生物氧化的名词解释生物化学
生物化学 名词解释
糖代谢1、糖酵解:葡萄糖经一系列酶促反应步骤转变成丙酮酸的过程。
2、发酵:细菌和酵母等微生物在无氧条件下,酶促降解糖分子产生能量的过程。
3、巴斯德效应:巴斯德发现的有氧氧化抑制糖的无氧酵解的作用。
是有氧氧化产生了较多的A TP抑制了糖酵解的一些酶所致,有利于能源物质的经济利用。
4、底物水平磷酸化:物质在生物氧化过程中,常生成一些含有高能键的化合物,而这些化合物可直接偶联ATP或GTP的合成,这种产生ATP等高能分子的方式称为底物水平磷酸化。
5、糖原分解:从糖原解聚生成葡萄糖的细胞内分解过程,由糖原磷酸化酶等催化完成。
6、糖原合成:体内由葡萄糖合成糖原的过程。
7、磷酸解作用:通过在分子内引入一个无机磷酸,形成磷酸脂键而使原来键断裂的方式。
实际上引入了一个磷酰基。
8、糖异生作用:由简单的非糖前体转变为糖的过程。
糖异生不是糖酵解的简单逆转。
虽然由丙酮酸开始的糖异生利用了糖酵解中的七步进似平衡反应的逆反应,但还必需利用另外四步酵解中不曾出现的酶促反应,绕过酵解过程中不可逆的三个反应。
9、丙酮酸脱氢酶系:又称丙酮酸脱氢酶系,是一种催化丙酮酸脱羧反应的多酶复合体,由三种酶(丙酮酸脱氢酶、二氢硫辛酸转乙酰基酶、二氢硫辛酸脱氢酶)和六种辅助因子(焦磷酸硫胺素、硫辛酸、FAD、NAD、CoA和Mg离子)组成,在它们的协同作用下,使丙酮酸转变为乙酰CoA 和CO2。
10、柠檬酸循环:体内物质糖类、脂肪或氨基酸有氧氧化的主要过程。
通过生成的乙酰辅酶A与草酰乙酸缩合生成柠檬酸(三羧酸)开始,再通过一系列氧化步骤产生CO2、NADH及FADH2,最后仍生成草酰乙酸,进行再循环,从而为细胞提供了降解乙酰基而提供产生能量的基础。
由克雷布斯(Krebs)最先提出。
11、回补反应:补充生成某些成分以利于重要代谢通路的进行。
如三羧酸循环中通过多种方式生成草酰乙酸,以利于乙酰辅酶A进入三羧酸循环降解。
12、乙醛酸循环:异柠檬酸裂解酶的催化下,异柠檬酸被直接分解为乙醛酸,乙醛酸又在乙酰辅酶A参与下,由苹果酸合成酶催化生成苹果酸,苹果酸再氧化脱氢生成草酰乙酸的过程。
生物化学习题及答案_生物氧化
生物氧化(一)名词解释1.生物氧化(biological oxidation)2.呼吸链(respiratory chain)3.氧化磷酸化(oxidative phosphorylation)4.磷氧比P/O(P/O)5.底物水平磷酸化(substrate level phosphorylation)6.能荷(energy charge)(二) 填空题1.生物氧化有3种方式:_________、___________和__________ 。
2.生物氧化是氧化还原过程,在此过程中有_________、_________和________ 参与。
3.原核生物的呼吸链位于_________。
4,△G0'为负值是_________反应,可以_________进行。
5.△G0'与平衡常数的关系式为_________,当Keq=1时,△G0'为_________。
'值小,则电负性_________,供出电子的倾向_________。
6.生物分子的E7.生物体内高能化合物有_________、_________、_________、_________、_________、_________等类。
8.细胞色素a的辅基是_________与蛋白质以_________键结合。
9.在无氧条件下,呼吸链各传递体都处于_________状态。
10.NADH呼吸链中氧化磷酸化的偶联部位是_________、_________、_________。
11.磷酸甘油与苹果酸经穿梭后进人呼吸链氧化,其P/O比分别为_____和_____。
12.举出三种氧化磷酸化解偶联剂_________、_________、_________。
13.举出4种生物体内的天然抗氧化剂_________、_________、_________、_________。
14.举出两例生物细胞中氧化脱羧反应_________、_________。
15.生物氧化是_________在细胞中_________,同时产生_________的过程。
生物化学名词解释
结合水:是水在生物体和细胞内的存在状态之一,是吸附和结合在有机固体物质上的水,主要是依靠氢键与蛋白质的极性基(羧基和氨基)相结合形成的水胶体。
自由水:不被细胞内胶体颗粒或大分子所吸附、能自由移动、并起溶剂作用的水。
无机盐:无机化合物中盐类的统称。
大量元素:生物正常生长发育需要量较多的元素。
指含量占生物总重量万分之一以上的元素,微量元素:通常指生物有机体中含量小于0.01%的化学元素。
超微量元素:生物体里含量低于十万分之几的元素。
新陈代谢:生物体从环境摄取营养物转变为自身物质,同时将自身原有组成转变为废物排出到环境中的不断更新的过程。
异化:生物体在新陈代谢过程中,自身的组成物质发生分解,同时放出能量,这个过程叫做异化。
同化:是生物体代谢当中的一个重要过程,作用是把消化后的营养重新组合,形成有机物和贮存能量的过程。
底物:酶所作用和催化的化合物。
代谢途径:多种代谢反应相互连接起来,完成物质的分解或合成。
蛋白质系数:指蛋白质含量为氮含量的6.25倍。
必须氨基酸:体内合成的量不能满足机体需要,必须从食物中摄取的氨基酸。
蛋白质一级结构:指多肽中从N-端到C-端的氨基酸序列,包括二硫键的位置。
单体蛋白质:寡聚蛋白质:由两个以上、十个以下亚基或单体通过非共价连接缔合而成的蛋白质。
简单蛋白质:完全由氨基酸构成的蛋白质。
结构域:蛋白质或核酸分子中含有的、与特定功能相关的一些连续的或不连续的氨基酸或核苷酸残基。
蛋白原:蛋白质变性:是指蛋白质在某些物理和化学因素作用下其特定的空间构象被改变,从而导致其理化性质的改变和生物活性的丧失,这种现象称为蛋白质变性。
蛋白质激活:核酸熔点Tm值:就是DNA熔解温度,指把DNA的双螺旋结构降解一半时的温度。
不同序列的DNA,Tm值不同。
DNA中G-C含量越高,Tm值越高,成正比关系。
限制性内切酶:识别并切割特异的双链DNA序列的一种内切核酸酶。
核酸内切酶:在核酸水解酶中,为可水解分子链内部磷酸二酯键生成寡核苷酸的酶。
生物化学名词解释+英文解释
氨基酸的等电点:在一定的PH值条件下,氨基酸分子中所带的正电荷和负电荷数相同,即争电荷为零,此时溶液的PH值称为该氨基酸的等电点,以PI表示。
增色效应:核酸变性后在260NM处紫外吸收值增加的现象称为增色效应生物氧化:有机的物质在生物体细胞内,经过酶的催化氧化分解生成CO2,H2O并释放能量的过程糖原异生作用:指非糖物质(如丙酮酸,甘油,乳酸等)在肝脏中转变为葡萄糖或糖原的过程转录:在RNA聚合酶的催化下,以DNA为模板,按照其碱基顺序合成与其碱基互补的RNA过程。
蛋白质二级结构:指肽链中的主链借助氢键,有规则地卷曲折叠成沿一维方向具周期性的结构酶活性中心:酶分子中直接和底物结合,并和酶的催化作用直接有关的部位同工酶:能催化同一种化学反应,但其酶蛋白背身分子结构组成去有所不同的一种酶转氨基作用:一种α-氨基酸的氨基可以转移到α-酮酸上,从而生成相应的新的一分子α-酮酸和α-氨基酸半保留复制:当DNA复制时,秦代分子的两条链必须分开,每条多核苷链都作为通过碱基互补配对相互作用而生成互补链的模板从而使互补的子链能在每条亲链表面由酶促合成,结果产生两个相同的双螺旋DNA分子,每个都含有一天来自亲化分子的多核苷酸连,以及一条新合成的互补链,这种复制模式就叫半保留复制糖酵解:糖酵解又被称为EMP途径,其反生在细胞液中,因葡萄糖在机体内经过无氧分解生成乳酸的过程与酵母发酵的过程基本相同,被称为~维生素:是维持生物体正常生活所不可缺少的一类小分子化合物分子杂交:不同来源或不同种类生物分子间相互特异识别而发生的结合。
如核酸(DNA、RNA)之间、蛋白质分子之间、核酸与蛋白质分子之间、以及自组装单分子膜之间的特异性结合。
全酶:由蛋白质组分(即酶蛋白)和非蛋白质组分(一般为辅酶或激活物)组成的一种结合酶。
β-氧化:脂酰CoA进入线粒体基质后,在脂肪酸β-氧化酶系催化下进行氧化分解,由于氧化是在脂酰基的β-碳原子上的发生的,故称β-氧化米氏常数:在酶促反应中,某一给定底物的动力学常数,是由反应中每一步反应的速度常数所合成的。
(完整版)生物化学习题及答案_生物氧化
生物氧化(一)名词解释1.生物氧化(biological oxidation)2.呼吸链(respiratory chain)3.氧化磷酸化(oxidative phosphorylation)4.磷氧比P/O(P/O)5.底物水平磷酸化(substrate level phosphorylation)6.能荷(energy charge)(二) 填空题1.生物氧化有3种方式:_________、___________和__________ 。
2.生物氧化是氧化还原过程,在此过程中有_________、_________和________ 参与。
3.原核生物的呼吸链位于_________。
4,△G0'为负值是_________反应,可以_________进行。
5.△G0'与平衡常数的关系式为_________,当Keq=1时,△G0'为_________。
'值小,则电负性_________,供出电子的倾向_________。
6.生物分子的E7.生物体内高能化合物有_________、_________、_________、_________、_________、_________等类。
8.细胞色素a的辅基是_________与蛋白质以_________键结合。
9.在无氧条件下,呼吸链各传递体都处于_________状态。
10.NADH呼吸链中氧化磷酸化的偶联部位是_________、_________、_________。
11.磷酸甘油与苹果酸经穿梭后进人呼吸链氧化,其P/O比分别为_____和_____。
12.举出三种氧化磷酸化解偶联剂_________、_________、_________。
13.举出4种生物体内的天然抗氧化剂_________、_________、_________、_________。
14.举出两例生物细胞中氧化脱羧反应_________、_________。
15.生物氧化是_________在细胞中_________,同时产生_________的过程。
生物化学名词解释
增色效应(2): 当双螺旋DNA熔解(解链)时,260nm处紫外吸收增加的现象。
减色效应:DNA 在260nm 处的光密度比在DNA 分子中的各个碱基在260nm 处吸收的光密度减小, 这现象称为“减色效应”分子筛层析 : 分子筛层析又称为凝胶层析或凝胶过滤。
分子筛层析是利用有一定孔径范围的多孔凝胶作为固定相,. 对混合物中各组分按分子大小进行分离的层析技术。
信号肽:常指新合成多肽链中用于指导蛋白质跨膜转移(定位)的N-末端的氨基酸序列(有时不一定在N端)。
别构酶:活性受结合在活性部位以外的部位的其它分子调节的酶。
联合脱氨(4):联合脱氨基作用是肝、肾、脑等组织中的一种重要的脱氨基方式,这种脱氨基作用由转氨酶催化的转氨基作用与L-谷氨酸脱氢酶催化的谷氨酸氧化脱氨基作用联合进行。
细胞色素(4): 一种以铁-卟啉复合体为辅基的血红素蛋白。
在氧化还原过程中,血红素基团的铁原子可以传递单个的电子而不必成对传递,其中的铁通过Fe3+和Fe2+两种状态的变化传递电子。
主要有细胞色素a、细胞色素b、细胞色素c和细胞色素d四类。
细胞色素c:细胞色素C广泛存在于需氧生物细胞的线粒体中,是一种含血红素辅基的单链蛋白,由124个残基构成,在生物氧化反应中起重要作用。
固定化酶:水溶性酶经物理或化学方法处理后,成为不溶于水的但仍具有酶活性的一种酶的衍生物。
在催化反应中以固相状态作用于底物。
外显子:既存在于最初的转录产物中,也存在于成熟的RNA分子中的核苷酸序列。
术语外显子也指编码相应RNA外显子的DNA中的区域。
呼吸链(4):有机物在生物体内氧化过程中所脱下的氢原子,经过一系列有严格排列顺序的传递体组成的传递体系进行传递,最终与氧结合生成水,这样的电子或氢原子的传递体系称为呼吸链或电子传递链。
电子在逐步的传递过程中释放出能量被用于合成ATP,以作为生物体的能量来源。
化学渗透偶联学说:核酶(2):也称为催化性RNA,一些RNA具有催化能力,可以催化自我拼接等反应,这种具有催化作用的RNA分子叫做核酶。
生物化学名词解释
增色效应(2): 当双螺旋DNA熔解(解链)时,260nm处紫外吸收增加的现象。
减色效应:DNA 在260nm 处的光密度比在DNA 分子中的各个碱基在260nm 处吸收的光密度减小, 这现象称为“减色效应”分子筛层析 : 分子筛层析又称为凝胶层析或凝胶过滤。
分子筛层析是利用有一定孔径范围的多孔凝胶作为固定相,. 对混合物中各组分按分子大小进行分离的层析技术。
信号肽:常指新合成多肽链中用于指导蛋白质跨膜转移(定位)的N-末端的氨基酸序列(有时不一定在N端)。
别构酶:活性受结合在活性部位以外的部位的其它分子调节的酶。
联合脱氨(4):联合脱氨基作用是肝、肾、脑等组织中的一种重要的脱氨基方式,这种脱氨基作用由转氨酶催化的转氨基作用与L-谷氨酸脱氢酶催化的谷氨酸氧化脱氨基作用联合进行。
细胞色素(4):一种以铁-卟啉复合体为辅基的血红素蛋白。
在氧化还原过程中,血红素基团的铁原子可以传递单个的电子而不必成对传递,其中的铁通过Fe3+和Fe2+两种状态的变化传递电子。
主要有细胞色素a、细胞色素b、细胞色素c和细胞色素d四类。
细胞色素c:细胞色素C广泛存在于需氧生物细胞的线粒体中,是一种含血红素辅基的单链蛋白,由124个残基构成,在生物氧化反应中起重要作用。
固定化酶:水溶性酶经物理或化学方法处理后,成为不溶于水的但仍具有酶活性的一种酶的衍生物。
在催化反应中以固相状态作用于底物。
外显子:既存在于最初的转录产物中,也存在于成熟的RNA分子中的核苷酸序列。
术语外显子也指编码相应RNA外显子的DNA中的区域。
呼吸链(4):有机物在生物体内氧化过程中所脱下的氢原子,经过一系列有严格排列顺序的传递体组成的传递体系进行传递,最终与氧结合生成水,这样的电子或氢原子的传递体系称为呼吸链或电子传递链。
电子在逐步的传递过程中释放出能量被用于合成ATP,以作为生物体的能量来源。
化学渗透偶联学说:核酶(2):也称为催化性RNA,一些RNA具有催化能力,可以催化自我拼接等反应,这种具有催化作用的RNA分子叫做核酶。
生物化学__生物氧化
生物氧化(一)名词解释1.生物氧化2.呼吸链3.底物水平磷酸化(一)名词解释1.生物氧化:生物体内有机物质氧化而产生大量能量的过程称为生物氧化。
生物氧化在细胞内进行,氧化过程消耗氧放出二氧化碳和水,所以有时也称之为“细胞呼吸”或“细胞氧化”。
生物氧化包括:有机碳氧化变成CO2;底物氧化脱氢、氢及电子通过呼吸链传递、分子氧与传递的氢结成水;在有机物被氧化成CO2和H2O的同时,释放的能量使ADP转变成ATP。
2.呼吸链:有机物在生物体内氧化过程中所脱下的氢原子,经过一系列有严格排列顺序的传递体组成的传递体系进行传递,最终与氧结合生成水,这样的电子或氢原子的传递体系称为呼吸链或电子传递链。
电子在逐步的传递过程中释放出能量被用于合成ATP,以作为生物体的能量来源。
3.氧化磷酸化:在底物脱氢被氧化时,电子或氢原子在呼吸链上的传递过程中伴随ADP 磷酸化生成ATP的作用,称为氧化磷酸化。
氧化磷酸化是生物体内的糖、脂肪、蛋白质氧化分解合成ATP的主要方式。
5.底物水平磷酸化:在底物被氧化的过程中,底物分子内部能量重新分布产生高能磷酸键(或高能硫酯键),由此高能键提供能量使ADP(或GDP)磷酸化生成A TP(或GTP)的过程称为底物水平磷酸化。
此过程与呼吸链的作用无关,以底物水平磷酸化方式只产生少量ATP。
(二) 填空题1.生物氧化有3种方式:____脱氢_____、_脱电子__________和_____与氧结合_____ 。
2.生物氧化是氧化还原过程,在此过程中有___酶;______、______辅酶;___和_____电子传递体___ 参与。
7.生物体内高能化合物有___焦磷酸化合物;;;______、___酰基磷酸化合物______、____烯醇磷酸化合物;_____、__胍基磷酸化合物;_______、____硫酯化合物_____、______甲硫键化合物___等类。
8.细胞色素a的辅基是____血红素A;_____与蛋白质以_____非共价____键结合。
生物化学名词解释
9. 增色效应(hyper chromic effect):当DNA 从双螺旋结构变为单链的无规则卷曲状态时,它在260nm 处的吸收便增加,这叫“增色效应”。
10. 减色效应(hypo chromic effect):DNA 在260nm 处的光密度比在DNA 分子中的各个碱基在260nm 处吸收的光密度的总和小得多(约少35%~40%), 这现象称为“减色效应”。
8. 退火(annealing):当将双股链呈分散状态的DNA 溶液缓慢冷却时,它们可以发生不同程度的重新结合而形成双链螺旋结构,这现象称为“退火”7. 核酸的变性、复性(denaturation、renaturation):当呈双螺旋结构的DNA 溶液缓慢加热时,其中的氢键便断开,双链DNA 便脱解为单链,这叫做核酸的“溶解”或变性。
在适宜的温度下,分散开的两条DNA 链可以完全重新结合成和原来一样的双股螺旋。
这个DNA 螺旋的重组过程称为“复性”。
13. DNA 的熔解温度(T m 值):引起DNA 发生“熔解”的温度变化范围只不过几度,这个温度变化范围的中点称为熔解温度(T m)。
14分子杂交cular hybridization):不同的DNA 片段之间,DNA 片段与RNA 片段之间,如果彼此间的核苷酸排列顺序互补也可以复性,形成新的双螺旋结构。
这种按照互补碱基配对而使不完全互补的两条多核苷酸相互结合的过程称为分子杂交。
1DNA双螺旋(DNA double helix)是一种核酸的,在该构象中,两条反向平行的多核苷酸链相互缠绕形成一个右手的双螺旋结构。
2 核小体是由DNA和组蛋白形成的染色质基本结构单位。
2.必需氨基酸:指人体(和其它哺乳动物)自身不能合成,机体又必需,需要从饮食中获得的氨基酸。
3. 氨基酸的等电点:指氨基酸的正离子浓度和负离子浓度相等时的pH 值,用符号pI表示。
4.蛋白质的一级结构:指蛋白质多肽链中氨基酸的排列顺序,以及二硫键的位置。
生物氧化名词解释生物化学
生物氧化名词解释生物化学
生物氧化(biological oxidation)是一种有机物的化学反应,其中一种或多种化学物质被氧气氧化,从而产生氧化物。
它是一种重要的生物过程,可以释放能量,帮助生物体维持其结构和功能并有助于分解食物。
生物氧化主要包括氧化还原反应和脱氧反应。
氧化还原反应是一种化学反应,其中一种化学物质(正极)被氧化,另一种(负极)被还原。
在这种反应中,氧化剂损失电子,而还原剂获得电子。
例如,氢氧化钠(NaOH)可以将水分解成氧气和氢离子,就像这样:
2H2O→ O2 + 2H+ + 2e-
在脱氧反应中,一种有机物被氧气氧化,从而产生一种氧化物。
在此反应中,有机物损失氢原子,而氧原子加入其中。
例如,有机物乙醇(C2H5OH)可以被氧化成乙醛(C2H4O),就像这样:
C2H5OH→ C2H4O + H2O + O2
生物氧化是一种古老的化学过程,在生物体中它可以为生物体提供能量。
它还可以维持生物体的结构和功能,并可以帮助分解有机物,如植物提取碳水化合物中的营养。
这些反应可以在人体的多种细胞,如神经元,心肌细胞,肝细胞和其他细胞中发生。
它们也可用于分解有机物,从而产生各种化学物质,其中一些可用于合成蛋白质,因此可以被用于细胞信号传导的过程。
生物化学名词解释
生物化学名词解释肽键、肽单元:一个氨基酸的a-羟基与另一个氨基酸的a-氨基脱去一分子水缩合形成的键成为肽键。
其化学本质是共价键,是蛋白质分子中最主要的化学键。
由于组成肽键的C-N 键具有部分双键的性质,不能自由旋转,因此肽键上的4个原子和相邻的两个a碳原子处于同一面上,这个平面就叫做肽键平面,或肽单元,它是蛋白质空间结构的基本单位。
蛋白质的等电点:蛋白质是两性电解质,在某一溶液PH值条件下,他的酸性基团与碱性基团解离程度相等,所带电荷为零,就把这一PH值称为蛋白质的等电点。
蛋白质的变性作用:在某些理化因素作用下,蛋白质分子内次级键断裂,空间结构改变,使蛋白质原有的理化性质改变,生物学活性丧失,这一过程称为蛋白质的变性作用。
盐析:在蛋白质溶液中加入大量的硫酸铵、硫酸钠或氯化钠等中性盐,破坏蛋白质的水化膜和同种电荷,使蛋白质颗粒相互聚集,发生沉淀。
蛋白质组:是指同一种细胞或一种生物所表达的全部蛋白质,即“一种基因组所表达的全套蛋白质“。
3’,5’-磷酸二酯键:是多核苷酸分子中的主键。
它是由同一个磷酸基团通过二个酯键的形成,把前一个核苷酸的3’位和后一个核苷酸的5’位互相连接起来,具有方向性(3’→5’),这样的化学键就成为3’,5’-磷酸二酯键,其化学本质是共价键。
核小体:是真核细胞染色质的基本结构单位。
它是由组蛋白H2A、H2B、H3及H4各两分子组成的八聚体,外绕双链DNA形成核心颗粒;还有连接各核心颗粒的一小段DNA和组蛋白H1成为连接区。
一个完整的核小体即由核心颗粒和连接区两部分组成。
各个核小体可沿纵轴排列形成串珠状的重复结构,并可进一步卷曲、折叠形成染色体。
增色效应与减色效应:核酸分子中因含有嘌呤碱和嘧啶碱组分,故对紫外光具有强烈吸收作用,对紫外光吸收的特点是在260nm处具有最大的吸收峰值。
在某些变性因素作用下,DNA 分子的双螺旋结构即破坏,氢键断裂,两链分开,碱基充分暴露,故在260nm波长处对紫外光的吸收峰值增加,这种现象就称为增色效应;复性后DNA两链重新缔合使碱基间形成氢键在260nm波长处对紫外光的吸收峰值减小,这种现象就称为减色效应。
生物化学名词解释
蛋白质1.等电点(pI):当氨基酸溶液在某一定pH值时,使某特定氨基酸分子上所带正负电荷相等,成为两性离子,在电场中既不向阳极也不向阴极移动,此时溶液的pH值即为该氨基酸的等电点(isoelectric point,pI)。
2.肽键和肽链:肽是由一个氨基酸的羧基和另一个氨基酸的氨基脱水缩合而形成的化合物,氨基酸之间脱水缩合后形成的共价键成为肽键。
3.肽平面及二面角:两相邻酰胺平面之间,能以共同的Cα为定点而旋转,绕Cα-N 键旋转的角度称φ角,绕C-Cα键旋转的角度称ψ角。
φ和ψ称作二面角,亦称构象角。
4.一级结构:多肽链中氨基酸的排列顺序,包括二硫键的位置称为蛋白质的一级结构(primary structure)。
这是蛋白质最基本的结构,它内寓着决定蛋白质高级结构和生物功能的信息。
5.二级结构:蛋白质的二级结构(secondary structure)指肽链主链不同区段通过自身的相互作用,形成氢键,沿某一主轴盘旋折叠而形成的局部空间结构,是蛋白质结构的构象单元.主要有以下类型:(1) α-螺旋(α-helix)(2) β-折叠(β-pleated sheet)(3) β-转角(β-turn)(4) 无规则卷曲(nonregular coil)6.三级结构:多肽键在二级结构的基础上,通过侧链基团的相互作用进一步卷曲折叠,借助次级键维系使α-螺旋、β-折叠片、β-转角等二级结构相互配置而形成特定的构象。
7.四级结构:四级结构是指由相同或不同的称作亚基(subunit)的亚单位按照一定排布方式聚合而成的蛋白质结构,维持四级结构稳定的作用力是疏水键、离子键、氢键、范得华力。
亚基本身都具有球状三级结构,一般只包含一条多肽链,也有的由二条或二条以上由二硫键连接的肽链组成。
8.超二级结构:蛋白质中相邻的二级结构单位(即单个α-螺旋或β-折叠或β-转角)组合在一起,形成有规则的、在空间上能辩认的二级结构组合体称为蛋白质的超二级结构9.结构域:在二级结构的基础上,多肽进一步卷曲折叠成几个相对独立、近似球形的三维实体,再由两个或两个以上这样的三维实体缔合成三级结构,这种相对独立的三维实体称为结构域。
生物氧化的名词解释生物化学
生物氧化的名词解释生物化学
生物氧化是指在氧气的参与下,能源物质 (如糖类、脂肪、蛋白质) 在细胞内分解成二氧化碳和水,同时释放出大量能量的过程。
这一过程在线粒体内进行,被称为电子传递链或呼吸链。
电子传递链是由一系列递氢体和递电子体组成的链式反应体系,它将能源物质分解代谢脱下的氢原子氧化成水,并在水分子中释放出能量。
氧化磷酸化是生物氧化的一个过程,它在线粒体中发生,是指 ADP 磷酸化成为ATP 的过程,ATP 是细胞内的主要能量储备形式。
PO 比值是指物质氧化时,每消耗 1mol 氧原子所消耗的无机磷的摩尔原子数。
影响生物氧化的因素包括呼吸链抑制剂、解耦联剂、ADP 等。
生物化学名词解释 (1)
1、DNA的变性与复性:在某些理化因素作用下,氢键断裂,DNA双链解开成两条单链的过程称为变性。
在适宜条件下,互补的单链又重新结合成双链DNA的过程称为复性。
2、活性部位(活性中心):必需基团在空间结构上相互靠近,形成具有特定空间结构的区域,能结合底物并将其催化为产物,这一区域称为酶的活性中心(部位)。
3、变构调节和变构酶:体内有的代谢物可以与某些分子活性中心外的某一部位可逆结合,使酶发生变构并改变其催化活性,此结合部位称为变构部位(调节部位),对酶催化活性的这种调节方式称为变构调节,受变构调节的酶称为变构酶。
4、脂肪动员:脂肪细胞内储存的甘油三酯在脂肪酶的作用下逐步水解,释放脂肪酸和甘油经血液循环供其他组织氧化利用利用。
5、血浆脂蛋白:为血浆中脂质存在和转运的主要形式,主要由各种载脂蛋白和各种脂质成分组成,主要类型为:乳糜微粒(CM)、极低密度脂蛋白(VLDL)、低密度脂蛋白(LDL)、高密度脂蛋白(HDL)4种。
6、呼吸链:在生物氧化过程中,代谢物脱下的2H经过线粒体内膜上多种辅酶和酶催化的连锁反应逐步传递,最终与氧结合生成水。
由于该过程与细胞呼吸联系紧密,故称此传递链为呼吸链。
7、联合脱氨基作用:将氨基酸作用与谷氨酸的氧化脱氨基作用或AMP循环的脱氨基作用相偶联进行的脱氨基作用。
8、核甘酸的从头合成途径:利用磷酸核糖、氨基酸、一碳单位及CO2等简单物质为原料,经过一系列酶促反应合成核苷酸的过程。
9、核苷酸的补救合成途径:机体利用体内游离的碱基或核甘,经过简单的反应,合成核苷酸的过程。
10、中心法则:以DNA为中心,DNA可以通过复制将遗传信息传递给下一代,或通过转录生成RNA,RNA在翻译成蛋白质,RNA也可以复制或通过逆转录生成DNA。
11、半保留复制:DNA复制时,亲代DNA中的两条链分别作为模板,按照碱基互补原则对规律合成出子链,形成两分子的子代DNA。
这样每个子代DNA分子都是由一条亲代链和一条新合成的链组成。
生物化学 生物氧化
氧化酶
举例:
细胞色素氧化酶 (Cytc氧化酶)
7
Cyt c氧化酶
FMN 560
图8-2
电子传递链
苹果酸
Cyt c氧化酶
8
(二) 不需氧脱氢酶 (anaerobic
dehydrogenase)
不是以氧, 而是以辅酶作为直接受氢/电子体
举例: * 苹果酸脱氢酶, G6PDH (需NAD+/NADP+的脱氢酶类)
* 琥珀酸脱氢酶, NADH脱氢酶
(需FAD/FMN的脱氢酶类)
* 细胞色素体系
(Cytb,Cytc)
9
(辅酶)
(辅酶)
SH2
受氢体1
不需氧 脱氢酶
受氢体2H2
1/2O2
S
受氢体1H2
(辅酶)
受氢体2
(辅酶)
H 2O
辅酶的作用:
* 作为呼吸链中的受氢(电子)体,将电子传递给O2 * 受氢(电子)体:既是受氢(电子)体又是供氢(电子)体
26
⑵ 复合体Ⅱ:
琥珀酸-CoQ还原酶
作用:将琥珀酸中的2H传递给CoQ
组成:黄素蛋白复合物(包括黄素蛋白,Fe-S,Cyt等) ● 黄素蛋白(复合物II中): 琥珀酸脱氢酶 (FAD) 递氢方式: 递H+(×2)、 递电子(×2)
● 铁硫蛋白 (iron-sulfur protein)
27
● 细胞色素b560 (cytochromosb560,cytb560) 一种色素蛋白(以铁卜啉为辅基)
(复合体III中)
CO、CN¯ 、N3¯ 2S : 、H
抑制细胞色素C氧化酶
(复合体IV中)
62
562
食品生物化学名词解释
名词解释1.生物氧化:糖、脂肪和蛋白质等有机物在体内逐步氧化分解成CO2和H2O,并释放出能量的过程称为生物氧化。
2.联合脱氨基作用:转氨基作用和氧化脱氨基作用配合进行的叫做联合脱氨基作用。
分为①氨基酸的脱氨基借转氨基与Glu的氧化脱氨偶联;②氨基酸的脱氨基与嘌呤核苷酸循环偶联。
3.别构效应:蛋白质的构象并不是固定不变的,当有些蛋白质表现其生物功能时,其构象发生改变,从而改变了整个分子的性质,这种现象称为别构效应。
4.冈崎片断:DNA半不连续复制的过程中,一条链是连续合成的,另一条链的合成是不连续的,即先合成若干短片段,再通过酶的作用将这些短片段连在一起构成第二条链。
这些短的片段就称为冈崎片段。
5.增色效应:核酸变性后,260nm的紫外吸收值明显增加。
6、同工酶:是指能催化相同的化学反应,但其分子组成及结构不同,理化性质和免疫学性质彼此存在差异的一类酶。
它们可以存在于同以种属的不同个体,或同一个体的不同组织器官,甚至存在于同一细胞的不同亚细胞结构中。
7、糖原异生作用:由简单的非糖前体转变为糖的过程。
糖异生不是糖酵解的简单逆转。
虽然由丙酮酸开始的糖异生利用了糖酵解中的七步进似平衡反应的逆反应,但还必需利用另外四步酵解中不曾出现的酶促反应,绕过酵解过程中不可逆的三个反应。
8.氧化磷酸化:生物体通过生物氧化所产生的能量,一部分用以维持体温外,大部分可以通过磷酸化作用转移至高能磷酸化合物ATP中。
这种伴随放能的氧化作用而进行的磷酸化称为氧化磷酸化。
9、诱导契合假说::认为酶分子的结构并非与底物分子正好互补,而是具有一定的柔性,当酶分子与底物分子靠近时,酶受底物分子诱导,其构象发生有利于与底物结合的变化,酶与底物在此基础上互补契合进行反应。
10、超二级结构:在蛋白质分子中特别是球状蛋白质中经常可以看到若干相邻的二级结构元件(主要是α螺旋和β折叠)组合在一起,彼此相互作用,形成种类不多的,有规则的二级结构组合或者二级结构串,在多种蛋白质中充当三级结构的构建,称之为超二级结构。
生物化学名词解释
名词解释肽键:蛋白质中前一氨基酸的α-羧基与后一氨基酸的α-氨基脱水形成的酰胺键。
肽键平面:肽键中的C-N键具有部分双键的性质,不能旋转,因此,肽键中的C、O、N、H 四个原子处于一个平面上,称为肽键平面。
蛋白质分子的一级结构:蛋白质分子的一级结构是指构成蛋白质分子的氨基酸在多肽链中的排列顺序和连接方式。
亚基:在蛋白质分子的四级结构中,每一个具有三级结构的多肽链单位,称为亚基。
蛋白质的等电点:在某-pH溶液中,蛋白质分子可游离成正电荷和负电荷相等的兼性离子,即蛋白质分子的净电荷等于零,此时溶液的pH值称为该蛋白质的等电点。
蛋白质变性:在某些理化因素作用下,蛋白质特定的空间构象被破坏,从而导致其理化性质改变和生物学活性的丧失的现象。
协同效应: 一个亚基与其配体结合后,能影响另一亚基与配体结合的能力。
(正、负)如血红素与氧结合后,铁原子就能进入卟啉环的小孔中,继而引起肽链位置的变动。
变构效应: 蛋白质分子因与某种小分子物质(效应剂)相互作用而致构象发生改变,从而改变其活性的现象。
分子伴侣:分子伴侣是细胞中一类保守蛋白质,可识别肽链的非天然构象,促进各功能域和整体蛋白质的正确折叠。
细胞至少有两种分子伴侣家族——热休克蛋白和伴侣素。
DNA的复性作用:变性的DNA在适当的条件下,两条彼此分开的多核苷酸链又可重新通过氢键连接,形成原来的双螺旋结构,并恢复其原有的理化性质,此即DNA的复性。
杂交:两条不同来源的单链DNA,或一条单链DNA,一条RNA,只要它们有大部分互补的碱基顺序,也可以复性,形成一个杂合双链,此过程称杂交。
增色效应:DNA变性时,A260值随着增高,这种现象叫增色效应。
解链温度:在DNA热变性时,通常将DNA变性50%时的温度叫解链温度用Tm表示。
辅酶:与酶蛋白结合的较松,用透析等方法易于与酶分开。
辅基:与酶蛋白结合的比较牢固,不易与酶蛋白脱离。
酶的活性中心:必需基团在酶分子表面的一定区域形成一定的空间结构,直接参与了将作用物转变为产物的反应过程,这个区域叫酶的活性中心。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物氧化的名词解释生物化学
生物氧化是指生物体内发生的氧化反应。
它是生物化学领域中的一个重要研究方向,研究生物体内氧化反应的机制、调控及其在生物体代谢中的作用。
在生物体内,氧化反应是一种重要的代谢过程,通过氧化反应,生物体可以将有机物转化为能量,维持生命活动的进行。
氧化反应常涉及到氧气、水和有机物质之间的反应,产生能量和废物。
生物氧化反应是通过一系列酶催化的反应来实现的,这些酶可以催化不同的氧化反应。
例如,呼吸链中的酶可以将葡萄糖分解为二氧化碳和水,同时产生能量。
此外,还有一些酶可以催化生物体内的氧化还原反应,从而参与细胞代谢和信号传导等生物过程。
生物氧化在生物化学领域具有广泛的研究意义。
通过研究生物氧化反应的机制和调控,可以深入了解生物体代谢过程的基本原理,为疾病的诊断和治疗提供依据。
此外,生物氧化还与环境污染和能源开发等领域密切相关,对于理解大气污染、生物能源的利用等问题有重要的意义。