲、乙两家文具店的标价都是签字笔8元/支、笔记本2元/本,甲店的优惠方式是签字笔打九折,笔记本打八折;乙店的优惠方式是每买5支签字笔送1本笔记本,签字笔不打折,购买的笔记本打七五折.答:小红家去年和今年用水分别为245立方米、275立方米.。

人教新课标第三章一元一次方程知识点总结

人教新课标第三章一元一次方程知识点总结

1 1 的 两 边 同 ________________________ , 得 到 等 式 x , 这 是 依 据 8 2
______________________________________. 11、根据等式的性质解下列方程 (1) 2x 7 3 (2) 6 x 6 8 (3)
2
3
3.2—3.3 解一元一次方程 知识点归纳
一、方程中的合并同类项 解方程时,将含有未知数的几个项合成一项叫合并同类项,它的依据是乘法 的分配律,是分配律的逆用。 ※※★【注意】 (1)合并同类项的实质是系数的合并,字母及指数都不变 (2)在等号两边的同类项不能合并 (3)注意系数是负数的项的合并 (4)把常数项相加 二、系数化为 1 系数化为 1 的目的,是将形如 ax b(a 0) 化成 x 的形式,也就是求出方程 的解 x 。系数化为 1 的依据是等式性质 2,方程两边同时乘以系数 a(a 0) 的倒 数 ,或者同除以系数 a 本身。
D. x Байду номын сангаас 9
2
3、若关于 x 的方程 3x a x 1 的解是 x 2 ,则 a 的值为________. 4、如果关于 x 的方程 3x
5 2 k
6 0 是一元一次方程,则 k __________.
5、已知 x 1 是方程 mx 6 2 的解,则 m _________. 6、 x 的 8 倍加上 4 与 x 的 5 倍相等,列方程为_______________________. 7、已知方程 (a 4) x
※※※★★【注意】在解一元一次方程时,把系数化为
b a
b a
1 a
1 要注意一下几点:

一元一次方程知识点汇总

一元一次方程知识点汇总

一元一次方程知识点汇总【知识点归纳】一、方程的有关概念1.方程:含有未知数的等式就叫做方程.2. 一元一次方程:只含有一个未知数(元)x ,未知数x 的指数都是1(次)的方程叫做一元一次方程.3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.二、等式的性质等式的性质(1):等式两边都加上(或减去)同一个数(或式子),结果仍相等. 用式子形式表示为:如果a=b ,那么a±c=b±c等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等. 用式子形式表示为:如果a=b ,那么ac=bc;如果a=b(c≠0),那么a c =b c三、移项法则:把等式一边的某项变号后移到另一边,叫做移项.四、去括号法则 〔依据分配律:a (b+c )=ab+ac 〕1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.五、解方程的一般步骤1. 去分母(方程两边同乘各分母的最小公倍数)2. 去括号(按去括号法则和分配律)3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)4. 合并(把方程化成ax = b (a≠0)形式)5. 系数化为1(在方程两边都除以未知数的系数a (或乘未知数的倒数),得到方程的解x=b a). 六、用方程思想解决实际问题的一般步骤1. 审:审题,分析题中已知什么,求什么,找:明确各数量之间的关系;2. 设:设未知数(可分直接设法,间接设法), 表示出有关的含字母的式子;3. 列:根据题意列方程;4. 解:解出所列方程, 求出未知数的值;5. 检:检验所求的解是否是方程的解,是否符合题意;6. 答:写出答案(有单位要注明答案).七、有关常用应用题类型及各量之间的关系1. 和、差、倍、分问题(增长率问题): 增长量=原有量³增长率 现在量=原有量+增长量(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,几分之几,增长率,减少,缩小……”来体现.(2)多少关系:通过关键词语“多、少、大、小、和、差、不足、剩余……”来体现. 审题时要抓住关键词,确定标准量与比校量,并注意每个词的细微差别.2. 等积变形问题:(1)“等积变形”是以形状改变而体积不变(等积)为前提,是等量关系的所在.常用等量关系为: ①形状面积变了,周长没变; ②原料体积=成品体积.(2)常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式 V=底面积³高=S ²h =πr 2h②长方体的体积 V =长³宽³高=abc3. 劳力调配问题:从调配后的数量关系中找等量关系,要注意调配对象流动的方向和数量.这类问题要搞清人数的变化,常见题型有:(1)既有调入又有调出;(2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变4. 数字问题: 要正确区分“数”与“数字”两个概念, 同一个数字在不同数位上,表示的数值不同,这类问题通常采用间接设法,常见的解题思路分析是抓住数字间或新数、原数之间的关系寻找等量关系列方程.列方程的前提还必须正确地表示多位数的代数式,一个多位数是各位上数字与该位计数单位的积之和.(1)要搞清楚数的表示方法:一般可设个位数字为a ,十位数字为b ,百位数字为c ,十位数可表示为10b+a ,百位数可表示为100c+10b+a (其中a 、b 、c 均为整数,且0≤a ≤9, 0≤b ≤9, 1≤c ≤9).(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n 表示,连续的偶数用2n+2或2n —2表示;奇数用2n+1或2n —1表示.5. 工程问题(生产、做工等类问题):工作量=工作效率³工作时间 工作时间工作量工作效率= 工作效率工作量工作时间=合做的效率=各单独做的效率的和. 一般情况下把总工作量设为1,完成某项任务的各工作量的和=总工作量=1.分析时可采用列表或画图来帮助理解题意。

第五章一元一次方程知识点总结和例题讲解

第五章一元一次方程知识点总结和例题讲解

一元一次方程知识点及题型一、方程的有关概念1.方程: 含有未知数的等式就叫做方程.2.一元一次方程: 只含有一个未知数(元)x, 未知数x的指数都是1(次), 这样的方程叫做一元一次方程.3.方程的解:使方程中等号左右两边相等的未知数的值, 叫做方程的解.注:.方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程....方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.二、等式的性质三、移项法则: 把等式一边的某项变号后移到另一边, 叫做移项.四、去括号法则五、解方程的一般步骤1.去分母(方程两边同乘各分母的最小公倍数)2.去括号(按去括号法则和分配律)3.移项(把含有未知数的项移到方程一边, 其他项都移到方程的另一边, 移项要变号)4.合并(把方程化成a...(a≠0)形式)5.系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=).六. 列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数, 列出方程:设出未知数后, 表示出有关的含字母的式子, •然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程, 求出未知数的值.(5)检验, 写答案:检验所求出的未知数的值是否是方程的解, •是否符合实际, 写出答案【基础及提高】一. 选择题1.下列各式中, 是方程的个数为()(1)﹣4A.1个B.2个C.3个D.4个﹣3=﹣7;(2)3x﹣5=2x+1;(3)2x+6;(4)x﹣y=v;(4)a+b>3;(5)a2+a﹣6=0.A.如果ac=bc, 那么a=b B.如果, 那么a=b2. 下列说法正确的是()C.如果a=b, 那么D.如果, 那么x=﹣2y 3. 若关A.x=0B.x=3C.x=﹣3D.x=22﹣m+3=0是一元一次方程, 则这个方程的解是()4. 方程(m+1)x|m|+1=0是关于x 的一元一次方程, 则m()A.m=±1B.m=1C.m=﹣1D.m≠﹣15. 若关于x的方程nxn﹣1+n﹣4=0是一元一A.x=﹣1B.x=1C.x=﹣4D.x=4程的解是()A.1B.9C.0D.4 6. 已知x=3是关于x的方程x+m=2x﹣1的解,则(m+1)2的值是()7. 已知A.4B.3C.2D.1 x=﹣6是方程2x﹣6=ax的解, 则代数式的值是()8. 设A.B.C.D.﹣P=2x﹣1,Q=4﹣3x,则5P﹣6Q=7时,x的值应为()9. 服装A.总体上是赚了B.总体上是赔了店同时销售两种商品, 销售价都是100元,结果一种赔了20%, 另一种赚了20%, 那么在这次销售中,该服装店()C.总体上不赔不赚D.没法判断是赚了还是赔了10. 如图是一个长方形试管架, 在a cm长的木条上钻了4个圆孔, 每个孔的直径为2cm, 则x等于()A.cm B.cm C. cm D. cmA.k≠3B.k=﹣2C.k=﹣4D.k=211. 关于x的方程(k﹣3)x﹣1=0的解是x=﹣1, 那么k的值是()12. 江苏卫视《一站到底》栏目中, 有一期的题目如图, 两个天平都保持平衡, 则三个球体的重量等于()个正方体的重量.A.2B.3C.4D.513. 已知A.1B.1或3C.3D.2或3方程2x+k=5的解为正整数, 则k所能取的正整数值为()A.B.3C.8D.9 14. 小芳同学解关于x的一元一次方程﹣时,发现有个数模糊看不清楚,聪明的小芳翻看了书后的答案, 知道3. 于是她很快补上了这个数. 她补的这个数是()A.B.C.D.15. 若代数式3x﹣7和6x+13互为相反数, 则x的值为()A.2个B.3个C.4个D.5个16. 按下面的程序计算, 若开始输入的值x为结果为656, 则满足条件的x的不同值最多有()二. 填空题17.一件衣服先按成本提高50%标价, 再以8折(标价的80%)出售, 结果获利28元. 若设这件衣服的成本是x元, 根据题意, 可得到的方程是_________ .18.图1是边长为30cm的正方形纸板, 裁掉阴影部分后将其折叠成如图2所示的长方体盒子, 已知该长方体的宽是高的2倍, 则它的体积是_________ cm3.19.已知及的值相等时, x= _________ .20.若x=﹣1是关于x方程ax+b=1的根, 则代数式(a﹣b)2011的值是_________ .21.某人用24000元买进甲、乙两种股票, 在甲股票升值15%, 乙股票下跌10%时卖出, 共获利1350元, 则此人买甲股票的钱比买乙股票的钱多_________ 元.22如果要由等式m﹙a+1﹚=x﹙a+1﹚得到m=x, 需要满足的条件是_________ .23. 关于x的方程(a﹣1)x2+x+a2﹣4=0是一元一次方程, 则方程的解为_________ .24. 关于x的方程(m+2)x=6解为自然数, 当m为整数时, 则m的值为_________ .25.已知m+n=2008(m﹣n), 则= _________ .三计算题解方程: (1)3(x﹣1)﹣2(2x+1)=12;(2)(3). (4)﹣=.(5). (6)(7). (8)﹣=3.(9)(10)四. 解答题1.若x=2是方程ax-1=3的解, 求a的值2. 方程x+2=5及方程ax-3=9的解相等求a的值3. m为何值时, 关于m的方程的解是的解的2倍?4. 已知, 是方程的解, 求代数式的值.5. 一家商店将某种服装按进价提高40%后标价, 又以8折优惠卖出, 结果每件仍获利15元, 这种服装每件的进价是多少?6. 一批货物, 甲把原价降低10元卖出, 用售价的10%做积累, 乙把原价降低20元, 用售价的20%做积累, 若两种积累一样多, 则这批货物的原售价是多少?7. 某商店开张, 为了吸引顾客, 所有商品一律按八折优惠出售, 已知某种皮鞋进价60元一双, 八折出售后商家获利润率为40%, 问这种皮鞋标价是多少元?优惠价是多少元?8. 某蔬菜公司收购到某种蔬菜140吨, 准备加工上市销售. 该公司的加工能力是: 每天可以精加工6吨或粗加工16吨, 现计划用15天完成加工任务, 该公司应安排几天精加工, 几天粗加工?9.今年“六•一”儿童节, 张红用8.8元钱购买了甲、乙两种礼物, 甲礼物每件1.2元, 乙礼物每件0.8元, 其中甲礼物比乙礼物少1件, 问甲、乙两种礼物各买了多少件?10.小明和小东两人练习跑步, 都从甲地出发跑到乙地, 小明每分钟跑250米, 小东每分钟跑200米, 小明让小东先出发3分钟之后再出发, 结果两人同时到达乙地, 求甲、乙两地之间的路程是多少米?11. 某船从A地顺流而下到达B地, 然后逆流返回, 到达A.B两地之间的C地, 一共航行了7小时, 已知此船在静水中的速度为8千米/时, 水流速度为2千米/时。

初一数学一元一次方程知识点总结与例题练习

初一数学一元一次方程知识点总结与例题练习

第一讲: 一元一次方程一、牢记概念1. 方程的概念: 方程是指含有未知数的等式。

2. 方程的解使方程左右两边的值相等的未知数的值, 叫做方程的解。

反过来, 已知方程的解, 则代入后, 方程左右两边的值相等(可以用于验算)3. 一元一次方程当一个方程中值含有一个未知数(元), 并且未知数的次数都是1, 这样的方程叫做一元一次方程。

4.等式的性质:(1) 等式两边加(或减)同一个数字(或式子), 结果仍相等。

(2) 等式两边乘同一个数, 或除以同一个不为0的数, 结果仍相等。

5. 解一元一次方程的一般步骤(1) 去分母: 方程两边同时乘以各项分母的最小公倍数;(2) 去括号: 可先去小括号, 再去中括号, 最后去大括号(也可以按照自己擅长的方式去括号);(3) 移项: 把含有未知数的项都移到等号的一边(通常是左边), 其他的常数项移到右边;移项的时候, 把某一项移动到等号的另外一边, 需要将该项原先的符号改变, 即“+”变为“-”, “-”变为“+”;(4) 合并同类项: 将含未知数的项和常数项都合并起来, 使得方程化成一般式的形式:(5) 系数化为1: 方程两边都除以未知数的系数a, 得到方程的解二、例题分析例1判断下列哪些是一元一次方程?(1)3+1=4 (2)2+5>3(3)5-3(4)3X+1=4(5)2X+5>3(6)5X-3(7)4X+2Y=6(8)72x +6=13(9)x 35-3=2(10)78-23=21X-3X (11)2x -3X=7(12)xy+3y=8例2解下列一元一次方程(1)3(x-2)=2-5(x-2) (2) 2x -13 =x+22+1(3) 143321=---m m (4)52221+-=--y y y三、练习(1) 3(1)2(2)23x x x +-+=+ (2) 3(2)1(21)x x x -+=--(3) 2x -13 =x+22 +1 (4) 12131=--x(5) x x -=+38 (6) 12542.13-=-x x(7) 310.40.342x x -=+ (8) 3142125x x -+=-(9) 31257243y y +-=- (10) 576132x x -=-+四、作业一. 填空题1.下列方程中, 解为-2的方程是( )A.3x-2=2xB.4x-1=2x+3C.3x+1=2x-1D.2x-3=3x+22. 下列变形式中的移项正确的是( )A.从5+x=12得x=12+5 B 、从5x+8=4x 得5x —4x=8C.从10x—2=4—2x得10x+2x=4+2D.从2x=3x—5得2x=3x—5=3x—2x=5 3.如果x=0是关于x的方程3x—2m=4的根, 则m的值是()A.2B.—2C.1D.—1二. 填空题1. 已知方程3x2n+3+5=0是一元一次方程, 则n=__________2. 若, 则x+y=___________3、设k为整数, 方程kx=4-x的解x为自然数, 则k=__________三、解下列方程(21)124362x x x-+--=(22)xx23231423=⎥⎦⎤⎢⎣⎡-⎪⎭⎫⎝⎛-(23) 112[(1)](1)223x x x--=-(24)27(3y+7)=2 -32y。

一元一次方程知识点总结

一元一次方程知识点总结

一元一次方程知识点总结一、等式与方程1.等式:(1)定义:含有等号的式子叫做等式.(2)性质:①等式两边同时加上(或减去)同一个整式,等式的值不变.若a b=那么a c b c+=+②等式两边同时乘以一个数或除以同一个不为0的整式,等式的值不变.若a b=那么有ac bc=或a c b c÷=÷(0c≠)③对称性:若a b=,则b a=.④传递性:若a b=,b c=则a c=.(3)拓展:①等式两边取相反数,结果仍相等.如果a b=,那么a b-=-②等式两边不等于0时,两边取倒数,结果仍相等.如果0a b=≠,那么11 a b =③等式的性质是解方程的基础,很多解方程的方法都要运用到等式的性质.如移项,运用了等式的性质①;去分母,运用了等式的性质②.④运用等式的性质,涉及除法运算时,要注意转换后除数不能为0,否则无意义.2.方程:(1)定义:含有未知数的等式叫做方程.(2)说明:①方程中一定有含一个或一个以上未知数,且方程是等式,两者缺一不可.②未知数:通常设x、y、z为未知数,也可以设别的字母,全部小写字母都可以.未知数称为元,有几个未知数就叫几元方程.一道题中设两个方程时,它们的未知数不能一样!③“次”:方程中次的概念和整式的“次”的概念相似.指的是含有未知数的项中,未知数次数最高的项对应的次数,也就是方程的次数.未知数次数最高是几就叫几次方程.④方程有整式方程和分式方程.整式方程:方程的两边都是关于未知数的整式的方程叫做整式方程.分式方程:分母中含有未知数的方程叫做分式方程.二、一元一次方程1.一元一次方程的概念:(1)定义:只含有一个未知数(元)且未知数的指数是1(次)的整式方程叫做一元一次方程.(2)一般形式:0ax b+=(a,b为常数,x为未知数,且0a≠).(3)注意:①该方程为整式方程.②该方程有且只含有一个未知数.③该方程中未知数的最高次数是1.④化简后未知数的系数不为0.如:212x x-=,它不是一元一次方程.⑤未知数在分母中时,它的次数不能看成是1次.如13xx+=,它不是一元一次方程.2.一元一次方程的解法:(1)方程的解:能使方程左右两边相等的未知数的值叫做方程的解,一般写作:“?x=”的形式.(2)解方程:求出方程的解的过程,也可以说是求方程中未知数的值的过程,叫解方程.(3)移项:①定义:从方程等号的一边移到等号另一边,这样的变形叫做移项.②说明:Ⅰ移项的标准:看是否跨过等号,跨过“=”号才称为移项;移项一定改变符号,不移项的不变.Ⅱ移项的依据:移项实际上就是对方程两边进行同时加减,根据是等式的性质①.Ⅲ移项的原则:移项时一般把含未知数的项向左移,常数项往右移,使左边对含未知数的项合并,右边对常数项合并,方便求解.(4)解一元一次方程的一般步骤及根据:①去分母——等式的性质②②去括号——分配律③移项——等式的性质①④合并——合并同类项法则⑤系数化为1——等式的性质②⑥检验——把方程的解分别代入方程的左右边看求得的值是否相等(在草纸上)(5)一般方法:①去分母,程两边同时乘各分母的最小公倍数.②去括号,一般先去小括号,再去中括号,最后去大括号.但顺序有时可依据情况而定使计算简便,本质就是根据乘法分配律.③移项,方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了要变号.(一般都是把未知数移到一起)④合并同类项,合并的是系数,将原方程化为ax b=(0a≠)的形式.⑤系数化1,两边都乘以未知数的系数的倒数.⑥检验,用代入法,在草稿纸上算.(6)注意:(对于一元一次方程的一般步骤要熟练掌握,更要观察所求方程的形式、特点,灵活变化解题步骤)①分母是小数时,根据分数的基本性质,把分母转化为整数,局部变形;②去分母时,方程两边各项都乘各分母的最小公倍数,Ⅰ此时不含分母的项切勿漏乘,即每一项都要乘Ⅱ分数线相当于括号,去分母后分子各项应加括号(整体思想);③去括号时,不要漏乘括号内的项,不要弄错符号;④移项时,切记要变号,不要丢项,有时先合并再移项,以免丢项;⑤系数化为1时,方程两边同乘以系数的倒数或同除以系数,不要弄错符号(打草稿认真计算);⑥不要生搬硬套解方程的步骤,具体问题具体分析,找到最佳解法;⑦分数、小数运算时不能嫌麻烦,不要跳步,一步步仔细算.(7)补充:分数的基本性质:与等式基本性质②不同.分数的分子分母两个整体同时乘以同一个不为0的数或除以同一个不为0的数,分数的值不变.3.一元一次方程的应用:(1)解决实际应用题的策略:①审题:就是多读题,读懂题,读的时候一定沉下心去,不能慌不要急躁,要细,一个字一个字的精读,要慢,边读边思考.找到已知条件,未知条件,找到数量关系和等量关系,可以用笔在题目中标注下来重要信息和数量关系,审题往往伴随下个步骤.②设出适当未知数,往往问什么设什么,有时也间接设未知数,然后用未知数通过关系表示出其他相关的量.③找出等量关系,用符号语言表示就是列出方程.(2)分析问题方法:①文字关系分析法,找关键字词句分析实际问题中的数量关系②表格分析法,借助表格分析分析实际问题中的数量关系③示意图分析法,通过画图帮助分析实际问题中的数量关系(3)设未知量方法:一个应用题,往往涉及到几个未知量,为了利用一元一次方程来解应用题,我们总是设其中一个未知量为x,并用这个未知数的代数式去表示其他的未知量,然后列出方程.①设未知量的原则就是设出的量要便于分析问题,与其它量关系多,好表示其它量,好表示等量关系;②有直接设未知量和间接设未知量,还有不常见的辅助设未知量.(4)找等量关系的方法:“等量关系”特指数量间的相等关系,是数量关系中的一种.数学题目中常含有多种等量关系,如果要求用方程解答时,就需找出题中的等量关系.①标关键词语,抓住关键句子确定等量关系.(比如多,少,倍,分,共)解题时只要找出这种关键语句,正确理解关键语句的含义,就能确定等量关系.②紧扣基本公式,利用基本关系确定等量关系就是根据常见的数量关系确定等量关系.(比如体积公式,单价×数量=总价,单产量×数量=总产量,速度×时间=路程,工效×时间=工作总量等.这些常见的基本数量关系,就是等量关系)③通过问题中不变的量,相等的量确定等量关系.就是用不同的方法表示同一个量,从而建立等量关系.④借助线段图确定等量关系。

《解一元一次方程》 知识清单

《解一元一次方程》 知识清单

《解一元一次方程》知识清单一、一元一次方程的定义只含有一个未知数(元),未知数的次数都是 1,等号两边都是整式,这样的方程叫做一元一次方程。

例如:3x + 5 = 17 就是一个一元一次方程,其中只有一个未知数x,且 x 的次数是 1。

需要注意的是,方程 2/x + 3 = 5 不是一元一次方程,因为 2/x 不是整式。

二、一元一次方程的一般形式一元一次方程的一般形式是:ax + b = 0(其中 a、b 是常数,a ≠ 0)。

比如方程 4x 7 = 0,其中 a = 4,b =-7。

三、解一元一次方程的基本步骤1、去分母如果方程中有分母,要根据等式的性质,在方程两边同时乘以各分母的最小公倍数,去掉分母。

例如:(x + 1)/2 (2x 1)/3 = 1分母 2 和 3 的最小公倍数是 6,方程两边同时乘以 6 得到:3(x + 1) 2(2x 1) = 62、去括号运用乘法分配律去括号,要注意符号的变化。

比如:2(x 3) + 4 = 5去括号得:2x 6 + 4 = 53、移项把含未知数的项移到方程左边,常数项移到方程右边,移项要变号。

例如:3x + 7 = 2x 5移项得:3x 2x =-5 74、合并同类项将方程化成 ax = b 的形式。

比如:5x 3x = 8合并同类项得:2x = 85、系数化为 1在方程两边同时除以未知数的系数,得到方程的解。

若 2x = 8,则 x = 4四、解一元一次方程的易错点1、去分母时,漏乘不含分母的项。

比如在方程 x/2 + 3 = 5 中,去分母时,常数项 3 容易被漏乘。

2、去括号时,括号前是负号,去括号后各项忘记变号。

像(2x 5) 去括号后应该是 2x + 5 ,但有时会错误地写成 2x 5 。

3、移项时忘记变号。

把 5 + x = 3 2x 移项为 x + 2x = 3 5 时,容易出现不变号的错误。

4、系数化为 1 时,除数和被除数颠倒。

在计算 x/3 = 2 时,应该是 x = 6 ,但有时会错误地得出 x = 1/6 。

一元一次方程知识点总结3篇

一元一次方程知识点总结3篇

一元一次方程知识点总结一元一次方程知识点总结3篇一元一次方程知识点总结1一元一次方程定义通过化简,只含有一个未知数,且含有未知数的最高次项的次数是一的等式,叫一元一次方程。

通常形式是ax+b=0(a,b为常数,且a≠0)。

一元一次方程属于整式方程,即方程两边都是整式。

一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0。

我们将ax+b=0(其中x是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式。

这里a是未知数的系数,b是常数,x的次数必须是1。

即一元一次方程必须同时满足4个条件:⑴它是等式;⑵分母中不含有未知数;⑶未知数最高次项为1;⑷含未知数的项的系数不为0。

一元一次方程的五个核心问题一、什么是等式?1+1=1是等式吗?表示相等关系的式子叫做等式,等式可分三类:第一类是恒等式,就是用任何允许的数值代替等式中的字母,等式的两边总是相等,由数字组成的等式也是恒等式,如2+4=6,a+b=b+a等都是恒等式;第二类是条件等式,也就是方程,这类等式只能取某些数值代替等式中的字母时,等式才成立,如x+y=-5,x+4=7等都是条件等式;第三类是矛盾等式,就是无论用任何值代替等式中的字母,等式总不成立,如x2=-2,|a|+5=0等。

一个等式中,如果等号多于一个,叫做连等式,连等式可以化为一组只含有一个等号的等式。

等式与代数式不同,等式中含有等号,代数式中不含等号。

等式有两个重要性质1)等式的两边都加上或减去同一个数或同一个整式,所得结果仍然是一个等式;(2)等式的两边都乘以或除以同一个数除数不为零,所得结果仍然是一个等式。

二、什么是方程,什么是一元一次方程?含有未知数的等式叫做方程,如2x-3=8,x+y=7等。

判断一个式子是否是方程,只需看两点:一是不是等式;二是否含有未知数,两者缺一不可。

只含有一个未知数,并且含未知数的式子都是整式,未知数的次数是1,系数不是0的方程叫做一元一次方程。

一元一次方程知识点总结

一元一次方程知识点总结

一元一次方程知识点总结一、知识1.含有未知数的等式叫方程2.只含有一个未知数,并且未知数的次数是1的方程叫一元一次方程二、知识1.判断下列各式哪些是一元一次方程:(1)43x=21; (2)3x -2; (3)71y -51=32x -1; (4)5x 2-3x+1; (5)3x+y=1-2y ; (6)1-7y 2=2y.2.若关于x 的方程3x3a+1-5=0是一元一次方程, 则a=____.3.写出一个解是-2的一元一次方程为____.4.若2x -a=3,则2x=3+___,这是根据等式的性质1,在等式两边同时______. 若-6a=4.5,则___=-1.5,这是根据等式的性质,在等式两边同时________.5.下列方程中以x=21为解的是( ) A.-2x=4 B.-2x -1=-3 C.-21x -1=-43 D.-21x+1=43 6.已知5a -3b -1=5b -3a, 利用等式的性质比较a 、b 的大小.7.某钢铁厂今年5月份的某种钢产量是50吨, 预计6月份产量是a 吨, 比5月份增长x%, 那么a 是( )A.50(1+x%)B.50x%C.50+x%D.50(1+x )%8.已知关于x 的方程5x+3k=24的解为3, 求k2-1+k 的值9.利用等式性质解方程: - x+3=-10.10.服装厂用355米布做成人服装和儿童服装,成人服装每套平均用布3.5米,儿童每套平均用布1.5米,现在已做了80套成人服装,用余下的布还可以做几套儿童服装?三、直通中考[2008年山东中考]下列方程是一元一次方程的是( ).A. -5x+4=3y2B. 5(m2-1)=1-5m2C. 2-D. 5x-33.2-3.3解一元一次方程【一元一次方程合并同类项与移向】一、基础知识把等式一边的某项变号后移向等式的另一边, 叫做移向。

(移向要变号)二、知识题库1.在1,-2, 21这三个数中,是方程7x+1=10-2x 的解的是____. 2.当k=____时,方程5x -k=3x+8的解是-2.3.若代数式21-x +612x 与31-x +1的值相等,则x=____. 4.如果2x 5a -4-3=0是关于x 的一元一次方程,那么a=____,此时方程的解是____. 5.如果x =-2是方程3x +5= -m 的解, 那么m2=____.6.解方程:5x-|x|=8.7.今年儿子13岁,父亲40岁,多少年后父亲的年龄是儿子年龄的2.5倍?8.一群小孩分一堆梨,1人1个多1个,1人两个少2个,问有几个小孩、几个梨?9.一个三位数, 三个数位上的和是17, 百位上的数比十位上的数大7, 个位上的数是十位上的3倍, 求这个三位数.10.某市居民生活用电基本价格为每度0.40元, 若每月用电量超过a 度, 超出部分按基本电价的70%收费.(1)某户五月份用电84度, 共交电费30.72元, 求a.(2)若该户六月份的电费平均为每度0.36元, 求六月份共用电多少度?应交电费多少元?三、直通中考[2010年辽宁中考]已知关于x的方程ax+2=2(a-x), 它的解满足|x+|=0, 则a=_。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程单元知识结构总结
【基本目标要求】
一、根据具体问题中的数量关系,经历形成列方程、解方程和使用方程解决问题的全过程,体会方程是刻画现实世界的有效数学模型.
二、了解等式、方程、一元一次方程的概念,明确它们之间的区别与联系;能准确地使用等式的性质和移项法则解一元一次方程,会对方程的解实行检验.
三、会分析简单应用题中的已知数、未知数,并根据表示应用题全部含义的等量关系列方程、求方程的解.
四、通过列一元一次方程解应用题的学习,使学生熟练掌握解决实际问题的一般步骤,了解从“未知”转化为“已知”的思想方法,从而提升分析问题、解决问题的水平.
【基础知识导引】
一、等式和方程
1.等式用等号“=”来表示相等关系的式子叫等式
(1)必须注意不能将代数式与等式混淆,等式含有等号,是表示两个式子的“相等关系”,而代数式不含等号,它只能做等式的一边,如2x+4,8-x是代数式,而2x-5=6才是等式.
(2)等式的性质
等式性质1等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.等式性质2等式两边都乘以(或除以)同一个数(除数不能是0),所得结果仍是等式,等式的上述性质是方程同解原理的依据.
(3)在等式中,等号左、右两边的式子,分别叫做这个等式的左边、右边.
(4)在等式中,用任何允许的数代替等式的字母都能成立的等式叫恒等式,如a+b=b+a,用某些数代替等式中的字母才能成立的等式,如果x+6=7,就不是恒等式,这类等式是方程.2.方程含有未知数的等式叫方程
(1)能够使方程左、右两边的值相等的未知数的值,叫方程的解.
要检验未知数的某一个值是不是方程的解,就把这个值代入方程,看左、右两边的值是否相等.
(2)求方程的解的过程,叫解方程.
必须注意方程的解和解方程这两个概念的区别,方程的解是演算的结果,即求出的适合方程的未知数的值;解方程是求方程的解的演算过程.
3.同解方程及方程的同解原理
(1)如果两个方程的解相同,那么这两个方程叫同解方程.
(2)方程的同解原理有:
同解原理1 方程的两边都加上(或都减去)同一个数或同一个整式,所得方程与原方程是同解方程;
同解原理2 方程的两边都乘以(或都除以)不等于零的同一个数,所得的方程与原方程是同解方程.
注意如果方程两边都乘以零,或乘以(或除以)同一个整式,所得方程与原方程就不一定同解,在以后的学习中将要具体研究这类问题,同解原理是解方程的依据.
二、一元一次方程的解法和应用
1.一元一次方程
(1)只含有一个未知数,并且未知数的次数是1,系数不等于0的一类方程叫做一元一次方程.
(2)一元一次方程的最简形式ax=b (a ≠0)
(3)一元一次方程的标准形式ax+b=0(其中x 是未知数,a 、b 是已知数,并且a ≠0)
(4)解一元一次方程的一般步骤:
解一元一次方程时,能够根据方程的形式灵活地安排解题步骤,不必机械地生搬硬套. 为了检验解方程时的计算有没有错误,能够把求得的解代入原方程,看左、右两边的值是否相等,这叫验根,一元一次方程的验根过程能够不写出来.
2.一元一次方程的应用
列方程解应用题的一般步骤是:①弄清题意,设未知数;②列出所需的代数式;③根据反映这个应用题的相等关系,列出方程;④解方程,求出未知数的值;⑤检验求得的值是否准确、合理;⑥最后写出答案.
【重点难点解析】
本章的重点是一元一次方程的解法和列一元一次方程解应用题,本章的难点是列方程解应用题,准确、熟练地解一元一次方程,关键在于掌握方程的概念及灵活使用等式的两个性质,列方程解应用题的关键在于寻找表示应用题全部含义的等量关系式,要掌握重点、难点,必须注意以下问题.
一、一元一次方程的解法
1.准确区别解方程中的两种变形:一种是“同解变形”,变形实质是“形变解不变”,如方程5x=3x+2变形为5x -3x=2,方程变形了,但解未变,解都为x=1,第二种是恒等变形,变形实质是“形变值不变”,如方程11.07.0=x 变形为7x=1,方程的左边由x 1
.07.0变为x 17,保持恒等关系,恒等变形的依据是一些运算性质、公式、法则、运算律等,解方程中的去括号和合并同类项这两步属恒等变形.
2.方程的两边同乘以零或一个整式,所得的新方程与原方程不一定同解.
二、一元一次方程的应用
1.设立未知数的一般是问什么就直接设什么为未知数,如题中求几个未知量时,可选择一个最便于求出的数为未知数,其他要求的数,可用含这个未知数的代数式表示,有时为了便于解题,还可设间接未知数,总来说之不论直接未知数还是设间接未知数,都应以列方程和解方程来得简便为着眼点.
2.列应用题方程的关键,列方程的关键是:能准确分析应用题的数量关系,找出等量
关系,在寻找等量关系时,可从下列几方面来考虑:
(1)数字问题要善于找出它们的关系及规律.
如本章第3节中历中的方程,重点掌握日历中每行相邻两数均相差1,它们都是整数;每列相邻两数相差7,它们都是整数,最小的数是1,不同的月份最大的数也不同(可能是28、29,或是30、31).
(2)锻造工件形变而体积不变,这是解此类题的规律.
如本章第4节我变胖了,锻造圆柱形工件,锻造前的体积=锻造后的体积,要应用圆柱的体积公式:h r h S V 2π=⋅=⨯=高底面积
(3)市场经济题应掌握如下的规律:
①商品利润=商品售价-商品成本价.
②%100⨯=商品成本价商品利润
商品利润率.
③商品销售额=商品销售价×商品销售量.
④商品的销售利润=(销售价-成本价)×销售量.
如本章第5节的打折销售,如打8折即按标价的80%销售.
(4)对于已知条件中有两个等式关系,求两个未知数的题目,可先设一个未知数,然后用一个未知数的代数式来表示另一个未知数,再根据题中的一个等量关系式列出方程. 如本章第6节的“希望工程”义演,可通过列表形式列出方程.
(5)关于行程问题的两个基本类型:
①相遇问题.②追及问题.
应掌握等量关系式:路程=速度×时间.
如本章第7节能追上小明吗是追及问题.
(6)关于储蓄问题应掌握如下内容:
①本金:顾客存入银行的钱.
②利息:银行付给顾客的酬金.
③本息和:本金和利息之和.
④期数:存入的时间.
⑤%100⨯=本金每个期数内的利息
利率
⑥利息=本金×利率×期数
3.几点注意事项
(1)从题目的关键词语入手,特别要注意相关数量关系的词语,如“多”、“少”、“快”、“慢”、“共”、“提升”、“增加”、“超过”、“减少”、“倍”、“几分之几”等,从而找出等量关系.
(2)在变化的关系中找出不变的量,得出等量关系
为了协助理解题意,寻找等量关系,还可采用一些辅助手段,如列表、画示意图等,从而便于列出方程.
(3)检验也是解应用题的必不可少的步骤,如列方程无误,首先要将求得的数代入方程检验,看是不是方程的解,然后根据应用题的实际意义再看求得的解是否适合题意,检验后才能作答.
【发散思维分析】
通过本章的第1节“你今年几岁了”引入方程、一元一次方程的概念.
方程的概念含有两层意义:首先方程是等式且含有未知数,即等式里未知数的字母的值,需要根据它同等式里的已知数间的关系来确定,熟练、准确地解一元一次方程,关键在于掌握方程的概念和使用方程的两个同解原理,灵活掌握解题步骤,一元一次方程的解题过程,实质是变形发散的过程,也是将未知转化为已知的运算过程,正确地分析题意,找出等量关系,勤思多练,必能正确地列出方程.
本章安排一定数量的题型发散,题型发散可增大知识点的覆盖面,训练计算的正确性和熟练程度,培养严密的推理能力及简明、正确的书面表达能力.。

相关文档
最新文档