微波功率分配器的原理与设计
功分器等器件的介绍
功分器等器件的介绍功分器(Power Divider)是一种微波器件,用于将输入功率分成两个或多个等分的输出功率。
功分器通常用于无线通信系统中的功率分配和功率合成方面。
在无线通信系统中,通常需要将输入功率分配给多个天线或系统,而功分器则可以实现这一功能。
功分器的工作原理基于电磁场的耦合效应。
它通常由三端口或四端口的传输线型结构组成,其中一个端口是输入端口,而其他端口是输出端口。
当输入功率进入功分器时,它将通过不同的传输线路径被分配到各个输出端口,从而实现功率的分配。
功分器有许多不同的结构和类型,包括平衡型和不平衡型功分器。
平衡型功分器是指输出端口的特性阻抗相等,而不平衡型功分器的输出端口特性阻抗不相等。
根据功分器的结构,还可以分为微带线功分器、负载电阻功分器、同轴线功分器等。
微带线功分器是一种常用的功分器结构,它采用微带线传输线作为分配器和耦合器。
它的主要特点是结构简单、尺寸小、适应频率范围广。
微带线功分器通常由微带线传输线、耦合孔和负载电阻组成。
通过调整微带线的宽度和长度,可以实现不同的功分比。
负载电阻功分器是一种简单的功分器结构,它通过将输入功率分配到一系列负载电阻上来实现功分。
负载电阻功分器的特点是结构简单、性能稳定,适用于低功率和宽频带应用。
同轴线功分器是一种可以在相同频率下对功率进行分配的功分器。
它由同轴线组成,内部采用隔离隔板将输入功率分配到输出端口。
同轴线功分器通常具有较高的功率承受能力和较好的隔离度,适用于高功率应用。
功分器在无线通信系统中起着重要的作用。
它可以实现对多个天线或系统的功率分配,从而提高系统性能和覆盖范围。
此外,功分器还可以用于功率合成和功率调节等应用。
功分器的性能参数主要包括分配均匀度、插入损耗、隔离度、回波损耗等。
在选择功分器时,需要根据具体应用需求来确定合适的类型和参数。
总之,功分器是一种重要的微波器件,用于将输入功率分配给多个输出端口,实现功率的分配。
它具有多种结构和类型,可适应不同的应用需求。
微波工程威尔金森功率分配器
仿真结果
输入端口、输出端口的回波损耗在 三个频带内都优于13dB。
04
结论
慢波结构通过减小相位速度从而减小了 增加了电尺寸从而减小了电路尺寸;基 于QWOS的滤波器获得了三个工作频带。 通过使三个滤波器根据所需频率放置在 经过精确计算的50欧姆传输线上的不同 位置,来准确获得了三个通频带,同时 具有低插入损耗。与其他现有研究相比 较,除了有轻微的电路面积增加以外, 具有了40%、10.5%、17.9%的更宽的 相对带宽。
• 一个宽频带的和一个新型的基于QW OS的三频带带通滤波器
威尔金森功率分配器
由威尔金森1提出的匹配的对称双功率分 频器,是用于相同的幅值/相位功率划分 的拓扑结构之一。威尔金森提出了匹配的 双向功率分配器的基本配置,即 三个特性阻抗需满足关系1:1.414:2:1 ,同时在两个输出端口之间引入一个电阻, 从而增强了它们之间的隔离。由于威尔金 森的分频器利用一个四分之一波长的变压 器来将分割线与输入端口相匹配,变压器 的尺寸——特别是低频应用—— 的尺寸是无法接受的。使用传统的方法将 这种分频器的操作扩展到双/三波段,单/ 双阻抗变压器需要。因此,双/三带的功率 分器占据了更多的空间,增加了电路/芯片 的面积,特别是在使用低介电常数基板的
设计结果
经计算以及调试后的电路尺寸如图 所示,该设计达到了良好的性能, 获得了宽频带和低回波损耗的性能。
如左图所示,可以看出,在1.5、1.9、 2.35GHZ的三个中心频率上均有宽频 带,低损耗,插入损耗分别为0.009、 0.25、0.38db。
03
仿真结果
如图所示: 在1.5/1.9。2.35GHZ的三个频点上分别都 能实现接受到的功率为一端口输入功率的一 半,即S21=3db,且每个工作频率都有较 大带宽。在两个输出端口之间有大于15dB 的隔离度。
不等分威尔金森功分器设计
不等分威尔金森功分器设计1.引言1.1 概述威尔金森功分器是一种重要的电路结构,用于将输入功率分成多个相等的输出功率。
它由诺贝尔奖得主威尔金森于1960年提出,被广泛应用于通信系统、无线电频率合成器、功率放大器等领域。
在许多应用中,需要将输入功率均匀地分配到多个输出通路上,而又不影响整体的信号质量。
威尔金森功分器通过其特殊的电路结构和工作原理,实现了这一目标。
它以其无需外部控制信号即可实现等分功率的特点,被广泛应用于各种需要功率分配的场景。
威尔金森功分器的设计要求相对较高,需要考虑多个因素,如频率范围、带宽、功率损耗、相位平衡等。
设计人员需要根据具体的应用需求和实际情况,灵活选择电路元件和参数,以达到最佳的功分效果。
本文将对威尔金森功分器的原理和设计要点进行详细介绍。
在正文部分,我们将首先解析威尔金森功分器的工作原理,深入理解其基本原理和电路结构。
然后,我们将重点讨论威尔金森功分器设计的要点,包括电路参数的选择、信号的相位平衡等。
最后,我们将通过实例分析和实验结果,对威尔金森功分器的性能进行评估和总结。
通过本文的阅读,读者将能够全面了解威尔金森功分器的设计原理和要点,在实际应用中更好地应用该电路结构。
同时,本文还为威尔金森功分器的进一步改进和应用提供了一定的启示和参考。
1.2 文章结构文章结构部分的内容可以按照以下方式编写:文章结构:本文将分为三个主要部分进行讨论。
首先,引言部分将对本文进行概述,介绍文章的结构和目的。
其次,正文部分将详细介绍威尔金森功分器的原理和设计要点。
最后,在结论部分对全文进行总结,并提出设计过程中所获得的启示。
引言部分将首先概述威尔金森功分器的设计背景和意义,介绍其在电子电路中的应用。
接着,文章结构部分将简要介绍本文的组织结构,为读者提供对全文主要内容的概括。
最后,明确本文的目的,即通过对威尔金森功分器的设计进行探讨,深入理解其原理和设计要点,并总结设计的心得与启示。
正文部分将分为两个主要小节进行阐述。
功分器工作原理
功分器工作原理
功分器,又称功率分配器或功率分配器,是一种用于将输入功率(通常是射频或微波功率)分配给多个输出端口的无源器件。
功分器工作原理主要通过设计特定的传输线结构和耦合方式来实现。
一般而言,功分器由输电线和匹配结构组成。
输电线通常是以微带线、同轴线或波导的形式存在。
当输入信号通过输电线进入功分器时,其将根据特定的设计要求,在不同的输出端口上分配相应的功率。
在功分器内部,通过设计合适的耦合结构,比如电容、电感或实现特定的电磁场耦合来实现功率的分配。
这些耦合结构可以通过设计合适的电路连接或引入衬底模式(substrate mode)
实现功率的分配。
具体来说,功分器的设计通常基于电气长度(electrical length)的原理。
电气长度是一个表示输电线上电磁波传播的概念,与物理长度不完全一致。
通过控制输电线和相应的耦合结构的长度和尺寸,可以实现不同的功率分配比例。
功分器工作原理的关键在于实现输入和输出端口之间的功率匹配。
为了确保功分器在不同端口上有相似的输出,需要通过合适的匹配电路来提供有效的匹配网络。
总之,功分器通过合理设计输电线、耦合结构和匹配网络,实现了输入功率在多个输出端口间的均匀分配。
这使得功分器成
为射频和微波系统中的重要器件,常被应用于无线通信系统、雷达系统和卫星通信等领域。
微波功分器
用于生成版图的原理图
原理图生成的功分器版图
观察仿真曲线
结论
经过数据分析,发现参数均能ห้องสมุดไป่ตู้足设计要求,性能指
标基本合格,实验比较成功。 通过本次实验,在老师的指导之下,使我们基本了解 了功分器的设计思路,夯实了与功分器有关的专业基 本知识,进一步掌握了ADS软件的仿真及优化方法, 对微波器件的设计及制作有了初步的认识,实现了学 习毕业设计的目的。
功分器实物图:
功分器的技术指标
通带内各端口回波损耗
通带内两输出端口间的隔离度
通带内传输损耗 通带内功分比
功分器电路结构图
功分器的设计
本节内容是介绍使用ADS软件设计功分器的方法:包
括原理图绘制,电路参数的优化、仿真,版图的仿真 等 下面开始按顺序详细介绍对一分二微波功分器的设计 的步骤
功分器的设计
设计指标:通带内频率范围0.9-1.1GHz,通带内各
端口回波损耗小于-20dB ,两输出端口隔离度小于25dB,传输损耗小于3.1dB。 在进行设计时,主要是以功分器的S参数作为优化目 标进行优化仿真。S21、 S31是传输参数,反映传输 损耗;S11、 S22、 S33分别是输入输出端口的回波 损耗。S23反映了两个输出端口之间的隔离度。
专业: 班级: 学号: 指导老师: 学生:
主要内容
功分器概述
功分器的技术指标
功分器的设计 结论
功分器的概述
功率分配器是将输入信 号功率分成相等或不相 等的几路输出的一种多 端口的微波网络,广泛 应用于雷达、多路中继 通信机等大功率器件等 微波射频电路中。功率 分配器又可以逆向使用 作为功率合成器,因此 有时又称为功率分配/合 成器 。
实验三射频微波功率分配器合成器设计
二、基本理论
将一路微波功率按一定比例分成n路输出的功率元件称为功率 分配器。按输出功率比例不同, 可分为等功率分配器和不等功率分 配器。
① Z0
1 P1
Cp Z0
Z02 ② Rj
Z03 ③
④
Z04
Z0
Z05 g / 4
Z0 ⑤
Ls
2
1
P2
P1
Cp
Lp
Ls
3
P3
Z0
(a)
Cs
2
P2
Lp
Cs
3
P3
(b)
和
优化目标控件“Goal” (共需四个)插入原理图中
➢ 优化目标设置
Expr
SimInstanceName
IndepVar[1] LimitType[1] LimitMin[1] LimitMax[1] Indep1Min[1] Indep1Max[1]
优化目标1
dB(S(1,1)) SP1 freq <
1 P1
技术指标:
2
功分器
P2
3
P3
• 频率范围:分配器的工作频率 • 承受功率:分配器/合成器所能承受的最大功率 • 功率分配比:主路到支路的功率分配比 • 插入损耗:输入输出间由于传输线(如微带线)的介质或导
体不理想等因素,考虑输入端的驻波比所带来的损耗 • 驻波比:每个端口的电压驻波比 • 隔离度:支路端口间的隔离程度
10. 功分器的版图仿真
➢ 执行菜单命令【Insert】【Pin】或单击 分别于端口1、端口2、端口3
,插入三个端口
➢ 菜单【EM】【Simulation Setup】或者 ,打开仿真设置窗口 ➢ 选中【Subtrate】和【Ports】检查设置是否正确 ➢ 选中【Frequency plan】设置仿真参数。然后仿真。
微波功率分配器的原理与设计
微波功率分配器的原理与设计微波功率分配器的原理与设计微波功率分配器的原理与设计一、实验目的1.了解功率分配器的原理;2.学习功率分配器的设计方法;3.利用实验模块进行实际测量,以掌握功率分配器的特性。
二、实验原理功率分配器的原理:功分器是三端口网络结构(3-port network),如图10-1所示。
信号输入端(Port-1)的功率为P1,而其他两个输出端(Port-2及Port-3)的功率分别为P2及P3。
由能量守恒定律可知P1=P2 + P3。
若P2=P3并以毫瓦分贝(dBm)来表示三端功率间的关系,则可写成:P2(dBm) = P3(dBm) = Pin(dBm) – 3dB 图10-1 功率分配器方框图(输出比输入衰减了3dB,输出是输入的一半) 当然P2并不一定要等于P3,只是相等的情况在实际电路中最常用。
因此,功分器在大致上可分为等分型(P2=P3)及比例型(P2=k·P3)两种类型。
其设计方法说明如下:(一) 等分型:根据电路使用元件的不同,可分为电阻式、L-C式及传输线式。
A. 电阻式:此类电路仅利用电阻设计。
按结构可分成Δ形,Y形,如图10-2(a)(b)所示。
图10-2(a)Δ形电阻式等功分器图(b)Y形电阻式等功分器其中Zo就是电路特性阻抗,在高频电路中,在不同的使用频段,电路中的特性阻抗不相同。
在本实验中,皆以50Ω为例。
此型电路的优点是频宽大、布线面积小、及设计简单,而缺点是功率衰减较大(6dB)。
B. L-C式此类电路可利用电感及电容进行设计。
按结构可分成高通型和低通型,如图10-3(a)(b)所示。
其设计公式分别为:a. 低通型:其中fo——操作频率Zo——电路特性阻抗Ls——串联电感Cp——并联电容b. 高通型:其中fo——操作频率Zo——电路特性阻抗Lp——并联电感Cs——串联电容图10-3(a) 低通L-C式等功分器; (b) 高通L-C式等功分器C . 传输线式此种电路按结构可分为威尔金森型和支线型,如图10-4(a)(b)所示。
功分器的设计基础学习知识原理
功分器的设计基础学习知识原理功分器(power divider)是一种被广泛应用于射频与微波领域的无源滤波器元件,可以将一个输入信号分为若干个相等的输出信号。
在微波系统中,功分器主要用于将输入信号平均分配给若干个相同的输出端口,以实现无源网络的分配功率和信号分配。
本文将介绍功分器的设计基础学习知识原理。
功分器的基本原理是通过合理的布局和参数设计,使得输入信号在不同的传输线中以相等的功率进行传输。
功分器的基本结构包括平面微带线功分器、同轴线功分器和混合功分器等。
在平面微带线功分器中,常用的结构包括均匀分配型、反射抑制型和等相位型功分器。
均匀分配型功分器是将输入信号均匀地分配到每个输出端口,其基本结构是通过等长的传输线与耦合结构相连。
反射抑制型功分器是在均匀分配型的基础上引入反相器,以抑制反射信号,提高功分器的整体性能。
等相位型功分器是保持输入信号的相位平衡,使得各个输出端口上的信号具有相同的相位。
同轴线功分器是以同轴线为传输介质的功分器,常用的结构有同轴线变压器和同轴线融合型功分器。
同轴线变压器通过改变传输线的电气长度和宽度,实现信号的等分。
同轴线融合型功分器是将多个同轴线结构集成在一起,从而实现输入信号的分配。
混合功分器是由平面微带线和同轴线结构组合而成的功分器,常用的结构有广角功分器和均匀功分器。
广角功分器是通过引入交叉耦合结构,使得功分器具有宽带特性和较小的尺寸。
均匀功分器是通过调整微带线的宽度和长度,以实现输入信号的均匀分配。
在功分器的设计过程中,需要考虑多个参数,包括输入-输出的匹配、功分比、波导损耗、等效电路等。
通过合理的参数选择和设计优化,可以实现功分器的高效性能和稳定性。
总之,功分器的设计基础学习知识原理主要涉及功分器的基本结构和参数设计,以实现输入信号的均匀分配和相位平衡。
通过不同的结构和设计方法,可以实现功分器的特定要求和性能优化。
功率分配器的种类和作用
功率分配器的种类和作用一、引言功率分配器是电子设备中常见的一个组件,它具有将输入能量分配到多个输出端口的功能。
功率分配器广泛应用于无线通信系统、雷达系统、微波通信系统等领域。
本文将从功率分配器的定义、工作原理、分类和应用等方面进行探讨。
二、功率分配器的定义功率分配器是一种用于将输入功率均匀分配到多个输出端口的电子设备。
其主要作用是保持输入输出端口之间的功率平衡,从而实现信号的无损传输。
功率分配器通常由高频电子元件(如微波电路、变换器等)组成,能够在高频范围内工作。
三、功率分配器的工作原理功率分配器基于能量守恒原理,通过特定的电路结构和元器件组合,将输入功率按照一定的比例分配到多个输出端口上。
其工作原理可简单分为两个基本步骤:1.输入功率的分配:输入功率通过特定的分配网络进入功率分配器,分配网络通常由各种电感、电容和衰减器等组成。
分配网络按照一定的功率分配比例,将输入功率分配到各个输出端口上。
2.输出功率的平衡:在功率分配过程中,为了保持各个输出端口之间的功率平衡,分配网络通常会根据实际需要对各个输出端口进行调整。
在调整过程中,可能需要添加衰减器、匹配网络或变换器等。
通过这些调整措施,确保各个输出端口的功率达到所需平衡状态。
四、功率分配器的分类根据功率分配器的结构和工作特点,可以将功率分配器分为以下几类:1. 球形功率分配器球形功率分配器又称为匀强分配器,它的分配特点是将输入功率均匀分配给多个输出端口。
球形功率分配器采用特定的三维几何结构,通过行波和驻波等原理实现功率的均匀分配。
球形功率分配器在雷达和通信系统中广泛应用。
2. 带状功率分配器带状功率分配器又称为等效带状耦合器,它的特点是将输入功率分配给多个输出端口,并保持一定的相位差。
带状功率分配器采用特定的传输线结构和耦合装置,实现输入功率的分配和相位差的控制。
带状功率分配器广泛应用于微波通信系统和射频技术领域。
3. 慢波结构功率分配器慢波结构功率分配器是一种基于慢波效应的功率分配器,通过在传输线上引入周期性结构(如电感、电容等),改变传输线的传输速度,实现功率的分配。
实验二微波功分器
MLIN TL4 Subst="MSub1" W=w1 mm L=1 mm
MCURVE Curve3 Subst="MSub1" W=w1 mm Angle=90 Radius=2.5 mm
MLIN TL9 Subst="MSub1" W=w2 mm L=10 mm
MLIN TL11 Subst="MSub1" W=w2 mm L=9 mm
成都信息工程学院电子工程系
微波电路EDA
第四章 单端口网络和多端口网络
10
创建新的工程文件
点击File->New Project设置工程文件名称 (本例中为divider)及存储路径 点击Length Unit设置长度单位为毫米
成都信息工程学院电子工程系
微波电路EDA
第四章 单端口网络和多端口网络
MLIN TL6 Subst="MSub1" W=w1 mm L=5 mm MLIN TL13 Subst="MSub1" W=w1 mm L=10 mm
Term Term2 Num=2 Z=50 Ohm
MLIN TL8 Subst="MSub1" W=w2 mm L=10 mm
MTEE_ADS Tee2 Subst="MSub1" W1=w2 mm W2=w2 mm W3=w1 mm TFR R2 Subst="MSub1" W=w2 mm L=(2-w2) mm Rs=100 Ohm Freq=0 Hz
MSub
MSUB MSub1 H=1 mm Er=4.8 Mur=1 Cond=5.88E+7 Hu=1.0e+033 mm T =0.03 mm T anD=1e-4 Rough=0 mm
威尔金森功分器的设计
综合课程设计实验报告课程名称:综合课程设计(微波组)实验名称:威尔金森功分器的设计院(系):信息科学与工程学院2020 年6月12 日一、实验目的1. 了解功分器电路的原理和设计方法;2. 学习使用Microwave office 软件进行微波电路的设计、优化、仿真;3. 掌握功率分配器的制作及调试方法。
二、实验原理Wilkinson 功率分配器根据微波网络理论,对于三端口网络,匹配、互易、无耗三者中,只能有两个同时满足。
Wilkinson 功率分配器是一个有耗的三端口网络(如图1.1所示),它通过在输出端之间引入特性阻抗为2Z 0的电阻,实现了理想的功率分配与功率合成。
用于功率分配时,端口1是输入端,端口2和端口3是输出端;用于功率合成时,端口2和端口3是输入端,端口1是输出端。
可以制成任意功率分配比的Wilkinson 功率分配器,本实验只考虑等分(3dB )的情况,其结构如图1.2所示。
由两段微带线与输出端之间的电阻构成,两段微带线是对称的,其特性阻抗为02Z ,长度为/4g ,并联电阻值为2Z 0。
图1.1 Wilkinson 功分器示意图图1.2 微带线形式的等分Wilkinson 功分器三、实验内容和设计指标实验内容1. 了解Wilkinson功分器的工作原理;2.根据指标要求,使用Microwave office软件设计一个Wilkinson功分器,并对其参数进行优化、仿真。
设计指标在介电常数为4.5,厚度为1mm的FR4基片上(T取0.036mm,Loss tangent取0.02),设计一个中心频率为f=3.2GHz、带宽为200MHz,用于50欧姆系统阻抗的3dB微带功分器。
要求:工作频带内各端口的反射系数小于-20dB,两输出端口间的隔离度大于25dB,传输损耗小于3.5dB。
功分器的参考结构如1.3图所示。
在设计时要保证两个输出端口之间的距离大于10mm,以便于安装测试接头;同时为了便于焊接电阻,d要为2.54mm左右。
功率分配器原理
功率分配器原理功率分配器是一种用于将输入功率分配到多个输出端口的电路或设备。
它是电子通信领域中常用的元件之一,广泛应用于射频系统、微波系统以及其他需要将功率分配到多个输出端口的场合。
功率分配器的原理基于能量的守恒定律和电路中的功率平衡原理。
在功率分配器中,输入端口的功率将被分配到多个输出端口,而且在理想情况下,每个输出端口所获得的功率应该相等。
这意味着功率分配器需要具备低损耗、高功率分配均匀性和良好的匹配特性。
功率分配器的设计需要考虑多个因素,包括频率范围、功率容量、插入损耗、功率分配均匀性等。
常见的功率分配器有均分功率分配器和不均分功率分配器两种类型。
均分功率分配器是最常见的功率分配器之一,它能够将输入功率均匀地分配到多个输出端口,每个输出端口所获得的功率相等。
均分功率分配器的原理是通过合理的电路设计和匹配网络来实现功率的均匀分配。
常见的均分功率分配器有同轴线功分器、平面波导功分器等。
不均分功率分配器是另一种常见的功率分配器,它能够将输入功率按照一定的比例分配到多个输出端口。
不均分功率分配器的设计需要考虑各个输出端口所需的功率比例,以及插入损耗和反射损耗等因素。
常见的不均分功率分配器有插值功分器、混频器功分器等。
功率分配器的性能评估主要包括插入损耗、反射损耗、功率分配均匀性和功率容量等指标。
插入损耗是指功率分配器在功率传输过程中所引入的损耗,反射损耗是指功率分配器所能够反射回的功率与输入功率之间的比值。
功率分配均匀性是指输出端口所获得的功率相对误差,通常以功率分配均匀性系数来表示。
功率容量则是指功率分配器能够承受的最大功率。
在实际应用中,功率分配器的设计需要考虑到电路的频率响应、功率容量和尺寸等因素。
对于高频率和大功率的应用,功率分配器的设计更加复杂,需要使用高性能的材料和优化的电路结构。
功率分配器是一种用于将输入功率分配到多个输出端口的电路或设备,其原理是基于能量守恒定律和功率平衡原理。
功率分配器的设计需要考虑多个因素,包括频率范围、功率容量、插入损耗、功率分配均匀性等。
威尔金森功分器设计
威尔金森功分器设计威尔金森(Wilkinson)功分器是一种被广泛应用于微波和射频电路中的功率分配器。
它可以将输入功率均匀地分配到多个输出端口上,同时保持相对较低的插入损耗和反射损耗。
该设计是由威尔金森在1960年首次提出的,至今仍被广泛使用。
威尔金森功分器的基本原理是利用两个负载和两个耦合器来实现功率的分配。
它的结构简单,由一个中央传输线和两个分支传输线组成。
中央传输线被连接到输入端口,而分支传输线则与两个输出端口相连。
两个耦合器被用来连接中央传输线和分支传输线,以实现功率的分配。
在威尔金森功分器中,输入功率通过中央传输线传输到两个分支传输线上。
在分支传输线的连接点处,耦合器将一部分功率耦合到负载上,同时将另一部分功率传输到另一个分支传输线上。
这样,输入功率就被均匀地分配到两个输出端口上。
为了保持较低的插入损耗和反射损耗,威尔金森功分器要求分支传输线具有相同的特性阻抗,并且耦合器能够实现理想的功率分配。
在实际设计中,可以使用微带线、同轴电缆或波导等不同的传输线类型来实现威尔金森功分器。
威尔金森功分器的设计需要考虑多个参数,包括特性阻抗、分支传输线的长度和宽度、耦合器的设计等。
通过合理选择这些参数,可以实现所需的功率分配比例和频率响应。
尽管威尔金森功分器在功率分配方面表现出色,但它也存在一些限制。
首先,它只能实现功率的均匀分配,不能实现不同比例的功率分配。
其次,威尔金森功分器的设计需要考虑较多的参数,对于频率较高的应用来说,设计和制造的难度会增加。
总之,威尔金森功分器是一种常用的功率分配器,广泛应用于微波和射频电路中。
它的设计原理简单,通过合理选择参数可以实现所需的功率分配比例。
然而,设计师在使用威尔金森功分器时需要考虑一些限制,以确保其性能和可靠性。
t形结功率分配器
t形结功率分配器T形结功率分配器概述T形结功率分配器是一种被广泛应用于通信领域的被动器件,主要用于将一个输入信号分配到多个输出端口上,其特点是具有低插入损耗、高隔离度、宽带等优点。
本文将对T形结功率分配器的原理、设计、制造及应用进行详细介绍。
原理T形结功率分配器采用了微波技术中的平面波导线技术,其基本原理是利用两个相同长度的微带线连接在一起,并在中间夹上一个90度相位差的耦合器,从而实现将输入信号平均地分配到两个输出端口上。
由于耦合器具有反向传输作用,因此该结构还可以将多个输出信号合并成一个输出信号。
设计T形结功率分配器的设计需要考虑以下几个方面:1. 频段:根据使用场景确定所需频段范围;2. 插入损耗:插入损耗越小越好;3. 隔离度:隔离度越高越好;4. 平衡度:平衡度越高越好;5. 带宽:带宽越宽越好。
制造T形结功率分配器的制造需要采用微波集成电路工艺,主要包括以下几个步骤:1. 基板制备:选择合适的基板材料,并进行切割、打孔、化学蚀刻等处理;2. 电路设计:根据设计要求进行电路布局和元器件选型;3. 元器件安装:将元器件粘贴在基板上,并进行焊接或压接;4. 封装加工:对已完成的电路进行封装和加工,以保证其稳定性和可靠性。
应用T形结功率分配器广泛应用于通信领域,主要用于无线通信系统中的功率分配、合并和平衡控制。
例如,在基站中,T形结功率分配器可以将输入信号平均地分配到多个天线上,以实现信号覆盖范围的扩大;在卫星通信系统中,T形结功率分配器可以将多个天线的输出信号合并成一个输出信号,以提高整个系统的传输效率。
总结T形结功率分配器是一种被动微波器件,在通信领域具有广泛的应用。
其原理是利用耦合器将输入信号平均地分配到多个输出端口上,具有低插入损耗、高隔离度、宽带等优点。
在设计和制造时需要考虑多个因素,如频段、插入损耗、隔离度、平衡度和带宽等。
T形结功率分配器的应用范围广泛,主要用于无线通信系统中的功率分配、合并和平衡控制。
功分器的设计原理
设计资料项目名称:微带功率分配器设计方法拟制:审核:会签:批准:二00六年一月微带功率分配器设计方法1. 功率分配器论述:1.1定义:功率分配器是一种将一路输入信号能量分成两路或多路信号能量输出的器件,也可反过来将多路信号能量合成一路输出,此时也可称为合路器。
1.2分类:1.2.1功率分配器按路数分为:2路、3路和4路及通过它们级联形成的多路功率分配器。
1.2.2功率分配器按结构分为:微带功率分配器及腔体功率分配器。
1.2.2根据能量的分配分为:等分功率分配器及不等分功率分配器。
1.2.3根据电路形式可分为:微带线、带状线、同轴腔功率分配器。
1.3概述:常用的功率分配器都是等功率分配,从电路形式上来分,主要有微带线、带状线、同轴腔功率分配器,几者间的区别如下:(1)同轴腔功分器优点是承受功率大,插损小,缺点是输出端驻波比大,而且输出端口间无任何隔离。
微带线、带状线功分器优点是价格便宜,输出端口间有很好的隔离,缺点是插损大,承受功率小。
(2)微带线、带状线和同轴腔的实现形式也有所不同:同轴腔功分器是在要求设计的带宽下先对输入端进行匹配,到输出端进行分路;而微带功分器先进行分路,然后对输入端和输出端进行匹配。
下面对微带线、带状线功率分配器的原理及设计方法进行分析。
2.设计原理:2.1分配原理:微带线、带状线的功分器设计原理是相同的,只是带状线的采用的是对称性空气填充或介质板填充,而微带线的主要采用的是非对称性部分介质填充和部分空气填充。
下面我们以一分二微带线功率分配的设计为例进行分析。
传输线的结构如下图所示,它是通过阻抗变换来实现的功率的分配。
图1:一分二功分器示意图在现有的通信系统中,终端负载均为50Ω,也就是说在分支处的阻抗并联后到阻抗结处应为50Ω。
如上图匹配网络,从输入端口看Ω==500Z Z in ,而Ω==50//21in in in Z Z Z ,且是等分的,所以1in Z =2in Z ,①处1in Z 、②处2in Z 的输入阻抗应为100Ω,这样由①、②处到输出终端50Ω需要通过阻抗变换来实现匹配。
威尔金森功分器总结
具体实施步骤如下: 2.1 首先按照之前的计算结果,创建几何模型,示意图如下:
几何建模参数
2.2 由于在 CST 中添加开放导波系统波的波导激励端口,需要有一定的规则,这是由数值计算方法本 身决定的。具体如下所示:
我们这里选择的 k 分两种情况,端口 1 选择 k=4, 端口 2,3 则选择 k2=3。 接下来添加离散网络元件隔离电阻:选择两个点之后,点击 2.3 添加频率范围为(2,5)GHz,设置网格参数,选择自适应网格加密,开始计算。 即可。
3)
4)
5)画出原理图如下:
6) 原理图的仿真:通过添加 S 参数求解器 SP。对 SP 的设置如下所示:
计算结果如下图:
7) 生成版图: 注:在生成版图前需要关闭与生成版图无关的项目,否则生成会出现各种各样的 bug。 同时,生成版图可以帮助我们很快地检查出那些语法上的错误,如单位错误
这里:L = L1+L2+(W50)/2
图2
ADS 仿真时的技术指标
1.2 仿真流程: 1.2.1 创建项目和原理图
1.2.2 原理图建模 1)将 MUSB 插入原理图的画图区,在画图去双击 MUSB,弹出设置对话框,对微带线设置参数设 置如下:
2 )在菜单中选择变量 VAR 空间,插入到原理图的画图区,双击空间 VAR ,分别设置四个变量 W50,W70,L1,L2,L3,L4,Lx,分别赋值为 8.2,4.6,11,12,4,13,5。这里取这些值的依据在于下 图所示:
注 : W70 微 带 线 的 总 长 度 为 L+L1+L2 ,经计算对应的电长度 约为 90 degrees
layout 8)优化参数:通过设立优化求解器,建立优化目标后,通过不同的算法进行迭代,最终达到我们想 要的技术指标。具体步骤如下:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微波功率分配器的原理与设计微波功率分配器的原理与设计微波功率分配器的原理与设计一、实验目的1.了解功率分配器的原理;2.学习功率分配器的设计方法;3.利用实验模块进行实际测量,以掌握功率分配器的特性。
二、实验原理功率分配器的原理:
功分器是三端口网络结构(3-port network),如图10-1所示。
信号输入端(Port-1)的功率为P1,而其他两个输出端(Port-2及Port-3)的功率分别为P2及P3。
由能量守恒定律可知P1=P2 + P3。
若P2=P3并以毫瓦分贝(dBm)来表示三端功率间的关系,则可写成:
P2(dBm) = P3(dBm) = Pin(dBm) – 3dB 图10-1 功率分配器方框图(输出比输入衰减了3dB,输出是输入的一半) 当然P2并不一定要等于P3,只是相等的情况在实际电路中最常用。
因此,功分器在大致上可分为等分型(P2=P3)及比例型(P2=k·P3)两种类型。
其设计方法说明如下:
(一) 等分型:
根据电路使用元件的不同,可分为电阻式、L-C式及传输线式。
A. 电阻式:
此类电路仅利用电阻设计。
按结构可分成Δ形,Y形,如图10-2(a)(b)所示。
图10-2(a)Δ形电阻式等功分器图(b)Y形电阻式等功分器其中Zo就是电路特性阻抗,在高频电路中,在不同的使用频段,电路中的特性阻抗不相同。
在本实验中,皆以50Ω为例。
此型电路的优点是频宽大、布线面积小、及设计简单,而缺点是功率衰减较大(6dB)。
B. L-C式此类电路可利用电感及电容进行设计。
按结构可分成高通型和低通型,如图10-3(a)(b)所示。
其设计公式分别为:
a. 低通型:
其中fo——操作频率Zo——电路特性阻抗Ls——串联电感Cp——并联电容b. 高通型:
其中fo——操作频率Zo——电路特性阻抗Lp——并联电感Cs——串联电容图10-3(a) 低通L-C式等功分器; (b) 高通L-C式等功分器C . 传输线式此种电路按结构可分为威尔金森型和支线型,如图10-4(a)(b)所示。
其设计公式分别为:
a. 威尔金森型图10-4(a)威尔金生型等功分器b.支线型图10-4(b)支线型等功分器(二) 比例型此种电路按结构可分为支线型及威尔金森耦合线型,如图10-5(a)(b)所示。
其设计公式如下:
图10-5(a)分支线型比例功分器(注: ZP及Zr也可以是电容或电感。
请参考L-C型等功分器。
)图10-5(b) 威尔金森耦合线比例功分器设计公式: 关键参数指标及其含义:
插入损耗:
定义为传输电平除以入射电压取对数再乘以20,以dB表示。
是无失真传输的关键之一。
插入损耗关于通过无源线性器件无失真的传输有两个关键问题。
首先,器件的幅度响应不许在使用的带宽内为固定值。
这意味着在带段内的所有信号的衰减是恒等的。
其次,器件的相位响应在同样的带宽内必须是线性的。
隔离度:
当主路接匹配负载时,各分配支路之间的衰减量比值。
幅度平衡:
指频带内所有输出端口之间的幅度误差最大值。
三、设计实例功率分配器的设计方法1.在这里以支路型等功分器为例。
2.先决定操作频率(f0),特性阻抗(Z0)及功率比例(k):
f0=750MHz,Z0=50Ω,k=0.1。
3.如图10-6,所列公式:
图10-6 支路型等功分器计算可得:
Zr=47.4Ω → Lr=10.065nH 选定Lr=10nH Zp=150Ω → Cp=1.415Pf 选定Cp=1.4pF 1.然后利用MICROWA VE软件模拟理想设计电路,然后进行仿真,结果应接近实际测量所得到的仿真图形和指标。
2.利用MICROWAVE软件计算出微带线(microstrip line type)电路的实际尺寸。
3.电路图和相应的仿真图可参照图10-7、10-8。
10-7 支路型等功分器电路图10-8 支路型等功分器的仿真图四、实验内容实验设备: 项次设备名称数量备注1 功率分配器模块1块有源实验箱2 频谱分析仪1台3 反射电桥1块 4 射频连接线2条5 50Ω标准负载2个实验步骤: 本实验模块设计为标准wilkson等分型功分器,通过分别测试两种模块的S11、S21(P1、P2端口的传输)和S31(P1、P3端口的传输)值,观察功率分配器的性能。
理想情况下,对于电阻式功率分配器,其二、三端口的输出比一端口的输入衰减了6dB,即S21=S31=-6dB;而对于威尔金生功率分配器模块,其二、三端口的输出比一端口的输入衰减了3dB,即S21=S31=-3dB。
1.将频谱分析仪频率范围调至2010-2025MHZ, 并校准
频谱仪2.各指标测量步骤:
插入损耗的测量: 测试框图如图10-9,将频谱仪信号输出端连接到功分器模块IN端口,模块的OUT1、OUT2其中一端连接到频谱分析仪的INPUT端, 另一端接50Ω标准负载.打开有源箱右侧电源开关,将频谱分析仪之Marker 的频率标示在2017.5 MHz,记录测量结果后关闭电源. 图10-9 功分器插入损耗测量框图输出隔离的测量: 测试框图如图10-10,将频谱仪信号输出端连接到功分器模块的OUT1、OUT2其中一端, 另一端接50Ω标准负载. 模块IN端口连接到频谱分析仪的INPUT端, 打开有源箱右侧电源开关,将频谱分析仪之Marker 的频率标示在2017.5 MHz,记录测量结果后关闭电源. 图10-10 功分器输出隔离度的测量框图输入、输出驻波比: 测试框图如图10-11,将频谱仪信号输出端口连接到反射电桥输入端,反射电桥输出端接待测功分器模块输入端,模块另两个端口接50Ω匹配负载,再将反射电桥反射输出端接到频谱分析仪。
打开有源箱右侧电源开关,并将频谱分析仪之Marker 的频率标示在2017.5 MHz,记录测量结果后关闭电源.同理将反射电桥输出端接待测功分器模块输出端,另外两端口接50Ω匹配负载,其余连接方式不变可测得输出驻波比. 图10-11功分器驻波比测量框图3.硬件测量的结果建议如下为合格l 插入损耗: ≤0.5dB l 隔离度:≥20 dB l 驻波比:≤1.5dB 第7
页共222 页。