二轮复习 正弦、余弦定理及解三角形 教案(全国通用)

合集下载

高三数学总复习 正弦定理和余弦定理教案

高三数学总复习   正弦定理和余弦定理教案

高三数学总复习 正弦定理和余弦定理教案教学目标:1、掌握正弦定理和余弦定理的推导,并能用它们解三角形.2、利用正、余弦定理求三角形中的边、角及其面积问题是高考考查的热点.3、常与三角恒等变换相结合,综合考查三角形中的边与角、三角形形状的判断等.教学重点:①能充分应用三角形的性质及有关的三角函数公式证明三角形的边角关系式. ②能合理地选用正弦定理余弦定理结合三角形的性质解斜三角形.③能解决与三角形有关的实际问题.教学难点:①根据已知条件判定解的情形,并正确求解.②将实际问题转化为解斜三角形.教学过程一、基础回顾1、正余弦定理正弦定理:a sinA =b sinB =c sinC=2R(其中R 为△ABC 外接圆的半径). 余弦定理a 2=b 2+c 2-2bccosA ,b 2=a 2+c 2-2accosB ;c 2=a 2+b 2-2abcosC2、变形式①a =2RsinA ,b =2RsinB ,c =2RsinC ;(其中R 是△ABC 外接圆半径)②a ∶b ∶c =sinA :sinB :sinB③cosA =b 2+c 2-a 22bc ,cosB =a 2+c 2-b 22ac ,cosC =a 2+b 2-c 22ab. 3、三角形中的常见结论(1) A +B +C =π.(2) 在三角形中大边对大角,大角对大边:A>B a>b sinA>sinB.(3) 任意两边之和大于第三边,任意两边之差小于第三边.(4) △ABC 的面积公式① S =12a ·h(h 表示a 边上的高); ② S =12absinC =12acsinB =12bcsinA =abc 4R; ③ S =12r(a +b +c)(r 为内切圆半径); ④ S =P (P -a )(P -b )(P -c ),其中P =12(a +b +c). 二、基础自测1、在△ABC 中,若∠A=60°,∠B =45°,BC =32,则AC =________.2、在△ABC 中,a =3,b =1,c =2,则A =________.3、在△ABC 中,a 、b 、c 分别为角A 、B 、C 所对的边,若a =2bcosC ,则此三角形一定是________三角形.4、已知△ABC 的三边长分别为a 、b 、c ,且a 2+b 2-c 2=ab ,则∠C=________.5、在△ABC 中,a =32,b =23,cosC =13,则△ABC 的面积为________.三、典例分析例1 (2013·惠州模拟)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a .(1)求b a; (2)若c 2=b 2+3a 2,求B . 解:(1)由正弦定理,得asin B =bsin A ,又asin Asin B +bcos 2A =2a ,∴bsin 2A +bcos 2A =2a ,即b =2a ,因此b a = 2. (2)由c 2=b 2+3a 2及余弦定理,得cos B =a 2+c 2-b 22ac =(1+3)a 2c, (*) 又由(1)知,b =2a ,∴b 2=2a 2,因此c 2=(2+3)a 2,c =2+3a =3+12 a. 代入(*)式,得cos B =22, 又0<B <π,所以B =π4. 规律方法:1.运用正弦定理和余弦定理求解三角形时,要分清条件和目标.若已知两边与夹角,则用余弦定理;若已知两角和一边,则用正弦定理.2.在已知三角形两边及其中一边的对角,求该三角形的其它边角的问题时,首先必须判断是否有解,如果有解,是一解还是两解,注意“大边对大角”在判定中的应用.例2、(2013·合肥模拟)已知△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,向量m =(4,-1),n =(cos 2A 2,cos 2A),且m ·n =72. (1)求角A 的大小; (2)若b +c =2a =23,试判断△ABC 的形状.解:(1)∵m =(4,-1),n =(cos 2A2,cos 2A ), ∴m ·n =4cos 2A 2-cos 2A =4·1+cos A 2-(2cos 2A -1)=-2cos 2A +2cos A +3. 又∵m ·n =72, ∴-2cos 2A +2cos A +3=72,解得cos A =12. ∵0<A <π,∴A =π3.(2)在△ABC 中,a 2=b 2+c 2-2bc cos A ,且a =3,∴(3)2=b 2+c 2-2bc ·12=b 2+c 2-bc . ① 又∵b +c =23,∴b =23-c ,代入①式整理得c 2-23c +3=0,解得c =3,∴b =3, 于是a =b =c =3,即△ABC 为等边三角形.规律方法:判定三角形的形状,应围绕三角形的边角关系进行转化.无论使用哪种方法,不要随意约掉公因式;要移项提取公因式,否则会有漏掉一种形状的可能.例3、(2012·课标全国卷)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,acos C +3asin C -b -c =0.(1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c.解:(1)由a cos C +3a sin C -b -c =0及正弦定理得sin A cos C +3sin A sin C -sin B -sin C =0.因为B =π-A -C ,则sin B =sin A cos C +cos A sin C . 所以3sin A sin C -cos A sin C -sin C =0.由于sin C ≠0,所以sin(A -π6)=12. 又0<A <π,故A =π3. (2)△ABC 的面积S =12bc sin A =3,故bc =4. ① 又a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8.② 由①②联立,得b =c =2.四、练习 变式练习1:(2012·浙江高考)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且bsin A =3acos B.(1)求角B 的大小;(2)若b =3,sin C =2sin A ,求a ,c 的值.变式练习2:在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2asin A =(2b +c)sin B +(2c +b)sin C.(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状五、作业布置六、板书设计1、正余弦定理2、变形式3、三角形中常用结论典例分析七、教学反思。

高中数学优质课《正弦定理和余弦定理复习课》公开课优秀教案

高中数学优质课《正弦定理和余弦定理复习课》公开课优秀教案

高中数学优质课《正弦定理和余弦定理复习课》公开课教案教学目标:1、掌握正弦定理和余弦定理的推导,并能用它们解三角形.2、利用正、余弦定理求三角形中的边、角及其面积问题是高考考查的热点.3、常与三角恒等变换相结合,综合考查三角形中的边与角、三角形形状的判断等. 教学重点:①能充分应用三角形的性质及有关的三角函数公式证明三角形的边角关系式.②能合理地选用正弦定理余弦定理结合三角形的性质解斜三角形. ③能解决与三角形有关的实际问题.教学难点:①根据已知条件判定解的情形,并正确求解. ②将实际问题转化为解斜三角形. 教学过程 一、知识点回顾1、正弦定理CcB b A a sin sin sin ==2R = 变 形C R c B R b A R a sin 2,sin 2,sin 2===RcC R b B R a A 2sin ,2sin ,2sin ===sin sin sin ::::A B C a b c =面积公式:B ac C ab A bc S ABCsin 21sin 21sin 21===∆ 2、余弦定理 A bc c b a cos 2222-+=⇔bca cb A 2cos 222-+=B ac a c b cos 2222-+=⇔cab ac B 2cos 222-+=C ab b a c cos 2222-+=⇔abc b a C 2cos 222-+=3、正、余弦定理的作用:解三角形(边角互化)二、随堂练习三、例题讲解例1、 (2012·广州模拟)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C . (1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.四、巩固练习1.在△ABC 中,a =15,b =10,A =60°,则cos B =( ) A.63 B.223 C .-63 D .-2232.(2011·课标全国卷)△ABC 中,B =120°,AC =7,AB =5,则△ABC 的面积为________. 例2、(2011·山东高考)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A -2cos C cos B =2c -ab . (1)求sin Csin A的值; (2)若cos B =14,b =2,求△ABC 的面积S .1.(教材改编题)已知△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c .若a =c =6+2,且∠A =75°,则b =( )A .2B .4+2 3C .4-2 3 D.6- 2五、课堂小结 正弦定理和余弦定理公式及变形 六、课后作业课堂新坐标1-10七、板书设计正弦定理和余弦定理1、正余弦定理2、正余弦定理3、正、余弦定理的作用4、例题讲解2.(2011·浙江高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a cos A =b sin B ,则sin A cos A +cos 2B =( )A .-12 B.12 C .-1 D .13.在△ABC 中,b ,c 是角B 、C 的对边,且cos 2A2=b +c2c .试判定△ABC 的形状.4. (2012·河源质检)△ABC 的面积是30,内角A ,B ,C 所对边长分别为a ,b ,c ,cos A =1213.(1)求AB →·AC →; (2)若c -b =1,求a 的值.。

5.6正弦定理、余弦定理和解斜三角形(3)教案案

5.6正弦定理、余弦定理和解斜三角形(3)教案案

课题:5.6正弦定理、余弦定理和解斜三角形(3)教案教学目的:1、进一步巩固利用正弦定理及余弦定理解任意三角形的方法 2、掌握正弦定理扩充公式的推导 3、掌握三角形面积公式的推导4、掌握边到角的转化方法,和角到边的转化方法,解决三角形形状的判断问题和恒等式的证明问题。

教学重点:正弦定理的扩充公式的推导和边角之间的转化 教学过程: (一)、引入 复习引入:1、正弦定理:A a sin =B b sin =Ccsin 2、正弦定理的变形:a :b :c =C B A sin :sin :sin3、余弦定理:在ABC ∆中有:A bc c b a cos 2222-+=B ac c a b cos 2222-+=C ab b a c cos 2222-+=.2cos ,2cos ,2cos 222222222abc b a C ac b a c B bc a c b A -+=-+=-+=4、正弦定理的两个应用:(1)已知三角形中两角及一边,求其他元素;(2)已知三角形中两边和其中一边所对的角,求其他元素. 5、余弦定理的两个应用:(1)已知两边和它们的夹角,求其他的边和角; (2)已知三边,求三个内角.(二)、新课 一、(新课教学,注意情境设置) 由正弦定理我们知道,在ABC ∆中,A a sin 、B b sin 、Ccsin 都等于同一个比值k ,这个k 到底有没有什么特殊几何意义呢? 二、概念或定理或公式教学(推导)1、当ABC ∆是直角三角形时,若90=∠C ,我们知道A a s i n =B b sin =Ccsin =c,此时c 可看成Rt ABC ∆外接接圆的直 径,即R k c 2== 。

2、若ABC ∆是任意三角形,作ABC ∆的外接圆O ,O 为圆心, 连接BO 并延长交圆D ,连接CD ,把一般三角形转化为直角三 角形。

证明:连续BO 并延长交圆于D90=∠∴DCB ,A D ∠=∠ ,R BD 2= ,a BC ===∴BC a A R A BD D BD sin 2sin sin == ,即:R Aa2sin = 由正弦定理,得A a sin =B b sin =Ccsin =2R结论:从刚才的证明过程中, A a sin =B b sin =Ccsin =2R ,显示正弦定理的比值等于三角形外接圆的直径R 2。

正余弦定理解三角形复习教案

正余弦定理解三角形复习教案

6. 在△ABC 中,b = 8,c =38,S △ABC =316,则∠A 等于( )A. 30 ºB. 60ºC. 30º 或 150ºD. 60º 或120º7、在△ABC 中,已知B=30°, b=503 ,c=150,那么这个三角形是 ( ) A .等边三角形 B .直角三角形C .等腰三角形D .等腰三角形或直角三角形8、在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c,A=3π,a=3,b=1,则c= (A) 1 (B )2 (C )3—1 (D )39.在△AOB 中,()2cos 2sin OA αα=,,()5cos 5sin OB ββ=,,若5OA OB =,则AOB S △等于( )A.3B.32C.53D.53210. 在ABC △中,cos cos sin sin A B A B >,则ABC △是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.正三角形 11.ABC ∆中,3π=A ,BC =3,则ABC ∆的周长为( )A .33sin 34+⎪⎭⎫⎝⎛+πB B .36sin 34+⎪⎭⎫ ⎝⎛+πB C .33sin 6+⎪⎭⎫ ⎝⎛+πB D .36sin 6+⎪⎭⎫ ⎝⎛+πB 12.在△ABC 中,A =60°,b =1,S ABC △=3,求a b cA B C++++sin sin sin 的值。

13.在△ABC 中,若a bAB 22=tan tan ,试判断△ABC 的形状。

14.在△ABC 中,αβcos cos A b =,判断△ABC 的形状。

二.余弦定理1、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,2222cos c a b ab C =+-.2、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222cos 2a b c C ab+-=.3、设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:①若222a b c +=,则90C =;②若222a b c +>,则90C <;③若222a b c +<,则90C >.典型例题:1.在△ABC 中,若8,3,7===c b a ,则其面积等于( ) A .12 B .221C .28D .36B.直角三角形ABC中,(1)求sin B的值;b=ABC的面积。

2022年高考数学二轮复习第一部分专题攻略 专题二 三角函数、解三角形 第1讲三角函数的图象与性质

2022年高考数学二轮复习第一部分专题攻略 专题二 三角函数、解三角形 第1讲三角函数的图象与性质

第1讲三角函数的图象与性质——小题备考微专题1三角函数图象的平移伸缩『常考常用结论』1.“五点法”作图设z=ωx+φ,令z=0,π2,π,3π2,2π,求出x的值与相应的y的值,描点、连线可得.2.图象变换y=sin x向左(φ>0)或向右(φ<0),平移|φ|个单位y=sin (x+φ)横坐标变为原来的1ω(ω>0)倍,纵坐标不变y=sin (ωx+φ)纵坐标变为原来的A(A>0)倍,横坐标不变y=A sin (ωx+φ).『保分题组训练』1.将函数y=sin x的图象向左平移π4个单位,得到的图象的函数解析式是()A.y=sin(x−π4)B.y=sin x-π4C.y=sin(x+π4)D.y=sin x+π42.要得到函数y =cos (3x −π6)的图象,只需将y =cos 3x 的图象( ) A .向右平移π6B .向左平移π6C .向右平移π18D .向左平移π183.[2021·河北保定一模]已知函数f(x)=2sin x ,为了得到函数g(x)=2sin (2x −π3)的图象,只需( )A .先将函数f(x)图象上点的横坐标变为原来的2倍,再向右平移π6个单位 B .先将函数f(x)图象上点的横坐标变为原来的12,再向右平移π6个单位C .先将函数f(x)图象向右平移π6个单位,再将点的横坐标变为原来的12 D .先将函数f(x)图象向右平移π3个单位,再将点的横坐标变为原来的2倍4.(多选题)要得到函数y =sin (2x +π3)的图象,只要将函数y =sin x 的图象( )A .每一点的横坐标扩大到原来的2倍(纵坐标不变),再将所得图象向左平移π3个单位长度B .每一点的横坐标缩短到原来的12 (纵坐标不变),再将所得图象向左平移π6个单位长度 C .向左平移π3个单位长度,再将所得图象每一点的横坐标缩短到原来的12 (纵坐标不变)D .向左平移π6个单位长度,再将所得图象每一点的横坐标缩短到原来的12 (纵坐标不变)『提分题组训练』1.[2021·河北张家口三模]为了得到函数f (x )=sin 13x +cos 13x 的图象,可以将函数g (x )=√2cos 13x 的图象( )A .向右平移3π4个单位长度 B .向右平移π4个单位长度C .向左平移3π4个单位长度D .向左平移π4个单位长度2.[2021·山东潍坊学情调研]将函数f(x)=sin (2x +π3)的图象向右平移a(a>0)个单位得到函数g(x)=cos (2x +π4)的图象,则a 的值可以为( )A.5π12B.7π12C.19π24D.41π243.函数y=sin(ωx+φ)(ω>0)的图象向左平移2π3的单位,所得到的图象与原函数图象的对称轴重合,则ω的最小值是()A.34B.1 C.2 D.324.[2021·山东青岛期末检测](多选题)要得到y=cos2x的图象C1,只要将y=sin(2x+π3)的图象C2怎样变化得到()A.将y=sin(2x+π3)的图象C2沿x轴方向向左平移π12个单位B.将y=sin(2x+π3)的图象C2沿x轴方向向右平移11π12个单位C.先作C2关于x轴对称图象C3,再将图象C3沿x轴方向向右平移5π12个单位D.先作C2关于x轴对称图象C3,再将图象C3沿x轴方向向左平移π12个单位微专题2三角函数的性质『常考常用结论』1.三角函数的单调区间y=sin x的单调递增区间是[2kπ−π2,2kπ+π2](k∈Z),单调递减区间是[2kπ+π2,2kπ+3π2](k∈Z);y=cos x的单调递增区间是[2kπ-π,2kπ](k∈Z),单调递减区间是[2kπ,2kπ+π](k∈Z);y=tan x的递增区间是(kπ−π2,kπ+π2)(k∈Z).2.三角函数的奇偶性与对称性y=A sin (ωx+φ),当φ=kπ(k∈Z)时为奇函数;当φ=kπ+π2(k∈Z)时为偶函数;对称轴方程可由ωx+φ=kπ+π2(k∈Z)求得.y=A cos (ωx+φ),当φ=kπ+π2(k∈Z)时为奇函数;当φ=kπ(k∈Z)时为偶函数;对称轴方程可由ωx+φ=kπ(k∈Z)求得.y=A tan (ωx+φ),当φ=kπ(k∈Z)时为奇函数.3.三角函数的周期(1)y=A sin (ωx+φ)和y=A cos (ωx+φ)的最小正周期为2π|ω|,y=A tan (ωx+φ)的最小正周期为π|ω|.(2)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是12个最小正周期,相邻的对称中心与对称轴之间的距离是14个最小正周期;正切曲线相邻两对称中心之间的距离是12个最小正周期.『保分题组训练』1.下列函数中,周期为π,且在区间(π2,π)单调递增的是()A.y=|sin x|B.y=sin |x|C.y=cos 2x D.y=sin 2x2.已知函数f(x)=cos (2x+π3),则下列说法错误的是()A.f(x)的最小正周期是πB.f(x)的图象关于点(−5π12,0)对称C.f(x)在[−π6,π3]上为减函数D.f(x)的一条对称轴是x=π123.[2021·山东济宁质量检测](多选题)将函数f(x)=sin 2x的图象向右平移π4个单位后得到函数g(x)的图象,则函数g(x)具有性质()A.在(0,π4)上单调递增,为偶函数B.最大值为1,图象关于直线x=-3π2对称C.在(−3π8,π8)上单调递增,为奇函数D.周期为π,图象关于点(3π4,0)对称4.[2021·辽宁朝阳二模] (多选题)已知函数f (x )=|sin x ||cos x |,则下列说法正确的是( ) A. f (x )的图象关于直线x =π2对称 B. f (x )的周期为π2C .(π,0)是f (x )的一个对称中心 D. f (x )在区间[π4,π2]上单调递增『提分题组训练』1.[2021·淄博一模]已知f (x )=cos x (cos x +√3sin x )在区间[-π3,m ]上的最大值是32,则实数m 的最小值是( )A .π12 B .π3 C .-π12 D .π62.将函数y =sin 2x +√3cos 2x 的图象沿x 轴向左平移φ个单位后,得到一个偶函数的图象,则|φ|的最小值为( )A .π12 B .π6 C .5π12D .-5π123.[2021·湖南六校联考](多选题)已知函数f (x )=2cos (ωx +φ)(ω>0,|φ|<π2)的图象上,对称中心与对称轴x =π12的最小距离为π4,则下列结论正确的是( )A.函数f (x )的一个对称点为(5π12,0)B .当x ∈[π6,π2]时,函数f (x )的最小值为-√3C .若sin 4α-cos 4α=-45(α∈(0,π2)),则f (α+π4)的值为4−3√35D .要得到函数f (x )的图象,只需要将g (x )=2cos2x 的图象向右平移π6个单位 4.[2021·山东烟台一模](多选题)已知函数f (x )=2|sin x |+|cos x |-1,则( ) A .f (x )在[0,π2]上单调递增B .直线x =π2是f (x )图象的一条对称轴C.方程f(x)=1在[0,π]上有三个实根D.f(x)的最小值为-11.三角函数单调区间的求法:微专题3由图象求三角函数的解析式『保分题组训练』1.函数y=A sin (ωx+φ)的图象的一部分如图所示,则函数表达式可写成()A.y=2sin (2x+π3)B.y=sin (x+π12)C.y=√2sin (2x−5π6)D.y=2sin (2x+π6)2.函数f(x)=A sin (ωx+φ)(其中A>0,ω>0,|φ|<π2)的图象如图所示,为了得到f(x)的图象,只需将g (x )=A sin ωx 图象( )A .向左平移π4个单位长度 B .向右平移π4个单位长度 C .向左平移π12个单位长度 D .向右平移π12个单位长度3.设函数f (x )=sin (ωx −π4)(ω>0)的部分图象如图所示,且满足f (2)=0.则f (x )的最小正周期为( )A .169 B .16C .18D .984.[2021·全国乙卷]把函数y =f (x )图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移π3个单位长度,得到函数y =sin (x −π4)的图象,则f (x )=( )A .sin (x2−7π12) B. sin (x 2+π12) C. sin (2x −7π12) D. sin (2x +π12)『提分题组训练』1.智能主动降噪耳机工作的原理如图1所示,是通过耳机两端的噪声采集器采集周围的噪音,然后通过听感主动降噪芯片生成相等的反向波抵消噪音.已知某噪音的声波曲线y =A sin (ωx +π6)(A >0,ω>0)在[−π2,π2]上大致如图2所示,则通过听感主动降噪芯片生成相等的反向波曲线可以为( )A .y =2sin (πx +π6) B .y =2√33sin (2π5x −π3) C .y =2√33sin (4π5x −2π3)D .y =2sin (πx −5π6)2.[2021·山东德州一模](多选题)已知函数f (x )=A sin (ωx +φ)(A >0,ω>0,|φ|<π)的部分图象如图所示,将函数f (x )的图象上所有点的横坐标变为原来的23,纵坐标不变,再将所得函数图象向右平移π6个单位长度,得到函数g (x )的图象,则下列关于函数g (x )的说法正确的是( )A .g (x )的最小正周期为2π3 B .g (x )在区间[π9,π3]上单调递增 C .g (x )的图象关于直线x =4π9对称D .g (x )的图象关于点(π9,0)成中心对称3.[2021·石家庄一模](多选题)函数f (x )=2sin (ωx +φ)(ω>0,0<φ<π)的图象如图,把函数f (x )的图象上所有的点向右平移π6个单位长度,可得到函数y =g (x )的图象,下列结论正确的是( )A .φ=π3B .函数g (x )的最小正周期为πC .函数g (x )在区间[−π3,π12]上单调递增 D .函数g (x )关于点(−π3,0)中心对称确定y =A sin (ωx +φ)+b (A >0,ω>0)的解析式的方法详解答案 二轮专题复习战略·数学(新高考)专题二 三角函数、解三角形 第1讲 三角函数的图象与性质微专题1 三角函数图象的平移伸缩保分题组训练1.解析:函数y =sin x 的图象向左平移π4个单位,得到y =sin (x +π4)的图象. 故选C . 答案:C2.解析:将y =cos 3x 的图象向右平移π18个长度单位,可得函数y =cos [3(x −π18)]=cos (3x −π6)的图象.故选C . 答案:C3.解析:对于A :先将函数f(x)图象上点的横坐标变为原来的2倍,得到y =2sin 12x ,故A 错误;对于B :先将函数f(x)图象上点的横坐标变为原来的12,得到y =2sin 2x ,再右移π6个单位,得到y =2sin 2(x −π6),即为y =2sin (2x −π3),故B 正确;对于C: 先将函数f(x)图象向右平移π6个单位,得到y =2sin (x −π6),再将点的横坐标变为原来的12,得到y =2sin (2x −π6),故C 错误;对于D: 先将函数f(x)图象向右平移π3个单位,得到y =2sin (x −π3),再将点的横坐标变为原来的2倍,得到y =2sin (12x −π3),故D 错误.故选B . 答案:B4.解析:(1)先伸缩后平移时:每一点的横坐标缩短到原来的12 (纵坐标不变),再将所得图象向左平移π6个单位长度,所以A 选项错误,B 选项正确.(2)先平移后伸缩时:向左平移π3个单位长度,再将所得图象每一点的横坐标缩短到原来的12 (纵坐标不变),所以C 选项正确,D 选项错误.故选BC .答案:BC提分题组训练1.解析:f (x )=sin 13x +cos 13x =√2cos (13x −π4)=√2cos [13(x −3π4)].故选A . 答案:A2.解析:由题意知,g(x)=cos (2x +π4)=sin (2x +3π4),其图象向左平移a 个单位得到函数f(x)=sin (2x +2a +3π4),而函数f(x)=sin (2x +π3),所以有2a +3π4=π3+2k π,a =-524π+k π,取k =1得a =1924π. 故选C . 答案:C3.解析:∵函数y =sin (ωx +φ)(ω>0)的图象向左平移2π3个单位,所得到的图象与原函数图象的对称轴重合,∴2π3=k·T2=kπω,即ω=32k ,k ∈Z , 令k =1,可得ω的最小值为32,故选D. 答案:D4.解析:对于A ,将y =sin (2x +π3)的图象C 2沿x 轴方向向左平移π12个单位,可得y =sin [2(x +π12)+π3]=sin (2x +π2)=cos 2x 的图象C 1,故选项A 正确;对于B ,将y =sin (2x +π3)的图象C 2沿x 轴方向向右平移11π12个单位也可得到,y =sin [2(x −11π12)+π3]=sin (2x −3π2)=cos 2x 的图象C 1,故选项B 正确;对于C ,先作C 2关于x 轴对称,得到y =-sin (2x +π3)的图象C 3,再将图象C 3沿x轴方向向右平移5π12个单位,得到y =-sin [2(x −5π12)+π3]=-sin (2x −π2)=cos 2x 的图象C 1,故选项C 正确;对于D ,先作C 2关于x 轴对称,得到y =-sin (2x +π3)的图象C 3,再将图象C 3沿x轴方向向左平移π12个单位,得到的y =-sin [2(x +π12)+π3]=-sin (2x +π2)=-cos 2x 图象,故选项D 不正确.故选ABC.答案:ABC微专题2 三角函数的性质保分题组训练1.解析:对于A ,y =|sin x |的图象是将y =sin x 的图象中y 轴下方的图象翻折到上方得到的,故最小正周期为π;当x ∈(π2,π)时,y =sin x >0,∴y =|sin x |=sin x 在(π2,π)上单调递减,故A 不正确;对于B ,当x =-3π2时,y =sin |x |=-1,当x =-π2时,y =sin |x |=1≠-1,所以周期不是π,故B 不正确;对于C ,y =cos 2x 的最小正周期为2π2=π,当x ∈(π2,π)时,2x ∈(π,2π),y =cos 2x 单调递增,故C 正确;对于D ,y =sin 2x 的最小正周期为2π2=π,当x ∈(π2,π)时,2x ∈(π,2π),y =sin 2x 不是单调递增的,故D 不正确.故选C. 答案:C2.解析:对于函数f (x )=cos (2x +π3),它的最小正周期为2π2=π,故A 正确;令x =-5π12,可得f (x )=0,所以f (x )的图象关于点(−5π12,0)对称,故B 正确;当x ∈[−π6,π3]时,2x +π3∈[0,π],故f (x )在[−π6,π3]上为减函数,故C 正确;令x =π12,可得f (x )=0,故x =π12不是f (x )的一条对称轴,故D 错误.故选D. 答案:D3.解析:g (x )=sin 2(x −π4)=sin (2x −π2)=-cos 2x ,x ∈(0,π4),则2x ∈(0,π2),g (x )=-cos 2x 单调递增,为偶函数,A 正确,C 错误;最大值为1,当x =-3π2时2x =-3π,为对称轴,B 正确;T =2π2=π,取2x =π2+k π,∴x =π4+kπ2,k ∈Z ,当k =1时满足,图象关于点(3π4,0)对称,D 正确.故选ABD. 答案:ABD4.解析:因为函数f (x )=|sin x ||cos x |=|sin x cos x |=12|sin 2x |,画出函数图象,如图所示;由图可知,f (x )的对称轴是x =kπ4,k ∈Z ;所以x =π2是f (x )图象的一条对称轴, A 正确; f (x )的最小正周期是π2,所以B 正确;f (x )是偶函数,没有对称中心,C 错误;由图可知,f (x )=12|sin 2x |在区间[π4,π2]上是单调减函数,D 错误.故选AB. 答案:AB提分题组训练1.解析:f (x )=cos x (cos x +√3sin x )=√3sin x cos x +cos 2x =1+cos 2x2+√32sin 2x =sin (2x +π6)+12,由x ∈[-π3,m ]得2x +π6∈[-π2,2m +π6], 当2x +π6=2k π+π2,k ∈Z 时取得最大值, 故2m +π6≥π2,即m ≥π6.则实数m 的最小值是π6. 故选D. 答案:D2.解析:∵函数y =sin 2x +√3cos 2x =2sin (2x +π3),将函数y =sin 2x +√3cos 2x 的图象沿x 轴向左平移φ个单位后, 得到函数y =2sin (2x +2φ+π3),函数关于y 轴对称, ∴2φ+π3=k π+π2(k ∈Z ),∴φ=kπ2+π12(k ∈Z ),当k =0时,|φ|min =π12. 故选A. 答案:A3.解析:函数f (x )=2cos (ωx +φ)(ω>0,|φ|<π2)的图象上, 对称中心与对称轴x =π12的最小距离为14×2πω=π4,∴ω=2.再根据2×π12+φ=k π,k ∈Z ,可得φ=-π6,故 f (x )=2cos (2x −π6). 令x =5π12,可得f (x )=-1≠0,故A 错误;当x ∈[π6,π2]时,2x -π6∈[π6,5π6],故当2x -π6=5π6时,函数f (x )的最小值为-√3,故B正确;若sin 4α-cos 4α=sin 2α-cos 2α=-cos 2α=-45(α∈(0,π2)),∴cos 2α=45,sin 2α=√1−cos 22α=35,则f (α+π4)=2cos (2α+π2−π6)=-2sin (2α−π6)=-2sin 2αcos π6+2cos 2αsin π6=4−3√35,故C 正确;将g (x )=2cos 2x 的图象向右平移π6个单位,可得y =2cos (2x −π3)的图象,故D 错误.故选BC. 答案:BC4.解析:A 选项,当x ∈[0,π2],f (x )=2sin x +cos x -1,f (x )不单调,A 错误, B 选项,f (π-x )=2|sin (π-x )|+|cos (π-x )|-1=2|sin x |+|cos x |-1=f (x ), ∴x =π2是它的一条对称轴,B 正确.C 选项,f (x )=1,即2|sin x |+|cos x |=2,当x ∈[0,π2],即2sin x +cos x =2,sin x =1或sin x =35,有两个零点;当x ∈[π2,π],2sin x -cos x =2,sin x =35,有1个零点,共3个零点;D 选项,若f (x )min =-1,即2|sin x |+|cos x |=0,需要|sin x |=0,且|cos x |=0矛盾,D 错误.故选BC. 答案:BC微专题3 由图象求三角函数的解析式保分题组训练1.解析:由图可知A =2,因为图象过点(0,1),所以2sin φ=1,所以取φ=π6, 因为图象过点(11π12,0),所以2sin (11π12ω+π6)=0,所以11π12ω+π6=2k π,k ∈Z ,即ω=2411k -211,k ∈Z ,当k =1时,ω=2,所以y =2sin (2x +π6).故选D.答案:D2.解析:根据函数f (x )=A sin (ωx +φ)(其中A >0,ω>0,|φ|<π2)的图象,可得A =1,14T =5π12−π4=π6,即T =23π,∴ω=2π23π=3.将(π4,0)代入,可得f (π4)=sin (3×π4+φ)=0,则3×π4+φ=k π,k ∈Z ,∴φ=k π-3π4,k ∈Z ,又|φ|<π2,∴φ=π4,故f (x )=sin (3x +π4).故把g (x )=sin 3x 的图象向左平移π12个单位长度,即可得到f (x )=sin (3x +π4)的图象.故选C. 答案:C3.解析:因为f (2)=0,所以sin (2ω−π4)=0⇒2ω-π4=k π(k ∈Z )⇒ω=12k π+π8(k ∈Z ),设函数f (x )=sin (ωx −π4)(ω>0)的最小正周期为T ,由图可知{54T >2T <2,因为ω>0,所以有{54·2πω>22πω<2,⇒π<ω<5π4,因为ω=12k π+π8(k ∈Z ),所以74<k <94∵k ∈Z ∴k =2, 所以ω=98π,因此T =2π98π=169,故选A.答案:A4.解析:依题意,将y =sin (x −π4)的图象向左平移π3个单位长度,再将所得曲线上所有点的横坐标扩大到原来的2倍,得到f (x )的图象,所以y =sin (x −π4) 将其图象向左平移π3个单位长度 → y =sin (x +π12)的图象 所有点的横坐标扩大到原来的2倍→ f (x )=sin (x2+π12)的图象.答案:B提分题组训练1.解析:由题图2可知:y =f (x )=A sin (ωx +π6)过(0,1),(56,0)两点,所以有y =f (0)=A sin π6=1⇒12A =1⇒A =2,f (56)=2sin (56ω+π6)=0⇒56ω+π6=k π(k ∈Z )⇒ω=(65k -15)π(k ∈Z ),当k =1时,y =f (x )=2sin (πx +π6),显然A 不符合题意,此时函数的周期为2ππ=2,要想抵消噪音,只需函数y =f (x )=2sin (πx +π6)向左或向右平移一个单位长度即可,即得到y =f (x +1)=2sin (πx +π+π6)=-2sin (πx +π6), 或y =f (x -1)=2sin (πx −π+π6)=2sin (πx −5π6),故选项D 符合,显然选项B ,C 的振幅不是2,不符合题意, 故选D. 答案:D2.解析:根据函数的图象:周期12T =5π12−(−π12)=π2,解得T =π,故ω=2. 进一步求得A =2.当x =5π12时,f (5π12)=2sin (5π6+φ)=-1,由于|φ|<π, 所以φ=2π3.所以f (x )=2sin (2x +2π3),函数f (x )的图象上所有点的横坐标变为原来的23,纵坐标不变,再将所得函数图象向右平移π6个单位长度,得到函数g (x )=2sin (3x +π6)的图象,故对于A :函数的最小正周期为T =2π3,故A 正确;对于B :由于x ∈[π9,π3],所以3x +π6∈[π2,76π],故函数g (x )在区间[π9,π3]上单调递减,故B 错误;对于C :当x =4π9时,g (4π9)=2sin (4π3+π6)=-2,故函数g (x )的图象关于直线x =4π9对称,故C 正确;对于D :当x =π9时,g (π9)=2,故D 错误. 故选AC. 答案:AC3.解析:根据函数f (x )=2sin (ωx +φ)(ω>0,0<φ<π)的图象, 可得T =2πω>11π12,且34T <11π12,∴ω∈(1811,2411).把(0,√3)代入,可得2sin φ=√3,∴φ=π3,或 φ=2π3.再把根据图象经过最高点(11π12,2),可得ω·11π12+φ=2k π+π2,k ∈Z . 当φ=π3时,ω·11π12+π3=2k π+π2,k ∈Z ,求得ω=211+24k11,不满足条件ω∈(1811,2411), 故φ=2π3,故A 错误. 此时,由ω·11π12+2π3=2k π+π2,k ∈Z ,求得ω=-211+24k 11,令k =1,可得ω=2,满足条件ω∈(1811,2411),故f (x )=2sin (2x +2π3).把函数f (x )的图象上所有的点向右平移π6个单位长度,可得到函数y =g (x )=2sin (2x +π3)的图象,故g (x )的最小正周期为2π2=π,故B 正确.当x ∈[−π3,π12],2x +π3∈[−π3,π2],故g (x )单调递增,故C 正确.令x =-π3,求得g (x )=-√3≠0,故g (x )的图象不关于点(−π3,0)中心对称,故D 错误. 故选BC.答案:BC。

高中数学正余弦定理教案模板(精选7篇)-最新

高中数学正余弦定理教案模板(精选7篇)-最新

高中数学正余弦定理教案模板(精选7篇)作为一位杰出的老师,时常要开展教案准备工作,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。

如何把教案做到重点突出呢?这里给大家分享一些关于高中数学余弦定理教案,方便大家学习。

下面是的为您带来的7篇《高中数学正余弦定理教案模板》,希望能够对困扰您的问题有一定的启迪作用。

余弦定理教案篇一今天我说课的内容是余弦定理,本节内容共分3课时,今天我将就第1课时的余弦定理的证明与简单应用进行说课。

下面我分别从教材分析。

教学目标的确定。

教学方法的选择和教学过程的设计这四个方面来阐述我对这节课的教学设想。

一、教材分析本节内容是江苏教育出版社出版的普通高中课程标准实验教科书《数学》必修五的第一章第2节,在此之前学生已经学习过了勾股定理。

平面向量、正弦定理等相关知识,这为过渡到本节内容的学习起着铺垫作用。

本节内容实质是学生已经学习的勾股定理的延伸和推广,它描述了三角形重要的边角关系,将三角形的“边”与“角”有机的联系起来,实现边角关系的互化,为解决斜三角形中的边角求解问题提供了一个重要的工具,同时也为在日后学习中判断三角形形状,证明三角形有关的等式与不等式提供了重要的依据。

在本节课中教学重点是余弦定理的内容和公式的掌握,余弦定理在三角形边角计算中的运用;教学难点是余弦定理的发现及证明;教学关键是余弦定理在三角形边角计算中的运用。

二、教学目标的确定基于以上对教材的认识,根据数学课程标准的“学生是数学学习的主人,教师是数学学习的组织者。

引导者与合作者”这一基本理念,考虑到学生已有的认知结构和心理特征,我认为本节课的教学目标有:1、知识与技能:熟练掌握余弦定理的内容及公式,能初步应用余弦定理解决一些有关三角形边角计算的问题;2、过程与方法:掌握余弦定理的两种证明方法,通过探究余弦定理的过程学会分析问题从特殊到一般的过程与方法,提高运用已有知识分析、解决问题的能力;3、情感态度与价值观:在探究余弦定理的过程中培养学生探索精神和创新意识,形成严谨的数学思维方式,培养用数学观点解决问题的能力和意识、三、教学方法的选择基于本节课是属于新授课中的数学命题教学,根据《学记》中启发诱导的思想和布鲁纳的发现学习理论,我将主要采用“启发式教学”和“探究性教学”的教学方法即从一个实际问题出发,发现无法使用刚学习的正弦定理解决,造成学生在认知上的冲突,产生疑惑,从而激发学生的探索新知的欲望,之后进一步启发诱导学生分析,综合,概括从而得出原理解决问题,最终形成概念,获得方法,培养能力。

正弦定理和余弦定理:复习教案

正弦定理和余弦定理:复习教案

铭智教育一对一个性化教案学生姓名教师姓名授课日期授课时段课题正弦定理和余弦定理重难点1.正弦定理和余弦定理2.正弦定理和余弦定理的灵活应用教学步骤及教学内1.正弦定理:asin A=bsin B=csin C=2R,其中R是三角形外接圆的半径.由正弦定理可以变形:(1)a∶b∶c =sin_A∶sin_B∶sin_C;(2)a=2R sin_A,b=2R sin_B,c=2R sin_C;(3)sin A=a2R,sin B=b2R,sin C =c2R等形式,以解决不同的三角形问题.2.余弦定理:a2=b2+c2-2bc cos_A,b2=a2+c2-2ac cos_B,c2=a2+b2-2ab cos_C.余弦定理可以变形:cos A=b2+c2-a22bc,cos B=a2+c2-b22ac,cos C=a2+b2-c22ab.3.S△ABC=12ab sin C=12bc sin A=12ac sin B=abc4R=12(a+b+c)·r(r是三角形内切圆的半径),并可由此计算R、r.4.在△ABC中,已知a、b和A时,解的情况如下:A为锐角A为钝角或直角教育要对民族的未来负责教育要对民族的未来负责容图形关系式 a =b sin A b sin A <a <b a ≥b a >b 解的个数一解两解一解一解[难点正本 疑点清源]1.在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B .2. 根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.1. 在△ABC 中,若A =60°,a =3,则a +b +csin A +sin B +sin C=________.答案 2解析 由正弦定理及等比性质知a sin A =b sin B =csin C =a +b +c sin A +sin B +sin C =2R , 而由A =60°,a =3,得a +b +c sin A +sin B +sin C=2R =a sin A =3sin 60°=2.2. (2012·福建)已知△ABC 的三边长成公比为2的等比数列,则其最大角的余弦值为________.答案 -24解析 设三角形的三边长从小到大依次为a ,b ,c , 由题意得b =2a ,c =2a . 在△ABC 中,由余弦定理得cos C =a 2+b 2-c 22ab =a 2+2a 2-4a 22×a ×2a=-24.教育要对民族的未来负责3. (2012·重庆)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且cos A =35,cos B =513,b =3,则c=________. 答案145解析 在△ABC 中,∵cos A =35>0,∴sin A =45.∵cos B =513>0,∴sin B =1213.∴sin C =sin [π-(A +B )]=sin(A +B ) =sin A cos B +cos A sin B =45×513+35×1213=5665. 由正弦定理知b sin B =csin C ,∴c =b sin Csin B =3×56651213=145.4. (2011·课标全国)在△ABC 中,B =60°,AC =3,则AB +2BC 的最大值为________.答案 27解析 由正弦定理知AB sin C =3sin 60°=BCsin A, ∴AB =2sin C ,BC =2sin A .又A +C =120°,∴AB +2BC =2sin C +4sin(120°-C ) =2(sin C +2sin 120°cos C -2cos 120°sin C ) =2(sin C +3cos C +sin C )=2(2sin C +3cos C )=27sin(C +α), 其中tan α=32,α是第一象限角, 由于0°<C <120°,且α是第一象限角, 因此AB +2BC 有最大值27.教育要对民族的未来负责5. 已知圆的半径为4,a 、b 、c 为该圆的内接三角形的三边,若abc =162,则三角形的面积为( )A .2 2B .8 2 C. 2D.22答案 C解析 ∵a sin A =b sin B =c sin C =2R =8,∴sin C =c8,∴S △ABC =12ab sin C =116abc =116×162= 2.题型一 利用正弦定理解三角形例1 在△ABC 中,a =3,b =2,B =45°.求角A 、C 和边c .思维启迪:已知两边及一边对角或已知两角及一边,可利用正弦定理解这个三角形,但要注意解的个数的判断.解 由正弦定理得a sin A =b sin B ,3sin A =2sin 45°,∴sin A =32. ∵a >b ,∴A =60°或A =120°.当A =60°时,C =180°-45°-60°=75°,c =b sin C sin B =6+22;当A =120°时,C =180°-45°-120°=15°, c =b sin Csin B =6-22.探究提高 (1)已知两角及一边可求第三角,解这样的三角形只需直接用正弦定理代入求解即可. (2)已知两边和一边对角,解三角形时,利用正弦定理求另一边的对角时要注意讨论该角,这是解题的难点,应引起注意.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,b =3,A +C =2B ,则角A 的大小为________. 答案 π6教育要对民族的未来负责解析 ∵A +C =2B 且A +B +C =π,∴B =π3.由正弦定理知:sin A =a sin B b =12,又a <b ,∴A <B ,∴A =π6.题型二 利用余弦定理求解三角形例2 在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cos B cos C =-b2a +c.(1)求角B 的大小;(2)若b =13,a +c =4,求△ABC 的面积.思维启迪:由cos B cos C =-b2a +c ,利用余弦定理转化为边的关系求解.解 (1)由余弦定理知:cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab .将上式代入cos B cos C =-b2a +c 得:a 2+c 2-b 22ac ·2ab a 2+b 2-c 2=-b 2a +c , 整理得:a 2+c 2-b 2=-ac . ∴cos B =a 2+c 2-b 22ac =-ac 2ac =-12.∵0<B <π,∴B =23π.(2)将b =13,a +c =4,B =23π代入b 2=a 2+c 2-2ac cos B ,得b 2=(a +c )2-2ac -2ac cos B , ∴13=16-2ac ⎝⎛⎭⎫1-12,∴ac =3. ∴S △ABC =12ac sin B =334.教育要对民族的未来负责探究提高 (1)根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键. (2)熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用.已知A ,B ,C 为△ABC 的三个内角,其所对的边分别为a ,b ,c ,且2cos 2A2+cos A =0.(1)求角A 的值;(2)若a =23,b +c =4,求△ABC 的面积. 解 (1)由2cos 2A2+cos A =0,得1+cos A +cos A =0,即cos A =-12,∵0<A <π,∴A =2π3.(2)由余弦定理得,a 2=b 2+c 2-2bc cos A ,A =2π3,则a 2=(b +c )2-bc ,又a =23,b +c =4,有12=42-bc ,则bc =4, 故S △ABC =12bc sin A = 3.题型三 正弦定理、余弦定理的综合应用例3 (2012·课标全国)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a cos C +3a sin C -b -c =0. (1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c .思维启迪:利用正弦定理将边转化为角,再利用和差公式可求出A ;面积公式和余弦定理相结合,可求出b ,c .解 (1)由a cos C +3a sin C -b -c =0及正弦定理得sin A cos C +3sin A sin C -sin B -sin C =0. 因为B =π-A -C ,所以3sin A sin C -cos A sin C -sin C =0. 由于sin C ≠0,所以sin ⎝⎛⎭⎫A -π6=12.教育要对民族的未来负责又0<A <π,故A =π3.(2)△ABC 的面积S =12bc sin A =3,故bc =4.而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8. 解得b =c =2.探究提高 在已知关系式中,若既含有边又含有角.通常的思路是将角都化成边或将边都化成角,再结合正、余弦定理即可求角.在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c .(1)若c =2,C =π3,且△ABC 的面积为3,求a ,b 的值;(2)若sin C +sin(B -A )=sin 2A ,试判断△ABC 的形状. 解 (1)∵c =2,C =π3,∴由余弦定理c 2=a 2+b 2-2ab cos C 得a 2+b 2-ab =4. 又∵△ABC 的面积为3,∴12ab sin C =3,ab =4.联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4,解得a =2,b =2.(2)由sin C +sin(B -A )=sin 2A , 得sin(A +B )+sin(B -A )=2sin A cos A ,即2sin B cos A =2sin A cos A ,∴cos A ·(sin A -sin B )=0, ∴cos A =0或sin A -sin B =0, 当cos A =0时,∵0<A <π, ∴A =π2,△ABC 为直角三角形;当sin A -sin B =0时,得sin B =sin A , 由正弦定理得a =b ,教育要对民族的未来负责即△ABC 为等腰三角形.∴△ABC 为等腰三角形或直角三角形.代数化简或三角运算不当致误典例:(12分)在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),试判断△ABC 的形状.审题视角 (1)先对等式化简,整理成以单角的形式表示.(2)判断三角形的形状可以根据边的关系判断,也可以根据角的关系判断,所以可以从以 下两种不同方式切入:一、根据余弦定理,进行角化边;二、根据正弦定理,进行边化 角.规范解答解 ∵(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ),∴b 2[sin(A +B )+sin(A -B )]=a 2[sin(A +B )-sin(A -B )], ∴2sin A cos B ·b 2=2cos A sin B ·a 2, 即a 2cos A sin B =b 2sin A cos B .[4分]方法一 由正弦定理知a =2R sin A ,b =2R sin B , ∴sin 2A cos A sin B =sin 2B sin A cos B , 又sin A sin B ≠0,∴sin A cos A =sin B cos B , ∴sin 2A =sin 2B .[8分]在△ABC 中,0<2A <2π,0<2B <2π,∴2A =2B 或2A =π-2B ,∴A =B 或A +B =π2.∴△ABC 为等腰或直角三角形.[12分] 方法二 由正弦定理、余弦定理得: a 2bb 2+c 2-a 22bc =b 2a a 2+c 2-b 22ac,[6分] ∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2),教育要对民族的未来负责∴(a 2-b 2)(a 2+b 2-c 2)=0, ∴a 2-b 2=0或a 2+b 2-c 2=0.[10分] 即a =b 或a 2+b 2=c 2.∴△ABC 为等腰或直角三角形.[12分]温馨提醒 (1)利用正弦、余弦定理判断三角形形状时,对所给的边角关系式一般都要先化为纯粹的边之间的关系或纯粹的角之间的关系,再判断.(2)本题也可分析式子的结构特征,从式子看具有明显的对称性,可判断图形为等腰或直角三角形. (3)易错分析:①方法一中由sin 2A =sin 2B 直接得到A =B ,其实学生忽略了2A 与2B 互补的情况,由于计算问题出错而结论错误.方法二中由c 2(a 2-b 2)=(a 2+b 2)(a 2-b 2)不少同学直接得到c 2=a 2+b 2,其实是学生忽略了a 2-b 2=0的情况,由于化简不当致误.②结论表述不规范.正确结论是△ABC 为等腰三角形或直角三角形,而不少学生回答为:等腰直角三角形.高考中的解三角形问题典例:(12分)(2012·辽宁)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .角A ,B ,C 成等差数列.(1)求cos B 的值;(2)边a ,b ,c 成等比数列,求sin A sin C 的值.考点分析 本题考查三角形的性质和正弦定理、余弦定理,考查转化能力和运算求解能力. 解题策略 根据三角形内角和定理可直接求得B ;利用正弦定理或余弦定理转化到只含角或只含边的式子,然后求解. 规范解答解 (1)由已知2B =A +C ,A +B +C =180°,解得B =60°, 所以cos B =12.[4分](2)方法一 由已知b 2=ac ,及cos B =12,根据正弦定理得sin 2B =sin A sin C ,[8分] 所以sin A sin C =1-cos 2B =34.[12分]教育要对民族的未来负责方法二 由已知b 2=ac ,及cos B =12,根据余弦定理得cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac =12,解得a =c ,[8分]所以A =C =B =60°,故sin A sin C =34.[12分]解后反思 (1)在解三角形的有关问题中,对所给的边角关系式一般要先化为只含边之间的关系或只含角之间的关系,再进行判断.(2)在求解时要根据式子的结构特征判断使用哪个定理以及变形的方向.方法与技巧1.应熟练掌握和运用内角和定理:A +B +C =π,A 2+B 2+C 2=π2中互补和互余的情况,结合诱导公式可以减少角的种数.2.正、余弦定理的公式应注意灵活运用,如由正、余弦定理结合得sin 2A =sin 2B +sin 2C - 2sin B ·sin C ·cos A ,可以进行化简或证明. 失误与防范1.在利用正弦定理解已知三角形的两边和其中一边的对角求另一边的对角,进而求出其他的边和角时,有时可能出现一解、两解,所以要进行分类讨论.2.利用正、余弦定理解三角形时,要注意三角形内角和定理对角的范围的限制.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. (2012·广东)在△ABC 中,若∠A =60°,∠B =45°,BC =32,则AC 等于( )A .4 3B .2 3 C. 3 D.32答案 B教育要对民族的未来负责解析 在△ABC 中,AC sin B =BCsin A, ∴AC =BC ·sin Bsin A =32×2232=2 3.2. (2011·浙江)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a cos A =b sin B ,则sin A cos A +cos 2B 等于( )A .-12B.12C .-1D .1答案 D解析 ∵a cos A =b sin B ,∴sin A cos A =sin B sin B , 即sin A cos A -sin 2B =0,∴sin A cos A -(1-cos 2B )=0, ∴sin A cos A +cos 2B =1.3. 在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,若a =2b cos C ,则此三角形一定是( )A .等腰直角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形答案 C解析 因为a =2b cos C ,所以由余弦定理得a =2b ·a 2+b 2-c 22ab ,整理得b 2=c 2,因此三角形一定是等腰三角形.4. (2012·湖南)△ABC 中,AC =7,BC =2,B =60°,则BC 边上的高等于( )A.32B.332C.3+62D.3+394答案 B解析 设AB =a ,则由AC 2=AB 2+BC 2-2AB ·BC cos B 知7=a 2+4-2a ,即a 2-2a -3=0,∴a =3(负值舍去).∴BC 边上的高为AB ·sin B =3×32=332. 二、填空题(每小题5分,共15分)教育要对民族的未来负责5. (2011·北京)在△ABC 中,若b =5,∠B =π4,sin A =13,则a =________.答案523解析 根据正弦定理应有a sin A =b sin B, ∴a =b sin Asin B =5×1322=523.6. (2011·福建)若△ABC 的面积为3,BC =2,C =60°,则边AB 的长度等于________.答案 2解析 由于S △ABC =3,BC =2,C =60°, ∴3=12×2·AC ·32,∴AC =2,∴△ABC 为正三角形.∴AB =2.7. 在△ABC 中,若AB =5,AC =5,且cos C =910,则BC =________.答案 4或5解析 设BC =x ,则由余弦定理AB 2=AC 2+BC 2-2AC ·BC cos C 得5=25+x 2-2·5·x ·910,即x 2-9x+20=0,解得x =4或x =5. 三、解答题(共22分)8. (10分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足cos A 2=255,AB →·AC →=3.(1)求△ABC 的面积; (2)若b +c =6,求a 的值.解 (1)∵cos A 2=255,∴cos A =2cos 2A 2-1=35,∴sin A =45.又AB →·AC →=3,∴bc cos A =3,∴bc =5.∴S △ABC =12bc sin A =12×5×45=2.(2)由(1)知,bc =5,又b +c =6,教务处签字:日期:年月日课后评价一、学生对于本次课的评价○特别满意○满意○一般○差二、教师评定1、学生上次作业评价:○好○较好○一般○差2、学生本次上课情况评价:○好○较好○一般○差作业布置.s.5.u.根据余弦定理得a2=b2+c2-2bc cos A=(b+c)2-2bc-2bc cos A=36-10-10×35=20,∴a=2 5.教育要对民族的未来负责教师留言教师签字:家长意见家长签字:日期:年月日教育要对民族的未来负责。

《正弦定理和余弦定理》复习课教学设计【DOC范文整理】

《正弦定理和余弦定理》复习课教学设计【DOC范文整理】

《正弦定理和余弦定理》复习课授课方案教材分析这是高三一轮复习,内容是必修 5 章解三角形。

本章内容准备复习两课时。

本节课是课时。

标要求本章的中心内容是怎样解三角形,正弦定理和余弦定理是解三角形的工具,最后应落实在解三角形的应用上。

经过本节学习,学生应该达到以下学习目标:经过对任意三角形边长和角度关系的研究,掌握正弦定理、余弦定理解三角形 . 能够运用正弦定理、余弦定理等知识和方法判断三角形形状的问题。

本章内容与三角函数、向量联系亲近。

作为复习课一方面将本章知识作一个梳理,另一方面经过整理归纳帮助学生进一步达到相应的学习目标。

学情分析学生经过必修 5 的学习,对正弦定理、余弦定理的内容已经认识,但对于怎样灵便运用定理解决实责问题,怎样合理选择定理进行边角关系转变从而解决三角形综合问题,学生还需经过复习提点有待进一步理解和掌握。

授课目的知识目标:学生经过对任意三角形边长和角度关系的研究,掌握正弦、余弦定理的内容及其证明方法;会运用正、余弦定理与三角形内角和定理,面积公式解斜三角形的两类基本问题。

学生学会分析问题,合理采用定理解决三角形综合问题。

能力目标:培养学生提出问题、正确分析问题、独立解决问题的能力,培养学生在方程思想指导下办理解三角形问题的运算能力,培养学生合情推理研究数学规律的数学思想能力。

感情目标:经过生活实例研究回顾三角函数、正余弦定理,表现数学于生活,并应用于生活,激发学生学习数学的兴趣 , 并领悟数学的应用价值,在授课过程中激发学生的研究精神。

授课方法研究式授课、讲练结合重点难点1、正、余弦定理的对于解解三角形的合理选择;正、余弦定理与三角形的有关性质的综合运用。

授课策略 1、重视多种授课方法有效整合;重视提出问题、解决问题策略的指导。

重视加强前后知识的亲近联系。

重视加强数学实践能力的培养。

注意防备过于繁琐的形式化训练授课过程表现“实践→认识→实践”。

设计妄图:学生经过必修 5 的学习,对正弦定理、余弦定理的内容已经认识,但对于怎样灵便运用定理解决实责问题,怎样合理选择定理进行边角关系转变从而解决三角形综合问题,学生还需经过复习提点有待进一步理解和掌握。

2021届高考数学二轮复习专题五三角函数与解三角形梳理纠错预测学案文

2021届高考数学二轮复习专题五三角函数与解三角形梳理纠错预测学案文

三角函数与解三角形1.三角函数(1)以正弦函数、余弦函数、正切函数为载体,考查函数的定义域、最值、单调性、对称性、周期性.(2)考查三角函数式的化简,三角函数的图象的性质以及平移和伸缩变换. 2.解三角形(1)利用正余弦定理进行三角形边和角的计算,三角形形状的判断、面积的计算,以及有关的参数的范围.(2)考查运用正余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.一、三角函数 1.公式(1)诱导公式:(2)同角三角函数关系式:22sin cos 1αα+=,sin tan cos ααα=(3)两角和与差的三角函数:sin()sin cos cos sin αβαβαβ+=+ sin()sin cos cos sin αβαβαβ-=- cos()cos cos sin sin αβαβαβ+=- cos()cos cos sin sin αβαβαβ-=+tan tan tan()1tan tan αβαβαβ++=-tan tan tan()1tan tan αβαβαβ--=+(4)二倍角公式:sin 22sin cos ααα=2222cos 2cos sin 12sin 2cos 1ααααα=-=-=- 22tan tan 21tan ααα=- (5)降幂公式:21cos2sin2αα-=,21cos2cos2αα+=2.三角函数性质3.函数y=A sin(ωx+φ)的图象及变换(1)φ对函数y=sin(x+φ)的图象的影响(2)ω(ω>0)对y=sin(ωx+φ)的图象的影响(3)A(A>0)对y=A sin(ωx+φ)的图象的影响4.函数y =A sin(ωx +φ)的性质(1)函数y =A sin(ωx +φ)(A >0,ω>0)中参数的物理意义(2)函数y =A sin(ωx +φ)(A >0,ω>0)的有关性质二、解三角形 1.正余弦定理(为外接圆半径); ;,,;,,;;;;2.利用正弦、余弦定理解三角形(1)已知两角一边,用正弦定理,只有一解.(2)已知两边及一边的对角,用正弦定理,有解的情况可分为几种情况.在ABC△中,已知,和角A时,解得情况如下:上表中A为锐角时,,无解.A为钝角或直角时,,均无解.(3)已知三边,用余弦定理,有解时,只有一解.(4)已知两边及夹角,用余弦定理,必有一解.3.三角形中常用的面积公式(1)(表示边上的高);(2);(3)(为三角形的内切圆半径).4.解三角形应用题的一般步骤一、选择题.1.若1sin 33πα⎛⎫+= ⎪⎝⎭,则cos 23πα⎛⎫-= ⎪⎝⎭()A .79-B .23C .23-D .79【答案】A【解析】1sin cos cos 32363ππππααα⎡⎤⎛⎫⎛⎫⎛⎫+=-+=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 2217cos 2cos 22cos 12136639πππααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=-=--=⨯-=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,故选A .【点评】本题主要考查了诱导公式在三角函数化简求值中的应用,考查了计算能力和转化思想, 属于基础题.2.函数()2sin cos 24f x x x π⎛⎫=++ ⎪⎝⎭的最大值为()A.1BC. D .3【答案】B【解析】因为()2sin cos 24f x x x π⎛⎫=++ ⎪⎝⎭,所以()2sin sin 22sin 2sin cos 44444f x x x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++=++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,令4x πθ=+,则()2sin 2sin cos 2sin sin 2f θθθθθθ=+=+,则()()222cos 2cos 222cos 12cos 4cos 2cos 2f θθθθθθθ'=+=-+=+-,令f ′(θ)=0,得cos 1θ=-或1cos 2θ=,经典训练题(70分钟)当11cos 2θ-<<时,f ′(θ)<0;1cos 12θ<<时,f ′(θ)>0,所以当1cos 2θ=时,f (θ)取得最大值,此时sin 2θ=,所以()max2f x =,故选B .【点评】本题考查三角恒等变换及三角函数的性质的应用,解答的关键是利用导数研究函数的单调性从而求出函数的最值. 3.已知锐角ϕ满足cos 1ϕϕ-=.若要得到函数()()21sin 2f x x ϕ=-+的图象,则可以将函数1sin 22y x =的图象() A .向左平移7π12个单位长度B .向左平移π12个单位长度C .向右平移7π12个单位长度D .向右平移π12个单位长度【答案】A 【解析】由cos 1ϕϕ-=,知2sin()16πϕ-=,即1sin()62πϕ-=, ∴锐角3πϕ=,故()()221112sin sin cos(2)22323f x x x x ππϕ⎛⎫=-+=-+=+ ⎪⎝⎭,又12117cos(2)sin(2)sin(2)232626x x x πππ+=-+=+, ∴()17sin(2)26f x x π=+,故f(x)是将1sin 22y x =向左平移7π12个单位长度得到,故选A .【点评】由辅助角公式化简已知条件求锐角ϕ,根据f(x)的函数式,应用二倍角、诱导公式将f(x)化为正弦型函数,即可判断图象的平移方式.4.已知函数f (x )=2sin (ωx +φ),(0,)2πωϕ><的部分图象如图所示,f (x )的图象过,14A π⎛⎫ ⎪⎝⎭,5,14B π⎛⎫- ⎪⎝⎭两点,将f (x )的图象向左平移712π个单位得到g (x )的图象,则函数g (x )在30,4π⎡⎤⎢⎥⎣⎦上的最小值为()A .−√2B .√2C .−√3D .−1【答案】A【解析】由图象知,5244T πππ=-=,∴T =2π,则1ω=, ∴f (x )=2sin (x +φ),将点,14A π⎛⎫ ⎪⎝⎭的坐标代入得,2sin 14πϕ⎛⎫+= ⎪⎝⎭,即1sin 42πϕ⎛⎫+= ⎪⎝⎭,又2πϕ<,∴12πϕ=-,则()2sin 12f x x π⎛⎫=- ⎪⎝⎭, 将f (x )的图象向左平移712π个单位得到函数()72sin 2sin 2cos 12122g x x x xπππ⎛⎫⎛⎫=+-=+= ⎪ ⎪⎝⎭⎝⎭,∴g (x )在30,4π⎡⎤⎢⎥⎣⎦上的最小值为32cos 4π=,故选A .【点评】本题主要考查三角函数图象,需要利用三角函数的周期性以及对称性进行处理,再结合图象的平移,三角函数的单调性进行解题,本题属于中档题.5.已知函数f (x )=sin ωx −√3cos ωx (0ω>,x ∈R )的图象与x 轴交点的横坐标构成一个公差为2π的等差数列,把函数f (x )的图象沿x 轴向左平移3π个单位,横坐标伸长到原来的2倍得到函数g (x )的图象,则下列关于函数g (x )的命题中正确的是() A .函数g (x )是奇函数B .g (x )的图象关于直线6x π=对称C .g (x )在,33ππ⎡⎤-⎢⎥⎣⎦上是增函数D .当,66ππx ⎡⎤∈-⎢⎥⎣⎦时,函数g (x )的值域是[0,2] 【答案】B【解析】()πsin 2sin 3f x x x x ωωω⎛⎫==- ⎪⎝⎭,由题意知函数周期为π,则2T ππω==,2ω=,从而()π2sin 23f x x ⎛⎫=- ⎪⎝⎭,把函数f (x )的图象沿x 轴向左平移3π个单位,横坐标伸长到原来的2倍得到函数()2sin π3g x x ⎛⎫=+ ⎪⎝⎭,g (x )不是奇函数,A 错;g (x )在,36ππ⎡⎤-⎢⎥⎣⎦是单调递增,C 错;,66x ππ⎡⎤∈-⎢⎥⎣⎦时,函数g (x )的值域是[1,2],D 错;g (x )的图象关于直线π6x =对称,B 对,只有选项B 正确,故选B .【点评】本题考查三角函数,图象的变换,以及图象的性质,属于中档题.6.在△ABC 中,内角A ,B ,C 所对边分别为a ,b ,c ,若3A π=,b =4,△ABC的面积为3√3,则sin B =()A BC .13D 【答案】A【解析】1sin 2S bc A ===c =3,由余弦定理可得2222cos 13ab c bc A =+-=,得a =√13,又由正弦定理可得sin sin a b A B=,所以sin sin 13b A B a ==,故选A .【点评】本题主要考了三角形的面积公式以及余弦定理公式的运用,属于基础题型.7.已知a 、b 、c 分别是△ABC 的内角A 、B 、C 的对边,若sin cos sin CA B<,则ΔABC 的形状为() A .钝角三角形 B .直角三角形 C .锐角三角形 D .等边三角形 【答案】A【解析】因为在三角形中,sin cos sin CA B<变形为sin sin cos C B A <, 由内角和定理可得sin()cos sin A B A B +<,化简可得sin cos 0A B <,cos 0B ∴<,所以2B π>,所以三角形为钝角三角形,故选A .【点评】本题考查了解三角形,主要是公式的变形是解题的关键,属于较为基础题.二、填空题.8.已知(0,π)α∈,且有1−2sin 2α=cos 2α,则cos α=_________.【答案】5【解析】2212sin 2cos 214sin cos 12sin sin 2sin cos αααααααα-=⇒-=-⇒=,因为(0,π)α∈,所以sin 0α≠, 因此由2πsin 2sin cos sin 2cos tan 20,2ααααααα⎛⎫=⇒=⇒=⇒∈ ⎪⎝⎭,而()22sincos 11αα+=,把sin 2cos αα=代入(1)得:22214cos cos 1cos cos 5αααα+=⇒=⇒=2π0,α⎛⎫∈ ⎪⎝⎭,因此cos 5α=,故答案为5.【点评】本题考查了三角恒等变换与三角函数求值问题,是基础题.9.已知角α的顶点为坐标原点,始边为x 轴的正半轴,终边经过点P (3,4),则tan π2α⎛⎫+= ⎪⎝⎭___________.【答案】34-【解析】由三角函数的定义可得4sin 5α==,3cos 5α==,因此,3sin cos 325tan 42sin 4cos 52παπααπαα⎛⎫+ ⎪⎛⎫⎝⎭+====- ⎪-⎛⎫⎝⎭-+ ⎪⎝⎭, 故答案为34-.【点评】本题考查任意角的三角函数的应用,诱导公式的应用,是基本知识的考查.三、解答题.10.已知函数2()cos 222x x xf x =+.(1)求函数f(x)在区间[0,π]上的值域;(2)若方程f(ωx)=√3(ω>0)在区间[0,π]上至少有两个不同的解,求ω的取值范围. 【答案】(1)2⎡⎤⎣⎦;(2)5,12⎡⎫+∞⎪⎢⎣⎭. 【解析】(1)()2πcos 2sin()2224x x x f x x x x =+-=+=+,令4U x π=+,[]0,x π∈,5,44U ππ⎡⎤∴∈⎢⎥⎣⎦,由y =sin U 的图象知,sin U ⎡⎤∈⎢⎥⎣⎦,即sin 4πx ⎡⎤⎛⎫+∈⎢⎥ ⎪⎝⎭⎣⎦,2sin 2π4x ⎛⎫⎡⎤∴+∈ ⎪⎣⎦⎝⎭,所以函数f(x)的值域为2⎡⎤⎣⎦.(2)()2sin()(0)4f x x πωωω=+>, ∵f(ωx)=√3,2sin()4x πω∴+=,即sin()42x πω+=,∵x ∈[0,π],,444x πππωωπ⎡⎤∴+∈+⎢⎥⎣⎦,且()243x k k ππωπ+=+∈Z 或()2243x k k ππωπ+=+∈Z , 由于方程f(ωx)=√3(ω>0)在区间[0,π]上至少有两个不同的解,所以243ππωπ+≥,解得512ω≥, 所以ω的取值范围为5,12⎡⎫+∞⎪⎢⎣⎭. 【点评】考查三角函数的值域时,常用的方法:(1)将函数化简整理为f(x)=A sin (ωx +φ),再利用三角函数性质求值域;(2)利用导数研究三角函数的单调区间,从而求出函数的最值.11.已知函数()2sin 2cos 232f x x x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭.(1)求函数f (x )在5,66ππ⎡⎤-⎢⎥⎣⎦上的单调区间;(2)若0,2πβ⎛⎫∈ ⎪⎝⎭,1123f πβ⎛⎫-= ⎪⎝⎭,求cos 26πβ⎛⎫+ ⎪⎝⎭的值.【答案】(1)递增区间为,612ππ⎡⎤-⎢⎥⎣⎦,75,126ππ⎡⎤⎢⎥⎣⎦,递减区间为7,1212ππ⎡⎤⎢⎥⎣⎦;(2)3-.【解析】(1)由题意得()21sin 2cos 2cos 2sin 2sin 23222f x x x x x x ππ⎛⎫⎛⎫=++-=-+ ⎪ ⎪⎝⎭⎝⎭12sin 2sin 223x x x π⎛⎫=+=+ ⎪⎝⎭, 因为5,66x ππ⎡⎤∈-⎢⎥⎣⎦,所以[]20,23x ππ+∈, 令0232x ππ≤+≤,解得,612x ππ⎡⎤∈-⎢⎥⎣⎦; 令32232x πππ≤+≤,解得7,1212x ππ⎡⎤∈⎢⎥⎣⎦;令32223x πππ≤+≤,得75,126x ππ⎡⎤∈⎢⎥⎣⎦. 所以函数f (x )在5,66ππ⎡⎤-⎢⎥⎣⎦上的单调递增区间为,612ππ⎡⎤-⎢⎥⎣⎦,75,126ππ⎡⎤⎢⎥⎣⎦, 单调递减区间为7,1212ππ⎡⎤⎢⎥⎣⎦.(2)由(1)知1sin 21263f ππββ⎛⎫⎛⎫-=+= ⎪ ⎪⎝⎭⎝⎭.因为2π0,β⎛⎫∈ ⎪⎝⎭,所以7π2,66ππ6β⎛⎫+∈ ⎪⎝⎭, 又因为1π1sin 2632β⎛⎫+=< ⎪⎝⎭,所以2,π62ππβ⎛⎫+∈ ⎪⎝⎭,所以cos 2π6β⎛⎫+== ⎪⎝⎭.【点评】三角函数的化简求值的规律总结:1.给角求值:一般给出的角是非特殊角,要观察所给角与特殊角的关系,利用三角变换转化为求特殊角的三角函数值问题; 2.给值求值:即给出某些角的三角函数值,求另外一些角的三角函数值,解题关键在于“变角”,使相关角相同或具有某种关系; 3.给值求角:实质上可转化为“给值求值”即通过求角的某个三角函数值来求角(注意角的范围). 12.在四边形ABCD 中,AB //CD ,AD =CD =BD =1. (1)若32AB =,求BC ;(2)若AB =2BC ,求cos BDC ∠.【答案】(1)2BC =;(2)cos 1BDC ∠=.【解析】(1)在△ABD 中,由余弦定理可得2223cos 24AB BD AD ABD AB BD +-∠==⋅,∵CD //AB,∴∠BDC =∠ABD ,在△BCD 中,由余弦定理可得22212cos 2BC BD CD BD CD BDC =+-⋅∠=,2BC =.(2)设BC =x ,则AB =2x ,在△ABD 中,22224cos 24AB BD AD x ABD x AB BD x +-∠===⋅, 在△BCD 中,22222cos 22BD CD BC x BDC BD CD +--∠==⋅,由(1)可知,∠BDC =∠ABD ,所以,cos ∠BDC =cos ∠ABD ,即222x x -=,整理可得x2+2x −2=0,因为x >0,解得x =√3−1, 因此,cos cos 1BDC ABD x ∠=∠==.【点评】在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角"或“角化边",变换原则如下:(1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角"; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,满足(2b −c )cos A =acosC.(1)求角A ;(2)若a =√13,b +c =5,求△ABC 的面积. 【答案】(1)π3A =;(2)√3.【解析】(1)在三角形ABC 中,∵(2b −c )cos A =acos C , 由正弦定理得()2sin sin cos sin cos B C A A C -=,化为:()2sin cos sin cos sin cos sin sin B A C C A C A C B =+=+=, 三角形中sin 0B ≠,解得1cos 2A =,A ∈(0,π),∴π3A =.(2)由余弦定理得2222cos ab c bc A =+-,∵a =√13,b +c =5,∴13=(b +c )2−3cb =52−3bc,化为bc =4,所以三角形ABC 的面积11sin 4222S bc A ==⨯⨯=【点评】本题考查正余弦定理和三角形面积公式的综合运用,涉及三角函数恒等变换,属基础题.熟练掌握利用正弦定理边化角,并结合三角函数两角和差公式化简,注意余弦定理与三角形面积公式的综合运用.14.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a sin (A +B −C )=c sin (B +C ).(1)求角C 的大小;(2)若2a +b =8,且△ABC 的面积为2√3,求△ABC 的周长.【答案】(1)π3C =;(2)6+2√3.【解析】(1)∵a sin(A +B −C)=c sin(B +C),sin sin(π2)sin sin A C C A ∴-=,2sin sin cos sin sin A C C C A ∴=, sin sin 0A C ≠,1cos 2C ∴=,0πC <<,π3C ∴=. (2)由题意可得12=∴ab =8,∵2a +b =8联立可得,a =2,b =4,由余弦定理可得c2=12,c =2√3,此时周长为6+2√3.【点评】本题主要考查了三角形的内角及诱导公式在三角形化简中的应用,还考查了三角形的面积公式及余弦定理,属于基础题.15.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知2c sin B =3a sin C ,1cos 3C =. (1)求证:△ABC 为等腰三角形;(2)若△ABC 面积为2√2,D 为AB 中点,求线段CD 的长. 【答案】(1)证明见解析;(2).【解析】(1)由2c sin B =3a sin C ,根据正弦定理可得2cb =3ac ,所以2b =3a ,则32b a =, 又1cos 3C =,根据余弦定理可得222222222913144cos 332322a a c a c abc C ab a a a +--+-====⋅,则222134aa c =-,所以32c a b ==, 因此△ABC 为等腰三角形.(2)因为角C是三角形内角,所以sin C>0,则sin C==因为△ABC面积为2√2,所以113sin222ab C a a==⋅a=2,所以b=c=3,又D为AB中点,所以cos cosADC BDC∠=-∠,则222222333222332222CD CDCD CD⎛⎫⎛⎫+-+-⎪ ⎪⎝⎭⎝⎭=-⨯⨯⨯⨯,整理得2174CD=,所以CD=.【点评】本题主要考查正余弦定理、三角形的面积公式的综合运用,利用正弦定理进行边角转换等,属于中档题型.16.△ABC的内角A,B,C的对边分别为a,b,c.已知sin cos2Aa C c=.(1)求A;(2)已知b=1,c=3,且边BC上有一点D满足3ABD ADCS S=△△,求AD.【答案】(1)π3A=;(2)4AD=.【解析】(1)因为sin cos2Aa C c=,由正弦定理得sin sin sin cos2AA C C=,因为sin C≠0,所以sin cos2AA=,所以2sin cos cos222A A A=,因为0π22A<<,所以cos02A≠,所以1sin22A=,即π26A=,所以π3A=.(2)设△ABD的AB边上的高为ℎ1,△ADC的AC边上的高为ℎ2,因为3ABD ADCS S=△△,c=3,b=1,所以1211322c h b h⋅=⨯⋅,所以ℎ1=ℎ2,AD 是△ABC 角A 的内角平分线,所以π6BAD ∠=,因为S△ABD=3S △ADC,可知34ABDABC SS =△△, 所以131sin sin 26423ππAB AD AB AC ⨯⨯=⨯⨯⨯,所以4AD =.【点评】关键点点睛:本题考查了正弦定理的边角互化、三角形的面积公式,解题的关键是确定AD 是△ABC 角A 的内角平分线,考查了运算能力.一、选择题.1.已知函数()2sin 2π6f x x ⎛⎫=+ ⎪⎝⎭,现将()y f x =的图象向左平移π12个单位,再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数y =g (x )的图象,则g (x )的解析式为()A .221124x y +=B .πsin 3y x ⎛⎫=+ ⎪⎝⎭C .2sin 4π3y x ⎛⎫=+ ⎪⎝⎭D .π2sin 3y x ⎛⎫=+ ⎪⎝⎭【答案】C【解析】将()y f x =的图象向左平移π12个单位得2sin 22sin 21πππ263y x x ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,再所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到()2in 4πs 3y g x x ⎛⎫==+ ⎪⎝⎭,高频易错题故选C .【点评】在三角函数平移变换中,y =sin ωx 向左平移ϕ个单位得到的函数解析式为y =sin [ω(x +φ)]=sin (ωx +ωφ),而不是y =sin (ωx +ϕ),考查运算求解能力,是基础题.二、填空题.2.设锐角三角形ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c ,若a =2,B =2A ,则b 的取值范围为___________. 【答案】(2√2,2√3)【解析】由sin2sin b aA A=,得b =4cos A ,由0290045A A ︒<<︒⇒︒<<︒, 01803903060A A ︒<︒-<︒⇒︒<<︒,故3045cos 2A A ︒<<︒⇒<<,cos A <<b =4cos A ∈(2√2,2√3).【点评】该题考查的是有关解三角形的问题,涉及到的知识点有正弦定理,以及锐角三角形的条件,属于简单题目.一、选择题.1.如图,角α,β的顶点与原点O 重合,始边与x 轴的非负半轴重合,终边与单位圆O 分别交于A ,B 两点,则OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ =()A .cos(α−β)B .cos(α+β)C .sin(α−β)D .sin(α+β)精准预测题【答案】A【解析】由图可知()cos ,sin A αα,()cos ,sin B ββ, 所以cos cos sin sin cos()OA OB αβαβαβ⋅=+=-,故选A .【点评】本题考查运用向量进行余弦定理的证明,属于基础题型.2.已知()cos 2c 2πos παα⎛⎫+=- ⎪⎝⎭,则tan π4α⎛⎫-= ⎪⎝⎭()A .4-B .4C .13-D .13【答案】C【解析】因为()cos 2c 2πos παα⎛⎫+=- ⎪⎝⎭,利用诱导公式可得()sin 2cos αα-=⨯-,即tan 2α=,所以tantan 1214tan 41231tan 4πta πn πααα--⎛⎫-===- ⎪+⎝⎭+⋅,故选C .【点评】本题主要考查诱导公式,正切的两角和差公式的应用,属于基础题.二、解答题. 3.已知函数()22cos 12xf x x =-+. (1)若()π6f αα⎛⎫=+ ⎪⎝⎭,求tan α的值;(2)若函数f(x)图象上所有点的纵坐标保持不变,横坐标变为原来的12倍得函数g(x)的图象,求函数g(x)在0,π2⎡⎤⎢⎥⎣⎦得的值域.【答案】(1);(2)[−1,2].【解析】(1)()22cos 1cos π2sin 26x f x x x x x ⎛⎫=-+=-=- ⎪⎝⎭,因为()π6f αα⎛⎫=+ ⎪⎝⎭,所以πsin 6αα⎛⎫-= ⎪⎝⎭,即1cos 22ααα-=,所以−3√3sin α=cos α,所以tan 9α=-.(2)f(x)图象上所有点横坐标变为原来的12倍得到函数g(x)的图象,所以g(x)的解析式为()()π22sin 26g x f x x ⎛⎫==- ⎪⎝⎭,因为π02x ≤≤,所以ππ5π2666x -≤-≤,则1πsin 2126x ⎛⎫-≤-≤ ⎪⎝⎭,所以−1≤g(x)≤2,故g(x)在0,π2⎡⎤⎢⎥⎣⎦上的值域为[−1,2].【点评】本题主要考查三角恒等变换,同角三角函数的基本关系,函数y =A sin (ωx +φ)的图象变换规律,正弦函数的定义域和值域,属于中档题. 4.设函数()212coscos 5f x x x x =--.(1)求f(x)的最小正周期和值域;(2)在锐角△ABC 中,角A 、B 、C 的对边长分别为a 、b 、c .若f(A)=−5,a =√3,求△ABC 周长的取值范围.【答案】(1)π,[−4√3+1,4√3+1](2)(3+√3,3√3]. 【解析】(1)()2212coscos 512cos 25f x x x x x x =--=--6cos 221π216x x x ⎛⎫=-+=++ ⎪⎝⎭,πT ∴=,值域为[−4√3+1,4√3+1].(2)由f(A)=−5,可得212coscos A A A=,因为三角形为锐角△ABC ,sin A A=,即tan A =π3A =,由正弦定理sin sin sin a b c A B C ==,得2sin b B =,2π2sin 2sin()3c C B ==-,所以2π12sin sin()2(sin sin )322a b c B B B B B ⎡⎤++=+-=++⎢⎥⎣⎦32(sin cos ))22π6B B B =++=++.因为△ABC 为锐角三角形,所以π02B <<,π02C <<, 即022π3π02πB B ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得π6π2B <<, 所以ππ2π363B <+<sin()16πB <+≤,即3)6πB ++≤,所以周长的取值范围为区间(3+√3,3√3].【点评】在解三角形的周长范围时,将a +b +c 转化为含一个角的三角函数问题,利用三角函数的值域, 求周长的取值范围,是常用解法.。

正余弦定理复习教案

正余弦定理复习教案

正弦、余弦定理一. 教学内容: 正弦、余弦定理 二. 教学重、难点: 1. 重点:正弦、余弦定理。

2. 难点:运用正、余弦定理解决有关斜三角形问题。

一、正弦定理和余弦定理1、正弦定理和余弦定理 cos ,cos ,cos .bc A ac B ab C 22;;a b注:在ΔABC 中,sinA>sinB 是A>B 的充要条件。

(∵sinA>sinB ⇔22R R>⇔a>b ⇔A>B )二、应用举例1、实际问题中的常用角 (1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下文的叫俯角(如图①)(2)方位角从指北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图②)注:仰角、俯角、方位角的区别是:三者的参照不同。

仰角与俯角是相对于水平线而言的,而方位角是相对于正北方向而言的。

(3)方向角:相对于某一正方向的水平角(如图③)①北偏东α即由指北方向顺时针旋转α到达目标方向; ②北偏本α即由指北方向逆时针旋转α到达目标方向;③南偏本等其他方向角类似。

(4)坡度:坡面与水平面所成的二面角的度数(如图④,角θ为坡角) 坡比:坡面的铅直高度与水平长度之比(如图④,i 为坡比) 2、ΔABC 的面积公式(1)1()2a a S a h h a =表示边上的高; (2)111sin sin sin ()2224abcS ab C ac B bc A R R ====为外接圆半径;(3)1()()2S r a b c r =++为内切圆半径。

【典型例题】[例1] 已知在ABC ∆中,︒=∠45A ,2=a ,6=c 解此三角形。

练习:不解三角形,判断下列三角形解的个数。

(1)5=a ,4=b ,︒=120A (2)7=a ,14=b ,︒=150A (3)9=a ,10=b ,︒=60A (4)50=c ,72=b ,︒=135C正弦定理余弦定理的应用:例2:在ABC∆中,角,,A B C 所对的边分,,a b c .若cos sin a A b B =,则2sin cos cos A A B +=( )A .12 B .12C . -1D . 1 练习:在△ABC 中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是(A )(0,]6π(B )[,)6ππ(C )(0,]3π(D )[,)3ππ利用正弦定理余弦定理判断三角形的形状及求取值范围[例3]若△ABC 的三个内角满足sin :sin :sin 5:11:13A B C =则△ABC A .一定是锐角三角形. B .一定是直角三角形.C .一定是钝角三角形.D .可能是锐角三角形,也可能是钝角三角形.练习:1、在锐角△ABC 中,BC =1,B =2A ,则ACcos A 的值等于______,AC 的取值范围为______.2、在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,π3<C <π2且b a -b =sin2Csin A -sin2C(1)判断△ABC 的性状;(2)若|BA +BC |=2,求BA ·BC 的取值范围. 3、在△ABC 中,cos 2B 2=a +c2c,(a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为 ( )A .正三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形利用正余弦定理求三角形面积〖例4〗(2009浙江文)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且满足25cos2A =,3AB AC ⋅=.(I )求ABC ∆的面积; (II )若1c =,求a 的值.练习:在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且满足25cos25A =,3AB AC ⋅=.(I )求ABC ∆的面积; (II )若6b c +=,求a 的值.正余弦定理实际应用问题〖例5〗(本小题满分12分)如图,A ,B 是海面上位于东西方向相距5(3+3)海里的两个观测点,现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距203海里的C 点的救援船立即前往营救,其航行速度为30海里/时,该救援船到达D 点需要多长时间? 已知在ABC ∆中,︒=∠45A ,2=a ,6=c 解此三角形。

2020版高三数学二轮复习(全国理)讲义:专题三第二讲三角恒等变换与解三角形

2020版高三数学二轮复习(全国理)讲义:专题三第二讲三角恒等变换与解三角形

高考考点考点解读[解析] 由题意S △ABC =12ab sin C =a2+b2-c24,即sin C =a2+b2-c22ab ,由余弦定理可知sin C =cos C ,即tan C =1,又C ∈(0,π),所以C =π4.3.(20xx·全国Ⅰ卷,11)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A ()1,a ,B()2,b ,且cos2α=23,则||a -b =( B ) A .15B .55C .255D .1[解析] 由cos2α=2cos 2α-1=23可得cos 2α=56=cos2αsin2α+cos2α=1tan2α+1,化简可得tan α=±55;当tan α=55时,可得a 1=55,b 2=55,即a =55,b =255,此时|a -b |=55;当tan α=-55时,仍有此结果,故|a -b |=55. 4.(20xx·天津卷,6)将函数y =sin ⎝ ⎛⎭⎪⎫2x +π5的图象向右平移π10个单位长度,所得图象对应的函数( A )A .在区间⎣⎢⎡⎦⎥⎤3π4,5π4上单调递增 B .在区间⎣⎢⎡⎦⎥⎤3π4,π上单调递减 C .在区间⎣⎢⎡⎦⎥⎤5π4,3π2上单调递增 D .在区间⎣⎢⎡⎦⎥⎤3π2,2π上单调递减 [解析] 选A .因为将函数y =sin ⎝ ⎛⎭⎪⎫2x +π5的图象向右平移π10个单位长度,得到函数y=sin2x 的图象.用五点法作出草图,如图:从图中可以看出选项A 正确,其他都不正确.⎝ ⎛4-α=5,则sin22 .=4+2c=R,则△9.为了竖起一块广告牌,要制造三角形支架,如图,要求∠ACB =60°,BC 的长度大于1米,且AC 比AB 长0.5米,为了稳定广告牌,要求AC 越短越好,则AC 最短为2+3.[解析] 由题意设BC =x (x >1)米, AC =t (t >0)米,依题设AB =AC -0.5 =(t -0.5)米,在△ABC 中,由余弦定理得: AB 2=AC 2+BC 2-2AC ·BC cos60°, 即(t -0.5)2=t 2+x 2-tx ,化简并整理得: t =x2-0.25x -1(x >1),即t =x -1+0.75x -1+2,因为x >1,故t =x -1+0.75x -1+2≥2+3, 当且仅当x =1+32时取等号,此时取最小值2+3.10.(20xx·全国卷Ⅰ,17)在平面四边形ABCD 中,∠ADC =90°,∠A =45°,AB =2,BD =5.(1)求cos ∠ADB ; (2)若DC =22,求BC .[解析] (1)在△ABD 中,由正弦定理得BD sinA =AB sin ∠ADB. 由题设知,5sin45°=2sin ∠ADB ,所以sin ∠ADB =25. 由题意知,∠ADB <90°, 所以cos ∠ADB =1-225=235.∴a ·(-MB →-MC →)+b MB →+33c ·MC →=0.即(b -a )·MB →+(33c -a )·MC →=0,∵MB →与MC →不共线, ∴b -a =0,32c -a =0. 得a b33c =111,令a =1,b =1,c =3, 则cos C =a2+b2-c22ab =1+1-32×1×1=-12,∴C =2π3,故选D .2.(20xx·××市一模)若sin(π6-α)=13,则cos(2π3+2α)=( A ) A .-79B .79C .-29D .29[解析] ∵cos(2π3+2α)=-cos(π3-2α)=-[1-2sin 2(π6-α)]=-(1-29)=-79.3.(20xx·威海二模)已知等腰△ABC 满足AB =AC ,3BC =2AB ,点D 为BC 边上的一点且AD =BD ,则sin ∠ADB 的值为( C )A .36B .23C .223D .63[解析] 如图,设AB =AC =a ,AD =BD =b ,由3BC =2AB ,。

高中《正弦和余弦定理》数学教案4篇

高中《正弦和余弦定理》数学教案4篇

高中《正弦和余弦定理》数学教案4篇教案是讲课的前提,是讲好课的基础,教案则备课的具体表现形式。

它可以反映教师在整个教学中的总体设计和思路尤其是教学态度认真与否的重要尺度。

以下是小编为大家整理的高中《正弦和余弦定理》数学教案,感谢您的欣赏。

高中《正弦和余弦定理》数学教案1教学目标进一步熟悉正、余弦定理内容,能熟练运用余弦定理、正弦定理解答有关问题,如判断三角形的形状,证明三角形中的三角恒等式.教学重难点教学重点:熟练运用定理.教学难点:应用正、余弦定理进行边角关系的相互转化.教学过程一、复习准备:1.写出正弦定理、余弦定理及推论等公式.2.讨论各公式所求解的三角形类型.二、讲授新课:1.教学三角形的解的讨论:①出示例1:在△ABC中,已知下列条件,解三角形.分两组练习→讨论:解的个数情况为何会发生变化②用如下图示分析解的情况.(A为锐角时)②练习:在△ABC中,已知下列条件,判断三角形的解的情况.2.教学正弦定理与余弦定理的活用:①出示例2:在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,求角的余弦. 分析:已知条件可以如何转化→引入参数k,设三边后利用余弦定理求角.②出示例3:在ΔABC中,已知a=7,b=10,c=6,判断三角形的类型.分析:由三角形的什么知识可以判别→求角余弦,由符号进行判断③出示例4:已知△ABC中,,试判断△ABC的形状.分析:如何将边角关系中的边化为角→再思考:又如何将角化为边3.小结:三角形解的情况的讨论;判断三角形类型;边角关系如何互化.三、巩固练习:3.作业:教材P11B组1、2题.高中《正弦和余弦定理》数学教案2一)教材分析(1)地位和重要性:正、余弦定理是学生学习了平面向量之后要掌握的两个重要定理,运用这两个定理可以初步解决几何及工业测量等实际问题,是解决有关三角形问题的有力工具。

(2)重点、难点。

重点:正余弦定理的证明和应用难点:利用向量知识证明定理(二)教学目标(1)知识目标:①要学生掌握正余弦定理的推导过程和内容;②能够运用正余弦定理解三角形;③了解向量知识的应用。

(完整版)正余弦定理教案

(完整版)正余弦定理教案

正弦定理和余弦定理安勤辉一。

教学目标:1知识与技能:认识正弦、余弦定理,了解三角形中的边与角的关系2过程与方法:通过具体的探究活动,了解正弦、余弦定理的内容,并从具体的实例掌握正弦、余弦定理的应用情感态度与价值观:通过对实例的探究,体会到三角形的和谐美,学会稳定性的重要二. 教学重、难点:1. 重点:正弦、余弦定理应用以及公式的变形2。

难点:运用正、余弦定理解决有关斜三角形问题。

知识梳理1.正弦定理和余弦定理在△ABC中,若角A,B,C所对的边分别是a,b,c,则(1)S=错误!ah(h表示边a上的高).(2)S=错误!bc sin A=错误!ab sin C=错误!ac sin B。

(3)S=错误!r(a+b+c)(r为△ABC内切圆半径)问题1:在△ABC中,a=错误!,b=错误!,A=60°求c及B C问题2在△ABC中,c=6 A=30° B=120°求a b及C问题3在△ABC中,a=5,c=4,cos A=错误!,则b=通过对上述三个较简单问题的解答指导学生总结正余弦定理的应用;正弦定理可以解决(1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边和其他两角余弦定理可以解决(1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两角我们不难发现利用正余弦定理可以解决三角形中“知三求三”知三中必须要有一边应用举例【例1】(1)(2013·湖南卷)在锐角△ABC中,角A,B所对的边长分别为a,b。

若2a sin B=错误! b,则角A等于 ( ).A.错误! B。

错误! C。

错误! D.错误!(2)(2014·杭州模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,若a=1,c=4错误!,B =45°,则sin C=______.解析(1)在△ABC中,由正弦定理及已知得2sin A·sin B=错误!sin B,∵B为△ABC的内角,∴sin B≠0。

《正弦定理和余弦定理》复习课教学设计

《正弦定理和余弦定理》复习课教学设计

正弦定理和余弦定理复习课教学设计一、教学目标本次复习课的教学目标主要包括:1.复习正弦定理和余弦定理的概念与公式;2.掌握应用正弦定理和余弦定理解决相关问题的方法;3.加深学生对三角函数的理解和应用能力。

二、教学准备教学准备包括:1.教学课件:包括正弦定理和余弦定理的公式推导和相关例题;2.教学工具:黑板、彩色粉笔、计算器。

三、教学内容与步骤本次复习课采用讲授和练习相结合的教学方法,具体内容与步骤如下:1. 复习正弦定理•教师介绍正弦定理的概念和公式,并通过数学推导进行解释;•教师通过几个简单的几何图形,引导学生理解正弦定理的几何意义;•教师给出一些常见的例题,并让学生根据正弦定理计算未知边长或角度。

2. 复习余弦定理•教师介绍余弦定理的概念和公式,并通过数学推导进行解释;•教师通过几个简单的几何图形,引导学生理解余弦定理的几何意义;•教师给出一些常见的例题,并让学生根据余弦定理计算未知边长或角度。

3. 应用正弦定理和余弦定理解决相关问题•教师给出一些综合性的例题,要求学生运用正弦定理和余弦定理解决;•教师引导学生分析题目,确定解题思路,并进行详细解析;•学生在黑板上演示解题过程,并对整个过程进行讨论和总结。

四、教学总结与评价本次复习课通过对正弦定理和余弦定理的复习,加深了学生对这两个重要定理的理解和应用能力。

在分析和解决问题的过程中,学生逐渐形成了逻辑思维和数学推导的能力,提高了解决实际问题的能力。

通过本次复习课,看到了学生们对正弦定理和余弦定理有了更深入的理解,并且在解决问题时愈发独立和自信。

然而,仍然存在一些学生对推导过程理解不够深入的情况,需要进一步巩固。

为了进一步提高学生的学习效果和解决问题的能力,建议课后学生进行相关习题的练习和巩固。

同时,希望学生主动参与课堂讨论和提问,积极与教师互动,共同提高学习效果。

注意:文档中无法展示数学公式,故省略了实际的公式,但在教学中需要详细讲解和推导相关公式,以保证学生对正弦定理和余弦定理的理解和掌握。

5.6正弦定理、余弦定理和解斜三角形(2)教案

5.6正弦定理、余弦定理和解斜三角形(2)教案

课题:5.6正弦定理、余弦定理和解斜三角形(2)教案教学目的:1、掌握余弦定理的推导过程及其两种表示形式。

2、会运用余弦定理解决一些简单的三角形度量问题。

教学重点:余弦定理的推导及应用 教学过程: (一)、引入一、复习引入:复习正弦定理及其可解决的问题(1)已知三角形的两角和一边。

(2)已知两边和其中一边的对角.二、但在解三角形时,还会遇到下面的问题: (1)已知两边和它们的夹角,求其他的边和角; (2)已知三边,求三个内角. 对于这样的问题,用正弦定理解决就显得比较困难,所以这节课我们继续探究任意三角形的边和角间的关系——余弦定理(二)、新课 一、(新课教学,注意情境设置) 方法一:先考虑已知三角形的两边和它们的夹角,如何计算第三边的问题? 1、 若夹角为直角:三边关系即为勾股定理。

2、 若夹角为锐角:可考虑用勾股定理(构造直角三角形)来探究这个问题. 在ABC ∆中,已知AB =c,AC =b 和A ,求BC如图:222BD CD a +==22)cos ()sin (A b c A b -+=A bc A b c A b cos 2cos sin 22222-++ =A bc c b cos 222-+同理:B ac c a b cos 2222-+=C ab b a c cos 2222-+=3、钝角三角形亦可证得上述结论.方法二:若用两点距离公式需先建立直角坐标系复习正弦定理的推导: 以ABC ∆的顶点B 为坐标原点,BC 边所在直线为x 轴,建立直角坐标系,设a,b,c 分别为C B A ∠∠∠,,所对的边长,AD 为边BC 上的高,则点C 、A 的坐标分别为.sin ),sin ,cos (),0,(B c AD B c B c a = 由两点间距离公式,得22)0sin ()cos (-+-==B c a B c AC bD两边平方并化简得:B ac c a b cos 2222-+=同理可得: A bc c b a cos 2222-+= C ab b a c cos 2222-+=三、(概念辨析或变式问题,目的是加强概念、公式的理解或应用) 1、余弦定理:三角形一边的平方等于其他两边的平方和减去这两边与它们夹角的余弦值乘积的两倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二轮复习 正弦、余弦定理及解三角形_ 教案(全国通用)例1. 在ABC ∆中,已知下列条件,解三角形.(1)10a =, b =45A =︒;(2)=a c 45B =︒.【思路点拨】画出示意图(1)正弦定理的运用;(2)余弦定理的运用. 【解析】(1)∵101sin sin 452oB =⇒=, 法一:∵00180B <<, ∴30B =︒或150B =︒,①当30B =︒时,105C =︒,1)c =+; ②当150B =︒时,180A B +>︒(舍去). 法二:∵b a <,∴B A <,即00045B <<,∴30B =︒,105C =︒,1)c =.(2)∵222222cos 2b a c ac B =+-=+-⋅︒2121)8=+-+=∴b =法一:∵2221cos ,22b c a A bc +-=∴60A =︒,75C =︒法二:∵0sin sin sin45a A B b=a c < ∴A C <,有0090A <<, ∴60A =︒,75C =︒.【总结升华】①解三角形时,可以依据题意画出恰当的示意图,然后正确选择正、余弦定理解答;②解三角形时,要留意三角形内角和为180°,同一个三角形中大边对大角等性质的应用. 举一反三:【变式1】在△ABC 中,a b ,B =45°.求角A ,C 和边c .【解析】由正弦定理得sin sin a b A B ==, ∴sin A∵a >b ,∴A =60°或A =120°. 当A =60°时,C =180°-45°-60°=75°,c=sin sin b C B =; 当A =120°时,C =180°-45°-120°=15°,c=sin sin b C B =【变式2】在△ABC 中,A =60°,B =75°,a =10,则c 等于( ).A. B. C.D.【答案】C【解析】由A +B +C =180°,知C =45°,由正弦定理得:sin sin a c A C ==∴c. 【高清课堂:正、余弦定理及解三角形401223 例1】【变式3】 在△ABC 中,AB =2,AC =3,1AB BC ⋅=u u u r u u u r,则BC =( )B. C.D. 【答案】A【解析】∵1AB BC ⋅=u u u r u u u r, ∴2cos()1BC B π⋅⋅-=,∴1cos 2BC B ⋅=-, 由余弦定理有2223222cos BC BC B =+-⨯∴23BC =,从而BC例2. 在△ABC 中,已知22tan tan b a B A =,试判断△ABC 的形状. 【思路点拨】将等式左边正切化为正弦、余弦形式,右边运用正弦定理将边化为角的形式,化简再判断.也可以直接将等式左边化为边的形式判断. 【解析】方法一:化边为角由题意得 BAA B B A 22sin sin cos sin cos sin =,化简整理得sinAcosA=sinBcosB 即sin2A=sin2B∴2A=2B 或2A+2B=π ∴A=B 或2π=+B A ,∴三角形的形状为等腰三角形或直角三角形. 方法二:化角为边由已知得22cos sin cos sin b a A B B A =结合正、余弦定理得2222222222ba bca cb b ac b c a a =-+⋅-+⋅, 整理得0))((22222=-+-c b a b a ∴ 22222c b a b a =+=或即三角形为等腰三角形或直角三角形【总结升华】依据正、余弦定理定理的结构特点,若在式子中出现的为与边相关的一次式,则一般多用正弦定理,;若在式子中出现的为与边相关的二次式,则一般多用余弦定理.举一反三:【变式1】在△ABC 中,若2cosBsinA=sinC ,则△ABC 的形状一定是( )A .等腰直角三角形B .等腰三角形C .直角三角形D .等边三角形 【答案】B【解析】解法一:由已知结合正、余弦定理得2222222a c b a cac R R+-⋅⋅=,整理得a 2=b 2,∴a=b ,∴△ABC 一定是等腰三角形. 解法二:∵sin sin[()]sin()sin cos cos sin C A B A B A B A B π=-+=+=+, ∴由已知得sinAcosB ―cosAsinB=0,即sin (A ―B )=0。

又A ―B ∈(-π,π),∴A -B=0,即A=B ,∴△ABC 为等腰三角形. 【变式2】在ABC ∆中,若b=asinC,c=acosB ,试判断ABC ∆的形状. 【答案】ABC ∆为等腰直角三角形 【解析】由b=asinC 可知AB C a b sin sin sin ==, 由c=acosB 可知acb c a a c 2222-+⋅=整理得222a c b =+,即三角形一定是直角三角形,∠A=ο90,∴sinC=sinB ∴∠B=∠C ,∴△ABC 为等腰直角三角形. 类型二、解三角形及其综合应用例3. 在△ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,已知1tan 2B =,1tan 3C =,且c=1。

(1)求tanA ;(2)求△ABC 的面积.【思路点拨】(1)利用两角和的正切公式表示出tan()B C +,由三角形的内角和定理及诱导公式得到tan A 的值;(2)由tan A 的值求得角A 是一个特殊角,再由tan ,tan B C 的值得到B 和C 的范围及大小关系,分别算出sin B ,sin C 的值,利用正弦定理可求得a 的值,最后利用三角形面积公式可求出面积. 【解析】(1)因为1tan 2B =,1tan 3C =,tan tan tan()1tan tan B CB C B C++=-,代入得到1123tan()111123B C ++==-⨯。

因为A=180°―B ―C ,所以tan tan[180()]tan()1A B C B C =︒-+=-+=-。

(2)0°<A <180°,由(1)结论可得:A=135°. 因为11tan tan 023B C =>=>,所以0°<C <B <90°.所以sin B =sin C =. 由sin sin a c A C=得a =, 所以△ABC 的面积为11sin 22ac B =.【总结升华】有关三角形中的三角函数问题,灵活运用正弦、余弦定理把边、角之间的关系相互转化,然后应用三角函数的有关概念及公式进行恒等变换,从而达到解题的目的.举一反三:【变式1】在ABC ∆中2a =,b =,15C =︒,求A ,ABC S ∆. 【解析】000ABC 111S sin 2230)222∆==⨯⨯=⨯⨯-ab C1212=⨯⨯= 由余弦定理得:22222cos 8c a b ab C =+-=-=∴c =-由正弦定理得:sin 1sin 2a C A c ==== ∵a b < ,∴30A =︒.【高清课堂:正、余弦定理及解三角形401223 例4】【变式2】在△ABC 中,角A 、B 、C 所对的边分别为a,b,c ,已知1cos 24C =- (I)求sinC 的值;(Ⅱ)当a=2, 2sinA=sinC 时,求b 及c 的长.【答案】(I)104(Ⅱ) 4,66c b ==或2 例4. 如图,A ,B 是海面上位于东西方向相距5(33)+海里的两个观测点. 现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距203海里的C 点的救援船立即前往营救,其航行速度为30海里/小时,该救援船到达D 点需要多少时间? 【思路点拨】在△DAB 中,由正弦定理得sin sin DB ABDAB ADB=∠∠,由此可求得DB ;然后在△DAB 中,由余弦定理可求得CD ;最后根据时间=路程\速度,即可求得该救援船到达D 点需要的时间. 准确找出题目中的方向角是解题的关键之处.【解析】由题意知5(33)AB =+(海里),∠DBA=90°-60°=30°,∠DAB=90°-45°=45°,∴∠ADB=180°-(45°+30°)=105°, 在△DAB 中,由正弦定理得sin sin DB ABDAB ADB=∠∠,∴sin 5(33)sin 455(33)sin 45sin sin105sin 45cos 60cos 45sin 60AB DAB DB ADB ⋅∠+⋅︒+⋅︒===∠︒︒︒+︒+︒53(31)103312+==+(海里).又∠DBC=∠DBA+∠ABC=30°+(90°-60°)=60°,203BC =海里,在△DBC 中,由余弦定理得22212cos 300120021032039002CD BD BC BD BC DBC =+-⋅⋅∠=+-⨯⨯⨯=, ∴CD=30(海里),则需要的时间30130t ==(小时). 【总结升华】对图形进行有效的分析,便于使用正弦、余弦定理.举一反三:【变式1】如图,甲船以每小时302海里的速度向正北方向航行,乙船按固定方向匀速直线航行,当甲船位于1A 处时,乙船位于甲船的北偏西105o的方向1B 处,此时两船相距20海里.当甲船航行20分钟到达2A 处时,乙船航行到甲船的北偏西120o 方向的2B 处,此时两船相距102海里,问乙船每小时航行多少海里?【解析】如图,连结12A B ,∵22102A B =1220210260A A =⨯=,22160B A A ∠=o ∴122A A B ∆是等边三角形,1121056045B A B ∠=︒-︒=︒, 在121A B B ∆中,由余弦定理得:22222121112111222cos 4520(102)2202200B B A B A B A B A B =+-⋅︒=+-⨯⨯=, ∴12 2.B B =10260302= 答:乙船每小时航行302海里.【变式2】如图所示,已知两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( )A .a kmB 3a kmC 2a kmD .2a km【答案】B【解析】利用余弦定理解△ABC. 易知∠ACB=120°,在△ABC 中,由余弦定理得22222212cos12022()32AB AC BC AC BC a a a =+-⋅︒=-⨯-=,∴AB =km.。

相关文档
最新文档