最新高考专题 抛物线(解答题压轴题)解析版)-(全国通用版)

合集下载

2023年新高考数学一轮复习9-5 抛物线(真题测试)含详解

2023年新高考数学一轮复习9-5 抛物线(真题测试)含详解

专题9.5 抛物线(真题测试)一、单选题1.(2023·全国·高三专题练习)已知抛物线24y x =上一点M 到x 轴的距离是2,则点M 到焦点F 的距离为( )A B .2C .D .32.(2023·全国·高三专题练习)抛物线21:4E y x =的焦点到其准线的距离为( ) A .18B .14C .2D .43.(2022·全国·高考真题(文))设F 为抛物线2:4C y x =的焦点,点A 在C 上,点(3,0)B ,若AF BF =,则AB =( )A .2B .C .3D .4.(2021·全国·高考真题)抛物线22(0)y px p =>的焦点到直线1y x =+,则p =( )A .1B .2C .D .45.(2020·北京·高考真题)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线( ).A .经过点OB .经过点PC .平行于直线OPD .垂直于直线OP6.(2019·全国·高考真题(文))若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =( )A .2B .3C .4D .87.(山东·高考真题(文))已知抛物线22(0)y px p =>,过其焦点且斜率为1的直线交抛物线于 ,A B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( ) A .1x = B .1x =- C .2x =D .2x =-8.(2017·全国·高考真题(理))已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为( ) A .16B .14C .12D .10二、多选题9.(2022·全国·高考真题)已知O 为坐标原点,点(1,1)A 在抛物线2:2(0)C x py p =>上,过点(0,1)B -的直线交C 于P ,Q 两点,则( ) A .C 的准线为1y =- B .直线AB 与C 相切 C .2|OP OQ OA ⋅>D .2||||||BP BQ BA ⋅>10.(2022·全国·高考真题)已知O 为坐标原点,过抛物线2:2(0)C y px p =>焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点(,0)M p ,若||||AF AM =,则( )A .直线AB 的斜率为B .||||OB OF =C .||4||AB OF >D .180OAM OBM ∠+∠<︒11.(2022·全国·高三专题练习)已知O 为坐标原点,抛物线E 的方程为214y x =,E 的焦点为F ,直线l 与E 交于A ,B 两点,且AB 的中点到x 轴的距离为2,则下列结论正确的是( )A .E 的准线方程为116y =- B .AB 的最大值为6C .若2AF FB =,则直线AB 的方程为1y x =+D .若OA OB ⊥,则AOB 面积的最小值为1612.(2023·全国·高三专题练习)已知抛物线Γ:()220x py p =>,过其准线上的点(),1T t -作的两条切线,切点分别为A ,B ,下列说法正确的是( ) A .2p =B .当1t =时,TA TB ⊥C .当1t =时,直线AB 的斜率为2D .TAB △面积的最小值为4三、填空题13.(2018·北京·高考真题(文))已知直线l 过点(1,0)且垂直于x 轴,若l 被抛物线24y ax =截得的线段长为4,则抛物线的焦点坐标为_________.14.(2023·全国·高三专题练习)已知抛物线C :26y x =的焦点为F ,A 为C 上一点且在第一象限,以F 为圆心,线段FA 的长度为半径的圆交C 的准线于M ,N 两点,且A ,F ,M 三点共线,则AF =______.15.(2020·山东·高考真题)已知抛物线的顶点在坐标原点,焦点F 与双曲线22221(0,0)x y a b a b-=>>的左焦点重合,若两曲线相交于M ,N 两点,且线段MN 的中点是点F ,则该双曲线的离心率等于______.16.(2021·北京·高考真题)已知抛物线24y x =的焦点为F ,点M 在抛物线上,MN 垂直x 轴与于点N .若6MF =,则点M 的横坐标为_______; MNF 的面积为_______.四、解答题17.(2017·北京·高考真题(理))已知抛物线C :y 2=2px 过点P (1,1).过点10,2⎛⎫⎪⎝⎭作直线l 与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP ,ON 交于点A ,B ,其中O 为原点. (1)求抛物线C 的方程,并求其焦点坐标和准线方程; (2)求证:A 为线段BM 的中点.18.(2019·全国·高考真题(理))已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若3AP PB =,求|AB |.19.(2019·北京·高考真题(理))已知抛物线C :x 2=−2py 经过点(2,−1). (Ⅰ)求抛物线C 的方程及其准线方程;(Ⅱ)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.20.(2022·全国·高考真题(理))设抛物线2:2(0)C y px p =>的焦点为F ,点(),0D p ,过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,3MF =. (1)求C 的方程;(2)设直线,MD ND 与C 的另一个交点分别为A ,B ,记直线,MN AB 的倾斜角分别为,αβ.当αβ-取得最大值时,求直线AB 的方程.21.(2020·全国·高考真题(理))已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.22.(2021·全国·高考真题(文))已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2.(1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值.专题9.5 抛物线(真题测试)一、单选题1.(2023·全国·高三专题练习)已知抛物线24y x =上一点M 到x 轴的距离是2,则点M 到焦点F 的距离为( )A B .2C .D .3【答案】B【分析】有题意可知()1,2M ±,由焦点(1,0)F 则可求出点M 到焦点F 的距离. 【详解】M 到x 轴的距离是2,可得()1,2M ±,焦点(1,0)F 则点M 到焦点的距离为2. 故选:B.2.(2023·全国·高三专题练习)抛物线21:4E y x =的焦点到其准线的距离为( ) A .18B .14C .2D .43.(2022·全国·高考真题(文))设F 为抛物线2:4C y x =的焦点,点A 在C 上,点(3,0)B ,若AF BF =,则AB =( )A .2B .C .3D .故选:B4.(2021·全国·高考真题)抛物线22(0)y px p =>的焦点到直线1y x =+,则p =( ) A .1 B .2 C.D .45.(2020·北京·高考真题)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线( ).A .经过点OB .经过点PC .平行于直线OPD .垂直于直线OP【详解】如图所示:.故选:B.6.(2019·全国·高考真题(文))若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =( ) A .2B .3C .4D .87.(山东·高考真题(文))已知抛物线22(0)y px p =>,过其焦点且斜率为1的直线交抛物线于 ,A B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( ) A .1x = B .1x =- C .2x = D .2x=-8.(2017·全国·高考真题(理))已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为( ) A .16 B .14C .12D .10二、多选题9.(2022·全国·高考真题)已知O 为坐标原点,点(1,1)A 在抛物线2:2(0)C x py p =>上,过点(0,1)B -的直线交C 于P ,Q 两点,则( ) A .C 的准线为1y =- B .直线AB 与C 相切 C .2|OP OQ OA ⋅> D .2||||||BP BQ BA ⋅>所以2212||||(1)||15BP BQ k x x k ⋅=+=+>,而2||5BA =,故D 正确.故选:BCD10.(2022·全国·高考真题)已知O 为坐标原点,过抛物线2:2(0)Cy px p =>焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点(,0)M p ,若||||AF AM =,则( ) A .直线AB 的斜率为B .||||OB OF =C .||4||AB OF >D .180OAM OBM ∠+∠<︒33选项;由0OA OB ⋅<,0MA MB ⋅<求得,易得(,0)2p F ,由AF AM =3(4p OA OB ⋅=又(4p MA MB ⋅=-又360AOB AMB OAM OBM ∠+∠+∠+∠=,则180OAM OBM ∠+∠<,D 正确. 故选:ACD.11.(2022·全国·高三专题练习)已知O 为坐标原点,抛物线E 的方程为214y x =,E 的焦点为F ,直线l 与E 交于A ,B 两点,且AB 的中点到x 轴的距离为2,则下列结论正确的是( )A .E 的准线方程为116y =- B .AB 的最大值为6C .若2AF FB =,则直线AB 的方程为1y x =+D .若OA OB ⊥,则AOB 面积的最小值为16 ,联立抛物线,由2AF FB =解出A 即可求出面积最小值,即可判断D 选项.【详解】由2AF FB =得直线设直线AB 的方程为4A B x x =-.由于2AF FB =,所以22x =±,所以2124A A y x ==,直线AB 的方程为),y OA ⊥所以AOB 面积的是小值为故选:BCD.12.(2023·全国·高三专题练习)已知抛物线Γ:()220x py p =>,过其准线上的点(),1T t -作的两条切线,切点分别为A ,B ,下列说法正确的是( ) A .2p =B .当1t =时,TA TB ⊥C .当1t =时,直线AB 的斜率为2D .TAB △面积的最小值为4220x y ,故AB k C ,切线方程TA :的方程为1xt y -=-三、填空题13.(2018·北京·高考真题(文))已知直线l过点(1,0)且垂直于x轴,若l被抛物线24y ax=截得的线段长为4,则抛物线的焦点坐标为_________.14.(2023·全国·高三专题练习)已知抛物线C:26=的焦点为F,y xA为C上一点且在第一象限,以F为圆心,线段FA的长度为半径的圆交C的准线于M,N两点,且A,F,M三点共线,则AF=______.【答案】6【分析】根据圆的几何性质以及抛物线的定义即可解出.故答案为:6.15.(2020·山东·高考真题)已知抛物线的顶点在坐标原点,焦点F与双曲线22221(0,0)x ya ba b-=>>的左焦点重合,若两曲线相交于M,N两点,且线段MN的中点是点F,则该双曲线的离心率等于______.M在抛物线上,所以M在双曲线上,22cb=-故答案为:16.(2021·北京·高考真题)已知抛物线24y x=的焦点为F,点M在抛物线上,MN垂直x轴与于点N.若6MF=,则点M的横坐标为_______;MNF的面积为_______.FMNS.【FMNS=故答案为:四、解答题17.(2017·北京·高考真题(理))已知抛物线C:y2=2px过点P(1,1).过点10,2⎛⎫⎪⎝⎭作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP,ON交于点A,B,其中O为原点.(1)求抛物线C的方程,并求其焦点坐标和准线方程;(2)求证:A为线段BM的中点.故A 为线段BM 的中点.18.(2019·全国·高考真题(理))已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若3AP PB =,求|AB |. 利用3AP PB =可得y ()22,B x y 1252x x ∴+= 3AP PB = ∴则419AB =+⋅19.(2019·北京·高考真题(理))已知抛物线C :x 2=−2py 经过点(2,−1).(Ⅰ)求抛物线C的方程及其准线方程;(Ⅱ)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M,N,直线y=−1分别交直线OM,ON于点A和点B.求证:以AB为直径的圆经过y轴上的两个定点.D p,过F的直线交C于20.(2022·全国·高考真题(理))设抛物线2=>的焦点为F,点(),0:2(0)C y px pMF=.M,N两点.当直线MD垂直于x轴时,3(1)求C 的方程;(2)设直线,MD ND 与C 的另一个交点分别为A ,B ,记直线,MN AB 的倾斜角分别为,αβ.当αβ-取得最大值时,求直线AB 的方程.21.(2020·全国·高考真题(理))已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.)(),0F c ,的方程为x =21c=+,解得抛物线2C 的方程为24y cx =,联立24x c y cx=⎧⎨=⎩,43CD =即223c ac +01e <<,解得(2)[方法一由椭圆的第二定义知所以12-a22.(2021·全国·高考真题(文))已知抛物线2=>的焦点F到准线的距离为2.C y px p:2(0)(1)求C的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值. ,则(99PQ QF ==-)09,10y ,由P 在抛物线上可得Q 的轨迹方程为的斜率0025OQ y k x ==(1,0),9=PQ QF ,所以29(1)9x y =-=-,所以的斜率为244=y x t 方法四利用参数法,由题可设()24,4(0),(,)>P t t t Q x y ,求得x,y 关于t 的参数表达式,得到直线OQ 的斜率关于t 的表达式,结合使用基本不等式,求得直线OQ 斜率的最大值.。

高三数学抛物线试题答案及解析

高三数学抛物线试题答案及解析

高三数学抛物线试题答案及解析1.抛物线的焦点为,点在抛物线上,且,弦中点在其准线上的射影为,则的最大值为()A.B.C.D.【答案】A【解析】设,由抛物线定义,.而余弦定理,,再由,得到,所以的最大值为,故选:A.【考点】双曲线的简单性质.2.已知点C(1,0),点A、B是⊙O:x2+y2=9上任意两个不同的点,且满足·=0,设P为弦AB的中点.(1)求点P的轨迹T的方程;(2)试探究在轨迹T上是否存在这样的点:它到直线x=-1的距离恰好等于到点C的距离?若存在,求出这样的点的坐标;若不存在,说明理由.【答案】(1)x2-x+y2=4(2)存在,(1,-2)和(1,2)【解析】(1)连接CP、OP,由·=0,知AC⊥BC,∴|CP|=|AP|=|BP|=|AB|.由垂径定理知|OP|2+|AP|2=|OA|2,即|OP|2+|CP|2=9.设点P(x,y),有(x2+y2)+[(x-1)2+y2]=9,化简,得到x2-x+y2=4.(2)根据抛物线的定义,到直线x=-1的距离等于到点C(1,0)的距离的点都在抛物线y2=2px上,其中=1,∴p=2,故抛物线方程为y2=4x.由方程组,得x2+3x-4=0,解得x1=1,x2=-4,由于x≥0,故取x=1,此时y=±2.故满足条件的点存在,其坐标为(1,-2)和(1,2).3.动直线l的倾斜角为60°,且与抛物线x2=2py(p>0)交于A,B两点,若A,B两点的横坐标之和为3,则抛物线的方程为________.【答案】x2=y【解析】设直线l的方程为y=x+b,联立,消去y,得x2=2p(x+b),即x2-2px-2pb=0,∴x1+x2=2p=3,∴p=,则抛物线的方程为x2=y.4.已知点在抛物线C:的准线上,过点A的直线与C在第一象限相切于点B,记C的焦点为F,则直线BF的斜率为()A.B.C.D.【答案】D【解析】由于点在抛物线C:的准线上,所以,设直线AB的方程为,将与联立,即,则(负值舍去),将k=2代入得y=8,即可求出x=8,故B(8,8),所以,故选D.【考点】1.直线与抛物线的位置关系;2.斜率公式.5.已知抛物线C:的焦点为F,过点F倾斜角为60°的直线l与抛物线C在第一、四象限分别交于A、B两点,则的值等于()(A)2 (B)3 (C)4 (D)5【答案】B【解析】由抛物线的方程可知焦点,直线的斜率为,则直线的方程为,设.将直线方程和抛物线方程联立削去并整理可得,解得.所以.故B正确.【考点】1直线与抛物线的位置关系;2数形结合思想.6.设点P是曲线y=x2上的一个动点,曲线y=x2在点P处的切线为l,过点P且与直线l垂直的直线与曲线y=x2的另一交点为Q,则PQ的最小值为________.【答案】【解析】设P(x0,x2),又y′=2x,则直线PQ的方程为y=-++x2.代入y=x2得x2+--x2=0,即(x-x)=0,所以点Q的坐标为.从而PQ2=2+2,令t=4x2,则PQ2=f(t)=t+++3(t>0),则f′(t)=,即f(t)在(0,2)上是减函数,在(2,+∞)上是增函数,故当t=2时,PQ有最小值.7.已知椭圆C1和抛物线C2有公共焦点F(1,0),C1的中心和C2的顶点都在坐标原点,过点M(4,0)的直线l与抛物线C2分别相交于A ,B两点.(1)如图所示,若,求直线l的方程;(2)若坐标原点O关于直线l的对称点P在抛物线C2上,直线l与椭圆C1有公共点,求椭圆C1的长轴长的最小值.【答案】(1);(2)长轴长的最小值为.【解析】(1)首先求得抛物线方程为.设直线方程为,并设利用,得到;联立,可得,应用韦达定理得到,从而得到,求得直线方程.(2)可求得对称点,代入抛物线中可得:,直线方程为,考虑到对称性不妨取,椭圆设为联立直线、椭圆方程并消元整理可得,由,可得,即得解.(1)由题知抛物线方程为。

专题27 抛物线(解答题)(新高考地区专用)(原卷版)

专题27 抛物线(解答题)(新高考地区专用)(原卷版)

专题27 抛物线(解答题)1.已知抛物线2:2(0)C y px p =>经过点()06,P y ,F 为抛物线的焦点,且||10PF =. (1)求0y 的值;(2)点Q 为抛物线C 上一动点,点M 为线段 FQ 的中点,试求点M 的轨迹方程.2.设抛物线C :22x py =(0p >)过点()2,1. (1)求抛物线C 的标准方程;(2)若直线l 交曲线C 于M 、N 两点,分别以点M 、N 为切点作曲线C 的切线相交于点P ,且两条切线垂直,求三角形MNP 面积的最小值.3.已知点F 为曲线2:2(0)C y px p =>的焦点,点M 在曲线C 运动,当点M 运动到x 轴上方且满足MF x ⊥轴时,点M 到直线4l y x p =+:的距离为. (1)求曲线C 的方程;(2)设过点F 的直线与曲线C 交于,A B 两点,则在x 轴上是否存在一点P ,使得直线PA 与直线PB 关于x 轴对称?若存在,求出点P 的坐标;若不存在,请说明理由. 4.已知抛物线()2:20C y px p =>上一点()0,2P x 到焦点F 的距离02PF x =.(1)求抛物线C 的方程;(2)过点P 引圆()(222:30M x y rr -+=<≤的两条切线PA PB 、,切线PA PB、与抛物线C 的另一交点分别为A B 、,线段AB 中点的横坐标记为t ,求t 的取值范围.5.已知抛物线2:2(0)C y px p =>的焦点为F ,过F 且斜率为2的直线交抛物线于,P Q 两点,10PQ =.(1)求抛物线C 的方程;(2)过点(3,0)的直线l 与抛物线C 相交于,A B 两点,已知(3,0)M -,且以线段AM 为直径的圆与直线3x =-的另一个交点为N ,试问在x 轴上是否存在一定点,使得直线BN 恒过此定点.若存在,请求出定点坐标,若不存在,请说明理由.6.设点F 为抛物线22(0)y px p =>的焦点,,,A B C 三点在抛物线上,且四边形ABCF 为平行四边形,当B 点到y 轴距离为1时,5BF =.(1)求抛物线的方程;(2)平行四边形ABCF 的对角线AC 所在的直线是否经过定点?若经过,求出定点的坐标;若不经过定点,请说明理由.7.设抛物线()2:20E x py p =>的焦点为F ,点A 是E 上一点,且线段AF 的中点坐标为()1,1.(1)求抛物线E 的标准方程;(2)若B ,C 为抛物线E 上的两个动点(异于点A ),且BA BC ⊥,求点C 的横坐标的取值范围.8.已知O 是坐标系的原点,F 是抛物线2:4C x y =的焦点,过点F 的直线交抛物线于A ,B 两点,弦AB 的中点为M ,OAB 的重心为G .(1)求动点G 的轨迹方程;(2)设(1)中的轨迹与y 轴的交点为D ,当直线AB 与x 轴相交时,令交点为E ,求四边形DEMG 的面积最小时直线AB 的方程. 9.已知抛物线2:2(0)C y px p =>过点(4,4)D (1)求抛物线C 的方程,并求其焦点坐标与准线方程;(2)直线l 与抛物线C 交于不同的两点E ,F 过点E 作x 轴的垂线分别与直线OD ,OF 交于A ,B 两点,其中O 为坐标原点.若A 为线段BE 的中点,求证:直线l 恒过定点. 10.已知抛物线2:4E y x =的焦点为F ,准线为l ,过焦点F 的直线交抛物线E 于A 、B . (1)若1AA 垂直l 于点1A ,且16AFA π∠=,求AF 的长;(2)O 为坐标原点,求 OAB 的外心C 的轨迹方程.11.已知抛物线2:2(0)T x py p =>的焦点为F ,B ,C 为抛物线C 上两个不同的动点,(B ,C 异于原点),当B ,C ,F 三点共线时,直线BC 的斜率为1,2BC =.(1)求抛物线T 的标准方程;(2)分别过B ,C 作x 轴的垂线,交x 轴于M ,N ,若MNPBCFS S=,求BC 中点P 的轨迹方程.12.已知抛物线2:2(0)T x py p =>的焦点为F ,B 、C 为抛物线T 上两个不同的动点,当B ,C 过F 且与x 轴平行时,BC 长为1. (1)求抛物线T 的标准方程;(2)分别过B ,C 作x 轴的垂线,交x 轴于M ,N ,若2MNFBCFS S=,求BC 中点的轨迹方程.13.已知抛物线()2:20C y px p =>的内接等边三角形AOB 的面积为O 为坐标原点).(1)试求抛物线C 的方程;(2)已知点()1,1,,M P Q 两点在抛物线C 上,MPQ ∆是以点M 为直角顶点的直角三角形. ①求证:直线PQ 恒过定点;②过点M 作直线PQ 的垂线交PQ 于点N ,试求点N 的轨迹方程,并说明其轨迹是何种曲线.14.设抛物线E :()220y px p =>焦点为F ,准线为l ,A 为E 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B 、D 点.(1)若60BFD ∠=︒,BFD △的面积为3,求p 的值及圆F 的方程; (2)若点A 在第一象限,且A 、B 、F 三点在同一直线1l 上,直线1l 与抛物线E 的另一个交点记为C ,且CF FA λ=,求实数λ的值.15.已知动圆Q 经过定点()0,F a ,且与定直线:l y a =-相切(其中a 为常数,且0a >).记动圆圆心Q 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线?(2)设点P 的坐标为()0,a -,过点P 作曲线C 的切线,切点为A ,若过点P 的直线m 与曲线C 交于M ,N 两点,证明:AFM AFN ∠=∠.16.在平面直角坐标系xOy 中,已知()2,0F ,()2,3M -,动点P 满足12OF MP PF ⋅=. (1)求动点P 的轨迹C 的方程;(2)过点()1,0D 作直线AB 交C 于A ,B 两点,若AFD 的面积是BFD △的面积的2倍,求AB .17.已知抛物线C 的顶点在原点,焦点为()1,0F -. (1)求C 的方程;(2)设P 为C 的准线上一点,Q 为直线PF 与C 的一个交点且F 为PQ 的中点,求Q 的坐标及直线PQ 的方程.18.光学是当今科技的前沿和最活跃的领域之一,抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出,今有抛物线2:2(0)C x py p =>,一平行于y 轴的光线从上方射向抛物线上的点P ,经抛物线2次反射后,又沿平行于y 轴方向射出,若两平行光线间的最小距离为8.(1)求抛物线C 的方程;(2)若直线:l y x m =+与抛物线C 交于A ,B 两点,以点A 为顶点作ABN ,使ABN 的外接圆圆心T 的坐标为493,8⎛⎫⎪⎝⎭,求弦AB 的长度. 19.已知抛物线C 的顶点在坐标原点,准线方程为12y =,F 为抛物线C 的焦点,点P 为直线123=+y x 上任意一点,以P 为圆心,PF 为半径的圆与抛物线C 的准线交于A 、B 两点,过A 、B 分别作准线的垂线交抛物线C 于点D 、E .(1)求抛物线C 的方程;(2)证明:直线DE 过定点,并求出定点的坐标. 20.已知动圆过定点(0,2)A ,且在x 轴上截得的弦长为4. (1)求动圆圆心M 的轨迹方程C ;(2)设不与x 轴垂直的直线l 与轨迹C 交手不同两点()11,P x y ,()22,Q x y .若12112+=x x ,求证:直线l 过定点.21.已知圆221:(1)4M x y -+=,动圆N 与圆M 相外切,且与直线12x =-相切.(1)求动圆圆心N 的轨迹C 的方程. (2)已知点11(,),(1,2)22P Q --,过点P 的直线l 与曲线C 交于两个不同的点,A B (与Q 点不重合),直线,QA QB 的斜率之和是否为定值?若是,求出该定值;若不是,说明理由. 22.已知抛物线()220y px p =->的焦点为F ,x 轴上方的点()2,M m -在抛物线上,且52MF =,直线l 与抛物线交于A ,B 两点(点A ,B 与M 不重合),设直线MA ,MB 的斜率分别为1k ,2k . (1)求抛物线的方程;(2)已知122k k +=-,l :y kx b =+,求b 的值.23.如图所示,A ,B 是焦点为F 的抛物线24y x =上的两动点,线段AB 的中点M 在定直线34x =上. (1)求FA FB +的值;(2)求AB 的最大值.24.已知直线2y x =-与抛物线22y px =相交于A ,B 两点,满足OA OB ⊥.定点()4,2C ,()4,0D -,M 是抛物线上一动点,设直线CM ,DM 与抛物线的另一个交点分别是E ,F .(1)求抛物线的方程;(2)求证:当M 点在抛物线上变动时(只要点E 、F 存在且不重合),直线EF 恒过一个定点;并求出这个定点的坐标.25.已知曲线C 是顶点为坐标原点O ,且开口向右的抛物线,曲线C 上一点A (x 0,2)到准线的距离为52,且焦点到准线的距离小于4. (1)求抛物线C 的方程与点A 的坐标;(2)若MN ,PQ 是过点(1,0)且互相垂直的C 的弦,求四边形MPNQ 的面积的最小值.26.设抛物线2:4y x Γ=的焦点为F ,直线:0l x my n --=经过F 且与Γ交于A 、B 两点.(1)若8AB =,求m 的值;(2)设O 为坐标原点,直线AO 与Γ的准线交于点C ,求证:直线BC 平行于x 轴. 27.已知抛物线2:2C y px =的焦点为()1,0F ,斜率为k 的直线1l 过点()()0,0P m m >,直线1l 与抛物线C 相交于A ,B 两点.(1)求抛物线C 的方程;(2)直线2l 过点()()0,0P m m >,且倾斜角与1l 互补,直线2l 与抛物线C 交于M ,N 两点,且FAB 与FMN 的面积相等,求实数m 的取值范围.28.已知曲线C 上每一点到直线l :32x =-的距离比它到点1,02F ⎛⎫⎪⎝⎭的距离大1. (1)求曲线C 的方程;(2)若曲线C 上存在不同的两点P 和Q 关于直线l :20x y --=对称,求线段PQ 中点的坐标.29.已知抛物线2:2(0)E x py p =>的焦点为,F 点Р在抛物线E 上,点Р的横坐标为2,且2PF =.(1)求抛物线E 的标准方程;(2)若,A B 为抛物线E 上的两个动点(异于点P ),且AP AB ⊥,求点B 的横坐标的取值范围.30.已知抛物线22x py =(0p >)上点P 处的切线方程为10x y --=. (1)求抛物线的方程;(2)设11()A x y ,和22()B x y ,为抛物线上的两个动点,其中12y y ≠,且124y y +=,线段AB 的垂直平分线l 与y 轴交于点C ,求ABC 面积的最大值.31.已知点P 是抛物线C :212y x =上的一点,其焦点为点F ,且抛物线C 在点P 处的切线l 交圆O :221x y +=于不同的两点A ,B . (1)若点()2,2P ,求AB 的值;(2)设点M 为弦AB 的中点,焦点F 关于圆心O 的对称点为'F ,求'F M 的取值范围. 32.已知M 是抛物线2:4C y x =上一点,F 是抛物线C 的焦点,4MF =. (1)求直线MF 的斜率;(2)已知动圆E 的圆心E 在抛物线C 上,点()2,0D 在圆E 上,且圆E 与y 轴交于A ,B 两点,令||DA m =,||DB n =,求n mm n+最大值.33.已知抛物线2:2(0)C x py p =>的焦点为F ,Q 是抛物线上的一点,()2FQ =.(1)求抛物线C 的方程;(2)过点()0,4P x 的直线l 与抛物线C 交于M 、N 两点,且P 为线段MN 的中点.若线段MN 的中垂线交y 轴于A ,求AMN 面积的最大值.34.已知抛物线()2:20C y px p =>的焦点为F ,点F 到直线10x y -+=.(1)求抛物线C 的方程;(2)点O 为坐标原点,直线1l 、2l 经过点()1,0M -,斜率为1k 的直线1l 与抛物线C 交于A 、B 两点,斜率为2k 的直线2l 与抛物线C 交于D 、E 两点,记MA MB MD ME λ=⋅⋅⋅,若1212k k =-,求λ的最小值. 35.已知曲线C 上的动点M 到y 轴的距离比到点F (1,0)的距离小1, (1)求曲线C 的方程;(2)过F 作弦PQ RS 、,设PQ RS 、的中点分别为A B 、,若0PQ RS ⋅=,求||AB 最小时,弦PQ RS 、所在直线的方程;(3)在(2)条件下,是否存在一定点T ,使得AF TB FT λ=-?若存在,求出T 的坐标,若不存在,试说明理由.36.已知抛物线2:2(0)C x py p =>的焦点到直线:l y x =-的距离为.(1)求抛物线C 的方程; (2)如图,若1,02N ⎛⎫-⎪⎝⎭,直线l '与抛物线C 相交于,A B 两点,与直线l 相交于点M ,且||||AM MB =,求ABN 面积的取值范围.37.已知抛物线2:4C y x =的焦点为F ,过点()2,0P 的直线交抛物线C 于()11,A x y 和()22,B x y 两点.(1)当124x x +=时,求直线AB 的方程;(2)若过点P 且垂直于直线AB 的直线l 与抛物线C 交于,C D 两点,记ABF 与CDF 的面积分别为12,S S ,求12S S 的最小值.38.已知抛物线2:2(0)C x py p =>上一点()M ,9m 到其焦点下的距离为10. (1)求抛物线C 的方程;(2)设过焦点F 的的直线l 与抛物线C 交于,A B 两点,且抛物线在,A B 两点处的切线分别交x 轴于,P Q 两点,求AP BQ ⋅的取值范围.39.已知抛物线E :()220y px p =>的焦点为F ,过点F 作圆C :229(2)2x y ++=的两条切线1l ,2l 且12l l ⊥. (1)求抛物线E 的方程;(2)过点F 作直线l 与E 交于A ,B 两点,若A ,B 到直线34200x y ++=的距离分别为1d ,2d .求12d d +的最小值.40.已知抛物线C 的顶点在原点O ,准线为12x =-.(1)求抛物线C 的标准方程;(2)点A ,B 在C 上,且OA OB ⊥,⊥OD AB ,垂足为D ,直线OD 另交C 于E ,当四边形OAEB 面积最小时,求直线AB 的方程.。

抛物线(考题猜想,易错必刷25题4种题型)(解析版)—高二数学上学期期中

抛物线(考题猜想,易错必刷25题4种题型)(解析版)—高二数学上学期期中

抛物线(易错必刷25题4种题型专项训练)➢抛物线的定义➢抛物线的方程➢抛物线的焦半径➢直线与抛物线的位置关系一.抛物线的定义(共5小题)1.已知抛物线214y x =上一点A 的纵坐标为4,则点A 到抛物线焦点的距离为( )A .1716B .5C .6D .【答案】B【详解】依题意,由抛物线的定义知,点A 到抛物线焦点的距离即点A 到准线1y=-的距离,即4(1)5--=.故选:B.2.(多选)已知抛物线的焦点在y 轴上,抛物线上一点(),3M m -到焦点的距离为5,则m 的值为( )A .B .-C .D .-3.,P Q 分别是抛物线 22x y = 和 x 轴上的动点, ()2,1M - ,则 PM PQ + 的最小值为( )A .5B .52C D .24.已知点()01,P y 是抛物线2:2(0)C y px p =>上一点,且点P 到C 的焦点距离为2,则p = .【答案】2【详解】抛物线准线方程为故答案为:2.5.已知抛物线2:4C y x =的焦点为F ,点M 在C 上,且点M 到直线2x =-的距离为6,则MF = .二.抛物线的方程(共3小题)6.已知曲线()2024log 3y x =-过抛物线2:C y mx =的焦点,则C 的准线方程为( )A .14=-x B .4y =-C .4x =-D .14y =-【答案】C【详解】易知函数()2024log 3y x =-过x 轴上定点()4,0,即为C 的焦点,故C 的准线方程为4x =-.故选:C.7.过抛物线C :22y px =(0p >)的顶点O ,且倾斜角为60°的直线与抛物线的另一个交点为A ,若8OA =,则抛物线的方程为 .由题意可知4,OB AB ==代入抛物线方程得488p =故答案为:212y x=8.抛物线()220y px p =>的焦点为F ,其准线与双曲线22142x y-=的渐近线相交于A 、B 两点,若ABF △的周长为42,则抛物线方程是 .故答案为:24y x=三.抛物线的焦半径(共8小题)9.设F 为抛物线2:8C y x =的焦点,点()00,P x y 为C 上一点,过P 作y 轴的垂线,垂足为A ,若3PF PA =,则cos FPA Ð=( )A .223B .2-C .13D .13-所以022,y O =为原点,10.已知抛物线24x y =的焦点为F ,过F 的直线l 交抛物线于A 、B 两点,若4AF BF =,则AF = .11.已知M 是抛物线28y x =上一点,F 是抛物线的焦点,O 为坐标原点.若120MFO Ð=o ,则线段MF 的长为 .【答案】8【详解】如图所示:设MF a =,易求(F 因为 120MFO Ð=o 所以在Rt MEF V ,ME 所以 132,22M a æ+ççè12.已知抛物线216y x =,的焦点为F ,P 点在抛物线上,Q 点在圆C :()()22624x y -+-=上,则PQ PF +的最小值为 .13.已知抛物线C :24y x =的焦点为F ,点A 、B 是抛物线C 上不同的两点,且A 、B 中点的横坐标为2,则AF BF += .【答案】6【详解】设()()1122,,,A x y B x y ,由A ,B 中点的横坐标为2,可得124x x +=,所以||||+=AF BF 12116x x +++=.故答案为:6.14.直线l 经过抛物线24y x =的焦点F ,且与抛物线交于A ,B 两点.若3AF BF =,则AB =( )A .83B .3C .163D .32设1122()A x y B x y ,,(,),则由3AF BF =,得1y 由3AF BF =,得1x 联立解得3x =,x =15.(多选)设抛物线24y x =,F 为其焦点,P 为抛物线上一点,则下列结论正确的是( )A .抛物线的准线方程是=1x -B .焦点到准线的距离为4C .若()2,1A ,则PA PF +的最小值为3D .以线段PF 为直径的圆与y 轴相切由抛物线的定义,得PF因此,以PF 为直径的圆与故选:ACD16.(多选)已知抛物线24y x =的焦点为F ,过原点O 的动直线l 交抛物线于另一点P ,交抛物线的准线于点Q ,下列说法正确的是.( )A .若O 为线段PQ 中点,则l 的斜率为±2B .若4PF =,则OP =C .存在直线l ,使得PF QF ^D .PFQ △面积的最小值为2若O 为PQ 中点,则OHP △即H 与焦点F 重合,所以x 代入方程24y x =,得P y =±所以直线l 的斜率为2PPy x =±B 项,若4=PF ,则PF =四.直线与抛物线的位置关系(共9小题)17.(多选)在平面直角坐标系中,过抛物线C :24y x =的焦点F 作一条与坐标轴不平行的直线l ,与C 交于()11,A x y ,()22,B x y 两点,则下列说法正确的是( )A .若直线OB 与准线交于点D ,则0AD k =B .对任意的直线l ,121x x =C .2AF BF +的最小值为3+D .以AF 为直径的圆与y 轴的公共点个数为偶数【答案】ABC【详解】对于A ,点A (x 1,y 1),B (x 2,y 2)在抛物线C :24y x =上,18.已知抛物线2:4C y x =的焦点为,,F A B 为C 上的两点.若直线FA 的斜率为12,且0FA FB ×=,延长,AF BF 分别交C 于,P Q 两点,则四边形ABPQ 的面积为.【答案】50【详解】由题可知,抛物线的焦点坐标为119.斜率为2的直线l 与抛物线2y px =相交于A 、B 两点,若A 、B 两点的中点为()2,1M ,则p 的值是 20.已知抛物线24C y x =:的焦点为F ,过F 的直线l 交C 于,A B 两点,y 轴被以AB 为直径的圆所截得的弦长为6,则AB = .【答案】10【详解】抛物线C :24y x =的焦点故设直线AB 的方程为y 设A (x 1,y 1),B (x 2,y 2).则()24,1,y x y k x ì=ïí=-ïî即22k x ()2222Δ244k k k =+-×21.已知椭圆C :()222210+=>>x y a b a b 的左、右焦点分别为1F ,2F ,椭圆C 的右焦点与抛物线24y x =的焦点重合,两曲线在第一象限的交点为P ,12PF F V (1)求椭圆C 的方程;(2)过点P 的直线l 交椭圆C 于另一点A ,若212PAF PF F S S =△△,求l 的方程.直线()1:261AF y x =-+,联立()22261143y x x y ì=-+ïí+=ïî,消去y 得,23364280x x ++=,解得23x =-或1411x =-,当23x =-时,22626133y æö=--+=-ç÷èø,22.已知椭圆22221(0)x y a b a b +=>>的离心率为12,抛物线24x y =的焦点为点F ,过点F 作y 轴的垂线交椭圆于P ,Q 两点,||PQ =.(1)求椭圆的标准方程;(2)过抛物线上一点A 作抛物线的切线l 交椭圆于B ,C 两点,设l 与x 轴的交点为D ,BC 的中点为E ,BC 的中垂线交x 轴于点G ,若GED V ,FOD V 的面积分别记为1S ,2S ,且121849S S =,点A 在第一象限,求点A 的坐标.23.已知椭圆2222:1(0)x y C a b a b +=>>过点,且其一个焦点与抛物线28y x =的焦点重合.(1)求椭圆C 的方程;(2)设直线AB 与椭圆C 交于A ,B 两点,若点(2,1)M -是线段AB 的中点,求直线AB 的方程.24.已知抛物线21:3C y x =及抛物线22:2(0)C y px p =>,过2C 的焦点F 的直线与1C 交于A ,B 两点,O 为坐标原点,OA OB ^.过F 的两条直线MN ,PQ 与2C 交于M ,N ,P ,Q 四点,其中M ,P 在第一象限,若直线MP 与x 轴的交点为(),0T t .(1)求2C 的方程;(2)若2t=-,求直线NQ与x轴的交点的坐标;(3)是否存在点T,使得M,N,P,Q四点共圆?若存在,求出t的值;若不存在,请说明理由.(2)由(1)可得设直线MN的方程为由2123y xx myì=í=+î,得(3)由(2)可得1y y 若M ,N ,P ,Q 四点共圆,则有即2212331212y y æöæö++=ç÷ç÷èøèø即22223124y y y y +=+,所以25.已知直线210x y -+=与抛物线2:2(0)C y px p =>交于,A B 两点,且||AB =(1)求p ;(2)设F 为C 的焦点,M ,N 为C 上两点,且90MFN Ð=°,求MFN △面积的最小值.【答案】(1)2p =;∵F(1,0),显然直线MN的斜率不可能为零,设直线MN:x my n=+,M由24y xx my nì=í=+î可得,24y-。

专题14 抛物线-2023年高考数学真题题源解密(新高考)(解析版)

专题14 抛物线-2023年高考数学真题题源解密(新高考)(解析版)

专题14 抛物线目录一览2023真题展现考向一 直线与抛物线真题考查解读近年真题对比考向一 抛物线的性质考向二 直线与抛物线命题规律解密名校模拟探源易错易混速记/二级结论速记考向一 直线与抛物线1.(多选)(2023•新高考Ⅱ•第10题)设O 为坐标原点,直线y =x ﹣1)过抛物线C :y 2=2px (p >0)的焦点,且与C 交于M 两点,l 为C 的准线,则( )A .p =2B .|MN |=83C .以MN 为直径的圆与l 相切D .△OMN 为等腰三角形【答案】AC解:直线y =x ﹣1)过抛物线C :y 2=2px (p >0)的焦点,可得p2=1,所以p =2,所以A 正确;抛物线方程为:y 2=4x ,与C 交于M ,N 两点,直线方程代入抛物线方程可得:3x 2﹣10x +3=0,x M +x N =103,所以|MN |=x M +x N +p =163,所以B 不正确;M ,N 的中点的横坐标:53,中点到抛物线的准线的距离为:1+53=83,所以以MN 为直径的圆与l 相切,所以C 正确;3x 2﹣10x +3=0,不妨可得x M =3,x N =13,y M =﹣x N =|OM ||ON |=|MN |=163,所以△OMN 不是等腰三角形,所以D 不正确.【命题意图】考查抛物线的定义、标准方程、几何性质、直线与抛物线.考查运算求解能力、逻辑推导能力、分析问题与解决问题的能力、数形结合思想、化归与转化思想.【考查要点】抛物线的定义、方程、性质是高考常考内容,以小题出现,常规题,难度中等.【得分要点】一、抛物线的定义平面内与一个定点F 和一条定直线l (l 不经过点F )距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.注:①在抛物线定义中,若去掉条件“l 不经过点F ”,点的轨迹还是抛物线吗?不一定是,若点F 在直线l 上,点的轨迹是过点F 且垂直于直线l 的直线.②定义的实质可归纳为“一动三定”一个动点M ;一个定点F (抛物线的焦点);一条定直线(抛物线的准线);一个定值(点M到点F 的距离二、抛物线的方程及简单几何性质(p)(p )(p)(p)设直线l :y =kx +m ,抛物线:y 2=2px (p >0),将直线方程与抛物线方程联立整理成关于x 的方程k 2x 2+2(km -p )x +m 2=0.(1)若k ≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个交点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k =0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.注:(1)直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.(2)研究直线与抛物线的关系时要注意直线斜率不存在的情况.四、弦长问题过抛物线y 2=2px (p >0)的焦点的直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,那么线段AB 叫做焦点弦,如图:设AB 是过抛物线y 2=2px (p >0)焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),则|AB |=x 1+x 2+p .注:(1)x 1·x 2=p 24.(2)y 1·y 2=-p 2.(3)|AB |=x 1+x 2+p =2p sin 2α(α是直线AB 的倾斜角).(4)1|AF |+1|BF |=2p为定值(F 是抛物线的焦点).(5)求弦长问题的方法①一般弦长:|AB |x 1-x 2|,或|AB |y 1-y 2|.②焦点弦长:设过焦点的弦的端点为A (x 1,y 1),B (x 2,y 2),则|AB |=x 1+x 2+p .考向一 抛物线的性质2.(多选)(2022•新高考Ⅱ)已知O 为坐标原点,过抛物线C :y 2=2px (p >0)焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点M (p ,0).若|AF |=|AM |,则( )A.直线AB的斜率为2B.|OB|=|OF|C.|AB|>4|OF|D.∠OAM+∠OBM<180°【解答】解:如图,∵F(,0),M(p,0),且|AF|=|AM|,∴A(,),由抛物线焦点弦的性质可得,则,则B(,﹣),∴,故A正确;,|OF|=,|OB|≠|OF|,故B错误;|AB|=>2p=4|OF|,故C正确;,,,,|OM|=p,∵|OA|2+|AM|2>|OM|2,|OB|2+|BM|2>|OM|2,∴∠OAM,∠OBM均为锐角,可得∠OAM+∠OBM<180°,故D正确.故选:ACD.3.(2021•新高考Ⅱ)若抛物线y2=2px(p>0)的焦点到直线y=x+1的距离为,则p=( )A.1B.2C.2D.4【解答】解:抛物线y2=2px(p>0)的焦点(,0)到直线y=x+1的距离为,可得,解得p=2.故选:B.4.(2021•新高考Ⅰ)已知O为坐标原点,抛物线C:y2=2px(p>0)的焦点为F,P为C上一点,PF 与x轴垂直,Q为x轴上一点,且PQ⊥OP.若|FQ|=6,则C的准线方程为 .【解答】解:法一:由题意,不妨设P在第一象限,则P(,p),k OP=2,PQ⊥OP.所以k PQ=﹣,所以PQ的方程为:y﹣p=﹣(x﹣),y=0时,x=,|FQ|=6,所以,解得p=3,所以抛物线的准线方程为:x=﹣.法二:根据射影定理,可得|PF|2=|FO||FQ|,可得p2=,解得p=3,因此,抛物线的准线方程为:x=﹣.故答案为:x=﹣.考向二直线与抛物线5.(多选)(2022•新高考Ⅰ)已知O为坐标原点,点A(1,1)在抛物线C:x2=2py(p>0)上,过点B(0,﹣1)的直线交C于P,Q两点,则( )A.C的准线为y=﹣1B.直线AB与C相切C.|OP|•|OQ|>|OA|2D.|BP|•|BQ|>|BA|2【解答】解:∵点A(1,1)在抛物线C:x2=2py(p>0)上,∴2p=1,解得,∴抛物线C的方程为x2=y,准线方程为,选项A错误;由于A(1,1),B(0,﹣1),则,直线AB的方程为y=2x﹣1,联立,可得x2﹣2x+1=0,解得x=1,故直线AB与抛物线C相切,选项B正确;根据对称性及选项B的分析,不妨设过点B的直线方程为y=kx﹣1(k>2),与抛物线在第一象限交于P(x1,y1),Q(x2,y2),联立,消去y并整理可得x2﹣kx+1=0,则x1+x2=k,x1x2=1,,,由于等号在x1=x2=y1=y2=1时才能取到,故等号不成立,选项C正确;=,选项D正确.故选:BCD.根据近几年考题推测考查内容抛物线的定义、方程、性质,以小题出现,常规题,难度中等.一.抛物线的标准方程(共1小题)1.(2023•道里区校级二模)已知抛物线的顶点在原点,对称轴为x轴,且过点(﹣3,3),则此抛物线的标准方程为 .【解答】解:抛物线的顶点在原点,对称轴为x轴,且过点(﹣3,3),设抛物线y2=﹣2px,可得9=6p,所以2p=3,所以抛物线的标准方程y2=﹣3x.故答案为:y2=﹣3x.二.抛物线的性质(共39小题)2.(2023•海淀区一模)已知抛物线y2=4x的焦点为F,点P在该抛物线上,且P的横坐标为4,则|PF|=( )A.2B.3C.4D.5【解答】解:∵抛物线方程为2=4x,∴,又点P在该抛物线上,且P的横坐标为4,∴|PF|==5.故选:D.3.(2023•润州区校级二模)图1是世界上单口径最大、灵敏度最高的射电望远镜“中国天眼”——500m 口径抛物面射电望远镜,反射面的主体是一个抛物面(抛物线绕其对称轴旋转所形成的曲面称为抛物面),其边缘距离底部的落差约为156.25米,它的一个轴截面是一个开口向上的抛物线C的一部分,放入如图2所示的平面直角坐标系xOy内,已知该抛物线上点P到底部水平线(x轴)距离为125m,则点P到该抛物线焦点F的距离为( )A.225m B.275m C.300m D.350m【解答】解:令抛物线方程为x2=2py且p>0,由题设,(250,156.25)在抛物线上,则312.5p=2502,解得,又P(x P,y P)且y P=125,则P到该抛物线焦点F的距离为米.故选:A.4.(2023•郑州模拟)抛物线有一条重要性质:从焦点发出的光线,经过抛物线上的一点反射后,反射光线平行于抛物线的对称轴,反之,平行于抛物线对称轴的光线,经过抛物线上的一点反射后,反射光线经过该抛物线的焦点.已知抛物线C:x2=2py(p>0),一条平行于y轴的光线,经过点A(1,4),射向抛物线C的B处,经过抛物线C的反射,经过抛物线C的焦点F,若|AB|+|BF|=5,则抛物线C的准线方程是( )A.B.y1C.y=﹣2D.y=﹣4【解答】解:由题意可知,抛物线的准线方程为,根据抛物线的定义可知,抛物线上的点到焦点的距离和到准线的距离相等,所以,得p=2,所以抛物线的准线方程为y=﹣1.故选:B.5.(2023•红山区模拟)已知抛物线C:y2=2px(p>0)的焦点F到准线的距离为4,点M(x1,y1),N (x2,y2)在抛物线C上,若(y1﹣2y2)(y1+2y2)=48,则=( )A.4B.2C.D.【解答】解:抛物线C:y2=2px(p>0)的焦点F到准线的距离为4,则p=4,C:y2=8x,依题意,,而,,故8x1﹣32x2=48,即8x1+16=32x2+64,则x1+2=4(x2+2),故.故选:A.6.(2023•河南模拟)设F为抛物线的焦点,点P在抛物线上,点Q在准线l上,满足PQ∥x轴.若|PQ|=|QF|,则|PF|=( )A.2B.C.3D.【解答】解:依题意有|PQ|=|QF|=|PF|,则△PQF为等边三角形,又PQ∥x轴,所以|PF|=|PQ|=4|OF|=2.故选:A.7.(2023•四川模拟)抛物线C:x2=4y的焦点为F,直线x﹣y+3=0与C交于A,B两点,则△ABF的面积为( )A.4B.8C.12D.16【解答】解:∵抛物线C:x2=4y的焦点F为(0,1),又易知直线x﹣y+3=0与y轴交点P为(0,3),联立,可得x2﹣4x﹣12=0,解得x1=﹣2,x2=6,∴△ABF的面积为==8,故选:B.8.(2023•乌鲁木齐三模)“米”是象形字.数学探究课上,某同学用抛物线C1:y2=﹣2px(p>0)和C2:y2=2px(p>0)构造了一个类似“米”字型的图案,如图所示,若抛物线C1,C2的焦点分别为F1,F2,点P在抛物线C1上,过点P作x轴的平行线交抛物线C2于点Q,若PF1=3PQ=6,则p=( )A.4B.6C.8D.10【解答】解:因为3PQ=6,即PQ=2,由抛物线的对称性知x P=﹣1,由抛物线定义可知,,即,解得p=10,故选:D.9.(2023•平罗县校级模拟)已知抛物线C:y2=20x的焦点为F,抛物线C上有一动点P,Q(6,5),则|PF|+|PQ|的最小值为( )A.10B.16C.11D.26【解答】解:设抛物线C的准线为l,作PT⊥l于T,由抛物线的定义知|PF|=|PT|,所以,当P,Q,T三点共线时,|PF|+|PQ|有最小值,最小值为.故选:C.10.(2023•新疆模拟)已知抛物线y2=2px(p>0)上任意一点到焦点F的距离比到y轴的距离大1,则抛物线的标准方程为( )A.y2=x B.y2=2x C.y2=4x D.y2=8x【解答】解:抛物线的准线方程为x=−,根据抛物线的定义可知,抛物线C上任意一点到准线的距离比到y轴的距离大1,则=1,所以,p=2,因此,抛物线C的方程为y2=4x.故选:C.11.(2023•河南模拟)已知抛物线y2=2px(p>0)的准线为l,且点A(4,4)在抛物线上,则点A到准线l的距离为( )A.5B.4C.3D.2【解答】解:由题意知16=8p,所以p=2,所以抛物线方程为y2=4x,则抛物线的准线l为x=﹣1,所以点A到抛物线准线的距离为4﹣(﹣1)=5.故选:A.12.(2023•海淀区校级三模)已知抛物线y=ax2(a>0),焦点F到准线的距离为1,若点M在抛物线上,且|MF|=5,则点M的纵坐标为 .【解答】解:抛物线的标准方程为,其焦点为,准线方程为,由抛物线的焦点F到准线的距离为1,得,可得,所以,抛物线的标准方程为x2=2y,其准线方程为,设点M(x0,y0),由抛物线的定义可得,解得.故答案为:.13.(2023•3月份模拟)已知点M为抛物线y2=8x上的动点,点N为圆x2+(y﹣4)2=5上的动点,则点M到y轴的距离与点M到点N的距离之和最小值为 .【解答】解:已知点M为抛物线y2=8x上的动点,点N为圆x2+(y﹣4)2=5上的动点,由题意可得圆x2+(y﹣4)2=5的圆心坐标为(0,4),半径为,抛物线y2=8x的焦点坐标为F(2,0),过M作MQ垂直y轴交y轴于点Q,由抛物线的定义可得|MQ|+|MN|=|MF|+|MN|﹣2==,当且仅当A、M、N、F共线时取等号,则点M到y轴的距离与点M到点N的距离之和最小值为.故答案为:.14.(2023•兴国县模拟)已知过抛物线C:y2=2px(p>0)的焦点F(1,0)的直线与抛物线C交于A,B两点(A在第一象限),以AB为直径的圆E与抛物线C的准线相切于点D.若,O 为坐标原点,则△AOB的面积为( )A.B.C.D.4【解答】解:依题意,=1,可得p=2,所以抛物线C的方程为y2=4x.依题意可知DE与抛物线的准线x=﹣1垂直,在直角三角形ABD中,|AD|=|BD|,则∠BAD=,∠ABD=∠DEB=∠AFx=,所以直线AB的方程为y=(x﹣1),由,消去y并化简得3x2﹣10x+3=0,易得Δ>0,x A+x B=,则|AB|=x A+x B+p=+2=,原点(0,0)到直线x﹣y﹣=0的距离d=,所以S=|AB|•d=××=.△AOB故选:B.15.(2023•重庆模拟)已知点P为抛物线y2=2px(p>0)上一动点,点Q为圆C:(x+1)2+(y﹣4)2=1上一动点,点F为抛物线的焦点,点P到y轴的距离为d,若|PQ|+d的最小值为2,则p=( )A.B.p=1C.p=2D.p=4【解答】解:画出图形,如图所示:易知圆C:(x+1)2+(y﹣4)2=1的圆心C(﹣1,4),半径r=1,由抛物线的定义可知:点P到y轴的距离d=|PF|﹣,所以|PQ|+d=|PQ|+|PF|﹣,由图可知:当C,Q,P,F共线,且P,Q在线段CF之间时,PQ+PF最短,而|CF|=,故有|PQ|+|PF|﹣=|CF|﹣r﹣=2,即,解得:p=4.故选:D.16.(2023•武昌区校级模拟)已知抛物线和,若C1和C2有且仅有两条公切线l1和l2,l1和C1、C2分别相切于M,N点,l2与C1、C2分别相切于P,Q两点,则线段PQ与MN ( )A.总是互相垂直B.总是互相平分C.总是互相垂直且平分D.上述说法均不正确【解答】解:抛物线=(x+1)2﹣1,,两曲线分别是y=x2经过平移、对称变换得到的,则两曲线的大小与形状相同,且具有中心对称性,∵l1和l2是它们的公切线,l1和C1、C2分别相切于M,N两点,l2和C1、C2分别相切于P,Q两点,∴M,N关于对称中心对称,P,Q关于对称中心对称,线段PQ与MN互相平分.故选:B.17.(2023•武汉模拟)设抛物线y2=6x的焦点为F,准线为l,P是抛物线上位于第一象限内的一点,过P 作l的垂线,垂足为Q,若直线QF的倾斜角为120°,则|PF|=( )A.3B.6C.9D.12【解答】解:设准线与x轴的交点为M,由题意可知,F(,0),准线l方程为x=﹣,在Rt△QMF中,∠QFM=60°,|MF|=3,∴|QF|=6,∵PQ垂直于准线l,∴∠PQF=∠QFM=60°,由抛物线的性质可知,|PQ|=|PF,∴△PQF为等边三角形,∴|PF|=|QF|=6.故选:B.18.(2023•晋中二模)设F为抛物线C:y2=4x的焦点,点M在C上,点N在准线l上且MN平行于x轴,若|NF|=|MN|,则|MF|=( )A.B.1C.D.4【解答】解:根据题意可得p=2,∴抛物线焦点F为(1,0),准线l为x=﹣1,设准线l与x轴的交点为E,如图所示,由题知MN⊥l,由抛物线的定义可知|MN|=|MF|,因为|NF|=|MN|,所以△MNF是正三角形,则在Rt△NEF中,因为MN∥EF,所以∠EFN=∠MNF=60°,所以|MF|=|NF|=2|EF|=2p=4.故选:D.19.(2023•湖北模拟)在平面直角坐标系xOy中,已知抛物线C:y2=4x的焦点为F,A,B是其准线上的两个动点,且FA⊥FB,线段FA,FB分别与抛物线C交于P,Q两点,记△PQF的面积为S1,△ABF 的面积为S2,当时,|AB|= .【解答】解:设l PQ:x=ky+m,P(x1,y1)、Q(x2,y2),联立直线PQ与抛物线方程得y2﹣4ky﹣4m=0,则y1+y2=4k,y1⋅y2=﹣4m由FA⊥FB可得:,即(x1﹣1)(x2﹣1)=﹣y1y2,化简得m2﹣6m+1=4k2,又,则,同理,可得y A y B==﹣4,而,即,所以m=,k2=所以|AB|=|y A﹣y B|=|+|=||=||=.故答案为:.20.(2023•包河区模拟)已知F为抛物线C:y2=4x的交点,过F作两条互相垂直的直线l1,l2,直线l1与C交A,B两点,直线l2与C交于D,E两点,则|AB|+|DE|的最小值为 .【解答】解:如图所示,l1⊥l2,直线l1与C交于点A,B,直线l2与C交于点D,E,要使|AB|+|DE|最小,则A与D,B,E关于x轴对称,即直线DE的斜率为1,又直线l2过点(1,0),则直线l2的方程为:y=x﹣1,联立方程组,整理可得:y2﹣4y﹣4=0,设D(x1,y1),E(x2,y2),所以y1+y2=4,y1y2=﹣4,则|DE|==,所以|AB|+|DE|的最小值为2|DE|=16,故答案为:16.21.(2023•天山区校级模拟)已知抛物线C:y2=4x的焦点为F,其准线与x轴的交点为K,过点F的直线与抛物线C相交于A,B两点,若|AF|﹣|BF|=,则|= .【解答】解:由对称性,不妨设A在第一象限,设θ=∠AFx,由由角平分线定理.故答案为:2.22.(2023•龙岗区校级一模)已知抛物线C:y2=4x的焦点为F,准线为l,P是l上一点,PF交C于M,N两点,且满足,则|NF|= .【解答】解:抛物线C:y2=4x,则,准线方程为x=﹣1,由于,所以F是MP的中点,设P(﹣1,t),而F(1,0),所以M(3,﹣t),将M点坐标代入抛物线方程得t2=12,不妨设,则.设,由于M,N,F三点共线,所以,整理得,解得舍去),所以,所以.故答案为:.23.(2023•江西模拟)用于加热水和食物的太阳灶应用了抛物线的光学性质:一束平行于抛物线对称轴的光线,经过抛物面(抛物线绕它的对称轴旋转所得到的曲而叫抛物面)的反射后,集中于它的焦点.用一过抛物线对称轴的平面截抛物面,将所截得的抛物线C放在平面直角坐标系中,对称轴与x轴重合,顶点与原点重合,如图,若抛物线C的方程为y2=8x,平行于x轴的光线从点M(12,2)射出,经过C 上的点A反射后,再从C上的另一点B射出,则|MB|=( )A.6B.8C.D.29【解答】解:由M(12,2),可得A的纵坐标为2,设A(m,2),则4=8m,解得,由题意反射光线经过抛物线y2=8x的焦点(2,0),所以直线AB的方程为,整理可得,由,消去y整理得2x2﹣17x+8=0,解得,x2=8,则,所以B(8,﹣8),所以.故选:C.24.(2023•平江县校级模拟)已知抛物线C:y2=4x,焦点为F,点M是抛物线C上的动点,过点F作直线(a﹣1)x+y﹣2a+1=0的垂线,垂足为P,则|MF|+|MP|的最小值为( )A.B.C.5D.3【解答】解:∵抛物线C的方程为y2=4x,∴F(1,0),抛物线C的准线方程为x=﹣1,∵方程(a﹣1)x+y﹣2a+1=0可化为y﹣1=(1﹣a)(x﹣2),∴(a﹣1)x+y﹣2a+1=0过定点B(2,1),设P(x,y),设F,B的中点为A,则,因为FP⊥BP,P为垂足,∴,所以,即点P的轨迹为以A为圆心,半径为的圆,过点M作准线x=﹣1的垂线,垂足为M1,则|MM1|=|MF|,∴|MF|+|MP|=|MM1|+|MP|,又,当且仅当M,P,A三点共线且P在M,A之间时等号成立,∴,过点A作准线x=﹣1的垂线,垂足为A1,则,当且仅当A1,M,A三点共线时等号成立,∴,当且仅当A1,M,P,A四点共线且P在M,A之间时等号成立,所以|MF|+|MP|的最小值为,故选:A.25.(2023•张家口三模)已知F为抛物线C:y2=3x的焦点,过F的直线l交抛物线C于A,B两点,若|AF|=λ|BF|=λ,则λ=( )A.1B.C.3D.4【解答】解:如图,过A作AA1准线于A1,过B作BB1准线于B1,由抛物线C:y2=3x的焦点,准线方程为,由抛物线的定义可得,所以,代入抛物线方程得,若,直线AB的斜率为,则直线AB方程为,即,联立,得16x2﹣40x+9=0,则,所以,则;若,直线AB的斜率为,则直线AB方程为,即,联立,得16x2﹣40x+9=0,则,所以,则;综上,λ=3.故选:C.26.(2023•商丘三模)已知抛物线C:y2=2px(p>0)的准线为l:x=﹣1,焦点为F,过点F的直线与抛物线交于P(x1,y1),Q(x2,y2)两点,点P在l上的射影为P1,则下列结论错误的是( )A.若x1+x2=5,则|PQ|=7B.以PQ为直径的圆与准线l相切C.设M(0,1),则|PM|+|PP1|≥D.过点M(0,1)与抛物线C有且仅有一个公共点的直线至多有2条【解答】解:因为抛物线C:y2=2px(p>0)的准线为l:x=﹣1,所以,即p=2,所以抛物线C的方程为y2=4x,焦点F(1,0),若直线的斜率存在,设y=k(x﹣1),由,消去y,整理得k2x2﹣(2k2+4)x+k2=0,所以,x1x2=1,对于A选项:若x1+x2=5,则|PQ|=x1+x2+2=7,故A选项正确;对于B选项:取PQ的中点N,N在l上的投影为N′,Q在l的投影为Q′,根据抛物线的性质|PP1|=|PF|,|QQ′|=|QF|,NN′为梯形的中位线,故,故B选项正确;对于C选项:M(0,1),,故C选项正确;对于D选项:过M(0,1)且与抛物线相切的直线有两条,过M(0,1)且与x轴平行的直线与抛物线相交有且有一个交点,所以至多有三条,故D选项错误.故选:D.27.(2023•徐汇区校级三模)已知抛物线C:x2=﹣2py(p>0)的焦点F与的一个焦点重合,过焦点F的直线与C交于A,B两不同点,抛物线C在A,B两点处的切线相交于点M,且M的横坐标为4,则弦长|AB|=( )A.16B.26C.14D.24【解答】解:由题意可得,F(0,﹣2),则p=4,抛物线C的方程为x2=﹣8y.设直线AB的方程为y=kx﹣2,A(x1,y1),B(x2,y2),其中y1=﹣,y2=﹣,由y=﹣,得y′=﹣.∴在点A处的切线方程为y﹣y1=﹣(x﹣x1),化简得y=﹣x+,①同理可得在点B处的切线为y=﹣x+,②联立①②得x M=,由M的横坐标为4,得x1+x2=8.将AB的方程代入抛物线方程,可得x2+8kx﹣16=0.∴x1+x2=﹣8k=8,得k=﹣1.∴y1+y2=k(x1+x2)﹣4=﹣1×8﹣4=﹣12.得|AB|=p﹣(y1+y2)=4﹣(﹣12)=16.故选:A.28.(2023•琼海校级模拟)已知抛物线y2=2px(p>0)上的点到其焦点的距离为4,则p=( )A.1B.2C.3D.4【解答】解:因为点在y2=2px(p>0)上,所以4p=2pm,得到m=2,又点到其焦点的距离为4,根据抛物线定义知,得到p=4,故选:D.29.(2023•沙坪坝区校级二模)已知抛物线y2=4x的准线过双曲线的左焦点,点P为双曲线的渐近线和抛物线的一个公共点,若P到抛物线焦点的距离为5,则双曲线的方程为( )A.B.C.x2﹣y2=2D.2x2﹣2y2=1【解答】解:由题意知,抛物线y2=4x的准线方程为x=﹣1,所以双曲线的左焦点坐标为(﹣1,0),所以双曲线的c=1.又因为点P为双曲线的渐近线和抛物线的一个公共点,若P到抛物线焦点的距离为5,所以x P+1=5,所以x P=4,代入抛物线方程即可得P(4,4).因为P(4,4)在双曲线的渐近线方程上,所以a=b,又因为双曲线中,c2=a2+b2,所以,所以双曲线的方程为:2x2﹣2y2=1.故选:D.30.(2023•浙江模拟)已知抛物线C:y2=4x的焦点为F,直线l过焦点F与C交于A,B两点,以AB为直径的圆与y轴交于D,E两点,且,则直线l的斜率为( )A.B.±1C.±2D.【解答】解:设|AB|=2r(2r≥4),AB的中点为M,MN⊥y轴于点N,过A,B作准线x=﹣1的垂线,垂足分别为A1,B1,如图所示.由抛物线的定义知2(|MN|+1)=|AA1|+|BB1|=|AF|+|BF|=|AB|=2r,则|MN|=r﹣1,所以,即16r2﹣50r+25=0,解得或(舍去),故M的横坐标为.设直线l:y=k(x﹣1),A(x1,y1),B(x2,y2),将y=k(x﹣1)代人y2=4x,得k2x2﹣(2k2+4)x+k2=0,则,解得k=±2.故选:C.31.(2023•香洲区校级模拟)首钢滑雪大跳台是冬奥史上第一座与工业旧址结合再利用的竞赛场馆,它的设计创造性地融入了敦煌壁画中飞天的元素,建筑外形优美流畅,飘逸灵动,被形象地称为雪飞天.中国选手谷爱凌和苏翊鸣分别在此摘得女子自由式滑雪大跳台和男子单板滑雪大跳台比赛的金牌.雪飞天的助滑道可以看成一个线段PQ和一段圆弧组成,如图所示.假设圆弧所在圆的方程为C:(x+25)2+(y﹣2)2=162,若某运动员在起跳点M以倾斜角为45o且与圆C相切的直线方向起跳,起跳后的飞行轨迹是一个对称轴在y轴上的抛物线的一部分,如下图所示,则该抛物线的轨迹方程为( )A.y2=﹣32(x﹣1)B.C.x2=﹣32(y﹣1)D.x2=﹣36y+4【解答】解:∵某运动员在起跳点M以倾斜角为45o且与圆C相切的直线方向起跳,∴k CM=﹣1,∴直线CM所在的方程为:y﹣2=﹣(x+25),代入(x+25)2+(y﹣2)2=162,解得或(舍),∴点M的坐标为(﹣16,﹣7).设抛物线方程为:y=ax2+c,则y′=2ax|x=﹣16=﹣32a=1,∴,又,解得c=1,∴该抛物线的轨迹方程为.故选:C.32.(2023•武功县校级模拟)已知点F为抛物线C:y2=2px(p>0)的焦点,过点F且倾斜角为60°的直线交抛物线C于A,B两点,若|FA|•|FB|=3,则p= .【解答】解:由题意知F(,0),AB的方程为y=(x﹣),代入C的方程,得3x2﹣5px+=0,设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=;因为|FA|=+x1,|FB|=+x2,且|FA|⋅|FB|=3,所以(+x1)(+x2)=3,整理得以+•(x1+x2)+x1x2=3,所以+•+=3,结合p>0,解得p=.故答案为:.33.(2023•招远市模拟)设抛物线C:y2=2px(p>0)的焦点为F,点D(p,0),过点F的直线交C 于M,N两点,直线MD垂直x轴,|MF|=3,则|NF|= .【解答】解:由题意得,因为直线MD垂直于x轴,D(p,0),准线方程为,所以M点的横坐标为p,设M(x1,y1),N(x2,y2),根据抛物线的定义知,解得p=2,则C:y2=4x,则F(1,0),可设直线MN的方程为x﹣1=my,联立抛物线方程有可得y2﹣4my﹣4=0,Δ=16m2+16>0,y1y2=﹣4,则,则32x2=16,解得,则.故答案为:.34.(2023•武昌区校级模拟)已知直线l与抛物线C:y2=4x交于A,B两点(与坐标原点O均不重合),且OA⊥OB,抛物线的焦点为F,记△AOB、△AOF、△BOF的面积分别为S1,S2,S3,若满足S1=6S2+3S3,则直线l的方程为 .【解答】解:由已知可设直线OA方程为y=kx,又OA⊥OB,OB方程为,由,解得,由,解得B(4k2,﹣4k),,,令y=0,得x=4,∴直线l与x轴交点M(4,0),,.,∵S1=6S2+3S3,∴,解得,,∴直线l的方程,即或.35.(2023•保定三模)设O为坐标原点,点A(2,4),B在抛物线y2=2px(p>0)上,F为焦点,M是线段BF上的点,且,则当直线OM的斜率最大时,点F到OM的距离为( )A.B.C.D.【解答】解:∵A(2,4)在抛物线y2=2px(p>0)上,∴p=2,则抛物线方程为y2=8x,求得F(2,0),设M(x0,y0),当y0<0时,k OM<0,当y0>0时,k OM>0.则要求直线OM的斜率的最大值,有y0>0.设B(m,n),∵,∴(x0﹣m,y0﹣n)=2(2﹣x0,﹣y0),则,∵B在抛物线上,∴n2=8m,得9=8(3x0﹣4),即,∵y0>0,∴=,当且仅当,即时等号成立,故直线OM的斜率的最大值为,此时直线OM的方程为,则点F到OM的距离为.故选:D.36.(2023•湖北模拟)已知抛物线y2=2px(p>0)的焦点为F,过点F的直线与该抛物线交于A,B两点,的中点纵坐标为,则p= .【解答】解:设过抛物线y2=2px(p>0)焦点F的直线交抛物线于A(x1,y1)、B(x2,y2)两点,AB 的中点纵坐标为y0=,抛物线的焦点为F(,0),直线l的斜率不为零,可设直线l的方程:x=my+,由,得(y1﹣y2)(y1+y2)=2p(x1﹣x2),所以====,所以直线l的方程为x=y+,所以AB中点的横坐标为x0=×+=,所以|AB|=x1+x2+p=2x0+p=2×+p=5,2p2﹣5p+4=0,解得p=2或p=.故答案为:2或.37.(多选)(2023•道里区校级四模)已知A,B是抛物线C:y2=6x上的两动点,F是抛物线的焦点,下列说法正确的是( )A.直线AB过焦点F时,以AB为直径的圆与C的准线相切B.直线AB过焦点F时,|AB|的最小值为6C.若坐标原点为O,且OA⊥OB,则直线AB过定点(3,0)D.若直线AB过焦点F,AB中点为P,过P向抛物线的准线作垂线,垂足为Q,则直线AQ与抛物线相切【解答】解:∵抛物线C方程为:y2=6x,∴2p=6,∴p=3,∴=,∴焦点F(,P),准线l为:x=,对A,B,D选项,∵直线AB过焦点F,∴设直线AB方程为x=my+,设A(x1,y1),B(x2,y2),AB的中点P为(x0,y0),联立,可得y2﹣6my﹣9=0,∴,∴,∴|AB|=x1+x2+p=6m2+3+3=6(m2+1)≥6,(当且仅当m=0时取等),∴B选项正确;又P到准线l的距离d===3(m2+1)=|AB|,∴以AB为直径的圆与C的准线相切,∴A选项正确;若直线AB过焦点F,AB中点为P,过P向抛物线的准线作垂线,垂足为Q,则Q(,3m),∴=,又,∴3m=,∴=,对y2=6x两边关于x求导可得:2yy′=6,∴,抛物线C:y2=6x在A(x1,y1)处的切线斜率为=k AQ,∴直线AQ与抛物线相切,∴D选项正确;对C选项,设AB直线为x=my+t,(t≠0),联立,可得y2﹣6my﹣6t=0,设A(x1,y1),B(x2,y2),则,∴,又OA⊥OB,∴,即(x1,y1)•(x2,y2)=0,∴x1x2+y1y2=0,∴t2﹣6t=0,又t≠0,∴t=6,∴AB直线为x=my+6,∴直线AB过定点(6,0),∴C选项错误.故选:ABD.38.(2023•河南模拟)已知点P(1,a)(a>1)在抛物线C:y2=2px(p>0)上,过P作圆(x﹣1)2+y2=1的两条切线,分别交C于A,B两点,且直线AB的斜率为﹣1,若F为C的焦点,点M(x,y)为C上的动点,点N是C的准线与坐标轴的交点,则的最大值是( )A.B.2C.D.【解答】解:由题意可知,过P所作圆的两条切线关于直线x=1对称,所以k PA+k PB=0.设A(x1,y1),B(x2,y2),P(x P,y P),则,同理可得,,则,得,所以y1+y2=﹣2y P,由,得y P=p.将(1,p)代入抛物线C的方程,得p2=2p,解得p=2,故抛物线C的方程为y2=4x.设∠MNF=θ,作MM1垂直准线于M1,由抛物线的性质可得|MM1|=|MF|,所以,当cosθ最小时,的值最大,所以当直线MN与抛物线C相切时,θ最大,即cosθ最小.由题意可得N(﹣1,0),设切线MN的方程为x=my﹣1,联立方程组消去x,得y2﹣4my+4=0,由Δ=16m2﹣16=0,可得m=±1,将m=±1代入y2﹣4my+4=0,可得y=±2,所以x=1,即M的坐标为(1,±2),所以,|MM1|=1﹣(﹣1)=2,所以的最大值为.故选:A.39.(2023•达州模拟)点A(x0,y0)(x0>1,y0<0),B,C均在抛物线y2=4x上,若直线AB,AC分别经过两定点(﹣1,0),M(1,4),则BC经过定点N.直线BC,MN分别交x轴于D,E,O为原点,记|OD|=a,|DE|=b,则的最小值为( )A.B.C.D.【解答】解:如图,由题易知直线AB,AC斜率均存在,设直线AB方程为,由,消x得,即,由韦达定理得,所以,代入y2=4x,得到,所以,设直线方程为,由,消x得,即,由韦达定理得,所以,又因为,所以,代入y2=4x,得到,所以,所以直线BC的斜率为,所以BC的方程为,即所以,即,故直线BC过定点N(1,1),令y=0,得到,所以,所以,又因为x0>1,y0<0,所以,所以,又|OD|=a,|DE|=b,所以,又由柯西不等式知,当且仅当,即时,取等号,所以,即.故选:D.40.(2023•鲤城区校级模拟)已知抛物线y2=4x的焦点为F,过点F的直线l交抛物线于A,B两点,以线段AB为直径的圆交y轴于M,N两点,设线段AB的中点为P,O为坐标原点,则sin∠PMN的最小值为 .【解答】解:由y2=4x得F(1,0),由题意知直线l的斜率不为0,所以设直线l的方程为x=my+1,A(x1,y1),B(x2,y2),联立,消去x得y2﹣4my﹣4=0,则由韦达定理得,所以,所以|AB|=x1+x2+p=4m2+4,所以|PM|==2m2+2,又P点到y轴的距离d==2m2+1,所以sin∠PMN===1﹣,所以当m=0时,sin∠PMN取得最小值.故答案为:.三.直线与抛物线的综合(共20小题)41.(2023•遂宁模拟)已知定点D(2,0),直线l:y=k(x+2)(k>0)与抛物线y2=4x交于两点A,B,若∠ADB=90°,则|AB|=( )A.4B.6C.8D.10【解答】解:设A(x1,y1),B(x2,y2),联立,由题意得Δ>0,故,则,又,则x1x2﹣2(x1+x2)+y1y2+4=0,即,解得,则,则.故选:C.42.(2023•贵州模拟)已知抛物线C:y2=8x的焦点为F,过F的直线l与抛物线C交于A,B两点,若A (1,2),则|AB|=( )A.9B.7C.6D.5【解答】解:由题意直线l的斜率必存在,抛物线C:y2=8x的焦点为F(2,0),设直线l:y=k(x﹣2),则,得k2x2﹣(4k2+8)x+4k2=0,设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=4,又A(1,2),则x1=1,x24,k2=8,|AB|=•=3×3=9.故选:A.43.(2023•黄州区校级三模)抛物线C:y2=2px的准线与x轴交于点M,过C的焦点F作斜率为2的直线交C于A、B两点,则tan∠AMB=( )A.B.C.D.不存在【解答】解:抛物线C:y2=2px的焦点F(,0),M(﹣,0),可知AB方程y=2(x﹣),AB的方程与y2=2px联立,消去y可得4x2﹣6px+p2=0,可得x=或,∴A(,),B(,),∴k AM==,k BM=﹣,∴tan∠AMB===4.故选:C.44.(2023•深圳模拟)已知F为抛物线C:y2=4x的焦点,直线l:y=k(x+1)与C交于A,B两点(A 在B的左边),则4|AF|+|BF|的最小值是( )A.10B.9C.8D.5【解答】解:由题知C的焦点,F(1,0),准线为x=﹣1,如图,作AM⊥准线,BN⊥准线,l:y=k (x+1)过定点(﹣1,0),设A(x1,y1),B(x2,y2),联立,得k2(x2+2x+1)﹣4x=0,即k2x2+(2k2﹣4)x+k2=0,∴,又∵|AF|=|AM|=x1+1,|BF|=|BN|=x2+1,∴,当且仅当4x1=x2时取等,故选:B.45.(2023•万州区校级模拟)过抛物线C:y2=2px(p>0)的焦点F,作倾斜角为的直线l交C于A,B两点,交C的准线于点M,若(O为坐标原点),则线段AB的长度为( )A.8B.16C.24D.32【解答】解:抛物线C:y2=2px(p>0)的焦点F(,0),作倾斜角为的直线l:y=(x﹣),抛物线的准线方程为x=﹣,可得M(﹣,),又,可得=,解得p=4,,消去y可得x2﹣28x+4=0,设A(x1,y1),B(x2,y2),可得x1+x2=28,所以|AB|=x1+x2+p=28+4=32.故选:D.46.(2023•茂名二模)已知抛物线y2=6x的焦点为F,准线为l,过F的直线与抛物线交于点A、B,与直线l交于点D,若且,则λ= .【解答】解:设准线与x轴的交点为K,作AA1⊥l,BB1⊥l,垂足分别为A1,B1,则BB1∥FK∥AA1.根据抛物线定义知|BB1|=|BF|,|AA1|=|AF|,又若,且,因为BB1∥FK∥AA1,设|BF|=m,则,∴,又p=3,解得m=2,∴|AF|=λ|FB|=2λ,所以|BA|=2+2λ,因为BB1∥FK∥AA1,所以,∴,解得λ=3.故答案为:3.47.(2023•昆明一模)已知抛物线C:y2=4x的焦点为F,经过抛物线上一点P,作斜率为的直线交C 的准线于点Q,R为准线上异于Q的一点,当∠PQR=∠PQF时,|PF|= .【解答】解:不妨令R为过P点垂直于准线的垂足,又∠PQR=∠PQF,即QF为∠FQR角平分线,Q是斜率为的直线与抛物线准线的交点,则P在第一象限内,而PR⊥QR,且|PR|=|PF|,根据角平分线性质知:PF⊥QF,如上图示,令且m>0,则直线PQ为,令x=﹣1,则,由,整理可得3m3﹣8m2+12m﹣32=(m2+4)(3m﹣8)=0,则,故故答案为:.48.(2023•江西二模)2022北京冬奥会顺利召开,滑雪健将谷爱凌以2金1银的优秀成绩书写了自己的传奇,现在她从某斜坡上滑下,滑过一高度不计的滑板后落在另一斜坡上,若滑板与水平地面夹角的正切值为,斜坡与水平地面夹角的正切值为,那么她最后落在斜坡上速度与水平地面夹角的正切值为( )(不计空气阻力和摩擦力)A.3B.C.D.4。

高三数学抛物线试题答案及解析

高三数学抛物线试题答案及解析

高三数学抛物线试题答案及解析1.过抛物线的焦点作直线与此抛物线相交于、两点,是坐标原点,当时,直线的斜率的取值范围是()A.B.C.D.【答案】D【解析】由题可知,点的横坐标时,满足,此时,故直线(即直线)的斜率的取值范围是.故选D.【考点】抛物线的几何性质以及直线与抛物线的位置关系.2.抛物线y=2ax2(a≠0)的焦点是( )A.(,0)B.(,0)或(-,0)C.(0,)D.(0,)或(0,-)【答案】C【解析】将方程改写为,可知2p=,当a>0时,焦点为(0,),即(0,);当a<0时,焦点为(0,-),即(0,);综合得,焦点为(0,),选C考点:抛物线的基本概念3.设F(1,0),M点在x轴上,P点在y轴上,且=2,⊥,当点P在y轴上运动时,点N的轨迹方程为()A.y2=2x B.y2=4xC.y2=x D.y2=x【答案】B【解析】设M(x0,0),P(0,y),N(x,y),∵⊥,=(x0,-y),=(1,-y0),∴(x0,-y)·(1,-y)=0,∴x0+y2=0.由=2,得(x-x0,y)=2(-x,y),∴即∴-x+=0,即y2=4x.故所求的点N的轨迹方程是y2=4x.故选B.4.已知点C(1,0),点A、B是⊙O:x2+y2=9上任意两个不同的点,且满足·=0,设P为弦AB的中点.(1)求点P的轨迹T的方程;(2)试探究在轨迹T上是否存在这样的点:它到直线x=-1的距离恰好等于到点C的距离?若存在,求出这样的点的坐标;若不存在,说明理由.【答案】(1)x2-x+y2=4(2)存在,(1,-2)和(1,2)【解析】(1)连接CP、OP,由·=0,知AC⊥BC,∴|CP|=|AP|=|BP|=|AB|.由垂径定理知|OP|2+|AP|2=|OA|2,即|OP|2+|CP|2=9.设点P(x,y),有(x2+y2)+[(x-1)2+y2]=9,化简,得到x2-x+y2=4.(2)根据抛物线的定义,到直线x=-1的距离等于到点C(1,0)的距离的点都在抛物线y2=2px上,其中=1,∴p=2,故抛物线方程为y2=4x.由方程组,得x2+3x-4=0,解得x1=1,x2=-4,由于x≥0,故取x=1,此时y=±2.故满足条件的点存在,其坐标为(1,-2)和(1,2).5.设F为抛物线C:的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为()A.B.C.D.【答案】D【解析】由题意可知:直线AB的方程为,代入抛物线的方程可得:,设A、B,则所求三角形的面积为=,故选D.【考点】本小题主要考查直线与抛物线的位置关系,考查两点间距离公式等基础知识,考查同学们分析问题与解决问题的能力.6.若,则称点在抛物线C:外.已知点在抛物线C:外,则直线与抛物线C的位置关系是()A.相交B.相切C.相离D.不能确定【答案】A【解析】因为点在抛物线C:外,所以由与联立方程组消得:因此,所以直线与抛物线相交.【考点】直线与抛物线位置关系7.已知直线:与抛物线:交于两点,与轴交于,若,则_______.[【答案】【解析】解方程组得或,由得:.【考点】1、直线与圆锥曲线的关系;2、向量的运算.8.过抛物线焦点F的直线交抛物线于A、B两点,若A、B在抛物线准线上的射影分别为,则()A.B.C.D.【答案】D【解析】由抛物线的定义得,,,故,,故,,又,故,从而.【考点】抛物线定义.9.已知直线交抛物线于两点.若该抛物线上存在点,使得为直角,则的取值范围为________.【答案】【解析】根据题意不妨设,则⊥∴∵为直角,点C与点A不同,∴∴∵∴10.如图,设抛物线的顶点为A,与x 轴正半轴的交点为B,设抛物线与两坐标轴正半轴围成的区域为M,随机往M内投一点P,则点P落在AOB内的概率是( )A.B.C.D.【答案】C【解析】解:设抛物线与轴正半轴及轴的正半轴所围成的区域的面积为则设事件“随机往M内投一点P,则点P落在AOB内”则,故选:C.【考点】1、定积分;2、几何概型.11.已知抛物线C:,点A、B在抛物线C上.(1)若直线AB过点M(2p,0),且=4p,求过A,B,O(O为坐标原点)三点的圆的方程;(2)设直线OA、OB的倾斜角分别为,且,问直线AB是否会过某一定点?若是,求出这一定点的坐标,若不是,请说明理由.【答案】(1);(2)过定点【解析】(1)当直线斜率不存在时方程为,与的交点分别为M,N ,弦长。

高三数学抛物线试题答案及解析

高三数学抛物线试题答案及解析

高三数学抛物线试题答案及解析1.设双曲线的离心率为2,且一个焦点与抛物线的焦点相同,则此双曲线的方程为__________.【答案】.【解析】抛物线的焦点坐标为(0,2),所以双曲线的焦点在y轴上且c=2,所以双曲线的方程为,即a2=n>0,b2=-m>0,所以a=,又e=,解得n=1,所以b2=c2-a2=4-1=3,即-m=3,m=-3,所以双曲线的方程为,故答案为:.【考点】1.抛物线的简单性质;2.双曲线的简单性质.2.已知点A(-1,0),B(1,-1)和抛物线.,O为坐标原点,过点A的动直线l交抛物线C于M、P,直线MB交抛物线C于另一点Q,如图.(1)证明: 为定值;(2)若△POM的面积为,求向量与的夹角;(3)证明直线PQ恒过一个定点.【答案】(1)见解析; (2) ;(3)直线PQ过定点E(1,-4).【解析】(1)设点根据、M、A三点共线,得计算得到=5;(2)设∠POM=α,可得结合三角形面积公式可得tanα="1."根据角的范围,即得所求.(3)设点、B、Q三点共线,据此确定进一步确定的方程,化简为得出结论.试题解析:(1)设点、M、A三点共线,2分5分(2)设∠POM=α,则由此可得tanα=1. 8分又 10分(3)设点、B、Q三点共线,即 12分即 13分由(*)式,代入上式,得由此可知直线PQ过定点E(1,-4). 14分【考点】抛物线及其几何性质,直线方程,直线与抛物线的位置关系,转化与化归思想.3.已知抛物线C: y2 =2px(p>0)的准线L,过M(l,0)且斜率为的直线与L相交于A,与C的一个交点为B,若,则p=____ 。

【答案】2【解析】由题意可得,抛物线的焦点为,准线为.,为AB的中点.直线方程为,由题意可得,故由中点公式可得,把点B的坐标代入抛物线可得,解得.【考点】直线与抛物线的位置关系4.已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(,0).(1)求双曲线C的方程;(2)若直线l:y=kx+与双曲线C恒有两个不同的交点A和B,且·>2(其中O为原点),求k的取值范围.【答案】(1)-y2=1(2)(-1,-)∪(,1)【解析】(1)设双曲线C的方程为-=1(a>0,b>0).由已知得a=,c=2,再由c2=a2+b2得b2=1,所以双曲线C的方程为-y2=1.(2)将y=kx+代入-y2=1中,整理得(1-3k2)x2-6kx-9=0,由题意得,故k2≠且k2<1①.设A(xA ,yA),B(xB,yB),则xA+xB=,xAxB=,由·>2得xA xB+yAyB>2,x A xB+yAyB=xAxB+(kxA+)(kxB+)=(k2+1)xAxB+k(xA+xB)+2=(k2+1)·+k·+2=,于是>2,即>0,解得<k2<3②.由①②得<k2<1,所以k的取值范围为(-1,-)∪(,1).5.已知圆P:x2+y2=4y及抛物线S:x2=8y,过圆心P作直线l,此直线与上述两曲线的四个交点,自左向右顺次记为A,B,C,D,如果线段AB,BC,CD的长按此顺序构成一个等差数列,则直线l的斜率为( )A.B.C.D.【答案】A【解析】圆的方程为,则其直径长圆心为,设的方程为,代入抛物线方程得:设,有∴线段的长按此顺序构成一个等差数列,,即,解得,故选A.【考点】1.抛物线的几何性质;2.直线与抛物线相交问题.6.已知F是抛物线的焦点,A,B是该抛物线上的两点,|AF|+|BF|=3,则线段AB的中点到y轴的距离为()A.B.1C.D.【答案】C【解析】过A,B及线段AB的中点C向抛物线的准线作垂线,垂足分别为M,N,Q,CQ交y轴于T,由抛物线的定义知|AM|+|BN|=|AF|+|BF|=3,因为CQ是直角梯形AMNB的中位线所以CQ|=(|AM|+|BN)=,所以|CT|=|CQ|-|TQ|=-=7.已知抛物线的准线与x轴交于点M,过点M作圆的两条切线,切点为A、B,.(1)求抛物线E的方程;(2)过抛物线E上的点N作圆C的两条切线,切点分别为P、Q,若P,Q,O(O为原点)三点共线,求点N的坐标.【答案】(1)y2=4x;(2)点N坐标为或.【解析】本题主要考查抛物线的标准方程及其几何性质、圆的标准方程及其几何性质、圆的切线的性质等基础知识,考查学生分析问题解决问题的能力和计算能力.第一问,利用抛物线的准线,得到M点的坐标,利用圆的方程得到圆心C的坐标,在中,可求出,在中,利用相似三角形进行角的转换,得到的长,而,从而解出P的值,即得到抛物线的标准方程;第二问,设出N点的坐标,利用N、C点坐标写出圆C的方程,利用点C的坐标写出圆C的方程,两方程联立,由于P、Q是两圆的公共点,所以联立得到的方程即为直线PQ的方程,而O点在直线上,代入点O的坐标,即可得到s、t的值,即得到N点坐标.试题解析:(1)由已知得,C(2,0).设AB与x轴交于点R,由圆的对称性可知,.于是,所以,即,p=2.故抛物线E的方程为y2=4x. 5分(2)设N(s,t).P,Q是NC为直径的圆D与圆C的两交点.圆D方程为,即x2+y2-(s+2)x-ty+2s=0.①又圆C方程为x2+y2-4x+3=0.②②-①得(s-2)x+ty+3-2s=0.③ 9分P,Q两点坐标是方程①和②的解,也是方程③的解,从而③为直线PQ的方程.因为直线PQ经过点O,所以3-2s=0,.故点N坐标为或. 12分【考点】抛物线的标准方程及其几何性质、圆的标准方程及其几何性质、圆的切线的性质.8.如图,已知抛物线C的顶点在原点,开口向右,过焦点且垂直于抛物线对称轴的弦长为2,过C上一点A作两条互相垂直的直线交抛物线于P,Q两点.(1)若直线PQ过定点,求点A的坐标;(2)对于第(1)问的点A,三角形APQ能否为等腰直角三角形?若能,试确定三角形APD的个数;若不能,说明理由.【答案】(1),(2)一个【解析】(1)确定抛物线标准方程只需一个独立条件,本题条件为已知通径长所以抛物线的方程为.直线过定点问题,实际是一个等式恒成立问题.解决问题的核心是建立变量的一个等式.可以考虑将直线的斜率列为变量,为避开讨论,可设的方程为,与联立消得,则,设点坐标为,则有,代入化简得:因此,点坐标为,(2)若三角形APQ为等腰直角三角形,则的中点与点A连线垂直于.先求出的中点坐标为,再讨论方程解的个数,这就转化为研究函数增减性,并利用零点存在定理判断零点有且只有一个.试题解析:(1)设抛物线的方程为,依题意,,则所求抛物线的方程为. (2分)设直线的方程为,点、的坐标分别为.由,消得.由,得,,.∵,∴.设点坐标为,则有.,,∴或.∴或, ∵恒成立. ∴.又直线过定点,即,代入上式得注意到上式对任意都成立,故有,从而点坐标为. (8分)(2)假设存在以为底边的等腰直角三角形,由第(1)问可知,将用代换得直线的方程为.设,由消,得.∴,.∵的中点坐标为,即,∵,∴的中点坐标为.由已知得,即.设,则,在上是增函数.又,,在内有一个零点.函数在上有且只有一个零点,所以满足条件的等腰直角三角形有且只有一个. (12分)【考点】直线与抛物线关系,零点存在定理9.在平面直角坐标系中,已知三点,直线AC的斜率与倾斜角为钝角的直线AB的斜率之和为,而直线AB恰好经过抛物线)的焦点F并且与抛物线交于P、Q两点(P在Y轴左侧).则()A.9B.C.D.【答案】A【解析】由题意得,且.令,,则,所以,且,由此可解得.由抛物线的方程知焦点为,因此设直线的方程为,代入抛物线方程,得,解得或,所以由题意知,.由图形特征根据三角形相似易知.【考点】1、直线的斜率;2、直线方程;3、直线与抛物线的位置关系.10.抛物线y2=-8x的准线方程是________.【答案】x=2【解析】∵2p=8,∴p=4,故所求准线方程为x=2.11.下图是抛物线形拱桥,当水面在l时,拱顶离水面2m,水面宽4m.水位下降1m后,水面宽________m.【答案】2【解析】设抛物线的方程为x2=-2py,则点(2,-2)在抛物线上,代入可得p=1,所以x2=-2y.当y=-3时,x2=6,即x=±,所以水面宽为2.12.已知抛物线关于x轴对称,它的顶点在坐标原点O,并且经过点M(2,y).若点M到该抛物线焦点的距离为3,则|OM|等于()A.2B.2C.4D.2【答案】B【解析】由题意设抛物线方程为y2=2px(p>0),则M到焦点的距离为xM+=2+=3,∴p=2,∴y2=4x. ∴=4×2,∴|OM|===2.故选B.13.已知过抛物线y2=4x的焦点F的直线交该抛物线于A、B两点,|AF|=2,则|BF|=.【答案】2【解析】设A(x0,y),由抛物线定义知x+1=2,∴x=1,则直线AB⊥x轴,∴|BF|=|AF|=2.14.已知抛物线C:y2=8x与点M(-2,2),过C的焦点且斜率为k的直线与C交于A、B两点,若·=0,则k等于()(A) (B) (C) (D)2【答案】D【解析】法一设直线方程为y=k(x-2),A(x1,y1)、B(x2,y2),由得k2x2-4(k2+2)x+4k2=0,∴x1+x2=,x 1x2=4,由·=0,得(x1+2,y1-2)·(x2+2,y2-2)=(x1+2)(x2+2)+[k(x1-2)-2][k(x2-2)-2]=0,代入整理得k2-4k+4=0,解得k=2.故选D.法二如图所示,设F为焦点,取AB中点P,过A、B分别作准线的垂线,垂足分别为G、H,连接MF,MP,由·=0,知MA⊥MB,则|MP|=|AB|=(|AG|+|BH|),所以MP为直角梯形BHGA的中位线,所以MP∥AG∥BH,所以∠GAM=∠AMP=∠MAP,又|AG|=|AF|,|AM|=|AM|,所以△AMG≌△AMF,所以∠AFM=∠AGM=90°,则MF⊥AB,所以k=-=2.15.已知F是抛物线y2=4x的焦点,P是圆x2+y2-8x-8y+31=0上的动点,则|FP|的最小值是() A.3B.4C.5D.6【答案】B【解析】圆x2+y2-8x-8y+31=0的圆心C坐标为(4,4),半径为1,∵|PF|≥|CF|-1,∴当P、C、F三点共线时,|PF|取到最小值,由y2=4x知F(1,0),∴|PF|min=-1=4.故选B.16.已知点A(4,4)在抛物线y2=px(p>0)上,该抛物线的焦点为F,过点A作直线l:x=-的垂线,垂足为M,则∠MAF的平分线所在直线的方程为.【答案】x-2y+4=0【解析】点A在抛物线上,所以16=4p,所以p=4,所以抛物线的焦点为F(1,0),准线方程为x=-1,垂足M(-1,4),由抛物线的定义得|AF|=|AM|,所以∠MAF的平分线所在的直线就是线段MF的垂直平分线,kMF==-2,所以∠MAF的平分线所在的直线方程为y-4=(x-4),即x-2y+4=0.17.设M(x0,y)为抛物线C:y2=8x上一点,F为抛物线C的焦点,若以F为圆心,|FM|为半径的圆和抛物线C的准线相交,则x的取值范围是()A.(2,+∞)B.(4,+∞) C.(0,2)D.(0,4)【答案】A【解析】∵(x0,y)为抛物线C:y2=8x上一点,∴x≥0,又∵以F为圆心,|FM|为半径的圆和抛物线C的准线相交,∴在水平方向上,点M应在点F的右侧,∴x>2.18.过抛物线y2=2px(p>0)上一定点P(x0,y)(y>0)作两直线分别交抛物线于A(x1,y1),B(x2,y2),当PA与PB的斜率存在且倾斜角互补时,的值为.【答案】-2【解析】设直线PA的斜率为kPA ,PB的斜率为kPB,由=2px1,=2px,得kPA==,同理kPB=,由于PA与PB的斜率存在且倾斜角互补,因此=-,即y1+y2=-2y(y>0),那么=-2.19.若抛物线y2=2px(p>0)的焦点在圆x2+y2+2x-3=0上,则p=()A.B.1C.2D.3【答案】C【解析】由已知(,0)在圆x2+y2+2x-3=0上,所以有+2×-3=0,即p2+4p-12=0,解得p=2或p=-6(舍去).20.过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线共有()A.1条B.2条C.3条D.4条【答案】C【解析】作出图形,可知点(0,1)在抛物线y2=4x外.因此,过该点可作抛物线y2=4x的切线有两条,还能作一条与抛物线y2=4x的对称轴平行的直线,因此共有三条直线与抛物线只有一个交点.21.如图,直线l:y=x+b与抛物线C:x2=4y相切于点A.(1)求实数b的值.(2)求以点A为圆心,且与抛物线C的准线相切的圆的方程.【答案】(1) b=-1 (2) (x-2)2+(y-1)2=4【解析】(1)由得x2-4x-4b=0(*)因为直线l与抛物线C相切,所以Δ=(-4)2-4×(-4b)=0.解得b=-1.(2)由(1)可知b=-1,故方程(*)为x2-4x+4=0.解得x=2,代入x2=4y,得y=1,故点A(2,1).因为圆A与抛物线C的准线相切,所以圆A的半径r就等于圆心A到抛物线的准线y=-1的距离,即r=|1-(-1)|=2,所以圆A的方程为(x-2)2+(y-1)2=4.22.过抛物线焦点的直线交其于,两点,为坐标原点.若,则的面积为()A.B.C.D.2【答案】C【解析】设直线的倾斜角为及,∵,∴点到准线的距离为,∴,则.∴的面积为.故选C.【考点】抛物线的几何性质,直线与抛物线的位置关系.23.如图X15-3所示,已知圆C1:x2+(y-1)2=4和抛物线C2:y=x2-1,过坐标原点O的直线与C2相交于点A,B,定点M的坐标为(0,-1),直线MA,MB分别与C1相交于点D,E.(1)求证:MA⊥MB;(2)记△MAB,△MDE的面积分别为S1,S2,若=λ,求λ的取值范围.【答案】(1)见解析(2)【解析】(1)证明:设直线AB的方程为y=kx,A(x1,y1),B(x2,y2),则x2-kx-1=0,所以x1+x2=k,x1x2=-1.又·=(x1,y1+1)·(x2,y2+1)=(k2+1)x1x2+k(x1+x2)+1=-k2-1+k2+1=0,∴MA⊥MB.(2)设直线MA的方程为y=k1x-1,MB的方程为y=k2x-1,k1k2=-1.解得或∴A(k1,-1),同理可得B(k2,-1),∴S1=|MA||MB|=|k1k2|.又解得或∴D ,同理可得E . ∴S 2=|MD||ME|=.=λ==≥.故λ的取值范围是.24. 已知抛物线C :y 2=2px(p>0)的焦点为F ,抛物线C 与直线l 1:y =-x 的一个交点的横坐标为8.(1)求抛物线C 的方程;(2)不过原点的直线l 2与l 1垂直,且与抛物线交于不同的两点A ,B ,若线段AB 的中点为P ,且|OP|=|PB|,求△FAB 的面积. 【答案】(1) y 2=8x (2) 24【解析】解:(1)易知直线与抛物线的交点坐标为(8,-8),∴82=2p×8, ∴2p =8,∴抛物线方程为y 2=8x. (2)直线l 2与l 1垂直,故可设l 2:x =y +m ,A(x 1,y 1),B(x 2,y 2),且直线l 2与x 轴的交点为M. 由得y 2-8y -8m =0,Δ=64+32m>0,∴m>-2. y 1+y 2=8,y 1y 2=-8m , ∴ x 1x 2==m 2.由题意可知OA ⊥OB ,即x 1x 2+y 1y 2=m 2-8m =0, ∴m =8或m =0(舍), ∴l 2:x =y +8,M(8,0).故S △FAB =S △FMB +S △FMA =·|FM|·|y 1-y 2|=3=24.25. 已知抛物线方程为x 2=4y ,过点M (0,m )的直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,且x 1x 2=-4,则m 的值为________. 【答案】1【解析】设直线方程为y =kx +m ,代入抛物线方程得x 2-4kx -4m =0,所以x 1x 2=-4m ,所以m =1.26. 抛物线的焦点坐标是( ) A .(2,0) B .(0,2) C .(l ,0) D .(0,1)【答案】D 【解析】因为,所以,因为焦点在的正半轴,所以焦点坐标为即。

高中数学抛物线经典例题(含解析)

高中数学抛物线经典例题(含解析)

抛物线大题一.解答题(共7小题)1.已知P(4,y0)是抛物线C:y2=2px(p>0)上位于第一象限的一点,且P到C的焦点的距离为5.(1)求抛物线C的方程;(2)设O为坐标原点,F为C的焦点,A,B为C上异于P的两点,且直线P A与PB 斜率乘积为﹣4.(i)证明:直线AB过定点;(ii)求|F A|•|FB|的最小值.2.已知抛物线C:y2=2px(p>0),其准线方程为x=﹣2.(1)求抛物线C的方程;(2)不过原点O的直线l:y=x+m与抛物线交于不同的两点P,Q,且OP⊥OQ,求m 的值.3.已知抛物线C的顶点在原点,对称轴为坐标轴,开口向右,且经过点P(1,2).(1)求抛物线C的标准方程;(2)过点M(2,0)且斜率为2的直线与抛物线C相交于A,B两点,求AB的长.4.在平面直角坐标系xOy中,抛物线y2=2px(p>0)上一点P的横坐标为4,且点P到焦点F的距离为5.(1)求抛物线的方程;(2)若直线l:x=my+t交抛物线于A,B两点(位于对称轴异侧),且,问:直线l是否过定点?若过定点,请求出该定点:若不过,请说明理由.5.已知抛物线C:y2=2px(p为常数,p>0)的焦点F与椭圆的右焦点重合,过点F的直线与抛物线交于A,B两点.(1)求抛物线C的标准方程;(2)若直线AB的斜率为1,求|AB|.6.设O为坐标原点,直线x=2与抛物线C:y2=2px(p>0)交于A,B两点,若OA⊥OB.(1)求抛物线C的方程;(2)若斜率为的直线l过抛物线C的焦点,且与抛物线C交于D,E两点,求|DE|的值.7.设抛物线C:y2=2px(p>0)的焦点为F,点P(4,m)(m>0)是抛物线C上一点,且|PF|=5.(1)求抛物线C的方程;(2)过点Q(2,0)斜率存在的直线l与C相交于A,B两点,在x轴上是否存在点M 使得∠AMQ=∠BMQ?若存在,请求出点M的坐标;若不存在,请说明理由.抛物线大题参考答案与试题解析一.解答题(共7小题)1.已知P(4,y0)是抛物线C:y2=2px(p>0)上位于第一象限的一点,且P到C的焦点的距离为5.(1)求抛物线C的方程;(2)设O为坐标原点,F为C的焦点,A,B为C上异于P的两点,且直线P A与PB 斜率乘积为﹣4.(i)证明:直线AB过定点;(ii)求|F A|•|FB|的最小值.【分析】(1)由题意,结合所给信息列出等式,求出p的值,进而可得抛物线C的方程;(2)(i)结合(1)中所得信息得到点P的坐标,设出A,B两点的坐标,利用斜率公式得到4(y1+y2)+y1y2+20=0,对直线AB的斜率是否存在进行讨论,进而即可求解;(ii)设出A,B两点的坐标,分别讨论直线AB的斜率是否存在,当直线AB的斜率存在时,设出直线AB的方程,将直线方程与抛物线方程联立,利用韦达定理即可得到|F A|•|FB|的最小值,当直线AB的斜率不存在时,结合抛物线的定义即可得到|F A|•|FB|的最小值,两者比较即可求解.2.已知抛物线C:y2=2px(p>0),其准线方程为x=﹣2.(1)求抛物线C的方程;(2)不过原点O的直线l:y=x+m与抛物线交于不同的两点P,Q,且OP⊥OQ,求m 的值.【分析】(1)由抛物线的准线方程求出p,可得抛物线C的方程;(2)设P(x1,y1),Q(x2,y2),联立直线l和抛物线C的方程,消元写出韦达定理,将OP⊥OQ用坐标表示,代入韦达定理化简计算,可得m的值.3.已知抛物线C的顶点在原点,对称轴为坐标轴,开口向右,且经过点P(1,2).(1)求抛物线C的标准方程;(2)过点M(2,0)且斜率为2的直线与抛物线C相交于A,B两点,求AB的长.【分析】(1)由题意,先设出抛物线C的方程,将点P的坐标代入抛物线方程中,求出p的值,进而可得抛物线C的标准方程;(2)设出直线AB的方程和A,B两点的坐标,将直线AB的方程与抛物线方程联立,求出A,B两点的坐标,进而即可求解.4.在平面直角坐标系xOy中,抛物线y2=2px(p>0)上一点P的横坐标为4,且点P到焦点F的距离为5.(1)求抛物线的方程;(2)若直线l:x=my+t交抛物线于A,B两点(位于对称轴异侧),且,问:直线l是否过定点?若过定点,请求出该定点:若不过,请说明理由.【分析】(1)由题意,结合题目所给信息建立有关p的等式,进而即可求解;(2)设出A,B两点的坐标,将直线l的方程与抛物线方程联立,利用向量的坐标运算以及韦达定理再进行求解即可.5.已知抛物线C:y2=2px(p为常数,p>0)的焦点F与椭圆的右焦点重合,过点F的直线与抛物线交于A,B两点.(1)求抛物线C的标准方程;(2)若直线AB的斜率为1,求|AB|.【分析】(1)由题意,先求出的右焦点,根据抛物线C的焦点F与椭圆的右焦点重合,可得,进而求出抛物线方程;(2)结合(1)中所得信息得到直线AB的方程,将直线AB的方程与抛物线方程联立,利用韦达定理以及弦长公式再进行求解即可.6.设O为坐标原点,直线x=2与抛物线C:y2=2px(p>0)交于A,B两点,若OA⊥OB.(1)求抛物线C的方程;(2)若斜率为的直线l过抛物线C的焦点,且与抛物线C交于D,E两点,求|DE|的值.【分析】(1)由题意,得到点A的坐标,代入抛物线方程中进行求解即可;(2)先得到直线l的方程,将直线方程与抛物线方程联立,利用韦达定理以及抛物线的定义再进行求解即可.7.设抛物线C:y2=2px(p>0)的焦点为F,点P(4,m)(m>0)是抛物线C上一点,且|PF|=5.(1)求抛物线C的方程;(2)过点Q(2,0)斜率存在的直线l与C相交于A,B两点,在x轴上是否存在点M 使得∠AMQ=∠BMQ?若存在,请求出点M的坐标;若不存在,请说明理由.【分析】(1)利用|PF|=5,根据抛物线的定义,求出p的值,即可得解;(2)设A(x1,y1),B(x2,y2),M(s,0),直线l的方程为x=ty+2(t≠0),将其与抛物线的方程联立,利用韦达定理,根据k AM=﹣k MB,求出s的值,即可得解.。

高考数学专题练习-抛物线含解析

高考数学专题练习-抛物线含解析

高考数学专题练习-抛物线含解析一、选择题(本大题共20小题,共100.0分)1.一桥拱的形状为抛物线,该抛物线拱的高为h,宽为b,此抛物线拱的面积为S,若b=3h,则S等于()A.h2B.2h2C.h2D.h22.若点P为抛物线y=2x2上的动点,F为抛物线的焦点,则|PF|的最小值为()A.2B.C.D.3.已知抛物线y2=2px的焦点为F,△ABC的三个顶点都在抛物线上,且A(1,2),+=,则BC边所在的直线方程为()A.2x-y-2=0B.2x-y-1=0C.2x+y-6=0D.2x+y-3=04.抛物线y2=4x的焦点为F,其准线与x轴的交点为N,过点F作直线与抛物线交于A,B两点,若,则|AF|-|BF|=()A.2B.3C.4D.55.已知抛物线C:y2=2px(p>0)的焦点为F,准线为l,点P是抛物线C上一点,过P 作PM⊥l,垂足为M,记与MN交于点T,若|NF|=2|PF|,且△PNT的面积为,则p=()A. B.2 C. D.6.过抛物线y2=4x的焦点F的直线交抛物线于A,B两点,且|AF|=2|BF|,则直线AB的斜率为()A. B. C.或 D.7.过抛物线C:y2=2px(p>0)的焦点F作斜率为的直线l与C及其准线分别相交于A、B、D三点,则的值为()A.2或B.3或C.1D.4或8.设抛物线C:y2=4x的焦点为F,倾斜角为钝角的直线l过F且与C交于A,B两点,若|AB|=,则l的斜率为()A.-1B.-C.-D.-9.正三角形ABC的两个顶点A,B在抛物线x2=2py(p>0)上,另一个顶点C是此抛物线焦点,则满足条件的三角形ABC的个数为()A.0B.1C.2D.310.已知直线l:y=kx-k与抛物线C:y2=4x及其准线分别交于M,N两点,F为抛物线的焦点,若,则实数k等于()A. B.±1 C. D.±211.设F是抛物线C1:y2=2px(p>0)的焦点,点A是抛物线与双曲线C2:-=1(a>0,b>0)的一条渐近线的一个公共点,且AF⊥x轴,则双曲线的离心率为()A. B. C. D.212.过抛物线C:y2=2px(p>0)焦点F的直线l与C相交于A,B两点,与C的准线交于点D,若|AB|=|BD|,则直线l的斜率k=()A. B.±3 C. D.13.已知抛物线顶点在原点,焦点为双曲线的右焦点,则此抛物线的方程是()A.y2=2xB.y2=4xC.y2=10xD.y2=20x14.已知抛物线y2=8x的准线与双曲线-=1相交于A,B两点,点F为抛物线的焦点,△ABF为直角三角形,则双曲线的离心率为()A.3B.C.2D.15.设抛物线C:y2=4x的焦点为F,倾斜角为钝角的直线l过F且与C交于A,B两点,若|AB|=,则l的斜率为()A.±B.-C.±D.-16.抛物线的顶点在原点,焦点是椭圆4x2+y2=1的一个焦点,则此抛物线的焦点到准线的距离是()A. B. C. D.17.过抛物线y2=4x焦点的直线l交抛物线于P(x1,x2),Q(x2,y2)两点,若x1+x2=6,则|PQ|=()A.9B.8C.8D.618.已知O为坐标原点,F为抛物线y2=4x的焦点,直线l:y=m(x-1)与抛物线交于A,B两点,点A在第一象限,若|FA|=3|FB|.则m的值为()A.3B.C.D.19.已知F是抛物线x2=8y的焦点,若抛物线上的点A到x轴的距离为5,则|AF|=()A.4B.5C.6D.720.抛物线y2=-4x的焦点坐标为()A.(0,-2)B.(-2,0)C.(0,-1)D.(-1,0)二、填空题(本大题共20小题,共100.0分)21.已知抛物线y2=2px(p>0)的焦点为F,过抛物线上点P(2,y0)的切线为l,过点P作平行于x轴的直线m,过F作平行于l的直线交m于M,若|PM|=5,则p的值为______ .22.已知抛物线C:x2=2py(p>0),P,Q是C上任意两点,点M(0,-1)满足,则p的取值范围是 ______ .23.已知抛物线的方程为x2=2py(p>0),过点A(0,-a)(a>0)作直线l与抛物线相交于P,Q两点,点B的坐标为(0,a),连接BP,BQ.且QB,QP与x轴分别交于M,N两点,如果QB的斜率与PB的斜率之积为-3,则∠PBQ= ______ .24.已知以F为焦点的抛物线C:y2=2px(p>0)上的两点A,B满足=3,若弦AB的中点到准线的距离为,则抛物线的方程为 ______ .25.斜率为k(k>0)的直线l经过点F(1,0)交抛物线y2=4x于A,B两点,若△AOF 的面积是△BOF面积的2倍,则k= ______ .26.已知点P(2,1)是抛物线上x2=4y上的一点,点M,N是抛物线上的动点(M,N,P 三点不共线),直线PM,PN分别交y轴于A,B两点,且|PA|=|PB|,则直线MN的斜率为 ______ .27.已知抛物线y2=6x上的一点到焦点的距离是到y轴距离的2倍,则该点的横坐标为______ .28.抛物线顶点在原点,焦点在y轴上,其上一点P(m,1)到焦点的距离为5,则抛物线的标准方程为 ______ .29.若抛物线y2=8x上的点P到焦点的距离为6,则P到y轴的距离是 ______ .30.已知抛物线y2=2px(p>0)的准线为l,若l与圆x2+y2+6x+5=0的交点为A,B,且|AB|=2.则p的值为 ______ .31.圆心在抛物线y=x2上,并且和该抛物线的准线及y轴都相切的圆的标准方程为______ .32.过抛物线x2=8y焦点F作直线l交抛物线于A、B两点,若线段AB中点M的纵坐标为4,则|AB|= ______ .33.在平面直角坐标系x O y中,抛物线y2=4x的焦点到其准线的距离为 ______ .34.抛物线y2=4x上一点M到焦点的距离为5,则点M的横坐标为 ______ .35.抛物线y2=4x上横坐标为3的点P到焦点F的距离为 ______ .36.以抛物线y2=4x的焦点为顶点,顶点为中心,离心率为2的双曲线的渐近线方程为______ .37.已知点,点F为抛物线y2=2px(p>0)的焦点,点P是该抛物线上的一个动点.若|PF|+|PM|的最小值为5,则p的值为 ______ .38.若点A(-6,y)在抛物线y2=-8x上,F为抛物线的焦点,则AF的长度为 ______ .39.已知圆心C在抛物线y2=4x上且与准线相切,则圆C恒过定点 ______ .40.已知抛物线y2=8x的准线过双曲线的左焦点,且被双曲线解得的线段长为6,则双曲线的渐近线方程为 ______ .三、解答题(本大题共20小题,共240.0分)41.在平面直角坐标系x O y中,抛物线C:x2=2py(p>0)的焦点为F,过F的直线l交C 于A,B两点,交x轴于点D,B到x轴的距离比|BF|小1.(Ⅰ)求C的方程;(Ⅱ)若S△BOF=S△AOD,求l的方程.42.已知E(2,2)是抛物线C:y2=2px上一点,经过点D(2,0)的直线l与抛物线C 交于A,B两点(不同于点E),直线EA,EB分别交直线x=-2于点M,N(1)求抛物线方程及其焦点坐标,准线方程;(2)已知O为原点,求证:∠MON为定值.43.已知抛物线C:y2=2px(p>0)的焦点为F,直线y=2与y的轴的交点为P,与C的交点为Q,且|QF|=2|PQ|.(1)求C的方程;(2)边焦点F的直线l斜率为-1,判断C上是否存在两点M,N,使得M,N关于直线l 对称,若存在,求出|MN|,若不存在,说明理由.44.已知圆M:(x-a)2+(y-b)2=9,M在抛物线C:x2=2py(p>0)上,圆M过原点且与C的准线相切.(Ⅰ)求C的方程;(Ⅱ)点Q(0,-t)(t>0),点P(与Q不重合)在直线l:y=-t上运动,过点P作C 的两条切线,切点分别为A,B.求证:∠AQO=∠BQO(其中O为坐标原点).45.已知抛物线C:y2=2px(p>0)的焦点是F,点D(1,y0)是抛物线上的点,且|DF|=2.(I)求抛物线C的标准方程;(Ⅱ)过定点M(m,0)(m>0)的直线与抛物线C交于A,B两点,与y轴交于点N,且满足:=λ,=μ.(i)当m=时,求证:λ+μ为定值;(ii)若点R是直线l:x=-m上任意一点,三条直线AR,BR,MR的斜率分别为k AR,k BR,k MR,问是否存在常数t,使得.k AR+k BR=t•k MR.恒成立?若存在求出t的值;若不存在,请说明理由.46.已知抛物线C顶点在原点,焦点在y轴上,抛物线C上一点Q(a,2)到焦点的距离为3,线段AB的两端点A(x1,y1)、B(x2,y2)在抛物线C上.(1)求抛物线C的方程;(2)若y轴上存在一点M(0,m)(m>0),使线段AB经过点M时,以AB为直径的圆经过原点,求m的值;(3)在抛物线C上存在点D(x3,y3),满足x3<x1<x2,若△ABD是以角A为直角的等腰直角三角形,求△ABD面积的最小值.47.如图,O为坐标原点,点F为抛物线C1:x2=2py(p>0)的焦点,且抛物线C1上点M处的切线与圆C2:x2+y2=1相切于点Q.(Ⅰ)当直线MQ的方程为时,求抛物线C1的方程;(Ⅱ)当正数p变化时,记S1,S2分别为△FMQ,△FOQ的面积,求的最小值.48.如图是一座桥的截面图,桥的路面由三段曲线构成,曲线AB和曲线DE分别是顶点在路面A、E的抛物线的一部分,曲线BCD是圆弧,已知它们在接点B、D处的切线相同,若桥的最高点C到水平面的距离H=6米,圆弧的弓高h=1米,圆弧所对的弦长BD=10米.(1)求弧所在圆的半径;(2)求桥底AE的长.49.已知圆O:x2+y2=1和抛物线E:y=x2-2,O为坐标原点.(1)已知直线l和圆O相切,与抛物线E交于M,N两点,且满足OM⊥ON,求直线l的方程;(2)过抛物线E上一点P(x0,y0)作两直线PQ,PR和圆O相切,且分别交抛物线E于Q,R两点,若直线QR的斜率为,求点P的坐标.50.已知直线l过点P(2,0),斜率为,直线l和抛物线y2=2x相交于A,B两点,设线段AB的中点为M,求:(1)点M的坐标;(2)线段AB的长|AB|.51.已知动点P到点(,0)的距离比它到直线x=-的距离小2.(Ⅰ)求动点P的轨迹方程;(Ⅱ)记P点的轨迹为E,过点S(2,0)斜率为k1的直线交E于A,B两点,Q(1,0),延长AQ,BQ与E交于C,D两点,设CD的斜率为k2,证明:为定值.52.如右图抛物线顶点在原点,圆(x-2)2+y2=22的圆心恰是抛物线的焦点,(Ⅰ)求抛物线的方程;(Ⅱ)一直线的斜率等于2,且过抛物线焦点,它依次截抛物线和圆于A、B、C、D四点,求|AB|+|CD|的值.53.已知椭圆C的中心为原点O,焦点在x轴上,且经过点(Ⅰ)求椭圆C的标准方程;(Ⅱ)过抛物线y2=4x的焦点F的直线l与椭圆C交于不同两点M,N,且满足⊥,求直线l的方程.54.已知平面内一动点M到点F(1,0)距离比到直线x=-3的距离小2.设动点M的轨迹为C.(1)求曲线C的方程;(2)若过点F的直线l与曲线C交于A、B两点,过点B作直线:x=-1的垂线,垂足为D,设A(x1,y1),B(x2,y2).求证:①x1•x2=1,y1•y2=-4;②A、O、D三点共线(O为坐标原点).55.已知抛物线E:y2=2px(p>0)的焦点F,E上一点(3,m)到焦点的距离为4.(Ⅰ)求抛物线E的方程;(Ⅱ)过F作直线l,交抛物线E于A,B两点,若直线AB中点的纵坐标为-1,求直线l的方程.56.已知抛物线关于y轴对称,它的顶点在坐标原点,并且经过点M(,-2)(1)求抛物线的标准方程.(2)如果直线y=x+m与这个抛物线交于不同的两点,求m的取值范围.57.(1)已知抛物线y2=2px(p>0)的焦点在直线2x-y-4=0上,求p的值;(2)已知双曲线的渐近线方程为,准线方程为,求双曲线的标准方程.58.已知抛物线的顶点在原点,它的准线过双曲线的一个焦点,抛物线与双曲线交点为,求抛物线方程和双曲线方程.59.已知抛物线C:y2=4x的焦点为F,准线为l.⊙F与C交于A,B两点,与x轴的负半轴交于点P.(Ⅰ)若⊙F被l所截得的弦长为,求|AB|;(Ⅱ)判断直线PA与C的交点个数,并说明理由.60.已知动点M到点N(1,0)和直线l:x=-1的距离相等.(Ⅰ)求动点M的轨迹E的方程;(Ⅱ)已知不与l垂直的直线l'与曲线E有唯一公共点A,且与直线l的交点为P,以AP为直径作圆C.判断点N和圆C的位置关系,并证明你的结论.【答案】1.B2.D3.B4.C5.D6.C7.D8.D9.C 10.C 11.A 12.D 13.D 14.A 15 .D 16.B 17.B 18.C 19.D 20.D21.622.(0,2]23.24.y2=8x25.226.-127.28.x2=16y29.430.4或831.(x±1)2+(y-)2=132.1233.234.435.436.y=37.2或638.839.(1,0)40.y=±x41.解:(Ⅰ)解法一:抛物线C:x2=2py(p>0)的焦点为F(0,),C的准线方程为,(1分)由抛物线的定义,可知|BF|等于点B到C的准线的距离.(2分)又因为点B到x轴的距离比|BF|小1,所以点B到x轴的距离比点B到抛物线准线的距离小1,(3分)故,解得p=2,所以C的方程为x2=4y.(4分)解法二:C的焦点为,(1分)将代入x2=2py,得x=p或x=-p,故,因为点B到x轴的距离比|BF|小1,,即,(2分)解得p=2,所以C的方程为x2=4y,(3分)经检验,抛物线的方程x2=4y满足题意.(4分)(Ⅱ)由(Ⅰ)得C的焦点为F(0,1),设直线l的方程为y=kx+1(k≠0),A(x1,y1),B(x2,y2).则.(5分)联立方程组消去y,得x2-4kx-4=0.(6分)△=(-4k)2-4×1×(-4)=16k2+16>0,由韦达定理,得x1+x2=4k,x1x2=-4.(7分)设点O到直线l的距离为d,则,.又S△BOF=S△AOD,所以|BF|=|AD|.(8分)又A,B,D,F在同一直线上,所以,即,(9分)因为,(10分)所以,整理,得16k4+16k2-1=0,故,解得,(11分)所以l的方程为.(12分)42.解:(1)将E(2,2)代入y2=2px,得p=1,∴抛物线方程为y2=2x,焦点坐标为(,0),准线方程x=-;.…(3分)(2)证明:设A(,y1),B(,y2),M(x M,y M),N(x N,y N),因为直线l不经过点E,则直线l的斜率存在,设直线l方程为y=k(x-2),与抛物线方程联立得到,消去x,整理得:ky2-2y-4k=0,则由韦达定理得:y1+y2=,y1y2=-4,…(6分)直线AE的方程为:y-2=(x-2),即y=(x-2)+2,令x=-2,得y M=,…(9分)同理可得:y N=,…(10分)又∵=(-2,y M),=(-2,y N),则•=4+y M y N=4+×,=4+=4+=0…(13分)∴OM⊥ON,即∠MON为定值.…(14分).方法二:证明:设A(,y1),B(,y2),M(x M,y M),N(x N,y N),设直线l方程为x=my+2,于抛物线方程联立得,整理得:y2-2my-4=0,则由韦达定理得:y1+y2=2m,y1y2=-4,…(6分)直线AE的方程为:y-2=(x-2),即y=(x-2)+2,令x=-2,得y M=,…(9分)同理可得:y N=,…(10分)又∵=(-2,y M),=(-2,y N),则•=4+y M y N=4+×,=4+=4+=0…(13分)∴OM⊥ON,即∠MON为定值.…(14分)43.解:(1)设Q(x0,2),P(0,2)代入由y2=2px(p>0)中得x0=,所以|PQ|=,|QF|=+,由题设得+=2×,解得p=-2(舍去)或p=2.所以C的方程为y2=4x.(2)设直线l的方程为x+y-1=0,设M(x1,y1),N(x2,y2),则k MN=,MN的中点T的坐标为(,),∵M,N关于直线l对称,∴MN⊥l,∴=1①,∵中点T在直线l上,∴=-+1②,由①②可得y1+y2=4,y1y2=4,∴y1,y2是方程y2-4y+4=0的两个根,此方程有两个相等的根,∴C上不存在M,N,使得M,N关于直线l对称.44.解:(I)解法一:因为圆M的圆心在抛物线上且与抛物线的准线相切,且圆半径为3,故,(1分)因为圆过原点,所以a2+b2=9,所以,(2分)又a2=2pb,所以,(3分)因为p>0,所以p=4,所以抛物线C方程x2=8y.(4分)解法二:因为圆M的圆心在抛物线上且与抛物线的准线相切,由抛物线的定义,圆M必过抛物线的焦点,(1分)又圆M过原点,所以,(2分)又圆的半径为3,所以,又a2=2pb,(3分)又,得p2=16(p>0),所以p=4.所以抛物线C方程x2=8y.(4分)解法三:因为圆M与抛物线准线相切,所以,(1分)且圆过又圆过原点,故,可得,(3分)解得p=4,所以抛物线C方程x2=8y.(4分)(Ⅱ)解法一:设A(x1,y1),B(x2,y2),P(m,-t),C方程为,所以,(5分)∴抛物线在点A处的切线的斜率,所以切线PA方程为:,即,化简得,(6分)又因过点P(m,-t),故可得,,(7分)即,同理可得,(8分)所以x1,x2为方程x2-2mx-4t=0的两根,所以x1+x2=2m,x1x2=-4t,(9分)因为Q(0,-t),所以,(10分)化简=.(11分)所以∠AQO=∠BQO.(12分)解法二:依题意设点P(m,-t),设过点P的切线为y=k(x-m)-t,所以,所以x2-4kx+4km+4t=0,所以△=16k2-4(4km+4t)=0,即k2-km-t=0,(5分)不妨设切线PA、PB的斜率为k1、k2,点A(x1,y1),B(x2,y2),所以k1+k2=m,k1•k2=-t,又,所以,所以,(6分)所以x1=2k1,,即点,同理点,(7分)因为Q(0,-t),所以,同理,(9分)所以=+=,(11分)所以∠AQO=∠BQO.(12分)45.解:(I)∵点D(1,y0)是抛物线上的点,且|DF|=2.∴1+=2,解得p=2.∴抛物线C的标准方程为y2=4x.(II)证明:(i)设A(x1,y1),B(x2,y2),当m==1时,M(1,0),直线AB的斜率存在且不为0,可设直线AB的方程为:x=ty+1(t≠0),可得N.联立,可得:y2-4ty-4=0,∴y1+y2=4t,y1y2=-4.∵=λ,=μ,∴=λ(-y1),=μ(-y2),∴λ+μ=-1--1-=-2-=-2-=-1.为定值.(ii)先取特殊情况探索三条直线AR,BR,MR的斜率之间的关系,当AB⊥x轴时,设A(m,y0),B(m,-y0),R(-m,y3),则k AR=,k MR=,k BR=,则k AR+k BR=2•k MR.下面证明一般情况成立.设A(x1,y1),B(x2,y2),R(-m,y3),直线AB的斜率不等于0,可设直线AB的方程为:x=ty+m.联立,化为:y2-4ty-4m=0,∴y1+y2=4t,y1y2=-4m.则k AR=,k MR=,k BR=,则k AR+k BR=+=,又,.代入可得:k AR+k BR=,把y1+y2=4t,y1y2=-4m代入化简可得:k AR+k BR==2•k MR.综上可得:三条直线AR,BR,MR的斜率满足k AR+k BR=2•k MR.46.解:(1)设抛物线的C方程x2=2py(p>0),则焦点F(0,),准线方程:y=-,过点Q向准线l作垂线,垂足为Q1,由抛物线的定义可得:丨QF丨=丨QQ1丨,∴2-(-)=3,p=2,∴抛物线方程:x2=4y;(2)设直线AB的方程:y=kx+m,则,整理得:x2-4kx-4m=0,则x1+x2=4k,x1x2=-4m,由AB为直径的圆经过原点,则⊥,•=0,则x1x2+(kx1+m)(kx2+m)=(1+k2)x1x2+km(x1+x2)+m2=0∴(1+k2)×(-4m)+km×4k+m2=0,整理得m2-4m=0,解得:m=4或m=0,由m>0,则m=4,∴m的值4;(3)设直线AB的斜率为k,k>0,其方程y-y1=k(x-x1),即y=kx+y1-kx1,∴,整理得:x2-4kx+4kx1-4y1=0,∴x1+x2=4k,x2=-x1+4k,丨AB丨2=(1+k2)[(x1+x2)2-4x1x2]=(1+k2)[(x1+x2)2-4x1x2],=(1+k2)[(4k)2-4x1(-x1+4k)],=4(1+k2)(x12-4kx1+4k2),同理丨AD丨=4[1+(-)2][x12-4(-)x1+4(-)2],=4(1+)(x12+x1+),由丨AB丨=丨AD丨,则丨AB丨2=丨AD丨2,4(1+k2)(x12-4kx1+4k2),=4(1+)(x12+x1+),整理得:x1==k-,则丨AB丨2=4(1+k2)[(k-)2-4k(k-)+4k2]=4(1+k2)(k+)2,丨AB丨=2(k+),丨AD丨2=4(1+)[(k-)2+(k-)+]4(1+)(k+)2,丨AD丨=2(k+),∴△ABD面积S=×丨AB丨×丨AD丨=×2(k+)×2(k+),==2(k+)3≥2(2)3=16,当且仅当k=时,即k2=1,即k=1,取等号,∴△ABD面积的最小值16.47.解:(Ⅰ)设点,由x2=2py(p>0)得,,求导,而直线MQ的斜率为1,∴且,解得:.∴抛物线的标准方程:x2=4y;…(4分)(Ⅱ)因为点M处的切线方程为:,即,根据切线又与圆相切,得d=r,即,化简得,4p2=x04-4x02>0,解得:丨x0丨>2,由方程组,解得:Q(,),由丨PQ丨=丨x P-x Q丨=丨x0-丨=(x02-2),点F(0,)到切线PQ的距离d===,则S1=丨PQ丨•d=(x02-2),S1=丨OF丨•丨x Q丨=,∴====++3≥2+3,当且仅当=时,取“=”号,即x02=4+2,此时p=,所以的最小值为.…(12分)48.解:(1)设弧所在圆的半径为r(r>0),由题意得r2=52+(r-1)2,则r=13,即弧所在圆的半径为13米.…(4分)(2)以线段AE所在直线为x轴,线段AE的中垂线为y轴,建立如图的平面直角坐标系.∵H=6米,BD=10米,弓高h=1米,∴B(-5,5),D(5,5),C(0,6),设所在圆的方程为x2+(y-b)2=r2,(r>0),则,,∴弧的方程为x2+(y+7)2=169(5≤y≤6)…6分设曲线AB所在抛物线的方程为:y=a(x-m)2,…(8分)由点B(-5,5),在曲线AB上∴5=a(5+m)2, …(10分)又弧与曲线段AB在接点B处的切线相同,且弧在点B处的切线的斜率为,由y=a(x-m)2,y′=2a(x-m),2a(-5-m)=,2a(5+m)=-,…(12分)由 得m=-29,A(-29,0),E(29,0)∴桥底AE的长为58米;…(13分)答:(1)弧所在圆的半径为13米;(2)桥底AE的长58米.(答和单位各1分)…(14分)49.解:(1)设l:y=kx+b,M(x1,y1),N(x2,y2),由l和圆O相切,得.∴b2=k2+1.由消去y,并整理得x2-kx-b-2=0,∴x1+x2=k,x1x2=-b-2.由OM⊥ON,得,即x1x2+y1y2=0.∴x1x2+(kx1+b)(kx2+b)=0.∴,∴(1+k2)(-b-2)+k2b+b2=0,∴b2(-b-2)+(b2-1)b+b2=0.∴b2+b=0.∴b=-1或b=0(舍).当b=-1时,k=0,故直线l的方程为y=-1.(2)设P(x0,y0),Q(x1,y1),R(x2,y2),则.∴.设l QR:y-y0=k1(x-x0),由直线和圆相切,得,即.设l PR:y-y0=k2(x-x0),同理可得:.故k1,k2是方程的两根,故.由得,故x0+x1=k1.同理x0+x2=k2,则2x0+x1+x2=k1+k2,即.∴,解或.当时,;当时,y0=1.故或.50.解:(1)∵直线l过点P(2,0),斜率为,设直线的倾斜角为α,tanα=,sinα=,cosα=,∴直线l的参数方程为(t为参数)(*)∵直线l和抛物线相交,将直线的参数方程代入抛物线方程y2=2x中,整理得8t2-15t-50=0,且△=152+4×8×50>0,设这个一元二次方程的两个根为t1、t2,由根与系数的关系,得t1+t2=,t1t2=-,由M为线段AB的中点,根据t的几何意义,因为中点M所对应的参数为,将此值代入直线l的参数方程的标准形式中,得M(,).(2)|AB|=|t2-t1|==.51.(Ⅰ)解:∵动点P到点(,0)的距离比它到直线x=-的距离小2,∴动点P到点(,0)的距离与它到直线x=-的距离相等,∴动点P的轨迹是以点(,0)为焦点的抛物线,∴动点P的轨迹方程为y2=2x;(Ⅱ)证明:设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),则直线AB的方程为y=k1(x-2),代入抛物线方程中,得,∴y1+y2=,y1y2=-4直线AC,BD过点Q(1,0),同理可得y1y3=y2y4=-2,∴y3=-,,∴k2===-=2k1,∴=2.52.解:(Ⅰ)设抛物线方程为y2=2px(p>0),∵圆(x-2)2+y2=22的圆心恰是抛物线的焦点,∴p=4.∴抛物线的方程为:y2=8x;(Ⅱ)依题意直线AB的方程为y=2x-4设A(x1,y1),D(x2,y2),则,得x2-6x+4=0,∴x1+x2=6,|AD|=x1+x2+p=6+4=10.|AB|+|CD|=|AD|-|CB|=10-4=6.53.解:(Ⅰ)由题意可知设椭圆的标准方程:(a>b>0),则a=2,将A2(,)代入,则b=1,∴椭圆的标准方程为:;(Ⅱ)方法一:抛物线y2=4x的焦点F(1,0),设直线l的方程为x=my+1,M(x1,y1),N(x2,y2),由⊥,则x1x2+y1y2=0(*),由,消去x,得得(m2+4)y2+2my-3=0,△=16m2+48>0∴y1+y2=-,y1y2=-,①x1x2=(1+my1)(1+my2)=1+m(y1+y2)+m2y1y2;=1+m×(-)+m2(-),=,②(9分)将①②代入(*)式,得+(-)=0,解得m=±,存在直线l满足条件,且直线l的方程为2x-y-2=0或2x+y-2=0.方法二:当直线l的斜率不存在时,不满足题意;当直线l的斜率存在时,设其方程为y=k(x-1),与C1的交点为M(x1,y1),N(x2,y2).联立,消去y并整理得(1+4k2)x2-8k2x+4(k2-1)=0,于是x1+x2=,x1x2=.①∴y1y2=k2(x1-1)(x2-1)=k2[x1x2-(x1+x2)+1]=k2[-+1]=-.② 由⊥,则•=0,即x1x2+y1y2=0(*),将①②代入③式,得+(-)==0,解得k=±2,∴存在直线l满足条件,且直线l的方程为2x-y-2=0或2x+y-2=0.54.解:(1)根据题意,点M到点F(1,0)的距离比它到直线x=-3的距离小1,即点M到点F(1,0)的距离与其到直线x=-1的距离相等,则点M的轨迹为抛物线,且其焦点为F(1,0),准线为x=-1,则其轨迹方程为y2=4x;…(6分)(2)①联立直线x=my+1与抛物线的方程,可得y2-4my-4=0,∴y1•y2=-4,x1•x2=1 …(9分)②设D(-1,y2),则k AO-k OD===0,所以A、O、D三点共线.…(12分)55.解:(Ⅰ)法一:抛物线E:y2=2px(p>0)的焦点F的坐标为,由已知…(2分)解得P=2或P=-14∵P>0,∴P=2∴E的方程为y2=4x.…(4分)法二:抛物线E:y2=2px(p>0)的准线方程为,由抛物线的定义可知解得p=2∴E的方程为y2=4x.…(4分)(Ⅱ)法一:由(Ⅰ)得抛物线E的方程为y2=4x,焦点F(1,0)设A,B两点的坐标分别为A(x1,y1),B(x2,y2),则…(6分)两式相减.整理得∵线段AB中点的纵坐标为-1∴直线l的斜率…(10分)直线l的方程为y-0=-2(x-1)即2x+y-2=0…(12分)法二:由(1)得抛物线E的方程为y2=4x,焦点F(1,0)设直线l的方程为x=my+1由消去x,得y2-4my-4=0设A,B两点的坐标分别为A(x1,y1),B(x2,y2),∵线段AB中点的纵坐标为-1∴解得…(10分)直线l的方程为即2x+y-2=0…(12分)56.解:(1)因为抛物线关于y轴对称,它的顶点在坐标原点,并且经过点M(,-2),则抛物线的焦点在y的负半轴上,∴可设它的标准方程为:x2=-2py(p>0),又因为点M在抛物线上,则3=-2p×(-2),解得:p=,∴椭圆的标准方程:x2=-y;(2)将直线方程代入抛物线方程:,整理得2x2+x+m=0,则△=b2-4ac=3-8m>0,解得:m<,m的取值范围(-∞,).57.解:(1)抛物线y2=2px(p>0)的焦点坐标为(p,0),又焦点在直线2x-y-4=0上,∴2p-0-4=0,解得p=2,(2)由题意知双曲线标准方程为:+=1,(a,b>0).∴=,=,又c2=a2+b2,解得a=4,b=3,∴所求双曲线标准方程为-=158.解:由题设知,抛物线以双曲线的右焦点为焦点,准线过双曲线的左焦点,∴p=2c.设抛物线方程为y2=4cx,∵抛物线过点,6=4c•.∴c=1,故抛物线方程为y2=4x.又双曲线过,∴=1.又a2+b2=c2=1,∴a2=或a2=9(舍).∴b2=,故双曲线方程为:4x2-=1.59.解:(Ⅰ)抛物线C:y2=4x的焦点为F(1,0),∵⊙F被l所截得的弦长为,∴圆的半径为=3,∴⊙F的方程为(x-1)2+y2=9,与y2=4x联立可得A(2,2),B(2,-2),∴|AB|=4;(Ⅱ)(x-1)2+y2=9,令y=0,可得P(4,0),∵A(2,2),∴直线PA与C的交点个数为2.60.解:(Ⅰ)设动点M(x,y),由抛物线定义可知点M的轨迹E是以N(1,0)为焦点,直线l:x=-1为准线的抛物线,所以轨迹E的方程为y2=4x.(Ⅱ)点N在以PA为直径的圆C上.理由:由题意可设直线l':x=my+n,由可得y2-4my-4n=0(*),因为直线l'与曲线E有唯一公共点A,所以△=16m2+16n=0,即n=-m2.所以(*)可化简为y2-4my+4m2=0,所以A(m2,2m),令x=-1得,因为n=-m2,所以所以NA⊥NP,所以点N在以PA为直径的圆C上.【解析】1. 解:由题意,建立如图所示的坐标系,设抛物线方程为y=ax2(a<0),则将(,-h)代入可得a=-,∴该抛物线拱的面积为h×3h+==2h2,故选B.建立坐标系,设抛物线方程为y=ax2(a<0),将(,-h)代入可得a=-,该抛物线拱的面积为h×3h+,即可得出结论.解决该试题的关键是利用定积分表示出抛物线拱的面积,然后借助于定积分得到结论.2. 解:根据题意,抛物线y=2x2上,设P到准线的距离为d,则有|PF|=d,抛物线的方程为y=2x2,即x2=y,其准线方程为:y=-,分析可得:当P在抛物线的顶点时,d有最小值,即|PF|的最小值为,故选:D.根据题意,设P到准线的距离为d,则有|PF|=d,将抛物线的方程为标准方程,求出其准线方程,分析可得d的最小值,即可得答案.本题考查抛物线的几何性质,要先将抛物线的方程化为标准方程.3. 解:A代入抛物线方程可得p=2,∴抛物线方程为y2=4x,F(1,0),∵+=,∴BC经过AF的中点(1,1),设直线方程为x=my+1-m,代入抛物线方程y2=4x,可得y2-4my-4+4m=0,∴4m=2,∴m=,∴直线方程为x=y+,即2x-y-1=0,故选B.A代入抛物线方程可得p=2,可得抛物线的方程,+=,BC经过AF的中点(1,1),设直线方程为x=my+1-m,代入抛物线方程y2=4x,可得y2-4my-4+4m=0,利用韦达定理,求出m,即可得出结论.本题考查抛物线的方程,考查直线与抛物线位置关系的运用,考查向量知识,属于中档题.4. 解:抛物线y2=4x的焦点为F(1,0),假设直线AN的斜率k存在,设AB方程为:y=k(x-1),,整理得:k2x2-2(k2+2)x+k2=0设两交点为A(x2,y2),B(x1,y1),∵,则∠NBF=90°,∴(x1-1)(x1+1)+y12=0,∴x12+y12=1,∴x12+4x1-1=0(x1>0),∴x1=-2+,∵x1x2=1,∴x2=2+,∴|AF|-|BF|=(x2+1)-(x1+1)=4,故选C.设直线l的方程,代入抛物线方程,利用韦达定理及向量数量积的坐标运算,分别求得A和B点横坐标,根据抛物线的焦半径公式,即可求得则|AF|-|BF|.本题考查直线与抛物线的位置关系,考查抛物线的定义,考查学生分析解决问题的能力,属于中档题.5. 解:如图所示,NF=∵|NF|=2|PF|,∴PM=PF=,由得x P=p∵PM∥NF,∴,∴s△NPT:s△NFT=1:2,∵△PNT的面积为,∴△PNF的面积为3×=9由,得,∵在抛物线y2=2px(p>0)上,即,解得p=.故选:D由NF|=2|PF|,得x P=p,由,得s△NPT:s△NFT=1:2,由,得,,点P在抛物线y2=2px(p>0)上,即,解得p.6. 解:如图,点A在第一象限.过A、B分别作抛物线的垂线,垂足分别为D、E,过A作EB的垂线,垂足为C,则四边形ADEC为矩形.由抛物线定义可知|AD|=|AF|,|BE|=|BF|,又∵|AF|=2|BF|,∴|AD|=|CE|=2|BE|,即B为CE中点,∴|AB|=3|BC|,在R t△ABC中,|AC|=2|BC|,∴直线l的斜率为=2;当点B在第一象限时,同理可知直线l的斜率为-2,∴直线l的斜率为±2,故选:C.当点A在第一象限,通过抛物线定义及|AF|=2|BF|可知B为CE中点,通过勾股定理可知|AC=2|BC|,进而计算可得结论.本题考查抛物线的简单性质,注意解题方法的积累,属于中档题.7. 解:抛物线C:y2=2px(p>0)的焦点F(,0),过A和B分别做准线的垂线,垂足分别为A′,B′,则直线AB的方程:y=(x-)设A(x1,y1),B(x2,y2),,整理得:y2-py-p2=0,则y1+y2=p,y1y2=-p2,设=λ,(-x1,-y1)=(x2-,y2),则-y1=λy2,由=++2=-,∴-λ-+2=-,整理得:λ2-17λ+4=0,解得:λ=4或λ=,当λ=4时,丨AF丨=4丨BF丨,则丨AB丨=5丨BF丨,由抛物线的定义可知:丨BF丨=丨BB′丨,由直线AB的斜率为,则sin∠∠BDB′=,即sin∠BDB′==,∴丨BD丨=丨BB′丨=丨BF丨,丨AD丨=丨AB丨+丨BD丨=,∴的值4,当λ=,4丨AF丨=丨BF丨,则丨AB丨=5丨AF丨,由抛物线的定义可知:丨AF丨=丨AB′丨,由直线AB的斜率为,则sin∠∠ADF′=,即sin∠ADF′==,∴丨AD丨=丨AB′丨=丨AF丨,丨BD丨=丨AB丨+丨AD丨=,∴的值,故选D.设抛物线方程,代入椭圆方程,设=λ,根据向量数量积的坐标运算,即可求得λ的值,分类讨论,根据抛物线的定义及相似性,即可求得丨BD丨及丨AD丨,即可求得的值.本题考查直线与抛物线的位置关系,考查韦达定理,向量的坐标运算,考查数形结合思想,考查计算能力,属于中档题.8. 解:由y2=4x,得F(1,0),设AB所在直线方程为y=k(x-1),联立y2=4x,得k2x2-(2k2+4)x+k2=0.∵|AB|=,∴2++2=,∵倾斜角为钝角,∴k=-,故选D.由题意设出直线AB的方程,联立直线和抛物线方程,利用韦达定理,结合弦长公式得答案.本题考查了抛物线的简单几何性质,考查了抛物线的定义,考查了学生的计算能力,是中档题.9. 解:由抛物线x2=2py(P>0)的焦点F(0,),等边三角形的一个顶点位于抛物线x2=2py(P>0)的焦点,另外两个顶点在抛物线上,则等边三角形关于x轴轴对称两个边的斜率k=±tan60°=±,其方程为:y=±x+,每条直线与抛物线均有两个交点,焦点两侧的两交点连接,分别构成一个等边三角形.满足条件的三角形ABC的个数为2,故选C.由题意可知:x2=2py(P>0)的焦点F(0,),则两个边的斜率k=±tan60°=±,其方程为:y=±x+,每条直线与抛物线均有两个交点,焦点两侧的两交点连接,分别构成一个等边三角形.满足条件的三角形ABC的个数为2,本题主要考查了抛物线的简单性质.主要是利用抛物线和正三角形的对称性,考查数形结合思想,属于基础题.10. 解:抛物线C:y2=4x的焦过抛物线的焦点,过N做NN′⊥准线x=-1,垂足为N′,由抛物线的定义,丨NN′丨=丨NF丨,由∠N′NM与直线l倾斜角相等,由,则cos∠N′NM==,则tan∠N′NM=±,∴直线l的斜率k=±,故选:C.由题意可知直线l过抛物线的焦点,由∠N′NM与直线l倾斜角相等,根据抛物线的定义即可求得tan∠N′NM,即可求得k的值.本题考查直线与抛物线的位置关系,抛物线的定义,考查数形结合思想,属于中档题.11. 解:由题意得F(,0),准线为x=-,设双曲线的一条渐近线为y=x,则点A (,),由抛物线的定义得|PF|等于点A到准线的距离,即=+,∴=1,e==,故选A.求出抛物线的焦点坐标和准线方程,利用抛物线的定义得到=+,利用离心率的定义求得双曲线的离心率.本题考查抛物线的定义和双曲线、抛物线的标准方程,以及双曲线、抛物线的简单性质的应用,利用抛物线的定义得到=+,是解题的关键.12. 解:如图,设A,B两点的抛物线的准线上的射影分别为A′,B′,过B作AA′的垂线BH,在三角形ABH中,∠BAH等于直线AB的倾斜角,其正切值即为丨k值,由抛物线的定义可知:设|BF|=n,B为AD中点,根据抛物线的定义可知:丨AF丨=丨AA′丨,丨BF丨=丨BB′丨,丨BB′丨=丨AA′丨,可得2|BF|=|AA′|,即|AF|=2|BF|,∴|AF|=2n,|AA′|=2n,|BF|=n,∴|AH|=n,在直角三角形ABH中,tan∠BAH===2,则直线l的斜率k=2;同理求得:直线l的斜率k=-2;故选:D.在三角形ABH中,∠BAH等于直线AB的倾斜角,其正切值即为k值,利用在直角三角形ABN中,tan∠BAH=,从而得出直线AB的斜率.本题主要考察了直线与抛物线的位置关系,抛物线的简单性质,特别是焦点弦问题,解题时要善于运用抛物线的定义解决问题,属于中档题.13. 解:双曲线的右焦点为(5,0)由题意,设抛物线方程为y2=2px(p>0)∵抛物线的焦点为双曲线的右焦点∴∴p=10所以抛物线方程为y2=20x故选D.先求双曲线的焦点坐标,再假设抛物线的方程,利用抛物线的焦点为双曲线的右焦点,可求抛物线方程.本题以双曲线的标准方程为载体,考查双曲线的焦点坐标,考查待定系数法求抛物线的标准方程,属于基础题.14. 解:依题意知抛物线的准线x=-2,代入双曲线方程得y=±•,不妨设A(-2,).∵△FAB是等腰直角三角形,∴=p=4,求得a=,∴双曲线的离心率为e====3,故选:A.先求解准线方程,代入双曲线方程求得y,根据双曲线的对称性可知△FAB为等腰直角三角形,进而可求得A或B的纵坐标为4,进而求得a,利用a,b和c的关系求得c,则双曲线的离心率可得.本题主要考查了双曲线的简单性质.解题的关键是通过双曲线的对称性质判断出△FAB 为等腰直角三角形,属于中档题.15. 解:由y2=4x,则焦点F(1,0),设AB所在直线方程为y=k(x-1),联立y2=4x,得k2x2-(2k2+4)x+k2=0.设A(x1,y1),B(x2,y2),则x1+x2=2+,∵|AB|=,∴2++2=,解得:k=±,∵倾斜角为钝角,∴k=-,故选D.由题意设出直线AB的方程,联立直线和抛物线方程,利用韦达定理,结合弦长公式得答案.本题考查了抛物线的简单几何性质,考查了抛物线的定义,考查了学生的计算能力,是。

压轴题06 解析几何压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用)

压轴题06 解析几何压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用)

压轴题06解析几何压轴题题型/考向一:直线与圆、直线与圆锥曲线题型/考向二:圆锥曲线的性质综合题型/考向三:圆锥曲线的综合应用一、直线与圆、直线与圆锥曲线热点一直线与圆、圆与圆的位置关系1.直线与圆的位置关系:相交、相切和相离.判断方法:(1)点线距离法(几何法).(2)判别式法:设圆C:(x-a)2+(y-b)2=r2,直线l:Ax+By+C=0(A2+B2≠0),+By+C=0,x-a)2+(y-b)2=r2,消去y,得到关于x的一元二次方程,其根的判别式为Δ,则直线与圆相离⇔Δ<0,直线与圆相切⇔Δ=0,直线与圆相交⇔Δ>0.2.圆与圆的位置关系,即内含、内切、相交、外切、外离.热点二中点弦问题已知A(x1,y1),B(x2,y2)为圆锥曲线E上两点,AB的中点C(x0,y0),直线AB 的斜率为k.(1)若椭圆E的方程为x2a2+y2b2=1(a>b>0),则k=-b2a2·x0y0;(2)若双曲线E的方程为x2a2-y2b2=1(a>0,b>0),则k=b2a2·x0y0;(3)若抛物线E的方程为y2=2px(p>0),则k=py0.热点三弦长问题已知A(x1,y1),B(x2,y2),直线AB的斜率为k(k≠0),则|AB|=(x1-x2)2+(y1-y2)2=1+k2|x1-x2|=1+k2(x1+x2)2-4x1x2或|AB|=1+1k2|y1-y2|=1+1k2(y1+y2)2-4y1y2.热点四圆锥曲线的切线问题1.直线与圆锥曲线相切时,它们的方程组成的方程组消元后所得方程(二次项系数不为零)的判别式为零.2.椭圆x2a2+y2b2=1(a>b>0)在(x0,y0)处的切线方程为x0xa2+y0yb2=1;双曲线x2a2-y2b2=1(a>0,b>0)在(x0,y0)处的切线方程为x0xa2-y0yb2=1;抛物线y2=2px(p>0)在(x0,y0)处的切线方程为y0y=p(x+x0).热点五直线与圆锥曲线位置关系的应用直线与圆锥曲线位置关系的判定方法(1)联立直线的方程与圆锥曲线的方程.(2)消元得到关于x或y的一元二次方程.(3)利用判别式Δ,判断直线与圆锥曲线的位置关系.二、圆锥曲线的性质综合热点一圆锥曲线的定义与标准方程1.圆锥曲线的定义(1)椭圆:|PF1|+|PF2|=2a(2a>|F1F2|).(2)双曲线:||PF1|-|PF2||=2a(0<2a<|F1F2|).(3)抛物线:|PF|=|PM|,l为抛物线的准线,点F不在定直线l上,PM⊥l于点M.2.求圆锥曲线标准方程“先定型,后计算”所谓“定型”,就是确定曲线焦点所在的坐标轴的位置;所谓“计算”,就是指利用待定系数法求出方程中的a2,b2,p的值.热点二椭圆、双曲线的几何性质1.求离心率通常有两种方法(1)椭圆的离心率e=ca=1-b2a2(0<e<1),双曲线的离心率e=ca=1+b2a2(e>1).(2)根据条件建立关于a,b,c的齐次式,消去b后,转化为关于e的方程或不等式,即可求得e的值或取值范围.2.与双曲线x2a2-y2b2=1(a>0,b>0)共渐近线的双曲线方程为x2a2-y2b2=λ(λ≠0).热点三抛物线的几何性质抛物线的焦点弦的几个常见结论:设AB是过抛物线y2=2px(p>0)的焦点F的弦,若A(x1,y1),B(x2,y2),α是弦AB的倾斜角,则(1)x1x2=p24,y1y2=-p2.(2)|AB|=x1+x2+p=2psin2α.(3)1|FA|+1|FB|=2p.(4)以线段AB为直径的圆与准线x=-p2相切.三、圆锥曲线的综合应用求解范围、最值问题的常见方法(1)利用判别式来构造不等关系.(2)利用已知参数的范围,在两个参数之间建立函数关系.(3)利用隐含或已知的不等关系建立不等式.(4)利用基本不等式.○热○点○题○型一直线与圆、直线与圆锥曲线一、单选题1.过圆224x y +=上的动点作圆221x y +=的两条切线,则连接两切点线段的长为()A .2B .1C 32D 3【答案】D【详解】令点P 是圆224x y +=上的动点,过点P 作圆221x y +=的两条切线,切点分别为A ,B ,如图,则OA PA ⊥,而1||||12OA OP ==,于是260APB OPA ∠=∠= ,又||||3PB PA ==,因此PAB 为正三角形,||||3AB PA ==,所以连接两切点线段的长为3.故选:D2.过抛物线:()的焦点的直线交抛物线于,两点,若2AF BF AB ⋅=,则抛物线C 的标准方程是()A .28y x=B .26y x=C .24y x=D .22y x=3.若直线0x y a +-=与曲线A .[12,12]-+B .(1C .[2,12)+D .(1【答案】B4.已知抛物线22y px =的焦点为4x =A .4B .42C .8D .【答案】D5.已知抛物线2:2(0)C y px p =>的焦点为F ,准线为l ,过FC 交于A ,B 两点,D 为AB 的中点,且DM l ⊥于点M ,AB 的垂直平分线交x 轴于点N ,四边形DMFN的面积为,则p =()A.B .4C.D.因为30DN DF DFN ⊥∠=︒,,故223DF DE p ==,FN6.已知圆22:4C x y +=,直线l经过点3,02P ⎛⎫⎪⎝⎭与圆C 相交于A ,B 两点,且满足关系OM =(O 为坐标原点)的点M 也在圆C 上,则直线l 的斜率为()A .1B .1±C .D .±故选:D.7.已知椭圆()222210x y a b a b+=>>的上顶点为B ,斜率为32的直线l 交椭圆于M ,N 两点,若△BMN 的重心恰好为椭圆的右焦点F ,则椭圆的离心率为()A .22BC .12D8.已知双曲线()22:10,0C a b a b-=>>的左、右焦点分别为1F ,2F ,直线y =与C的左、右两支分别交于A ,B 两点,若四边形12AF BF 为矩形,则C 的离心率为()AB .3C1D 1+二、多选题9.在平面直角坐标系xOy 中,已知圆()()()222:210C x y r r -+-=>,过原点O 的直线l 与圆C 交于A ,B 两点,则()A .当圆C 与y 轴相切,且直线l 的斜率为1时,2AB =B .当3r =时,存在l ,使得CA CB⊥C .若存在l ,使得ABC 的面积为4,则r 的最小值为D .若存在两条不同l ,使得2AB =,则r 的取值范围为()1,3故选:BC10.已知0mn ≠,曲线22122:1x y E m n +=,曲线22222:1x y E m n-=,直线:1x y l m n +=,则下列说法正确的是()A .当3n m =时,曲线1E 离心率为3B .当3n m =时,曲线2E 离心率为103C .直线l 与曲线2E 有且只有一个公共点D .存在正数m ,n ,使得曲线1E 截直线l11.已知抛物线:4C x y =,过焦点F 的直线l 与交于1122两点,1与F 关于原点对称,直线AB 和直线AE 的倾斜角分别是,αβ,则()A .cos tan 1αβ⋅>B .AEF BEF∠=∠C .90AEB ∠>︒D .π22βα-<【答案】BD【详解】作AD y ⊥轴于D ,作BC y ⊥轴于C ,则,DAF DAEαβ=∠=∠由()()1122,,,A x y B x y ,则()()120,,0,D y C y ,故选:BD.12.已知双曲线22:145x y C -=的左、右焦点分别为12,F F ,过点2F 的直线与双曲线C 的右支交于,A B 两点,且1AF AB ⊥,则下列结论正确的是()A .双曲线C 的渐近线方程为2y x =±B .若P 是双曲线C 上的动点,则满足25PF =的点P 共有两个C .12AF =D .1ABF 2○热○点○题○型二圆锥曲线的性质综合一、单选题1.设1F ,2F 分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过2F 的直线交双曲线右支于A ,B 两点,若1123AF BF =,且223AF BF =,则该双曲线的离心率为()A B .2C D .32.已知双曲线()22:10,0C a b a b-=>>的左、右焦点分别为1F ,2F ,12F F =P为C 上一点,1PF 的中点为Q ,2PF Q △为等边三角形,则双曲线C 的方程为().A .2212y x -=B .2212x y -=C .2222133x y -=D .223318y x -=A .6B .3或C .D .或4.已知双曲线221(0,0)a b a b-=>>的实轴为4,抛物线22(0)y px p =>的准线过双曲线的左顶点,抛物线与双曲线的一个交点为(4,)P m ,则双曲线的渐近线方程为()A .y x =B .y =C .23y x =±D .4y x =±故选:A5.2022年卡塔尔世界杯会徽(如图)正视图近似伯努利双纽线.在平面直角坐标系xOy中,把到定点()1,0F a -,()2,0F a 距离之积等于()20a a >的点的轨迹称为双纽线.已知点00(,)P x y 是双纽线C 上一点,有如下说法:①双纽线C 关于原点O 中心对称;②022a a y -≤≤;③双纽线C 上满足12PF PF =的点P 有两个;④PO .其中所有正确的说法为()A .①②B .①③C .①②③D .①②④6.如图所示,1F ,2F 是双曲线22:1(0,0)C a b a b-=>>的左、右焦点,双曲线C 的右支上存在一点B 满足12BF BF ⊥,1BF 与双曲线C 的左支的交点A 平分线段1BF ,则双曲线C 的离心率为()A .3B .C D7.已知椭圆1和双曲线2的焦点相同,记左、右焦点分别为1,2,椭圆和双曲线的离心率分别为1e ,2e ,设点P 为1C 与2C 在第一象限内的公共点,且满足12PF k PF =,若1211e e k =-,则k 的值为()A .3B .4C .5D .6个焦点射出的光线,经椭圆反射,其反射光线必经过椭圆的另一焦点.设椭圆()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,若从椭圆右焦点2F 发出的光线经过椭圆上的点A 和点B 反射后,满足AB AD ⊥,且3cos 5ABC ∠=,则该椭圆的离心率为().A .12B 22C D则113cos 5AB ABF BF ∠==,sin ABF ∠可设3AB k =,14AF k =,1BF =由1122AB AF BF AF BF AF ++=++二、多选题9.已知曲线E :221mx ny -=,则()A .当0mn >时,E 是双曲线,其渐近线方程为y =B .当0n m ->>时,E 是椭圆,其离心率为eC .当0m n =->时,E 是圆,其圆心为()0,0D .当0m ≠,0n =时,E是两条直线x =10.2022年卡塔尔世界杯会徽(如图)的正视图可以近似看成双纽线,在平面直角坐标系中,把到定点()1,0F a -和()2,0F a 距离之积等于()20a a >的点的轨迹称为双纽线,已知点()00,P x y 是双纽线C 上一点,则下列说法正确的是()A .若12F PF θ∠=,则12F PF △的面积为sin 2aθB .022a a y -≤≤C .双纽线C 关于原点O 对称D .双纽线上C 满足12PF PF =的点P 有三个【答案】BC11.已知椭圆()2:1039C b b+=<<的左、右焦点分别为1F 、2F ,点2M在椭圆内部,点N 在椭圆上,椭圆C 的离心率为e ,则以下说法正确的是()A .离心率e 的取值范围为0,3⎛ ⎝⎭B .存在点N ,使得124NF NF =C .当6e =时,1NF NM +的最大值为62+D .1211NF NF +的最小值为1如上图示,当且仅当2,,M N F12.已知P ,Q 是双曲线221x y a b-=上关于原点对称的两点,过点P 作PM x ⊥轴于点M ,MQ 交双曲线于点N ,设直线PQ 的斜率为k ,则下列说法正确的是()A .k 的取值范围是b bk a a-<<且0k ≠B .直线MN 的斜率为2kC .直线PN 的斜率为222b kaD .直线PN 与直线QN 的斜率之和的最小值为ba2222PN QNb k b k k ka a +=+≥,当且仅当但PN QN k k ≠,所以等号无法取得,选项○热○点○题○型三圆锥曲线的综合应用1.已知椭圆()2222:10x y C a b a b+=>>2倍,且右焦点为()1,0F .(1)求椭圆C 的标准方程;(2)直线():2l y k x =+交椭圆C 于A ,B 两点,若线段AB 中点的横坐标为23-.求直线l 的方程.【详解】(1)由椭圆C 的长轴长是短轴长的2倍,可得2a b =.所以()2222bb c =+.又()1,0F ,所以()2221bb =+,解得1b =.所以2a =.所以椭圆C 的标准方程为2212x y +=.(2)设()11,A x y ,()22,B x y ,由()22122x y y k x ⎧+=⎪⎨⎪=+⎩,得()2222218820k x k x k +++-=.则2122821k x x k -+=+,21228221k x x k -=+.因为线段AB 中点的横坐标为23-,所以2122422213x x k k +-==-+.2.已知抛物线:2=2的焦点为(1,0),过的直线交抛物线于,两点,直线AO,BO分别与直线m:x=-2相交于M,N两点.(1)求抛物线C的方程;(2)求证:△ABO与△MNO的面积之比为定值.3.已知双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,右焦点F 到其中一条渐近线的距离(1)求双曲线C 的标准方程;(2)(2)过右焦点F 作直线AB 交双曲线于,A B 两点,过点A 作直线1:2l x =的垂线,垂足为M ,求证直线MB 过定点.4.如图,平面直角坐标系中,直线l 与轴的正半轴及轴的负半轴分别相交于两点,与椭圆22:143x y E +=相交于,A M 两点(其中M 在第一象限),且,QP PM N = 与M关于x 轴对称,延长NP 交㮋圆于点B .(1)设直线,AM BN 的斜率分别为12,k k ,证明:12k k 为定值;(2)求直线AB 的斜率的最小值.5.已知双曲线C :221a b-=(0a >,0b >)的右焦点为F ,一条渐近线的倾斜角为60°,且C 上的点到F 的距离的最小值为1.(1)求C 的方程;(2)设点()0,0O ,()0,2M ,动直线l :y kx m =+与C 的右支相交于不同两点A ,B ,且AFM BFM ∠=∠,过点O 作OH l ⊥,H 为垂足,证明:动点H 在定圆上,并求该圆的方程.。

抛物线【九大题型】(举一反三)(新高考专用)(解析版)—2025年高考数学一轮复习

抛物线【九大题型】(举一反三)(新高考专用)(解析版)—2025年高考数学一轮复习

抛物线【九大题型】专练【题型1 抛物线的定义及其应用】........................................................................................................................3【题型2 抛物线的标准方程】................................................................................................................................5【题型3 抛物线的焦点坐标及准线方程】............................................................................................................6【题型4 抛物线的轨迹方程】................................................................................................................................7【题型5 抛物线上的点到定点的距离及最值】....................................................................................................9【题型6 抛物线上的点到定点和焦点距离的和、差最值】..............................................................................11【题型7 抛物线的焦半径公式】..........................................................................................................................14【题型8 抛物线的几何性质】..............................................................................................................................16【题型9 抛物线中的三角形(四边形)面积问题】 (18)1、抛物线【知识点1 抛物线及其性质】1.抛物线的定义(1)定义:平面内与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨迹叫作抛物线.点F叫作抛物线的焦点,直线l叫作抛物线的准线.(2)集合语言表示设点M(x,y)是抛物线上任意一点,点M到直线l的距离为d,则抛物线就是点的集合P={M||MF|=d}.2.抛物线的标准方程与几何性质(0,0)(0,0)3.抛物线与椭圆、双曲线几何性质的差异抛物线与椭圆、双曲线几何性质的差异:①它们都是轴对称图形,但椭圆和双曲线又是中心对称图形;②顶点个数不同,椭圆有4个顶点,双曲线有2个顶点,抛物线只有1个顶点;③焦点个数不同,椭圆和双曲线各有2个焦点,抛物线只有1个焦点;④离心率取值范围不同,椭圆的离心率范围是0<e<1,双曲线的离心率范围是e>1,抛物线的离心率是e=1;⑤椭圆和双曲线都有两条准线,而抛物线只有一条准线;⑥椭圆是封闭式曲线,双曲线和抛物线都是非封闭式曲线.【知识点2 抛物线标准方程的求解方法】1.抛物线标准方程的求解待定系数法:求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p,只需一个条件就可以确定抛物线的标准方程.【知识点3 抛物线的焦半径公式】1.焦半径公式设抛物线上一点P的坐标为,焦点为F.(1)抛物线:;(2)抛物线:(3)抛物线:;(4)抛物线:.注:在使用焦半径公式时,首先要明确抛物线的标准方程的形式,不同的标准方程对应于不同的焦半径公式.【知识点4 与抛物线有关的最值问题的解题策略】1.与抛物线有关的最值问题的两个转化策略(1)转化策略一:将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”“三角形两边之和大于第三边”,使问题得以解决.(2)转化策略二:将抛物线上的点到焦点的距离转化为到准线的距离,利用“与直线上所有点的连线中垂线段最短”原理解决.【方法技巧与总结】1.通径:过焦点与对称轴垂直的弦长等于2p.2.抛物线P,也称为抛物线的焦半径.【题型1 抛物线的定义及其应用】【例1】(2024·贵州贵阳·二模)抛物线y2=4x上一点M与焦点间的距离是10,则M到x轴的距离是()A.4B.6C.7D.9【解题思路】借助抛物线定义计算即可得.【解答过程】抛物线y2=4x的准线为x=―1,由抛物线定义可得x M+1=10,故x M=10―1=9,则|y M|===6,即M到x轴的距离为6.故选:B.【变式1-1】(2024·河北·模拟预测)已知点P为平面内一动点,设甲:P的运动轨迹为抛物线,乙:P到平面内一定点的距离与到平面内一定直线的距离相等,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【解题思路】根据已知条件,结合充分条件、必要条件的定义,即可求解.【解答过程】解:当直线经过定点时,点的轨迹是过定点且垂直于该直线的另一条直线,当直线不经过该定点时,点的轨迹为抛物线,故甲是乙的充分条件但不是必要条件.故选:A.【变式1-2】(2024·北京大兴·三模)已知抛物线y2=4x的焦点为F,过F且斜率为―1的直线与直线x=―1交于点A,点M在抛物线上,且满足|MA|=|MF|,则|MF|=()A.1B C.2D.【解题思路】由题意先求出过F且斜率为―1的直线方程,进而可求出点A,接着结合点M在抛物线上且|MA|=|MF|可求出x M,从而根据焦半径公式|MF|=x M+1即可得解.【解答过程】由题意可得F(1,0),故过F且斜率为―1的直线方程为y=―(x―1)=―x+1,令x=―1⇒y=2,则由题A(―1,2),因为|MA|=|MF|,所以MA垂直于直线x=―1,故y M=2,又M 在抛物线上,所以由22=4x M ⇒x M =1,所以|MF |=x M +1=2.故选:C.【变式1-3】(2024·福建莆田·模拟预测)若抛物线C 的焦点到准线的距离为3,且C 的开口朝左,则C 的标准方程为( )A .y 2=―6xB .y 2=6xC .y 2=―3xD .y 2=3x【解题思路】根据开口设抛物线标准方程,利用p 的几何意义即可求出.【解答过程】依题意可设C 的标准方程为y 2=―2px(p >0),因为C 的焦点到准线的距离为3,所以p =3,所以C 的标准方程为y 2=―6x .故选:A.【题型2 抛物线的标准方程】【例2】(2024·山东菏泽·模拟预测)已知点A (a,2)为抛物线x 2=2py (p >0)上一点,且点A 到抛物线的焦点F 的距离为3,则p =( )A .12B .1C .2D .4【解题思路】由题意,根据抛物线的性质,抛物线x 2=2py (p >0),则抛物线焦点为F 0,M (x 1,y 1)为 抛物线上一点,有|MF |=y 1+p 2,可得|AF |=2+p2=3,解得p =2.【解答过程】因为抛物线为x 2=2py (p >0),则其焦点在y 轴正半轴 上,焦点坐标为由于点A (a,2)为抛物线x 2=2py ,(p >0)为上一点,且点A 到抛物线的焦点F 的距离为3, 所以点A 到抛物线的焦点F 的距离为|AF |=2+p2=3,解得p =2,故选:C.【变式2-1】(2024·陕西安康·模拟预测)过点(2,―3),且焦点在y 轴上的抛物线的标准方程是( )A .x 2=―3yB .x 2=―43yC .x 2=―23yD .x 2=―4y【解题思路】利用待定系数法,设出抛物线方程,把点代入求解即可.【解答过程】设抛物线的标准方程为x 2=ay (a ≠0),将点点(2,―3)代入,得22=―3a,解得a=―43,所以抛物线的标准方程是x2=―43y.故选:B.【变式2-2】(2024·新疆·三模)已知抛物线y2=2px(p>0)上任意一点到焦点F的距离比到y轴的距离大1,则抛物线的标准方程为()A.y2=x B.y2=2x C.y2=4x D.y2=8x【解题思路】根据抛物线的定义求解.【解答过程】由题意抛物线y2=2px(p>0)上任意一点到焦点F的距离与它到直线x=―1的距离相,因此―p2=―1,p=2,抛物线方程为y2=4x.故选:C.【变式2-3】(2024·宁夏石嘴山·三模)如图,过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于两点A、B,交其准线于C,AE与准线垂直且垂足为E,若|BC|=2|BF|,|AE|=3,则此抛物线的方程为()A.y2=3x2B.y2=9xC.y2=9x2D.y2=3x【解题思路】过点A,B作准线的垂线,设|BF|=a,得到|AC|=3+3a,结合抛物线的定义,求得a=1,再由BD//FG,列出方程求得p的值,即可求解.【解答过程】如图所示,分别过点B作准线的垂线,垂足为D,设|BF|=a,则|BC|=2|BF|=2a,由抛物线的定义得|BD|=|BF|=a,在直角△BCD中,可得sin∠BCD=|BD||BC|=12,所以∠BCD=30∘,在直角△ACE中,因为|AE|=3,可得|AC|=3+3a,由|AC |=2|AE |,所以3+3a =6,解得a =1,因为BD //FG ,所以1p =2a3a ,解得p =32,所以抛物线方程为y 2=3x .故选:C.【题型3 抛物线的焦点坐标及准线方程】【例3】(2024·内蒙古赤峰·二模)已知抛物线C 的方程为 x =―116y 2, 则此抛物线的焦点坐标为( )A .(-4,0)B .―14,C .(-2,0)D .―12,【解题思路】由抛物线的几何性质求解.【解答过程】依题意得:y 2=―16x ,则此抛物线的焦点坐标为:―4,0,故选:A.【变式3-1】(2024·黑龙江大庆·模拟预测)已知抛物线C:y =6x 2,则C 的准线方程为( )A .y =―32B .y =32C .y =―124D .y =124【解题思路】根据抛物线的准线方程直接得出结果.【解答过程】抛物线C :y =6x 2的标准方程为x 2=16y ,所以其准线方程为y =―124.故选:C.【变式3-2】(2024·河南·三模)抛物线y 2=―28x 的焦点坐标为( )A .(0,―14)B .(0,―7)C .(―14,0)D .(―7,0)【解题思路】根据抛物线的标准方程直接得出结果.【解答过程】∵2p =28,∴p =14,∴抛物线y 2=―28x 的焦点坐标为(―7,0).故选:D.【变式3-3】(2024·福建厦门·模拟预测)若抛物线y 2=mx 的准线经过双曲线x 2―y 2=2的右焦点,则m的值为()A.―4B.4C.―8D.8【解题思路】根据题意,分别求得双曲线的右焦点以及抛物线的准线方程,代入计算,即可得到结果.【解答过程】因为双曲线x2―y2=2的右焦点为(2,0),又抛物线y2=mx的准线方程为x=―m4,则―m4=2,即m=―8.故选:C.【题型4 抛物线的轨迹方程】【例4】(2024·湖南衡阳·三模)已知点F(2,0),动圆P过点F,且与x=―2相切,记动圆圆心P点的轨迹为曲线Γ,则曲线Γ的方程为()A.y2=2x B.y2=4x C.y2=8x D.y2=12x【解题思路】分析题意,利用抛物线的定义判断曲线是抛物线,再求解轨迹方程即可.【解答过程】由题意知,点P到点F的距离和它到直线x=―2的距离相等,所以点P的轨迹是以(2,0)为焦点的抛物线,所以Γ的方程为y2=8x,故C正确.故选:C.【变式4-1】(23-24高二上·北京延庆·期末)到定点F(1,0)的距离比到y轴的距离大1的动点且动点不在x轴的负半轴的轨迹方程是()A.y2=8x B.y2=C.y2=2x D.y2=x【解题思路】根据抛物线的定义即可得解.【解答过程】因为动点到定点F(1,0)的距离比到y轴的距离大1,所以动点到定点F(1,0)的距离等于到x=―1的距离,所以动点的轨迹是以F(1,0)为焦点,x=―1为准线的抛物线,所以动点的轨迹方程是y2=4x.故选:B.【变式4-2】(23-24高二上·重庆·期末)已知点P(x,y)=|x+1|,则点P的轨迹为()A.椭圆B.双曲线C.抛物线D.圆【解题思路】根据已知条件及抛物线的定义即可求解.P(x,y)到点(1,0)的距离;|x+1|表示点P(x,y)到直线x=―1的距离.=|x+1|,所以点P(x,y)到点(1,0)的距离等于点P(x,y)到直线x=―1的距离,所以P的轨迹为抛物线.故选:C.【变式4-3】(23-24高二上·宁夏石嘴山·阶段练习)一个动圆与定圆F:(x+2)2+y2=1相内切,且与定直线l:x=3相切,则此动圆的圆心M的轨迹方程是( )A.y2=8x B.y2=4x C.y2=―4x D.y2=―8x【解题思路】先利用圆与圆的位置关系,直线与圆的位置关系找到动点M的几何条件,再根据抛物线的定义确定动点M的轨迹,最后利用抛物线的标准方程写出轨迹方程.【解答过程】设动圆M的半径为r,依题意:|MF|=r―1,点M到定直线x=2的距离为d=r―1,所以动点M到定点F(―2,0)的距离等于到定直线x=2的距离,即M的轨迹为以F为焦点,x=2所以此动圆的圆心M的轨迹方程是y2=―8x.故选:D.【题型5 抛物线上的点到定点的距离及最值】【例5】(2024·全国·模拟预测)已知A是抛物线C:y2=4x上的点,N(4,0),则|AN|的最小值为()A.2B.C.4D.【解题思路】由抛物线的方程,利用二次函数的性质求最值【解答过程】设,t,则|AN|===≥当且仅当t=±故选:D.【变式5-1】(2024高三·全国·专题练习)已知P是抛物线y2=2x上的点,Q是圆(x―5)2+y2=1上的点,则|PQ |的最小值是( )A .2B .C .D .3【解题思路】将问题转化为求|PC|的最小值,根据两点之间的距离公式,求得|PC|的最小值再减去半径即可.【解答过程】如图,抛物线上点P (x,y )到圆心C (5,0)的距离为|PC |,|CP |≤|CQ |+|PQ |,因此|PQ |≥|CP |―1,当|CP |最小时,|PQ |=|CP |―1最小,而|CP |2=(x ―5)2+y 2=―52+y 2=2―82+9,当y =±|CP |min =3,因此|PQ |的最小值是2.故选:A.【变式5-2】(2024·湖南益阳·三模)已知M 是抛物线y²=4x 上一点,圆C 1:(x ―1)2+(y ―2)2=1关于直线y =x ―1对称的圆为C 2,N 是圆C 2上的一点,则|MN |的最小值为( )A .1B ―1C―1D .37【解题思路】根据对称性求出圆C 2的方程,设y 0,求出|MC 2|的最小值,即可求出|MN |的最小值.【解答过程】圆C 1:(x ―1)2+(y ―2)2=1圆心为C 1(1,2),半径r =1,设C 2(a,b ),=―1―1=0,解得a =3b =0,则C 2(3,0),所以圆C2 :(x ―3)2+y 2=1,设y 0,则|MC 2|==所以当y 20=4,即y 0=±2时,|MC 2|min=所以|MN |的最小值是―1.故选:A.【变式5-3】(2024·黑龙江齐齐哈尔·二模)已知抛物线C:y2=8x的焦点为F,M为C上的动点,N为圆A:x2+ y2+2x+8y+16=0上的动点,设点M到y轴的距离为d,则|MN|+d的最小值为()A.1B C D.2【解题思路】作出图形,过点M作ME垂直于抛物线的准线,垂足为点E,利用抛物线的定义可知d=|MF|―2,分析可知,当且仅当N、M为线段AF分别与圆A、抛物线C的交点时,|MN|+d取最小值,即可得解.【解答过程】根据已知得到F(2,0),圆A:(x+1)2+(y+4)2=1,所以A(―1,―4),圆A的半径为1,抛物线C的准线为l:x=―2,过点M作ME⊥l,垂足为点E,则|ME|=d+2,由抛物线的定义可得d+2=|ME|=|MF|,所以,|MN|+d=|MN|+|MF|―2≥|AM|+|MF|―1―2≥|AF|―1―2=1―2=2.当且仅当N、M为线段AF分别与圆A、抛物线C的交点时,两个等号成立,因此,|MN|+d的最小值为3.故选:D.【题型6 抛物线上的点到定点和焦点距离的和、差最值】【例6】(2024·四川成都·模拟预测)设点A(2,3),动点P在抛物线C:y2=4x上,记P到直线x=―2的距离为d,则|AP|+d的最小值为()A.1B.3C1D【解题思路】根据抛物线的定义,P到焦点F的距离等于P到准线的距离,可得d=|PF|+1,从而转化为求|AP|+|PF|+1的值,当A,P,F三点共线时,d=|PF|+1取得最小值,即可求解.【解答过程】由题意可得,抛物线C的焦点F(1,0),准线方程为x=―1,由抛物线的定义可得d=|PF|+1,所以|AP|+d=|AP|+|PF|+1,因为|AP|+|PF|≥|AF|==所以|AP|+d=|AP|+|PF|+1≥+1.当且仅当A,P,F三点共线时取等号,所以|AP|+d+1.故选:D.【变式6-1】(2024·湖南常德·一模)已知抛物线方程为:y2=16x,焦点为F.圆的方程为(x―5)2+(y―1)2 =1,设P为抛物线上的点,Q|PF|+|PQ|的最小值为()A.6B.7C.8D.9【解题思路】根据抛物线定义将点到焦点的距离转化为点到直线的距离,即|PF|=|PN|,从而得到|PF|+ |PQ|=|PN|+|PQ|,P、Q、N三点共线时和最小;再由Q在圆上,|QN|min=|MN|―r得到最小值.【解答过程】由抛物线方程为y2=16x,得到焦点F(4,0),准线方程为x=―4,过点P做准线的垂线,垂足为N,因为点P在抛物线上,所以|PF|=|PN|,所以|PF|+|PQ|=|PN|+|PQ|,当Q点固定不动时,P、Q、N三点共线,即QN垂直于准线时和最小,又因为Q在圆上运动,由圆的方程为(x―5)2+(y―1)2=1得圆心M(5,1),半径r=1,所以|QN|min=|MN|―r=8,故选:C.【变式6-2】(2024·全国·模拟预测)在直角坐标系xOy中,已知点F(1,0),E(―2,0),M(2,2),动点P满足线段PE的中点在曲线y2=2x+2上,则|PM|+|PF|的最小值为()A.2B.3C.4D.5【解题思路】设P(x,y),由题意求出P的轨迹方程,继而结合抛物线定义将|PM|+|PF|的最小值转化为M 到直线l的距离,即可求得答案.【解答过程】设P(x,y),则PE y2=2x+2,可得y2=4x,故动点P的轨迹是以F为焦点,直线l:x=―1为准线的抛物线,由于22<4×2,故M(2,2)在抛物线y2=4x内部,过点P作PQ⊥l,垂足为Q,则|PM|+|PF|=|PM|+|PQ|,(抛物线的定义),故当且仅当M,P,Q三点共线时,|PM|+|PQ|最小,即|PM|+|PF|最小,最小值为点M到直线l的距离,所以(|PM|+|PF|)min=2―(―1)=3,故选:B.【变式6-3】(2024·陕西西安·一模)设P为抛物线C:y2=4x上的动点,A(2,6)关于P的对称点为B,记P到直线x=―1、x=―4的距离分别d1、d2,则d1+d2+|AB|的最小值为()A B.C+3D.+3【解题思路】根据题意得到d1+d2+|AB|=2d1+3+2|PA|=2(d1+|PA|)+3,再利用抛物线的定义结合三角不等式求解.【解答过程】抛物线C:y2=4x的焦点为F(1,0),准线方程为x=―1,如图,因为d 2=d 1+3,且A (2,6)关于P 的对称点为B ,所以|PA |=|PB |,所以d 1+d 2+|AB |=2d 1+3+2|PA |=2(d 1+|PA |)+3 =2(|PF |+|PA |)+3≥2|AF |+3 ==.当P 在线段AF 与抛物线的交点时,d 1+d 1+|AB |取得最小值,且最小值为.故选:D.【题型7 抛物线的焦半径公式】【例7】(2024·青海西宁·一模)已知F 是抛物线C:x 2=4y 的焦点,点M 在C 上,且M 的纵坐标为3,则|MF |=( )A .B .C .4D .6【解题思路】利用抛物线的标准方程和抛物线的焦半径公式即可求解.【解答过程】由x 2=4y ,得2p =4,解得p =2.所以抛物线C:x 2=4y 的焦点坐标为F (0,1),准线方程为y =―1,又因为M 的纵坐标为3,点M 在C 上,所以|MF |=y M +p2=3+22=4.故选:C.【变式7-1】(2024·河南·模拟预测)已知抛物线C:y 2=2px (p >0)上的点(m,2)到原点的距离为为F ,准线l 与x 轴的交点为M ,过C 上一点P 作PQ ⊥l 于Q ,若∠FPQ =2π3,则|PF |=( )A .13B .12C D .23【解题思路】根据点(m,2)到原点的距离为再设点P 坐标,利用抛物线的定义和等腰三角形的性质列出方程即可求解.【解答过程】因为点(m,2)到原点的距离为所以m 2+22=8,解得m =2,(负值舍),将点(2,2)代入抛物线方程y 2=2px (p >0),得4=4p ,所以p =1,所以C:y 2=2x,F(12,0),l:x =―12.由于抛物线关于x 轴对称,不妨设,因为|PQ|=|PF|=x +12,∠FPQ =2π3,所以△PQF 为等腰三角形,∠PQF =π6,所以|QF|=+12),所以|QF|==+12),解得x =16或x =―12(舍),所以|PF |=16+12=23.故选:D.【变式7-2】(2024·新疆·三模)已知抛物线C :y 2=x 的焦点为F ,在抛物线C 上存在四个点P ,M ,Q ,N ,若弦PQ 与弦MN 的交点恰好为F ,且PQ ⊥MN ,则1|PQ |+1|MN |=( )A B .1C D .2【解题思路】由抛物线的方程可得焦点F 的坐标,应用抛物线焦点弦性质|PF |=p1―cos θ,|QF |=p1+cos θ,|MF |=p1+sin θ,|NF |=p1―sin θ,结合三角的恒等变换的化简可得1|PQ |+1|MN |=12p ,即可求解.【解答过程】由抛物线C:y 2=x 得2p =1,则p =12,F(14,0),不妨设PQ 的倾斜角为θ0<θ<则由|PF |cos θ+p =|PF |,p ―|QF |cos θ=|QF |,得|PF |=p 1―cos θ,|QF |=p1+cos θ,所以|MF |==p1+sin θ,|NF |==p1―sin θ,得|PQ |=|PF |+|QF |=p1―cos θ+p1+cos θ=2psin 2θ,|MN |==2pcos 2θ,所以1|PQ |+1|MN |=12p =1.故选:B.【变式7-3】(2024·北京西城·三模)点F 抛物线y 2=2x 的焦点,A ,B ,C 为抛物线上三点,若FA +FB +FC =0,则|FA |+|FB |+|FC |=( )A .2B .C .3D .【解题思路】设A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),根据抛物线方程求出焦点坐标和准线方程,再由FA +FB +FC =0可得F 为△ABC 的重心,从而可求出x 1+x 2+x 3,再根据抛物线的定义可求得结果.【解答过程】设A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),由y 2=2x ,得p =1,所以F(12,0),准线方程为x =―12,因为FA +FB +FC =0,所以F 为△ABC 的重心,所以x 1+x 2+x 33=12,所以x 1+x 2+x 3=32,所以|FA |+|FB |+|FC |=x 1+12+x 2+12+x 3+12=x 1+x 2+x 3+32=32+32=3,故选:C.【题型8 抛物线的几何性质】【例8】(2024·重庆·模拟预测)A,B 是抛物线y 2=2px(p >0)上的不同两点,点F 是抛物线的焦点,且△OAB 的重心恰为F ,若|AF|=5,则p =( )A .1B .2C .3D .4【解题思路】根据重心可得x 1+x 2=3p 2y 1=―y 2,结合对称性可得x 1=3p4,再根据抛物线的定义运算求解.【解答过程】设A (x 1,y 1),B (x 2,y 2),因为△OAB 的重心恰为F=p2=0,解得x 1+x 2=3p2y 1=―y 2,由y 1=―y 2可知A,B 关于x 轴对称,即x 1=x 2,则x 1+x 2=2x 1=3p2,即x 1=3p 4,又因为|AF |=x 1+p2=5p 4=5,解得p =4.故选:D.【变式8-1】(23-24高二下·福建厦门·期末)等边三角形的一个顶点位于原点,另外两个顶点在抛物线y 2=2x 上,则这个等边三角形的边长为( )A .2B .C .4D.【解题思路】正三角形的另外两个顶点关于x 轴对称,设另外两个顶点坐标分别是A ),B―a),把顶点代入抛物线方程化简即可求解.【解答过程】设正三角形得边长为2a ,由图可知正三角形的另外两个顶点关于x 轴对称,可设另外两个顶点坐标分别是A),B―a ),把顶点代入抛物线方程得a 2=解得a =所以正三角形的边长为故选:D.【变式8-2】(23-24高三下·北京·阶段练习)设抛物线C 的焦点为F ,点E 是C 的准线与C 的对称轴的交点,点P 在C 上,若∠PEF =30°,则sin ∠PFE =( )A B C D 【解题思路】先设P(x 0,y 0),根据图形分别表示出tan ∠ P EF 和sin ∠ P FE 即可得解.【解答过程】由于抛物线的对称性,不妨设抛物线为C:y 2=2px(p >0),则其焦点为F(p2,0),点E 是C 的准线与C 的对称轴的交点,其坐标为E(―p2,0),点P 在C 上,设为P(x 0,y 0),若∠ P EF =30∘,则tan ∠ P EF =|y 0|x 0+p 2=且|PF|=x 0+p 2,则sin ∠ P FE =sin (π―∠ P FE )=|y 0||PF|=故选:B.【变式8-3】(23-24高二下·重庆·阶段练习)已知x 轴上一定点A (a,0)(a >0),和抛物线y 2=2px (p >0)上的一动点M ,若|AM |≥a 恒成立,则实数a 的取值范围为( )A .B .(0,p ]C .D .(0,2p ]【解题思路】设M (x 0,y 0) (x 0≥0),表示出|AM |,依题意可得x 20―(2a ―2p )x 0≥0恒成立,分x 0=0和x 0>0两种情况讨论,当x0>0时x0≥2a―2p恒成立,即可得到2a―2p≤0,从而求出a的取值范围.【解答过程】设M(x0,y0)(x0≥0),则y20=2px0,所以|AM|====因为|AM|≥a恒成立,所以x20―(2a―2p)x0+a2≥a2恒成立,所以x20―(2a―2p)x0≥0恒成立,当x0=0时显然恒成立,当x0>0时x0≥2a―2p恒成立,所以2a―2p≤0,则a≤p,又a>0,所以0<a≤p,即实数a的取值范围为(0,p].故选:B.【题型9 抛物线中的三角形(四边形)面积问题】【例9】(2024·江西新余·二模)已知点Q(2,―2)在抛物线C:y2=2px上,F为抛物线的焦点,则△OQF (O为坐标原点)的面积是()A.12B.1C.2D.4【解题思路】将点Q代入抛物线C的方程,即可求解p,再结合抛物线的公式,即可求解【解答过程】∵点Q(2,―2)在抛物线C:y2=2px上,F为抛物线C的焦点,∴4=4p,解得p=1,故抛物线C的方程为y2=2x,F(12,0),则△OQF的面积S△OQF=12×12×2=12.故选:A.【变式9-1】(23-24高二上·广东广州·期末)已知抛物线C:y2=2px(p>0)的焦点为F,直线l与C相交于A、B两点,与y轴相交于点E.已知|AF|=5,|BF|=3,若△AEF的面积是△BEF面积的2倍,则抛物线C的方程为()A .y 2=2xB .y 2=4xC .y 2=6xD .y 2=8x【解题思路】过A,B 分别作C 的准线的垂线交y 轴于点M,N ,根据抛物线定义可得|AM |=5―p2,|BN |=3―p 2,再由S △AEF S △BEF=|AE ||BE |=|AM ||BN |即可求参数p ,进而可得抛物线方程.【解答过程】如图,过A,B 分别作C 的准线的垂线交y 轴于点M,N ,则AM //BN ,故|AE ||BE |=|AM ||BN |,因为C 的准线为x =―p2,所以|AM |=|AF |―p2=5―p2,|BN |=|BF |―p2=3―p2,所以S △AEFS △BEF=12|EF ||AE |sin ∠AEF 12|EF ||BE |sin ∠BEF =|AE ||BE |=|AM ||BN |=5―p 23―p 2=2,解得p =2,故抛物线C 的方程为y 2=4x .故选:B.【变式9-2】(23-24高二上·广东广州·期末)设F 为抛物线y 2=4x 的焦点,A,B,C 为该抛物线上不同的三点,且FA +FB +FC =0,O 为坐标原点,若△OFA 、△OFB 、△OFC 的面积分别为S 1、S 2、S 3,则S 21+S 22+S 23=( )A .3B .4C .5D .6【解题思路】设点A,B,C 的坐标,再表示出△OFA,△OFB,△OFC 的面积,借助向量等式即可求得答案.【解答过程】设点A,B,C 的坐标分别为(x 1,y 1),(x 2,y 2),(x 3,y 3),而抛物线的焦点F(1,0),|OF|=1,FA =(x 1―1,y 1),FB =(x 2―1,y 2),FC =(x 3―1,y 3),由FA +FB +FC =0,得x 1+x 2+x 3=3,于是S 1=12|y 1|,S 2=12|y 2|,S 3=12|y 3|,所以S 21+S 22+S 23=14(y 21+y 22+y 23)=x 1+x 2+x 3=3.故选:A.【变式9-3】(23-24高二·全国·课后作业)已知抛物线C:y2=8x,点P为抛物线上任意一点,过点P向圆D:x2+y2―4x+3=0作切线,切点分别为A,B,则四边形PADB的面积的最小值为()A.1B.2C D【解题思路】由题意圆的圆心与抛物线的焦点重合,可得连接PD,则S四边形PADB=2S Rt△PAD=|PA|,而|PA|=|PD|最小时,四边形PADB的面积最小,再抛物线的定义转化为点P到抛物线的准线的距离的最小值,结合抛物线的性质可求得结果【解答过程】如图,连接PD,圆D:(x―2)2+y2=1,该圆的圆心与抛物线的焦点重合,半径为1,则S四边形PADB=2S Rt△PAD=|PA|.又|PA|=PADB的面积最小时,|PD|最小.过点P向抛物线的准线x=―2作垂线,垂足为E,则|PD|=|PE|,当点P与坐标原点重合时,|PE|最小,此时|PE|=2.==故S四边形PADBmin故选:C.一、单选题1.(2024·江西·模拟预测)若抛物线x 2=8y 上一点(x 0,y 0)到焦点的距离是该点到x 轴距离的2倍.则y 0=( )A .12B .1C .32D .2【解题思路】根据抛物线的方程,结合抛物线的标准方程,得到抛物线的焦点和准线,利用抛物线的定义,得到抛物线上的点(x 0,y 0)到焦点的距离,根据题意得到关于y 0的方程,求解即可.【解答过程】已知拋物线的方程为x 2=8y ,可得p =4.所以焦点为F (0,2),准线为l :y =―2.抛物线上一点A (x 0,y 0)到焦点F 的距离等于到准线l 的距离,即|AF |=y 0+2,又∵A 到x 轴的距离为y 0,由已知得y 0+2=2y 0,解得y 0=2.故选:D .2.(2024·四川·模拟预测)已知抛物线C:x 2=8y 的焦点为F,P 是抛物线C 上的一点,O 为坐标原点,|OP |=4|PF |=( )A .4B .6C .8D .10【解题思路】求出抛物线焦点和准线方程,设P (m,n )(m ≥0),结合|OP |=n =4,由焦半径公式得到答案.【解答过程】抛物线C:x 2=8y 的焦点为F (0,2),准线方程为y =―2,设P (m,n )(m ≥0)=,解得n =4或n =―12(舍去),则|PF |=n +2=6.故选:B .3.(23-24高二下·甘肃白银·期中)若圆C 与x 轴相切且与圆x 2+y 2=4外切,则圆C 的圆心的轨迹方程为( )A .x 2=4y +4B .x 2=―4y +4C .x 2=4|y |+4D .x 2=4y ―4【解题思路】设圆心坐标为(x,y )=2+|y |,化简整理即可得解.【解答过程】设圆心坐标为(x,y)=2+|y|,化简得x2=4|y|+4,即圆C的圆心的轨迹方程为x2=4|y|+4.故选:C.4.(2024·北京海淀·三模)已知抛物线y2=4x的焦点为F、点M在抛物线上,MN垂直y轴于点N,若|MF|=6,则△MNF的面积为()A.8B.C.D.【解题思路】确定抛物线的焦点和准线,根据|MF|=6得到M.【解答过程】因为抛物线y2=4x的焦点为F(1,0),准线方程为x=―1,所以|MF|=x M+1=6,故x M=5,不妨设M在第一象限,故M×(5―0)×=所以S△MNF=12故选:C.5.(2024·西藏林芝·模拟预测)已知抛物线y2=8x上一点P到准线的距离为d1,到直线l:4x―3y+12=0的距离为d2,则d1+d2的最小值为()A.1B.2C.3D.4【解题思路】点P到直线l:4x―3y+12=0的距离为|PA|,到准线l1:x=―2的距离为|PB|,利用抛物线的定义得|PF|=|PB|,当A,P和F共线时,点P到直线l:4x―3y+12=0和准线l1:x=―2的距离之和的最小,由点到直线的距离公式求得答案.【解答过程】由抛物线y2=8x知,焦点F(2,0),准线方程为l:x=―2,根据题意作图如下;点P到直线l:4x―3y+12=0的距离为|PA|,到准线l1:x=―2的距离为|PB|,由抛物线的定义知:|PB|=|PF|,所以点P到直线l:4x―3y+12=0和准线l1:x=―2的距离之和为|PF|+|PA|,=4,且点F(2,0)到直线l:4x―3y+12=0的距离为d=|8―0+12|5所以d1+d2的最小值为4.故选:D.6.(2024·四川雅安·三模)已知过圆锥曲线的焦点且与焦点所在的对称轴垂直的弦被称为该圆锥曲线的通径,清代数学家明安图在《割圆密率捷法》中,也称圆的直径为通径.已知圆(x―2)2+(y+1)2=4的一条直径与拋物线x2=2py(p>0)的通径恰好构成一个正方形的一组邻边,则p=()B.1C.2D.4A.12【解题思路】根据圆的通径的上端点就是抛物线通径的上右端点,可得抛物线x2=2py(p>0)经过点(2,1),从而可得答案.【解答过程】因为圆(x―2)2+(y+1)2=4的一条直径与抛物线x2=2py(p>0)的通径恰好构成一个正方形的一组邻边,而抛物线x2=2py(p>0)的通径与y轴垂直,所以圆(x―2)2+(y+1)2=4的这条直径与x轴垂直,且圆的直径的上端点就是抛物线通径的右端点,因为圆(x―2)2+(y+1)2=4的圆心为(2,―1),半径为2,所以该圆与x轴垂直的直径的上端点为(2,1),即抛物线x2=2py(p>0)经过点(2,1),则4=2p,即p=2.故选:C.7.(2024·山西运城·三模)已知抛物线C:y 2=4x 的焦点为F ,动点M 在C 上,点B 与点A (1,―2)关于直线l:y =x ―1对称,则|MF ||MB |的最小值为( )AB .12CD .13【解题思路】根据对称性可得B(―1,0),即点B 为C 的准线与x 轴的交点,作MM ′垂直于C 的准线于点M ′,结合抛物线的定义可知|MF ||MB |=|MM ′||MB |= cos θ(∠MBF =θ),结合图象可得当直线MB 与C 相切时,cos θ最小,求出切线的斜率即可得答案.【解答过程】依题意,F(1,0),A(1,―2),设B(m,n)=―1m+12―1,解得m =―1n =0,即B(―1,0),点B 为C 的准线与x 轴的交点,由抛物线的对称性,不妨设点M 位于第一象限,作MM ′垂直于C 的准线于点M ′,设∠MBF =θ,θ∈ (0,π2),由抛物线的定义得|MM ′|=|MF |,于是|MF ||MB |=|MM ′||MB |= cos θ,当直线MB 与C 相切时,θ最大,cos θ最小,|MF||MB|取得最小值,此时直线BM 的斜率为正,设切线MB 的方程为x =my ―1(m >0),由x =my ―1y 2=4x消去x 得y 2―4my +4=0,则Δ=16m 2―16=0,得m =1,直线MB 的斜率为1,倾斜角为π4,于是θmax =π4,(cos θ)min =,所以|MF||MB|的最小值为故选:A.8.(2024·江西九江·二模)已知抛物线C:y 2=2px 过点A (1,2),F 为C 的焦点,点P 为C 上一点,O 为坐标原点,则( )A .C 的准线方程为x =―2B .△AFO 的面积为1C .不存在点P ,使得点P 到C 的焦点的距离为2D .存在点P ,使得△POF 为等边三角形【解题思路】求解抛物线方程,得到准线方程,判断A ;求解三角形的面积判断B ;利用|PF|=2.判断C ;判断P 的位置,推出三角形的形状,判断D .【解答过程】由题意抛物线C:y 2=2px 过点A(1,2),可得p =2,所以抛物线方程为C:y 2=4x ,所以准线方程为x =―1,A 错误;可以计算S △AFO =12×1×2=1,B 正确;当P(1,2)时,点P 到C 的焦点的距离为2,C 错误;△POF 为等边三角形,可知P 的横坐标为:12,当x =12时,纵坐标为:则12×=≠则△POF 为等腰三角形,不是等边三角形,故等边三角形的点P 不存在,所以D 错误.故选:B .二、多选题9.(2024·湖南长沙·二模)已知抛物线C 与抛物线y 2=4x 关于y 轴对称,则下列说法正确的是( )A .抛物线C 的焦点坐标是(―1,0)B .抛物线C 关于y 轴对称C .抛物线C 的准线方程为x =1D .抛物线C 的焦点到准线的距离为4【解题思路】依题意可得抛物线C 的方程为y 2=―4x ,即可得到其焦点坐标与准线方程,再根据抛物线的性。

高三数学抛物线试题答案及解析

高三数学抛物线试题答案及解析

高三数学抛物线试题答案及解析1.抛物线的焦点为,点在抛物线上,且,弦中点在其准线上的射影为,则的最大值为()A.B.C.D.【答案】A【解析】设,由抛物线定义,.而余弦定理,,再由,得到,所以的最大值为,故选:A.【考点】双曲线的简单性质.2.已知点A(-1,0),B(1,-1)和抛物线.,O为坐标原点,过点A的动直线l交抛物线C于M、P,直线MB交抛物线C于另一点Q,如图.(1)证明: 为定值;(2)若△POM的面积为,求向量与的夹角;(3)证明直线PQ恒过一个定点.【答案】(1)见解析; (2) ;(3)直线PQ过定点E(1,-4).【解析】(1)设点根据、M、A三点共线,得计算得到=5;(2)设∠POM=α,可得结合三角形面积公式可得tanα="1."根据角的范围,即得所求.(3)设点、B、Q三点共线,据此确定进一步确定的方程,化简为得出结论.试题解析:(1)设点、M、A三点共线,2分5分(2)设∠POM=α,则由此可得tanα=1. 8分又 10分(3)设点、B、Q三点共线,即 12分即 13分由(*)式,代入上式,得由此可知直线PQ过定点E(1,-4). 14分【考点】抛物线及其几何性质,直线方程,直线与抛物线的位置关系,转化与化归思想.3.以抛物线y2=8x上的任意一点为圆心作圆与直线x+2=0相切,这些圆必过一定点,则这一定点的坐标是()A.(0,2)B.(2,0)C.(4,0)D.(0,4)【答案】B【解析】x+2=0为抛物线的准线,根据抛物线的定义,圆心到准线的距离等于圆心到焦点的距离,故这些圆恒过定点(2,0).4.(5分)(2011•湖北)将两个顶点在抛物线y2=2px(p>0)上,另一个顶点是此抛物线焦点的正三角形个数记为n,则()A.n=0B.n=1C.n=2D.n≥3【答案】C【解析】根据题意和抛物线以及正三角形的对称性,可推断出两个边的斜率,进而表示出这两条直线,每条直线与抛物线均有两个交点,焦点两侧的两交点连接,分别构成一个等边三角形.进而可知这样的三角形有2个.解:y2=2px(P>0)的焦点F(,0)等边三角形的一个顶点位于抛物线y2=2px(P>0)的焦点,另外两个顶点在抛物线上,则等边三角形关于x轴轴对称两个边的斜率k=±tan30°=±,其方程为:y=±(x﹣),每条直线与抛物线均有两个交点,焦点两侧的两交点连接,分别构成一个等边三角形.故n=2,故选C点评:本题主要考查了抛物线的简单性质.主要是利用抛物线和正三角形的对称性.5.已知圆P:x2+y2=4y及抛物线S:x2=8y,过圆心P作直线l,此直线与上述两曲线的四个交点,自左向右顺次记为A,B,C,D,如果线段AB,BC,CD的长按此顺序构成一个等差数列,则直线l的斜率为( )A.B.C.D.【答案】A【解析】圆的方程为,则其直径长圆心为,设的方程为,代入抛物线方程得:设,有∴线段的长按此顺序构成一个等差数列,,即,解得,故选A.【考点】1.抛物线的几何性质;2.直线与抛物线相交问题.6.抛物线上一点到直线的距离与到点的距离之差的最大值为()A.B.C.D.【答案】D【解析】作出抛物线的图象如下图所示,则点为抛物线的焦点,直线为抛物线的准线,过点作垂直于直线,垂足为点,由抛物线的定义的可知,则点到直线的距离与到点的距离之差等于,当、、三点不共线时,由三角形三边之间的关系可知,,当点为射线与抛物线的交点时,,此时点到直线的距离与到点的距离取到最大值,故选D.【考点】1.抛物线的定义;2.数形结合7.(2011•浙江)已知抛物线C1:x2=y,圆C2:x2+(y﹣4)2=1的圆心为点M(1)求点M到抛物线C1的准线的距离;(2)已知点P是抛物线C1上一点(异于原点),过点P作圆C2的两条切线,交抛物线C1于A,B两点,若过M,P两点的直线l垂直于AB,求直线l的方程.【答案】(1)(2)【解析】(1)由题意画出简图为:由于抛物线C1:x2=y准线方程为:y=﹣,圆C2:x2+(y﹣4)2=1的圆心M(0,4),利用点到直线的距离公式可以得到距离d==.(2)设点P(x0,x2),A(x1,x12),B(x2,x22);由题意得:x0≠0,x2≠±1,x1≠x2,设过点P的圆c2的切线方程为:y﹣x2=k(x﹣x)即y=kx﹣kx+x2①则,即(x02﹣1)k2+2x(4﹣x2)k+(x2﹣4)2﹣1=0设PA,PB的斜率为k1,k2(k1≠k2),则k1,k2应该为上述方程的两个根,∴,;代入①得:x2﹣kx+kx0﹣x2="0" 则x1,x2应为此方程的两个根,故x1=k1﹣x,x2=k2﹣x∴kAB =x1+x2=k1+k2﹣2x=由于MP⊥AB,∴kAB •KMP=﹣1⇒故P∴.8.过抛物线焦点F的直线交抛物线于A、B两点,若A、B在抛物线准线上的射影分别为,则()A.B.C.D.【答案】D【解析】由抛物线的定义得,,,故,,故,,又,故,从而.【考点】抛物线定义.9.抛物线的焦点坐标为.【答案】【解析】由于,焦点在轴的正半轴,所以,抛物线的焦点坐标为.【考点】抛物线的几何性质.10.已知抛物线:和:的焦点分别为,交于两点(为坐标原点),且.(1)求抛物线的方程;(2)过点的直线交的下半部分于点,交的左半部分于点,点坐标为,求△面积的最小值.【答案】(1);(2)8.【解析】本题主要考查抛物线的标准方程及其几何性质、向量垂直的充要条件、两点间距离公式、三角形面积公式等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,利用抛物线的标准方程得到焦点的坐标,从而得到向量坐标,联立2个抛物线方程,解方程组,可求出A点坐标,从而得到向量的坐标,由于,所以,利用这个方程解出P的值,从而得到抛物线的方程;第二问,先设出过点O的直线方程,直线和抛物线联立,得到M点坐标,直线和抛物线联立得到N点坐标,由于,利用两点间距离公式得到3个边长,再利用基本不等式求面积的最小值.试题解析:(1)由已知得:,,∴ 1分联立解得或,即,,∴ 3分∵,∴,即,解得,∴的方程为. 5分『法二』设,有①,由题意知,,,∴1分∵,∴,有,解得, 3分将其代入①式解得,从而求得,所以的方程为. 5分(2)设过的直线方程为联立得,联立得 7分在直线上,设点到直线的距离为,点到直线的距离为则 8分10分当且仅当时,“”成立,即当过原点直线为时,11分△面积取得最小值. 12分『法二』联立得,联立得, 7分从而,点到直线的距离,进而9分令,有, 11分当,即时,即当过原点直线为时,△面积取得最小值. 12分【考点】抛物线的标准方程及其几何性质、向量垂直的充要条件、两点间距离公式、三角形面积公式.11.抛物线的焦点为,点在抛物线上,且,弦中点在准线上的射影为的最大值为( )A.B.C.D.【答案】B【解析】如图,设,,由抛物线定义,得.在中,由余弦定理,得,,,,故选B.【考点】1.抛物线的定义;2.基本不等式.12.已知抛物线的焦点为,点为抛物线上的一点,其纵坐标为,.(1)求抛物线的方程;(2)设为抛物线上不同于的两点,且,过两点分别作抛物线的切线,记两切线的交点为,求的最小值.【答案】(1);(2).【解析】(1)对于开口向上的抛物线来说,,代入坐标,解出;(2)设,利用导数的几何意义,利用点斜式方程,分别设出过两点的切线方程,然后求出交点的坐标,结合,所得到的关系式,设,以及的坐标,将点的坐标转化为一个未知量表示的函数,,用未知量表示,转化为函数的最值问题,利用二次函数求最值的方法求出.中档偏难题型. 试题解析:(1)由抛物线定义得: 2分抛物线方程为 4分(2)设且即 6分 又处的切线的斜率为 处的切线方程为和由得8分设,由得10分 当时,12分【考点】1.抛物线的定义;2.导数的几何意义;3.函数的最值.13. 已知抛物线x 2=4y 的焦点为F ,过焦点F 且不平行于x 轴的动直线交抛物线于A 、B 两点,抛物线在A 、B 两点处的切线交于点M.(1)求证:A 、M 、B 三点的横坐标成等差数列;(2)设直线MF 交该抛物线于C 、D 两点,求四边形ACBD 面积的最小值. 【答案】(1)见解析(2)32【解析】(1)证明:由已知,得F(0,1),显然直线AB 的斜率存在且不为0, 则可设直线AB 的方程为y =kx +1(k≠0),A(x 1,y 1),B(x 2,y 2), 由消去y ,得x 2-4kx -4=0,显然Δ=16k 2+16>0.所以x 1+x 2=4k ,x 1x 2=-4,由x 2=4y ,得y =x 2,所以y′=x,所以,直线AM 的斜率为k AM =x 1, 所以,直线AM 的方程为y -y 1=x 1(x -x 1),又=4y 1,所以,直线AM 的方程为x 1x =2(y +y 1)①,同理,直线BM 的方程为x 2x =2(y +y 2)②,②-①并据x 1≠x 2得点M 的横坐标x =,即A 、M 、B 三点的横坐标成等差数列.(2)解:由①②易得y =-1,所以点M 的坐标为(2k ,-1)(k≠0).所以k MF ==-,则直线MF 的方程为y =-x +1,设C(x 3,y 3),D(x 4,y 4)由消去y ,得x 2+x -4=0,显然Δ=+16>0,所以x 3+x 4=-,x 3x 4=-4,又|AB|===4(k 2+1),|CD|==,因为k MF ·k AB =-1,所以AB ⊥CD , 所以S ACBD =|AB|·|CD|=8≥32,当且仅当k =±1时,四边形ACBD 面积取到最小值32.14. 如图,过抛物线y 2=2px(p>0)的焦点F 的直线l 交抛物线于点A 、B ,交其准线于点C.若|BC|=2|BF|,且|AF|=3,则此抛物线的方程为________.【答案】y 2=3x【解析】由抛物线定义,|BF|等于B 到准线的距离. 由|BC|=2|BF|,得∠BCM =30°. 又|AF|=3,从而A.由A 在抛物线上,代入抛物线方程y 2=2px ,解得p =.15. 过抛物线y 2=4x 的焦点F 的直线交该抛物线于A,B 两点.若|AF|=3,则|BF|= . 【答案】【解析】由题意知,抛物线的焦点F 的坐标为(1,0),又|AF|=3,由抛物线定义知,点A 到准线x=-1的距离为3∴点A 的横坐标为2.将x=2代入y 2=4x 得y 2=8, 由图知点A 的纵坐标y=2, ∴A(2,2),∴直线AF 的方程为y=2(x-1). 由解得或由图知,点B 的坐标为,∴|BF|=-(-1)=.16. 若已知点Q(4,0)和抛物线y=x 2+2上一动点P(x,y),则y+|PQ|最小值为( ) A .2+2 B .11 C .1+2 D .6【答案】D【解析】抛物线y=+2的准线是y=1,焦点F(0,3).用抛物线的定义:设P 到准线的距离为d, 则y+|PQ|=d+1+|PQ|=|PF|+|PQ|+1≥|FQ|+1=5+1=6(当且仅当F,Q,P 共线时取等号), 故y+|PQ|的最小值是6.17. 设x 1,x 2∈R,常数a>0,定义运算“*”:x 1*x 2=(x 1+x 2)2-(x 1-x 2)2,若x≥0,则动点P(x,)的轨迹是( ) A .圆 B .椭圆的一部分C.双曲线的一部分D.抛物线的一部分【答案】D【解析】∵x1*x2=(x1+x2)2-(x1-x2)2,∴==2. 则P(x,2).设P(x1,y1),即消去x得=4ax1(x1≥0,y1≥0),故点P的轨迹为抛物线的一部分.18.过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线共有()A.1条B.2条C.3条D.4条【答案】C【解析】作出图形,可知点(0,1)在抛物线y2=4x外.因此,过该点可作抛物线y2=4x的切线有两条,还能作一条与抛物线y2=4x的对称轴平行的直线,因此共有三条直线与抛物线只有一个交点.19.已知M是y=x2上一点,F为抛物线的焦点.A在C:(x-1)2+(y-4)2=1上,则|MA|+|MF|的最小值为()A.2B.4C.8D.10【答案】B【解析】【思路点拨】利用抛物线的定义,数形结合求解.由题意可知,焦点坐标为F(0,1),准线方程为l:y=-1.过点M作MH⊥l于点H,由抛物线的定义,得|MF|=|MH|.∴|MA|+|MF|=|MH|+|MA|,当C,M,H,A四点共线时,|MA|=|MC|-1,|MH|+|MC|有最小值, 于是,|MA|+|MF|的最小值为4-(-1) -1=4.20.过抛物线焦点的直线交其于,两点,为坐标原点.若,则的面积为()A.B.C.D.2【答案】C【解析】设直线的倾斜角为及,∵,∴点到准线的距离为,∴,则.∴的面积为.故选C.【考点】抛物线的几何性质,直线与抛物线的位置关系.21.已知抛物线C:y2=2px(p>0)的焦点为F,抛物线C与直线l1:y=-x的一个交点的横坐标为8.(1)求抛物线C的方程;(2)不过原点的直线l2与l1垂直,且与抛物线交于不同的两点A、B,若线段AB的中点为P,且|OP|=|PB|,求△FAB的面积.【答案】(1)y 2=8x .(2)24【解析】(1)易知直线与抛物线的交点坐标为(8,-8),∴82=2p ×8,∴2p =8,∴抛物线方程为y 2=8x .(2)直线l 2与l 1垂直,故可设l 2:x =y +m ,A (x 1,y 1),B (x 2,y 2),且直线l 2与x 轴的交点为M . 由得y 2-8y -8m =0,Δ=64+32m >0,∴m >-2.y 1+y 2=8,y 1y 2=-8m ,∴x 1x 2==m 2.由题意可知OA ⊥OB ,即x 1x 2+y 1y 2=m 2-8m =0,∴m =8或m =0(舍), ∴l 2:x =y +8,M (8,0),故S △FAB =S △FMB +S △FMA =|FM |·|y 1-y 2|=3=24.22. 抛物线y =x 2上的点到直线x +y +1=0的最短距离为________. 【答案】【解析】由于f ′(x )=2x ,设与直线x +y +1=0平行且与抛物线相切的直线与抛物线切于点A (x 0,y 0),由导数几何意义可知2x 0=-1,求得切点为.切点A到直线x +y +1=0的距离最小,由点到直线距离公式易得最小值为23. O 为坐标原点,F 为抛物线C :y 2=4x 的焦点,P 为C 上一点,若|PF|=4,则△POF的面积为( )A .2B .2C .2D .4【答案】C【解析】由题意知抛物线的焦点F(,0),如图,由抛物线定义知|PF|=|PM|,又|PF|=4,所以x P =3,代入抛物线方程求得y P =2,所以S △POF =·|OF|·y P =2.24. 抛物线y 2=4x 的焦点为F ,点P(x ,y)为该抛物线上的动点,又点A(-1,0),则的最小值是( ) A . B .C .D .【答案】B【解析】依题意知x≥0,焦点F(1,0),则|PF|=x +1,|PA|==.当x =0时,=1;当x>0时,1<=≤=(当且仅当x =1时取等号).因此当x≥0时,1≤≤,≤≤1,的最小值是.25.设为抛物线的焦点,为抛物线上三点,若为的重心,则的值为( )A.1B.2C.3D.4【答案】C【解析】由条件,∵是的重心,则有,即,而.【考点】1.重心公式;2.焦半径公式.26.已知点F为抛物线的焦点,O为原点,点P是抛物线准线上一动点,A在抛物线上,且=4,则+的最小值是【答案】【解析】∵|AF|=4,由抛物线的定义得,∴A到准线的距离为4,即A点的横坐标为-2,又点A在抛物线上,∴从而点A的坐标A(-2,4);坐标原点关于准线的对称点的坐标为B(4,0),则|PA|+|PO|的最小值为:|AB|=,故答案.【考点】抛物线的简单性质.27.已知抛物线,过其焦点且斜率为-1的直线交抛物线于两点,若线段的中点的纵坐标为-2,则该抛物线的准线方程为()A.B.C.D.【答案】C【解析】∵焦点为,∴设直线为,∵直线交抛物线于两点,∴∴消参得,设,∴,∵线段的中点的纵坐标为-2,∴,∴,∴抛物线的准线方程为.【考点】1.直线的方程;2.韦达定理;3.抛物线的焦点、准线;4.中点坐标公式.28.已知抛物线的焦点与双曲线的一个焦点重合,它们在第一象限内的交点为,且与轴垂直,则此双曲线的离心率为()A.B.2C.D.【答案】C.【解析】因为抛物线的焦点的坐标为又抛物线的焦点与双曲线的一个焦点重合,.由已知抛物线与双曲线在第一象限内的交点为,且与轴垂直,则点的横坐标为1,代入得再把代入,与联立得方程组消去得,解这个关于的双二次方程,得.【考点】抛物线与双曲线简单的几何性质(焦点、离心率).29.某跳水运动员在一次跳水训练时的跳水曲线为如图所示的抛物线一段,已知跳水板长为2m,跳水板距水面的高为3m,=5m,=6m,为安全和空中姿态优美,训练时跳水曲线应在离起跳点m()时达到距水面最大高度4m,规定:以为横轴,为纵轴建立直角坐标系.(1)当=1时,求跳水曲线所在的抛物线方程;(2)若跳水运动员在区域内入水时才能达到压水花的训练要求,求达到压水花的训练要求时的取值范围.【答案】(1);(2).【解析】(1)由题意可以将抛物线的方程设为顶点式.由顶点(3,4),然后代入点可将抛物线方程求出;(2)将抛物线的方程设为顶点式,由点得.将用表示.跳水运动员在区域内入水时才能达到压水花的训练要求,所以方程在区间[5,6]内有一解,根据抛物线开口向下,由函数的零点与方程的根的关系,令,由,且可得的取值范围.试题解析:(1)由题意知最高点为,,设抛物线方程为, 4分当时,最高点为(3,4),方程为,将代入,得,解得.当时,跳水曲线所在的抛物线方程. 8分(2)将点代入得,所以.由题意,方程在区间[5,6]内有一解. 10分令,则,且.解得. 14分达到压水花的训练要求时的取值范围. 16分【考点】1.抛物线的顶点式方程;2.函数的零点与方程的根.30.如图,已知抛物线焦点为,直线经过点且与抛物线相交于,两点(Ⅰ)若线段的中点在直线上,求直线的方程;(Ⅱ)若线段,求直线的方程【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)根据已知条件设出未知的点的坐标和斜率,根据两点间的斜率公式和中点坐标公式找等价关系,求出直线的斜率,由已知得的根据斜截式求出直线方程; (Ⅱ)设出直线的方程为,这样避免讨论斜率的存在问题,与抛物线的方程联立方程组,得到根与系数的关系,根据直线与抛物线相交的交点弦的长来求参数的值试题解析:解:(Ⅰ)由已知得交点坐标为, 2分设直线的斜率为,,,中点则,,所以,又,所以4分故直线的方程是:6分(Ⅱ)设直线的方程为,7分与抛物线方程联立得,消元得,9分所以有,,11分所以有,解得,13分所以直线的方程是:,即15分【考点】1、直线的方程;2、直线与圆锥曲线的关系31.抛物线的准线截圆所得弦长为2,则= .【答案】2【解析】抛物线的准线为,而圆化成标准方程为,圆心,,圆心到准线的距离为,所以,即.【考点】1.抛物线的准线方程;2.勾股定理.32.在平面直角坐标系中,已知曲线上任意一点到点的距离与到直线的距离相等.(Ⅰ)求曲线的方程;(Ⅱ)设,是轴上的两点,过点分别作轴的垂线,与曲线分别交于点,直线与x轴交于点,这样就称确定了.同样,可由确定了.现已知,求的值.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)根据抛物线的定义及标准方程求解;(Ⅱ)先由求,再由求.试题解析:(Ⅰ)因为曲线上任意一点到点的距离与到直线的距离相等,根据抛物线定义知,曲线是以点为焦点,直线为准线的抛物线,故其方程为. 4分(Ⅱ)由题意知,,,则,故. 6分令,得,即. 8分同理,, 9分于是. 10分【考点】抛物线的概念、曲线的交点.33.已知抛物线的方程为,过点和点的直线与抛物线没有公共点,则实数的取值范围是()A.B.C.D.【答案】D【解析】据已知可得直线的方程为,联立直线与抛物线方程,得,消元整理,得,由于直线与抛物线无公共点,即方程无解,故有,解得或.【考点】1.直线与抛物线的位置关系;2.方程组的解法.34.如图所示,设抛物线的焦点为,且其准线与轴交于,以,为焦点,离心率的椭圆与抛物线在轴上方的一个交点为P.(1)当时,求椭圆的方程;(2)是否存在实数,使得的三条边的边长是连续的自然数?若存在,求出这样的实数;若不存在,请说明理由.【答案】(1);(2).【解析】(1)依题意由抛物线方程容易得椭圆的方程,代入既得椭圆方程;(2)假设存在满足条件的实数,由抛物线和椭圆方程求交点P,使得,求得.试题解析:(1)抛物线的焦点为, 1分椭圆的半焦距,离心率,所以椭圆的长半轴长,短半轴长,3分所以椭圆的方程为, 4分当时,椭圆的方程. 6分(2)假设存在满足条件的实数由,解得, 8分,,, 11分所以的三条边的边长分别是,,所以当时使得的三条边的边长是连续的自然数. 13分【考点】1、抛物线和椭圆的方程及性质;2.存在性问题.35.(5分)抛物线y2=8x的焦点到直线的距离是()A.B.2C.D.1【答案】D【解析】由抛物线y2=8x得焦点F(2,0),∴点F(2,0)到直线的距离d==1.故选D.36.过抛物线的焦点F作斜率分别为的两条不同的直线,且,相交于点A,B,相交于点C,D。

高考解析几何压轴题精选(含答案)

高考解析几何压轴题精选(含答案)

高考解析几何压轴题精选(含答案)1. 设抛物线22(0)y px p =>的焦点为F ,点(0,2)A .若线段FA的中点B 在抛物线上,则B 到该抛物线准线的距离为_____________。

(3分) 2 .已知m >1,直线2:02m l x my --=,椭圆222:1x C y m+=,1,2F F 分别为椭圆C 的左、右焦点. (Ⅰ)当直线l 过右焦点2F 时,求直线l 的方程;(Ⅱ)设直线l 与椭圆C 交于,A B 两点,12AF F V ,12BF F V 的重心分别为,G H .若原点O 在以线段GH 为直径的圆内,求实数m 的取值范围.(6分)3已知以原点O 为中心,)5,0F 为右焦点的双曲线C 的离心率52e =。

(I ) 求双曲线C 的标准方程及其渐近线方程; (II ) 如题(20)图,已知过点()11,M x y 的直线111:44l x x y y +=与过点()22,N x y (其中2xx≠)的直线222:44lx x y y +=的交点E 在双曲线C 上,直线MN 与两条渐近线分别交与G 、H 两点,求OGH ∆的面积。

(8分)4.如图,已知椭圆22221(0)xy a b ab +=>>的离心率为22,以该椭圆上的点和椭圆的左、右焦点12,F F 为顶点的三角形的周长为4(21)+.一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于顶点的任一点,直线1PF 和2PF 与椭圆的交点分别为B A 、和C D 、.(Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线1PF 、2PF 的斜率分别为1k 、2k ,证明12·1k k =;(Ⅲ)是否存在常数λ,使得·AB CD AB CDλ+=恒成立?若存在,求λ的值;若不存在,请说明理由.(7分)5.在平面直角坐标系xoy 中,如图,已知椭圆15922=+y x 的左、右顶点为A 、B ,右焦点为F 。

高考数学专题《抛物线》习题含答案解析

高考数学专题《抛物线》习题含答案解析

专题9.5 抛物线1.(2020·全国高考真题(理))已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( )A .2B .3C .6D .9【答案】C 【解析】设抛物线的焦点为F ,由抛物线的定义知||122A p AF x =+=,即1292p=+,解得6p =.故选:C.2.(2020·北京高三二模)焦点在x 轴的正半轴上,且焦点到准线的距离为4的抛物线的标准方程是( )A .x 2=4yB .y 2=4xC .x 2=8yD .y 2=8x【答案】D 【解析】根据题意,要求抛物线的焦点在x 轴的正半轴上,设其标准方程为22(0)y px p =>,又由焦点到准线的距离为4,即p =4,故要求抛物线的标准方程为y 2=8x ,故选:D.3.(全国高考真题)设F 为抛物线2:4C y x =的焦点,曲线()0ky k x=>与C 交于点P ,PF x ⊥轴,则k =( )A .12B .1C .32D .2【答案】D 【解析】由抛物线的性质可得(1,2)221kP y k ⇒==⇒=,故选D.4.(2020·全国高考真题(文))设O 为坐标原点,直线2x =与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为( )A .1,04⎛⎫⎪⎝⎭B .1,02⎛⎫⎪⎝⎭C .(1,0)D .(2,0)练基础【答案】B 【解析】因为直线2x =与抛物线22(0)y px p =>交于,E D 两点,且OD OE ⊥,根据抛物线的对称性可以确定4DOx EOx π∠=∠=,所以()2,2D ,代入抛物线方程44p =,求得1p =,所以其焦点坐标为1(,0)2,故选:B.5.(2019·四川高三月考(文))若抛物线22y px =的准线为圆2240x y x ++=的一条切线,则抛物线的方程为( )A.216y x =- B.28y x=- C.216y x= D.24y x=【答案】C 【解析】∵抛物线22y px =的准线方程为x=2p-,垂直于x 轴.而圆2240x y x ++=垂直于x 轴的一条切线为4x =-,则42p=,即8p =.故抛物线的方程为216y x =.故选:C .6.(2019·北京高考真题(文))设抛物线y 2=4x 的焦点为F ,准线为l .则以F 为圆心,且与l 相切的圆的方程为__________.【答案】(x -1)2+y 2=4.【解析】抛物线y 2=4x 中,2p =4,p =2,焦点F (1,0),准线l 的方程为x =-1,以F 为圆心,且与l 相切的圆的方程为 (x -1)2+y 2=22,即为(x -1)2+y 2=4.7.(2019·山东高三月考(文))直线l 与抛物线22x y =相交于A ,B 两点,当AB 4=时,则弦AB 中点M 到x 轴距离的最小值为______.【答案】32【解析】由题意,抛物线22x y =的焦点坐标为(0,12),根据抛物线的定义如图,所求d=111A B AF BF 113M 2222A B AB M ++--==≥=故答案为:32.8.(2021·沙湾县第一中学(文))设过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,且直线AB 的倾斜角为4π,则线段AB 的长是____,焦点F 到A ,B 两点的距离之积为_________.【答案】8 8【分析】由题意可得直线AB 的方程为1y x =-,然后将直线方程与抛物线方程联立方程组,消去y 后,利用根与系数的关系,结合抛物线的定义可求得答案【详解】解:由题意得(1,0)F ,则直线AB 的方程为1y x =-,设1122(,),(,)A x y B x y ,由241y x y x ⎧=⎨=-⎩,得2610x x -+=,所以12126,1x x x x +==,所以12628AB x x p =++=+=,因为11221,122=+=+=+=+p pAF x x BF x x ,所以()()1212121116118AF BF x x x x x x ⋅=+⋅+=+++=++=,故答案为:8,89.(2021·全国高三专题练习)已知抛物线顶点在原点,焦点在坐标轴上,又知此抛物线上的一点(),3A m -到焦点F 的距离为5,则m 的值为__________;抛物线方程为__________.【答案】答案见解析 答案见解析【分析】由于抛物线的开口方向未定,根据点(),3A m -在抛物线上这一条件,抛物线开口向下,向左、向右均有可能,以此分类讨论,利用焦半径公式列方程可得p 的值,根据点(),3A m -在抛物线上可得m 的值.【详解】根据点(),3A m -在抛物线上,可知抛物线开口向下,向左、向右均有可能,当抛物线开口向下时,设抛物线方程为22x py =-(0p >),此时准线方程为2p y =,由抛物线定义知(3)52p--=,解得4p =.所以抛物线方程为28x y =-,这时将(),3A m -代入方程得m =±当抛物线开口向左或向右时,可设抛物线方程为22y ax =(0a ≠),从p a =知准线方程为2ax =-,由题意知()25232am am⎧+=⎪⎨⎪-=⎩,解此方程组得11192a m =⎧⎪⎨=⎪⎩,22192a m =-⎧⎪⎨=-⎪⎩,33912a m =⎧⎪⎨=⎪⎩,44912a m =-⎧⎪⎨=-⎪⎩,综合(1)、(2)得92m =,22y x =;92m =-,22y x =-;12m =,218y x =;12m =-,218y x =-;m =±28x y =-.故答案为:92,92-,12,12-,±22y x =,22y x =-,218y x =,218y x =-,28x y =-.10.(2019·广东高三月考(理))已知F 为抛物线2:4T x y =的焦点,直线:2l y kx =+与T 相交于,A B 两点.()1若1k =,求FA FB +的值;()2点(3,2)C --,若CFA CFB ∠=∠,求直线l 的方程.【答案】(1)10(2)3240x y +-=【解析】(1)由题意,可得()0,1F ,设221212,,,44x x A x B x ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,联立方程组224y kx x y=+⎧⎨=⎩,整理得2480x kx --=,则124x x k +=,128x x =-,又由22121144x x FA FB +++=+()2121222104x x x x +-=+=.(2)由题意,知211,14x FA x ⎛⎫=- ⎪⎝⎭ ,222,14x FB x ⎛⎫=- ⎪⎝⎭ ,()3.3FC =-- ,由CFA CFB ∠=∠,可得cos ,cos ,FA FC FB FC=又2114x FA =+,2214x FB =+,则FA FC FB FC FA FC FB FC = g g ,整理得()1212420x x x x ++-=,解得32k =-,所以直线l 的方程为3240x y +-=.1.(2021·吉林长春市·高三(理))已知M 是抛物线24y x =上的一点,F 是抛物线的焦点,若以Fx 为始边,FM 为终边的角60xFM ∠=o ,则FM 等于( )A .2BC.D .4【答案】D 【分析】练提升设点200,4y M y ⎛⎫ ⎪⎝⎭,取()1,0a = ,可得1cos ,2FM a <>= ,求出20y 的值,利用抛物线的定义可求得FM 的值.【详解】设点()00,M x y ,其中2004y x =,则()1,0F ,2001,4y FM y ⎛⎫=- ⎪⎝⎭,取()1,0a =,则21cos ,2FM a <= ,可得4200340480y y -+=,因为20104y ->,可得204y >,解得2012y =,则20034y x ==,因此,014MF x =+=.故选:D.2.(2017·全国高考真题(文))过抛物线2:4C y x =的焦点F ,C 于点M (在x 轴上方),l 为C 的准线,点N 在l 上且MN l ⊥,则点M 到直线NF 的距离为( )A.B.D.【答案】A 【解析】设直线l 与x 轴相交于点P ,与直线MN 相交于点Q ,(1,0)F ,设||||MN MF m ==,因为||2,30PF NQM =∠= ,所以||4,||2QF QM m ==,所以42m m +=,解得:4m =,设00(,)M x y ,由焦半径公式得:014x +=,所以03x =,0y =,所以sin sin NP MNF NFP NF ∠=∠===所以点M 到直线NF 的距离为||sin 4NM MNF ⋅∠=⋅=3.(2020·广西南宁三中其他(理))已知抛物线28C y x =:的焦点为F ,P 是抛物线C 的准线上的一点,且P 的纵坐标为正数,Q 是直线PF 与抛物线C 的一个交点,若PQ =,则直线PF 的方程为()A .20x y --=B .20x y +-=C .20x y -+=D .20x y ++=【答案】B 【解析】过Q 点作QH PM ⊥于H ,因为PQ =,由抛物线的定义得PQ =,所以在Rt PQH ∆中,4PQH π∠=,所以4PFM π∠=,所以直线PF 的斜率为1k =-,所以直线PF 的方程为()()012y x -=--,即20x y +-=,故选B.4.(2020·浙江高三月考)如图,已知抛物线21:4C y x =和圆222:(1)1C x y -+=,直线l 经过1C 的焦点F ,自上而下依次交1C 和2C 于A ,B ,C ,D 四点,则AB CD ⋅的值为( )A .14B .12C .1D .2【答案】C 【解析】因为抛物线21:4C y x =的焦点为(1,0)F ,又直线l 经过1C 的焦点F ,设直线:(1)l y k x =-,由24(1)y x y k x ⎧=⎨=-⎩得2222(24)0k x k x k -++=,设1122(,),(,)A x y B x y ,则121=x x 由题意可得:1111=-=+-=AB AF BF x x ,同理2=CD x ,所以12cos 01︒⋅=⋅⋅== AB CD AB CD x x .故选C5.【多选题】(2022·全国高三专题练习)已知抛物线21:C y mx =与双曲线222:13y C x -=有相同的焦点,点()02,P y 在抛物线1C 上,则下列结论正确的有( )A .双曲线2C 的离心率为2B .双曲线2C 的渐近线为y x =C .8m =D .点P 到抛物线1C 的焦点的距离为4【答案】ACD 【分析】由双曲线方程写出离心率、渐近线及焦点,即可知A 、B 、C 的正误,根据所得抛物线方程求0y ,即知D 的正误.【详解】双曲线2C 的离心率为2e =,故A 正确;双曲线2C 的渐近线为y =,故B 错误;由12,C C 有相同焦点,即24m=,即8m =,故C 正确;抛物线28y x =焦点为()2,0,点()02,P y 在1C 上,则04y =±,故()2,4P 或()2,4P -,所以P 到1C 的焦点的距离为4,故D 正确.故选:ACD .6.【多选题】(2021·海南鑫源高级中学)在下列四个命题中,真命题为()A .当a 为任意实数时,直线(a -1)x -y +2a +1=0恒过定点P ,则过点P 且焦点在y 轴上的抛物线的标准方程是243x y =B .已知双曲线的右焦点为(5,0),一条渐近线方程为2x -y =0,则双曲线的标准方程为221205x y -=C .抛物线y =ax 2(a ≠0)的准线方程14y a=-D .已知双曲线2214x y m+=,其离心率()1,2e ∈,则m 的取值范围(-12,0)【答案】ACD 【分析】求出直线定点设出抛物方程即可判断A ;根据渐近线方程与焦点坐标求出,a b 即可判断B ;根据抛物线方程的准线方程公式即可判断C ;利用双曲线离心率公式即可判断D .【详解】对A 选项,直线(a -1)x -y +2a +1=0恒过定点为()2,3P -,则过点P 且焦点在y 轴上的抛物线的标准方程设为22x py =,将点()2,3P -代入可得23p =,所以243x y =,故A 正确;对B 选项,知5,2bc a==,又22225a b c +==,解得225,20a b ==,所以双曲线的标准方程为221520x y -=,故B 错;对C 选项,得21x y a =,所以准线方程14y a=-,正确;对D 选项,化双曲线方程为2214x y m-=-,所以()1,2e =,解得()12,0m ∈-,故正确.故选:ACD7.(2021·全国高二课时练习)已知点M 为抛物线2:2(0)C y px p =>上一点,若点M 到两定点(,)A p p ,,02p F ⎛⎫⎪⎝⎭的距离之和最小,则点M 的坐标为______.【答案】,2p p ⎛⎫⎪⎝⎭【分析】过点M 作抛物线准线的垂线,垂足为B ,根据抛物线的定义可得||||MF MB =,易知当A ,B ,M 三点共线时||MB MA +取得最小值且为||AB ,进而可得结果.【详解】过点M 作抛物线准线的垂线,垂足为B ,由抛物线的定义,知点M 到焦点,02p F ⎛⎫⎪⎝⎭的距离与点M 到准线的距离相等,即||||MF MB =,所以||||||||MF MA MB MA +=+,易知当A ,B ,M 三点共线时,||MB MA +取得最小值,所以min 3(||||)||2p MF MA AB +==,此时点M 的坐标为,2p p ⎛⎫⎪⎝⎭.故答案为:2p p ⎛⎫⎪⎝⎭,8.(2021·全国高二课时练习)抛物线()220y px p =>的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足120AFB ∠=︒,过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则MN AB的最大值为______.【分析】设=AF a ,=BF b ,根据中位线定理以及抛物线定义可得()12MN a b =+,在AFB △中,)a b +,即可求得MN AB 的最大值.【详解】设=AF a ,=BF b ,作AQ 垂直抛物线的准线于点Q ,BP 垂直抛物线的准线于点P .由抛物线的定义,知AF AQ =,BF BP =.由余弦定理得()2222222cos120AB a b ab a b ab a b ab =+=︒=++=+-.又22a b ab +⎛⎫≤ ⎪⎝⎭,∴()()()()22221344a b ab a b a b a b +-≥+-+=+,当且仅当a b =时,等号成立,∴)a b +=,即MN AB的最大值为9.(2020·山东济南外国语学校高三月考)抛物线C :22y x =的焦点坐标是________;经过点()4,1P 的直线l 与抛物线C 相交于A ,B 两点,且点P 恰为AB 的中点,F 为抛物线的焦点,则AF BF +=________.【答案】1,02⎛⎫⎪⎝⎭9【解析】抛物线C :22y x =的焦点1,02F ⎛⎫⎪⎝⎭.过A 作AM ⊥准线交准线于M ,过B 作BN ⊥准线交准线于N ,过P 作PK ⊥准线交准线 于K ,则由抛物线的定义可得AM BN AF BF +=+.再根据P 为线段AB 的中点,119(||||)||4222AM BN PK +==+=,∴9AF BF +=,故答案为:焦点坐标是1,02⎛⎫ ⎪⎝⎭,9AF BF +=.10.(2019·四川高考模拟(文))抛物线C :()220x py p =>的焦点为F ,抛物线过点(),1P p .(Ⅰ)求抛物线C 的标准方程与其准线l 的方程;(Ⅱ)过F 点作直线与抛物线C 交于A ,B 两点,过A ,B 分别作抛物线的切线,证明两条切线的交点在抛物线C 的准线l 上.【答案】(Ⅰ)抛物线的标准方程为24x y =,准线l 的方程为1y =-;(Ⅱ)详见解析.【解析】(Ⅰ)由221p p =⨯,得2p =,所以抛物线的标准方程为24x y =,准线l 的方程为1y =-.(Ⅱ)根据题意直线AB 的斜率一定存在,又焦点()0,1F ,设过F 点的直线方程为1y kx =+,联立241x yy kx ⎧=⎨=+⎩,得,2440x kx --=.设()11,A x y ,()22,B x y ,则124x x k +=,124x x =-.∴()22221212122168x x x x x x k +=+-=+.由214y x =得,1'2y x =,过A ,B 的抛物线的切线方程分别为()()1112221212y y x x x y y x x x ⎧-=-⎪⎪⎨⎪-=-⎪⎩,即21122211241124y x x x y x x x ⎧=-⎪⎪⎨⎪=-⎪⎩,两式相加,得()()2212121148y x x x x x =+-+,化简,得()221y kx k =-+,即()21y k x k =--,所以,两条切线交于点()2,1k -,该点显然在抛物线C 的准线l :1y =-上.1.(2021·全国高考真题)抛物线22(0)y px p =>的焦点到直线1y x =+p =( )A .1B .2C.D .4【答案】B 【分析】首先确定抛物线的焦点坐标,然后结合点到直线距离公式可得p 的值.【详解】抛物线的焦点坐标为,02p ⎛⎫ ⎪⎝⎭,其到直线10x y -+=的距离:d 解得:2p =(6p =-舍去).故选:B.2.(2021·天津高考真题)已知双曲线22221(0,0)x y a b a b-=>>的右焦点与抛物线22(0)y px p =>的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C 、D|AB .则双曲线的离心率为( )ABC .2D .3练真题【答案】A 【分析】设公共焦点为(),0c ,进而可得准线为x c =-,代入双曲线及渐近线方程,结合线段长度比值可得2212a c =,再由双曲线离心率公式即可得解.【详解】设双曲线22221(0,0)x y a b a b-=>>与抛物线22(0)y px p =>的公共焦点为(),0c ,则抛物线22(0)y px p =>的准线为x c =-,令x c =-,则22221c y a b -=,解得2b y a =±,所以22bAB a=,又因为双曲线的渐近线方程为b y x a =±,所以2bcCD a=,所以2bc a =c =,所以222212a c b c =-=,所以双曲线的离心率ce a==故选:A.3.(2020·北京高考真题)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线( ).A .经过点O B .经过点P C .平行于直线OP D .垂直于直线OP【答案】B 【解析】如图所示:.因为线段FQ 的垂直平分线上的点到,F Q 的距离相等,又点P 在抛物线上,根据定义可知,PQ PF =,所以线段FQ 的垂直平分线经过点P .故选:B.4.(2021·全国高考真题)已知O 为坐标原点,抛物线C :22y px =(0p >)的焦点为F ,P为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则C 的准线方程为______.【答案】32x =-【分析】先用坐标表示P Q ,,再根据向量垂直坐标表示列方程,解得p ,即得结果.【详解】抛物线C :22y px = (0p >)的焦点,02p F ⎛⎫⎪⎝⎭,∵P 为C 上一点,PF 与x 轴垂直,所以P 的横坐标为2p,代入抛物线方程求得P 的纵坐标为p ±,不妨设(,)2pP p ,因为Q 为x 轴上一点,且PQ OP ⊥,所以Q 在F 的右侧,又||6FQ = ,(6,0),(6,)2pQ PQ p ∴+∴=-u u u r 因为PQ OP ⊥,所以PQ OP ⋅= 2602p p ⨯-=,0,3p p >∴=Q ,所以C 的准线方程为32x =-故答案为:32x =-.5.(2020·山东海南省高考真题)C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________.【答案】163【解析】∵抛物线的方程为24y x =,∴抛物线的焦点F 坐标为(1,0)F ,又∵直线AB 过焦点F AB 的方程为:1)y x =-代入抛物线方程消去y 并化简得231030x x -+=,解法一:解得121,33x x ==所以12116||||3|33AB x x =-=-=解法二:10036640∆=-=>设1122(,),(,)A x y B x y ,则12103x x +=,过,A B 分别作准线1x =-的垂线,设垂足分别为,C D 如图所示.12||||||||||11AB AF BF AC BD x x =+=+=+++1216+2=3x x =+故答案为:1636.(2020·浙江省高考真题)如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于M (B ,M 不同于A ).(Ⅰ)若116=p ,求抛物线2C 的焦点坐标;(Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.【答案】(Ⅰ)1(,0)32;【解析】(Ⅰ)当116=p 时,2C 的方程为218y x =,故抛物线2C 的焦点坐标为1(,0)32;(Ⅱ)设()()()112200,,,,,,:A x y B x y M x y I x y m λ=+,由()22222222220x y y my m x y mλλλ⎧+=⇒+++-=⎨=+⎩,1200022222,,222m m my y y x y m λλλλλλ--∴+===+=+++,由M 在抛物线上,所以()222222244222m pm mp λλλλλ=⇒=+++,又22222()220y pxy p y m y p y pm x y m λλλ⎧=⇒=+⇒--=⎨=+⎩,012y y p λ∴+=,2101022x x y m y m p m λλλ∴+=+++=+,2122222mx p m λλ∴=+-+.由2222142, 22x y x px y px ⎧+=⎪⇒+=⎨⎪=⎩即2420x px +-=12x p ⇒==-+222221822228162p p p m p p p λλλλλ+⇒-=+⋅=++≥+,18p ≥,21160p ≤,p ≤,所以,p,此时A .法2:设直线:(0,0)l x my t m t =+≠≠,()00,A x y .将直线l 的方程代入椭圆221:12x C y +=得:()2222220m y mty t +++-=,所以点M 的纵坐标为22M mty m =-+.将直线l 的方程代入抛物线22:2C y px =得:2220y pmy pt --=,所以02M y y pt =-,解得()2022p m y m+=,因此()220222p m x m+=,由220012x y +=解得22212242160m m p m m ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭…,所以当m t ==时,p .。

高考数学抛物线大题专练30题(含详解)经典收藏版

高考数学抛物线大题专练30题(含详解)经典收藏版

目录目录-------------------------------------------------------------------------------------------------1抛物线大题专练(一)--------------------------------------------------------------------------------2抛物线大题专练(二)--------------------------------------------------------------------------------5抛物线大题专练(三)--------------------------------------------------------------------------------8抛物线大题专练---------------------------------------------------------------------------------------11参考答案与试题解析---------------------------------------------------------------------------------11抛物线大题专练(一)1.已知抛物线C的方程为x2=2py,设点M(x0,1)(x0>0)在抛物线C上,且它到抛物线C的准线距离为;(1)求抛物线C的方程;(2)过点M作倾斜角互补的两条直线分别交抛物线C于A(x1,y1),B(x2,y2)两点(M、A、B三点互不相同),求当∠MAB为钝角时,点A的纵坐标y1的取值范围.2.在平面直角坐标系xOy中,已知抛物线y2=2px(p>0)的准线方程为x=﹣,过点M(0,﹣2)作抛物线的切线MA,切点为A(异于点O).直线l过点M与抛物线交于两点B,C,与直线OA交于点N.(1)求抛物线的方程;(2)试问:的值是否为定值?若是,求出定值;若不是,说明理由.3.如图所示,设F是抛物线E:x2=2py(p>0)的焦点,过点F作斜率分别为k1、k2的两条直线l1、l2,且k1•k2=﹣1,l1与E相交于点A、B,l2与E相交于点C,D.已知△AFO外接圆的圆心到抛物线的准线的距离为3(O为坐标原点).(1)求抛物线E的方程;(2)若•+•=64,求直线l1、l2的方程.4.已知抛物线C:y2=2px(p>0),点A、B在抛物线C上.(Ⅰ)若直线AB过点M(2p,0),且|AB|=4p,求过A,B,O(O为坐标原点)三点的圆的方程;(Ⅱ)设直线OA、OB的倾斜角分别为α,β且α+β=,问直线AB是否会过某一定点?若是,求出这一定点的坐标,若不是,请说明理由.5.已知点A(2,1)在抛物线E:x2=ay上,直线l1:y=kx+1(k∈R,且k≠0)与抛物线E相交于B,C两点,直线AB,AC分别交直线l2:y=﹣1于点S,T.(1)求a的值;(2)若|ST|=2,求直线l1的方程;(3)试判断以线段ST为直径的圆是否恒过两个定点?若是,求这两个定点的坐标;若不是,说明理由.6.已知抛物线y2=2px(p>0),焦点为F,一直线l与抛物线交于A、B两点,且|AF|+|BF|=8,且AB的垂直平分线恒过定点S(6,0)①求抛物线方程;②求△ABS面积的最大值.7.已知抛物线y2=4x,直线l:y=﹣x+b与抛物线交于A,B两点.(Ⅰ)若x轴与以AB为直径的圆相切,求该圆的方程;(Ⅱ)若直线l与y轴负半轴相交,求△AOB面积的最大值.8.抛物线M:y2=2px(p>0)的准线过椭圆N:+y2=1的左焦点,以原点为圆心,以t(t>0)为半径的圆分别与抛物线M在第一象限的图象以及y轴的正半轴相交于点A和B,直线AB与x轴相交于点C.(Ⅰ)求抛物线M的方程;(Ⅱ)设点A的横坐标为a,点C的横坐标为c,抛物线M上点D的横坐标为a+2,求直线CD的斜率.9.已知抛物线y2=4x的焦点为F2,点F1与F2关于坐标原点对称,以F1,F2为焦点的椭圆C,过点(1,),(Ⅰ)求椭圆C的标准方程;(Ⅱ)设T(2,0),过点F2作直线l与椭圆C交于A,B两点,且=λ,若λ∈[﹣2,﹣1],求|+|2的最小值.抛物线大题专练(二)10.(2015•福建模拟)如图,已知抛物线y2=4x的焦点为F,过点P(2,0)且斜率为k1的直线交抛物线于A(x1,y1),B(x2,y2)两点,直线AF、BF分别与抛物线交于点M、N.(Ⅰ)证明•的值与k1无关;(Ⅱ)记直线MN的斜率为k2,证明为定值.11.已知过点M(,0)的直线l与抛物线y2=2px(p>0)交于A,B两点,且•=﹣3,其中O为坐标原点.(1)求p的值;(2)当|AM|+4|BM|最小时,求直线l的方程.12.已知过点M(,0)的直线l与抛物线y2=2px(p>0)交于A,B两点,且•=﹣3,其中O为坐标原点.(1)求p的值;(2)若圆x2+y2﹣2x=0与直线l相交于以C,D(A,C两点均在第一象银),且线段AC,CD,DB长构成等差数列,求直线l的方程.13.已知点A(﹣4,4)、B(4,4),直线AM与BM相交于点M,且直线AM的斜率与直线BM的斜率之差为﹣2,点M的轨迹为曲线C.(Ⅰ)求曲线C的轨迹方程;(Ⅱ)Q为直线y=﹣1上的动点,过Q做曲线C的切线,切点分别为D、E,求△QDE的面积S的最小值.14.如图所示,已知过抛物线x2=4y的焦点F的直线l与抛物线相交于A,B两点.(1)求证:以AF为直径的圆与x轴相切;(2)设抛物线x2=4y在A,B两点处的切线的交点为M,若点M的横坐标为2,求△ABM的外接圆方程:(3)设过抛物线x2=4y焦点F的直线l与椭圆+=1的交点为C、D,是否存在直线l使得|AF|•|CF|=|BF|•|DF|,若存在,求出直线l的方程,若不存在,请说明理由.15.已知抛物线C:y2=2px(p>0),直线交此抛物线于不同的两个点A(x1,y1)、B(x2,y2)(1)当直线过点M(p,0)时,证明y1.y2为定值;(2)如果直线过点M(p,0),过点M再作一条与直线垂直的直线l′交抛物线C于两个不同点D、E.设线段AB的中点为P,线段DE的中点为Q,记线段PQ的中点为N.问是否存在一条直线和一个定点,使得点N到它们的距离相等?若存在,求出这条直线和这个定点;若不存在,请说明理由.16.(2014•陕西)如图,曲线C由上半椭圆C1:+=1(a>b>0,y≥0)和部分抛物线C2:y=﹣x2+1(y≤0)连接而成,C1与C2的公共点为A,B,其中C1的离心率为.(Ⅰ)求a,b的值;(Ⅱ)过点B的直线l与C1,C2分别交于点P,Q(均异于点A,B),若AP⊥AQ,求直线l的方程.17.(2014•山东)已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有丨FA丨=丨FD丨.当点A的横坐标为3时,△ADF为正三角形.(Ⅰ)求C的方程;(Ⅱ)若直线l1∥l,且l1和C有且只有一个公共点E,(ⅰ)证明直线AE过定点,并求出定点坐标;(ⅱ)△ABE的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.18.(2014•安徽)如图,已知两条抛物线E1:y2=2p1x(p1>0)和E2:y2=2p2x(p2>0),过原点O的两条直线l1和l2,l1与E1,E2分别交于A1、A2两点,l2与E1、E2分别交于B1、B2两点.(Ⅰ)证明:A1B1∥A2B2;(Ⅱ)过O作直线l(异于l1,l2)与E1、E2分别交于C1、C2两点.记△A1B1C1与△A2B2C2的面积分别为S1与S2,求的值.19.(2014•福建)已知曲线Γ上的点到点F(0,1)的距离比它到直线y=﹣3的距离小2.(Ⅰ)求曲线Γ的方程;(Ⅱ)曲线Γ在点P处的切线l与x轴交于点A.直线y=3分别与直线l及y轴交于点M,N,以MN为直径作圆C,过点A作圆C的切线,切点为B,试探究:当点P在曲线Γ上运动(点P与原点不重合)时,线段AB的长度是否发生变化?证明你的结论.20.(2014•江西)如图,已知抛物线C:x2=4y,过点M(0,2)任作一直线与C相交于A,B两点,过点B作y轴的平行线与直线AO相交于点D(O为坐标原点).(1)证明:动点D在定直线上;(2)作C的任意一条切线l(不含x轴),与直线y=2相交于点N1,与(1)中的定直线相交于点N2,证明:|MN2|2﹣|MN1|2为定值,并求此定值.抛物线大题专练(三)21.(2014•杭州二模)设抛物线Γ:y2=2px(p>0)过点(t,)(t是大于0的常数).(Ⅰ)求抛物线Γ的方程;(Ⅱ)若F是抛物线Γ的焦点,斜率为1的直线交抛物线Γ于A,B两点,x轴负半轴上的点C,D满足|FA|=|FC|,|FD|=|FB|,直线AC,BD相交于点E,当时,求直线AB的方程.22.(2014•包头一模)设抛物线C:y2=2px(p>0)的焦点为F,准线为l,l与x轴交于点R,A为C上一点,已知以F为圆心,FA为半径的圆F交l于B,D两点.(1)若∠BFD=120°,△ABD的面积为8,求p的值及圆F的方程;(2)在(1)的条件下,若A,B,F三点在同一直线上,FD与抛物线C交于点E,求△EDA的面积.23.(2014•长春三模)已知抛物线C:y2=2px(p>0)的焦点为F,若过点F且斜率为1的直线与抛物线相交于M,N两点,且|MN|=8.(1)求抛物线C的方程;(2)设直线l为抛物线C的切线,且l∥MN,P为l上一点,求的最小值.24.(2014•长沙二模)已知A、B为抛物线C:y2=4x上的两个动点,点A在第一象限,点B在第四象限,l1、l2分别过点A、B且与抛物线C相切,P为l1、l2的交点.(Ⅰ)若直线AB过抛物线C的焦点F,求证:动点P在一条定直线上,并求此直线方程;(Ⅱ)设C、D为直线l1、l2与直线x=4的交点,求△PCD面积的最小值.25.(2015•上海模拟)如图,直线l:y=kx+b与抛物线x2=2py(常数p>0)相交于不同的两点A(x1,y1)、B(x2,y2),且|x2﹣x1|=h(h为定值),线段AB的中点为D,与直线l:y=kx+b平行的切线的切点为C(不与抛物线对称轴平行或重合且与抛物线只有一个公共点的直线称为抛物线的切线,这个公共点为切点).(1)用k、b表示出C点、D点的坐标,并证明CD垂直于x轴;(2)求△ABC的面积,证明△ABC的面积与k、b无关,只与h有关;(3)小张所在的兴趣小组完成上面两个小题后,小张连AC、BC,再作与AC、BC平行的切线,切点分别为E、F,小张马上写出了△ACE、△BCF的面积,由此小张求出了直线l与抛物线围成的面积,你认为小张能做到吗?请你说出理由.26.(2014•乌鲁木齐三模)已知抛物线y2=2px(p>0)的焦点过F,过H(﹣,0)引直线l交此抛物线于A,B两点.(1)若直线AF的斜率为2,求直线BF的斜率;(2)若p=2,点M在抛物线上,且+=t,求t的取值范围.27.(2014•太原二模)已知抛物线y2=4x的焦点为F,直线l1与抛物线交于不同的两点A、B,直线l2与抛物线交于不同的两点C、D.(Ⅰ)当l1过F时,在l1上取不同于F的点P,使得=,求点P的轨迹方程;(Ⅱ)若l1与l2相交于点Q,且倾斜角互补时,|QA|•|QB|=a|QC|•|QD|,求实数a的值.28.(2014•合肥一模)已知△ABC的三个顶点都在抛物线y2=2px(p>0)上,且抛物线的焦点F满足,若BC边上的中线所在直线l的方程为mx+ny﹣m=0(m,n为常数且m≠0).(Ⅰ)求p的值;(Ⅱ)O为抛物线的顶点,△OFA、△OFB、△OFC的面积分别记为S1、S2、S3,求证:为定值.29.(2014•呼和浩特一模)已知抛物线C:y2=2px(p>0),直线l过定点A(4,0)且与抛物线C交于P、Q两点,若以弦PQ为直径的圆E过原点O.(Ⅰ)求抛物线C的方程;(Ⅱ)当圆E的面积最小时,求E的方程.30.(2014•普陀区一模)已知点P(2,0),点Q在曲线C:y2=2x上.(1)若点Q在第一象限内,且|PQ|=2,求点Q的坐标;(2)求|PQ|的最小值.抛物线大题专练参考答案与试题解析1.已知抛物线C的方程为x2=2py,设点M(x0,1)(x0>0)在抛物线C上,且它到抛物线C的准线距离为;(1)求抛物线C的方程;(2)过点M作倾斜角互补的两条直线分别交抛物线C于A(x1,y1),B(x2,y2)两点(M、A、B三点互不相同),求当∠MAB为钝角时,点A的纵坐标y1的取值范围.考点:抛物线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:(1)由抛物线的定义,求出p,即可求抛物线C的方程;(2)设直线AM的方程为:y=k(x﹣1)+1,与抛物线方程联立,求出k的范围,利用,即可求出点A的纵坐标y1的取值范围.解答:解:(1)由定义得,则抛物线C的方程:x2=y(2)设直线AM的方程为:y=k(x﹣1)+1联立方程得x2﹣kx+k﹣1=0,A(k﹣1,(k﹣1)2),△1>0即k≠2同理B(﹣k﹣1,(﹣k﹣1)2),△2>0即k≠﹣2,令,则所以k>2或,所以点评:本题考查抛物线的定义与方程,考查直线与抛物线的位置关系,考查学生的计算能力,属于中档题.2.(2015•淮安一模)在平面直角坐标系xOy中,已知抛物线y2=2px(p>0)的准线方程为x=﹣,过点M(0,﹣2)作抛物线的切线MA,切点为A(异于点O).直线l过点M与抛物线交于两点B,C,与直线OA交于点N.(1)求抛物线的方程;(2)试问:的值是否为定值?若是,求出定值;若不是,说明理由.考点:抛物线的简单性质.专题:计算题;直线与圆;圆锥曲线的定义、性质与方程.分析:(1)由抛物线的准线方程可得p,进而得到抛物线方程;(2)求出函数y=﹣的导数,求出切线的斜率,以及切线方程,联立切线方程和抛物线方程求得切点A,进而直线OA的方程,设出直线BC的方程,联立抛物线方程运用韦达定理,求出N的坐标,代入所求式子化简即可得到定值2.解答:解:(1)由题设知,,即,所以抛物线的方程为y2=x;(2)因为函数的导函数为,设A(x0,y0),则直线MA的方程为,因为点M(0,﹣2)在直线MA上,所以﹣2﹣y0=﹣•(﹣x0).联立,解得A(16,﹣4),所以直线OA的方程为.设直线BC方程为y=kx﹣2,由,得k2x2﹣(4k+1)x+4=0,所以.由,得.所以,故的为定值2.点评:本题考查抛物线的方程和性质,考查直线方程和抛物线方程联立,运用韦达定理,以及导数的运用:求切线方程,考查运算能力,属于中档题和易错题.3.(2014•九江三模)如图所示,设F是抛物线E:x2=2py(p>0)的焦点,过点F作斜率分别为k1、k2的两条直线l1、l2,且k1•k2=﹣1,l1与E相交于点A、B,l2与E相交于点C,D.已知△AFO外接圆的圆心到抛物线的准线的距离为3(O为坐标原点).(1)求抛物线E的方程;(2)若•+•=64,求直线l1、l2的方程.考点:抛物线的简单性质.专题:综合题;圆锥曲线的定义、性质与方程.分析:(1)确定△AFO外接圆的圆心在线段OF的垂直平分线y=上,求出p,即可求抛物线E的方程;(2)利用•+•=64,结合韦达定理,基本不等式,即可求直线l1、l2的方程.解答:解:(1)由题意,F(0,),△AFO外接圆的圆心在线段OF的垂直平分线y=上,∴+=3,∴p=4.∴抛物线E的方程是x2=8y;(2)设直线l1的方程y=k1x+2,代入抛物线方程,得y2﹣(8k12+4)y+4=0设A(x1,y1),B(x2,y2),则y1+y2=8k12+4,y1y2=4设C(x3,y3),D(x4,y4),同理可得y3+y4=+4,y3y4=4∴•+•=32+16(k12+)≥64,当且仅当k12=,即k1=±1时取等号,∴直线l1、l2的方程为y=x+2或y=﹣x+2.点评:本题考查抛物线的方程,考查直线与抛物线的位置关系,考查向量知识的运用,属于中档题.4.(2014•浙江二模)已知抛物线C:y2=2px(p>0),点A、B在抛物线C上.(Ⅰ)若直线AB过点M(2p,0),且|AB|=4p,求过A,B,O(O为坐标原点)三点的圆的方程;(Ⅱ)设直线OA、OB的倾斜角分别为α,β且α+β=,问直线AB是否会过某一定点?若是,求出这一定点的坐标,若不是,请说明理由.考点:抛物线的简单性质.专题:综合题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)求出A,B的坐标,可得三角形ABO是Rt△,从而可求过A,B,O三点的圆方程;(Ⅱ)直线AB的方程为:x=my+b,代入抛物线方程,利用韦达定理,结合α+β=,可得b=﹣2p﹣2mp,即可得出结论.解答:解:(Ⅰ)∵直线AB过点M(2p,0),且|AB|=4p,∴直线x=2p与抛物线y2=2px的两个交点坐标分别是:A(2p,2p),B(2p,﹣2p),∴三角形ABO是Rt△,∴过A,B,O三点的圆方程是:(x﹣2p)2+y2=4p2;(Ⅱ)设点,直线AB的方程为:x=my+b,它与抛物线相交,由方程组消去x可得y2﹣2mpy﹣2pb=0,故y1+y2=2mp,y1y2=﹣2pb,这样,tan==即1=,所以b=﹣2p﹣2mp,∴直线AB的方程可以写成为:x=my﹣2p﹣2mp,即x+2p=m(y﹣2p),∴直线AB过定点(﹣2p,2p).点评:本题考查圆的方程,考查直线与抛物线的位置关系,考查和角的正切公式,考查直线过定点,属于中档题.5.(2014•广州二模)已知点A(2,1)在抛物线E:x2=ay上,直线l1:y=kx+1(k∈R,且k≠0)与抛物线E相交于B,C两点,直线AB,AC分别交直线l2:y=﹣1于点S,T.(1)求a的值;(2)若|ST|=2,求直线l1的方程;(3)试判断以线段ST为直径的圆是否恒过两个定点?若是,求这两个定点的坐标;若不是,说明理由.考点:抛物线的简单性质.专题:综合题;圆锥曲线的定义、性质与方程.分析:(1)根据点A(2,1)在抛物线E:x2=ay上,可求a的值;(2)y=kx+1代入抛物线方程,利用韦达定理,确定S,T的坐标,根据|ST|=2,即可求直线l1的方程;(3)确定以线段ST为直径的圆的方程,展开令x=0,即可求这两个定点的坐标.解答:解:(1)∵点A(2,1)在抛物线E:x2=ay上,∴a=4.…(1分)(2)由(1)得抛物线E的方程为x2=4y.设点B,C的坐标分别为(x1,y1),(x2,y2),依题意,,y=kx+1代入抛物线方程,消去y得x2﹣4kx﹣4=0,解得.∴x1+x2=4k,x1x2=﹣4.…(2分)直线AB的斜率,故直线AB的方程为.…(3分)令y=﹣1,得,∴点S的坐标为.…(4分)同理可得点T的坐标为.…(5分)∴=.…(6分)∵,∴.由,得20k2=16k2+16,解得k=2,或k=﹣2,…(7分)∴直线l1的方程为y=2x+1,或y=﹣2x+1.…(9分)(3)设线段ST的中点坐标为(x0,﹣1),则=.…(10分)而|ST|2=,…(11分)∴以线段ST为直径的圆的方程为=.展开得.…(12分)令x=0,得(y+1)2=4,解得y=1或y=﹣3.…(13分)∴以线段ST为直径的圆恒过两个定点(0,1),(0,﹣3).…(14分)点评:本题考查抛物线的方程,考查直线与抛物线的位置关系,考查圆的方程,考查学生的计算能力,属于中档题.6.(2015•兴国县一模)已知抛物线y2=2px(p>0),焦点为F,一直线l与抛物线交于A、B两点,且|AF|+|BF|=8,且AB的垂直平分线恒过定点S(6,0)①求抛物线方程;②求△ABS面积的最大值.考点:抛物线的标准方程;抛物线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:①利用点差法,确定AB中点M的坐标,分类讨论,根据AB的垂直平分线恒过定点S(6,0),即可求抛物线方程;②分类讨论,求出△ABS面积的表达式,即可求得其最大值.解答:解:①设A(x1,y1),B(x2,y2),AB中点M(x0,y0)当直线的斜率存在时,设斜率为k,则由|AF|+|BF|=8得x1+x2+p=8,∴又得,∴所以依题意,∴p=4∴抛物线方程为y2=8x﹣﹣﹣﹣(6分)当直线的斜率不存在时,2p=8,也满足上式,∴抛物线方程为y2=8x②当直线的斜率存在时,由(2,y0)及,令y=0,得又由y2=8x和得:∴=﹣﹣﹣﹣(12分)当直线的斜率不存在时,AB的方程为x=2,|AB|=8,△ABS面积为∵,∴△ABS面积的最大值为.点评:本题考查抛物线的标准方程,考查三角形面积的计算,考查学生的计算能力,属于中档题.7.(2015•路南区二模)已知抛物线y2=4x,直线l:y=﹣x+b与抛物线交于A,B两点.(Ⅰ)若x轴与以AB为直径的圆相切,求该圆的方程;(Ⅱ)若直线l与y轴负半轴相交,求△AOB面积的最大值.考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)联立得y2+8y﹣8b=0.由此利用根的判别式、弦长公式,结合已知条件能求出圆的方程.(Ⅱ)由直线l与y轴负半轴相交,得﹣1<b<0,由点O到直线l的距离d=,得S△AOB=|AB|d=4.由此利用导数性质能求出△AOB的面积的最大值.解答:解:(Ⅰ)联立得:y2+8y﹣8b=0.依题意应有△=64+32b>0,解得b>﹣2.设A(x1,y1),B(x2,y2),设圆心Q(x0,y0),则应有x0=,y0==﹣4.因为以AB为直径的圆与x轴相切,得到圆半径为r=|y1|=4,又|AB|==.所以|AB|=2r,即=8,解得b=﹣.所以x0==2b+8=,所以圆心为(,﹣4).故所求圆的方程为(x﹣)2+(y+4)2=16..(Ⅱ)因为直线l与y轴负半轴相交,∴b<0,又l与抛物线交于两点,由(Ⅰ)知b>﹣2,∴﹣2<b<0,直线l:y=﹣x+b整理得x+2y﹣2b=0,点O到直线l的距离d==,所以∴S△AOB=|AB|d=﹣4b=4.令g(b)=b3+2b2,﹣2<b<0,g′(b)=3b2+4b=3b(b+),∴g(b)在(﹣2,﹣)增函数,在(﹣,0)是减函数,∴g(b)的最大值为g(﹣)=.∴当b=﹣时,△AOB的面积取得最大值.点评:本题主要考查圆的方程的求法,考查三角形面积的最大值的求法,考查直线与抛物线、圆等知识,同时考查解析几何的基本思想方法和运算求解能力.8.(2015•大庆二模)抛物线M:y2=2px(p>0)的准线过椭圆N:+y2=1的左焦点,以原点为圆心,以t(t>0)为半径的圆分别与抛物线M在第一象限的图象以及y轴的正半轴相交于点A和B,直线AB与x轴相交于点C.(Ⅰ)求抛物线M的方程;(Ⅱ)设点A的横坐标为a,点C的横坐标为c,抛物线M上点D的横坐标为a+2,求直线CD的斜率.考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)由椭圆方程求出椭圆左焦点坐标,得到抛物线准线方程,从而求得p值,则抛物线方程可求;(Ⅱ)写出A的坐标,由|OA|=t列式求得t与A的坐标间的关系,求出直线BC的方程,把A代入BC方程,得到a,c的关系,然后直接代入斜率公式求直线CD的斜率.解答:解:(Ⅰ)∵椭圆N:+y2=1,∴c2=a2﹣b2=﹣1=,∴椭圆的左焦点为F1(﹣,0),∴﹣=﹣,则p=1.故M:y2=2x;(Ⅱ)由题意知,A(a,2a),∵|OA|=t,∴a2+2a=t2.由于t>0,故有t=①由点B(0,t),C(c,0)的坐标知,直线BC的方程为+=1.又∵A在直线BC上,故有+=1.将①代入上式,得:+=1,解得c=a+2+.又∵D(a+2,2),∴直线CD的斜率为:k CD====﹣1.点评:本题主要抛物线方程的求法,考查了直线与圆锥曲线位置关系的应用,解答此题的关键是对抛物线定义的灵活应用,是高考试卷中的压轴题.9.(2015•黄冈模拟)已知抛物线y2=4x的焦点为F2,点F1与F2关于坐标原点对称,以F1,F2为焦点的椭圆C,过点(1,),(Ⅰ)求椭圆C的标准方程;(Ⅱ)设T(2,0),过点F2作直线l与椭圆C交于A,B两点,且=λ,若λ∈[﹣2,﹣1],求|+|2的最小值.考点:抛物线的简单性质.专题:综合题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)设椭圆的半焦距为c,由y2=4x求得c=1.设椭圆C的标准方程为(a>b>0),由于椭圆C过点(1,),代入椭圆方程结合a2=b2+c2,联立解得即可;(II)设l:x=ky+1,与椭圆的方程联立可得根与系数的关系,由λ∈[﹣2,﹣1)可得到k2的取值范围.由于=(x1﹣2,y1),=(x2﹣2,y2),通过换元,令t=∈[,],即可得出|+|2的最小值.解答:解:(Ⅰ)设椭圆的半焦距为c,由y2=4x得c=1,设椭圆C的标准方程为(a>b>0),∵椭圆C过点(1,),∴,又a2=b2+1,联立解得b2=1,a2=2.故椭圆C的标准方程为椭圆方程为+y2=1…(5分)(Ⅱ)由题意可设l:x=ky+1,由得(k2+2)y2+2ky﹣1=0…(6分)设A(x1,y1),B(x2,y2),则有将①2÷②得+2=﹣⇒λ++2=…(8分)由λ∈[﹣2,﹣1]得﹣≤λ++2≤0⇒﹣≤≤0,0≤k2≤…(9分)=(x1﹣2,y1),=(x2﹣2,y2),+=(x1+x2﹣4,y1+y2)x1+x2﹣4=k(y1+y2)﹣2=﹣,|+|=+==16﹣+令t=∈[,],|+|2=8t2﹣28t+16∴t=时|+|2的最小值是4点评:本题综合考查了椭圆与抛物线的标准方程及其性质、直线与椭圆相交问题转化为方程联立得到根与系数、换元法、分类讨论、向量相等及其向量运算和向量的模等基础知识与基本技能方法,考查了分析问题和解决问题的能力,考查了推理能力和计算能力,属于中档题.10.(2015•福建模拟)如图,已知抛物线y2=4x的焦点为F,过点P(2,0)且斜率为k1的直线交抛物线于A(x1,y1),B(x2,y2)两点,直线AF、BF分别与抛物线交于点M、N.(Ⅰ)证明•的值与k1无关;(Ⅱ)记直线MN的斜率为k2,证明为定值.考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)依题意,设直线AB的方程为x=my+2,与抛物线方程联立消x得关于y的一元二次方程,根据韦达定理即可求得y1y2,进而求出x1x2,根据向量数量积运算公式,可得•的值与k1无关;(Ⅱ)设M(x3,y3),N(x4,y4),设直线AM的方程为x=ny+1,将其代入y2=4x,消去x,得到关于y的一元二次方程,从而得y1y3=﹣4,同理可得y2y4=﹣4,根据斜率公式可把表示成关于y1与y2的表达式,再借助(Ⅰ)的结果即可证明.解答:证明:(Ⅰ)依题意,设直线AB的方程为x=my+2(m≠0).…(1分)将其代入y2=4x,消去x,整理得y2﹣4my﹣8=0.…(2分)从而y1y2=﹣8,于是,…(3分)∴与k 1无关.…(5分)(Ⅱ)设M(x3,y3),N(x4,y4).则.…(8分)设直线AM的方程为x=ny+1(n≠0),将其代入y2=4x,消去x,整理得y2﹣4ny﹣4=0∴y1y3=﹣4.同理可得y2y4=﹣4.…(10分)故,…(11分)由(Ⅰ)知,y1y2=﹣8,∴为定值.…(12分)点评:本题考查直线与圆锥曲线的位置关系及抛物线的简单性质,考查学生综合运用知识分析问题解决问题的能力,难度较大.11.(2015•洛阳一模)已知过点M(,0)的直线l与抛物线y2=2px(p>0)交于A,B两点,且•=﹣3,其中O为坐标原点.(1)求p的值;(2)当|AM|+4|BM|最小时,求直线l的方程.考点:直线与圆锥曲线的关系.专题:计算题;平面向量及应用;直线与圆;圆锥曲线的定义、性质与方程.分析:(1)设A(x1,y1),Bx2,y2),直线l:x=my+,代入抛物线方程,运用韦达定理,及平面向量的数量积的坐标表示,即可得到p=2;(2)运用抛物线的定义,及均值不等式,即可得到最小值9,注意等号成立的条件,求得B的坐标,代入直线方程,求得m,即可得到直线l的方程.解答:解:(1)设A(x1,y1),Bx2,y2),直线l:x=my+,代入抛物线方程,消去x,得,y2﹣2pmy﹣p2=0,y1+y2=2pm,y1y2=﹣p2,由于•=﹣3,即x1x2+y1y2=﹣3,x1x2==,即有﹣p2=﹣3,解得,p=2;(2)由抛物线的定义,可得,|AM|=x1+1,|BM|=x2+1,则|AM|+4|BM|=x 1+4x2+5+5=9,当且仅当x1=4x2时取得最小值9.由于x1x2=1,则解得,x2=(负的舍去),代入抛物线方程y2=4x,解得,y2=,即有B(),将B的坐标代入直线x=my+1,得m=.则直线l:x=y+1,即有4x+y﹣4=0或4x﹣y﹣4=0.点评:本题考查抛物线的定义、方程和性质,考查直线方程和抛物线方程联立,消去未知数,运用韦达定理,考查基本不等式的运用:求最值,考查运算能力,属于中档题.12.(2015•洛阳一模)已知过点M(,0)的直线l与抛物线y2=2px(p>0)交于A,B两点,且•=﹣3,其中O为坐标原点.(1)求p的值;(2)若圆x2+y2﹣2x=0与直线l相交于以C,D(A,C两点均在第一象银),且线段AC,CD,DB长构成等差数列,求直线l的方程.考点:直线与圆锥曲线的关系;直线的一般式方程.专题:计算题;平面向量及应用;圆锥曲线的定义、性质与方程.分析:(1)设A(x1,y1),Bx2,y2),直线l:x=my+,代入抛物线方程,运用韦达定理,及平面向量的数量积的坐标表示,即可得到p=2;(2)求出AB的长,用m表示,再由等差数列的性质,以及CD为圆的直径,即可得到m的方程,解出m,即可得到直线l的方程.解答:解:(1)设A(x1,y1),Bx2,y2),直线l:x=my+,代入抛物线方程,消去x,得,y2﹣2pmy﹣p2=0,y1+y2=2pm,y1y2=﹣p2,由于•=﹣3,即x1x2+y1y2=﹣3,x1x2==,即有﹣p2=﹣3,解得,p=2;(2)由(1)得,y1+y2=4m,y1y2=﹣4,则(y1﹣y2)2=(y1+y2)2﹣4y1y2=16(1+m2),|AB|2=(y1﹣y2)2+(x1﹣x2)2=(y1﹣y2)2+()2=y1﹣y2)2[1+()2]=16(1+m2)2,即有|AB|=4(1+m2),由于线段AC,CD,DB长构成等差数列,则2|CD|=|AC|+|DB|=|AC|+|BC|﹣|CD|=|AB|﹣|CD|,又CD为圆x2+y2﹣2x=0的直径,即有|CD|=2,则4(1+m2)=6,解得,m=,则直线l的方程是x+y﹣=0或x﹣y﹣=0.点评:本题考查抛物线的定义、方程和性质,考查直线方程和抛物线方程联立,消去未知数,运用韦达定理,考查等差数列的性质,考查运算能力,属于中档题.13.(2015•衡水模拟)已知点A(﹣4,4)、B(4,4),直线AM与BM相交于点M,且直线AM的斜率与直线BM的斜率之差为﹣2,点M的轨迹为曲线C.(Ⅰ)求曲线C的轨迹方程;(Ⅱ)Q为直线y=﹣1上的动点,过Q做曲线C的切线,切点分别为D、E,求△QDE的面积S的最小值.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线中的最值与范围问题.分析:(I)设M(x,y),由题意可得:,化简可得曲线C的轨迹方程为x2=4y且(x≠±4).(II)设Q(m,﹣1),切线方程为y+1=k(x﹣m),与抛物线方程联立化为x2﹣4kx+4(km+1)=0,由于直线与抛物线相切可得△=0,即k2﹣km﹣1=0.解得x=2k.可得切点(2k,k2),由k2﹣km﹣1=0.可得k1+k2=m,k1•k2=﹣1.得到切线QD⊥QE.因此△QDE为直角三角形,|QD|•|QE|.令切点(2k,k2)到Q的距离为d,则d2=(2k﹣m)2+(k2+1)2=(4+m2)(k2+1),利用两点之间的距离公式可得|QD|=,|QE|=,代入即可得出.解答:解:(I)设M(x,y),由题意可得:,化为x2=4y.∴曲线C的轨迹方程为x2=4y且(x≠±4).(II)设Q(m,﹣1),切线方程为y+1=k(x﹣m),联立,化为x2﹣4kx+4(km+1)=0,由于直线与抛物线相切可得△=0,即k2﹣km﹣1=0.∴x2﹣4kx+4k2=0,解得x=2k.可得切点(2k,k2),由k2﹣km﹣1=0.∴k1+k2=m,k1•k2=﹣1.∴切线QD⊥QE.∴△QDE为直角三角形,|QD|•|QE|.令切点(2k,k2)到Q的距离为d,则d2=(2k﹣m)2+(k2+1)2=4(k2﹣km)+m2+(km+2)2=4(k2﹣km)+m2+k2m2+4km+4=(4+m2)(k2+1),∴|QD|=,|QE|=,∴(4+m2)=≥4,当m=0时,即Q(0,﹣1)时,△QDE的面积S取得最小值4.点评:本题考查了直线与抛物线相切的性质、切线方程、相互垂直的斜率之间的关系、两点之间的距离公式、三角形的面积计算公式、二次函数的性质,考查了推理能力与计算能力,属于难题.14.(2015•郴州二模)如图所示,已知过抛物线x2=4y的焦点F的直线l与抛物线相交于A,B两点.(1)求证:以AF为直径的圆与x轴相切;(2)设抛物线x2=4y在A,B两点处的切线的交点为M,若点M的横坐标为2,求△ABM的外接圆方程:(3)设过抛物线x2=4y焦点F的直线l与椭圆+=1的交点为C、D,是否存在直线l使得|AF|•|CF|=|BF|•|DF|,若存在,求出直线l的方程,若不存在,请说明理由.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线中的最值与范围问题.分析:(1)如图所示,设线段AF的中点为O1,过O1作O1O2⊥x轴,垂足为点O2,作AA1⊥x轴.利用抛物线的定义及梯形的中位线定理可得可得r====|O1O2|,即可证明;(2)设直线AB的方程为y=kx+1,A(x1,y1),B(x2,y2).与抛物线方程联立化为x2﹣4kx﹣4=0,可得根与系数的关系,由x2=4y,可得.可得k MA•k MB==﹣1,可得△MAB为直角三角形,可得△MAB的外接圆的圆心为线段AB的中点.设线段AB的中点为P,可得⊙P与抛物线的准线相切,切点为点M,利用中点坐标公式与根与系数的关系可得圆心P(2,3),半径r=|MP|=|3﹣(﹣1)|=4,即可得出所求的△MAB的外接圆的方程.(3)假设存在直线l使得|AF|•|CF|=|BF|•|DF|,设=λ,可得,,设C(x3,y3),D (x4,y4).利用向量的坐标运算可得x1=﹣λx2,x4=﹣λx3.把x1=﹣λx2代入根与系数的关系可得.把y=kx+1代入椭圆方程可得(3k2+6)x2+6kx﹣1=0,把根与系数的关系与x4=﹣λx3联立可得,联立解得即可.解答:(1)证明:如图所示,设线段AF的中点为O1,过O1作O1O2⊥x轴,垂足为点O2,作AA1⊥x轴.则r====|O1O2|,∴r=|O1O2|,∴以AF为直径的圆与x轴相切;(2)解:设直线AB的方程为y=kx+1,A(x1,y1),B(x2,y2).联立,化为x2﹣4kx﹣4=0,∴x1+x2=4k,x1x2=﹣4.。

高考数学 专题13 抛物线解答题解法荟萃(解析版)

高考数学 专题13 抛物线解答题解法荟萃(解析版)

专题13 抛物线解答题解法荟萃一.【学习目标】1.掌握抛物线的定义;2.掌握焦点三角形的应用和几何意义;3.掌握抛物线方程的求法;4.掌握直线与抛物线的位置关系;5.熟练掌握定点、定值、最值和范围问题。

二.【知识点】 1.抛物线的定义平面内与一定点F 和一条定直线l 的距离______的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.2.抛物线的标准方程、图形及几何性质 标准y 2=2px (p >0) y 2=-2px (p >0) x 2=2py (p >0) x 2=-2py (p >0)方程图 形焦点 )0,2(p F 准线x =p 2范围 ① x ≥0,y ∈R ② x ≤0,y ∈R③ x ∈R ,y ≥0 ④ x ∈R ,y ≤0对称轴 ⑤________ ⑥_________ 顶点 O (0,0) O (0,0) 离心率 e =1e =1开口⑦____ ⑧____⑨____ ⑩____3.抛物线y 2=2px (p >0)上一点P (x 0,y 0)到焦点)0,2(pF 的距离|PF |=x 0+p 2.三.【方法总结】1.求抛物线标准方程的实质是求p 值,常用的方法是待定系数法,若开口不定时,可以设抛物线方程为y 2=mx(m≠0)或x 2=ny(n≠0).2.利用抛物线定义可知,抛物线的焦半径与焦点弦有许多特殊的性质,应用起来非常方便.如:已知AB 是抛物线y 2=2px(p>0)的焦点弦,且A(x 1,y 1),B(x 2,y 2),点F 是抛物线的焦点(如图),可以证明:(1)y 1y 2=-p 2,x 1x 2=p 24. (2)|AB|=x 1+x 2+p.(3)1|AF|+1|BF|为定值2p .(4)以AB 为直径的圆与抛物线的准线相切. (5)以AF(或BF)为直径的圆与y 轴相切. (6)∠CFD =90°. 四.【题型方法】(一)抛物线的轨迹方程 (二)定点问题(三)直线与抛物线涉及的面积问题 (四)直线与抛物线中涉及的角的问题 (五)定值问题 (六)范围问题(七)抛物线与向量的综合 (八)最值问题 五.【题型举例】(一)抛物线的轨迹方程例1. 已知曲线()2C:2y x =+上有一点A ,定点()B 2,0,求线段AB 中点P 的轨迹方程。

专题23--抛物线(解答题压轴题)(解析版)-【挑战压轴题】备战2023年高考数学高分必刷必过题

专题23--抛物线(解答题压轴题)(解析版)-【挑战压轴题】备战2023年高考数学高分必刷必过题

(1)若1l 过抛物线C 的焦点,且垂直于(2)若直线1l 的斜率k ∈2MN MQ =,且MNQ △【答案】(1)22y x =1(1)若B为线段AC的中点,求直线(2)若正方形DFMN的边长为实数λ,使得k1+k2=λk3?若存在,求出【答案】(1)22;λ=,理由见解析(2)存在2(1)由已知可得DN为抛物线的准线.(2)λ=,使得k1+k2=λk3,理由如下:存在2(1)若抛物线2C的焦点正好为椭圆1C的上顶点,求(2)椭圆1C与抛物线2C在第一象限的交点为于点Q,交抛物线2C于点M(Q,M值,并求当p取最大时直线l的斜率.(1)证明:以DE为直径的圆经过点(1)求点P的纵坐标的取值范围;(2)设D是抛物线2Γ上一点,且位于椭圆PCD的面积存在最大值.【答案】(1)3,22⎛⎫ ⎪⎝⎭;32⎛⎫(1)当k 取不同数值时,求直线l 与抛物线公共点的个数;(2)若直线l 与抛物线相交于A 、B (3)在x 轴上是否存在这样的定点均能使得MA MB k k ⋅为定值,若有,找出满足条件的点【答案】(1)答案见解析(2)证明见解析(3)存在,()0,0M (1)420240x y x y -+-=+-=(1)写出这条抛物线的焦点坐标和准线方程;(2)求证:1x 、0x 、2x 成等差数列,(3)若A ,F ,B 三点共线,求出动点【答案】(1)焦点坐标为()0,1F ,准线方程为(2)证明见解析(3)1y =-,4(1)(1)抛物线的标准方程为24x y =,于是焦点坐标为(1)若抛物线2C 的焦点恰为椭圆1C (2)若椭圆1C 与抛物线2C 在第一象限的交点为交抛物线2C 于M ,且AM MB =,求【答案】(1)28y x =(2)p 的最大值为3540,此时直线(1)求抛物线的方程;(2)若||||AB CD =,求凹四边形OEBC 面积的最小值.【答案】(1)24y x =(2)324+①若0m ≤,2(22)S m =++②若0m >,((21)2S m ⎡=+⎢⎣综上所述,凹四边形OEBC 面积的最小值是。

抛物线定义及性质常考5种题型(解析版)--2024高考数学常考题型精华版

抛物线定义及性质常考5种题型(解析版)--2024高考数学常考题型精华版

抛物线定义及性质常考5种题型【考点分析】考点一:抛物线定义平面内与一个定点F 和一条定直线l (l 不经过点F )的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线.考点二:抛物线焦点弦焦半径公式图1-3-1图1-3-2焦半径:21p x AF +=,22p x BF +=,||||1cos 1cos p p AF BF αα==-+;.焦点弦:1222||sin pAB x x p a=++=.三角形面积:22sin AOB p S △α=.【题型目录】题型一:抛物线的定义及方程题型二:抛物线的性质题型三:抛物线焦点弦焦半径题型四:有关三角形面积问题题型五:抛物线中的最值问题【典型例题】题型一:抛物线的定义及方程【例1】已知抛物线22(0)y px p =>的焦点为F ,抛物线上一点)0M y 满足3||2MF p =,则p =()A .1B .2C .12D .32【例2】抛物线218y x =-的准线方程是()A .132x =B .2y =C .132y =D .2y =-【例3】在平面直角坐标系xOy 中,抛物线()2:20C y px p =>的焦点为F ,M 是抛物线C 上的点,若OFM△的外接圆与抛物线C 的准线相切,且该圆面积为81π,则p =()A .6B .8C .10D .12【例4】数学与建筑的结合造就建筑艺术,如图,吉林大学的校门是一抛物线形水泥建筑物,若将校门轮廓(忽略水泥建筑的厚度)近似看成抛物线2y ax =的一部分,其焦点坐标为()0,2-,校门最高点到地面距离约为18米,则校门位于地面宽度最大约为()A .18米B .21米C .24米D .27米【例5】过抛物线24y x =的焦点F 的直线交抛物线于A 、B 两点,分别过A 、B 两点作准线的垂线,垂足分别为11,A B 两点,以线段11A B 为直径的圆C 过点(2,3)-,则圆C 的方程为()A .22(1)(2)2x y ++-=B .22(1)(1)5x y ++-=C .22(1)(1)17x y +++=D .22(1)(2)26x y +++=而圆心C 是线段11A B 的中点,又1AA ⊥显然直线AB 不垂直于y 轴,设直线AB 则4,4y y t y y +==-,||(y y -=过点【题型专练】1.已知抛物线24y x =,其焦点为F ,准线为l ,则下列说法正确的是()A .焦点F 到准线l 的距离为1B .焦点F 的坐标为(1,0)C .准线l 的方程为116y =-D .对称轴为x 轴2.抛物线2:16C y x =的焦点为F ,点M 在C 上,12MF =,则M 到y 轴的距离是()A .4B .8C .10D .123.已知抛物线2:2C y x =的焦点为,(,)F A m n 是抛物线C 上的一点,若52AF =,则OAF △(O 为坐标原点)的面积是()A .12B .1C .2D .44.(2022·广东广州·高二期末)已知圆()2214x y -+=与抛物线()220x py p =>的准线相切,则p =()A .1B .2C .4D .85.位于德国东部萨克森州的莱科勃克桥(如图所示)有“仙境之桥”之称,它的桥形可以近似地看成抛物线,该桥的高度为5m ,跨径为12m ,则桥形对应的抛物线的焦点到准线的距离为______m .【答案】185##3.6【分析】首先建立直角坐标系,再根据抛物线所过的点求标准方程,进而得到抛物线的焦点到准线的距离.【详解】以抛物线的最高点O 为坐标原点,建立如图所示的平面直角坐标系,设抛物线的解析式为22x py =-,因为抛物线过点()6,5-,所以36所以抛物线的焦点到准线的距离为题型二:抛物线的性质【例1】抛物线()220x py p =>的焦点为F ,其准线与双曲线22133y x -=相交于A ,B 两点,若ABF 为等边三角形,则p =()A .2B .12C .6D .16【例2】已知抛物线2:4C y x =的焦点为F ,准线为l ,点P 在抛物线C 上,PQ 垂直l 于点Q ,QF 与y 轴交于点T ,O 为坐标原点,且1OT =,则PF =()A .1B .2C .3D .4【例3】已知P ,Q 是抛物线2:4C x y =上位于不同象限的两点,分别过P ,Q 作C 的切线,两条切线相交于点T ,F 为C 的焦点,若2=FP ,5FQ =,则F T =()A .5B C .D .4【答案】BQ 根据抛物线的定义,可知1P FP y =+=所以P 的纵坐标为1,Q 的纵坐标为4,则由24x y =得24x y =,得2x y '=,所以抛物线在得到两条切线方程并联立124y x y x =--⎧⎨=-⎩,解得所以()2212110FT =+--=.故选:B【例4】已知点A 是抛物线C :22x y =上一点,F 为焦点,O 为坐标原点,若以点O 为圆心,以OA 的长为半径的圆与抛物线C 的另一个交点为B ,且π3AOB ∠=,则AF 的值是()A .112B .6C .132D .7【例5】(2022·全国·高考真题)已知O 为坐标原点,过抛物线2:2(0)C y px p =>焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点(,0)M p ,若||||AF AM =,则()A .直线AB 的斜率为B .||||OB OF =C .||4||AB OF >D .180OAM OBM ∠+∠<︒【题型专练】1.已知抛物线22(0)y px p =>的焦点为F ,准线为l ,过F 的直线与抛物线交于点A 、B ,与直线l 交于点D ,若3AF FB =,4BD = ,则p =()A .1B .3C .2D .4【答案】B【分析】作出辅助线,由抛物线定义得到则11BB FK AA ∥∥.根据抛物线定义知又3AF FB = ,4BD = ,所以设1DBB θ∠=,因为1BB ∥则11cos BB AA DBDAAB θ===2.已知抛物线()2:20C y px p =>过点()1,2B ,过点()1,0A -的直线交抛物线于M ,N 两点,点N 在点M 右侧,若F 为焦点,直线NF ,MF 分别交抛物线于P ,Q 两点,则()A .4MF NF ⋅>B .2OM ON OB ⋅=C .A ,P ,Q 三点共线D .4AMP π∠≤3.已知F 为抛物线2:4C y x =的焦点,点A 在抛物线C 上,O 为原点,若OAF △为等腰三角形,则点A 的横坐标可能为()A .2B 1C 2D .24.设抛物线C :()220y px p =>的焦点为F ,准线为l ,A 为C 上一点,以F 为圆心,FA 为半径的圆交l 于B ,D 两点,若90ABD ∠=︒,且ABF 的面积为)A .3BF =B .ABF 是等边三角形C .点F 到准线的距离为3D .抛物线C 的方程为212y x=因为以F 为圆心,|FA |为半径的圆交l 由抛物线的定义可得|AB |=|AF |=|BF |所以ABF 是等边三角形,故B 正确;所以∠FBD =30°.因为ABF 的面积为34|BF |2=93,所以|BF |=6.故A 错误;5.已知C :()220y px p =>的焦点为FF 的直线l 与抛物线C 交于点A ,B 两点(点A在第一象限),与抛物线的准线交于点D ,若4AF =,则()A .2p =B .F 为线段AD 的中点C .2BD BF =D .2BF =6.已知点F 是抛物线2:8E y x =的焦点,A ,B ,C 为E 上三点,且0FA FB FC ++=,则||||||FA FB FC ++=___________.【答案】12【分析】根据题意可得F 为△ABC 的重心,根据重心坐标公式再结合抛物线定义1||2FA x =+代入整理计算.题型三:抛物线焦点弦焦半径【例1】过抛物线2:2(0)C y px p =>的焦点F 的直线l 与抛物线C 交于点A ,B ,若2,AF FB =若直线l 的斜率为k ,则k =()A .B .-C .-D 或【例2】已知抛物线2:4E y x =的焦点为F ,准线为l ,过F 的直线与E 交于,A B 两点,,C D 分别为,A B 在l 上的射影,则下列结论正确的是()A .若直线AB 的倾斜角为45 ,则8AB =B .若2AF FB =,则直线AB 的斜率为±C .若O 为坐标原点,则,,B O C 三点共线^ D.CF DF消x 可得222440,Δ(4)1616160,y m y m m --==-+=+>121244y y m y y +=⎧⎨⋅=-⎩,()()122,,2,FC y FD y =-=-,所以()()12122,2,40FC FD y y y y ⋅=-⋅-=+=,即CF DF ^,故D 正确.故选:ACD.【例3】已知抛物线24y x =,过焦点F 的直线与抛物线交于A ,B 两点,过A ,B 分别作y 轴的垂线,垂足分别为C ,D ,则||||AC BD +的最小值为()A .32B .2C .3D .5【题型专练】1.(2022·全国·高考真题(文))设F 为抛物线2:4C y x =的焦点,点A 在C 上,点(3,0)B ,若AF BF =,则AB =()A .2B .C .3D .【答案】B 【解析】【分析】根据抛物线上的点到焦点和准线的距离相等,从而求得点A 的横坐标,进而求得点A 坐标,即可得到答案.【详解】由题意得,()1,0F ,则2AF BF ==,即点A 到准线1x =-的距离为2,所以点A 的横坐标为121-+=,不妨设点A 在x 轴上方,代入得,()1,2A ,所以AB ==故选:B2.设F 为抛物线2:6C y x =的焦点,过F 且倾斜角为60°的直线交C 于A ,B 两点,则AB =()A .3B .8C .12D .3.(2022·全国·高考真题)已知O 为坐标原点,点(1,1)A 在抛物线2:2(0)C x py p =>上,过点(0,1)B -的直线交C 于P ,Q 两点,则()A .C 的准线为1y =-B .直线AB 与C 相切C .2|OP OQ OA ⋅>D .2||||||BP BQ BA ⋅>4.已知抛物线2:4C y x =的焦点F ,过F 分别作直线1l 与C 交于A ,B 两点,作直线2l 与C 交于D ,E 两点,若直线1l 与2l 的斜率的平方和为1,则AB DE +的最小值为_________=题型四:有关三角形面积问题【例1】经过抛物线C :24y x =的焦点F 的直线l 与抛物线交于不同的两点A ,B ,若AOB S =△O 为坐标原点),则直线l 的斜率为______.【例2】抛物线22(0)y px p =>的焦点为F,直线20l y --=与抛物线分别交于A B ,两点(点A 在第一象限),则AOF AOBS S 的值等于________.【答案】34【题型专练】1.2:4C y x =的焦点,且与C 交于A ,B 两点,则三角形AOB 的面积是(O 为坐标原点)()A B C .3D .1632.已知斜率为()0k k >的直线过抛物线C :24y x =的焦点F 且与抛物线C 相交于,A B 两点,过,A B 分别作该抛物线准线的垂线,垂足分别为1A ,1B ,若1ABB △与1ABA △的面积之比为2,则k 的值为()A B .12C .2D .由抛物线C :24y x =,得(1,0F题型五:抛物线中的最值问题【例1】设O 为坐标原点,P 是以F 为焦点的抛物线22y x =上任意一点,M 是线段PF 上的点,且2PM MF =,则直线OM 的斜率的最大值为()A .1B .12C .2D 【例2】已知P 为抛物线24y x =上任意一点,F 为抛物线的焦点,()4,2M 为平面内一定点,则PF PM+的最小值为__________.当,,P M A 共线时,和最小;过点最小值为5.故答案为:5.【例3】已知F 是抛物线24y x =的焦点,P 是抛物线24y x =上一动点,Q 是()()22:411C x y -+-= 上一动点,则下列说法正确的有()A .PF 的最小值为1B .QFC .PF PQ +的最小值为4D .PF PQ +1【答案】AC【分析】根据抛物线的性质判断A ,根据圆的性质判断B ,结合抛物线的定义判断C ,D.【详解】抛物线焦点为()1,0F ,准线为1x =-,作出图象,【例4】已知抛物线2:8C y x =及圆22():21M x y -+=,过()2,0的直线l 与抛物线C 和圆M 从上到下依次交于A ,P ,Q ,B 四点,则4AP BQ +的最小值为___________.圆心()2,0M 即为抛物线C 的焦点F .所以()(414AP BQ AF BF +=-+-【题型专练】1.已知点P 为抛物线24y x =-上的动点,设点P 到2:1l x=的距离为1d ,到直线40x y +-=的距离为2d ,则12d d +的最小值是()A .52B .2C .2D ()1,0F - ,则1210452d d --==++故选:B .【点睛】抛物线方程中,字母p 的几何意义是抛物线的焦点距离.牢记它对解题非常有益.2.已知抛物线C :()220x py p =>的焦点为F ,过点F 的直线l 与抛物线交于,A B 两点,且33AF BF ==,则p =________;设点M 是抛物线C 上的任意一点,点N 是C 的对称轴与准线的交点,则MNMF的最大值为________.3.(2021·甘肃·民勤县第一中学高二开学考试(文))已知P 为抛物线24y x =上的一个动点,Q 为圆()2241x y +-=上的一个动点,那么点P 到点Q 的距离与点P 到抛物线准线的距离之和的最小值是______.14.已知抛物线()2:20C y px p =>的焦点为F ,且F 与圆()22:41M x y ++=上的点的距离的最小值4.(1)求p ;(2)若点P 在圆M 上,,PA PB 是C 的两条切线,,A B 是切点,求PAB △面积的最大值.)()11,A x y ,()22,B x y ,00(,)P x y ,由于点P 在圆y。

高三数学抛物线试题答案及解析

高三数学抛物线试题答案及解析

高三数学抛物线试题答案及解析1.过抛物线的焦点作直线与此抛物线相交于、两点,是坐标原点,当时,直线的斜率的取值范围是()A.B.C.D.【答案】D【解析】由题可知,点的横坐标时,满足,此时,故直线(即直线)的斜率的取值范围是.故选D.【考点】抛物线的几何性质以及直线与抛物线的位置关系.2.抛物线y=ax2的准线方程为y=1,则实数a的值为()A.4B.C.D.-4【答案】C【解析】将抛物线方程改写为,可知由准线方程为,可得,即解得,选C【考点】抛物线的方程及其准线方程3.直线l过抛物线C:x2=4y的焦点且与y轴垂直,则l与C所围成的图形的面积等于( ) A.B.2C.D.【答案】C【解析】∵抛物线方程为x2=4y,∴其焦点坐标为F(0,1),故直线l的方程为y=1.如图所示,可知l与C围成的图形的面积等于矩形OABF的面积与函数y=x2的图象和x轴正半轴及直线x=2围成的图形的面积的差的2倍(图中阴影部分的2倍),即S=4-2=4-2·=4-=.4.已知⊙O′过定点A(0,p)(p>0),圆心O′在抛物线C:x2=2py(p>0)上运动,MN为圆O′在x轴上所截得的弦.(1)当O′点运动时,|MN|是否有变化?并证明你的结论;(2)当|OA|是|OM|与|ON|的等差中项时,试判断抛物线C的准线与圆O′的位置关系,并说明理由.【答案】(1)|MN|不变化,其定值为2p 见解析(2)见解析【解析】(1)设O′(x0,y),则x2=2py(y≥0),则⊙O′的半径|O′A|=,⊙O′的方程为(x-x0)2+(y-y)2=x2+(y-p)2,令y=0,并把x02=2py,代入得x2-2xx+x2-p2=0,解得x1=x-p,x2=x+p,所以|MN|=|x1-x2|=2p,这说明|MN|不变化,其定值为2p.(2)不妨设M(x0-p,0),N(x+p,0).由题2|OA|=|OM|+|ON|,得2p=|x0-p|+|x+p|,所以-p≤x≤p.O′到抛物线准线y=-的距离d=y+=,⊙O′的半径|O′A|===.因为r>d⇔x04+4p4>(x2+p2)2⇔x2<p2,又x2≤p2<p2(p>0),所以r>d,即⊙O′与抛物线的准线总相交.5.已知点C(1,0),点A、B是⊙O:x2+y2=9上任意两个不同的点,且满足·=0,设P为弦AB的中点.(1)求点P的轨迹T的方程;(2)试探究在轨迹T上是否存在这样的点:它到直线x=-1的距离恰好等于到点C的距离?若存在,求出这样的点的坐标;若不存在,说明理由.【答案】(1)x2-x+y2=4(2)存在,(1,-2)和(1,2)【解析】(1)连接CP、OP,由·=0,知AC⊥BC,∴|CP|=|AP|=|BP|=|AB|.由垂径定理知|OP|2+|AP|2=|OA|2,即|OP|2+|CP|2=9.设点P(x,y),有(x2+y2)+[(x-1)2+y2]=9,化简,得到x2-x+y2=4.(2)根据抛物线的定义,到直线x=-1的距离等于到点C(1,0)的距离的点都在抛物线y2=2px上,其中=1,∴p=2,故抛物线方程为y2=4x.由方程组,得x2+3x-4=0,解得x1=1,x2=-4,由于x≥0,故取x=1,此时y=±2.故满足条件的点存在,其坐标为(1,-2)和(1,2).6.在平面直角坐标系中,点到点的距离比它到轴的距离多1,记点的轨迹为. (1)求轨迹为的方程(2)设斜率为的直线过定点,求直线与轨迹恰好有一个公共点,两个公共点,三个公共点时的相应取值范围.【答案】(1);(2)当时直线与轨迹恰有一个公共点;当时,故此时直线与轨迹恰有两个公共点;当时,故此时直线与轨迹恰有三个公共点.【解析】(1)设点,根据条件列出等式,在用两点间的距离公式表示,化简整理即得;(2)在点的轨迹中,记,,设直线的方程为,联立方程组整理得,分类讨论①时;②;③或;④,确定直线与轨迹的公共点的个数.(1)设点,依题意,,即,整理的,所以点的轨迹的方程为.(2)在点的轨迹中,记,,依题意,设直线的方程为,由方程组得①当时,此时,把代入轨迹的方程得,所以此时直线与轨迹恰有一个公共点.当时,方程①的判别式为②设直线与轴的交点为,则由,令,得③(ⅰ)若,由②③解得或.即当时,直线与没有公共点,与有一个公共点,故此时直线与轨迹恰有一个公共点.(ⅱ)若或,由②③解得或,即当时,直线与有一个共点,与有一个公共点.当时,直线与有两个共点,与没有公共点.故当时,故此时直线与轨迹恰有两个公共点.(ⅲ)若,由②③解得或,即当时,直线与有两个共点,与有一个公共点.故当时,故此时直线与轨迹恰有三个公共点.综上所述,当时直线与轨迹恰有一个公共点;当时,故此时直线与轨迹恰有两个公共点;当时,故此时直线与轨迹恰有三个公共点.【考点】两点间的距离公式,抛物线方程,直线与抛物线的位置关系.7.抛物线的准线方程是()A.B.C.D.【答案】A【解析】题中抛物线的标准形式为,则其准线方程为,故先A.【考点】1.抛物线的准线方程.8.在平面直角坐标系中,抛物线上纵坐标为2的一点到焦点的距离为3,则抛物线的焦点坐标为.【答案】【解析】由题意,,因此焦点为.【考点】抛物线的性质.9.(12分)(2011•福建)如图,直线l:y=x+b与抛物线C:x2=4y相切于点A.(Ⅰ)求实数b的值;(Ⅱ)求以点A为圆心,且与抛物线C的准线相切的圆的方程.【答案】(Ⅰ)b=﹣1(Ⅱ)(x﹣2)2+(y﹣1)2=4【解析】(I)由,得:x2﹣4x﹣4b=0,由直线l与抛物线C相切,知△=(﹣4)2﹣4×(﹣4b)=0,由此能求出实数b的值.(II)由b=﹣1,得x2﹣4x+4=0,解得x=2,代入抛物线方程x2=4y,得点A的坐标为(2,1),因为圆A与抛物线C的准线相切,所以圆A的半径r等于圆心A到抛物线的准线y=﹣1的距离,由此能求出圆A的方程.解:(I)由,消去y得:x2﹣4x﹣4b=0①,因为直线l与抛物线C相切,所以△=(﹣4)2﹣4×(﹣4b)=0,解得b=﹣1;(II)由(I)可知b=﹣1,把b=﹣1代入①得:x2﹣4x+4=0,解得x=2,代入抛物线方程x2=4y,得y=1,故点A的坐标为(2,1),因为圆A与抛物线C的准线相切,所以圆A的半径r等于圆心A到抛物线的准线y=﹣1的距离,即r=|1﹣(﹣1)|=2,所以圆A的方程为:(x﹣2)2+(y﹣1)2=4.点评:本题考查圆锥曲线的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用.10.过抛物线C:上的点M分别向C的准线和x轴作垂线,两条垂线及C的准线和x轴围成边长为4的正方形,点M在第一象限.(1)求抛物线C的方程及点M的坐标;(2)过点M作倾斜角互补的两条直线分别与抛物线C交于A,B两点,如果点M在直线AB的上方,求面积的最大值.【答案】(1)y2=8x,(2,4);(2).【解析】本题主要考查抛物线的标准方程及其几何性质、韦达定理、点到直线的距离、三角形面积公式、利用导数求函数的最值等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,由题意结合抛物线图象得到M点坐标,代入抛物线方程中,解出P的值,从而得到抛物线的标准方程及M点坐标;第二问,设出A,B点坐标,利用M点,分别得到直线MA和直线MB的斜率,因为两直线倾斜角互补,所以两直线的斜率相加为0,整理得到y1+y2=-8,代入到中得到直线AB的斜率,设出直线AB的方程,利用M点在直线AB上方得到b 的范围,令直线与抛物线方程联立,图形有2个交点,所以方程的进一步缩小b的范围,,而用两点间距离公式转化,d是M到直线AB的距离,再利用导数求面积的最大值.(1)抛物线C的准线x=-,依题意M(4-,4),则42=2p(4-),解得p=4.故抛物线C的方程为y2=8x,点M的坐标为(2,4), 3分(2)设.直线MA的斜率,同理直线MB的斜率.由题设有,整理得y1+y2=-8.直线AB的斜率. 6分设直线AB的方程为y=-x+b.由点M在直线AB的上方得4>-2+b,则b<6.由得y2+8y-8b=0.由Δ=64+32b>0,得b>-2.于是-2<b<6. 9分,于是.点M到直线AB的距离,则△MAB的面积.设f(b)=(b+2)(6-b)2,则f¢(b)=(6-b)(2-3b).当时,f¢(x)>0;当时,f¢(x)<0.当时,f(b)最大,从而S取得最大值. 12分【考点】抛物线的标准方程及其几何性质、韦达定理、点到直线的距离、三角形面积公式、利用导数求函数的最值.11.(2011•浙江)已知抛物线C1:x2=y,圆C2:x2+(y﹣4)2=1的圆心为点M(1)求点M 到抛物线C 1的准线的距离;(2)已知点P 是抛物线C 1上一点(异于原点),过点P 作圆C 2的两条切线,交抛物线C 1于A ,B 两点,若过M ,P 两点的直线l 垂直于AB ,求直线l 的方程.【答案】(1)(2)【解析】(1)由题意画出简图为:由于抛物线C 1:x 2=y 准线方程为:y=﹣,圆C 2:x 2+(y ﹣4)2=1的圆心M (0,4), 利用点到直线的距离公式可以得到距离d==.(2)设点P (x 0,x 02),A (x 1,x 12),B (x 2,x 22); 由题意得:x 0≠0,x 2≠±1,x 1≠x 2,设过点P 的圆c 2的切线方程为:y ﹣x 02=k (x ﹣x 0)即y=kx ﹣kx 0+x 02① 则,即(x 02﹣1)k 2+2x 0(4﹣x 02)k+(x 02﹣4)2﹣1=0设PA ,PB 的斜率为k 1,k 2(k 1≠k 2),则k 1,k 2应该为上述方程的两个根, ∴,;代入①得:x 2﹣kx+kx 0﹣x 02="0" 则x 1,x 2应为此方程的两个根, 故x 1=k 1﹣x 0,x 2=k 2﹣x 0 ∴k AB =x 1+x 2=k 1+k 2﹣2x 0=由于MP ⊥AB ,∴k AB •K MP =﹣1⇒故P ∴.12. 过抛物线x 2=2py(p>0)焦点的直线与抛物线交于不同的两点A 、B ,则抛物线上A 、B 两点处的切线斜率之积是( )A.P 2B.-p 2C.-1D.1 【答案】C【解析】设A(x 1,y 1),B(x 2,y 2) ∵=x,∴过A 点的切线斜率为x 1, 过B 点的切线斜率为x 2, ∴过抛物线上A 、B 两点处的切线斜率之积是x 1x 2,设过抛物线焦点的直线方程为y=kx+与x 2=2py 联立消去y 得 x 2-2kpx-p 2=0x 1x 2=-p 2x 1x 2=-1.13. 抛物线的焦点坐标为 . 【答案】【解析】由于,焦点在轴的正半轴,所以,抛物线的焦点坐标为.【考点】抛物线的几何性质.14.抛物线的焦点坐标是( )A.B.C.(0,1)D.(1,0)【答案】C【解析】解抛物线的标准方程为,所以抛线以轴为对称轴,开口向上,且,,所以焦点坐标为,故选C.【考点】抛物线的标准方程与简单几何性质.15.已知抛物线的准线与x轴交于点M,过点M作圆的两条切线,切点为A、B,.(1)求抛物线E的方程;(2)过抛物线E上的点N作圆C的两条切线,切点分别为P、Q,若P,Q,O(O为原点)三点共线,求点N的坐标.【答案】(1)y2=4x;(2)点N坐标为或.【解析】本题主要考查抛物线的标准方程及其几何性质、圆的标准方程及其几何性质、圆的切线的性质等基础知识,考查学生分析问题解决问题的能力和计算能力.第一问,利用抛物线的准线,得到M点的坐标,利用圆的方程得到圆心C的坐标,在中,可求出,在中,利用相似三角形进行角的转换,得到的长,而,从而解出P的值,即得到抛物线的标准方程;第二问,设出N点的坐标,利用N、C点坐标写出圆C的方程,利用点C的坐标写出圆C的方程,两方程联立,由于P、Q是两圆的公共点,所以联立得到的方程即为直线PQ的方程,而O点在直线上,代入点O的坐标,即可得到s、t的值,即得到N点坐标.试题解析:(1)由已知得,C(2,0).设AB与x轴交于点R,由圆的对称性可知,.于是,所以,即,p=2.故抛物线E的方程为y2=4x. 5分(2)设N(s,t).P,Q是NC为直径的圆D与圆C的两交点.圆D方程为,即x2+y2-(s+2)x-ty+2s=0.①又圆C方程为x2+y2-4x+3=0.②②-①得(s-2)x+ty+3-2s=0.③ 9分P,Q两点坐标是方程①和②的解,也是方程③的解,从而③为直线PQ的方程.因为直线PQ经过点O,所以3-2s=0,.故点N坐标为或. 12分【考点】抛物线的标准方程及其几何性质、圆的标准方程及其几何性质、圆的切线的性质.16.若抛物线的焦点在直线上,则_____;的准线方程为_____.【答案】;.【解析】抛物线的焦点坐标为,该点在直线上,则有,解得,此时抛物线的准线方程为.【考点】抛物线的几何性质17.已知直线和直线,抛物线上一动点到直线和直线的距离之和的最小值是()A.B.2C.D.3【答案】B【解析】由题可知是抛物线的准线,设抛物线的焦点为,则动点到的距离等于,则动点到直线和直线的距离之和的最小值,即焦点到直线的距离,所以最小值是,故选【考点】抛物线的定义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题21 抛物线(解答题压轴题)1.(2021·全国高三模拟预测)在平面直角坐标系xOy 中,抛物线E :()220y px p =>上一点00(4,)(0)S y y >到焦点F 的距离5SF =.不经过点S 的直线l 与E 交于A ,B . (1)求抛物线E 的标准方程;(2)若直线AS ,BS 的斜率之和为2,证明:直线l 过定点. 【答案】(1)24y x =;(2)证明见解析. 【详解】(1)抛物线E :()220y px p =>的焦点,02p F ⎛⎫ ⎪⎝⎭,准线方程为2p x =-,因为抛物线上一点00(4,)(0)S y y >到焦点F 的距离5SF =, 由抛物线的定义得452p+=,所以2p =. 所以抛物线E 的标准方程是24y x =;(2)将4x =代入24y x =可得04y =或04y =-(舍),所以点S 坐标为(4,4), 因为直线l 的斜率不等于0,设直线l 的方程是x my n =+,()11,A x y ,()22,B x y ,联立24y x x my n⎧=⎨=+⎩,得2440y my n --=,因为直线l 与E 有两个交点,所以216160m n ∆=->,即20m n ->.由韦达定理得121244y y my y n +=⎧⎨=-⎩,因为直线AS ,BS 的斜率之和为2,所以121222121212444411444444444y y y y y y x x y y ⎛⎫----+=+=+ ⎪--++⎝⎭-- 1212124(8)24()16y y y y y y ++==+++,所以121224()0y y y y ++=,将121244y y m y y n+=⎧⎨=-⎩代入上式可得:8160n m -+=,即2n m =, 所以直线l 的方程是()2x my n m y =+=+,它过定点()0,2-.2.(2021·全国高三月考(理))已知直线l 过原点O ,且与圆A 交于M ,N 两点,4MN =,圆A 与直线2y =-相切,OA 与直线l 垂直,记圆心A 的轨迹为曲线C . (1)求C 的方程;(2)过直线1y =-上任一点P 作C 的两条切线,切点分别为1Q ,2Q ,证明: ①直线12Q Q 过定点; ②12PQ PQ ⊥.【答案】(1)24(0)x y y =≠;(2)①证明见解析;②证明见解析. 【详解】(1)解:如图,设(,)A x y ,因为圆A 与直线2y =-相切,所以圆A的半径为|2|y +.由圆的性质可得222||||||OA ON AN +=,即2224(2)x y y ++=+,化简得24x y =. 因为O 与A 不重合,所以0y ≠, 所以C 的方程为24(0)x y y =≠.(2)证明:①由题意可知1Q ,2Q 与O 不重合.如图,设(,1)P t -,()111,Q x y ,则2114x y =,因为2xy '=,所以切线1PQ 的斜率为12x , 故11112x y x t+=-,整理得11220tx y -+=. 设()222,Q x y ,同理可得22220tx y -+=. 所以直线12Q Q 的方程为220tx y -+=, 所以直线12Q Q 过定点(0,1).②因为直线12Q Q 的方程为220tx y -+=,由2220,4,tx y x y -+=⎧⎨=⎩消去y 得2240x tx --=, 所以122x x t +=,124x x =-.又()()()()12121211PQ PQ x t x t y y ⋅=--+++ ()2121212221122tx tx x x t x x t ++⎛⎫⎛⎫=-+++++ ⎪⎪⎝⎭⎝⎭()21212122222t t x x t x x t x x ⎛⎫⎛⎫=-+++++ ⎪⎪⎝⎭⎝⎭()()221212121244t x x t x x t x x t x x =-++++++2212144t x x t ⎛⎫=+++ ⎪⎝⎭0=,所以12PQ PQ .3.(2021·安徽高三开学考试(理))已知中心在坐标原点O ,焦点在xC 过点1)2.(1)求C 的标准方程;(2)是否存在不过原点O 的直线:l y kx m =+与C 交于,P Q 两点,使得直线OP 、PQ 、OQ 的斜率成等比数列、若存在,求k 的值及m 的取值范围;若不存在,请说明理由.【答案】(1)2214x y +=;(2)存在,12k =±,m的取值范围为(1)(1,0)(0,1)-⋃-⋃⋃.【详解】(1)设C 的标准方程为22221x y a b +=(a >b >0),由题意得,222223114a b cc e a a b ⎧=+⎪⎪⎪==⎨⎪⎪+=⎪⎩,解得21a b c ⎧=⎪=⎨⎪=⎩,∴C 的标准方程为2214x y +=(2)联立2214y kx m x y =+⎧⎪⎨+=⎪⎩,得222(14)84(1)0k x kmx m +++-=(m ≠0), 设1122(,),(,)P x y Q x y ,则122841km x x k +=-+,21224(1)41m x x k -=+∴2212121212()()()y y kx m kx m k x x mk x x m =++=+++∵OP ,PQ ,OQ 的斜率成等比数列,∴2OP OQ PQ k k k ⋅=,∴21212y y k x x ⋅=, ∴21212y y k x x =,∴12()0k x x m ++=,∴228041k mm k -+=+,解得12k =± ∵22222(8)4(41)4(1)16(41)0km k m k m ∆=-+⨯-=-+>, ∴2224120k m m -+=->,解得m <, ∵120x x ≠,∴210m -≠,解得1m ≠±.综上,12k =±,m的取值范围为(1)(1,0)(0,1)-⋃-⋃⋃.4.(2021·全国高三专题练习)如图,已知抛物线()2:20C y px p =>的焦点为()1,0F ,D 为x 轴上位于F右侧的点,点A 为抛物线C 在第一象限上的一点,且AF DF =,分别延长线段AF 、AD 交抛物线C 于M 、N .(1)若AM MN ⊥,求直线AF 的斜率; (2)求三角形AMN 面积的最小值. 【答案】(12)16. 【详解】 (1)()1,0F ,则12p=,得2p =,所以,抛物线C 的方程为24y x =, 设()2,2A t t ,点A 为抛物线C 在第一象限上的一点,故0t >,设点(),0D d ,由AF DF =得211t d +=-,则22d t =+,得()22,0D t +,所以,221AMt k t =-,直线AM 的方程为2112t x y t-=+, 联立224112y xt x y t ⎧=⎪⎨-=+⎪⎩,得222240t y y t ---=,所以,42M A y y t -==-,进一步得()2222AN AD tk k t t t ===--+,直线AN 的方程为212x y t t=-++, 联立22124x y t t y x⎧=-++⎪⎨⎪=⎩,得()224420y y t t +-+=,4N A y y t ∴+=-,则42N y t t=--,又AM MN ⊥,22224414444M N M N A M A M AM MN A M N M A M M N A M M Ny y y y y y y y k k y y y y x x x x y y y y ----∴⋅=⋅=⋅=⋅=---++--, 代入得44122422t tt t t⋅=-----,化简得:42230t t --=, 又0t >,t ∴=(3,A,AF k ∴=(2)由(1)知224,2N t t t t ⎛⎫⎛⎫+-- ⎪ ⎪ ⎪⎝⎭⎝⎭,212,M t t ⎛⎫- ⎪⎝⎭, ()222221122A M t AM x x t t t+=++=++=,直线AM 的方程2112t x y t-=+即为()22120tx t y t ---=所以点N 到直线AM 的距离为()()()222221211t t d tt t++===+, ()332331122216AMNtS t t t +⎛⎛⎫==+≥= ⎪ ⎝⎭⎝△, 当且仅当1t =时,S 取到最小值16.5.(2021·全国高三月考(理))已知抛物线()220x py p =>上一点()02,P y 到其焦点F 的距离为2,过点(),0T t ()0t >作两条斜率为1k ,2k 的直线1l ,2l 分别与该抛物线交于A ,B 与C ,D 两点,且120k k +=,FAB FCD S S =△△.(Ⅰ)求抛物线的方程; (Ⅱ)求实数t 的取值范围. 【答案】(Ⅰ)24x y =;(Ⅱ)()()0,11,2【详解】(Ⅰ)由抛物线()220x py p =>上一点()02,P y 到其焦点F 的距离为2,所以004222py py =⎧⎪⎨+=⎪⎩,解得2p =, 故抛物线的方程为24x y =;(Ⅱ)设直线()11:l y k x t =-,与抛物线24x y =联立,可得211440x k x k t -+=,设()11,A x y ,()22,B x y , 则1214x x k +=,1214x x k t =,所以12AB x =-== 点F 到直线1l的距离为1d =,所以111122FABSAB d k t =⋅=⨯=+,同理可得2FCDSk t =+,因为120k k +=,且FAB FCD S S =△△所以12k t k t+=+,整理可得:()22121k t -=,即21212k t=-,所以22t <,所以0t <<由211122221644016440k k t k k t ⎧∆=-⨯>⎨∆=-⨯>⎩可得221k t >, 即2212t t >-,即()2210t ->,所以1t ≠, 综上所述,t 的取值范围为()()0,11,2.6.(2021·浙江瑞安中学高三模拟预测)已知抛物线()21:20C y px p =>和右焦点为F 的椭圆222:143x y C +=.如图,过椭圆2C 左顶点T 的直线交抛物线1C 于,A B 两点,且2AB TA =.连接AF 交2C 于两点,M N ,交1C 于另一点C ,连BC ,Q 为BC 的中点,TQ 交AC 于D .(1)证明:点A 的横坐标为定值;(2)记CDT ∆,QMN ∆的面积分别为1S ,2S,若12S S = 【答案】(1)证明见解析;(2)2124y x =. 【详解】(1)证明:由题意知,()2,0T -,直线TA 的斜率存在设为k ,()()1122,,,A x y B x y ,不妨设直线TA 的方程为()()20y k x k =+>,与抛物线方程联立得()222y k x y px ⎧=+⎨=⎩,整理得,()22224240k x k p x k +-+=,则21212224,4p k x x x x k -+==,因为2AB TA =, 所以1213y y =,则21122219x y x y ==,设()10x a a =>,则29x a =,则21294x x a==,则23a =或23-(舍去),所以123x =,即点A 的横坐标为定值.(2)由(1)知,()28,,6,833A k B k ⎛⎫⎪⎝⎭,()1,0F ,则直线AF 的方程为()81y k x =-- ,与椭圆联立得()2214381x y y k x ⎧+=⎪⎨⎪=--⎩,整理得()22223256512256120k x k x k +-+-=,设()()3344,,,M x y N x y ,则2234342251225612,32563256k k x x x x k k -+==++, 则()22121643256k MN k++,直线AF 与抛物线联立得()2281y px y k x ⎧=⎪⎨=--⎪⎩,整理得,()2222641282640k x k p x k -++=,设()55,C x y ,则5213x ⋅=,所以532x =,即3,42C k ⎛⎫- ⎪⎝⎭,则15,24Q k ⎛⎫ ⎪⎝⎭, 所以直线TQ 的方程为()8223k y x =+,与直线AF 联立得()()822381k y x y k x ⎧=+⎪⎨⎪=--⎩, 解得2124x y k⎧=⎪⎨⎪=⎩,则21,24D k ⎛⎫ ⎪⎝⎭,即CD ==T 到AF的距离1d ==,Q 到AF的距离2d =,则1112S CD d =,2212S MN d =,所以12CD S S MN =2121643256k k =++,整理得,24252563584190k k ⨯+-=,解得21256k =,则116k =, 所以21,36A ⎛⎫ ⎪⎝⎭,又21,36A ⎛⎫ ⎪⎝⎭在抛物线上,则212263p ⎛⎫=⋅ ⎪⎝⎭,解得148p =.则抛物线的方程为2124y x =. 7.(2021·全国高三专题练习(理))已知抛物线()2:20C x py p =>的焦点为F ,且F 与圆22:(4)1M x y ++=上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,,PA PB 是C 的两条切线,,A B 是切点,求PAB ∆面积的最大值. 【答案】(1)2p =;(2)【详解】(1)抛物线C 的焦点为0,2p F ⎛⎫⎪⎝⎭,42p FM =+,所以,F 与圆22:(4)1M x y ++=上点的距离的最小值为4142p+-=,解得2p =; (2)抛物线C 的方程为24x y =,即24x y =,对该函数求导得2x y '=,设点()11,A x y 、()22,B x y 、()00,P x y , 直线PA 的方程为()1112x y y x x -=-,即112x xy y =-,即11220x x y y --=, 同理可知,直线PB 的方程为22220x x y y --=,由于点P 为这两条直线的公共点,则10102020220220x x y y x x y y --=⎧⎨--=⎩,所以,点A 、B 的坐标满足方程00220x x y y --=, 所以,直线AB 的方程为00220x x y y --=,联立0022204x x y y x y --=⎧⎪⎨=⎪⎩,可得200240x x x y -+=, 由韦达定理可得1202x x x +=,1204x x y =,所以,AB ,点P 到直线AB的距离为d =所以,()3220011422PABS AB d x y =⋅==-△, ()()2222000000041441215621x y y y y y y -=-+-=---=-++,由已知可得053y -≤≤-,所以,当05y =-时,PAB△的面积取最大值321202⨯=8.(2021·浙江省杭州第二中学高三模拟预测)已知抛物线()2:20C y px p=>经过点(2,,P 是圆()22:11M x y ++=上一点,PA 、PB 都是C 的切线.(1)求抛物线C 的方程及其准线方程; (2)求PAB ∆的面积的最大值.【答案】(1)抛物线C 的方程为24y x =,准线方程为1x =-;(2)【详解】(1)将点(2,的坐标代入抛物线C 的方程为228p ⨯=,解得2p =, 所以,抛物线C 的方程为24y x =,该抛物线的准线方程为1x =-;(2)先证明抛物线C 在其上一点()00,Q x y 处的切线方程为00220x y y x -+=.证明如下:由于点()00,Q x y 在抛物线C 上,则2004y x =,联立2004220y x x y y x ⎧=⎨-+=⎩,可得200202y y y x -+=,即220020y y y y -+=,则2200440y y ∆=-=,所以,抛物线C 在其上一点()00,Q x y 处的切线方程为00220x y y x -+=. 设点()11,A x y 、()22,B x y 、()33,P x y ,则直线PA 的方程为11220x y y x -+=,直线PB 的方程为22220x y y x -+=,因为点P 在直线PA 、PB 上,所以,31313232220220x y y x x y y x -+=⎧⎨-+=⎩,所以,点A 、B 的坐标满足方程33220x y y x -+=,由于两点确定一条直线,故直线AB 的方程为33220x y y x -+=,联立2334220y x x y y x ⎧=⎨-+=⎩,消去x 可得233240y y y x -+=,由韦达定理可得1232y y y +=,1234y y x =,所以,12AB y y -=点P 到直线AB的距离为d =所以,()3223311422PABS AB d y x =⋅==-△, 另一方面,()22233333342439y x x x x x -=---=-++,其中320x -≤≤, 所以,当32x =-时,2334y x -取得最大值8,因此,()3322233114822PABS y x =-≤⨯=△9.(2021·广东汕头·高三三模)已知圆()22:21C x y +-=与定直线:1l y =-,且动圆M 与圆C 外切并与直线l 相切.(1)求动圆圆心M 的轨迹E 的方程;(2)已知点P 是直线1:2l y =-上一个动点,过点P 作轨迹E 的两条切线,切点分别为A 、B . ①求证:直线AB 过定点; ②求证:PCA PCB ∠=∠.【答案】(1)28x y =;(2)①证明见解析;②证明见解析. 【详解】(1)依题意知:M 到()0,2C 的距离等于M 到直线2y =-的距离,∴动点M 的轨迹是以C 为焦点,直线2y =-为准线的抛物线,设抛物线方程为()220x py p =>,则22p=,则4p =,即抛物线的方程为28x y =, 故:动圆圆心M 的轨迹E 的方程为:28x y =;(2)①由28x y =得:218y x =,14y x '∴=,设2111,8A x x ⎛⎫ ⎪⎝⎭、2221,8B x x ⎛⎫⎪⎝⎭,(),2P t -,其中12x x ≠,则切线PA 的方程为()2111184x y x x x -=-,即2111148y x x x =-,同理,切线PB 的方程为2221148y x x x =-, 由21122211481148y x x x y x x x ⎧=-⎪⎪⎨⎪=-⎪⎩,解得121228x x x x x y +⎧=⎪⎪⎨⎪=⎪⎩,1212228x x t x x +⎧=⎪⎪∴⎨⎪-=⎪⎩,即1212216x x t x x +=⎧⎨=-⎩,2111,8A x x ⎛⎫ ⎪⎝⎭、()222121,8B x x x x ⎛⎫≠ ⎪⎝⎭,∴直线AB 的方程为()222121121111888x x y x x x x x --=--,化简得121288x x x x y x +=-, 即24ty x =+, 故直线AB 过定点()0,2; ②由①知:直线AB 的斜率为4AB t k =, (i )当直线PC 的斜率不存在时,直线AB 的方程为2y =,PC AB ∴⊥,PCA PCB ∴∠=∠; (ii )当直线PC 的斜率存在时,(),2P t -、()0,2C ,∴直线PC 的斜率2240PC k t t --==--,414AB PC t k k t-∴⋅=⨯=-, PC AB ∴⊥,PCA PCB ∴∠=∠.综上所述:PCA PCB ∠=∠得证.10.(2021·河南郑州·高三三模(理))已知抛物线2:4C x y =和圆()22:11E x y ++=,过抛物线上一点()00,P x y ,作圆E 的两条切线,分别与x 轴交于,A B 两点.(1)若切线PB 与抛物线C 也相切,求直线PB 的斜率; (2)若02y ≥,求PAB ∆面积的最小值. 【答案】(1)3±;(2)最小值为2. 【详解】(1)由题意,可设切线PB 的方程为y kx m =+,代入抛物线的方程得2440x kx m --=, 由相切的条件得:216160k m ∆=+=,即20k m +=,由直线与圆相切可得圆心到直线距离1d ==,即222k m m =+,∴230m m +=,可得3m =-或0m =,∵当0m =时,有PB 的方程为0y =,此时(0,0)P 与圆E 的有且仅有一条切线, ∴3m =-,舍去0m =,故23k =,即3k =±.(2)设切线方程为00()y y k x x -=-,即000kx y y kx -+-=,圆心到直线距离1d ==,整理得222000000(1)(22)20k x x y x k y y --+++=,而220004(2)0x y y ∆=++>(02y ≥),设PA ,PB 斜率分别为12,k k ,则20000012122200222+,,11x y x y y k k k k x x ++=⋅=-- 令y =0,得000012,A B y yx x x x k k =-=-,0000120000121212000|||()()|||||y y y y k k AB x x y y k k k k k k -=---=-=⋅==00011||22PABSAB y y =⋅== 令222(6)(),2(2)y y y f y y y +=≥+,2232(4+18()0(2)y y y f y y +'=>+),则()f y 在[2,)+∞上单调递增,即min ()(2) 4.f y f ==∴PABS的最小值为2.11.(2021·浙江高三三模)如图,已知抛物线C :214y x =,点()()000,1A x y y ≥为抛物线上一点,过点A 的圆G 与y 轴相切于点()0,M t ,且与抛物线C 在点A 处有相同切线,8OM NO =,过点N 的直线l 交抛物线于点E ,F ,直线AE ,AF 的斜率分别为1k ,2k ,满足120k k +=.(1)求抛物线C 的焦点坐标和准线方程; (2)求点A 到直线l 的距离的最小值.【答案】(1)焦点坐标()0,1,准线方程1y =-;(2. 【详解】(1)抛物线的标准方程为24x y =,所以其焦点坐标()0,1,准线方程1y =-;(2)已知204x y =,则点A 处的切线方程:20024x x y x =-,因为过点A 的圆G 与y 轴相切于点()0,M t ,且与抛物线C 在点A 处有相同切线所以()202222004124x t x t x x x t t t ⎧-⎪⋅=-⎪⎪-⎨⎪⎛⎫⎪-+-= ⎪⎪⎝⎭⎩,化简得:224200030216x t t x x +--=.由0t >得:)200202x t y t -==-+> 设()11,E x y ,()22,F x y ,则由120k k +=得:1020044x x x x +++=,即0122x x x -=+, 所以021212EF x y y k x x -==--,由8OM NO =得0,8t N ⎛⎫- ⎪⎝⎭, 所以,直线l :028x t y x =--,则023y d =23[)01,y ∈+∞上单调递增所以,当01y =时,min d =此时,直线l 与抛物线相交.12.(2021·四川泸州·高三三模(理))从抛物线24y x =上各点向x 轴作垂线段,记垂线段中点的轨迹为曲线P .(1)求曲线P 的方程,并说明曲线P 是什么曲线;(2)过点()2,0M 的直线l 交曲线P 于两点A 、B ,线段AB 的垂直平分线交曲线P 于两点C 、D ,探究是否存在直线l 使A 、B 、C 、D 四点共圆?若能,请求出圆的方程;若不能,请说明理由. 【答案】(1)曲线P 的方程为2y x =,曲线P 是焦点为1,04⎛⎫⎪⎝⎭的抛物线;(2)存在;圆N 的方程为227113222x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭或227113222x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭.【详解】(1)设抛物线2y x =上的任意点为()00,S x y ,垂线段的中点为(),x y ,故002x x y y =⎧⎪⎨=⎪⎩,则002x x y y =⎧⎨=⎩,代入2004y x =得()224y x =,得曲线P 的方程为2y x =, 所以曲线P 是焦点为1,04⎛⎫⎪⎝⎭的抛物线;(2)若直线l 与x 轴重合,则直线l 与曲线P 只有一个交点,不合乎题意.设直线l 的方程为2x ty =+,根据题意知0t ≠,设()11,A x y 、()22,B x y ,联立22y x x ty ⎧=⎨=+⎩,得220y ty --=,280t ∆=+>,则12y y t +=,122y y ⋅=-,则12A y y B =-=且线段AB 中点的纵坐标为1222y y t +=,即2121222222x x y y t t ++=⋅+=+, 所以线段AB 中点为22,22t t M ⎛⎫+ ⎪⎝⎭,因为直线CD 为线段AB 的垂直平分线,可设直线CD 的方程为1x y m t =-+,则21222t t m t ⎛⎫+=-⨯+ ⎪⎝⎭,故252t m +=, 联立22152y x t x y t ⎧=⎪⎨+=-+⎪⎩,得()222250ty y t t +-+=,设()33,C x y 、()44,D x y ,则341y y t +=-,()234152y y t ⋅=-+,故34y CD =-线段CD 中点为22151,222t N tt ⎛⎫++- ⎪⎝⎭, 假设A 、B 、C 、D 四点共圆,则弦AB 的中垂线与弦CD 中垂线的交点必为圆心, 因为CD 为线段AB 的中垂线,则可知弦CD 的中点N 必为圆心,则12AN CD =, 在Rt AMN △中,222AN AM MN =+,所以22212CD AM MN ⎛⎫=+ ⎪⎝⎭,则()()222222221111111121018442222t t t t t t t t ⎛⎫⎛⎫⎛⎫⎛⎫+++=++++++ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 故4228810t t t +--=,即()()24264222198880t t t t t t t t -+++--==, 解得21t =,即1t =±,所以存在直线l ,使A 、B 、C 、D 四点共圆,且圆心为弦CD 的中点N , 圆N 的方程为227113222x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭或227113222x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭.13.(2021·浙江高三期末)如图,已知抛物线21:C x y =在点A 处的切线l 与椭圆222:12x C y 相交,过点A 作l 的垂线交抛物线1C 于另一点B ,直线OB (O 为直角坐标原点)与l 相交于点D ,记()11,A x y 、()22,B x y ,且1>0x .(1)求12x x -的最小值; (2)求DO DB的取值范围.【答案】(1)2;(2)40,17⎛⎫⎪⎝⎭.【详解】 (1)对函数2yx 求导得2y x '=,所以抛物线1C 在点A 处的切线方程为()1112y y x x x -=-,即2112y x x x =-,联立21122212y x x x x y ⎧=-⎪⎨+=⎪⎩,得()2234111188220x x x x x +-+-=, 所以()()62411164418220x x x ∆=-+->,解得2104x <<所以直线AB 的方程为2111122y x x x =-++, 联立21121122y x x x x y⎧=-++⎪⎨⎪=⎩,得23111220x x x x x +--=,所以12112x x x +=-,所以12111222x x x x -=+≥=,当且仅当112x =时取等号, 所以12x x -的最小值为2;(2)记点O 、B 到直线l 的距离分别为1d 、2d ,所以21d =,211211214124x x x x d ⎫++=⎪⎭,所以()4112222121441414DOd x DB d x x ===⎛⎫++ ⎪⎝⎭,因为2104x <<2114x +,所以222440,1714DODBx ⎛⎫=∈ ⎪⎝⎭⎛⎫+ ⎪⎝⎭,所以DO DB 的取值范围为40,17⎛⎫⎪⎝⎭.14.(2021·河北沧州·高三二模)已知(2,0)M -,(2,0)N ,动点P 满足:直线PM 与直线PN 的斜率之积为常数14-,设动点P 的轨迹为曲线1C .抛物线22:2(0)C x py p =>与1C 在第一象限的交点为A ,过点A 作直线l 交曲线1C 于点B 交抛物线2C 于点E (点,B E 不同于点A ). (1)求曲线1C 的方程.(2)是否存在不过原点的直线l ,使点E 为线段AB 的中点?若存在,求出p 的最大值;若不存在,请说明理由.【答案】(1)221(2)4x y x +=≠±;(2)存在,p【详解】解:(1)设动点()(),2P x y x ≠±,则2PM yk x =+,2PN y k x =-. 14PM PN k k =-,1224y y x x ∴⋅=-+-,即22144y x =--, 即221(2)4x y x +=≠±, ∴曲线C 1的方程为221(2)4x y x +=≠±. (2)设()1111,(0,0)A x y x y >>,()22,B x y ,()00,E x y ,显然直线l 存在斜率, 设:(0,0)l y kx m k m =+≠≠,()2222244,148440,x y k x kmx m y kx m ⎧+=⇒+++-=⎨=+⎩, 122814km x x k -∴+=+,02414kmx k -=+. 又2222,2()220,x py x p kx m x pkx pm y kx m ⎧=⇒=+⇒--=⎨=+⎩,102x x pm ∴=-,21124142142km k x pm x p k k ⎛⎫-+∴=-⇒=⎪+⎝⎭,因此有0k >,2422221,442,x x y x p x py ⎧+=⎪⇒+=⎨⎪=⎩,42422221421442k p k k p k p ⎛⎫+ ⎪⎛⎫+⎝⎭∴+= ⎪⎝⎭, 224224141422p k k k k ∴=⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭,设222214112224222k k t k k k ⎛⎛⎫+⎛⎫=+=⋅ ⎪⎪ ⎝⎭⎝⎭⎝=, 当且仅当122k k =时取等号,即当12k =时取等号, 则2224411()24p t t t ==++-,当4t ≥时,211()2024t +-≥,当12k =,即4t =时,2p 取得最大值,最大值为15,即p =此时A ⎝⎭,直线l 不过点M ,N . 故存在不过原点的直线l ,使点E 为线段AB 的中点,且p . 15.(2021·湖南长沙·高三模拟预测)已知抛物线()2:20C x py p =>的焦点为F ,点(),1m 在抛物线C 上,该点到原点的距离与到C 的准线的距离相等. (1)求抛物线C 的方程;(2)过焦点F 的直线l 与抛物线C 交于A ,B 两点,且与以焦点F 为圆心2为半径的圆交于M ,N 两点,点B ,N 在y 轴右侧.①证明:当直线l 与x 轴不平行时,AM BN ≠②过点A ,B 分别作抛物线C 的切线1l ,2l ,1l 与2l 相交于点D ,求DAM △与DBN 的面积之积的取值范围.【答案】(1)28x y =;(2)①证明见解析;②[)16,+∞. 【详解】(1)由题意可得2212m pp ⎧==+,解得4p =, 所以抛物线C 的方程为28x y =.(2)由(1)知,圆F 方程为:()2221x y +-=, 由已知可设:2l y kx =+,且()11,A x y ,()22,B x y ,由228y kx x y=+⎧⎨=⎩得28160x kx --=,设()00,Q x y 是抛物线C 上任一点,则2QF ==,故抛物线与圆相离.①证明:当直线l 与x 轴不平行时,有0k ≠, 由抛物线定义知,12AF y =+,22BF y =+. 所以()()22AM BN AF BF -=---()()121222AF BF y y kx kx =-=-=+-+12k x x =-=80k =>,所以AM BN ≠②由(1)知抛物线方程为218y x =.所以14y x '=.所以过点A 的切线()2111111:84l y x x x x -=-,即2111148y x x x =-.同理可得,过点B 的切线2l 为2221148y x x x =-. 由1l ,2l 方程联立,得222112211188x y x y x x x x -=-+,解之,得12128D y x x ==-,又得()()22212111048x x x x x ---=,所以1242D x xx k +==.()4,2D k -到:2l y kx =+的距离d =()()22AM BN AF BF ⋅=--()()122222y y =+-+-⎡⎤⎡⎤⎣⎦⎣⎦()222121212148864x x y y x x ==⨯==,从而1122QAM QBN S S AM d BN d ⋅=⋅△△()22214161164d d k =⨯==+≥. 16.(2021·浙江高三专题练习)已知椭圆22:14x T y +=,抛物线2:2M y px =的焦点是F ,且动点()1,G t -在其准线上.(1)当点G 在椭圆T 上时,求GF 的值;(2)如图,过点G 的直线1l 与椭圆T 交于,P Q 两点,与抛物线M 交于,A B 两点,且G 是线段PQ 的中点,过点F 的直线2l 交抛物线M 于,C D 两点.若//AC BD ,求2l 的斜率k 的取值范围.【答案】(1)GF =2)k >k <【详解】 解:(1)由已知12p=,2p =,则()1,0F , 因为G 在椭圆T 上,所以2114t +=,所以234t =,所以GF =; (2)设()1:1l x m y t +=-,2:1l x ny =+,()()()()11223344,,,,,,,A x y B x y C x y D x y ,因为G 是PQ 的中点,所以114t m -⋅=-,且2114t +<, 所以4m t =①,且234t <②, 由()241y x x m y t ⎧=⎪⎨+=-⎪⎩消去x 得24440y my mt -++=,则()21610m mt ∆=-->③,且12y y -=由241y x x ny ⎧=⎨=+⎩消去x 得2440y ny --=,所以34y y -=因为//AC BD ,所以132444y y y y =++,即1234y y y y -=-, 所以2222122n m mt t =--=-④, 由①②③解得213124t <<, 由④得207n <<,即217k >,所以k >k <17.(2021·河南高三月考(理))已知抛物线()2:20C x py p =>的焦点为F ,且点F 与圆()22:41M x y ++=1. (1)求p ;(2)已知直线:4l y kx =+与C 相交于A ,B 两点,过点B 作平行于y 轴的直线BD 交直线:4l y '=-于点D .问:直线AD 是否过y 轴上的一定点?若过定点,求出该定点的坐标;若不过定点,试说明理由. 【答案】(1)2p =;(2)直线AD 恒过定点()0,0. 【详解】(1)抛物线C 的焦点为0,2p F ⎛⎫ ⎪⎝⎭,FM F ∴与圆M11,解得2p =.(2)设()11,A x y ,()22,B x y ,则()2,4D x -,由24,4,x y y kx ⎧=⎨=+⎩得24160x kx --=, 0∴∆>,且124x x k +=,1216x x =-,()12124kx x x x ∴=-+, 又直线AD 的方程为()121244y y x x x x ++=--, 令0x =,得()212144x y y x x ++=-,114y kx =+,()()21122212184844x kx x x x y x x x x +-++∴+===--,0y ∴=,故直线AD 恒过定点()0,0.18.(2021·上海市实验学校高三月考)已知直线2y x =与抛物线:Γ()220y px p =>交于1G ,2G 两点,且12G G ,过椭圆221:143x y C +=的右顶点Q 的直线l 交于抛物线Γ于A ,B 两点.(1)求抛物线Γ的方程;(2)若射线OA ,OB 分别与椭圆1C 交于点D ,E ,点O 为原点,ODE ,OAB 的面积分别为1S ,2S ,问是否存在直线l 使213S S =?若存在求出直线l 的方程,若不存在,请说明理由;(3)若P 为2x =-上一点,PA ,PB 与x 轴相交于M ,N 两点,问M ,N 两点的横坐标的乘积M N x x ⋅是否为定值?如果是定值,求出该定值,否则说明理由.【答案】(1)24y x =(2)不存在,理由见解析;(3)M N x x ⋅是定值,且定值为4,理由见解析. 【详解】(1)设()111,G x y ,()222,G x y ,由222y xy px =⎧⎨=⎩可得2420x px -=,所以10x =,22p x =,所以()10,0G ,2,2G p p ⎛⎫ ⎪⎝⎭,所以12G G =0p >,所以2p =,所以抛物线Γ的方程为24y x =;(2)椭圆的右顶点为()2,0Q ,设直线:l 2x my =+,()33,A x y ,()44,B x y , 将:l 2x my =+代入24y x =可得:2480y my --=, 所以344y y m +=,348y y =-, 假设存在,设()55,D x y ,()66,E x y , 射线OA :33233344y y y x x xy x y === ,由3224143y x y x y ⎧=⎪⎪⎨⎪+=⎪⎩ 可得:2523643364y y ⨯=+,同理可得2624643364y y ⨯=+, 11sin 2S OD OE DOC =∠,21sin 2S OA OB AOB =∠, 所以342156OA OB y y S S OD OE y y ==⋅ , 所以()()()2234222156********64643643364364y y S S y y y y y y ⎛⎫=== ⎪⨯⨯⎝⎭⨯++()()()22222343496436464931616644812164999y y y y m m +⨯++⨯++++===⨯, 所以211133S S ≥>,所以不存在直线l ,使213S S =; (3)设()02,P y -,则()3003:22y y PA y y x x --=++, 令0y =可得:()030332M y y x y x y -=+①, 同理可得:()040442N y y x y x y -=+②,两式相乘可得()()()()030404403322M N y y y y x x y x y y x y --=++()2222223434034034433400433424244444y y y y y x x y x y x y y y y y y y y y ⎛⎫⋅=+++=+⋅+⋅+ ⎪⨯⎝⎭()()2342234003434003434244164y y y y y y y y y y y y y y y y +⎛⎫⎡⎤=++=-++ ⎪⎣⎦⎝⎭即()()()203040034344M N y y y y x x y y y y y y ⎡⎤--=-++⎣⎦,所以()()220034340034344M N y y y y y y x x y y y y y y ⎡⎤⎡⎤-++=-++⎣⎦⎣⎦, 即()()22000048448M N y my x x y my --=--,当点P 不在直线AB 上时,200480y my --≠,所以4M N x x =,当点P 在直线AB 上时,2M N Q x x x ===,所以4M N x x =, 综上所述:M N x x ⋅是定值,且定值为4.19.(2021·全国高三专题练习)在平面直角坐标系xOy 中,原点为O ,抛物线C 的方程为24x y =,线段AB 是抛物线C 的一条动弦. (1)求抛物线C 的准线方程;(2)求=4OA OB ⋅-,求证:直线AB 恒过定点;(3)过抛物线的焦点F 作互相垂直的两条直线1l 、2l ,1l 与抛物线交于P 、Q 两点,2l 与抛物线交于C 、D 两点,M 、N 分别是线段PQ 、CD 的中点,求FMN 面积的最小值.【答案】(1)准线方程:1y =-;(2)直线AB 恒过定点()0,2,证明见解析;(3)4. 【详解】(1)由24x y =可得:2p =,焦点为()0,1F ,所以准线方程:1y =-, (2)设直线AB 方程为y kx b =+,()11,A x y ,()22,B x y由24y kx b x y =+⎧⎨=⎩得2440x kx b --=, 所以124x x k +=,124x x b =-,222121212124416x x OA OB x x y y x x b b ⋅=+=+=-+=-,即2440b b -+=,解得:2b = 所以直线2y kx =+过定点()0,2(3)()0,1F ,由题意知直线1l 、2l 的斜率都存在且不为0, 设直线1l 的方程为1y kx =+,()33,P x y ,()44,Q x y , 则直线2l 的方程为11y x k=-+, 由241x y y kx ⎧=⎨=+⎩得2440x kx --=, 所以344x x k +=,344x x =-, 所以()34122M x x x k =+=,2121M M y kx k =+=+,所以()22,21M k k +用1k -替换k 可得2N x k =-,221N y k =+,所以222,1N k k⎛⎫-+ ⎪⎝⎭,所以12FMNSFM FN =====224≥⨯=,当且仅当221k k =即1k =±时,等号成立, 所以FMN 的面积取最小值4.20.(2021·浙江高三模拟预测)已知点F 为抛物线C :214y x =的焦点,点()0,4D ,点A 为抛物线C 上的动点,直线l :y t =截以AD 为直径的圆所得的弦长为定值.(1)求t 的值;(2)如图,直线l 交y 轴于点E ,抛物线C 上的点B 满足AB 的中垂线过点D 且直线AB 不与x 轴平行,求ABE 的面积的最大值.【答案】(1)3t =;(2【详解】解:(1)()0,4D ,设200,4x A x ⎛⎫ ⎪⎝⎭,AD 的中点为20044,22x x C ⎛⎫+ ⎪ ⎪ ⎪ ⎪⎝⎭,2r =设截得的弦为GH ,圆心C 到弦的距离为d .则2222200022244414442x x x GH r d t ⎛⎫⎛⎫+- ⎪+ ⎪⎝⎭=-=-- ⎪ ⎪⎪⎝⎭,()222011242444t GH x t -⎛⎫=-++-- ⎪⎝⎭与0x 无关3t ⇒=. (2)由上题可得()0,3E ,设()11,A x y ,()22,B x y , 线段AB 中点为G ,直线AB 的斜率存在且不等于0, 设直线AB :y kx m =+,联立直线与抛物线方程得:224404y kx mx kx m x y =+⎧⇒--=⎨=⎩, 由2016160k m ∆>⇒+>,由韦达定理可得:124x x k +=,124x x m =-, 21242y y k m +=+,则AB 的中点为()22,2G k k m +则AB 的中垂线为()()2122y k m x k k-+=--, 代入()0,4D ,得222m k =-则124AB x x =-=E AB d -=则(21142322122S AB d m k =⋅⋅=⋅=-=+=记2t k =,()()()2212f t t t =-+,()()()7612f t t t '=-+,70,6t ⎛⎫∈ ⎪⎝⎭时,()f t 单调递增,7,26t ⎛⎫∈ ⎪⎝⎭时,()f t 单调递减,76t =,即276k k =⇒=时,ABES 此时13m =-满足0∆>,所以ABES。

相关文档
最新文档