一元二次方程的概念(知识点考点)九年级数学上册知识点考点(解析版)
二次函数与一元二次方程(知识点考点)-九年级数学上册知识点考点(解析版)
二次函数与一元二次方程(知识点考点一站到底)知识点☀笔记知识点一 利用判别式判断抛物线与x 轴的交点个数判别式 Δ=b 2- 4ac二次函数y =ax 2+bx +c 一元二次方程ax 2+bx +c =0(a ≠0)图象图象与x 轴 的交点个数根的情况Δ>0a >0与x 轴有 2个交点有两个不相等的实数根a <0Δ=0a >0与x 轴有 1个交点有两个相等的 实数根a <0Δ<0a >00个交点没有实数根a <0二次函数y =ax 2+bx +c 的图象与x 轴交点的横坐标,就是对应方程ax 2+bx +c =0(a ≠0)的根.考点☀梳理解题指导:①确定一元二次方程ax 2+bx +c +k =0的根的情况,可以利用二次函数y =ax 2+bx +c 的图象与y =-k 的图象的交点情况进行判断.②用图象法求一元二次方程的近似根的步骤:(1)画出函数的图象,并由图象确定方程根的个数; (2)由图象交点的位置确定交点横坐标的范围; (3)估计方程的近似根.考点1:二次函数与一元二次方程的关系必备知识点:①二次函数y =ax 2+bx +c 的图象与x 轴交点的横坐标,就是对应方程ax 2+bx +c =0(a ≠0)的根.题型1 图形法确定一元二次方程的近似根例1.(2022·全国·九年级专题练习)下表是若干组二次函数25y x x c =-+的自变量x 与函数值y 的对应值: x …1.31.41.51.61.7…y … 0.36 0.13 ﹣0.08 ﹣0.27 ﹣0.44 … 那么方程x 2﹣5x +c =0的一个近似根(精确到0.1)是( )A .3.4 B .3.5 C .3.6 D .3.7【答案】B【分析】观察表格可得-0.08更接近于0,得到方程的一个近似根(精确到0.1)是1.5,再由25y x x c =-+的对称轴为x =52得到方程250x x c -+=的另一个近似根(精确到0.1)是3.5【详解】解:∵二次函数25y x x c =-+, ∵对称轴为直线x =52,观察表格得:方程250x x c -+=的一个近似根(精确到0.1)是1.5, ∵另一个近似根m 满足 1.52m +=52, ∵m =3.5, 故选:B.【点睛】此题考查了图象法求一元二次方程的近似根,弄清表格中的数据是解本题的关键.=ax 2+bx +c 的图象,并求得一个近似根为x =﹣4.3,则方程的另一个近似根为( )(精确到0.1)A .x =4.3B .x =3.3C .x =2.3D .x =1.3【答案】C【分析】根据抛物线与x 轴的一个交点为(﹣4.3,0),又抛物线的对称轴为:x =﹣1,即可求解. 【详解】解:∵抛物线与x 轴的一个交点为(﹣4.3,0),又抛物线的对称轴为:x =﹣1, ∵另一个交点坐标为:(2.3,0), 则方程的另一个近似根为x =2.3,故选:C .【点睛】本题考查了根据二次函数图象求方程的近似根,掌握抛物线的对称性是解题的关键.练习1.(2022·全国·九年级专题练习)根据表格中二次函数y =ax 2+bx +c 的自变量x 与函数值y 的对应值,可以判断方程 ax 2+bx +c =0的一个解x 的范围是( )x 00.5 1 1.5 2 y =ax 2+bx +c 1-0.5-13.57A .0<x <0.5B .0.5<x <1C .1<x <1.5D .1.5<x <2【答案】B【分析】利用二次函数和一元二次方程的性质.【详解】解:观察表格可知:当x =0.5时,y =-0.5;当x =1时,y =1, ∵方程ax 2+bx +c =0(a ≠0,a ,b ,c 为常数)的一个解x 的范围是0.5<x <1. 故选:B .【点睛】本题考查了用图象法求一元二次方程的近似根,解题的关键是找到y 由正变为负时,自变量的取值即可.练习2.(2022.浙江湖州.九年级期末)在二次函数y =ax 2+bx +c 中,函数y 与自变量x 的部分对应值如表,则方程ax 2+bx +c =0的一个解x 的范围是( ) x (1)1.11.2 1.3 1.4 … y …-1-0.490.040.591.16…A .1<x <1.1B .1.1<x <1.2C .1.2<x <1.3D .1.3<x <1.4【答案】B【分析】根据表格中自变量与函数的值的变化情况得出当y =0时相应的自变量的取值范围即可. 【详解】由表格中数据可知,当x =1.1时,y =-0.49. 当x =1.2时,y =0.04于是可得,当y =0时,相应的自变量x 的取值范围为1.1<x <1.2 故选B【点睛】本题考查了用图像法求一元二次方程的近似根,解题的关键是找到y 由正变为负时自变量的取值即可.练习2.(2022·全国·九年级课时练习)如表,是二次函数()y f x =的自变量x 与函数值y 的几组对应值.那么方程()0f x =的一个近似解是( )x 0.9 1 1.1 1.2 1.3 1.4 y -1.49-1-0.490.040.591.16A .1B .1.1C .1.2D .1.3【答案】C【分析】由表格可得抛物线与x 轴的一个交点在(1.1,0)和(1.2,0)之间且距离(1.2,0)较近,进而求解. 【详解】解:由表格可得 1.1x =时,0y <, 1.2x =时,0y >,()0f x ∴=的一个解在1.1与1.2之间, |0.49|0.04>,()0f x ∴=的一个近似解是1.2,故选:C .【点睛】本题考查二次函数图象上点的坐标特征,解题的关键是掌握二次函数与方程的关系.练习4.(2022·江苏·九年级专题练习)观察下列表格,估计一元二次方程2350x x +-=的正数解在( )x-1 0 1 2 3 425x x +- -7 -5 -1 5 13 23A .-1和0之间B .0和1之间C .1和2之间D .2和3之间【答案】C【分析】令y =x 2+3x -5根据x =﹣1和x =5时的函数值,即可得到答案. 【详解】解:令y =x 2+3x -5, 当1x =时,10y =-<, 当2x =时,50y =>,∴x 2+3x -5=0的一个正数x 的取值范围为1<x <2,故选C .【点睛】本题考查二次函数的与坐标轴的交点问题,掌握二次函数的性质是解题关键. 例1.(2022·吉林省实验中学九年级阶段练习)抛物线253y x x =-+-与y 轴的交点坐标是( ) A .()0,3 B .()0,3-C .()0,5-D .()0,5【答案】B【分析】把x =0代入253y x x =-+-求得y 的值,即可得到答案. 【详解】解:∵当x =0时,253y x x =-+-=﹣3, ∵抛物线253y x x =-+-与y 轴的交点坐标是(0,﹣3).故选:B例2.(2022·全国·九年级专题练习)已知二次函数y =x 2﹣6x +5.函数图象与x 轴交点坐标为_____,与y 轴的交点坐标为__________;【答案】 (5,0),(1,0) (0,5)【分析】利用y =0解方程得到图象与轴的交点,利用x =0求图象与y 轴的交点即可. 【详解】把y =0代入y =x 2﹣6x +5得0=x 2﹣6x +5, 解得x 1=5,x 2=1,∵抛物线与x 轴交点坐标为(5,0),(1,0), 把x =0代入y =x 2﹣6x +5得y =5, ∵抛物线与y 轴交点坐标为(0,5), 故答案为:(5,0),(1,0);(0,5).【点睛】此题考查了二次函数图象与坐标轴的交点坐标,解一元二次方程,正确掌握计算方法是解题的关键.练习1.(2021·江苏·南通市八一中学九年级阶段练习)抛物线y =23x +4x +2与x 轴的交点个数是_____. 【答案】0【分析】先计算判别式的值,然后根据判别式的意义进行判断. 【详解】解:∵Δ=24-4×3×2=-8<0, ∵抛物线与x 轴没有交点. 故答案为:0.【点睛】本题考查了抛物线与x 轴的交点,解题关键是把求二次函数y =2ax +bx +c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程的根的判别式的应用进行解决. 练习2.(2022·浙江温州·九年级期中)已知二次函数1y x k =--+的图象过点0,3.(1)求该二次函数的表达式.(2)求该二次函数图象与x 轴的交点坐标. 【答案】(1)()214y x =--+ (2)()1,0-,()3,0【分析】(1)把点()0,3代入函数解析式,求出k 的值即可得到函数表达式; (2)取y =0,得到()2140x --+=,求出x 的值,即可得到答案. (1)解:把()0,3代入()21y x k =--+得:()2013k --+=,解得:4k =,∵该二次函数的表达式是()214y x =--+; (2)当0y =时,()2140x --+=, 解得:11x =-或23x =,∵该二次函数图象与x 轴的交点坐标是()1,0-,()3,0.【点睛】此题考查了待定系数法求二次函数的表达式、二次函数图象与x 轴的交点等知识,熟练掌握方法是解题的关键.练习3.(2022·全国·九年级专题练习)如图,已知二次函数223y ax x ++=的图象与x 轴交于点A (﹣1,0)和点B ,与y 轴交于点C .(1)求二次函数的解析式和点B 的坐标; (2)直接写出y 的最大值为 .【答案】(1)2y x 2x 3=-++;B (3,0); (2)4【分析】(1)运用待定系数法即可求得二次函数的解析式,令y =0,解一元二次方程即可求得点B 的坐标; (2)运用配方法将二次函数解析式化为顶点式,即可得出答案. (1)∵抛物线223y ax x ++=经过点A (﹣1,0), ∵a ﹣2+3=0, 解得:a =﹣1,∵二次函数的解析式为2y x 2x 3=-++, 令y =0,得2230x x -++=, 解得:13x =,21x =- ∵B (3,0); (2)∵()222314y x x x =-++=--+, ∵当x =1时,4y =最大值. 故答案为:4.【点睛】本题考查了待定系数法求函数解析式,抛物线与x 轴交点坐标,二次函数最值等,难度较小,是常见的基础题.练习4.(2021·江西上饶·九年级阶段练习)如图,抛物线23y ax bx ++=(a ≠0)与x 轴交于点A (1,0)和点B (﹣3,0),与y 轴交于点C ,连接BC ,与抛物线的对称轴交于点E ,顶点为点D .(1)求抛物线的解析式; (2)求∵BOC 的面积. 【答案】(1)223y x x --+= (2)92【分析】(1)根据抛物线23y ax bx ++=(a ≠0)与x 轴交于点A (1,0)和点B (﹣3,0),即可得到关于a 、b 的方程,从而可以求得a 、b 的值,然后即可写出抛物线的解析式;(2)根据(1)中抛物线的解析式,可以写出点C 的坐标,然后再根据点B 的坐标,即可得到OC 和OB 的长,再根据三角形面积公式,即可求得∵BOC 的面积. (1)解:∵抛物线23y ax bx ++=(a ≠0)与x 轴交于点A (1,0)和点B (﹣3,0),∵309330a b a b ++=⎧⎨-+=⎩, 解得12a b =-⎧⎨=-⎩,∵抛物线的解析式为223y x x --+=. (2)解:由(1)知,223y x x --+=,∵点C 的坐标为(0,3), ∵OC =3,∵点B 的坐标为(﹣3,0), ∵OB =3, ∵∵BOC =90°, ∵∵BOC 的面积是2OB OC ⋅=33922⨯=. 【点睛】本题主要考查抛物线与x 轴的交点、待定系数法求二次函数解析式、二次函数的性质、三角形的面积,解答本题的关键是明确二次函数的性质,利用数形结合的思想解答. 例1.(2022·福建省长汀县第二中学九年级阶段练习)定义:min{a ,b }=(),().a a b b a b ⎧≤⎨>⎩若函数y =min{x +1,223x x -++ },则该函数的最大值为___________.【答案】3【分析】根据定义画出函数图象,设直线y =x +1,抛物线2y x 2x 3=-++,联立直线与抛物线方程得抛物线与直线交点坐标,结合图象求解.【详解】解:依题意,设直线y =x +1,抛物线2y x 2x 3=-++, 联立直线与抛物线方程得2123y x y x x =+⎧⎨=-++⎩, 解得23x y =⎧⎨=⎩或10x y =-⎧⎨=⎩,∵直线与抛物线交点坐标为(-1,0),(2,3), 如图,∵x ≤-1时,y =223x x -++,函数最大值为y =0,-1<x ≤2时,y =x +1,函数最大值为y =3, 当x >2时,y =223x x -++,y <3, ∵x =2时,函数取最大值为3, 故答案为:3.【点睛】本题考查二次函数的性质,解题关键是掌握函数与方程及不等式的关系.通过数形结合求解. 例2.(2022·全国·九年级课时练习)抛物线223y x x =-,当1y =-时,自变量的值为_________. 【答案】1或12【分析】把y =1代入解析式中得到关于x 的方程,解方程即可 【详解】解:223y x x =-, 当1y =-时,2231x x -=-, 解得11x =,212x =, 故答案为:1或12.【点睛】本题考查函数值以及自变量,解题的关键是掌握函数值的计算方法.练习.(全国八年级课时练习)已知,当时,的值为;当时,y 的值等于9. 【答案】 3 0或6【分析】令y =0即可得到关于x 的一元二次方程,求出x 的值即可;令y =9即可得到关于x 的一元二次方程,求出x 的值即可.【详解】解:∵y =x 2-6x +9中的值为0, ∵令x 2-6x +9=0,解得x =3; ∵y =x 2-6x +9中的值为9, ∵令x 2-6x +9=9,即x 2-6x =0, 解得1206x x ==,. 故答案为:3;0或6.【点睛】本题考查了二次函数与一元二次方程,根据函数值得到关于x 的元二次方程,求出x 的值是解答此题的关键.练习.(全国九年级课时练习)如图,抛物线与轴交于、两点,且点、B 都在原点右侧,抛物线的顶点为点P ,当ABP △为直角三角形时,m 的值为________.【答案】2【分析】设点A (x 1,y 1),B (x 2,y 2),则AB =|x 2-x 1|,求出点P (m ,-(m -1)2),由抛物线的对称性知∵ABP 为等腰直角三角形,建立方程|x 2-x 1|=2(m -1)2,根据根与系数关系可求得m 值. 【详解】解:设点A (x 1,y 1),B (x 2,y 2),则AB =|x 2-x 1|, 令y =0得22210x mx m -+-=,∵x 1+x 2=2m ,x 1·x 2=2m -1,则|x 2-x 1|2=4m 2-8m +4=4(m -1)2,由抛物线2221y x mx m =-+-=(x -m )2-(m -1)2得顶点坐标为P (m ,-(m -1)2), 抛物线的对称性知∵ABP 为等腰直角三角形, ∵|x 2-x 1|=2(m -1)2, 即4(m -1)2=4(m -1)4, 解得:m =2或m =0或m =1,∵抛物线2221y x mx m =-+-与x 轴交于A 、B 两点,且点A 、B 都在原点右侧, ∵2m >0且m ≠1且2m -1>0,即m >12且m ≠1, ∵m =2, 故答案为:2.【点睛】本题考查二次函数的图象与性质、等腰直角三角形的判定与性质、根与系数的关系、解高次方程等知识,熟练掌握二次函数的性质是解答的关键.意创造非凡、探索未来.某商店准备用2400元购进一批冰墩墩钥匙扣出售.假如每个钥匙扣的进价降低20%,则可以多买50个.(1)求每个冰墩墩钥匙扣的进价;(2)市场调查发现:当每个冰墩墩钥匙扣的售价是20元时,每周可以销售200个;每涨价1元,每周少销售10个.设每个冰墩墩钥匙扣的售价是x 元(x 是大于20的正整数),每周总利润是w 元. ①求w 与x 的函数关系,并求每周总利润的最大值;②当每周总利润大于1870元时,直接写出每个冰墩墩钥匙扣的售价. 【答案】(1)每个冰墩墩钥匙扣的进价为12元(2)①2105204800w x x =-+-,最大值为1960元;②每个冰墩墩钥匙扣的售价为24元或25元或26元或27元或28元【分析】(1)设每个冰墩墩钥匙扣的进价为x 元,根据题意列出分式方程,进而计算求解即可;(2)①根据题意列出二次函数关系,根据二次函数的性质求得最大利润即可;②根据题意列出方程,根据二次函数的性质求得x 的范围,根据题意取整数解即可.(1)设每个冰墩墩钥匙扣的进价为x 元,由题意得:()2400240050120%x x +=-,解得12x =,经检验,12x =是原方程的解且符合题意,答:每个冰墩墩钥匙扣的进价为12元;(2)①()()122001020w x x =---⎡⎤⎣⎦2105204800x x =-+-()210261960x =--+ ∵0a <且x 是大于20的正整数∵当26x =时,w 有最大值,最大值为1960元②由题意得,21052048001870x x -+-=,解得23x =或29∵抛物线开口向下,x 是大于20的正整数∵当2329x <<时,每周总利润大于1870元,∵售价为24元或25元或26元或27元或28元.【点睛】本题考查了分式方程的应用,二次函数的应用,一次函数的应用,根据题意列出方程或关系式是解题的关键.练习.(全国九年级课时练习)如图,已知二次函数的图象经过点.(1)求a 的值和图象的顶点坐标;(2)点(,)Q m n 在该二次函数图象上;①当11n =时,求m 的值,②当m <x <m -3时,该二次函数有最小值2,请直接写出m 的取值范围. 【答案】(1)2a =;()1,2-(2)①4m =-或2;②41m -<-【分析】(1)将点P 的坐标代入二次函数解析式可得关于a 的方程,再解方程即可得出a 的值.将二次函数的解析式进行配方,即可得到图象的顶点坐标;(2)①将点Q 的坐标代入二次函数解析式,求解方程即可得到m 的值;②根据当1x =-时,二次函数取最小值为2,得出13m m -≤+<,解关于m 的不等式组即可.(1)解:∵二次函数21y x ax a =+++的图象经过点()2,3P -,∵()()23221a a =-+⨯-++.解得:a =2;∵二次函数的解析式为()222312y x x x =++=++.∵图象的顶点坐标是()1,2-.(2)①∵点(),Q m n 在该二次函数图象上,且n =11,∵21123m m =++.解得14m =-,22m =,∵m 的值为-4或2;②∵二次函数()222312y x x x =++=++的最小值为2,∵13m m -≤+<,解得:41m -≤-<,∵m 的取值范围是41m -≤-<.【点睛】本题考查了二次函数的图象和性质,解一元二次方程,二次函数的最值,能够正确应用数形结合思想是解题关键.题型4 根据二次函数系数求对应方程根的情况或与x 轴交点情况例1.(2022·全国·九年级专题练习)如图,抛物线2y ax =与直线y bx c =+的两个交点坐标分别为(2,4)A -,(1,1)B ,则方程2ax bx c =+的解是________________.【答案】12x =-,21x =【分析】二次函数图象与一次函数图象交点的横坐标即为2ax bx c =+的解:12x =-,21x =.【详解】解:抛物线 2y ax =与直线y bx c =+的两个交点坐标分别为 ()2,4A - , ()1,1B ,∴方程组2y ax y bx c ⎧=⎨=+⎩的解为1124x y =-⎧⎨=⎩ ,2211x y =⎧⎨=⎩ , 即关于x 的方程 20ax bx c --=的解为12x =-,21x =,所以方程2ax bx c =+ 的解是 12x =-,21x =,故答案为: 12x =-,21x =.【点睛】本题考查了函数图象与方程的解的关系,函数与方程是密不可分的,方程的根的个数问题,往往可以转化为两个函数图象的交点问题.例2.(2022·福建南平·九年级期末)如图,抛物线2y ax bx c =++的对称轴为1x =,点P 是抛物线与x 轴的一个交点,若点P 的坐标为()4,0,则关于x 的一元二次方程20ax bx c ++=的解为__________.【答案】124,2x x ==-【分析】根据函数的对称轴和点P 的坐标可以得出与x 轴的另一交点坐标,从而得出结论.【详解】解:∵抛物线2y ax bx c =++的对称轴为x =1,点P 是抛物线与x 轴的一个交点,坐标为(4,0),∵抛物线与x 轴的另一个交点坐标为(−2,0),∵关于x 的一元二次方程20ax bx c ++=的解为:124,2x x ==-.故答案为:124,2x x ==-.【点睛】本题考查抛物线与x 轴的交点问题,关键是对二次函数性质的掌握和运用.练习1.(2022·全国·九年级课时练习)已知抛物线2y x bx c =++的部分图像如图所示,则方程20x bx c ++=的解是___________【答案】11x =-或23x =【分析】根据抛物线的轴对称性即可求得抛物线与x 轴的另一个交点的坐标,这两个交点的横坐标就是方程20x bx c ++=的解.【详解】解:由图像可知抛物线与x 轴的一个交点坐标为(1,0)-,对称轴为直线1x =,设抛物线与x 轴的另一个交点为2(,0)x ,则2112x -+=, 解得:23x =.∵方程20x bx c ++=的解为11x =-或23x =.故答案为:11x =-或23x =【点睛】本题考查的是利用二次函数的图像求解一元二次方程,以及抛物线的对称性问题,正确理解抛物线与x 轴的交点的横坐标与相应的一元二次方程的根之间的关系是解题的关键.练习2.(2021·湖北·武汉二中广雅中学九年级阶段练习)如图,已知抛物线223y x x =--与x 轴交于A 、B 两点,与y 轴交于点C ,直线25y kx k =-+与它有三个公共点时,则k 值为______.【答案】222-+或53【分析】先确定A 、B 、C 三点坐标,y =kx -2k +5=k (x -2)+5,可得直线经过定点(2,5)画出图形,分别找到两个极限位置,求出k 的值.【详解】解:∵223y x x =--∵当y =0时,解得x =-1或x =3;当x =0时,解得y =3∵A (-1,0),B (3,0),C (0,3)∵y =kx -2k +5=k (x -2)+5∵直线25y kx k =-+必过定点(2,5)要使直线y =kx -2k +5与图像有三个公共点,则可得到如图所示的两个极限位置,①直线经过A 、N ,此时将点A (-1,0)代入可得:0=-k -2k +5,解得:k =53②直线经过点N 与抛物线相切时,由题意可得:22325x x kx k -++=-+整理得:2(2)220x k x k +--+=2(2)4(22)0k k ∆=---+=,解得222k =-±由图像可知,k >0,则222k =-+综上可知,25y kx k =-+与223y x x =--有三个公共点时,则k 值为222-+或53. 故答案为222-+或53.【点睛】本题主要考查了一次函数与抛物线的交点问题,根据题意找到恰好有3个公共点的位置以及数形结合思想的运用是解答本题的关键.练习3.(2020·北京房山·九年级期中)若二次函数23y kx x =--的图象与轴有交点,则k 的取值范围是_______.【答案】13k ≥-且0k ≠##k ≠0且k ≥13- 【分析】根据二次函数的定义可知0k ≠,由题意令0y =,得出一元二次方程,根据一元二次方程根的判别式大于或等于0,解不等式即可求解.【详解】解:∵二次函数223y kx x =--的图象与x 轴有交点,令0y =,则2230kx x --=,∵4120k =+≥且0k ≠,解得13k ≥-且0k ≠. 故答案为:13k ≥-且0k ≠. 【点睛】本题考查了二次函数的定义以及二次函数与x 轴交点问题,转为一元二次方程根的判别式是解题的关键,注意不要漏掉0k ≠.练习.(全国九年级专题练习)已知抛物线与轴的一个交点为,则代数式2225m m -+=_____________. 【答案】15【分析】把点(,0)m 代入二次函数解析式可得25m m -=,然后问题可求解.【详解】解:把点(,0)m 代入二次函数解析式得:250m m --=,则有25m m -=,∵()222252515m m m m -+=-+=; 故答案为15.【点睛】本题主要考查二次函数的图象与性质,熟练掌握二次函数的图象与性质是解题的关键.。
中考数学专题复习4分式、分式方程及一元二次方程(解析版)
分式、分式方程及一元二次方程复习考点攻略考点01 一元一次方程相关概念1.等式的性质:(1)等式两边都加上(或减去)同一个数或同一个整式.所得的结果仍是等式. (2)等式两边都乘以(或除以)同一个不等于零的数.所得的结果仍是等式.2.一元一次方程:只含有一个未知数.并且未知数的次数为1.这样的整式方程叫做一元一次方程.它的一般形式为0(0)ax b a +=≠. 【注意】x 前面的系数不为0.3.一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解. 4. 一元一次方程的求解步骤:步骤 解释去分母 在方程两边都乘以各分母的最小公倍数 去括号 先去小括号.再去中括号.最后去大括号移项 把含有未知数的项都移到方程的一边.其他项都移到方程的另一边 合并同类项 把方程化成ax b =-的形式系数化成1在方程两边都除以未知数的系数a .得到方程的解为bx a=-【注意】解方程时移项容易忘记改变符号而出错.要注意解方程的依据是等式的性质.在等式两边同时加上或减去一个代数式时.等式仍然成立.这也是“移项”的依据.移项本质上就是在方程两边同时减去这一项.此时该项在方程一边是0.而另一边是它改变符号后的项.所以移项必须变号. 【例 1】若()2316m m x --=是一元一次方程,则m 等于( )A .1B .2C .1或2D .任何数【答案】B【解析】根据一元一次方程最高次为一次项.得│2m −3│=1.解得m =2或m =1. 根据一元一次方程一次项的系数不为0,得m −1≠0,解得m ≠1.所以m =2. 故选B.【例 2】关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程.则其解为_____.【答案】2x =或2x =-或x =-3.【解析】解:关于x 的方程21120m mx m x +﹣(﹣)﹣=如果是一元一次方程.211m ∴﹣=.即1m =或0m =.方程为20x ﹣=或20x --=.解得:2x =或2x =-.当2m -1=0.即m =12时.方程为112022x --=解得:x =-3. 故答案为x =2或x =-2或x =-3. 【例 3】解方程:221123x x x ---=- 【答案】27x =【解析】解: 221123x x x ---=-()()6326221x x x --=-- 636642x x x -+=-+ 634662x x x -+=-+ 72x = 27x =考点02 二元一次方程组相关概念1.二元一次方程:含有2个未知数.并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.2.二元一次方程的解:使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解. 3.二元一次方程组:由两个二元一次方程组成的方程组叫二元一次方程组.方程组中同一个字母代表同一个量.其一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩.4.二元一次方程组的解法:(1)代入消元法:将方程中的一个未知数用含有另一个未知数的代数式表示出来.并代入另一个方程中.消去一个未知数.化二元一次方程组为一元一次方程.(2)加减消元法:将方程组中两个方程通过适当变形后相加(或相减)消去其中一个未知数.化二元一次方程组为一元一次方程.5. 列方程(组)解应用题的一般步骤:(1)审题;(2)设出未知数;(3)列出含未知数的等式——方程;(4)解方程(组);(5)检验结果;(6)作答(不要忽略未知数的单位名称)6. 一元一次方程(组)的应用:(1)销售打折问题:利润=售价-成本价;利润率=利润成本×100%;售价=标价×折扣;销售额=售价×数量.(2)储蓄利息问题:利息=本金×利率×期数;本息和=本金+利息=本金×(1+利率×期数);贷款利息=贷款额×利率×期数.(3)工程问题:工作量=工作效率×工作时间. (4)行程问题:路程=速度×时间.(5)相遇问题:全路程=甲走的路程+乙走的路程.(6)追及问题一(同地不同时出发):前者走的路程=追者走的路程.(7)追及问题二(同时不同地出发):前者走的路程+两地间距离=追者走的路程. (8)水中航行问题:顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度. (9)飞机航行问题:顺风速度=静风速度+风速度;逆风速度=静风速度-风速度. 【例 4】已知-2x m -1y 3与12x n y m +n 是同类项.那么(n -m )2 012=______【答案】1【解析】由于-2x m -1y 3与12x n y m +n 是同类项.所以有由m -1=n .得-1=n -m .所以(n -m )2 012=(-1)2 012=1.【例5】如图X2-1-1.直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1.b ).(1)求b 的值.(2)不解关于x .y 的方程组请你直接写出它的解.(3)直线l 3:y =nx +m 是否也经过点P ?请说明理由.【答案】(1)2.(2)⎩⎪⎨⎪⎧x =1,y =2.(3)见解析【解析】解:(1)当x =1时.y =1+1=2.∴b =2.(2)⎩⎪⎨⎪⎧x =1,y =2. (3)∵直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1.b ).∴当x =1时.y =m+n =b =2.∴ 当x =1时.y =n +m =2.∴直线l 3:y =nx +m 也经过点P .【例6】家电下乡是我国应对当前国际金融危机.惠农强农.带动工业生产.促进消费.拉动内需的一项重要举措。
九年级数学上册知识点汇总+考点梳理(收藏)
一元二次方程二次函数知识点梳理:1.定义:一般地,如果y=ax²+bx+c(其中a,b,c是常数,a≠0),那么y叫做x的二次函数.2.二次函数y=ax²的性质(1)抛物线y=ax²的顶点是坐标原点,对称轴是y轴.(2)函数y=ax²的图像与a的符号关系.①当a>0时Û抛物线开口向上Û顶点为其最低点;②当a<0时Û抛物线开口向下Û顶点为其最高点.(3)顶点是坐标原点,对称轴是轴的抛物线的解析式形式为y=ax²(a≠0).3.二次函数y=ax²+bx+c的图像是对称轴平行于(包括重合)y 轴的抛物线.4.二次函数y=ax²+bx+c用配方法可化成:y=a(x - h)²+k的形式,其中5.二次函数由特殊到一般,可分为以下几种形式:①y=ax²;②y=ax²+k;③y=a(x - h)²;④y=a(x - h)²+k;⑤y=ax²+bx+c.6.抛物线的三要素:开口方向、对称轴、顶点.①a的符号决定抛物线的开口方向:当a>0时,开口向上;当a<0时,开口向下;|a|相等,抛物线的开口大小、形状相同.②平行于y轴(或重合)的直线记作x=h.特别地,y轴记作直线x=0.7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.8.求抛物线的顶点、对称轴的方法(1)公式法:∴顶点是:对称轴是直线:(2)配方法:运用配方的方法,将抛物线的解析式化为y=a(x-h)²+k的形式,得到顶点为(h,k),对称轴是直线x=h.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.9.抛物线y=ax²+bx+c中,a、b、c的作用(1)a决定开口方向及开口大小,这与y=ax²中的a完全一样.(2)b和a共同决定抛物线对称轴的位置.由于抛物线y=ax²+bx+c的对称轴是直线,故:①b=0时,对称轴为y轴;②(即a、b同号)时,对称轴在y轴左侧;③(即a、b异号)时,对称轴在y轴右侧.(3)的大小决定抛物线y=ax²+bx+c与y轴交点的位置.当x=0时,y=c,∴抛物线y=ax²+bx+c与y轴有且只有一个交点(0,c):①c=0,抛物线经过原点;②c>0,与y轴交于正半轴;③c<0,与y轴交于负半轴.以上三点当结论和条件互换时仍成立.如抛物线的对称轴在y轴右侧,则10.几种特殊的二次函数的图像特征如下:11.用待定系数法求二次函数的解析式(1)一般式:y=ax²+bx+c.已知图像上三点或三对x、y的值,通常选择一般式.(2)顶点式:y=a(x - h)²+k .已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x轴的交点坐标x1、x2,通常选用交点式:y=a(x-x1)(x-x2).12.直线与抛物线的交点(1)y轴与抛物线y=ax²+bx+c得交点为(0, c).(2)与y轴平行的直线X=h与抛物线y=ax²+bx+c有且只有一个交点(h, ah²+bh+c)(3)抛物线与轴的交点二次函数y=ax²+bx+c的图像与x轴的两个交点的横坐标x1、x2,是对应一元二次方程ax²+bx+c=0的两个实数根.抛物线与轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点Û△>0Û抛物线与x轴相交;②有一个交点(顶点在x轴上)Û△=0Û抛物线与x轴相切;③没有交点Û△<0Û抛物线与轴相离.(4)平行于轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k,则横坐标是ax²+bx+c=k的两个实数根.(5)一次函数y=kx+n(k≠0)的图像L与二次函数y=ax²+bx+c(a≠0)的图像G的交点,由方程组的解的数目来确定:①方程组有两组不同的解时L与G有两个交点;②方程组只有一组解时L与G只有一个交点;③方程组无解时L与G没有交点.(6)抛物线与x轴两交点之间的距离:若抛物线y=ax²+bx+c与x 轴两交点为A(x1,0),B(x2,0),由于x1、x2是方程ax²+bx+c=0的两个根,故旋转圆知识点梳理:概率初步。
第二十一章 一元二次方程(单元小结)(解析版)
第二十一章一元二次方程单元总结【思维导图】【知识要点】知识点1:一元二次方程定义及一般形式概念:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。
一般形式:20(0)ax bx c a ++=≠。
其中a 为二次项系数,b 为一次项系数,c 为常数项。
【注意】1)只含有一个未知数;2)所含未知数的最高次数是2;3)整式方程。
【典例分析】1.下列属于一元二次方程的是( ).A .2213y x +-=B .2x x =C .21120x x --=D .3x +1=0 【答案】B【分析】根据一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2进行分析即可.【详解】A. 不是一元二次方程,有两个未知数,故此选项错误;B. 是一元二次方程,故此选项正确;C. 不是一元二次方程,是分式方程,故此选项错误;D. 不是一元二次方程,是一元一次方程,故此选项错误;故选:B.【点睛】本题考查一元二次方程,熟练掌握一元二次方程的基本性质是解题关键.2.(2019·西藏自治区左贡县中学初二期末)2230px x p q -+-=是关于x 的一元二次方程,则( )A .1p =B .0p >C . 0p ≠D . p 为任意实数【答案】C【分析】一元二次方程的二次项系数不为0.【详解】∵方程2230px x p q -+-=是关于x 的一元二次方程,∴二次项系数p≠0,故选C.【点睛】此题考查一元二次方程的定义,解题关键在于掌握其定义.3.若22ax x x -=是关于x 的一元二次方程,则a 的取值范围是( )A .0a >B .1a ≠C .1a ≠-D .0a ≠【答案】B【分析】根据一元二次方程的定义解答【详解】由题意得:a-1≠0解得a≠1故选B .【点睛】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax 2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.4.把一元二次方程(1)(1)2x x x +-=化成二次项系数大于零的一般形式是_____________,其中二次项系数是_____________,一次项系数是____________,常数项是___________.【答案】2210x x +-= 1 2 1-【分析】通过去括号,移项,可以得到一元二次方程的一般形式,然后写出二次项系数,一次项系数和常数项.【详解】解:去括号:1-x 2=2x ,移项:x 2+2x-1=0,∴二次项系数是:1,一次项系数是:2,常数项是:-1,故答案分别是:x 2+2x-1=0,1,2,-1.【点睛】本题考查的是一元二次方程的一般形式,通过去括号,移项,可以得到一元二次方程的一般形式,然后写出二次项系数,一次项系数和常数项.知识点2:解一元二次方程(重点)方法一:配方法(最基础的解法)配方的过程需注意:若方程二次项系数为1时,“方程两边加一次项系数一半的平方”用配方法解一元二次方程20(0)ax bx c a ++=≠的一般步骤移项:使方程左边为二次项与一次项,右边为常数项;二次项系数化为1:方程两边都除以二次项系数;配方:方程两边都加上一次项系数一般的平方,把方程化为2()(0)x m n n +=≥的形式;【注意】:1)当0n <时,方程无解2)若方程二次项系数为1时,“方程两边加一次项系数一半的平方”求解:判断右边等式符号,开平方并求解。
人教版初中九年级数学上册第二十一章《一元二次方程》知识点(含答案解析)
一、选择题1.方程()224(2)0m x x m y -+--=是关于x ,y 的二元一次方程,则m 的值为( ) A .2±B .2-C .2D .4B 解析:B【分析】含有两个未知数,并且含有未知数的项的次数都是1的整式方程是二元一次方程,根据定义解答.【详解】∵()224(2)0m x x m y -+--=是关于x ,y 的二元一次方程,∴240,20m m -=-≠,∴m=-2,故选:B .【点睛】此题考查二元一次方程的定义,熟记定义是解题的关键.2.据网络统计,某品牌手机2020年一月份销售量为400万部,二月份、三月份销售量连续增长,三月份销售量达到900万部,求二月份、三月份销售量的月平均增长率?若设月平均增长率为x ,根据题意列方程为( ).A .()40012900x +=B .()40021900x ⨯+=C .()24001900x +=D .()()240040014001900x x ++++=C 解析:C【分析】设月平均增长率为x ,根据三月及五月的销售量,即可得出关于x 的一元二次方程,此题得解.【详解】解:设月平均增长率为x ,根据题意得:400(1+x )2=900.故选:C .【点睛】本题考查了一元二次方程中增长率的知识.增长前的量×(1+年平均增长率)年数=增长后的量.3.用配方法解方程x 2﹣4x ﹣7=0,可变形为( )A .(x+2)2=3B .(x+2)2=11C .(x ﹣2)2=3D .(x ﹣2)2=11D 解析:D【分析】方程常数项移到右边,两边加上4变形得到结果即可.【详解】解:x 2﹣4x ﹣7=0,移项得:247x x -=配方得:24474x x -+=+ ,即2()211x -=故答案为:D .【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.4.关于x 的一元二次方程()2230x a a x a +-+=的两个实数根互为倒数,则a 的值为( )A .-3B .0C .1D .-3或0C 解析:C【分析】根据方程两个实数根互为倒数,得到两根之积为1,利用根与系数的关系求出a 的值即可.【详解】解:∵关于x 的一元二次方程x 2+(a 2-3a )x+a=0的两个实数根互为倒数,∴x 1•x 2=a=1.故选:C .【点睛】本题考查了根与系数的关系,能熟记根与系数的关系的内容是解此题的关键,注意:已知一元二次方程ax 2+bx+c=0(a 、b 、c 为常数,a≠0,b 2-4ac≥0)的两根是x 1,x 2,那么x 1+x 2=-b a ,x 1•x 2=c a. 5.方程22x x =的解是( )A .0x =B .2x =C .10x =,22x = D .10x =,2x = 解析:C【分析】移项并因式分解,得到两个关于x 的一元一次方程,即可求解.【详解】解:移项,得220x x -=,因式分解,得()20x x -=,∴0x =或20x -=,解得10x =,22x =,故选:C .【点睛】本题考查解一元二次方程,掌握因式分解法是解题的关键.6.若x=0是关于x 的一元二次方程(a+2)x 2x+a 2+a-6=0的一个根,则a 的值是( )A .a ≠2B .a=2C .a=-3D .a=-3或a=2B 解析:B【分析】将x=0代入方程中,可得关于a 的一元二次方程方程,然后解方程即可,注意a≥2这一隐含条件.【详解】解:将x=0代入(a+2)x 2- 2+a-6=0中,得: a 2+a-6=0,解得:a 1=﹣3,a 2=2,∵a+2≠0且a ﹣2≥0,即a≥2,∴a=2,故选:B .【点睛】本题考查一元二次方程方程的解、解一元二次方程、二次根式有意义的条件,理解方程的解的意义,熟练掌握一元二次方程的解法是解答的关键,注意隐含条件a≥0.7.若m 是方程220x x c --=的一个根,设2(1)p m =-,2q c =+,则p 与q 的大小关系为( )A .p <qB .p =qC .p >qD .与c 的取值有关A 解析:A【分析】结合m 是方程220x x c --=的一个根,计算p-q 的值即可解决问题.【详解】解:∵m 是方程220x x c --=的一个根,∴220m m c --=∵2(1)p m =-,2q c =+,∴222(1)(2)212211p q m c m m c m m c -=--+=-+--=---=-,∴p <q故选:A .【点睛】此题主要考查了一元二次方程的解以及整式的运算,熟练掌握一元二次方程的解的应用是解答此题的关键.8.某小区2018年屋顶绿化面积为22000m ,计划2020年屋顶绿化面积要达到22880m .设该小区2018年至2020年屋顶绿化面积的年平均增长率为x ,则可列方程为( )A .2000(12)2880x +=B .2000(1)2880x ⨯+=C .220002000(1)2000(1)2880x x ++++=D .22000(1)2880x +=D解析:D【分析】一般用增长后的量=增长前的量×(1+增长率),如果设绿化面积的年平均增长率为x ,根据题意即可列出方程.【详解】解:设平均增长率为x ,根据题意可列出方程为:2000(1+x )2=2880.故选:D .【点睛】此题考查了由实际问题抽象出一元二次方程,即一元二次方程解答有关平均增长率问题.对于平均增长率问题,在理解的基础上,可归结为a (1+x )2=b (a <b );平均降低率问题,在理解的基础上,可归结为a (1-x )2=b (a >b ).9.下列方程中是关于x 的一元二次方程的是( )A .210x x +=B .ax 2+bx +c =0C .(x ﹣1)(x ﹣2)=0D .3x 2+2=x 2+2(x ﹣1)2C 解析:C【分析】根据一元二次方程的定义解答:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】A 、是分式方程.错误;B 、当a =0时不是一元二次方程,错误;C 、是,一元二次方程,正确;D 、3x 2+2=x 2+2(x ﹣1)2整理后为x=0,是一元一次方程,错误;故选:C .【点睛】考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.10.一元二次方程(x ﹣3)2﹣4=0的解是( )A .x =5B .x =1C .x 1=5,x 2=﹣5D .x 1=1,x 2=5D解析:D【分析】利用直接开平方法求解即可.【详解】解:∵(x ﹣3)2﹣4=0,∴(x ﹣3)2=4,则x ﹣3=2或x ﹣3=﹣2,解得x 1=5,x 2=1,故选:D .【点睛】本题考查了用直接开平方法解一元二次方程,掌握解法是关键.二、填空题11.生物学家研究发现,很多植物的生长都有这样的规律:即主干长出若干数目的支干后,每个支干又会长出同样数目的小分支.现有符合上述生长规律的某种植物,它的主干、支干和小分支的总数是91,则这种植物每个支干长出多少个小分支?设这种植物每个支干长出x 个小分支,可列方程___________.1+x+x2=91【分析】如果设每个支干分出x 个小分支根据每个支干又长出同样数目的小分支可知:支干的数量为x 个小分支的数量为x•x=x2个然后根据主干支干和小分支的总数是91就可以列出方程【详解】解解析:1+x+x 2=91【分析】如果设每个支干分出x 个小分支,根据“每个支干又长出同样数目的小分支”可知:支干的数量为x 个,小分支的数量为x•x=x 2个,然后根据主干、支干和小分支的总数是91就可以列出方程.【详解】解:依题意得支干的数量为x 个,小分支的数量为x•x=x 2个,那么根据题意可列出方程为:1+x+x 2=91,故答案为:1+x+x 2=91.【点睛】本题考查了由实际问题抽象出一元二次方程的知识,找到关键描述语,找到等量关系是解决问题的关键.12.一元二次方程 x ( x +3)=0的根是__________________.【分析】用因式分解法解方程即可【详解】解:x(x+3)=0x =0或x+3=0;故答案为:【点睛】本题考查了一元二次方程的解法掌握两个数的积为0这两个数至少有一个为0是解题关键解析:12x 0x -3==,【分析】用因式分解法解方程即可.【详解】解:x ( x +3)=0,x =0或 x +3=0,12x 0x -3==,;故答案为:12x 0x -3==,.【点睛】本题考查了一元二次方程的解法,掌握两个数的积为0,这两个数至少有一个为0是解题关键.13.关于x 的一元二次方程2210kx x +-=有两个不相等的实数根,则k 的取值范围是________.且【分析】根据根的判别式及一元二次方程的定义解题即可【详解】∵关于x 的一元二次方程有两个不相等的实数根解得又∵该方程为一元二次方程且故答案为:且【点睛】本题主要考查根的判别式及一元二次方程的定义属于解析:1k ->且0k ≠.【分析】根据根的判别式及一元二次方程的定义解题即可.【详解】∵关于x 的一元二次方程有两个不相等的实数根,()224241440b ac k k ∴∆=-=-⨯-=+>,解得1k >-.又∵该方程为一元二次方程,0k ∴≠,1k ∴>-且0k ≠.故答案为:1k >-且0k ≠.【点睛】本题主要考查根的判别式及一元二次方程的定义,属于基础题,掌握根的判别式及一元二次方程的定义是解题的关键.14.当a =______,b =_______时,多项式22222425a ab b a b -+--+有最小值,这个最小值是_____.4315【分析】利用配方法将多项式转化为然后利用非负数的性质进行解答【详解】解:===∴当a=4b=3时多项式有最小值15故答案为:4315【点睛】此题考查了配方法的应用以及非负数的性质熟练掌握完全解析:4 3 15【分析】利用配方法将多项式22222425a ab b a b -+--+转化为22(1)(3)15a b b --+-+,然后利用非负数的性质进行解答.【详解】解:22222425a ab b a b -+--+=22222691152b a a b b b a b --+-+++++=2222(1)(1)(3)15a a b b b -++-+++=22(1)(3)15a b b --+-+∴当a=4,b=3时,多项式22222425a ab b a b -+--+有最小值15.故答案为:4,3,15.【点睛】此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键. 15.将方程2630x x +-=化为()2x h k +=的形式是______.【分析】将方程常数项移到方程右边左右两边都加上9左边化为完全平方式右边合并即可得到所求的结果【详解】∵∴∴∴故答案为:【点睛】考查了解一元二次方程-配方法利用此方法解方程时首先将二次项系数化为1常数解析:()2312x +=【分析】将方程常数项移到方程右边,左右两边都加上9,左边化为完全平方式,右边合并即可得到所求的结果.【详解】∵2630x x +-=∴263x x +=∴26939x x+++=∴()2312x+= 故答案为:()2312x+=【点睛】考查了解一元二次方程-配方法,利用此方法解方程时,首先将二次项系数化为1,常数项移到方程右边,然后方程两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并为一个常数,开方即可求出解.16.若关于x 的一元二次方程240x x k ++=有两个相等的实数根,则k =______.4【分析】根据一元二次方程根的判别式可直接进行求解【详解】解:∵关于的一元二次方程有两个相等的实数根∴解得:;故答案为:4【点睛】本题主要考查一元二次方程根的判别式熟练掌握一元二次方程根的判别式是解解析:4【分析】根据一元二次方程根的判别式可直接进行求解.【详解】解:∵关于x 的一元二次方程240x x k ++=有两个相等的实数根,∴224440b ac k ∆=-=-=,解得:4k =;故答案为:4.【点睛】本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.17.若一元二次方程ax 2﹣bx ﹣2016=0有一根为x =﹣1,则a +b =_____.2016【分析】将x=-1代入ax2﹣bx ﹣2016=0得到a+b ﹣2016=0然后将a+b 当作一个整体解答即可【详解】解:把x =﹣1代入一元二次方程ax2﹣bx ﹣2016=0得:a+b ﹣2016=解析:2016.【分析】将x=-1代入ax 2﹣bx ﹣2016=0得到a +b ﹣2016=0,然后将a+b 当作一个整体解答即可.【详解】解:把x =﹣1代入一元二次方程ax 2﹣bx ﹣2016=0得:a +b ﹣2016=0,即a +b =2016.故答案是2016.【点睛】本题主要考查了一元二次方程的解,理解一元二次方程的解的概念是解答本题的关键. 18.已知 12,x x 是一元二次方程()23112x -=的两个解,则12x x +=_______.2【分析】先将方程整理为x2-2x-3=0再根据根与系数的关系可得出x1+x2即可【详解】解:一元二次方程整理为∵x1x2是一元二次方程x2-2x-3=0的两个根∴x1+x2=2故答案为:2【点睛】解析:2【分析】先将方程整理为x 2-2x-3=0,再根据根与系数的关系可得出x 1+x 2即可.【详解】解:一元二次方程()23112x -=整理为2230x x --=,∵x 1、x 2是一元二次方程x 2-2x-3=0的两个根,∴x 1+x 2=2.故答案为:2.【点睛】 本题考查了根与系数的关系,牢记两根之和等于b a-是解题的关键. 19.用因式分解法解关于x 的方程 260x px --=,将左边分解因式后有一个因式为3x -,则的p 值为_______1【分析】方法一:根据题意因式分解得到再展开去括号根据恒等式即可求出p 的值;方法二:将代入方程可得一个关于p 的一元一次方程解方程即可得【详解】方法一:由题意得解得则;方法二:由题意得是关于x 的方程的解析:1【分析】方法一:根据题意因式分解得到26(3)()x px x x a --=-+,再展开去括号,根据恒等式即可求出p 的值;方法二:将3x =代入方程可得一个关于p 的一元一次方程,解方程即可得.【详解】方法一:由题意得,226(3)()(3)3x px x x a x a x a --=-+=+--, 3p a ∴-=-,36a -=-,解得2a =,则1p =;方法二:由题意得,3x =是关于x 的方程260x px --=的一个解,则将3x =代入得:23360p --=,解得1p =,故答案为:1.【点睛】本题考查了多项式因式分解的方法、利用因式分解法解一元二次方程,熟练掌握多项式的运算法则和方程的解法是解题关键.20.将一元二次方程x 2﹣8x ﹣5=0化成(x +a )2=b (a ,b 为常数)的形式,则b =_____.21【分析】先把常数项移到等号的右边再等号两边同时加上16即可【详解】解:∵x2﹣8x =5∴x2﹣8x+16=5+16即(x ﹣4)2=21故答案为:21【点睛】本题主要考查一元二次方程的配方掌握完全解析:21【分析】先把常数项移到等号的右边,再等号两边同时加上16,即可.【详解】解:∵x 2﹣8x =5,∴x 2﹣8x +16=5+16,即(x ﹣4)2=21,故答案为:21.【点睛】本题主要考查一元二次方程的配方,掌握完全平方公式,是解题的关键.三、解答题21.用配方法解方程:22510x x -+=解析:154x =+,254x = 【分析】依据配方法的基本步骤解方程即可.【详解】解:22510x x -+=,系数化为1得:251022x x -+=,配方得:2255251()024162x x -+--+=, 即:2517()416x -=,两边同时开平方得:54x -=,即154x =254x =-. 【点睛】本题考查配方法解一元二次方程.配方法的关键步骤在于配完全平方公式,此步需熟练掌握完全平方公式及各部分之间的关系.22.已知关于x 的方程x 2﹣8x ﹣k 2+4k +12=0.(1)求证:无论k 取何值,这个方程总有两个实数根;(2)若△ABC 的两边AB ,AC 的长是这个方程的两个实数根,第三边BC 的长为5,当△ABC 是等腰三角形时,求k 的值.解析:(1)证明见解析;(2)k 的值为2或1或3.【分析】(1)先计算出△=4(k ﹣2)2,然后根据判别式的意义即可得到结论;(2)先利用因式分解法求出方程的解为x 1=﹣k +6,x 2=k +2,然后分类讨论:当AB =AC 或AB =BC 或AC =BC 时△ABC 为等腰三角形,然后求出k 的值.【详解】解:(1)证明:∵△=(﹣8)2﹣4(﹣k 2+4k +12)=4(k ﹣2)2≥0,∴无论k 取何值,这个方程总有两个实数根;(2)解:x 2﹣8x ﹣k 2+4k +12=0,(x +k ﹣6)(x ﹣k ﹣2)=0,解得:x 1=﹣k +6,x 2=k +2,当AB =AC 时,﹣k +6=k +2,则k =2;当AB =BC 时,﹣k +6=5,则k =1;当AC =BC 时,则k +2=5,解得k =3,综合上述,k 的值为2或1或3.【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了三角形三边的关系以及等腰三角形的性质.23.解方程:2410y y --=.解析:12y =22y =【分析】方程移项变形后,利用完全平方公式化简,开方即可得到答案.【详解】解:2410y y --= 24=1y y -24+4=5y y -2(2)=5y -2=y -±解得,12y =22y =【点睛】此题主要考查了解一元二次方程---配方法,熟练掌握各种解法是解答此题的关键. 24.解下列方程:(1)2410x x --=;(2)(4)123x x x -=-.解析:(1)12x =22x =2)x 4=或x 3=-【分析】(1)利用配方法解方程;(2)利用因式分解法解方程.【详解】(1)2410x x --=2445x x +=-2(2)5x -=则2x -=解得12x =22x =(2)解:(4)3(4)0x x x -+-=,(4)(3)0x x -+=,则40x -=或30x +=,解得x 4=或x 3=-.【点睛】此题考查解一元二次方程:直接开平方法、配方法、公式法、因式分解法,根据一元二次方程的特点选择恰当的解法是解题的关键.25.如图,利用22米长的墙为一边,用篱笆围成一个长方形仓库ABCD ,中间用篱笆分割出两个小长方形,在与墙平行的一边要开两扇1米宽的门,总共用去篱笆34米,为了使这个长方形ABCD 的面积为96平方米,求AB 和BC 的长.解析:AB=8米,BC=12米.【分析】设AB 为x 米,然后表示出BC 的长为(36-3x )米,利用矩形的面积计算方法列出方程求解即可.【详解】解:设AB 为x 米,则BC 为(36-3x )米,x (36-3x )=96,解得:x 1=4,x 2=8,当x=4时,36-3x=24>22(不合题意,舍去),当x=8时,36-3x=12.答:AB=8米,BC=12米.【点睛】本题考查了一元二次方程的应用,解题的关键是设出一边的长,并用未知数表示出另一边的长.26.解下列方程:(1)2810x x --=;(2)2(2)6(2)80x x ---+=.参考答案解析:(1)1417x =,2417x =;(2)16x =,24x =.【分析】(1)先对原方程配方,然后再运用直接开平方法解答即可;(2)先对原方程配方,然后再运用直接开平方法解答即可.【详解】解:(1)2810x x --=281x x -=281617x x -+=()2417x -=417x -=±1417x =,2417x =(2)2(2)6(2)80x x ---+=[]2(2)31x --=51x =±,16x =,24x =.【点睛】本题考查了运用配方法解一元二次方程,正确的对原方程配方成为解答本题的关键. 27.某地为刺激旅客来旅游及消费,讨论5月至9月推出全城推广活动.杭州某旅行社为吸引市民组团去旅游,推出了如下收费标准:某单位组织员工去旅游,共支付给该旅行社旅游费用54000元,请问该单位这次共有多少员工去旅游?解析:30名【分析】首先根据共支付给旅行社旅游费用54000元,确定旅游的人数的范围,然后根据每人的旅游费用×人数=总费用,设该单位这次共有x 名员工去旅游.即可由对话框,超过25人的人数为(x-25)人,每人降低20元,共降低了20(x-25)元.实际每人收了[1000-20(x-25)]元,列出方程求解.【详解】解:设该单位这次共有x 名员工去旅游.因为2000×25=50000<54000,所以员工人数一定超过25人.根据题意列方程得:[2000-40(x-25)]x=54000.解得x 1=45,x 2=30.当x 1=45时,2000-40(x-25)=1200<1700,故舍去;当x 2=30时,2000-40(x-25)=1800>1700,符合题意.答:该单位这次共有30名员工去旅游.【点睛】本题考查了列一元二次方程解实际问题的应用,一元二次方程的解法的运用,有利于培养学生应用数学解决生活中实际问题的能力.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.本题应注意的地方有两点:1、确定人数的范围;2、用人均旅游费用不低于1700元来判断,得到满足题意的x 的值. 28.阅读下列材料:对于任意的正实数a ,b ,总有2a b ab +≥成立(当且仅当a b =时,等号成立),这个不等式称为“基本不等式”利用“基本不等式”可求一些代数式的最小值.例如:若0x >,求式子1x x +的最小值. 解:∵0x >,∴112212x x x x+≥⋅==,∴1x x +的最小值为2.(1)若0x >,求9x x+的最小值; (2)已知1x >,求2251x x x -+-的最小值. (3)如图,四边形ABCD 的对角线AC ,BD 相交于点O ,AOB 、COD △的面积分别为4和9,求四边形ABCD 面积的最小值.解析:(1)6;(2)4;(3)25.【分析】(1)将原式变形为99x x x x+≥⋅ (2)结合阅读材料将原式变形为()411x x -+-后即可确定最小值; (3)设S △BOC =x ,已知S △AOB =4,S △COD =9,则由等高三角形可知:BOC AOB COD AOD S S S S =△△△△,用含x 的式子表示出36AOD S x =△,再按照题中所给公式求得最小值,加上常数即可. 【详解】 解:(1)∵0x >,∴99x x x x+≥⋅又∵296=,∴96x x+≥ ∴9x x +的最小值为6;(2)∵1x >∴10x ->, ∴222521411x x x x x x -+-++=--()2141x x -+=-()411x x =-+-≥∵∴22541x x x -+≥- ∴2251x x x -+-的最小值为4. (3)设(0)BOC S x x =>△,则由等高三角形可知:BOC AOB COD AODS S S S =△△△△ ∴49AOD x S =△,即36AOD S x=△, ∴四边形ABCD 面积364913x x =+++≥, ∵13=25,当且仅当x=6时,取等号, ∴四边形ABCD 面积的最小值为25.【点睛】本题考查了配方法在最值问题中的应用,同时本题还考查了等高三角形的在面积计算中的应用.对不能直接应用公式的,需要正确变形才可以应用,本题中等难度略大.。
初中数学一元二次方程知识点总结(含习题)
初中数学一元二次方程知识点总结(含习题)一元二次方程知识点的总结知识结构梳理:1、概念1) 一元二次方程含有一个未知数。
2) 未知数的最高次数是2.3) 是方程。
4) 一元二次方程的一般形式是ax²+bx+c=0.2、解法1) 因式分解法,适用于能化为(x+m)(x+n)=0的一元二次方程。
2) 公式法,即把方程变形为ax²+bx+c=0的形式,一元二次方程的解为x=[-b±√(b²-4ac)]/(2a)。
3) 完全平方式,其中求根公式是(x±a)²=b,当时,方程有两个不相等的实数根。
4) 配方法,其中求根公式是(x±a)(x±b)=0,当时,方程有两个实数根。
5) 二次函数图像法,当时,方程有没有实数根。
3、应用1) 一元二次方程可用于解某些求值题。
2) 一元二次方程可用于解决实际问题的步骤包括:列方程、化简方程、解方程、检验答案。
知识点归类:考点一:一元二次方程的定义如果一个方程通过移项可以使右边为0,而左边只含有一个未知数的二次多项式,那么这样的方程叫做一元二次方程。
一元二次方程必须同时满足以下三点:①方程是整式方程。
②它只含有一个未知数。
③未知数的最高次数是2.考点二:一元二次方程的一般形式一元二次方程的一般形式为ax²+bx+c=0,其中a、b、c分别叫做二次项系数、一次项系数、常数项。
要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式。
考点三:解一元二次方程的方法一元二次方程的解也叫一元二次方程的根。
解一元二次方程的方法包括因式分解法、公式法、完全平方式、配方法和二次函数图像法。
解一元二次方程有四种常用方法:直接开平方法、配方法、因式分解法和公式法。
选择哪种方法要根据具体情况而定。
直接开平方法是解形如x²=a的方程的方法,解为x=±√a。
配方法是将方程的左边加上一次项系数一半的平方,再减去这个数,使得含未知数的项在一个完全平方式里,然后用因式分解法或直接开平方法解方程。
第1章 一元二次方程 苏科版九年级数学上册单元复习(解析版)
【单元复习】第1章一元二次方程知识精讲第1章一元二次方程一、一元二次方程的概念1、一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
注意:一元二次方程必须同时满足以下三点:①方程是整式方程。
②它只含有一个未知数。
③未知数的最高次数是2.同时还要注意在判断时,需将方程化成一般形式。
2、一元二次方程的一般形式,它的特征是:等式左边十一个关于未知数x的二次多项式,等式右边是零,其中叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。
二、一元二次方程的解法1、直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如的一元二次方程。
根据平方根的定义可知,是b的平方根,当时,,,当b<0时,方程没有实数根。
2、配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。
配方法的理论根据是完全平方公式,把公式中的a看做未知数x,并用x代替,则有。
3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程的求根公式:4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
三、一元二次方程根的判别式根的判别式:一元二次方程中,叫做一元二次方程的根的判别式,通常用“”来表示,即四、一元二次方程根与系数的关系如果方程的两个实数根是,那么,。
也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。
根与系数的关系的应用:①验根:不解方程,利用根与系数的关系可以检验两个数是不是一元二次方程的两根;②求根及未知数系数:已知方程的一个根,可利用根与系数的关系求出另一个数及未知数系数.③求代数式的值:在不解方程的情况下,可利用根与系数的关系求关于和的代数式的值,如④求作新方程:已知方程的两个根,可利用根与系数的关系求出一元二次方程的一般式. 一元二次方程的应用:方程是解决实际问题的有效模型和工具.利用方程解决。
一元二次方程的根与系数的关系(知识点考点)-九年级数学上册知识点考点(解析版)
一元二次方程的根与系数的关系(知识点考点一站到底)知识点☀笔记韦达定理:如一元二次方程20(0)ax bx c a ++=≠的两根为12,x x ,则12b x x a +=-,12c x x a⋅= 考点☀梳理考点1:韦达定理必备知识点:如一元二次方程20(0)ax bx c a ++=≠的两根为12,x x ,则12b x x a +=-,12c x x a⋅= 解题指导:适用题型:(1)已知一根求另一根及未知系数;(2)求与方程的根有关的代数式的值;(3)已知两根求作方程;(4)已知两数的和与积,求这两个数;(5)确定根的符号:(12,x x 是方程两根);(6)题目给出两根之间的关系,如两根互为相反数、互为倒数、两根的平方和或平方差是多少、两根是Rt ∆的两直角边求斜边等情况.注意:(1)韦达定理拓展公式 ①x 12+x 22=(x 1+x 2)2−2x 1∙x 2②1x 1+1x 2=x 2+x 1x 1∙x 2x 2x 1+x1x 2=x 12+x 22x 1∙x 2=(x 1+x 2)2−2x 1∙x 2x 1∙x 2③(x 1−x 2)2=(x 1+x 2)2−4x 1∙x 2④|x 1−x 2|=√(x 1+x 2)2−4x 1∙x 2 ;(2)①方程有两正根,则1212000x x x x ∆≥⎧⎪+>⎨⎪⋅>⎩;②方程有两负根,则1212000x x x x ∆≥⎧⎪+<⎨⎪⋅>⎩ ;③方程有一正一负两根,则120x x ∆>⎧⎨⋅<⎩;(3)应用韦达定理时,要确保一元二次方程有根,即一定要判断根的判别式是否非负;求作一元二次方程时,一般把所求作得方程的二次项系数设为1,即以12,x x 为根的一元二次方程为21212()0x x x x x x -++⋅=;求字母系数的值时,需使二次项系数0a ≠,同时满足∆≥0;求代数式的值,常用整体思想,把所求代数式变形成为含有两根之和12x x +,•两根之积12x x ⋅的代数式的形式,整体代入。
解一元二次方程(知识点考点)九年级数学上册知识点考点(解析版)
解一元二次方程(知识点考点一站到底)知识点☀笔记一元二次方程的解法一元二次方程的四种解法:(1) 直接开平方法:如果()20x k k =≥,则x k =(2) 配方法:要先把二次项系数化为1,然后方程两变同时加上一次项系数一半的平方,配成左边是完全平方式,右边是非负常数的形式,然后用直接开平方法求解;(3) 公式法:一元二次方程()200ax bx c a ++=≠的求根公式是24b b ac x -±-=()240b ac -≥; (4) 因式分解法:如果()()0x a x b --=则12,x a x b ==。
温馨提示:一元二次方程四种解法都很重要,尤其是因式分解法,它使用的频率最高,在具体应用时,要注意选择最恰当的方法解。
根的判别式 定义:运用配方法解一元二次方程过程中得到 2224()24b b ac x a a-+=,显然只有当240b ac -≥时,才能直接开平方得:22424b b ac x a a -+= 也就是说,一元二次方程20(0)ax bx c a ++=≠只有当系数a 、b 、c 满足条件240b ac ∆=-≥时才有实数根.这里24b ac -叫做一元二次方程根的判别式.判别式与根的关系在实数范围内,一元二次方程20(0)ax bx c a ++=≠的根由其系数a 、b 、c 确定,它的根的情况(是否有实数根)由24b ac ∆=-确定.设一元二次方程为20(0)ax bx c a ++=≠,其根的判别式为:24b ac ∆=-则①0∆>⇔方程20(0)ax bx c a ++=≠有两个不相等的实数根21,24b b ac x -±-=. ②0∆=⇔方程20(0)ax bx c a ++=≠有两个相等的实数根122b x x a==-. ③0∆<⇔方程20(0)ax bx c a ++=≠没有实数根. 考点☀梳理解题指导:① 形如(x +m )2=n (n ≥0)的方程可用直接开平方法;② 当方程二次项系数为1,且一次项系数为偶数时,可用配方法;③ 若方程移项后一边为0,另一边能分解成两个一次因式的积,可用因式分解法;④ 如果方程不能用直接开平方法和因式分解法求解,则用公式法.⑤ 十字相乘法例如:解方程:x 2+3x -4=0.第1种拆法:4x -x =3x (正确),第2种拆法:2x -2x =0(错误),所以x 2+3x -4=(x +4)(x -1)=0,即x +4=0或x -1=0,所以x 1=-4,x 2=1.⑥ 换元法在已知或者未知条件中,某个代数式几次出现,可用一个字母来代替它从而简化问题,这就是换元法,当然有时候要通过变形才能换元.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.考点1:直接开方法解一元二次方程必备知识点:①直接开平方法:如果()20x k k =≥,则x k =题型1 直接开方法解一元二次方程例1.(2022·新疆·沙雅县第五中学七年级期中)解方程:()216125x +=. 【答案】114x =,294x =- 【分析】方程两边同时除以16,再开平方来求解.【详解】解:方程两边同时除以16得()225116x +=, 开平方得514x +=±, 解得114x =,294x =-. 【点睛】本题主要考查了一元二次方程的解法,理解直接开平方法是解答关键.例2.(2022·陕西安康·九年级期末)解方程:1250x --=. 【答案】16x =,24x =-【分析】由()21250x --=,得出2125x ,开方得15x -=±,即可解出【详解】∵()21250x --=,∵2125x ,∵15x -=或15x -=-,则16x =,24x =-.【点睛】本题考查直接开方法求解一元二次方程,将题给式子移项,化为2x a =的形式,再利用数的开放直接求解.练习1.(2022·广东·可园中学七年级期中)解方程:24(3)250x --=.【答案】1112x =,212x =【分析】利用直接开平方法求解即可.【详解】解:24(3)250x --=,24(3)25x -=,225(3)4x -=, 532x ∴-=±, 1112x ∴=,212x =. 【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.【答案】x 1=16,x 2=﹣14【分析】根据直接开平方法进行求解即可.【详解】解:∵(x ﹣1)2=225,∵x ﹣1=±15,解得x 1=16,x 2=﹣14.【点睛】本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键.练习3.(2022·江苏·九年级专题练习)解方程:2x 2=6 【答案】x 13=,x 23=-【分析】直接开平方即可一元二次方程.【详解】解:226x =,23x =,3x ∴=±,13x ∴=,23x =-.【点睛】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键.练习4.(2022·北京·通州区运河中学八年级阶段练习)用开平方法解方程:316m =. 【答案】134m =+,234m =-【分析】根据开平方法解一元二次方程即可求解.【详解】解:()2316m -=,34m -=±,34m =±, ∴134m =+,234m =-.【点睛】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键.考点2:配方法解一元二次方程必备知识点:①当方程二次项系数为1,且一次项系数为偶数时,可用配方法;题型2 配方法解一元二次方程例1.(2022·安徽合肥·八年级期末)用配方法解方程:21090x x -+= 【答案】19x =,21x =【分析】利用解一元二次方程-配方法:先把二次项系数化为1,然后方程两边同时加上一次项系数一半的平方,进行计算即可.【详解】解:21090x x -+=,2109x x -=-,21025925x x -+=-+,2(5)16x -=,54x -=±,54x -=或54x -=-,19x =,21x =.【点睛】本题考查了解一元二次方程-配方法,解题的关键是熟练掌握解一元二次方程-配方法的步骤. 例2.(2021·河南南阳·九年级期中)用配方法解方程23210x x +-=. 【答案】11x =-,213x = 【分析】先将原方程配方,然后再整体运用直接开平方法,最后求出x 即可.【详解】解:原方程可化为:22133x x += 22221113333x x ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭⎝⎭ 21439x ⎛⎫+= ⎪⎝⎭ 1233x +=±, 11x =-,213x =. 【点睛】本题主要考查了解一元二次方程,掌握运用配方法解一元二次方程是解答本题的关键.【答案】x 1=32,x 2=﹣4 【分析】移项,方程两边都除以2,再配方,开方,即可得出两个方程,再求出方程的解即可.【详解】解:2x 2+5x ﹣12=0,移项,得2x 2+5x =12,x 2+52x =6, 配方,得x 2+52x +2516=6+2516,即(x +54)2=12116, 开方,得x +54=±114, 解得:x 1=32,x 2=﹣4. 【点睛】本题主要考查了解一元二次方程,熟练掌握一元二次方程的解法是解题的关键.【答案】11x =,23x =【分析】利用配方法解答,即可求解.【详解】解:2430x x -+=,配方得∵()221x -=,解得∵21x -=±,即11x =,23x =.【点睛】本题主要考查了解一元二次方程,熟练掌握一元二次方程的解法——直接开平方法、配方法、因式分解法、公式法是解题的关键. 练习3.(2022·安徽合肥·八年级期末)解方程:x 2-6x =8 【答案】12317,317x x =+=-【分析】利用配方法解一元二次方程即可得.【详解】解:268x x -=,26989x x -+=+,2(3)17x -=,317x -=±,317x =±,即方程的解为12317,317x x =+=-.【点睛】本题考查了解一元二次方程,熟练掌握一元二次方程的解法(如直接开平方法、配方法、公式法、因式分解法、换元法等)是解题关键.【答案】x 1=162+,x 2=162- 【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数的绝对值一半的平方.【详解】解:2x 2﹣4x ﹣1=0x 2﹣2x 12-=0 x 2﹣2x +112=+1 (x ﹣1)232=∵x 1=162+,x 2=162-. 【点睛】本题考查了配方法解一元二次方程,掌握配方法是解题的关键.例1.(2022·广西贺州·八年级期中)请阅读下列材料:我们可以通过以下方法求代数式的223x x +-最小值.()22222232111314x x x x x +-=+⋅+--=+- ()210x +≥∴当x =-1时,223x x +-有最小值-4请根据上述方法,解答下列问题:(1)(()2222352332x x x x x a b ++=+++=++,则a =__________,b =__________; (2)若代数式227x kx -+的最小值为3,求k 的值. 【答案】(1)3,2(2)2k =±【分析】(1)根据配方法直接作答即可;(2)根据题中材料告知的方法,先配方,再根据平方的非负性求解即可.(1)解:2235x x ++()222332x x =+⨯++ ()232x =++,3,2a b ∴==,故答案为:3,2;(2)解:227x kx -+22227x kx k k =-+-+()227x k k =--+, ∵2)0x k -≥(, ∵()227x k k --+的最小值是27k -+,∵代数式227x kx -+有最小值3,∵273k -+=,即24k =,∵2k =±.【点睛】此题考查了配方法的应用,以及平方的非负性,熟练掌握完全平方公式是解本题的关键.练习1.(2022·山东泰安·八年级期中)在学了乘法公式“222()2a b a ab b ±=±+”的应用后,王老师提出问题:求代数式245x x ++的最小值.要求同学们运用所学知识进行解答.同学们经过探索、交流和讨论,最后总结出如下解答方法;解:22222454225(2)1x x x x x ++=++-+=++,∵2(2)0x +≥,∵2(2)11x ++≥.当2(2)0x +=时,2(2)1x ++的值最小,最小值是1.∵245x x ++的最小值是1.请你根据上述方法,解答下列各题:(1)直接写出2(1)3x -+的最小值为_____.(2)求代数式21032x x ++的最小值. (3)你认为代数式21253x x -++有最大值还是有最小值?求出该最大值或最小值. (4)若27110x x y -+-=,求x +y 的最小值.【答案】(1)3(2)21032x x ++的最小值是7;(3)21253x x -++有最大值,最大值是8; (4)x +y 的最小值是2.【分析】(1)根据偶次方的非负性可求得;(2)根据题意用配方法和偶次方的非负性可直接求得;(3)根据题意用配方法和偶次方的非负性可直接求得;(4)根据7x -x 2+y -11=0,用x 表示出y ,写出x +y ,先根据题意用配方法和偶次方的非负性可求. (1)解:()213x -+,当x =1时,2(1)3x -+有最小值,是3;故答案为:3;(2)解:222221032105532(5)7x x x x x ++=++-+=++.∵2(05)x +≥,∵2(5)77x ++≥,当2(5)0x +=时,2(5)7x ++的值最小,最小值是7.∵21032x x ++的最小值是7;(3)解:21253x x -++有最大值,理由如下: ∵21253x x -++ 21(6)53x x =--+ =21(699)53x x --+-+ 21(69)353x x =--+++ 2133()8x =-++. 当21(3)03x -+=时,21(3)83x -++有最大值,最大值是8, ∵21253x x -++有最大值,最大值是8; (4)解:∵27110x x y -+-=,∵2711y x x =-++,∵22222271161163311(3)2x y x x x x x x x x +=-++=-+=-+-+=-+,∵2(3)0x -≥,∵2(3)22x -+≥,当2(3)0x -=时,2(3)2x -+的值最小,最小值是2.∵x +y 的最小值是2.【点睛】本题考查了配方法的应用和偶次方为非负数,解题的关键是能够将代数式配成完全平方式的形式.265x x ++22223335x x =+⋅⋅+-+2(3)4x =+-∵ ()230x +≥,∵ 当x =-3时,代数式265x x ++的最小值为-4.请根据上述的方法,解答下列问题:(1) 2261()x x x m n +-=++,则mn 的值为_______.(2)求代数式2265x x --+的最大值.(3)若代数式226x kx ++的最小值为2,求k 的值. 【答案】(1)-30(2)最大值为11(3)k =42±【分析】(1)利用配方法根据一次项的系数求出m 与n 的值,再相乘即可;(2)先提出代数式的负号,再进行配方,最后根据偶次方的非负性求出代数式的最大值即可; (3)先将代数式中的二次线系数提出来化为1,再进行配方,根据最小值为2求出k 的值即可.(1)解:261x x +-22223331x x =+⋅⋅+--2(3)10x =+-2()x m n =++ 解得m =3,n =-10,∵mn =-30.(2)解: 2265x x --+2(26)7x x =-++222(26(6)(6)5x x ⎡⎤=-+⋅⋅+-+⎣⎦2(6)11x =-++∵2(6)0x +≥,∵2(6)0x -+≤,∵代数式2265x x --+的最大值为11.解:226x kx ++22()62k x x =++ 22222()()6444k k k x x ⎡⎤=+⋅⋅+-+⎢⎥⎣⎦ 222()648k k x =+-+ ∵2()04k x +≥, ∵代数式226x kx ++有最小值为268k -. ∵代数式226x kx ++的最小值为2,∵2628k -=. 解得:k =42±.【点睛】本题考查的是将多项式进行配方化为完全平方式的形式,再利用偶次方的非负性求代数式的最大或最小值,准确的进行配方是解题的关键.已知2226100m m n n ++-+=,求m 和n 的值.解:将左边分组配方:()()2221690m m n n +++-+=.即()()22130m n ++-=. ∵()210m +≥,()230n -≥,且和为0, ∵()210m +=且()230n -=,∵m =-1,n =-3.利用以上解法,解下列问题:(1)已知:224250x x y y ++-+=,求x 和y 的值.(2)已知a ,b ,c 是ABC 的三边长,满足228625a b a b +=+-且ABC 为直角三角形,求c . 【答案】(1)x =-2,y =1(2)5或7【分析】(1)先将等式左边化为两个完全平方式,根据非负数的和为零可得x 和y 的值;(2)同理可得a 和b 的值,再分类讨论,由勾股定理可得c 的值.(1)解:∵224250x x y y ++-+=∵()()22210x y ++-=∵x +2=0,y -1=0∵x =-2,y =1.(2)∵228625a b a b +=+-∵2286250a b a b +--+=∵()()22430a b -+-=∵a -4=0,b -3=0∵a =4,b =3∵ABC 是直角三角形∵22345c =+=或22437c =-=∵c 的值为5或7.【点睛】此题考查配方法的应用和非负数的性质,解题的关键是要学会拼凑出完全平方式. 练习4.(2022·江西上饶·八年级期末)在理解例题的基础上,完成下列两个问题: 例题:若2222440m mn n n ++-+=,求m 和n 的值;解:由题意得:()()2222440m mn n n n +++-+=,∵22()(2)0m n n ++-=,∵020m n n +=⎧⎨-=⎩,解得22m n =-⎧⎨=⎩. (1)若22228160x xy y y ++++=,求2x y -()的值;(2)若22126450a b a b +-++=,求32a b -的值. 【答案】(1)64 (2)24【分析】(1)已知等式整理后,利用完全平方公式配方,再利用非负数的性质求出x 与y 的值,代入原式计算即可得到结果;(2)已知等式整理后,利用完全平方公式配方,再利用非负数的性质求出a 与b 的值,代入原式计算即可得到结果. (1)由题意得:22228160x xy y y y +++++= ∵()()2240x y y +++=∵040x y y +=⎧⎨+=⎩解得:44x y =⎧⎨=-⎩∵()()224464x y -=+=. (2)由题意得:221236690a a b b -++++= ∵()()22630a b -++=∵6030a b -=⎧⎨+=⎩解得:63a b =⎧⎨=-⎩∵33322262162439a ab b -====-().【点睛】本题考查了配方法的应用,非负数的性质,以及负整数指数幂,熟练掌握完全平方公式及运算法则是解本题的关键.考点3:公式法解一元二次方程必备知识点:①如果方程不能用直接开平方法和因式分解法求解,则用公式法. 题型3 公式法解一元二次方程例1.(2022·北京·通州区运河中学八年级阶段练习)用开平方法解方程:(2316m =.【答案】134m =+,234m =-【分析】根据开平方法解一元二次方程即可求解. 【详解】解:()2316m -=,34m -=±, 34m =±,∴134m =+,234m =-.【点睛】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键. 【答案】11193x +=,21193x -=【分析】先找出a ,b ,c ,再求出24b ac ∆=-的值,根据求根公式即可求出答案. 【详解】解:∵23260x x --=, ∵3a =,2b =-,6c =-,∵()()224243676b ac ∆=-=--⨯⨯-=,∵()()22224364223b b ac x a±--⨯⨯--±-==⨯22196±=1193±=∵11193x +=,21193x -=【点睛】本题考查了解一元二次方程,解一元二次方程的方法有提公因式法、公式法,因式分解法等,根据方程的系数特点灵活选择恰当的方法进行求解是解题的关键.练习1.(2021·上海市南汇第四中学八年级期末)解方程:x 2﹣25x ﹣4=0. 【答案】x 1=5+3,x 2=5﹣3【分析】先找出各项系数,求出判别式,根据一元二次方程的求根公式计算即可. 【详解】解:a =1,b =﹣25,c =﹣4, Δ=b 2﹣4ac =(﹣25)2﹣4×1×(﹣4)=36>0, 方程有两个不等的实数根,x =24253653221b b ac a -±-±==±⨯,即x 1=5+3,x 2=5﹣3.【点睛】本题考查用公式法求解一元二次方程,熟练掌握根据方程的特点,选择恰当解法是解题的关键. 390x x --=【答案】13352x +=,23352x -=【分析】根据公式法即可求解. 【详解】解:∵1a =,3b =-,9b =-, ∵93645∆=+=>0,∵243453352212b b ac x a -±-±±===⨯, ∵13352x +=,23352x -=. 【点睛】本题主要考查解一元二次方程,掌握解方程的方法是解题的关键. (1)5x 2-6x +1=0(公式法) (2)x 2+8x -2=0(公式法) 【答案】(1)121,15x x ==(2)12432,432x x =+=-【分析】(1)根据题意,用公式法解一元二次方程; (2)根据题意,用配方法解一元二次方程即可求解.(1)解:5x 2-6x +1=0中,5,6,1a b c ==-=,24362016b ac ∴∆=-=-=,2464210b b ac x a -±-±∴==,解得:121,15x x ==;(2)x 2+8x -2=0,28=2x x +,281618x x ++=,()2418x +=,432x +=±,解得:12432,432x x =+=-. 【点睛】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键. (1)2219x x -+= ; (2)22310x x -+=. 【答案】(1)124,2x x ==- (2)1211,2x x ==【分析】(1)用直角开平方法解答即可; (2)用求根公式解答即可.(1)解:2219x x -+=,原方程可化为2(1)9x -=,直接开平方,得13x -=±,∵124,2x x ==-. (2)22310x x -+=,∵981∆=-=>0,∵方程有两个不相等的实数根,12314x ±=,,1211,2x x ==. 【点睛】本题考查一元二次方程的解法,解题关键是能够正确地选择恰当的解题方法.必备知识点:①若方程移项后一边为0,另一边能分解成两个一次因式的积,可用因式分解法; 题型4 因式分解法解一元二次方程例1.(2022·安徽合肥·八年级期末)解方程:23543x x x【答案】121,4x x =-=【分析】先整理可得2340x x --=,再利用因式分解法解答,即可求解. 【详解】解:23543xx x∵239120x x ,即2340x x --=, ∵()()140x x +-=, 解得:121,4x x =-=【点睛】本题主要考查了解一元二次方程,熟练掌握一元二次方程的解法——直接开平方法,因式分解法,公式法,配方法是解题的关键.例2.(2022·安徽安庆·八年级期末)解方程:2212x x x -=-. 【答案】12x =或1x =- 【分析】用因式分解法解一元二次方程即可. 【详解】解:2x 2-x =1-2x , ∵2x 2+x -1=0,∵(2x -1)(x +1)=0, 2x -1=0或x +1=0, ∵12x =或1x =-. 【点睛】本题考查解一元二次方程,熟练掌握因式分解法解一元二次方程的方法是解题的关键. 练习1.(2022·安徽合肥·八年级期末)解一元二次方程:()()323x x -=-. 【答案】x 1=3,x 2=5【分析】通过移项,因式分解再求方程的解即可. 【详解】解:(x -3)2=2(x -3) 移项得(x -3)2-2(x -3)=0,因式分解得(x -3)(x -3-2)=0, (x -3)(x -5)=0, ∵x 1=3,x 2=5.【点睛】本题考查了一元二次方程的解法,关键是运用因式分解使解方程变得更简洁. 练习2.(2022·上海市罗星中学八年级期末)解方程:24830x x -+=【答案】1231,22x x ==【分析】利用因式分解法解方程即可. 【详解】24830x x -+= (23)(21)0x x --=∵230x -=或210x -=1231,22x x ==【点睛】本题考查解一元二次方程,选择合适的方法是解题的关键. (1)()()22311-=-x x (2)()3122x x x -=- 【答案】(1)10x =,212x = (2)123x =,21x =【分析】(1)利用平方差公式分解因式后求解; (2)利用提公因式分解因式后求解. (1)解:()()22311-=-x x()()223110x x ---=()()3113110x x x x -+---+=()2420x x -=10x =,212x =. (2)()3122x x x -=-()()31210x x x ---=()()3210x x --=∵320x -=或10x -=, 解得,123x =,21x =.【点睛】本题考查因式分解法解一元二次方程,是重要考点,掌握相关知识是解题关键. (1)2x x = (2)21090x x ++=【答案】(1)10x =,21x =; (2)11x =-,29x =-【分析】(1)利用移项,提公因式求解即可; (2)利用因式分解法求解即可.(1)解:∵2x x =,∵20x x -=,∵x (x -1)=0,∵x =0或x -1=0,∵10x =,21x =; (2)∵21090x x ++=,∵(x +1)(x +9)=0,∵x +1=0或x +9=0,∵11x =-,29x =-【点睛】本题主要考查了解一元二次方程,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.考点5:换元法解一元二次方程必备知识点:①在已知或者未知条件中,某个代数式几次出现,可用一个字母来代替它从而简化问题,这就是换元法,当然有时候要通过变形才能换元.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.题型5 换元法解一元二次方程例1.(2022·全国·九年级专题练习)解方程:()()2226x x x x +++=.【答案】122,1x x ==-【分析】利用换元法可将原方程降次求解,再根据分类讨论思想对一元二次方程求解即可. 【详解】解:设x 2+x =y ,则原方程变形为y 2+y -6=0, 解得:y 1=-3,y 2=2.①当y =2时,x 2+x =2,即x 2+x -2=0, 解得:x 1=-2,x 2=1;②当y =-3时,x 2+x =-3,即x 2+x +3=0, ∵∵=12-4×1×3=1-12=-11<0, ∵此方程无解;∵原方程的解为x 1=-2,x 2=1.【点睛】本题考查了因式分解法,公式法解一元二次方程,能够掌握换元法将原方程降次,熟练运用公式法,因式分解法解一元二次方程是解决本题的关键.例2.(2022·江苏·九年级课时练习)转化是数学解题的一种极其重要的数学思想,实质是把新知识转化为旧知识,把未知转化为已知,把复杂的问题转化为简单的问题.例如,解方程x 4-3x 2-4=0时,我们就可以通过换元法,设x 2=y ,将原方程转化为y 2-3y -4=0,解方程得到y 1=-1,y 2=4,因为x 2=y ≥0,所以y =-1舍去,所以得到x 2=4,所以x 1=2,x 2=-2.请参考例题解法,解方程:223320x x x x +-+=. 【答案】x 1=1,x 2=-4【分析】利用题中给出的方法设23x x +=y ,把方程转化为含y 的一元二次方程,求出y 的值,再求解无理方程,求出x 的值.【详解】解:设23x x +=y ,则x 2+3x =y 2, 原方程可化为:y 2-y -2=0, ∵y 1=-1,y 2=2 , ∵23x x +=y ≥0, ∵y 1=-1舍去 , ∵23x x +=2, ∵x 2+3x =4, ∵x 2+3x -4=0, ∵x 1=1,x 2=-4.【点睛】本题考查了解一元二次方程及换元法,掌握换元法的一般步骤是解决本题的关键,换元法的一般步骤:设元(未知数),换元,解元,还原四步.解方程42540x x -+=,这是一个一元四次方程,根据该方程的特点,它的解法通常是: 设2x y =,那么42x y =,于是原方程可变为2540y y -+=①,解得11y =,24y =. 当1y =时,21x =,1x ∴=±;当4y =时,24x =,2x ∴=±; ∴原方程有四个根:11x =,21x =-,32x =,42x =-.仿照上面方法,解方程:222(3)4(3)30x x x x +++=+. 【答案】1352x -+=,2352x --=.【分析】设x 2+3x =y ,则原方程变为y 2+4y +3=0,求出y =-1,或y =-3,再分别解方程即可. 【详解】解:设x 2+3x =y ,则原方程变为y 2+4y +3=0, ∵(y +1)(y +3)=0, 解得y =-1,或y =-3,当y =-1时,x 2+3x =-1,即x 2+3x +1=0,解得x =12353522x x -+--==,,当y =-3时,x 2+3x =-3,即x 2+3x +3=0,因为∆=32-4×3<0,所以方程没有实数根,舍去; ∵原方程有两个根:1352x -+=,2352x --=.【点睛】此题考查了换元法解一元二次方程,正确理解已知中的解题方法并仿照解题是解题的关键. (1)2x -2x =99(2)2(21)x -+3(2x -1)=0 (3)22()x x --5(2x -x )+6=0. 【答案】(1)111x =,29x =- (2)112x =,21x =- (3)12x =,21x =-,31132x +=,41132x -=【分析】(1)根据配方法求解即可; (2)根据因式分解求解即可;(3)先令x 2-x =y ,得到关于y 的一元二次方程,然后根据因式分解法求出y ,再把y 的值代入x 2-x =y 求解即可. (1)解:2x -2x =99, ∵2x -2x +1=99+1 ∵2(1)100x -=, ∵110x -=±, ∵111x =,29x =-; (2)解:2(21)x -+3(2x -1)=0,∵(21)[(21)3]0x x --+=,即(21)(22)0x x -+=, ∵210x -=或220x +=, ∵112x =,21x =-; (3)解:22()x x --5(2x -x )+6=0, 令2x x y -=,则原方程为2560y y -+=∵(2)(3)0y y --=, ∵20y -=或30y -=, ∵y =2或3当y =2时,22x x -=, ∵220x x --= ∵(2)(1)0x x -+=, ∵x -2=0或x +1=0, ∵12x =,21x =-; 当y =3时,23-=x x , ∵230x x --=, ∵1141(3)11322x ±-⨯⨯-±==, ∵31132x +=,41132x -=. 综上所述,12x =,21x =-,31132x +=,41132x -=.【点睛】本题考查了一元二次方程的解法,能把一元二次方程转化成一元一次方程是解此题的关键. 阅读材料:像13x x -=这样,根号内含有未知数的方程,我们称之为无理方程. 13;x x --;两边平方:x ﹣1=9﹣6x +x 2. 解这个一元二次方程:x 1=2,x 2=5检验所得到的两个根,只有 是原无理方程的根. 理解应用:解无理方程1122x x +=. 【答案】2x =;x =3【分析】阅读材料:通过检验可确定原方程的解; 理解应用:先移项得到1212x x -=+,再两边平方得到一个一元二次方程,然后解这个一元二次方程,然后进行检验确定原无理方程的根. 【详解】解:阅读材料: 经检验2x =是原方程的解; 故答案为:2x =; 理解应用:移项:1212x x -=+, 两边平方:()214414x x x -+=+,解得154x =,23x =, 经检验原无理方程的根为3x =.【点睛】本题考查了无理方程:解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法.用乘方法(即将方程两边各自乘同次方来消去方程中的根号)来解无理方程,往往会产生增根,应注意验根. 必备知识点:①根的判别式:运用配方法解一元二次方程过程中得到 2224()24b b ac x a a -+=,显然只有当240b ac -≥时,才能直接开平方得:22424b b acx a a -+=±也就是说,一元二次方程20(0)ax bx c a ++=≠只有当系数a 、b 、c 满足条件240b ac ∆=-≥时才有实数根.这里24b ac -叫做一元二次方程根的判别式.判别式与根的关系在实数范围内,一元二次方程20(0)ax bx c a ++=≠的根由其系数a 、b 、c 确定,它的根的情况(是否有实数根)由24b ac ∆=-确定.设一元二次方程为20(0)ax bx c a ++=≠,其根的判别式为:24b ac ∆=-则①0∆>⇔方程20(0)ax bx c a ++=≠有两个不相等的实数根21,24b b acx -±-=. ②0∆=⇔方程20(0)ax bx c a ++=≠有两个相等的实数根122b x x a==-. ③0∆<⇔方程20(0)ax bx c a ++=≠没有实数根.题型6 根的判别式的应用例1.(2022·江苏扬州·八年级期末)已知关于x 的一元二次方程2312200kx k x k k .(1)求证:无论x 取何值,此方程总有两个实数根; (2)若该方程的两根都是整数,求整数k 的值. 【答案】(1)见解析 (2)±1【分析】(1)利用一元二次方程根的判别式,即可求解;(2)用公式法求出方程的两根,1211,2x x k=-=-,再由该方程的两根都是整数,且k 为整数,可得11k -为整数,即可求解. (1)解:根据题意得:231422k k k2296188k k k k =++--221k k =-+()210k =-≥∵无论x 取何值,此方程总有两个实数根;(2)解:2312200kxk x k k , ∵()()3112k k x k-+±-=, ∵1211,2x x k=-=-, ∵该方程的两根都是整数,且k 为整数,∵11k-为整数, ∵整数k 为±1.【点睛】本题主要考查了一元二次方程根的判别式,熟练掌握一元二次方程()200++=≠ax bx c a ,当240b ac ∆=->时,方程有两个不相等的实数根;当240b ac ∆=-=时,方程有两个相等的实数根;当240b ac ∆=-<时,方程没有实数根是解题的关键.例2.(2022·安徽滁州·八年级期末)已知关于x 的方程().(1)小明同学说:“无论m 为何实数,方程总有两个不相等的实数根.”你认为他说的有道理吗?请说明理由.(2)若方程的一个根是-2,求另一个根及m 的值. 【答案】(1)有道理,理由见解析(2)另一个根为2,5m =-【分析】(1)根据Δ=b 2-4ac >0,即可得证;(2)将x =-2代入方程,求出m 的值,再将m =-5代入方程,解方程即可确定方程的另一个根.(1)解:有道理,理由如下:∵()()()222245416213120b ac m m m m m ∆=-=+-+=++=++>∵无论m 为何实数,方程总有两个不相等的实数根.(2)解:将2x =-代入方程得()42510m m -+++=解得5m =-∵原方程为240x -=∵2x =±∵另一个根为2,5m =-.【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.练习1.(2022·江苏南京·八年级期末)已知关于x 的一元二次方程2x 2﹣3mx +m 2+m ﹣3=0(m 为常数).(1)求证:无论m 为何值,方程总有两个不相等的实数根:(2)若x =2是方程的根,则m 的值为_____. 【答案】(1)见解析(2)552m +=或552-【分析】(1)先计算判别式的值得到∆=(m -2)2+8>0,然后根据判别式的意义得到结论;(2)将x =2代入方程,解方程即可.(1)解:∵∆=9m 2-4×2(m 2+m -3)=(m -2)2+8>0,∵无论m 为何值,方程总有两个不相等的实数根;(2)将x =2代入方程,得8-6m +m 2+m ﹣3=0,整理得,m 2-5m +5=0,解得552m +=或552-, 故答案为:552m +=或552-. 【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式∆=b 2-4ac :当∆>0,方程有两个不相等的实数根;当∆=0,方程有两个相等的实数根;当∆<0,方程没有实数根.也考查了解一元二次方程. 210x kx k ++-=方程总有两个不相等的实数根.【答案】见解析【分析】根据Δ=2224(2)41(1)40b ac k k -=-⨯⨯-=>判断即可.【详解】∵关于x 的方程22210x kx k ++-=,a =1,b =2k ,c =21k -,∵Δ=2224(2)41(1)40b ac k k -=-⨯⨯-=>,∵无论k 取何值时,方程总有两个不相等的实数根.【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键. 练习3.(2022·山东青岛·八年级期中)已知关于x 的一元二次方程250x mx m -+-=.(1)求证:无论m 取何值,方程一定有两个不相等的实数根;(2)若方程有一根为25m 的值.【答案】(1)见解析(2)4m =【分析】(1)根据根的判别式求出∆的值,即可得到结论;(2)把x =25+代入方程,得出关于m 的方程,解之可得.(1)证明:24(5)m m ∆=--2420m m =-+24416m m =-++2(2)16m =-+∵2(2)160m ∆=-+>∵方程一定有两个不相等的实数根.(2)将25x =+代入原方程,得2(25)(25)50m m +-++-=(15)445m +=+∵4m =【点睛】此题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式Δ=b 2−4ac :当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.练习4.(2021·河南南阳·九年级期中)已知关于x 的方程220x k x k -++=(1)求证:无论k 取何值,该方程总有实数根;(2)若等腰ABC 的一边长1a =,另两边b 、c 恰好是该方程的两个根,求三角形另外两边的长.【答案】(1)见解析(2)三角形另外两边长为2,2【分析】(1)检验根的判别式的正负情况即可得证.(2)∵ABC 是等腰三角形,若b =c ,即∆=0,解出k 后代入方程,解方程可得另外两边长;若a 是腰,则a =1是方程的根,把1代入方程解出k 后,再解出方程另一个解,检验是否符合三角形三边关系即可. (1)证明:2(2)42k k ∆=+-⨯2448k k k =++-2(2)0k =-≥所以此方程总有实根.(2)解:①若b c =,则此方程有两个相等实根此时20k -=,则2k =,原方程为:2440x x -+=,122x x ==,∵另外两边长为2和2,②若a c =,则1a =是方程2(2)20x k x k -++=的根,∵21(2)20k k -++=,∵1k =,原方程为2320x x -+=,解得:11x =,22x =,而1、1、2为边不能构成三角形.所以,三角形另外两边长为2,2.【点睛】本题考查了一元二次方程根的判别式、解一元二次方程、等腰三角形存在性、三角形三边关系等知识点,熟练掌握相关知识点是解决本题的关键.。
九年级上册数学知识点总结
九年级上册数学知识点总结归纳1 第二十一章一元二次方程第二十二章二次函数第二十三章旋转第二十四章圆第二十五章概率初步22222222x第二十一章一元二次方程知识点 1:一元二次方程的概念一元二次方程:只含有一个未知数,未知数的最高次数是 2,且系数不为 0 ,这样的方程叫一元二次方程. 一般形式: ax + bx+c=0(a ≠ 0)。
注意: 判断某方程是否为一元二次方程时,应首先将方程化为一般形式。
知识点 2:一元二次方程的解法1. 直接开平方法:对形如 (x+a ) 2=b ( b ≥0)的方程两边直接开平方而转化为两个一元一次方程的方法。
X+a=bx 1 =-a+ bx 2 =-a-b2. 配方法:用配方法解一元二次方程:ax 2+ bx+c=0(k ≠ 0)的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为 (x+a ) =b 的形式;⑤如果 b ≥0 就可以用两边开平方来求出方程的解;如果b<0,则原方程无解.3. 公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式b b2是 2a4ac(b - 4ac ≥0) 。
步骤:①把方程转化为一般形式;②确定a ,b ,c 的值;③求出 b - 4ac 的值,当 b - 4ac ≥ 0 时代入求根公式。
4. 因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.理论根据:若ab=0,则 a=0 或 b=0。
步骤是:①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程乘积的形式,解这两个一元一次方程,它们的解就是原一元二次方程的解. 因式分解的方法:提公因式、公式法、十字相乘法。
5. 一元二次方程的注意事项:⑴ 在一元二次方程的一般形式中要注意,强调a ≠ 0.因当 a=0 时,不含有二次项,即不是一元二次方程.⑵ 应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a ,b ,c 的值;②若 b - 4ac <0,则方程无解.⑶ 利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2(x + 4) 2 =3 ( x + 4)中,不能随便约去 x + 4。
人教版九年级数学上册知识点整理(完整版)
−n± p m人教版九年级数学上册知识点整理(完整版)第二十一章 一元二次方程一、一元二次方程的有关概念(一)一元二次方程:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是 2(二次)的方程,叫做一元二次方程。
(二)一元二次方程的一般形式:ax 2 + bx + c = O(a ≠ O)其中:二次项为ax 2;二次项系数为 a ;一次项为 bx ,一次项系数为 b ;常数项为 c 。
特殊形式:(三)一元二次方程中“未知数的最高次数是 2,二次项系数 a≠0”是针对整理合并的方程而言的。
(四)一元二次方程的解(根)1、概念:使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解 也叫做一元二次方程的根。
2、判断一个数是否是一元二次方程的根将这个数代入一元二次方程的左右两边,看是否相等,若相等,则该数是这个方程的根;若不 相等,则该数不是这个方程的根。
3、关于一元二次方程根的三个重要结论(1)a+b+c =0⇔一元二次方程ax 2 + bx + c = O(a ≠ O)有一个根为 x =1。
(2)a-b+c =0⇔一元二次方程ax 2 + bx + c = O(a ≠ O)有一个根为 x =﹣1。
(3)c=0⇔一元二次方程ax 2 + bx + c = O(a ≠ O)有一个根为 x =0。
二、解一元二次方程(一)直接开平方法解一元二次方程1、直接开平方法∶利用平方根的意义直接开平方,求一元二次方程的解的方法叫做直接开平 方法。
2、方程x 2 = p 的根(1) 当 p>0 时,根据平方根的意义,方程x 2 = p 有两个不相等的实数根x 1 = p ,x 2 =− p 。
(2) 当 p=0 时,方程x 2 = p 有两个相等的实数根x 1 = x 2 =0。
(3) 当 p<0 时,因为对任意实数 x ,都有x 2≥0,所以方程x 2 = p 无实数根。
初中数学一元二次方程知识点总结(含方法技巧归纳,易错辨析)
初中数学⼀元⼆次⽅程知识点总结(含⽅法技巧归纳,易错辨析)
考情分析⾼频考点考查频率所占分值
1.元⼆次⽅程的概念★7~12分
2.⼀元⼆次⽅程的解法★★★
3.⼀元⼆次⽅程根的判别式★★
4.⼀元⼆次⽅程根与系数的关系★
5.利⽤⼀元⼆次⽅程解决实际问题★★★
1⼀元⼆次⽅程的定义及⼀般形式
定义:等号两边都是整式,只含有⼀个未知数(⼀元),并且未知数的最⾼次数是2(⼆次)的⽅程,
叫作⼀元⼆次⽅程.
点拨
对定义的理解抓住三个条件:“⼀元”“⼆次”“整式⽅程”,缺⼀不可,同时强调⼆次项的系数不为0.
⽤公式法解⼀元⼆次⽅程的记忆⼝诀
要⽤公式解⽅程,⾸先化成⼀般式.
调整系数随其后,使其成为最简⽐.
确定参数
,计算⽅程判别式.
判别式值与零⽐,有⽆实根便得知.
若有实根套公式,若⽆实根要告之.
3因式分解法
通过因式分解,使⼀元⼆次⽅程化为两个⼀次式的乘积等于0的形式,再使这两个⼀次式分别等
于0,从⽽实现降次,这种解⼀元⼆次⽅程的⽅法叫作因式分懈法.
因式分解法体现了将⼀元⼆次⽅程“降次”转化为⼀元⼀次⽅程来解的思想,运⽤这种⽅法的步
骤:
(1)将所有项移到⽅程的左边,将⽅程的右边化为0;
(2)将⽅程左边分解为两个⼀次因式的乘积;
(3)令每个因式分别等于零,得到两个⼀元⼀次⽅程;
(4)解这两个⼀元⼀次⽅程,他们的解就是原⽅程的解.。
第二十一章 一元二次方程(知识清单)【解析版】-九年级数学上册同步备课系列(人教版)
二十一章一元二次方程(知识清单)一、学习目标1)了解一元二次方程及其相关概念,会用配方法、公式法、分解因式法解一元二次方程,并在解一元二次方程的过程中体会转换、降次等数学思想。
2)通过根的判别式判断一元二次方程的情况,了解根与系数的关系。
3)能够利用一元二次方程解决有关实际问题,能根据具体问题的实际意义检验结果的合理性,进一步培养学生分析问题、解决问题的意识和能力。
重点:1.理解与掌握一元二次方程及其有关的概念。
2.用配方法、公式法、因式分解法解一元二次方程。
3.利用一元二次方程解决实际问题。
难点:1.理解用根的判别式判别根的情况。
2.一元二次方程求根公式的推导。
3.一元二次方程根与系数的关系。
二、学习过程章节介绍解一元二次方程方法为本章基础内容,它的计算量相对较大,对正确率要求比较高,要求根据方程的结构,选用合适的方法解方程。
大题通常考查利用一元二次方程解决实际问题和一元二次方程根与系数关系,利用一元二次方程解决实际问题难点在于找等量关系,正确列出方程并求解,从而解决实际问题。
利用根与系数的关系求代数式的值,难度较大,需要多加练习,灵活运用根与系数关系变形求解!知识梳理1.一元二次方程的概念:只含有_______未知数(元),并且未知数最高次数是_____,等号两边都是________,这样的方程叫一元二次方程。
2.一元二次方程的一般形式为___________________________________。
3.一元一次方程与一元二次方程的相同点与不同点:4.一般地,对于方程x2=p①,1)当p>0时,根据平方根的意义,方程①有两个____________的实数根______________________;2)当p=0时,方程①有两个______的实数根_____________;3)当p<0时,因为对于任意实数x,都有x2____0,所以方程①_______实数根。
5.将方程通过配成____________形式来解一元二次方程的方法,叫做配方法。
专题08 一元二次方程(归纳与讲解)(解析版)
专题08 一元二次方程【专题目录】技巧1:一元二次方程的解法归类技巧2:根的判别式的六种常见应用技巧3:根与系数的关系的四种应用类型【题型】一、一元二次方程的概念【题型】二、解一元二次方程:直接开平方法【题型】三、解一元二次方程:配方法【题型】四、解一元二次方程:公式法【题型】五、解一元二次方程:因式分解法【考纲要求】1、理解一元二次方程的概念,熟练掌握一元二次方程的解法.2、会判断一元二次方程根的情况;了解一元二次方程根与系数的关系并能简单应用.3、会列一元二次方程解决实际问题.【考点总结】一、一元二次方程【注意】判断一个方程是否是一元二次方程,必须符合以下三个标准:① 一元二次方程是整式方程,即方程的两边都是关于未知数的整式. ② 一元二次方程是一元方程,即方程中只含有一个未知数. ③ 一元二次方程是二次方程,也就是方程中未知数的最高次数是2. 用配方法解一元二次方程ax 2+bx +c =0(a ≠0)的一般步骤1、一化:化二次项系数化为1:方程两边都除以二次项系数;02=++a cx a b x 2、二移:移项,使方程左边为二次项与一次项,右边为常数项;acx a b x -=+23、三配:①配方:方程两边都加上一次项系数一半的平方,方程化为 22222⎪⎭⎫ ⎝⎛+-=⎪⎭⎫⎝⎛++a b a c a b x a b x 的形式;①方程左边变形为一次二项式的完全平方式,右边合并为一个常数;222442a ac b a b x -=⎪⎭⎫ ⎝⎛+ 4、四解:①用直接开平方法解变形后的方程,此时需保证方程右边是非负数a ac b a b x 2422-±=+。
①分别解这两个一元二次方程,求出两根aacb b x 242-±-=。
一元二次方程ax 2+bx +c =0(a ≠0))的解法选择 (1)当b=0时,首选直接开平法 (2)当c =0时,首选因式分解法或配方法 (3)当a =1,b ≠0,c ≠0时,首选配方法或因式分解法 (4)当a ≠1,b ≠0,c ≠0时,首选公式法或因式分解法 一元二次方程根与系数关系的两类应用(1)求含有两根的代数式的值:设法将所求代数式通过因式分解或配方等恒等变形,变形为含有两根和与两根积的式子,再代入由一元二次方程根与系数关系得到的值,求出结果(2)构造以两数为根的一元二次方程::由已知两数x 1+x 2和x 1x 2的值,然后依照所求方程是x 2(x 1+x 2)x +x 1x 2=0写出方程 【技巧归纳】技巧1:一元二次方程的解法归类 【类型】一、限定方法解一元二次方程题型1:形如(x +m)2=n(n ≥0)的一元二次方程用直接开平方法求解 1.方程4x 2-25=0的解为( )A .x =25B .x =52C .x =±52D .x =±252.用直接开平方法解下列一元二次方程,其中无解的方程为( )A .x 2-5=5B .-3x 2=0C .x 2+4=0D .(x +1)2=0 题型2:当二次项系数为1,且一次项系数为偶数时,用配方法求解 3.用配方法解方程x 2+3=4x ,配方后的方程变为( )A .(x -2)2=7B .(x +2)2=1C .(x -2)2=1D .(x +2)2=2 4.解方程:x 2+4x -2=0.5.已知x 2-10x +y 2-16y +89=0,求xy的值.题型3:能化成形如(x +a)(x +b)=0的一元二次方程用因式分解法求解 6.一元二次方程x(x -2)=2-x 的根是( )A .-1B .0C .1和2D .-1和2 7.解下列一元二次方程:(1)x 2-2x =0; (2)16x 2-9=0; (3)4x 2=4x -1.题型4:如果一个一元二次方程易于化为它的一般式,则用公式法求解 8.用公式法解一元二次方程x 2-14=2x ,方程的解应是( )A .x =-2±52B .x =2±52C .x =1±52D .x =1±329.用公式法解下列方程.(1)3(x 2+1)-7x =0; (2)4x 2-3x -5=x -2. 【类型】二、选择合适的方法解一元二次方程 10.方程4x 2-49=0的解为( )A .x =27B .x =72C .x 1=72,x 2=-72D .x 1=27,x 2=-2711.一元二次方程x 2-9=3-x 的根是( )A .x 1=x 2=3B .x 1=x 2=-4C .x 1=3和x 2=-4D .x 1=3和x 2=4 12.方程(x +1)(x -3)=5的解是( )A .x 1=1,x 2=-3B .x 1=4,x 2=-2C .x 1=-1,x 2=3D .x 1=-4,x 2=2 13.解下列方程.(1)3y 2-3y -6=0; (2)2x 2-3x +1=0. 【类型】三、用特殊方法解一元二次方程 题型1:构造法14.解方程:6x 2+19x +10=0.15.若m ,n ,p 满足m -n =8,mn +p 2+16=0,求m +n +p 的值. 题型2:换元法 a .整体换元16.解方程:(x -1)(x -2)(x -3)(x -4)=48. 17.x 2+1x 2-2⎝⎛⎭⎫x +1x -1=0. b .降次换元18.解方程:6x 4-35x 3+62x 2-35x +6=0. c .倒数换元19.解方程:x -2x -3xx -2=2.题型3:特殊值法20.解方程:(x -2 013)(x -2 014)=2 015×2 016. 参考答案 1.C 2.C 3.C4.解: x 2+4x -2=0,x 2+4x =2, (x +2)2 =6, x +2 =±6,∴x 1=-2+6,x 2=-2- 6. 5.解: x 2-10x +y 2-16y +89=0,(x 2-10x +25)+(y 2-16y +64) =0, (x -5)2+(y -8)2 =0, ∴x =5,y =8.∴x y =58.6.D7.解:(1)x 2-2x =0,x(x -2)=0,∴x 1=0,x 2=2.(2)16x 2-9=0,(4x +3)(4x -3)=0,∴x 1=-34,x 2=34.(3)4x 2=4x -1,4x 2-4x +1=0, (2x -1)2=0,∴x 1=x 2=12.8.B9.解:(1)3(x 2+1)-7x =0,3x 2-7x +3=0,∵b 2-4ac =(-7)2-4×3×3=13. ∴x =7±132×3=7±136.∴x 1=7+136,x 2=7-136.(2)4x 2-3x -5=x -2,4x 2-4x -3=0,∵b 2-4ac =(-4)2-4×4×(-3)=64.∴x =4±642×4=1±22.∴x 1=32,x 2=-12.10.C 11.C 12.B13.解:(1)3y 2-3y -6=0,y 2-y -2=0,⎝⎛⎭⎫y -122=94, y -12=±32,∴y 1=2,y 2=-1. (2)2x 2-3x +1=0,∵b 2-4ac =(-3)2-4×2×1=1, ∴x =3±12×2=3±14,即x 1=1,x 2=12.14.解:将原方程两边同乘6,得(6x)2+19×(6x)+60=0.解得6x =-15或6x =-4.∴x 1=-52,x 2=-23.15.解:因为m -n =8,所以m =n +8.将m =n +8代入mn +p 2+16=0中,得n(n +8)+p 2+16=0,所以n 2+8n +16+p 2=0,即(n +4)2+p 2=0.又因为(n +4)2≥0,p 2≥0,所以⎩⎪⎨⎪⎧n +4=0,p =0,解得⎩⎪⎨⎪⎧n =-4,p =0.所以m =n +8=4.所以m +n +p =4+(-4)+0=0.16.解:原方程可变为[(x -1)(x -4)][(x -2)(x -3)]=48,即(x 2-5x +4)(x 2-5x +6)=48.设y =x 2-5x +5,则原方程变为(y -1)(y +1)=48. 解得y 1=7,y 2=-7.当x 2-5x +5=7时,解得x 1=5+332,x 2=5-332;当x 2-5x +5=-7时,Δ=(-5)2-4×1×12=-23<0,方程无实数根. ∴原方程的根为x 1=5+332,x 2=5-332.17.解:x 2+1x2-2⎝⎛⎭⎫x +1x -1=0, 设x +1x =y ,则原方程为y 2-2y -3=0.∴y 1=3,y 2=-1. 当y =3时,x +1x =3,∴x 1=3+52,x 2=3-52.当y =-1时,x +1x=-1,无实数解.经检验,x 1=3+52,x 2=3-52都是原方程的根,∴原方程的根为x 1=3+52,x 2=3-52.18.解:经验证x =0不是方程的根,原方程两边同除以x 2,得6x 2-35x +62-35x +6x2=0,即6⎝⎛⎭⎫x 2+1x 2-35⎝⎛⎭⎫x +1x +62=0. 设y =x +1x ,则x 2+1x 2=y 2-2,原方程可变为6(y 2-2)-35y +62=0. 解得y 1=52,y 2=103.当x +1x =52时,解得x 1=2,x 2=12;当x +1x =103时,解得x 3=3,x 4=13.经检验,均符合题意.∴原方程的解为x 1=2,x 2=12,x 3=3,x 4=13.19.解:设x -2x=y ,则原方程化为y -3y =2,整理得y 2-2y -3=0, ∴y 1=3,y 2=-1.当y =3时,x -2x =3,∴x =-1;当y =-1时,x -2x =-1,∴x =1.经检验,x =±1都是原方程的根, ∴原方程的根为x 1=1,x 2=-1.20.解:方程组⎩⎪⎨⎪⎧x -2 013=2 016,x -2 014=2 015的解一定是原方程的解,解得x =4 029.方程组⎩⎪⎨⎪⎧x -2 013=-2 015,x -2 014=-2 016的解也一定是原方程的解,解得x =-2.∵原方程最多有两个实数解, ∴原方程的解为x 1=4 029,x 2=-2.点拨:解本题也可采用换元法.设x -2 014=t ,则x -2 013=t +1,原方程可化为t(t +1)=2 015×2 016,先求出t 的值,进而求出x 的值. 技巧2:根的判别式的六种常见应用【类型】一、利用根的判别式判断一元二次方程根的情况1.已知方程x 2-2x -m =0没有实数根,其中m 是实数,试判断方程x 2+2mx +m(m +1)=0有无实数根.2.已知关于x 的方程x 2+2mx +m 2-1=0.(1)不解方程,判别方程根的情况; (2)若方程有一个根为3,求m 的值.【类型】二、利用根的判别式求字母的值或取值范围 3.已知关于x 的一元二次方程mx 2-(m +2)x +2=0,(1)证明:不论m 为何值,方程总有实数根; (2)m 为何整数时,方程有两个不相等的正整数根. 【类型】三、利用根的判别式求代数式的值4.已知关于x 的方程x 2+(2m -1)x +4=0有两个相等的实数根,求m -1(2m -1)2+2m 的值.【类型】四、利用根的判别式解与函数综合问题5.y =k -1x +1是关于x 的一次函数,则一元二次方程kx 2+2x +1=0的根的情况为( )A .没有实数根B .有一个实数根C .有两个不相等的实数根D .有两个相等的实数根 【类型】五、利用根的判别式确定三角形的形状6.已知a ,b ,c 是三角形的三边长,且关于x 的一元二次方程(a +c)x 2+bx +a -c4=0有两个相等的实数根,试判断此三角形的形状.【类型】六、利用根的判别式探求菱形条件7.已知▱ABCD 的两边AB ,AD 的长是关于x 的方程x 2-mx +m 2-14=0的两个根.(1)m 为何值时,▱ABCD 是菱形?并求出菱形的边长. (2)若AB 的长为2,求▱ABCD 的周长是多少? 参考答案1.解:∵x 2-2x -m =0没有实数根,∴Δ1=(-2)2-4·(-m)=4+4m<0,即m<-1. 对于方程x 2+2mx +m(m +1)=0, Δ2=(2m)2-4·m(m +1)=-4m>4,∴方程x 2+2mx +m(m +1)=0有两个不相等的实数根. 2.解:(1)Δ=b 2-4ac =(2m)2-4×1×(m 2-1)=4m 2-4m 2+4=4>0,∴方程有两个不相等的实数根. (2)将x =3代入方程中,得9+2m×3+m 2-1=0,即m 2+6m +9=1,∴(m +3)2=1.∴m +3=±1. ∴m 1=-2,m 2=-4.3.(1)证明:Δ=[-(m +2)]2-8m =m 2-4m +4=(m -2)2.∵不论m 为何值,(m -2)2≥0,即Δ≥0.∴不论m 为何值,方程总有实数根.(2)解:解关于x 的一元二次方程mx 2-(m +2)x +2=0,得 x =m +2±Δ2m =m +2±(m -2)2m .∴x 1=2m,x 2=1.∵方程的两个根都是正整数, ∴2m 是正整数,∴m =1或m =2. 又∵方程的两个根不相等, ∴m≠2,∴m =1.4.解:∵关于x 的方程x 2+(2m -1)x +4=0有两个相等的实数根,∴Δ=(2m -1)2-4×1×4=0, 即2m -1=±4. ∴m =52或m =-32.当m =52时,m -1(2m -1)2+2m =52-116+5=114;当m =-32时,m -1(2m -1)2+2m =-32-116-3=-526.5.A 点拨:∵y =k -1x +1是关于x 的一次函数,∴k -1≠0.∴k -1>0,解得k>1.又一元二次方程kx 2+2x +1=0的判别式Δ=4-4k , ∴Δ<0.∴一元二次方程kx 2+2x +1=0无实数根,故选A . 6.解:∵方程(a +c)x 2+bx +a -c4=0有两个相等的实数根,∴Δ=b 2-4(a +c)·a -c4=b 2-(a 2-c 2)=0.即b 2+c 2=a 2,∴此三角形是直角三角形. 7.解:(1)∵▱ABCD 是菱形,∴AB =AD.∴Δ=0,即m 2-4⎝⎛⎭⎫m 2-14=m 2-2m +1=0,∴m =1. 此时原方程为x 2-x +14=0,∴x 1=x 2=12,∴当m =1时,▱AB CD 是菱形,菱形ABCD 的边长为12.(2)∵AB =2,∴将x =2代入原方程得4-2m +m 2-14=0,解得m =52,故原方程为x 2-52x +1=0,解得x 1=2,x 2=12,∴AD =12.故▱ABCD 的周长为2×⎝⎛⎭⎫2+12=5. 技巧3:根与系数的关系的四种应用类型 【类型】一、利用根与系数的关系求代数式的值1.设方程4x 2-7x -3=0的两根为x 1,x 2,不解方程求下列各式的值.(1)(x 1-3)(x 2-3); (2)x 2x 1+1+x 1x 2+1; (3)x 1-x 2.【类型】二、利用根与系数的关系构造一元二次方程2.构造一个一元二次方程,使它的两根分别是方程5x 2+2x -3=0各根的负倒数. 【类型】三、利用根与系数的关系求字母的值或取值范围 3.已知关于x 的一元二次方程x 2-4x +m =0.(1)若方程有实数根,求实数m 的取值范围;(2)若方程两实数根分别为x 1,x 2,且满足5x 1+2x 2=2,求实数m 的值. 【类型】四、巧用根与系数的关系确定字母系数的存在性4.已知x 1,x 2是关于x 的一元二次方程4kx 2-4kx +k +1=0的两个实数根,是否存在实数k ,使(2x 1-x 2)(x 1-2x 2)=-32成立?若存在,求出k 的值;若不存在,请说明理由.参考答案1.解:根据一元二次方程根与系数的关系,有x 1+x 2=74,x 1x 2=-34.(1)(x 1-3)(x 2-3)=x 1x 2-3(x 1+x 2)+9=-34-3×74+9=3.(2)x 2x 1+1+x 1x 2+1= x 2(x 2+1)+x 1(x 1+1)(x 1+1)(x 2+1)=x 12+x 22+x 1+x 2x 1x 2+x 1+x 2+1=(x 1+x 2)2-2x 1x 2+(x 1+x 2)x 1x 2+(x 1+x 2)+1=⎝⎛⎭⎫742-2×⎝⎛⎭⎫-34+74-34+74+1=10132.(3)∵(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=⎝⎛⎭⎫742-4×⎝⎛⎭⎫-34=9716, ∴x 1-x 2=±9716=±1497. 2.解:设方程5x 2+2x -3=0的两根为x 1,x 2,则x 1+x 2=-25,x 1x 2=-35.设所求方程为y 2+py +q =0,其两根为y 1,y 2, 令y 1=-1x 1,y 2=-1x 2.∴p =-(y 1+y 2)=-⎝⎛⎭⎫-1x 1-1x 2=1x 1+1x 2=x 1+x 2x 1x 2=23, q =y 1y 2=⎝⎛⎭⎫-1x 1⎝⎛⎭⎫-1x 2=1x 1x 2=-53. ∴所求的方程为y 2+23y -53=0,即3y 2+2y -5=0.3.解:(1)∵方程x 2-4x +m =0有实数根,∴Δ=b 2-4ac =(-4)2-4m≥0, ∴m≤4.(2)∵方程x 2-4x +m =0的两实数根为x 1,x 2, ∴x 1+x 2=4,① 又∵5x 1+2x 2=2,②联立①②解方程组得⎩⎪⎨⎪⎧x 1=-2,x 2=6.∴m =x 1·x 2=-2×6=-12. 4.解:不存在.理由如下:∵一元二次方程4kx 2-4kx +k +1=0有两个实数根, ∴k≠0,且Δ=(-4k)2-4×4k(k +1)=-16k≥0, ∴k <0.∵x 1,x 2是方程4kx 2-4kx +k +1=0的两个实数根,∴x 1+x 2=1,x 1x 2=k +14k.∴(2x 1-x 2)(x 1-2x 2)=2(x 1+x 2)2-9x 1x 2=-k +94k .又∵(2x 1-x 2)(x 1-2x 2)=-32,∴-k +94k =-32.∴k =95.经检验,k =95是该分式方程的根.又∵k<0,∴不存在实数k ,使(2x 1-x 2)(x 1-2x 2)=-32成立.【题型讲解】【题型】一、一元二次方程的概念 例1、若方程()()211120m m x m x +--+-=是一元二次方程,则m 的值为( )A .0B .±1C .1D .–1【答案】D 【详解】因为方程()()211120mm x m x +--+-=是一元二次方程,所以212m +=, 10m -≠, 解得1m =±且1m ≠ 所以1m =-, 故选D.【题型】二、解一元二次方程:直接开平方法 例2、解下列方程: (1)241210x -=; (2)2(41)90x --=. 【答案】(1)121111,22x x ==-;(2)1211,2x x ==- 【分析】(1)利用直接开平方法求解即可; (2)利用直接开平方法求解即可. 【详解】解:(1)方程变形得21214x =, 开平方,得 112x =±, ①121111,22x x ==-; (2)由原方程,得2(41)9x -=, 开平方,得413x -=±, ①1211,2x x ==-.【点睛】考查了直接开平方法解一元二次方程.解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x 2=a (a ≥0)的形式,利用数的开方直接求解. 【题型】三、解一元二次方程:配方法 例3、用配方法解方程. (1)2420x x --=; (2)2680x x ++=.【答案】(1)12x =22x =;(2)2x =-,4x =- 【分析】(1)直接利用配方法进行求解; (2)直接利用配方法进行求解. 【详解】解:(1)方程变形为x 2-4x =2. 两边都加4,得x 2-4x +4=2+4.利用完全平方公式,就得到形如(x +m )2=n 的方程,即有(x -2)2=6.解这个方程,得12x =22x =于是,原方程的根为12x =,或22x =. (2)将常数项移到方程右边x 2+6x =-8.两边都加“一次项系数一半的平方”,得x 2+6x +32=-8+32, ①(x +3)2=1.用直接开平方法,得x +3=±1,①x =-2或x =-4. 【点睛】本题考查了利用配方法解一元二次方程,解题的关键是掌握配方法的基本步骤. 【题型】四、解一元二次方程:公式法 例4、解方程2820x x --=【答案】14x =+24x =- 【分析】先求出1a = ,8b =- ,2c =- ,根据一元二次方程判别式,可得到方程有两个不相等的实数根,然后代入求根公式即可解答 【详解】解:①1a = ,8b =- ,2c =- ,①224(8)41(2)720b ac ∆=-=--⨯⨯-=> , ①方程有两个不相等的实数根.①4x ===±①14x =+24x =- 【点睛】本题主要考查了一元二次方程的解法——公式法,解题的关键是熟练掌握一元二次方程的求根公式,即x =.【题型】五、解一元二次方程:因式分解法 例5、用因式分解法解下列方程: (1)234y y y -=-; (2)3(1)33x x x +=+.【答案】(1)122y y ==;(2)121,1x x ==- 【分析】(1)移项后利用完全平方公式得到2(2)0y -=,然后利用直接开方法解方程; (2)先变形得到3(1)(33)0x x x +-+=,然后利用因式分解方法解方程. 【详解】解:(1)移项,合并同类项,得2440y y -+=,因式分解,得2(2)0y -=,所以,原方程的根为122y y ==; (2)移项,得3(1)(33)0x x x +-+=, 即(1)(1)0x x x +-+=, 提公因式,得(1)(1)0x x +-=, 于是,得10x +=或10x -=, 所以,原方程的根为121,1x x ==-. 【点睛】本题考查了解一元二次方程−因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.一元二次方程(达标训练)一、单选题1.(2022·四川泸州·一模)方程x 2﹣6x =0的解是( ) A .x =6 B .x =0 C .x 1=6,x 2=0 D .x 1=﹣6,x 2=0【答案】C【分析】利用因式分解法解方程即可. 【详解】解:因式分解得:x (x ﹣6)=0, 则x ﹣6=0或x =0, 所以x 1=6,x 2=0, 故选:C .【点睛】本题考查了解一元二次方程,能够根据方程特点灵活选用不同的解法是解题关键. 2.(2022·福建省福州第十九中学模拟预测)一元二次方程23120x x --=在用求根公式x =求解时,a ,b ,c 的值是( ) A .3,―1,―2 B .―2,―1,3 C .―2,3,1 D .―2,3,―1【答案】D【分析】先按照未知数x 的降幂排列,据此可得答案. 【详解】①23120x x --=, ①22310x x -+-=,则a =-2,b =3,c =-1, 故选: D .【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键. 3.(2022·浙江温州·一模)用配方法解方程2450x x --=时,配方结果正确的是( ) A .2(2)1x -= B .2(2)1x -=- C .2(2)9x -= D .2(2)9x -=-【答案】C【分析】把常数项移到等式右边后,利用完全平方公式配方得到结果,即可作出判断. 【详解】解:2450x x --=∴245x x -= ∴24454x x -+=+ ∴()229x -=只有选项C 符合题意; 故选C .【点睛】此题考查了一元二次方程的配方法,熟练掌握完全平方公式是解题的关键. 4.(2022·广东·深圳市龙华区丹堤实验学校模拟预测)方程290x 的两个根为( )A .1x =﹣3,2x =3B .1x =﹣9,2x =9C .1x =﹣1,2x =9D .1x =﹣9,2x =1 【答案】A【分析】先将9移到方程右边,再开平方解方程即可. 【详解】解:29x =, x =±3,所以1x =3,2x =﹣3. 故选:A .【点睛】本题考查了解一元二次方程,熟练掌握一元二次方程的解法是解题的关键.5.(2022·广东·深圳市龙华区丹堤实验学校模拟预测)关于x 的一元二次方程a 2x ﹣5ax +4=0,有一个根为1.则a 的值为( ) A .1 B .﹣1C .1或﹣1D .不能确定【答案】A【分析】根据方程的解代入方程满足等式关系,将方程的根代入一元二次方程计算求值即可; 【详解】解:将x =1代入到方程可得:a ﹣5a +4=0, -4a =-4, ①a =1, 故选: A .【点睛】本题考查了一元二次方程的解,等式的性质,掌握方程的解的意义是解题关键.二、填空题6.(2022·江苏·南京市花园中学模拟预测)设1x ,2x 是关于x 的方程220x kx k -+-=的两个根,121x x =+,则12x x =_____.【答案】1-【分析】运用根与系数关系定理,具体化求解即可.【详解】解:①12x x 、是关于x 的方程x 2﹣kx +k ﹣2=0的两个根,121x x =+, ①121x x =+=k ,12x x =k ﹣2, ①12x x =1﹣2=﹣1. 故答案为﹣1.【点睛】本题考查了一元二次方程的根与系数关系,熟练掌握定理并灵活运用是解题的关键. 7.(2022·广东·乐昌市新时代学校二模)比亚迪汽车销售公司3月份销售新上市一种新能源汽车8辆,由于该型汽车既环保,又经济,销量快速上升,5月份该公司销售该型汽车达18辆.设该公司销售该型汽车4月份和5月份的平均增长率为x ,可列方程为:_________. 【答案】()28118x +=【分析】汽车销售公司3月份销售新上市一种新能源汽车8辆,设该公司销售该型汽车4月份和5月份的平均增长率为x ,则4月份的销售额是8(1+x ),5月份的销售额是()281x +,据此即可列出方程.【详解】解:根据题意可列方程: ()28118x +=,故答案为:()28118x +=.【点睛】本题考查数量平均变化率问题,解题的关键是正确列出一元二次方程.增长用“+”,下降用“-”.三、解答题8.(2022·四川南充·一模)已知关于x 的方程:x 2+(m ﹣2)x ﹣m =0. (1)求证:无论m 取何实数,方程总有两个不相等的实数根. (2)设非0实数m ,n 是方程的两根,试求m ﹣n 的值. 【答案】(1)见解析 (2)52【分析】(1)根的判别式为24Δb ac =-,将系数代入即可证得.(2)把x m =代入方程可求得32m =,由根与系数的关系可求得n 值,即可求解.(1)证明:2Δ(2)4m m =-+24m =+.无论m 取何实数时,总有240m +>. ①方程总有两个不相等的实数根. (2)把x m =代入方程,得2(2)0m m m m +--=. 即223m m =. ①0m ≠,①32m =.由根与系数的关系,mn m =-. ①1n =-. ①52m n -=. 【点睛】本题考查了一元二次方程根的判别式、根与系数的关系,熟练掌握上述知识点是解答本题的关键.一元二次方程(提升测评)一、单选题1.(2022·广东·深圳市宝安第一外国语学校三模)关于x 的一元二次方程2410x x k -+-=两个相等的实数根,则关于x 的一元二次方程240x x k -+=的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根 D .无法判定【答案】C【分析】根据2410x x k -+-=两个相等的实数根,计算出k 的值,再根据k 的取值范围计算出方程240x x k -+=的根的判别式,即可进行解答.【详解】解:①方程2410x x k -+-=两个相等的实数根, ①224(4)41(1)0b ac k -=--⨯⨯-=,解得:k =5, 一元二次方程240x x k -+=中,a =1,b =-4,c =k , ①224(4)41164b ac k k -=--⨯⨯=-, ①k =5,①164k -=-4<0,①240x x k -+=无实数根. 故选:C .【点睛】本题主要考查了一元二次方程根的判别式,熟练掌握相关内容的解题的关键.240b ac ->时,方程有两个不相等的实数根,240b ac -=时,方程有两个相等的实数根,240b ac -<时,方程没有实数根.2.(2022·云南·昆明八中模拟预测)下列一元二次方程中,没有实数根的是( ) A .230x = B .(3)(2)0x x -+= C .22550x x -+=D .2440x x ++=【答案】C【分析】根据一元二次方程跟的判别式进行判断即可.【详解】解:A .选项实数根为120x x ==,故该一元二次方程有两个相等的实数根; B .选项实数根为13x =和22x =-,故该一元二次方程有两个不相等的实数根;C .选项依题意得:2,5,5a b c ==-=,则224(5)425150b ac ∆=-=--⨯⨯=-<,故该一元二次方程没有实数根;D .选项实数根为122x x ==-,故该一元二次方程有两个相等的实数根. 故选:C .【点睛】本题考查了一元二次方程根的判别式,240b ac -≥ 时一元二次方程有实数根. 3.(2022·贵州·仁怀市教育研究室三模)若α和β是关于x 的方程210x bx +-=的两根,且2211αβαβ--=-,则b 的值是( )A .-3B .3C .-5D .5【答案】C【分析】根据一元二次方程根与系数的关系得出+=,1b αβαβ-=-,代入2211αβαβ--=-得到关于b 的方程,求出b 的值即可.【详解】解:①α和β是关于x 的方程210x bx +-=的两根, ①+=,1b αβαβ-=-,①222()1211b αβαβαβαβ--=-+=-+=- ①5b =- 故选:C【点睛】本题考查了根与系数的关系,熟练掌握两根之和为-b a ,两根之积为ca是解题的关键.4.(2022·广东·深圳市龙华区丹堤实验学校模拟预测)关于x 的方程263x x k x -++=-有两个解,则k 的取值范围是( ) A .k >﹣9 B .k ≤3 C .﹣9<k <6 D .k 384-> 【答案】A【分析】设3t x =-,再把原方程化为290t t k +--=,结合根的判别式可得374k >-,再由原方程有两个实数根,可得1290,t t k =--<从而可得答案.【详解】解:①263,x x k x -++=-①269|3|90,x x x k -++---= ①2(3)|3|90,x x k -+---= 设t =|x ﹣3|,则原方程变形为290t t k +--=, 所以Δ=1﹣4(﹣k ﹣9)>0,解得374k >-, ①原方程有两个解,①方程290t t k +--=有一正根和负根, ①1290,t t k =--< 解得k >﹣9,①k 的取值范围是k >﹣9.故选:A .【点睛】本题考查的是一元二次方程的根的判别式,根与系数的关系,由原方程有两个解得到方程290t t k +--=有一个正根与一个负根是解本题的关键.5.(2022·重庆巴蜀中学一模)对于二次三项式22x mxy x +-(m 为常数),下列结论正确的个数有( )①当1m =-时,若220x mxy x +-=,则2x y -=①无论x 取任何实数,等式223x mxy x x +-=都恒成立,则()225x my +=①若226x xy x +-=,228y xy y +-=,则1x y +=①满足()()22220x xy x y xy y +-+--≤的整数解(),x y 共有8个 A .1个B .2个C .3个D .4个【答案】A 【分析】①代入求值后因式分解计算即可;①提取公因式x 后根据恒成立找关系即可;①两个方程相加后因式分解即可解题;①去括号后因式分解判断即可.【详解】①当1m =-时,若220x mxy x +-=,则22(2)0x xy x x x y --=-=-①20x y --=或者0x =,故①错误;①等式223x mxy x x +-=化简后为(5)0x my x +-=①无论x 取任何实数,等式223x mxy x x +-=都恒成立,①50x my +-=,即5x my +=①()225x my +=,故①正确;①若226x xy x +-=,228y xy y +-=,则两个方程相加得:222214x xy x y xy y +-++-=, ① 2()2()14x y x y +-+=2(1)15x y +-=① 1x y +=,故①错误;①整理()()22220x xy x y xy y +-+--≤得:22220x y x y +--≤①22(1)(1)2x y -+-≤①整数解(),x y①22(1)0(1)0x y ⎧-=⎨-=⎩,22(1)0(1)1x y ⎧-=⎨-=⎩,22(1)1(1)0x y ⎧-=⎨-=⎩,22(1)1(1)1x y ⎧-=⎨-=⎩①11x y =⎧⎨=⎩,12x y =⎧⎨=⎩, 10x y =⎧⎨=⎩,21x y =⎧⎨=⎩, 01x y =⎧⎨=⎩,00x y =⎧⎨=⎩,02x y =⎧⎨=⎩,20x y =⎧⎨=⎩,22x y =⎧⎨=⎩, ① 整数解(),x y 共9对,故①错误;综上所述,结论正确的有①;故选:A .【点睛】本题综合考查因式分解的应用,熟练的配方是解题的关键,题目还考查了因式分解法解一元二次方程.二、填空题6.(2022·辽宁本溪·二模)关于x 的一元二次方程()21210m x x -+-=有两个不相等的实数根,则m的取值范围是_______.【答案】0m >且1m ≠【分析】根据一元二次方程根的判别方法列出关于m 的不等式,即可解得答案.【详解】解:①一元二次方程()21210m x x -+-=有两个不相等的实数根,①224(1)(1)0m ∆=-⨯-⨯->,解得:0m >;①10m -≠,①1m ≠;①m 的取值范围是:0m >且1m ≠.故答案为:0m >且1m ≠.【点睛】本题考查了一元二次方程根的判别式,一元二次方程的定义,解题的关键是掌握Δ>0时,一元二次方程有两个不相等的实数根.7.(2022·广东番禺中学三模)已知x 2=2x +15,则代数式22((x x +--=__________.【答案】-【分析】直接将原式分解因式,再把x 的值代入进而计算得出答案.【详解】解:22((x x +--=(x x x x=2x×=.①2215x x +=,①22150x x ﹣﹣=,(x ﹣5)(x +3)=0,①x =5或x =﹣3.当x =5时,原式=5=当x =﹣3时,原式=(3)-=-【点睛】此题主要考查了二次根式的化简求值,正确运用乘法公式是解题关键.三、解答题8.(2022·广东顺德德胜学校三模)我们把一个函数图象上横坐标与纵坐标相等的点称为这个函数的不动点.(1)请直接写出函数2y x =-的不动点M 的坐标;(2)若函数38x y x a+=+有两个关于原点对称的不动点A ,B ,求a 的值; (3)已知函数2(1)(1)y ax b x b =+++-,若对任意实数b ,函数恒有两个相异的不动点,请直接写出a 的取值范围.【答案】(1)(1,1)M(2)3a =(3)01a <<【分析】(1)设函数y =2-x 的不动点M 为(m ,m ),根据定义得到2-m =m ,求出m 即可求M 点坐标;(2)由题意可知AB 所在直线解析式为y =x ,联立方程组38y x x y x a =⎧⎪+⎨=⎪+⎩,再由根与系数的关系得3-a =0,即可求a 的值;(3)由题意可得211ax b x b x +++-=()(),则①24(1)0b a b =-->恒成立,对于关于b 的一元二次不等式恒成立,只需①216160a a =-<,即可.(1)解:设函数2y x =-的不动点M 为(,)m m ,2m m ∴-=,解得1m =,(1,1)M ∴;(2) A 、B 关于原点对称,且是函数的不动点,AB ∴所在直线解析式为y x =, 联立方程组38y x x y x a =⎧⎪+⎨=⎪+⎩, 整理得,2(3)80x a x +--=,30a ∴-=,3a ∴=;(3)由题意可知,2(1)(1)ax b x b x +++-=,整理得,2(1)0ax bx b ++-=,函数恒有两个相异的不动点,∴①24(1)0b a b =-->,2440b ab a ∴-+>恒成立,∴关于b 的一元二次不等式恒成立,∴①216160a a =-<,解得01a <<.【点睛】本题考查二次函数的图象及性质,弄清定义,熟练掌握一元二次方程根与系数的关系,判别式Δ与根的关系是解题的关键.。
部编数学九年级上册专题21.1一元二次方程的定义及解【八大题型】(人教版)(解析版)含答案
专题21.1 一元二次方程的定义及解【八大题型】【人教版】【题型1 一元二次方程的识别】 (1)【题型2 由一元二次方程的定义求字母的取值范围】 (3)【题型3 由一元二次方程的定义求字母的值】 (4)【题型4 一元二次方程的一般形式】 (5)【题型5 由一元二次方程的解求字母的值】 (7)【题型6 由一元二次方程的解求代数式的值】 (8)【题型7 由一元二次方程的解求代数式的值(降次)】 (9)【题型8 已知一元二次方程的根求另一方程的根】 (10)【知识点1 一元二次方程的定义】【题型1 一元二次方程的识别】【例1】(2021秋•恩施市期末)下列方程中,一定是一元二次方程的是( )①3x2+7=0:②ax2+bx+c=0;③(x﹣2)(x+5)=x2﹣1;④3x−1x=0.A.①B.①②C.①②③D.①②③④【分析】根据一元二次方程的定义判断即可,只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.【解答】解:①3x2+7=0一定是一元二次方程;②ax2+bx+c=0,当a=0时不是一元二次方程;③(x﹣2)(x+5)=x2﹣1整理得,3x﹣9=0,是一元一次方程;④3x−1x=0是分式方程.故选:A.【变式1-1】(2021秋•蓬溪县期末)下列方程中,一元二次方程有( )①3x2+x=20;②2x2﹣3xy+4=0;③x2−1x=4;④x2=1;⑤x2−x3+3=0A.2个B.3个C.4个D.5个【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:①符合一元二次方程定义,正确;②方程含有两个未知数,错误;③不是整式方程,错误;④符合一元二次方程定义,正确;⑤符合一元二次方程定义,正确.故选:B.【变式1-2】(2021秋•荥阳市校级月考)下列方程中,一定是关于x的一元二次方程的有( )①x2=0;②ax2+bx+c=0;③a2+a﹣x=0;④(x+1)2=2x2﹣9;⑤x2﹣y2=3.A.2个B.3个C.4个D.5个【分析】利用一元二次方程的定义判断即可.【解答】解:①x2=0是一元二次方程,符合题意;②ax2+bx+c=0(a≠0)是一元二次方程,不符合题意;③a2+a﹣x=0是二元二次方程,不符合题意;④(x+1)2=2x2﹣9是一元二次方程,符合题意;⑤x2﹣y2=3是二元二次方程,不符合题意意.故选:A.【变式1-3】(2021秋•义马市期中)下列方程:①y2+2x=0;②x2=0;③(x2﹣1)2=1;④3y2﹣2y=﹣1;⑤2x2﹣5xy+3y2=0;⑥ax2+bx+c=0(a,b,c是常数);⑦1x2+1x−2=0;⑧(x+1)(x﹣1)=x2﹣1.其中属于一元二次方程的有( )个.A.2B.3C.4D.6【分析】只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.【解答】解:①y2+2x=0含有两个未知数,不是一元二次方程;②x2=0是一元二次方程;③(x2﹣1)2=1,未知数的最高次数是4次,不是一元二次方程;④3y2﹣2y=﹣1是一元二次方程;⑤2x2﹣5xy+3y2=0含有两个未知数,不是一元二次方程;⑥ax2+bx+c=0(a,b,c是常数),当a=0时,不是一元二次方程;⑦1x2+1x−2=0是分式方程;⑧(x+1)(x﹣1)=x2﹣1,整理后不含未知数,不是一元二次方程.所以属于一元二次方程的有②④,共2个.故选:A.【题型2 由一元二次方程的定义求字母的取值范围】【例2】(2021秋•龙岗区校级期末)关于x的方程(a2+1)x2+2ax﹣6=0是一元二次方程,则a的取值范围是( )A.a≠±1B.a≠0C.a为任何实数D.不存在【分析】直接利用一元二次方程的定义分析得出答案.【解答】解:∵关于x的方程(a2+1)x2+2ax﹣6=0是一元二次方程,可得a2+1不可能为0,∴a为任何实数.故选:C.【变式2-1】(2021秋•河口县期末)已知(m﹣2)x n﹣3nx+2=0是关于x的一元二次方程,则( )A.m≠0,n=2B.m≠2,n=2C.m≠0,n=3D.m≠2,n≠0【分析】根据一元二次方程的定义列出关于m,n的方程,求出m,n的值即可.【解答】解:∵(m﹣2)x n﹣3nx+2=0是关于x的一元二次方程,∴m﹣2≠0,n=2,解得m≠2,n=2.故选:B.【变式2-2】(2021秋•龙江县期末)若方程ax2+2x﹣1=2x2是关于x的一元二次方程,则a的取值范围是 .【分析】先化成一元二次方程的一般形式,根据一元二次方程的定义得出a﹣2≠0,求出即可.【解答】解:ax2+2x﹣1=2x2,(a﹣2)x2+2x﹣1=0,∵关于x的方程ax2+2x﹣1=2x2是一元二次方程,∴a﹣2≠0,即a≠2,故答案为:a≠2.【变式2-3】(2022•湘桥区一模)若方程(m﹣1)x2+x=1是关于x的一元二次方程,则m的取值范围是 .【分析】直接利用一元二次方程的定义得出关于m的不等式,进而得出答案.【解答】解:∵方程(m﹣1)x2x=1是关于x的一元二次方程,∴m≥0且m﹣1≠0,∴m≥0且m≠1,故答案为:m≥0且m≠1.【题型3 由一元二次方程的定义求字母的值】【例3】(2022春•琅琊区校级月考)若(m+3)x|m|﹣1﹣(m﹣3)x﹣5=0是关于x的一元二次方程,则m 的值为( )A.3B.﹣3C.±3D.±2【分析】根据一元二次方程的定义即可求出答案.【解答】解:由题意可知:|m|−1=2 m+3≠0,解得:m=3,故选:A.【变式3-1】(2021秋•望城区期末)若关于x的方程(m−2)x m2−2+4x−7=0是一元二次方程,则m的值为( )A.m≠2B.m=±2C.m=﹣2D.m=2【分析】只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.【解答】解:∵关于x的方程(m−2)x m2−2+4x−7=0是一元二次方程,∴m−2≠0m2−2=2,解得:m=﹣2.故选:C.【变式3-2】(2021秋•太平区期末)已知关于x的方程(a﹣3)x|a﹣1|+x﹣1=0是一元二次方程,则a的值是( )A.﹣1B.2C.﹣1或3D.3【分析】根据一元二次方程的定义得出a﹣3≠0且|a﹣1|=2,再求出a即可.【解答】解:∵关于x的方程(a﹣3)x|a﹣1|+x﹣1=0是一元二次方程,∴a﹣3≠0且|a﹣1|=2,解得:a=﹣1,故选:A.【变式3-3】(2022•张家港市一模)已知x=1是关于x的一元二次方程(m+2)x m2−2−3x−2a=0的解,则m﹣1+a的值为 .【分析】根据一元二次方程的定义可得m的值,再将x=1代入原方程即可得出a的值,然后代入所求式子计算即可.【解答】解:由题意得:m+2≠0m2−2=2,解得m=2,故关于x的一元二次方程为4x2﹣3x﹣2a=0,因为x=1是关于x的一元二次方程(m+2)x m2−2−3x−2a=0的解,所以4﹣3﹣2a=0,解得a=1 2,所以m﹣1+a=2−1+12=12+12=1.故答案为:1.【知识点2 一元二次方程的一般形式】一般地,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a,b,c是常数,a≠0).这项.【题型4 一元二次方程的一般形式】【例4】(2021秋•双峰县期末)将一元二次方程2x2+3x=1化成一般形式时,它的二次项、一次项系数和常数项分别为( )A.2x2,﹣3,1B.2x2,3,﹣1C.﹣2x2,﹣3,﹣1D.﹣2x2,3,1【分析】根据一元二次方程的一般形式,ax2+bx+c=0(a,b,c是常数,a≠0)判断即可.【解答】解:将一元二次方程2x2+3x=1化成一般形式为:2x2+3x﹣1=0,∴它的二次项、一次项系数和常数项分别为:2x2,3,﹣1,故选:B.【变式4-1】(2021秋•黔西南州期末)若(1﹣m)x m2+1+3mx﹣2=0是关于x的一元二次方程,则该方程的一次项系数是( )A.﹣1B.±1C.﹣3D.±3【分析】先根据一元二次方程的定义求m,再求系数.【解答】解:由题意得:1−m≠0 m2+1=2解得:m=﹣1.∴该方程的一次项系数为:3m=﹣3.故选:C.【变式4-2】(2021春•花山区校级月考)一元二次方程2x2﹣(a+1)x=x(x﹣1)﹣1化成一般形式后,二次项系数为1,一次项系数为﹣1,则a的值为( )A.﹣1B.1C.﹣2D.2【分析】方程整理为一般系数,根据二次项系数为1,一次项系数为﹣1,即可确定出a的值.【解答】解:方程整理得:x2﹣ax+1=0,∵结果一次项系数为﹣1,∴﹣a=﹣1,即a=1.故选:B.【变式4-3】(2021秋•宝山区校级月考)若m2x2﹣(2x+1)2+(n﹣3)x+5=0是关于x的一元二次方程,且不含x的一次项,则m ,n= .【分析】先将已知方程整理为一元二次方程的一般形式,然后根据一元二次方程的定义得到:二次项系数不为0;结合不含x的一次项知,一次项系数为0.【解答】解:由m2x2﹣(2x+1)2+(n﹣3)x+5=0知,(m2﹣4)x2+(n﹣7)x+4=0.根据题意知,m2﹣4≠0,n﹣7=0,解得m≠±2,n=7.故答案是:≠±2,7.【知识点3 一元二次方程的解】【题型5 由一元二次方程的解求字母的值】【例5】(2022春•温州期中)若关于x的方程x2+2ax+4a=0有一个根为﹣3,则a的值是( )A.9B.4.5C.3D.﹣3【分析】把x=﹣3代入方程得9﹣6a+4a=0,然后解关于a的一次方程即可.【解答】解:把x=﹣3代入方程得9﹣6a+4a=0,解得a=4.5.故选:B.【变式5-1】(2021秋•五常市期末)若方程8x2﹣(k﹣1)x﹣k﹣7=0的一个根为x=0,则k的值是( )A.7B.316C.4D.﹣7【分析】把x=0代入方程中,就可以求出k的值.【解答】解:∵方程8x2﹣(k﹣1)x﹣k﹣7=0的一个根为0,∴把x=0代入此方程,有:﹣k﹣7=0,∴k=﹣7.故选:D.【变式5-2】(2021秋•海淀区校级期末)若一元二次方程(k﹣1)x2+3x+k2﹣1=0有一个解为x=0,则k 为( )A.±1B.1C.﹣1D.0【分析】把x=0代入方程(k﹣1)x2+3x+k2﹣1=0得方程k2﹣1=0,解关于k的方程,然后利用一元二次方程的定义确定k的值.【解答】解:把x=0代入方程(k﹣1)x2+3x+k2﹣1=0得方程k2﹣1=0,解得k1=1,k2=﹣1,而k﹣1≠0,所以k=﹣1.故选:C.【变式5-3】(2021秋•封丘县期末)关于x的一元二次方程x2+(k﹣2)x+k2﹣1=0的一个根是0,则k的值是( )A.1B.﹣1C.±1D.2【分析】把x=0代入方程计算即可求出k的值.【解答】解:把x=0代入方程得:k2﹣1=0,解得:k=1或k=﹣1,故选:C.【题型6 由一元二次方程的解求代数式的值】【例6】(2021秋•开州区期末)已知a是方程2x2﹣x﹣3=0的一个解,则6a2﹣3a的值为 9 .【分析】把x=a代入方程求得a2﹣a的值,然后根据6a2﹣3a=3(2a2﹣a)即可求解.【解答】解:把x=a代入方程得:2a2﹣a﹣3=0,则2a2﹣a=3,则6a2﹣3a=3(2a2﹣a)=9.故答案是:9.【变式6-1】(2021秋•莲池区期末)若x=﹣1是关于x的一元二次方程ax2+bx﹣1=0的一个根,则2022﹣2a+2b的值为 .【分析】把x=﹣1代入方程ax2+bx﹣1=0(a≠0)得a﹣b=1,再把2022﹣2a+2b变形为2022﹣2(a﹣b),然后利用整体代入的方法计算.【解答】解:把x=﹣1代入方程ax2+bx﹣1=0(a≠0)得a﹣b﹣1=0,∴a﹣b=1,∴2022﹣2a+2b=2022﹣2(a﹣b)=2022﹣2×1=2022﹣2=2020.故答案为:2020.【变式6-2】(2021秋•盱眙县期末)若a是方程3x2﹣4x﹣3=0的一个根,则代数式a2−43a+6的值为 .【分析】根据方程解的定义得到3a2﹣4a﹣3=0,变形得到a2−43a=1,然后利用整体代入的方法计算.【解答】解:根据题意得3a2﹣4a﹣6=0,∴a2−43a=1,∴a2−43a+6=1+6=7.故答案为:7.【变式6-3】(2022•桂林模拟)已知m是一元二次方程x2﹣4x+2=0的一个根,则8m﹣2m2+2的值是( )A.4B.6C.8D.10【分析】先利用一元二次方程根的定义得到m2﹣4m=﹣2,再把8m﹣2m2+2变形为﹣2(m2﹣4m)+2,然后利用整体代入的方法计算.【解答】解:∵m是一元二次方程x2﹣4x+2=0的一个根,∴m2﹣4m+2=0,∴m2﹣4m=﹣2,∴8m﹣2m2+2=﹣2(m2﹣4m)+2=﹣2×(﹣2)+2=6.故选:B.【题型7 由一元二次方程的解求代数式的值(降次)】【例7】(2022•遂宁)已知m为方程x2+3x﹣2022=0的根,那么m3+2m2﹣2025m+2022的值为( )A.﹣2022B.0C.2022D.4044【分析】将方程的根代入方程,化简得m2+3m=2022,将代数式变形,整体代入求值即可.【解答】解:∵m为方程x2+3x﹣2022=0的根,∴m2+3m﹣2022=0,∴m2+3m=2022,∴原式=m3+3m2﹣m2﹣3m﹣2022m+2022=m(m2+3m)﹣(m2+3m)﹣2022m+2022=2022m﹣2022﹣2022m+2022=0.故选:B.【变式7-1】(2022春•庐阳区校级期中)若a是方程x2﹣x﹣1=0的一个根,则﹣a3+2a+2021的值为( )A.2020B.﹣2020C.2021D.﹣2021【分析】先利用一元二次方程解的定义得到a2=a+1,再用a表示a3得到a3=2a+1,然后利用整体代入的方法计算.【解答】解:∵a是方程x2﹣x﹣1=0的一个根,∴a2﹣a﹣1=0,∴a2=a+1,∴a3=a(a+1)=a2+a=a+1+a=2a+1,∴﹣a3+2a+2021=﹣(2a+1)+2a+2021=﹣2a﹣1+2a+2021=2020.故选:A.【变式7-2】(2021秋•泉州期末)已知实数a是一元二次方程x2+x﹣8=0的根,则a4+a3+8a﹣1的值为( )A.62B.63C.64D.65【分析】把方程的解代入方程得到关于a的等式,然后利用等式对代数式进行化简求值.【解答】解:∵a是一元二次方程x2+x﹣8=0的一个根,∴a2+a﹣8=0∴a2+a=8,∴a4+a3+8a﹣1=a2(a2+a)+8a﹣1=8a2+8a﹣1=64﹣1=63,故选:B.【变式7-3】(2021秋•石鼓区期末)已知a是方程x2﹣x﹣1=0的一个根,则a4﹣3a﹣2的值为 .【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.【解答】解:把x=a代入方程可得,a2﹣a﹣1=0,即a2=a+1,∴a4﹣3a﹣2=(a2)2﹣3a﹣2=(a+1)2﹣3a﹣2=a2﹣a﹣1=0.【题型8 已知一元二次方程的根求另一方程的根】【例8】(2021秋•曲靖期末)已知关于x的一元二次方程12022x2+3=2x2+b的根为±3,那么关于y的一元二次方程12022(y2+1)+3=2(y2+1)+b的解y= .【分析】根据关于x的一元二次方程12022x2+3=2x2+b的两个根为±3,可得y2+1=x2=9,于是得到结论.【解答】解:∵关于x 的一元二次方程12022x 2+3=2x 2+b 的两个根为±3,∴关于y 的一元二次方程12022(y 2+1)+3=2(y 2+1)+b 可得y 2+1=x 2=9,解得y =﹣故答案为:﹣【变式8-1】(2022•启东市二模)若关于x 的一元二次方程ax 2+2bx ﹣2=0的一个根是x =2022,则一元二次方程a 2(x +2)2+bx +2b =1必有一根为( )A .2020B .2021C .2022D .2023【分析】一元二次方程a 2(x +2)2+bx +2b =1变形为a (x +2)2+2b (x +2)﹣2=0,由于关于x 的一元二次方程ax 2+2bx ﹣2=0的一个根是x =2022,则关于(x +2)的一元二次方程a (x +2)2+2b (x +2)﹣2=0的一个根是x =2022,于是可判断一元二次方程a 2(x +2)2+bx +2b =1必有一根为2020.【解答】解:一元二次方程a 2(x +2)2+bx +2b =1变形为a (x +2)2+2b (x +2)﹣2=0,所以此方程可看作关于(x +2)的一元二次方程,因为关于x 的一元二次方程ax 2+2bx ﹣2=0的一个根是x =2022,所以关于(x +2)的一元二次方程a (x +2)2+2b (x +2)﹣2=0的一个根是x =2022,即x +2=2022,解得x =2020,所以一元二次方程a 2(x +2)2+bx +2b =1必有一根为2020.故选:A .【变式8-2】(2022春•淄川区期中)若关于x 的一元二次方程ax 2+bx +5=0(a ≠0)有一根为2022,则方程a (x +1)2+b (x +1)=﹣5必有根为( )A .2022B .2020C .2019D .2021【分析】对于一元二次方程a (x +1)2+b (x +1)=﹣5,设t =x +1得到at 2+bt +5=0,利用at 2+bt +5=0有一个根为t =2022得到x +1=2022,从而可判断一元二次方程a (x +1)2+b (x +1)=﹣5必有一根为x =2021.【解答】解:由a (x +1)2+b (x +1)=﹣5得到a (x +1)2+b (x +1)+5=0,对于一元二次方程a (x +1)2+b (x +1)=﹣5,设t=x+1,所以at2+bt+5=0,而关于x的一元二次方程ax2+bx+5=0(a≠0)有一根为x=2022,所以at2+bt+5=0有一个根为t=2022,则x+1=2022,解得x=2021,所以一元二次方程a(x+1)2+b(x+1)=﹣5有一根为x=2021.故选:D.【变式8-3】(2021秋•泉州期末)若关于x的一元二次方程ax2+bx﹣3=0(a≠0)有一个根为x=2021,则方程a(x﹣1)2+bx﹣3=b必有一根为( )A.2019B.2020C.2021D.2022【分析】对于一元二次方程a(x﹣1)2+b(x﹣1)﹣3=0,设t=x﹣1得到at2+bt﹣3=0,利用at2+bt﹣3=0有一个根为t=2021得到x﹣1=2021,从而可判断一元二次方程a(x﹣1)2+bx﹣3=b必有一根为x =2022.【解答】解:对于一元二次方程a(x﹣1)2+bx﹣3=b即a(x﹣1)2+b(x﹣1)﹣3=0,设t=x﹣1,所以at2+bt﹣3=0,而关于x的一元二次方程ax2+bx﹣3=0(a≠0)有一根为x=2021,所以at2+bt﹣3=0有一个根为t=2021,则x﹣1=2021,解得x=2022,所以一元二次方程a(x﹣1)2+bx﹣3=b必有一根为x=2022.故选:D.。
九年级数学上册《一元二次方程》全章复习巩固(教师版)知识点+详细解析
《一元二次方程》全章复习—知识讲解【学习目标】1。
了解一元二次方程及有关概念;2.掌握通过配方法、公式法、因式分解法降次──解一元二次方程;3。
掌握依据实际问题建立一元二次方程的数学模型的方法.【知识网络】【要点梳理】一、一元二次方程的有关概念1。
一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.2。
一元二次方程的一般式:3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根。
注:判断一个方程是否为一元二次方程时,首先观察其是否是整式方程,否则一定不是一元二次方程;其次再将整式方程整理化简使方程的右边为0,看是否具备另两个条件:①一个未知数;②未知数的最高次数为2。
对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0.二、一元二次方程的解法 1.基本思想一元二次方程−−−→降次一元一次方程 2.基本解法直接开平方法、配方法、公式法、因式分解法.三、一元二次方程根的判别式及根与系数的关系 1.一元二次方程根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆"来表示,即ac b 42-=∆ (1)当△〉0时,一元二次方程有2个不相等的实数根; (2)当△=0时,一元二次方程有2个相等的实数根; (3)当△〈0时,一元二次方程没有实数根。
2。
一元二次方程的根与系数的关系如果一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,, 那么ab x x -=+21,a c x x =21.注意它的使用条件为a ≠0, Δ≥0.四、列一元二次方程解应用题1。
利用方程解决实际问题的关键是寻找等量关系。
2。
解决应用题的一般步骤:审 (审题目,分清已知量、未知量、等量关系等); 设 (设未知数,有时会用未知数表示相关的量); 列 (根据题目中的等量关系,列出方程);解 (解方程,注意分式方程需检验,将所求量表示清晰); 验 (检验方程的解能否保证实际问题有意义); 答 (写出答案,切忌答非所问)。
一元二次方程-2023年新九年级数学 (苏科版)(解析版)
一元二次方程理解一元二次方程的概念和一元二次方程根的意义,会把一元二次方程化为一般形式;一、一元二次方程的有关概念1.一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.要点诠释:识别一元二次方程必须抓住三个条件:(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是2.不满足其中任何一个条件的方程都不是一元二次方程,缺一不可.2.一元二次方程的一般形式:一般地,任何一个关于x的一元二次方程,都能化成形如,这种形式叫做一元二次方程的一般形式.其中是二次项,是二次项系数;bx是一次项,b是一次项系数;c是常数项.要点诠释:(1)只有当时,方程才是一元二次方程;(2)在求各项系数时,应把一元二次方程化成一般形式,指明一元二次方程各项系数时注意不要漏掉前面的性质符号.3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.4.一元二次方程根的重要结论(1)若a+b+c=0,则一元二次方程必有一根x=1;反之也成立,即若x=1是一元二次方程的一个根,则a+b+c=0.(2)若a-b+c=0,则一元二次方程必有一根x=-1;反之也成立,即若x=-1是一元二次方程的一个根,则a-b+c=0.(3)若一元二次方程有一个根x=0,则c=0;反之也成立,若c=0,则一元二次方程必有一根为0.类型一、关于一元二次方程的判定例1.判定下列方程是不是一元二次方程:(1);(2).【答案】(1)是;(2)不是.【解析】(1)整理原方程,得,所以.其中,二次项的系数,所以原方程是一元二次方程.(2)整理原方程,得,所以.其中,二次项的系数为,所以原方程不是一元二次方程.【总结升华】识别一元二次方程必须抓住三个条件:(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是2.不满足其中任何一个条件的方程都不是一元二次方程,缺一不可. 例2.判定下列方程是否关于x 的一元二次方程:(1)a 2(x 2-1)+x(2x+a)=3x+a ; (2)m 2(x 2+m)+2x=x(x+2m)-1. 【答案与解析】(1)经整理,得它的一般形式(a2+2)x2+(a-3)x-a(a+1)=0,其中,由于对任何实数a 都有a2≥0,于是都有a2+2>0,由此可知a2+2≠0,所以可以判定: 对任何实数a ,它都是一个一元二次方程. (2)经整理,得它的一般形式 (m2-1)x2+(2-2m)x+(m3+1)=0,其中,当m ≠1且m ≠-1时,有m2-1≠0,它是一个一元二次方程;当m=1时方程不存在, 当m=-1时,方程化为4x=0,它们都不是一元二次方程.【总结升华】对于含有参数的一元二次方程,要十分注意二次项系数的取值范围,在作为一元二次方程进行研究讨论时,必须确定对参数的限制条件.如在第(2)题,对参数的限定条件是m ≠±1.例如,一个关于x 的方程,若整理为(m-4)x2+mx-3=0的形式,仅当m-4≠0,即m ≠4时,才是一元二次方程(显然,当m=4时,它只是一个一元一次方程4x-3=0).又如,当我们说:“关于x 的一元二次方程(a-1)x2+(2a+1)x+a2-1=0……”时,实际上就给出了条件“a-1≠0”,也就是存在一个条件“a ≠1”.由于这个条件没有直接注明,而是隐含在其他的条件之中,所以称它为“隐含条件”. 【变式】判断下列各式哪些是一元二次方程. ①21x x ++;②2960x x −=;③2102y =;④215402x x −+=;⑤ 2230x xy y +−=;⑥ 232y =;⑦ 2(1)(1)x x x +−=. 【答案】②③⑥.【解析】①21x x ++不是方程;④215402x x −+=不是整式方程;⑤2230x xy y +−=含有2个未知数,不是一元方程;⑦ 2(1)(1)x x x +−=化简后没有二次项,不是2次方程. ②③⑥符合一元二次方程的定义.类型二、一元二次方程的一般形式、各项系数的确定例3.把下列方程中的各项系数化为整数,二次项系数化为正数,并求出各项的系数:(1)-3x 2-4x+2=0; (2).【答案与解析】(1)两边都乘-1,就得到方程 3x2+4x-2=0.各项的系数分别是: a=3,b=4,c=-2. (2)两边同乘-12,得到整数系数方程 6x2-20x+9=0.各项的系数分别是:.【总结升华】一般地,常根据等式的性质把二次项的系数是负数的一元二次方程调整为二次项系数是正数的一元二次方程;把分数系数的一元二次方程调整为整数系数的一元二次方程.值得注意的是,确定各项的系数时,不应忘记系数的符号,如(1)题中c=-2不能写为c=2,(2)题中不能写为.例4. 已知关于y 的一元二次方程m 2(y 2+m)-3my=y(8y-1)+1,求出它各项的系数,并指出参数m 的取值范围. 【答案与解析】将原方程整理为一般形式,得(m2-8)y2-(3m-1)y+m3-1=0,由于已知条件已指出它是一个一元二次方程,所以存在一个隐含条件 m2-8≠0,即 m ≠±.可知它的各项系数分别是 a=m2-8(m ≠±),b=-(3m-1),c=m3-1.参数m 的取值范围是不等于±的一切实数.【总结升华】在含参数的方程中,要认定哪个字母表示未知数,哪个字母是参数,才能正确处理有关的问题.【变式1】将下列方程化为一元二次方程一般形式,并指出二次项系数、一次项系数和常数项: (1)2352x x =−; (2)(1)(1)2a x x x +−=−.【答案】(1)235+2=0x x −,二次项系数是3、一次项系数是-5、常数项是2.(2)(1)(1)2a x x x +−=−化为220,ax x a +−−=二次项系数是a 、一次项系数是1、常数项是-a-2.【变式2】关于x 的方程的一次项系数是-1,则a .【答案】原方程化简为x2-ax+1=0,则-a=-1,a=1.类型三、一元二次方程的解(根)例5.若0是关于x 的方程()2223280m x x m m −+++−=的解,求实数m 的值,并讨论此方程解的情况.【思路点拨】根据一元二次方程解的性质,直接求出m 的值,根据若是一元二次方程时,注意二次项系数不为0,再利用根的判别式求出即可. 【答案与解析】解:∵0是关于x 的方程()2223280m x x m m −+++−=的解,∴2280m m +−=∴24m m ==−或 ①当20m −≠ ∴4m =−∴原方程为:2630x x −+=2490b ac =−=>∴此方程有两个不相等的根.2630x x −+=()3210x x −−=解得:00.5x =或 ②当2m = ∴30x = ∴0x =【总结升华】此题主要考查了一元二次方程的解以及根的判别式,熟练记忆根的判别式公式是解决问题的关键.例6.已知关于x 的方程(m ﹣1)x 2+5x+m 2﹣3m+2=0的常数项为0,(1)求m 的值; (2)求方程的解. 【答案与解析】解:(1)∵关于x 的方程(m ﹣1)x2+5x+m2﹣3m+2=0的常数项为0, ∴m2﹣3m+2=0, 解得:m1=1,m2=2, ∴m 的值为1或2;(2)当m=2时,代入(m ﹣1)x2+5x+m2﹣3m+2=0得出: x2+5x=0 x (x+5)=0,解得:x1=0,x2=﹣5. 当m=1时,5x=0, 解得x=0.【总结升华】此题是一元一次方程与一元二次方程的解法的小综合,注意本题中说的是“方程”,而不是“一元二次方程”. 【变式】(1)x=1是的根,则a= .(2)已知关于x 的一元二次方程 22(1)210m x x m −++−=有一个根是0,求m 的值.【答案】(1)当x=1时,1-a+7=0,解得a=8.(2)由题意得一、单选题【答案】D【分析】根据一元二次方程的定义进行判断即可.【详解】解:A 、当0a =时,该方程不是关于x 的一元二次方程,故A 不符合题意;B 、方程整理后不含有二次项,该方程不是关于x 的一元二次方程,故B 不符合题意;C 、该方程属于分式方程,不是关于x 的一元二次方程,故C 不符合题意;D 、符合一元二次方程的定义,故D 符合题意. 故选:D .【点睛】本题主要考查了一元二次方程的定义.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是()200ax bx c a ++=≠.特别要注意0a ≠的条件.这是在做题过程中容易忽视的知识点.A .解的整数部分是3,十分位是1B .解的整数部分是3,十分位是2C .解的整数部分是3,十分位是3D .解的整数部分是3,十分位是4【答案】B【分析】通过观察表格可得20x px q ++=时,3.2 3.3x <<,即可求解.【详解】解:由表格可知,当 3.2x =时,20x px q ++<,当 3.3x =时,20x px q ++>,∴20x px q ++=时,3.2 3.3x <<,∴解的整数部分是3,十分位是2. 故选:B .【点睛】本题考查一元二次方程的解,通过观察所给的信息,确定一元二次方程解的范围是解题的关键. 3.(2022秋·江苏徐州·九年级校考期末)关于x 的一元二次方程()22110a x x a −++−=的一个根是0,则a 的值是( ) A .1− B .1C .1或1−D .1−或0【答案】A【分析】根据方程是一元二次方程,可得10a −≠,将0x =代入解析式,求出a 的值即可.【详解】解:∵关于x 的一元二次方程()22110a x x a −++−=的一个根是0,∴10a −≠,210a −=,∴1a =−; 故选A .【点睛】本题考查一元二次方程的定义和一元二次方程的解.熟练掌握一元二次方程二次项系数不为0,使等式成立的未知数的值是方程的解,是解题的关键. 二、填空题4.(2023·江苏扬州·统考一模)若关于x 的方程220x mx =--的一个根为3,则m 的值为_______. 【答案】73【分析】根据题意把3代入方程,得到关于m 的方程,解方程即可得.【详解】解:依题意得23320m =--,解得:73m =,故答案为:73.5.(2023春·江苏南京·九年级统考期中)若m 是方程210x x +−=的一个根,则代数式22023m m −−的值为________. 【答案】2022【分析】根据m 是方程210x x +−=的一个根,得到210m m +−=,进而得到21m m +=,代入代数式计算即可得解.【详解】解:∵m 是方程210x x +−=的一个根,∴210m m +−=,∴21m m +=,∴()2220232023202312022m m m m −−=−+=−=;故答案为:2022.【点睛】本题考查的是一元二次方程的解,熟练掌握方程的解是使方程成立的未知数的值,是解题的关键.【答案】4−【分析】根据一元二次方程的定义得出40a −≠且22a −=,再求出a 即可.【详解】解:∵关于x 的方程()24 320a a x x −−+−=是一元二次方程,∴40a −≠且22a −=, 解得:4a =−. 故答案为:4−.【点睛】本题考查了一元二次方程的定义和绝对值,能根据一元二次方程的定义得出40a −≠且22a −=是解此题的关键. 三、解答题【答案】212a a +,9.【分析】先计算括号内的分式的减法,再把除法化为乘法运算,约分后可得结果,再把2290a a +−=化为229a a −=,再整体代入计算即可.【详解】解:22441(2)44a a a a ⎛⎫+⋅−÷− ⎪−⎝⎭()()244412242a a a a a a +−=+−−()()()22412242a a a aa −=+−−()12a a =+212a a =+,∵2290a a +−=,∴229a a +=,∴原式19=.【点睛】本题考查的是分式的化简求值,一元二次方程的解的含义,掌握“分式的混合运算以及整体代入法求值”是解本题的关键.【答案】(1)②③ (2)74(3)5522⎛⎫− ⎪⎝⎭,【分析】(1)设两个不同的点P (m ,n )和Q (-n ,-m )是一对 “反换点”;①假设图象上存在“反换点”P Q 、,将P (m ,n ),Q (-n ,-m )坐标分别代入解析式,计算两等式是否有解,若有解,则图象存在反换点;(2)设(),3P a a −,则()3,Q a a −−,其中3a >,由题意得()()()22233362OPQa Sa a a −=−−−⨯−=,求出a的值,进而得到P 点坐标,然后代入ky x =中计算求解即可;(3)假设24y x x =−−图象上存在“反换点”P Q 、,则有2244n m m m n n ⎧=−−⎨=−⎩①②,①+②式得()()50m n m n ++−=,有50m n +−=即5n m =+,将5n m =+代入①中求解m 的值,n 的值,进而得到P Q 、的点坐标,计算两点的中点坐标即可.(1)解:设两个不同的点P (m ,n )和Q (-n ,-m )是一对 “反换点”,且m n ≠−即0m n +≠①假设2y x =−+图象上存在“反换点”P Q 、,将P (m ,n )代入2y x =−+,则有2n m =−+即2n m +=将Q (-n ,-m )代入2y x =−+,则有()2m n −=−−+即2n m +=−2n m +=与2n m +=−矛盾 ∴P (m ,n )和Q (-n ,-m )不能同时在2y x =−+图象上∴2y x =−+图象上不存在“反换点”故①不符合题意;②假设2y x =−图象上存在“反换点”P Q 、,将P (m ,n )代入2y x =−,则有2n m =− 即mn 2=− 将Q (-n ,-m )代入2y x =−,则有2m n −=−−即mn 2=− mn 2=−与mn 2=−相同 ∴P (m ,n )和Q (-n ,-m )均在2y x =−图象上 ∴2y x =−图象上存在“反换点” 故②符合题意; ③假设22y x =−图象上存在“反换点”P Q 、,将P (m ,n )代入22y x =−,则有22n m =−① 将Q (-n ,-m )代入22y x =−,则有()22m n −=−−即22m n =② 将①代入②中得()2222m m =⨯−即48m m = 解得12m =或0m =(舍去)∴存在,m n 使P (m ,n )和Q (-n ,-m )均在22y x =−图象上∴22y x =−图象上存在“反换点”故③符合题意;故答案为:②③.(2)解:设(),3P a a −,则()3,Q a a −−,其中3a >∴()()()22233362OPQ a S a a a −=−−−⨯−= 解得72a = 132a −= ∴71,22P ⎛⎫ ⎪⎝⎭ 将71,22P ⎛⎫ ⎪⎝⎭代入k y x =得1722k = 解得74k = ∴k 的值为74.(3)解:假设24y x x =−−图象上存在“反换点”P Q 、则有2244n m m m n n ⎧=−−⎨=−⎩①② ①+②式得2244n m m m n n +=−−+−()()50m n m n ++−=∴50m n +−=或0m n +=(舍去)5n m =+将5n m =+代入①中得2550m m ++=解得m =或m =当52m −=时,52n =,此时P ⎝⎭,Q ⎛ ⎝⎭,两点的中点坐标为55,22⎛⎫− ⎪⎝⎭;当m =时,n =,此时P ⎝⎭,Q ⎝⎭,两点的中点坐标为55,22⎛⎫− ⎪⎝⎭;∴存在“反换点”,线段中点坐标为55,22⎛⎫− ⎪⎝⎭.【点睛】本题考查了新定义下的实数运算,反比例函数与几何综合,解一元二次方程等知识.解题的关键在于理解题意并用适当的方法解方程.一、单选题 1.(2022秋·江苏连云港·九年级校考阶段练习)一元二次方程2323x x −=的二次项系数、一次项系数、常数项分别是( )A .3、2、3−B .3、2、3C .3、2−、3D .3、2−、3−【答案】D【分析】将一元二次方程2323x x −=化为一般形式即可求得结果. 【详解】解:将一元二次方程2323x x −=化为一般形式,得23230x x −−=,二次项系数为3,一次项系数为2−,常数项为3−.故选:D .【点睛】本题考查了一元二次方程的一般形式以及多项式的有关概念,解决问题的关键是将一元二次方程化为一般形式. 2.(2022秋·江苏无锡·九年级校考阶段练习)若关于x 的一元二次方程()2215320m x x m m −++−+=的常数项为0,则m =( )A .1B .2C .1或2D .0【答案】B【分析】根据一元二次方程成立的条件和常数项为0列出方程组,解方程组即可求解.【详解】若关于x 的一元二次方程()2215320m x x m m −++−+=的常数项为0,则232010m m m ⎧−+=⎨−≠⎩,解得2m =,故选:B .【点睛】本题考查了一元二次方程的一般形式和一元二次方程的含义,熟练掌握知识点是解题的关键.A . 1.073−B . 1.089−C . 1.117−D . 1.123− 【答案】C 【分析】根据表格中的数据,可判断代数式23x x −的值为4.61和4.56时,对应x 的值为−1.12和−1.11,观察原方程可理解为求代数式23x x −的值为4.6时,对应的x 的值,由此判断即可.【详解】解:∵x=−1.12时,23 4.61x x −=;x=−1.11时,23 4.56x x −=; ∴23 4.6x x −=时,对应x 应满足,∴原方程的近似解为:−1.117.故选C .【点睛】本题考查一元二次方程的近似解,理解表格中的数据,掌握求近似解的方法是解题关键.二、填空题4.(2022秋·江苏连云港·九年级校考阶段练习)若关于x 的一元二次方程()2100ax bx a +−=≠有一根为1x =,则一元二次方程()()21110a x b x −+−−=必有一根为______.【答案】2【分析】利用整体思想设1x t −=,得到方程210at bt +−=,再根据210(0)ax bx a +−=≠即可得到t 的值,最后得出结论.【详解】解:∵在2(1)(1)10−+−−=a x b x 中,设1x t −=∴210at bt +−=∵210(0)ax bx a +−=≠有一个根1x =∴在210at bt +−=中1t =∴即在2(1)(1)10−+−−=a x b x 中,11x −=∴2x =故答案为:2【点睛】本题考查了换元法解一元二次方程,利用整体思想解一元二次方程是解题的关键. 5.(2023春·江苏宿迁·九年级统考阶段练习)已知m 是方程2210x x +−=的一个根,则代数式2242021m m ++的值为_________【答案】2023【分析】由方程根的定义得到221m m +=,整体代入2242021m m ++即可得到答案.【详解】解:∵m 是方程2210x x +−=的一个根,∴2210m m +−=,∴221m m +=,∴()222420212220212120212023m m m m ++=++=⨯+=.故答案为:2023【点睛】此题考查了一元二次方程的解和代数式的值,熟练掌握一元二次方程解的定义是解题的关键. 6.(2023春·江苏南京·九年级校联考阶段练习)已知方程20x bx c ++=的两个根分别是2、1,则b c +=______.【答案】1−【分析】把1x =代入20x bx c ++=得出10b c ++=,整理即可得出答案.【详解】解:把1x =代入20x bx c ++=得:10b c ++=,∴1b c +=−.故答案为:1−.【点睛】本题主要考查了一元二次方程的解,解题的关键是熟练掌握方程解的定义,得出10b c ++=.三、解答题【答案】(1)m=1±(2)m=【分析】(1)根据方程中只含有一个未知数且未知数的最高次数是1次的整式方程是一元一次方程,可得答案;(2)根据一元二次方程的定义求解,一元二次方程必须满足两个条件:(1) 未知数的最高次数是2;(2) 二次项系数不为0;由这两个条件得到相应的关系式,再求解即可.【详解】(1)解:由题意,得m2﹣1=1,解得m=当m=m0,解得m当mm2﹣1=0,解得m=±1,m=±1时,该方程是一元一次方程,综上,当m=±1时,该方程是关于x的一元一次方程;(2)解:由题意,得m2﹣1=2且m,解得m当m x的一元二次方程.【点睛】本题利用了一元二次方程的概念,只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0 (且a≠0) ,特别要注意a≠0的条件,这是在做题过程中容易忽视的知识点.8.(2022秋·九年级课时练习)已知关于x的方程(m﹣1)x2+(m﹣2)x﹣2m+1=0.(1)m为何值时,此方程是一元一次方程?求出该一元一次方程的解;(2)m为何值时,此方程是一元二次方程?并写出这个一元二次方程的二次项系数、一次项系数和常数项.【答案】(1)m =1;x =﹣1(2)m≠1;二次项系数为m ﹣1,一次项系数为m ﹣2,常数项为﹣2m+1【分析】(1)当二次项系数为0,一次项系数不为0时,方程为一元一次方程,然后解方程即可;(2)当二次项系数不为0时,方程是一元二次方程.(1)解:若关于x 的方程(m ﹣1)x2+(m ﹣2)x ﹣2m+1=0是一元一次方程,则m ﹣1=0且m ﹣2≠0,解得m =1.∴原方程变形为﹣x ﹣2+1=0解得x =﹣1.(2)解:当m≠1时,关于x 的方程(m ﹣1)x2+(m ﹣2)x ﹣2m+1=0是一元二次方程,此时该方程的二次项系数为m ﹣1,一次项系数为m ﹣2,常数项为﹣2m+1.【点睛】本题考查了一元二次方程、一元一次方程的定义及解一元一次方程,难度不大.掌握一元一次方程及一元二次方程的相关定义是解决本题的关键.【答案】(1)0m ≥且1m ≠;(2)9【分析】(1)根据一元二次方程的定义和二次根式有意义的条件进行求解即可;(2)把1x =代入230ax bx ++=中得到3a b +=−,再由22()4()a b ab a b −+=+进行求解即可.【详解】解:(1)∵方程2(1)1m x −+=是关于x 的一元二次方程,∴100m m −≠⎧⎨≥⎩,∴0m ≥且1m ≠;(2)∵1x =是方程230ax bx ++=的一个根,∴30++=a b ,即3a b +=−∴222222()4242()9a b ab a ab b ab a ab b a b −+=−++=++=+=. 【点睛】本题主要考查了一元二次方程的定义,一元二次方程的解,二次根式有意义的条件,完全平方公式,解题的关键在于能够熟练掌握一元二次方程的相关知识.10.(2022秋·江苏·九年级阶段练习)已知m是方程x2﹣2x﹣3=0的一个根,求(m﹣2)2+(m+3)(m ﹣3)的值.【答案】1【分析】根据方程的根的定义,得到m2﹣2m﹣3=0,化简得m2﹣2m=3,再化简原式得原式=2(m2﹣2m)﹣5,将m2﹣2m=3代入原式,从而求得原式的值.【详解】解:∵m是方程x2﹣2x﹣3=0的一个根,∴m2﹣2m﹣3=0,∴m2﹣2m=3,∴(m﹣2)2+(m+3)(m﹣3)=m2﹣4m+4+m2﹣9=2(m2﹣2m)﹣5=2×3﹣5=1.【点睛】本题考查了方程的根的定义,整式的乘法,掌握相关定义并进行正确的运算是解题的关键,解题中注意整体代入法的运用.【答案】(1)±3(2)见解析【分析】(1)认真阅读题目,理解新运算的定义,然后计算即可;(2)先判断出(﹣3x2+6x﹣5)与(﹣x2+2x+3)大小关系,然后根据新运算定义计算.(1)解:∵x2*(x2﹣2)=30,x2≥(x2﹣2)∴x2+3(x2-2)=30,解得x=±3,故答案为:±3.(2)解:∵(﹣3x2+6x﹣5)-(﹣x2+2x+3)=﹣2x2+4x﹣8=﹣2(x﹣1)2﹣6<0,∴﹣3x2+6x ﹣5<﹣x2+2x+3,(﹣3x2+6x ﹣5)*(﹣x2+2x+3)=(﹣3x2+6x ﹣5)﹣3(﹣x2+2x+3)=﹣3x2+6x ﹣5+3x2﹣6x ﹣9=﹣14, ∵化简后的结果与x 取值无关,∴不论x 取何值,结果都应该等于﹣14,不可能等于40,∴小华说小明计算错误.【点睛】本题考查解一元二次方程的能力和新定义的应用,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键. 12.(2022秋·九年级课时练习)已知方程()22(a x)a x x a 8a 16−=++−+是关于x 的一元二次方程. (1)求a 的取值范围;(2)若该方程的一次项系数为0,求此方程的根.【答案】(1)a 1≠;(2)1x 4=−,2x 4=【分析】(1)先把方程化为一元二次方程的一般形式,再考虑二次项系数不为0即可;(2)把方程化为一般形式后,根据条件一次项系数为0列出方程,求出a 的值,再代入原方程,解出方程即可.【详解】解:()1化简,得()2a 1x 3ax 8a 160−+−+=.方程()22(a x)a x x a 8a 16−=++−+是关于x 的一元二次方程,得a 10−≠,解得a 1≠,当a 1≠时,方程()22(a x)a x x a 8a 16−=++−+是关于x 的一元二次方程;()2由一次项系数为零,得a 0=.则原方程是2x 160−+=,即2x 160−=.因式分解得()()x 4x 40+−=, 解得1x 4=−,2x 4=.【点睛】本题考查了一元二次方程的定义,一元二次方程的二次项的系数不能为0,一元二次方程不含一次项时可选用因式分解法解一元二次方程.13.(2022秋·九年级课时练习)当m 为何值时,关于x 的方程(m +1)x |m ﹣1|+(m ﹣3)x =5.(1)为一元二次方程;(2)为一元一次方程.【答案】(1)m =3(2)m =﹣1或m =0,m =2【分析】(1)根据一元二次方程的定义,可得答案;(2)根据一元一次方程的定义,可得答案.(1)由关于x 的方程(m+1)x|m ﹣1|+(m ﹣3)x =5一元二次方程,得1210m m ⎧−=⎨+≠⎩,解得m =3.当m =3时,关于x 的方程(m+1)x|m ﹣1|+(m ﹣3)x =5的一元二次方程.(2)由关于x 的方程(m+1)x|m ﹣1|+(m ﹣3)x =5的一元一次方程,得m+1=0或11130m m m ⎧−=⎨++−≠⎩,解得m =﹣1或m =0,m =2,当m =﹣1或m =0,m =2时,关于x 的方程(m+1)x|m ﹣1|+(m ﹣3)x =5的一元一次方程.【点睛】本题考查了一元二次方程的定义,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程的概念(知识点考点一站到底)知识点☀笔记1.一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。
2.一元二次方程概念三要素: (1)只含有一个未知数;(2)且未知数次数最高次数是2; (3)是整式方程。
3. 一元二次方程的一般形式:一般地,任何一个关于x 的一元二次方程,经过整理,•都能化成如下形式ax 2+bx+c=0(a ≠0)。
一个一元二次方程经过整理化成ax 2+bx+c=0(a ≠0)后,其中ax 2是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项。
考点☀梳理考点1:一元二次方程的概念必备知识点:只含有一个未知数,并且含有未知数的最高次数是2的整式方程叫一元二次方程。
解题指导:① 要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理。
如果能整理为 ax 2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程。
② 将方程化为一般形式:ax 2+bx+c=0时,应满足(a≠0) 题型1 判断一元二次方程例1.(2022·江苏泰州·八年级期末)下列方程中是一元二次方程的是( ) A .()2224x x -+= B .2220x x ++=C .2130x x+-= D .21xy +=【答案】B【分析】根据一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程解决此题.【详解】解:A .由(x -2)2+4=x 2,得-4x +8=0,那么(x -2)2+4=x 2不是一元二次方程,故不符合题意. B .根据一元二次方程的定义,x 2+2x +2=0是一元二次方程,故符合题意.C .根据一元二次方程的定义,x 2+1x-3=0不是一元二次方程,而是分式方程,故不符合题意.D .根据一元二次方程,xy +2=1不是一元二次方程,故不符合题意. 故选:B .【点睛】本题主要考查一元二次方程的定义,熟练掌握一元二次方程的定义是解决本题的关键. 例2.(2022·湖北十堰·八年级期末)下列是一元二次方程的是( ) A .ax 2+bx+c=0 B .x -2=x 2C .x 2-2=x (x -2)D .11x x+=【答案】B【分析】根据一元二次方程的概念,对选项进行判断即可一元二次方程定义,只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程.【详解】A. ax 2+bx+c=0,当a ≠0是一元二次方程,故该选项不正确,不符合题意; B. x -2=x 2是一元二次方程,故该选项正确,符合题意;C. x 2-2=x (x -2)整理得220x -=,不是一元二次方程,故该选项不正确,不符合题意;D.11x x+=,不是整式方程,故该选项不正确,不符合题意. 故选B .【点睛】本题考查了一元二次方程的定义,掌握定义是解题的关键. 练习1.(2022·湖北十堰·八年级期末)下列是一元二次方程的是( ) A .ax 2+bx+c=0 B .x -2=x 2 C .x 2-2=x (x -2)D .11x x+=【答案】B【分析】根据一元二次方程的概念,对选项进行判断即可一元二次方程定义,只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程.【详解】A. ax 2+bx+c=0,当a ≠0是一元二次方程,故该选项不正确,不符合题意; B. x -2=x 2是一元二次方程,故该选项正确,符合题意;C. x 2-2=x (x -2)整理得220x -=,不是一元二次方程,故该选项不正确,不符合题意;D.11x x+=,不是整式方程,故该选项不正确,不符合题意. 故选B .【点睛】本题考查了一元二次方程的定义,掌握定义是解题的关键.练习2.(2022·全国·九年级单元测试)下列方程一定是一元二次方程的是( ) A .20ax bx c ++= B .()222322x x x -=-C .3270x x -+=D .()2240x --=【答案】D【分析】根据一元二次方程的定义判断选择即可.【详解】A .当0a =时,原方程不是一元二次方程,故不符合题意; B .原方程整理得:34x -=-,不是一元二次方程,故不符合题意; C .3270x x -+=是一元三次方程,故不符合题意; D .符合一元二次方程的定义,故符合题意; 故选D .【点睛】本题考查判断一元二次方程.掌握一元二次方程的定义是解题关键.练习3.(2022·全国·九年级单元测试)下列方程中,是关于x 的一元二次方程的是( ) A .20ax bx c ++=B .210x y --=C .2210x x += D .()()121x x -+=【答案】D【分析】根据一元二次方程的定义逐个判断即可.【详解】解:A 、当a =0时,不是一元二次方程,故本选项不符合题意; B 、含有两个未知数,不是一元二次方程,故本不选项符合题意; C 、不是整式方程,不是一元二次方程,故本选项不符合题意; D 、原方程整理得x 2+x -3=0是一元二次方程,故本选项符合题意; 故选:D .【点睛】本题考查了一元二次方程的定义,能熟记一元二次方程的定义是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的最高次数是2的整式方程,叫一元二次方程. 题型2 利用一元二次方程的概念求参数例1.(2022·江苏·九年级课时练习)当m 为何值时,关于x 的方程(m +1)x |m ﹣1|+(m ﹣3)x =5. (1)为一元二次方程; (2)为一元一次方程. 【答案】(1)m =3 (2)m =﹣1或m =0,m =2【分析】(1)根据一元二次方程的定义,可得答案; (2)根据一元一次方程的定义,可得答案.(1)由关于x 的方程(m +1)x |m ﹣1|+(m ﹣3)x =5一元二次方程,得1210m m ⎧-=⎨+≠⎩,解得m =3.当m =3时,关于x 的方程(m +1)x |m ﹣1|+(m ﹣3)x =5的一元二次方程.(2)由关于x 的方程(m +1)x |m ﹣1|+(m ﹣3)x =5的一元一次方程,得m +1=0或11130m m m ⎧-=⎨++-≠⎩,解得m=﹣1或m =0,m =2,当m =﹣1或m =0,m =2时,关于x 的方程(m +1)x |m ﹣1|+(m ﹣3)x =5的一元一次方程.【点睛】本题考查了一元二次方程的定义,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.例2.(2022·全国·九年级专题练习)若方程(2)310m m x mx --=是关于的一元二次方程,求m 的值. 【答案】2m =-.【分析】根据一元二次方程的定义得出m 2=2,20m -≠再求出答案即可.【详解】根据题意得2220m m ⎧=⎪⎨-≠⎪⎩ 解得22m m ⎧=±⎪⎨≠⎪⎩所以当方程2(2)310m m x mx ---=是关于的一元二次方程时,2m =-.【点睛】本题考查了一元二次方程的定义,注意:只含有一个未知数,并且所含未知数的项的最高次数是2次的整式方程,叫一元二次方程.m 【答案】4【分析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.由这两个条件得到相应的关系式,再求解即可 【详解】解:由题意,得4022m m +≠⎧⎨-=⎩解|m|-2=2得m=±4, 当m=4时,m+4=8≠0,当m=-4时,m+4=0不符合题意的要舍去, ∴m 的值为4.【点睛】本题考查一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax 2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点. 32mx x x mx -=-+程,m 应满足什么条件? 【答案】1m ≠【分析】先把方程整理为一元二次方程的一般形式,根据二次项系数不为零可得答案. 【详解】解:2232mx x x mx -=-+,()()21320m x m x ∴-+--=结合题意得:10,m -≠ 1.m ∴≠【点睛】本题考查的是一元二次方程的定义,掌握一元二次方程的定义是解题的关键. 练习3.(2020·全国·九年级专题练习)当m 取何值时,方程1(1)320m m x x +-+-=是一元二次方程.【答案】m=-1【分析】根据一元二次方程的定义:只含有一个未知数,且未知数的最高次数是2的整式方程,列出方程求解即可.【详解】解:由题意可得:12m +=且m -1≠0, 解得:m=-1,∴当m=-1时,方程||1(1)320m m x x +-+-=是一元二次方程.【点睛】本题考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax 2+bx +c =0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.考点2:一元二次方程的一般式必备知识点:一元二次方程的一般形式是:()200ax bx c a ++=≠,其中2ax 是,a 叫二次项系数;bx 是一次项,b 叫一次项系数,c 是常数项。
解题指导:① “0a ≠”是一元二次方程的一般形式的一个重要组成部分;② 二次项系数、一次项系数及常数项都是方程在一般形式下定义的,所以求一元二次方程的各项系数时,必须先将方程化为一般形式。
题型3 一元二次方程的一般式例1.(2022·全国·九年级单元测试)将方程2810x x -=化为一元二次方程的一般形式,其中二次项系数为1,一次项系数、常数项分别是( ) A .8-,10- B .8-,10 C .8,10- D .8,10【答案】A【分析】要确定二次项系数,一次项系数,常数项,首先要把方程化成一般形式,根据一元二次方程的一般形式ax 2+bx +c =0(a ,b ,c 是常数,且a ≠0)即可解答. 【详解】将2810x x -=化为一般形式为:28100x x --=, ∴一次项系数、常数项分别是-8,-10 故选A【点睛】本题考查了一元二次方程的一般形式ax 2+bx +c =0(a ,b ,c 是常数,且a ≠0),特别要注意a ≠0,在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项,掌握a ,b ,c 分别叫二次项系数,一次项系数,常数项是解决本题的关键.例2.(2022·浙江温州·八年级期末)把一元二次方程()213x x x -=-化为一般形式,正确的是( ) A .2230x += B .22230x x --= C .2220x x -+= D .22230x x -+=【答案】D【分析】将方程整理为一般式即可. 【详解】解:()213x x x -=-, 223x x x -=-,即22230x x -+=. 故选:D .【点睛】本题考查一元二次方程的一般式,掌握一元二次方程的一般式的形式为20(a 0)++=≠ax bx c 是解题的关键.练习1.(2022·广西贺州·八年级期中)一元二次方程2216x x -=化成一般形式后,二次项系数,一次项系数,常数项分别是( ) A .2,1,6 B .2,-6,-1 C .2,-1,-6 D .2,-1,6【答案】B【分析】根据一元二次方程定义即可求解.【详解】解:将一元二次方程2216x x -=化成一般形式为22610x x --=, ∴二次项系数为2,一次项系数为6-,常数项为1-,故选:B .【点睛】本题考查对一元二次方程定义的理解,掌握根据一般式得到二次项系数,一次项系数,常数项是解决问题的关键.练习2.(2022·山东淄博·八年级期末)关于x 的一元二次方程22(3)95m x m x x -+=+化为一般形式后不含一次项,则m 的值为 . 【答案】-3【分析】先将一元二次方程化为一般式,再根据一元二次方程的定义和不含一次项得出30m -≠且290m -=,继而求解即可.【详解】解:22(3)95m x m x x -+=+,()223950m x m x x -+--=,()()223950m x m x -+--=,一元二次方程22(3)95m x m x x -+=+化为一般形式后不含一次项,30m ∴-≠且290m -=,解得:3m =-, 故答案为:3-.【点睛】本题考查了一元二次方程化为一般式和一元二次方程的定义,熟练掌握知识点是解题的关键. 练习3.(2022·全国·九年级单元测试)一元二次方程(2)(34)5x x +-=化为一般形式为______,它的二次项是_______,一次项是_______,常数项是_______. 【答案】 232130x x +-= 23x 2x 13-【分析】先利用多项式乘以多项式法则计算方程等号的左边,再移项、合并同类项即可化为一般形式,由此即可得出答案.【详解】解:()()2345x x +-=, 去括号,得268345x x x -+-=, 移项、合并同类项,得232130x x +-=,则一元二次方程()()2345x x +-=化为一般形式为232130x x +-=,它的二次项是23x ,一次项是2x ,常数项是13-,故答案为:232130x x +-=,23x ,2x ,13-.【点睛】本题主要考查了一元二次方程的一般形式,关键是掌握一元二次方程的一般形式是20ax bx c ++=(,,a b c 都是常数且0a ≠).在一般形式中2ax 是二次项,bx 是一次项,c 是常数项. 练习4.(2022·全国·九年级专题练习)已知关于x 的方程(2k +1)x 2+4kx +k -1=0,问: (1)k 为何值时,此方程是一元一次方程?(2)k 为何值时,此方程是一元二次方程?并写出这个一元二次方程的二次项系数、一次项系数及常数项.【答案】(1)12k =-;(2)12k ≠-,二次项系数为21k +,一次项系数为4k ,常数项为1k -【分析】(1)根据一元一次方程的定义,只含有一个未知数,且未知数的最高次为1的整式方程进行求解即可;(2)根据一元二次方程的定义,只含有一个未知数,且未知数的最高次为2的整式方程进行求解即可;【详解】解:(1)∴()221410k x kx k +++-=是关于x 的一元一次方程,∴21040k k +=⎧⎨≠⎩, 解得12k =-(2)∴()221410k x kx k +++-=是关于x 的一元二次方程,∴210k +≠即12k ≠-,∴这个一元二次方程的二次项系数为21k +,一次项系数为4k ,常数项为1k -.【点睛】本题主要考查了一元一次方程和一元二次方程的定义,一元二次方程的一般形式,解题的关键在于能够熟练掌握一元一次方程和一元二次方程的定义.一次项系数和常数项:方程 一般形式 二次项系数 一次项系数 常数项2351x x =- (2)(1)6x x +-= 2470x -=【答案】见解析【分析】根据一元二次方程的一般形式:ax 2+bx +c =0(a ,b ,c 是常数且a ≠0),ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项.【详解】解:把下列方程化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项.方程 一般形式 二次项系数 一次项系数 常数项2351x x =-23510x x -+= 3 5-1()()216x x +-=280x x +-= 1 1 8- 2470x -=2740x -=74-2且a ≠0)特别要注意a ≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项. 考点3:一元二次方程的解必备知识点:使一元二次方程左右两边相等的未知数的值,叫方程的解。