功到自然成课时作业本高中数学必修1第2章函数

合集下载

北师大版数学高一必修1 第二章2.1 函数概念 课时作业

北师大版数学高一必修1 第二章2.1 函数概念 课时作业

[学业水平训练]1.若函数f (x )的定义域是[-1,1],则函数f (x +1)的定义域是( ) A .[-2,0] B .[-1,1] C .[1,2] D .[0,2] 解析:选A.∵f (x )的定义域是[-1,1],∴-1≤x +1≤1⇒-2≤x ≤0,故选A. 2.下列对应或关系中是A 到B 的函数的是( ) A .A ∈R ,B ∈R ,x 2+y 2=1B .A ={1,2,3,4},B ={0,1},对应关系如图:C .A =R ,B =R ,f :x →y =1x -2D .A =Z ,B =Z ,f :x →y =2x -1解析:选B.对于A 项,x 2+y 2=1可化为y =±1-x 2,显然对任意x ∈A ,y 值不唯一,故不符合.对于B 项,符合函数的定义.对于C 项,2∈A ,但在集合B 中找不到与之相对应的数,故不符合.对于D 项,-1∈A ,但在集合B 中找不到与之相对应的数,故不符合.3.与函数y =x 相等的函数是( ) A .y =(x )2 B .y =3x 3C .y =x 2D .y =x 2x解析:选B.A 中,函数定义域为[0,+∞). C 中,y =|x |与y =x 的解析式不同. D 中,函数的定义域为{x ∈R |x ≠0}.4.已知等腰△ABC 的周长为10,则底边长y 关于腰长x 的函数关系为y =10-2x ,此函数的定义域为( )A .RB .{x |x >0}C .{x |0<x <5} D.⎩⎨⎧⎭⎬⎫x ⎪⎪52<x <5 解析:选D.由题意可知0<y <10,即0<10-2x <10,解得0<x <5,又底边长y 与腰长x应满足2x >y ,即2x >10-2x ,x >52.综上可知52<x <5.5.函数y =x 2-2x 的定义域为{0,1,2,3},那么其值域为( ) A .{-1,0,3} B .{0,1,2,3} C .{y |-1≤y ≤3} D .{y |0≤y ≤3}解析:选A.∵函数y =x 2-2x 的定义域为{0,1,2,3},∴自变量x 取0,1,2,3四个实数,将x 的值依次代入函数解析式,得因变量的值依次为0,-1,0,3,故其值域为{-1,0,3}.6.下表表示解析:∵5<6≤10,∴当x =6时,对应的函数值是3. 答案:37.已知函数f (x )=11+x,g (x )=x 2+2,则f (g (2))=________,g (f (2))=________.解析:g (2)=22+2=6,f (g (2))=f (6)=11+6=17,f (2)=11+2=13,g (f (2))=g ⎝⎛⎭⎫13=⎝⎛⎭⎫132+2=199. 答案:17 1998.求下列函数的定义域:(1)y =(x +1)2x +1-1-x ;(2)y =(x +1)0|x |-x ;(3)y =11+1x.解:(1)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧x +1≠01-x ≥0,即⎩⎨⎧x ≠-1x ≤1,所以函数的定义域为{x |x ≤1且x ≠-1}.(2)要使函数有意义,需满足⎩⎪⎨⎪⎧x +1≠0|x |-x ≠0,即⎩⎨⎧x ≠-1|x |≠x ,∴x <0且x ≠-1,∴函数的定义域为{x |x <0且x ≠-1}.(3)要使函数有意义,需满足⎩⎪⎨⎪⎧x ≠01+1x≠0,即⎩⎨⎧x ≠0x +1≠0,即x ≠0且x ≠-1,∴函数的定义域为{x |x ∈R 且x ≠0且x ≠-1}. 9.求下列函数的值域.(1)y =x 2-4x +32x 2-x -1;(2)y =2x -x -1.解:(1)∵y =x 2-4x +32x 2-x -1=(x -1)(x -3)(x -1)(2x +1)=x -32x +1(x ≠1且x ≠-12),又∵x -32x +1=12(2x +1)-722x +1=12-72(2x +1),∵72(2x +1)≠0,∴y ≠12.当x =1时,x -32x +1=1-32×1+1=-23.∴函数的值域为⎩⎨⎧⎭⎬⎫yy ∈R ,且y ≠12,且y ≠-23.(2)令x -1=t ,则t ≥0,x =t 2+1.∴y =2(t 2+1)-t =2t 2-t +2=2⎝⎛⎭⎫t -142+158. ∵t ≥0,∴y ≥158.∴函数y =2x -x -1的值域是⎣⎡⎭⎫158,+∞. 10.已知a ,b ∈N +,f (a +b )=f (a )f (b ),f (1)=2,求f (2)f (1)+f (3)f (2)+…+f (2 014)f (2 013)+f (2 015)f (2 014).解:由f (a +b )=f (a )f (b )知,令a =b =1,得f (2)=f (1)f (1)=4,∴f (2)f (1)=2.令a =2,b =1,得f (3)=f (2)f (1)=8,∴f (3)f (2)=2.由此猜测f (x )f (x -1)=2(x ≥2,x ∈N +),下面证明此结论.令a =x -1,b =1,则f (x )=f (x -1+1)=f (x -1)·f (1)=2f (x -1), ∴f (x )f (x -1)=2(x ≥2,x ∈N +), ∴f (2)f (1)+f (3)f (2)+…+f (2 014)f (2 013)+f (2 015)f (2 014) =2+2+…+22 014个=4 028.[高考水平训练]1.若函数y =mx -1mx 2+4mx +3的定义域为R ,则实数m 的取值范围是( )A.⎝⎛⎦⎤0,34B.⎝⎛⎭⎫0,34C.⎣⎡⎦⎤0,34D.⎣⎡⎭⎫0,34 解析:选D.由题意知mx 2+4mx +3≠0对x ∈R 恒成立. 当m =0时,符合题意;当m ≠0时,Δ=(4m )2-12m <0,即0<m <34.综上m 的取值范围是[0,34).2.已知函数f (x )=x -1.若f (a )=3,则实数a =________. 解析:因为f (a )=a -1=3,所以a -1=9,即a =10.答案:103.求y =2x 2+4x -7x 2+2x +3的值域.解:已知函数式可变形为: yx 2+2yx +3y =2x 2+4x -7, 即(y -2)x 2+2(y -2)x +3y +7=0,当y ≠2时,将上式视为关于x 的一元二次方程. ∵x ∈R ,∴Δ≥0.即[2(y -2)]2-4(y -2)(3y +7)≥0.解得-92≤y <2.当y =2时,3×2+7≠0. ∴y ≠2,∴函数的值域为⎣⎡⎭⎫-92,2. 4.已知集合A ={1,2,3,k },B ={4,7,a 4,a 2+3a },a ∈N +,k ∈N +,x ∈A ,y ∈B ,f :x →y =3x +1是从定义域A 到值域B 的一个函数,求a ,k ,A ,B .解:根据对应法则f ,有: 1→4;2→7;3→10;k →3k +1.若a 4=10,则a ∉N +,不符合题意,舍去; 若a 2+3a =10,则a =2(a =-5不符合题意,舍去). 故3k +1=a 4=16,得k =5.综上:a =2,k =5,集合A ={1,2,3,5},B ={4,7,10,16}.。

苏教版必修一第2章函数作业题及答案解析2.1.3第1课时

苏教版必修一第2章函数作业题及答案解析2.1.3第1课时

2.1.3 函数的简单性质第1课时 函数的单调性 课时目标 1.理解函数单调性的性质.2.掌握判断函数单调性的一般方法.1.单调性设函数y =f (x )的定义域为A ,区间I ⊆A .如果对于区间I 内的任意两个值x 1,x 2当x 1<x 2时,都有__________,那么就说y =f (x )在区间I 上是单调______,I 称为y =f (x )的单调________.如果对于区间I 内的任意两个值x 1,x 2,当x 1<x 2时,都有f (x 1)>f (x 2),那么就说y =f (x )在区间I 上是单调________,I 称为y =f (x )的单调________.2.a >0时,二次函数y =ax 2的单调增区间为________.3.k >0时,y =kx +b 在R 上是____函数.4.函数y =1x的单调递减区间为__________. 一、填空题1.定义在R 上的函数y =f (x +1)的图象如右图所示.给出如下命题:①f (0)=1;②f (-1)=1;③若x >0,则f (x )<0;④若x <0,则f (x )>0,其中正确的是________.(填序号)2.若(a ,b )是函数y =f (x )的单调增区间,x 1,x 2∈(a ,b ),且x 1<x 2,则f (x 1)________f (x 2).(填“>”、“<”或“=”)3.f (x )在区间[a ,b ]上单调,且f (a )·f (b )<0,则方程f (x )=0在区间[a ,b ]上________.(填序号)①至少有一个根;②至多有一个根;③无实根;④必有唯一的实根.4.函数y =x 2-6x +10的单调增区间是________.5.如果函数f (x )在[a ,b ]上是增函数,对于任意的x 1,x 2∈[a ,b ](x 1≠x 2),则下列结论中正确的是______________________________________.①f (x 1)-f (x 2)x 1-x 2>0; ②(x 1-x 2)[f (x 1)-f (x 2)]>0;③f (a )<f (x 1)<f (x 2)<f (b );④x 1-x 2f (x 1)-f (x 2)>0. 6.函数y =x 2+2x -3的单调递减区间为________.7.设函数f (x )是R 上的减函数,若f (m -1)>f (2m -1),则实数m 的取值范围是________.8.函数f (x )=2x 2-mx +3,当x ∈[2,+∞)时是增函数,当x ∈(-∞,2]时是减函数,则f (1)=________.二、解答题9.画出函数y =-x 2+2|x |+3的图象,并指出函数的单调区间.10.已知f(x),g(x)在(a,b)上是增函数,且a<g(x)<b,求证:f(g(x))在(a,b)上也是增函数.11.已知f(x)=x2-1,试判断f(x)在[1,+∞)上的单调性,并证明.能力提升12.定义在R上的函数f(x)满足:对任意实数m,n总有f(m+n)=f(m)·f(n),且当x>0时,0<f(x)<1.(1)试求f(0)的值;(2)判断f(x)的单调性并证明你的结论.13.函数f(x)是定义在(0,+∞)上的减函数,对任意的x,y∈(0,+∞),都有f(x+y)=f(x)+f(y)-1,且f(4)=5.(1)求f(2)的值;(2)解不等式f(m-2)≤3.1.函数的单调区间必须是定义域的子集.因此讨论函数的单调性时,必须先确定函数的定义域.2.研究函数的单调性,必须注意无意义的特殊点,如函数f (x )=1x在(-∞,0)和(0, +∞)上都是减函数,但不能说函数f (x )=1x在定义域上是减函数. 3.求单调区间的方法:(1)图象法;(2)定义法;(3)利用已知函数的单调性.4.用单调性的定义证明函数的单调性分四个主要步骤:即“取值——作差变形——定号——判断”这四个步骤.若f (x )>0,则判断f (x )的单调性可以通过作比的方法去解决,即“取值——作比变形——与1比较——判断”.2.1.3 函数的简单性质第1课时 函数的单调性知识梳理1.f (x 1)<f (x 2) 增函数 增区间 减函数 减区间 2.[0,+∞)3.增 4.(-∞,0)和(0,+∞)作业设计1.①④2.<解析 由题意知y =f (x )在区间(a ,b )上是增函数,因为x 2>x 1,所以f (x 2)>f (x 1).3.④解析 ∵f (x )在[a ,b ]上单调,且f (a )·f (b )<0,∴当f (x )在[a ,b ]上单调递增,则f (a )<0,f (b )>0,当f (x )在[a ,b ]上单调递减,则f (a )>0,f (b )<0,故f (x )在区间[a ,b ]上必有x 0使f (x 0)=0且x 0是唯一的.4.[3,+∞)解析 如图所示,该函数的对称轴为x =3,根据图象可知函数在[3,+∞)上是递增的.5.①②④解析 由函数单调性的定义可知,若函数y =f (x )在给定的区间上是增函数,则x 1-x 2与f (x 1)-f (x 2)同号,由此可知,①、②、④正确;对于③,若x 1<x 2时,可有x 1=a 或x 2=b ,即f (x 1)=f (a )或f (x 2)=f (b ),故③不成立.6.(-∞,-3]解析 该函数的定义域为(-∞,-3]∪[1,+∞),函数f (x )=x 2+2x -3的对称轴为x =-1,由函数的单调性可知该函数在区间(-∞,-3]上是减函数.7.m >0解析 由f (m -1)>f (2m -1)且f (x )是R 上的减函数得m -1<2m -1,∴m >0.8.-3解析 f (x )=2(x -m 4)2+3-m 28, 由题意m 4=2,∴m =8.∴f (1)=2×12-8×1+3=-3.9.解 y =-x 2+2|x |+3=⎩⎪⎨⎪⎧ -x 2+2x +3 (x ≥0)-x 2-2x +3 (x <0)=⎩⎪⎨⎪⎧-(x -1)2+4 (x ≥0)-(x +1)2+4 (x <0). 函数图象如图所示.函数在(-∞,-1],[0,1]上是增函数,函数在[-1,0],[1,+∞)上是减函数.∴函数y =-x 2+2|x |+3的单调增区间是(-∞,-1]和[0,1], 单调减区间是[-1,0]和[1,+∞).10.证明 设a <x 1<x 2<b ,∵g (x )在(a ,b )上是增函数,∴g (x 1)<g (x 2),且a <g (x 1)<g (x 2)<b ,又∵f (x )在(a ,b )上是增函数,∴f (g (x 1))<f (g (x 2)),∴f (g (x ))在(a ,b )上是增函数.11.解 函数f (x )=x 2-1在[1,+∞)上是增函数. 证明如下:任取x 1,x 2∈[1,+∞),且x 1<x 2,则f (x 2)-f (x 1)=x 22-1-x 21-1 =x 22-x 21x 22-1+x 21-1 =(x 2-x 1)(x 2+x 1)x 22-1+x 21-1. ∵1≤x 1<x 2,∴x 2+x 1>0,x 2-x 1>0,x 22-1+x 21-1>0.∴f (x 2)-f (x 1)>0,即f (x 2)>f (x 1),故函数f (x )在[1,+∞)上是增函数.12.解 (1)在f (m +n )=f (m )·f (n )中,令m =1,n =0,得f (1)=f (1)·f (0).因为f (1)≠0,所以f (0)=1.(2)函数f (x )在R 上单调递减.任取x 1,x 2∈R ,且设x 1<x 2.在已知条件f (m +n )=f (m )·f (n )中,若取m +n =x 2,m =x 1,则已知条件可化为f (x 2)=f (x 1)·f (x 2-x 1),由于x 2-x 1>0,所以0<f (x 2-x 1)<1.在f (m +n )=f (m )·f (n )中,令m =x ,n =-x ,则得f (x )·f (-x )=1.当x >0时,0<f (x )<1,所以f (-x )=1f (x )>1>0, 又f (0)=1,所以对于任意的x 1∈R 均有f (x 1)>0.所以f (x 2)-f (x 1)=f (x 1)[f (x 2-x 1)-1]<0,即f (x 2)<f (x 1).所以函数f (x )在R 上单调递减.13.解 (1)∵f (4)=f (2+2)=2f (2)-1=5,∴f (2)=3.(2)由f (m -2)≤3,得f (m -2)≤f (2).∵f (x )是(0,+∞)上的减函数,∴⎩⎪⎨⎪⎧m -2≥2m -2>0,解得m ≥4.∴不等式的解集为{m |m ≥4}.。

苏教版必修一第2章函数作业题及答案解析2.6

苏教版必修一第2章函数作业题及答案解析2.6

§2.6函数模型及其应用课时目标 1.能够找出简单实际问题中的函数关系式.2.初步体会应用一次函数、二次函数、指数函数、对数函数、幂函数模型解决实际问题.3.体会运用函数思想处理现实生活中的简单问题,培养对数学模型的应用意识.1.几种常见的函数模型(1)一次函数:y=kx+b(k≠0)(2)二次函数:y=ax2+bx+c(a≠0)(3)指数函数:y=a x(a>0且a≠1)(4)对数函数:y=log a x(a>0且a≠1)(5)幂函数:y=xα(α∈R)(6)指数型函数:y=pq x+r(7)分段函数2.面临实际问题,自己建立函数模型的步骤:(1)收集数据;(2)画散点图;(3)选择函数模型;(4)求函数模型;(5)检验;(6)用函数模型解释实际问题.一、填空题1.细菌繁殖时,细菌数随时间成倍增长.若实验开始时有300个细菌,以后的细菌数如下表所示:x(h)012 3细菌数300600 1 200 2 4002.某公司市场营销人员的个人月收入与其每月的销售量成一次函数关系,其图象如右图所示,由图中给出的信息可知,营销人员没有销售量时的收入是________元.3.某商品价格前两年每年递增20%,后两年每年递减20%,则四年后的价格与原来价格比较,变化的情况是________.4.某工厂6年来生产某种产品的情况是:前三年年产量的增长速度越来越快,后三年年产量保持不变,则该厂6年来这种产品的总产量C与时间t(年)的函数关系图象正确的是________.(填序号)5.把长为12 cm的细铁丝截成两段,各自围成一个正三角形,那么这两个正三角形面积之和的最小值是________.6.某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x,y分别为________.7.某不法商人将彩电先按原价提高40%,然后在广告上写上“大酬宾,八折优惠”,结果是每台彩电比原价多赚了270元,那么每台彩电原价是________元.8.麋鹿是国家一级保护动物,位于江苏省中部黄海之滨的江苏大丰麋鹿国家级自然保护区,成立于1985年,最初一年年底只有麋鹿100头,由于科学的人工培育,这种当初快要濒临灭绝的动物的数量y(头)与时间x(年)的关系可以近似地由关系式y=a log2(x +1)给出,则2021年年底它们的数量约为________头.9.某种病毒经30分钟繁殖为原来的2倍,且知病毒的繁殖规律为y=e kt(其中k为常数,t表示时间,单位:小时,y表示病毒个数),则k=________,经过5小时,1个病毒能繁殖为________个.二、解答题10.东方旅社有100张普通客床,若每床每夜收租费10元时,客床可以全部租出;若每床每夜收费提高2元,便减少10张客床租出;若再提高2元,便再减少10张客床租出;依此情况继续下去.为了获得租金最多,每床每夜租金选择多少?11.芦荟是一种经济价值很高的观赏、食用植物,不仅可美化居室、净化空气,又可美容保健,因此深受人们欢迎,在国内占有很大的市场.某人准备进军芦荟市场,栽培芦荟,为了了解行情,进行市场调研,从4月1日起,芦荟的种植成本Q(单位为:元/10 kg)与上市时间t(单位:天)t 50110250Q 150108150(1)Q与上市时间t的变化关系:Q=at+b,Q=at2+bt+c,Q=a·b t,Q=a log b t;(2)利用你选择的函数,求芦荟种植成本最低时的上市天数及最低种植成本.能力提升12.某工厂生产一种电脑元件,每月的生产数据如表: 月份 1 2 3产量(千件) 50 52 53.9 y =ax +b 或y =a x +b (a ,b 为常数,且a >0)来模拟这种电脑元件的月产量y 千件与月份的关系.请问:用以上哪个模拟函数较好?说明理由.13.一片森林原来的面积为a ,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的22,(1)求每年砍伐面积的百分比; (2)到今年为止,该森林已砍伐了多少年?(3)今后最多还能砍伐多少年?1.函数模型的应用实例主要包括三个方面:(1)利用给定的函数模型解决实际问题;(2)建立确定性的函数模型解决问题;(3)建立拟合函数模型解决实际问题.2.函数拟合与预测的一般步骤:(1)能够根据原始数据、表格,绘出散点图.(2)通过考察散点图,画出“最贴近”的直线或曲线,即拟合直线或拟合曲线.如果所有实际点都落到了拟合直线或曲线上,滴“点”不漏,那么这将是个十分完美的事情,但在实际应用中,这种情况是一般不会发生的.因此,使实际点尽可能均匀分布在直线或曲线两侧,使两侧的点大体相等,得出的拟合直线或拟合曲线就是“最贴近”的了.(3)根据所学函数知识,求出拟合直线或拟合曲线的函数关系式.(4)利用函数关系式,根据条件对所给问题进行预测和控制,为决策和管理提供依据.§2.6 函数模型及其应用作业设计1.75解析 由表中数据观察可得细菌数y 与时间x 的关系式为y =300·2x (x ∈Z ).当x =-2时,y =300×2-2=3004=75. 2.300解析 由题意可知,收入y 是销售量x 的一次函数,设y =ax +b ,将(1,800),(2,1 300)代入得a =500,b =300.当销售量为x =0时,y =300.3.减少7.84%解析 设某商品价格为a ,依题意得:a (1+0.2)2(1-0.2)2=a ×1.22×0.82=0.921 6a ,所以四年后的价格与原来价格比较(0.921 6-1)a =-0.078 4a ,即减少7.84%.4.①解析 由于前三年年产量的增长速度越来越快,可用指数函数刻画,后三年年产量保持不变,可用一次函数刻画.5.2 3 cm 2解析 设一段长为x cm ,则另一段长为(12-x )cm.∴S =34(x 3)2+34(4-x 3)2=318(x -6)2+23≥23(当且仅当x =6时,取“=”). 6.15,12解析 由三角形相似得24-y 24-8=x 20,得x =54(24-y ), ∴S =xy =-54(y -12)2+180. ∴当y =12时,S 有最大值,此时x =15.7.2 250解析 设每台彩电的原价为x 元,则x (1+40%)×0.8-x =270,解得x =2 250(元).8.400解析 由题意,x =1时y =100,代入求得a =100,2021年年底时,x =15,代入得y =400.9.2ln 2 1 024解析 当t =0.5时,y =2, ∴2=12k e ,∴k =2ln 2,∴y =e 2t ln 2,当t =5时,∴y =e 10ln 2=210=1 024.10.解 设每床每夜租金为10+2n (n ∈N ),则租出的床位为100-10n (n ∈N 且n <10)租金f (n )=(10+2n )(100-10n )=20[-(n -52)2+2254], 其中n ∈N 且n <10.所以,当n =2或n =3时,租金最多,若n =2,则租出床位100-20=80(张);若n =3,则租出床位100-30=70(张);综合考虑,n 应当取3,即每床每夜租金选择10+2×3=16(元).11.解 (1)由所提供的数据可知,刻画芦荟种植成本Q 与上市时间t 的变化关系的函数不可能是常值函数,若用函数Q =at +b ,Q =a ·b t ,Q =a log b t 中的任意一个来反映时都应有a ≠0,且上述三个函数均为单调函数,这与表格所提供的数据不符合,所以应选用二次函数Q =at 2+bt +c 进行描述.将表格所提供的三组数据分别代入函数Q =at 2+bt +c ,可得:⎩⎪⎨⎪⎧150=2 500a +50b +c ,108=12 100a +110b +c ,150=62 500a +250b +c ,解得a =1200,b =-32,c =4252. 所以,刻画芦荟种植成本Q 与上市时间t 的变化关系的函数为Q =1200t 2-32t +4252. (2)当t =--322×1200=150(天)时,芦荟种植成本最低为 Q =1200×1502-32×150+4252=100(元/10 kg). 12.解 将(1,50)、(2,52)分别代入两解析式得: ⎩⎪⎨⎪⎧ 50=a +b 52=2a +b 或⎩⎪⎨⎪⎧ 50=a +b ,52=a 2+b .(a >0) 解得⎩⎪⎨⎪⎧a =2b =48(两方程组的解相同). ∴两函数分别为y =2x +48或y =2x +48.当x =3时,对于y =2x +48有y =54;当x =3时,对于y =2x +48有y =56.由于56与53.9的误差较大,∴选y =ax +b 较好.13.解 (1)设每年砍伐面积的百分比为x (0<x <1),则a (1-x )10=12a ,即(1-x )10=12, 解得x =1-11012⎛⎫ ⎪⎝⎭. (2)设经过m 年剩余面积为原来的22,则 a (1-x )m =22a ,即1012m⎛⎫ ⎪⎝⎭=1212⎛⎫ ⎪⎝⎭,m 10=12,解得m =5, 故到今年为止,已砍伐了5年.(3)设从今年开始,以后砍了n 年,则n 年后剩余面积为22a (1-x )n . 令22a (1-x )n ≥14a ,即(1-x )n ≥24, 1012n ⎛⎫ ⎪⎝⎭≥3212⎛⎫ ⎪⎝⎭,n 10≤32,解得n ≤15. 故今后最多还能砍伐15年.。

苏教版高中数学必修一第2章-函数课时作业【10】及答案

苏教版高中数学必修一第2章-函数课时作业【10】及答案

一、填空题1.下图给出的四个对应中是从A到B的映射的是________.【解析】①不是映射,因为元素2在B中没有元素与之对应;②是映射,满足单值对应;③不是映射,因为元素3在B中有两个元素与之对应;④是映射,满足单值对应.【答案】②④2.已知集合A=R,B=R,f:A→B是从集合A到集合B的一个映射,若f:x→2x-1,则B中元素3在集合A中的对应元素是________.【解析】由题意知2x-1=3,即x=2.【答案】 23.(2013·宜春高一检测)在映射f:A→B中,A=B={(x,y)|x,y∈R},且f:(x,y)→(x-y,x+y),则与A中的元素(-1,2)对应的B中的元素为________.【解析】由题意知,与A中元素(-1,2)对应的B中元素为(-1-2,-1+2),即(-3,1).【答案】(-3,1)4.设A={x|0≤x≤2},B={y|1≤y≤2},在图中能表示从集合A到集合B的映射的是________.【解析】 当x ∈A 时,由图①②可知,在B 中有可能不存在元素与之对应;对于图③可能出现“一对多”的可能;只有④合题意.【答案】 ④5.从集合A ={a ,b }到集合B ={0,1}的映射个数是________. 【解析】 如图所示,从A 到B 共可建立4个映射.【答案】 46.设f :A →B 是集合A 到B 的映射,A =B ={(x ,y )|x ∈R ,y ∈R },f :(x ,y )→(kx ,y +b ),若f :(3,1)→(6,2),则k =________,b =________.【解析】 由题意知⎩⎨⎧ 3k =61+b =2,∴⎩⎨⎧k =2b =1.【答案】 2 17.为确保信息安全,信息须加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为;明文a ,b ,c ,d 对应密文a +2b,2b +c,2c +3d,4d .例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,解密得到的明文为________.【解析】 由题意可得一个四元一次方程组⎩⎨⎧ a +2b =14,2b +c =9,2c +3d =23,4d =28,解得⎩⎨⎧a =6,b =4,c =1,d =7.【答案】 6,4,1,78.设映射f :x →-2x 2+3x 是集合A =R 到集合B =R 的映射,若对于实数P ∈B ,在A 中不存在对应的元素,则实数P 的取值范围是______.【解析】 ∵-2x 2+3x ≤98,结合f :x →-2x 2+3x 可知,当P ≤98时,A 中必存在元素与之对应.∴当P >98时,A 中不存在对应元素. 【答案】 (98,+∞) 二、解答题9.判断下列对应关系是否是A 到B 的映射? (1)A =R ,B ={x |x >0},x ∈A ,f :x →|x |; (2)A =N ,B =N +,x ∈A ,f :x →|x -1|;(3)A ={x |x ≥2,x ∈Z },B ={y |y ≥0且y ∈N },x ∈A ,f :x →y =x 2-2x +2; (4)A =[1,2],B =[a ,b ]≠∅,x ∈A , f :x →y =(b -a )x +2a -b .【解】 (1)∵0∈A ,在f 作用下:0→|0|=0∉B ,∴不是映射. (2)∵1∈A ,在f 作用下:1→|1-1|=0∉B ,∴不是映射. (3)对任意的x ∈A ,依关系f 有: x →y =x 2-2x +2=(x -1)2+1, ∵x ≥2,x ∈Z , ∴y ≥2,y ∈N ,即y ∈B . ∴是映射.(4)任取x ∈A ,即1≤x ≤2, 依关系f :x →y =(b -a )x +2a -b .∵b >a ,∴y =(b -a )x -2(b -a )+b =(b -a )(x -2)+b ≤b (∵x -2≤0,b -a >0). 同样,有y =(b -a )x -(b -a )+a =(b -a )(x -1)+a ≥a (∵x -1≥0,b -a >0), ∴y ∈B ,∴是映射.10.已知集合A =R ,B ={(x ,y )|x ,y ∈R },f :A →B 是A 到B 的映射,规定为:f :x →(x +1,x 2+1),试求2在B 中的对应元素及(32,54)在A 中的对应元素.【解】 由条件知当x =2时,x +1=2+1,x 2+1=3, 所以2在B 中的对应元素为(2+1,3); 再由⎩⎪⎨⎪⎧x +1=32,x 2+1=54,得x =12,说明点(32,54)在A 中的对应元素为12.11.设集合A ={1,2},B ={3,4,5,6,7},对A 中的任意元素x ,使x +f (x )为偶数,求从A 到B 的映射f 的个数.【解】 由于f (1)、f (2)取值属于{3,4,5,6,7},故使x +f (x )为偶数时,f (1)、f (2)取值情况如表所示.由表知这样的映射有6个.。

高中数学(苏教版,必修一) 第二章函数 2.1.3第1课时 课时作业(含答案)

高中数学(苏教版,必修一) 第二章函数 2.1.3第1课时 课时作业(含答案)

2.1.3 函数的简单性质第1课时 函数的单调性 课时目标 1.理解函数单调性的性质.2.掌握判断函数单调性的一般方法.1.单调性设函数y =f (x )的定义域为A ,区间I ⊆A .如果对于区间I 内的任意两个值x 1,x 2当x 1<x 2时,都有__________,那么就说y =f (x )在区间I 上是单调______,I 称为y =f (x )的单调________.如果对于区间I 内的任意两个值x 1,x 2,当x 1<x 2时,都有f (x 1)>f (x 2),那么就说y =f (x )在区间I 上是单调________,I 称为y =f (x )的单调________.2.a >0时,二次函数y =ax 2的单调增区间为________.3.k >0时,y =kx +b 在R 上是____函数.4.函数y =1x的单调递减区间为__________.一、填空题1.定义在R 上的函数y =f (x +1)的图象如右图所示.给出如下命题:①f (0)=1;②f (-1)=1;③若x >0,则f (x )<0;④若x <0,则f (x )>0,其中正确的是________.(填序号)2.若(a ,b )是函数y =f (x )的单调增区间,x 1,x 2∈(a ,b ),且x 1<x 2,则f (x 1)________f (x 2).(填“>”、“<”或“=”)3.f (x )在区间[a ,b ]上单调,且f (a )·f (b )<0,则方程f (x )=0在区间[a ,b ]上________.(填序号)①至少有一个根;②至多有一个根;③无实根;④必有唯一的实根.4.函数y =x 2-6x +10的单调增区间是________.5.如果函数f (x )在[a ,b ]上是增函数,对于任意的x 1,x 2∈[a ,b ](x 1≠x 2),则下列结论中正确的是______________________________________.①f (x 1)-f (x 2)x 1-x 2>0; ②(x 1-x 2)[f (x 1)-f (x 2)]>0;③f (a )<f (x 1)<f (x 2)<f (b );④x 1-x 2f (x 1)-f (x 2)>0. 6.函数y =x 2+2x -3的单调递减区间为________.7.设函数f (x )是R 上的减函数,若f (m -1)>f (2m -1),则实数m 的取值范围是________.8.函数f (x )=2x 2-mx +3,当x ∈[2,+∞)时是增函数,当x ∈(-∞,2]时是减函数,则f (1)=________.二、解答题9.画出函数y =-x 2+2|x |+3的图象,并指出函数的单调区间.10.已知f(x),g(x)在(a,b)上是增函数,且a<g(x)<b,求证:f(g(x))在(a,b)上也是增函数.11.已知f(x)=x2-1,试判断f(x)在[1,+∞)上的单调性,并证明.能力提升12.定义在R上的函数f(x)满足:对任意实数m,n总有f(m+n)=f(m)·f(n),且当x>0时,0<f(x)<1.(1)试求f(0)的值;(2)判断f(x)的单调性并证明你的结论.13.函数f(x)是定义在(0,+∞)上的减函数,对任意的x,y∈(0,+∞),都有f(x+y)=f(x)+f(y)-1,且f(4)=5.(1)求f(2)的值;(2)解不等式f(m-2)≤3.2.1.3 函数的简单性质第1课时 函数的单调性知识梳理1.f (x 1)<f (x 2) 增函数 增区间 减函数 减区间 2.[0,+∞)3.增 4.(-∞,0)和(0,+∞)作业设计1.①④2.<解析 由题意知y =f (x )在区间(a ,b )上是增函数,因为x 2>x 1,所以f (x 2)>f (x 1).3.④解析 ∵f (x )在[a ,b ]上单调,且f (a )·f (b )<0,∴当f (x )在[a ,b ]上单调递增,则f (a )<0,f (b )>0,当f (x )在[a ,b ]上单调递减,则f (a )>0,f (b )<0,故f (x )在区间[a ,b ]上必有x 0使f (x 0)=0且x 0是唯一的.4.[3,+∞)解析 如图所示,该函数的对称轴为x =3,根据图象可知函数在[3,+∞)上是递增的.5.①②④解析 由函数单调性的定义可知,若函数y =f (x )在给定的区间上是增函数,则x 1-x 2与f (x 1)-f (x 2)同号,由此可知,①、②、④正确;对于③,若x 1<x 2时,可有x 1=a 或x 2=b ,即f (x 1)=f (a )或f (x 2)=f (b ),故③不成立.6.(-∞,-3]解析 该函数的定义域为(-∞,-3]∪[1,+∞),函数f (x )=x 2+2x -3的对称轴为x =-1,由函数的单调性可知该函数在区间(-∞,-3]上是减函数.7.m >0解析 由f (m -1)>f (2m -1)且f (x )是R 上的减函数得m -1<2m -1,∴m >0.8.-3解析 f (x )=2(x -m 4)2+3-m 28, 由题意m 4=2,∴m =8.∴f (1)=2×12-8×1+3=-3.9.解 y =-x 2+2|x |+3=⎩⎪⎨⎪⎧ -x 2+2x +3 (x ≥0)-x 2-2x +3 (x <0)=⎩⎪⎨⎪⎧-(x -1)2+4 (x ≥0)-(x +1)2+4 (x <0). 函数图象如图所示.函数在(-∞,-1],[0,1]上是增函数,函数在[-1,0],[1,+∞)上是减函数.∴函数y =-x 2+2|x |+3的单调增区间是(-∞,-1]和[0,1], 单调减区间是[-1,0]和[1,+∞).10.证明 设a <x 1<x 2<b ,∵g (x )在(a ,b )上是增函数,∴g (x 1)<g (x 2),且a <g (x 1)<g (x 2)<b ,又∵f (x )在(a ,b )上是增函数,∴f (g (x 1))<f (g (x 2)),∴f (g (x ))在(a ,b )上是增函数.11.解 函数f (x )=x 2-1在[1,+∞)上是增函数. 证明如下:任取x 1,x 2∈[1,+∞),且x 1<x 2,则f (x 2)-f (x 1)=x 22-1-x 21-1=x 22-x 21x 22-1+x 21-1 =(x 2-x 1)(x 2+x 1)x 22-1+x 21-1. ∵1≤x 1<x 2,∴x 2+x 1>0,x 2-x 1>0,x 22-1+x 21-1>0.∴f (x 2)-f (x 1)>0,即f (x 2)>f (x 1),故函数f (x )在[1,+∞)上是增函数.12.解 (1)在f (m +n )=f (m )·f (n )中,令m =1,n =0,得f (1)=f (1)·f (0).因为f (1)≠0,所以f (0)=1.(2)函数f (x )在R 上单调递减.任取x 1,x 2∈R ,且设x 1<x 2.在已知条件f (m +n )=f (m )·f (n )中,若取m +n =x 2,m =x 1,则已知条件可化为f (x 2)=f (x 1)·f (x 2-x 1),由于x 2-x 1>0,所以0<f (x 2-x 1)<1.在f (m +n )=f (m )·f (n )中,令m =x ,n =-x ,则得f (x )·f (-x )=1.当x >0时,0<f (x )<1,所以f (-x )=1f (x )>1>0, 又f (0)=1,所以对于任意的x 1∈R 均有f (x 1)>0.所以f (x 2)-f (x 1)=f (x 1)[f (x 2-x 1)-1]<0,即f (x 2)<f (x 1).所以函数f (x )在R 上单调递减.13.解 (1)∵f (4)=f (2+2)=2f (2)-1=5,∴f (2)=3.(2)由f (m -2)≤3,得f (m -2)≤f (2).∵f (x )是(0,+∞)上的减函数,∴⎩⎪⎨⎪⎧ m -2≥2m -2>0,解得m ≥4.∴不等式的解集为{m |m ≥4}.。

高一数学必修一配套课时作业:第二章基本初等函数(Ⅰ)2.1.1Word版含解析

高一数学必修一配套课时作业:第二章基本初等函数(Ⅰ)2.1.1Word版含解析

4b 3 2 3 ab a3
2x- xy
13.若 x>0,y>0,且 x-
xy-2y= 0,求 y+2
的值. xy
n 1.
an与 (
n
a)n
的区别
(1) n an是实数 an 的 n 次方根,是一个恒有意义的式子,不受 n 的奇偶性限制,
a∈R,但这个式子的值受 n 的奇偶性限制:当 n 为大于 1 的奇数时, n an=a;
[2,
7 3)∪
(73,+

),∴③不正确;
④中,∵ 100a=5,10b=2,
当 n 为大于 1 的偶数时, n an=|a|.
(2)( n a)n 是实数 a 的 n 次方根的 n 次幂,其中实数 a 的取值由 n 的奇偶性决定:
当 n 为大于 1 的奇数时, ( n a)n= a,a∈R;当 n 为大于 1 的偶数时, ( n a)n=a,
a≥0,由此看只要
n (
a)n 有意义,其值恒等于
11
1
1
(4)a±2 a 2 b 2 +b=( a 2 ±b 2 )2(a>0,b>0);
1
1
1
1
(5)( a 2 + b 2 )( a2 - b2 )=a- b(a>0,b>0).
第二章 基本初等函数 (Ⅰ)
§2.1 指数函数 2. 1.1 指数与指数幂的运算
知识梳理 1.xn= a(n>1,且 n∈ N*) 2.根式 根指数 被开方数
a,即 ( n a)n= a.
2.有理指数幂运算的一般思路
化负指数为正指数,化根式为分数指数幂,化小数为分数,灵活运用指数幂的
运算性质.同时要注意运用整体的观点、方程的观点处理问题,或利用已知的

高一数学必修一配套课时作业:第二章基本初等函数(Ⅰ)2.3Word版含解析

高一数学必修一配套课时作业:第二章基本初等函数(Ⅰ)2.3Word版含解析

C. c>a>bD.b>c>a 6.函数 f(x)=xα,x∈(-1,0)∪(0,1),若不等式 f(x)>|x|成立,则在 α∈{ -2,-
1,0,1,2}的条件下, α可以取值的个数是 ( )
A . 0B.2
C. 3D.4
二、填空题
7.给出以下结论: ①当 α=0 时,函数 y= xα的图象是一条直线;
相应于曲线 C1, C2,C3, C4 的 n 依次为 ( )
A .- 2,- 12,12,2
11 B. 2, 2,- 2,- 2
C.- 12,- 2,2,12
1
1
D. 2, 2,- 2,- 2
2
3
2
35
25
25
5.设 a=
,b=
, c=
,则 a,b,c 的大小关系是 ( )
5
5
5
A . a>c>bB.a>b>c
能力提升 12.已知函数 f(x)=(m2+2m) ·xm2 m 1 ,m 为何值时,函数 f(x)是: (1)正比例函 数; (2)反比例函数; (3)二次函数; (4)幂函数.
13.点 ( 2,2)在幂函数 f(x)的图象上,点 (-2,14)在幂函数 g(x)的图象上,问 当 x 为何值时,有: (1)f(x)>g(x);(2)f(x)=g(x);(3)f(x)<g(x).
一、选择题 1.下列函数中不是幂函数的是 ( ) A . y= xB.y=x3 C. y=2xD.y=x-1
1 2.幂函数 f(x)的图象过点 (4,2),那么 f(8)的值为 ( )
2 A. 4 B.64
C. 2 2D.614

高中数学(苏教版,必修一) 第二章函数 2.2.2(二) 课时作业(含答案)

高中数学(苏教版,必修一) 第二章函数 2.2.2(二) 课时作业(含答案)

2.2.2 指数函数(二) 课时目标 1.理解指数函数的单调性与底数a 的关系,能运用指数函数的单调性解决一些问题.2.理解指数函数的底数a 对函数图象的影响.1.下列一定是指数函数的是________.①y =-3x ;②y =x x (x >0,且x ≠1);③y =(a -2)x (a >3);④y =(1-2)x .2.指数函数y =a x 与y =b x 的图象如图,则0,a ,b,1的大小关系为________.3.函数y =πx 的值域是________.4.已知集合M ={-1,1},N ={x |12<2x +1<4,x ∈Z },则M ∩N =________. 5.若(12)2a +1<(12)3-2a ,则实数a 的取值范围是______________. 6.若指数函数f (x )=(a +1)x 是R 上的减函数,那么a 的取值范围为________.一、填空题1.设P ={y |y =x 2,x ∈R },Q ={y |y =2x ,x ∈R },则P 、Q 的关系为________.2.函数y =16-4x 的值域是________.3.函数y =a x 在[0,1]上的最大值与最小值的和为3,则函数y =2ax -1在[0,1]上的最大值是________.4.若函数f (x )=3x +3-x 与g (x )=3x -3-x 的定义域均为R ,则下列命题正确的是________.(填序号)①f (x )与g (x )均为偶函数;②f (x )为偶函数,g (x )为奇函数;③f (x )与g (x )均为奇函数;④f (x )为奇函数,g (x )为偶函数.5.函数y =f (x )的图象与函数g (x )=e x +2的图象关于原点对称,则f (x )的解析式为________.6.已知a =1335-⎛⎫ ⎪⎝⎭,b =1235-⎛⎫ ⎪⎝⎭,c =1243-⎛⎫ ⎪⎝⎭,则a ,b ,c 三个数的大小关系是________. 7.春天来了,某池塘中的荷花枝繁叶茂,已知每一天新长出荷叶覆盖水面面积是前一天的2倍,若荷叶20天可以完全长满池塘水面,当荷叶刚好覆盖水面面积一半时,荷叶已生长了________天.8.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=1-2-x ,则不等式f (x )<-12的解集是________.9.函数y =2212x x -+⎛⎫ ⎪⎝⎭的单调递增区间是________.二、解答题10.(1)设f (x )=2u ,u =g (x ),g (x )是R 上的单调增函数,试判断f (x )的单调性;(2)求函数y =2212x x --的单调区间.11.函数f (x )=4x -2x +1+3的定义域为[-12,12]. (1)设t =2x ,求t 的取值范围;(2)求函数f (x )的值域.能力提升12.函数y =2x -x 2的图象大致是________.(填序号)13.已知函数f (x )=2x -12x +1. (1)求f [f (0)+4]的值;(2)求证:f (x )在R 上是增函数;(3)解不等式:0<f (x -2)<1517.1.比较两个指数式值的大小主要有以下方法:(1)比较形如a m 与a n 的大小,可运用指数函数y =a x 的单调性.(2)比较形如a m 与b n 的大小,一般找一个“中间值c ”,若a m <c 且c <b n ,则a m <b n ;若a m >c 且c >b n ,则a m >b n .2.了解由y =f (u )及u =φ(x )的单调性探求y =f [φ(x )]的单调性的一般方法.2.2.2 指数函数(二)双基演练1.③ 2.0<a <1<b3.(0,+∞)4.{-1}解析 解指数不等式12<2x +1<4,得-1<x +1<2, 所以-2<x <1,故N ={-1,0},所以M ∩N ={-1,1}∩{-1,0}={-1}.5.(12,+∞) 解析 ∵函数y =(12)x 在R 上为减函数, ∴2a +1>3-2a ,∴a >12. 6.-1<a <0作业设计1.Q P解析 因为P ={y |y ≥0},Q ={y |y >0},所以Q P .2.[0,4)解析 ∵4x >0,∴0≤16-4x <16,∴16-4x ∈[0,4).3.3解析 函数y =a x 在[0,1]上是单调的,最大值与最小值都在端点处取到,故有a 0+a 1=3,解得a =2,因此函数y =2ax -1=4x -1在[0,1]上是单调递增函数,当x =1时,y max =3.4.②解析 f (-x )=3-x +3x =f (x ),g (-x )=3-x -3x =-g (x ).5.f (x )=-e -x -2解析 ∵y =f (x )的图象与g (x )=e x +2的图象关于原点对称,∴f (x )=-g (-x )=-(e -x +2)=-e -x -2.6.c <a <b解析 ∵y =(35)x 是减函数,-13>-12, ∴b >a >1.又0<c <1,∴c <a <b .7.19解析 假设第一天荷叶覆盖水面面积为1,则荷叶覆盖水面面积y 与生长时间的函数关系为y =2x -1,当x =20时,长满水面,所以生长19天时,荷叶布满水面一半.8.(-∞,-1)解析 ∵f (x )是定义在R 上的奇函数,∴f (0)=0.当x <0时,f (x )=-f (-x )=-(1-2x )=2x -1.当x >0时,由1-2-x <-12,(12)x >32,得x ∈∅; 当x =0时,f (0)=0<-12不成立; 当x <0时,由2x -1<-12,2x <2-1,得x <-1. 综上可知x ∈(-∞,-1).9.[1,+∞)解析 利用复合函数同增异减的判断方法去判断.令u =-x 2+2x ,则y =(12)u 在u ∈R 上为减函数,问题转化为求u =-x 2+2x 的单调递减区间,即为x ∈[1,+∞).10.解 (1)设x 1<x 2,则g (x 1)<g (x 2).又由y =2u 的增减性得()12g x <()22g x ,即f (x 1)<f (x 2),所以f (x )为R 上的增函数.(2)令u =x 2-2x -1=(x -1)2-2,则u 在区间[1,+∞)上为增函数.根据(1)可知y =2212x x --在[1,+∞)上为增函数.同理可得函数y 在(-∞,1]上为单调减函数.即函数y 的增区间为[1,+∞),减区间为(-∞,1].11.解 (1)∵t =2x 在x ∈[-12,12]上单调递增, ∴t ∈[22,2]. (2)函数可化为:f (x )=g (t )=t 2-2t +3,g (t )在[22,1]上递减,在[1,2]上递增, 比较得g (22)<g (2). ∴f (x )min =g (1)=2,f (x )max =g (2)=5-2 2.∴函数的值域为[2,5-22].12.①解析 当x →-∞时,2x →0,所以y =2x -x 2→-∞,所以排除③、④.当x =3时,y =-1,所以排除②.13.(1)解 ∵f (0)=20-120+1=0, ∴f [f (0)+4]=f (0+4)=f (4)=24-124+1=1517. (2)证明 设x 1,x 2∈R 且x 1<x 2,则22x >12x >0,22x -12x >0, ∴f (x 2)-f (x 1)=212121212121x x x x ---++ =()()()21212222121x x x x -++>0,即f (x 1)<f (x 2),所以f (x )在R 上是增函数.(3)解 由0<f (x -2)<1517得f (0)<f (x -2)<f (4), 又f (x )在R 上是增函数,∴0<x -2<4,即2<x <6,所以不等式的解集是{x |2<x <6}.。

高中数学 第二章 函数 2.5.1 简单的幂函数(一)课时作业 北师大版必修1(2021年最新整理)

高中数学 第二章 函数 2.5.1 简单的幂函数(一)课时作业 北师大版必修1(2021年最新整理)

2016-2017学年高中数学第二章函数2.5.1 简单的幂函数(一)课时作业北师大版必修1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016-2017学年高中数学第二章函数2.5.1 简单的幂函数(一)课时作业北师大版必修1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016-2017学年高中数学第二章函数2.5.1 简单的幂函数(一)课时作业北师大版必修1的全部内容。

5 简单的幂函数(一)时间:45分钟 满分:80分班级________ 姓名________ 分数________一、选择题:(每小题5分,共5×6=30分) 1.下列函数中,不是幂函数的是( )A .y =错误!B .y =x 2C .y =2xD .y =1x2答案:C解析:选项C 的自变量没有在底数的位置.故选C 。

2.下列命题中正确的是( )A .当α=0时,函数y =x α的图像是一条直线 B .幂函数的图像都经过(0,0),(1,1)两点C .若幂函数y =x α的图像关于原点对称,则y =x α在定义域内y 随x 的增大而增大 D .幂函数的图像不可能在第四象限 答案:D解析:当α=0时,函数y =x α的定义域为{x |x ≠0,x ∈R },其图像为两条射线,故A 不正确;当α<0时,函数y =x α的图像不过(0,0)点,故B 不正确;幂函数y =x -1的图像关于原点对称,但其在定义域内不是增函数,故C 不正确;当x >0,α∈R 时,y =x α>0,则幂函数的图像都不在第四象限,故D 正确.3.已知幂函数y =f (x )的图象过点(4,2),则f 错误!=( ) A 。

功到自然成课时作业本高中数学必修1第2章 函数

功到自然成课时作业本高中数学必修1第2章 函数

第2章 函 数2.1 函数的概念 2.1.1 函数的概念与图像 第1课时 函数的概念创新练习 (1~10题每小题7分,11~12题美小题15分,共100分) 1.对应x →y (其中y =21x,x ∈R ,y ∈R +)(填“是”或“不是”)R 到R +的函数.2.函数12f x x-(的定义域为. 3.已知函数f (x )=2x +1的值域为{-1,1,3,5,7},则其定义域为.4.已知函数221()1x f x x-=+,若3()5f x =。

则x =. 5.给出下列函数:①()f x =2()f x =;③2()x f x x=;④()f x =.其中与f (x )=x 表示同一函数的是(用序号表示).6.若函数21,1()1,1x x f x x x-⎧⎪⎨⎪⎩<,≥,则()(2)f f =.7.已知函数()f x =A ,若2∉A ,则a 的取值范围 是 .8.已知函数21,1()(3),1,x x f x f x x +⎧=⎨+⎩≥<则5()2f f ⎛⎫- ⎪⎝⎭=.9.若函数1,0,()1,x 0,x f x ⎧=⎨-⎩><则对于任意不想打的两个实数a ,b ,代数式a ()22b a bf a b +-+-的值为.10.已知函数f (x )=x ²-2x ,x ∈[a ,b ]的值域为[-1,3],则b -a 的取值范围是.11.已知函数,0,()2,0.x bx c x f x x ++⎧=⎨⎩≤>f (-4)=f (0),f (-2)=-2.(1)求函数f (x )的解析式;(2)定义满足f (x 0)=x 0的x 0为函数f (x )的不动点,求函数出f (x )的所有不动点.12.已知函数21122,0,22()122,,1.2x x x f x x x ⎧⎡⎫-++∈⎪⎪⎢⎪⎣⎭=⎨⎡⎤⎪-+∈⎢⎥⎪⎣⎦⎩,若0101x 0,,(),2x f x ⎡⎫∈=⎪⎢⎣⎭00()f x x =,求x 0的值.第2课时函数的图像创新练习(1~10题每小题7分,11~12题每小题15分,共100分)1.函数f(x)=x²(x=-1,0,1,2)的图像为.2.函数,0,()1,0x xf xxx⎧⎪=⎨⎪⎩≥<的图像为.3.若函数f(x)的图像恒过定点(0,-1),则函数f(x+2)的图像恒过定点.4.函数31,0,()11,0x xf xxx⎧+⎪=⎨+⎪⎩<>的图像大致是.5.已知函数y=f(x)的定义域为R,则函数y=f(x-1)与y=f(1-x)的图像关于直线对称.6.函数12,0,()12,0x xf xax x+⎧=⎨+⎩>≤的图像关于y轴对称,则实数a的值为.7.若y=f(x)的图像如图所示,则不等式f(x)>0的解集为.8.若集合M={x|0≤x≤2},N={y|0≤y≤2},则从M到N的四中对应如图所示,其中能表示为M到N的函数关系的是(用序号表示).9.已知函数y=f(x)的图像如图所示,则不等式xf(x)<0的解集为.10.若函数2()()ax bf x x c +=+的图像如图所示,则a ,b ,c ,的值的符号是.11.作出下列函数的图像:(1)21,1,2,1;x x y x x x -⎧=⎨-⎩≥<(2)11,0,,0.x x y x x ⎧--⎪=⎨-⎪⎩≥<12.已知函数1()(0)f x x x x=->的图像如图所示,分别作出下列函数的图像: (1)y =f (|x |);(2)y =|f (x )|;(3)y =|f (-x )|;(4)y =-f (-x );(5)y =f (x )+|f (x )|.2.1.2函数的表示方法第1课时函数的表示方法创新练习(1~10题每小题7分,11~12题美小题15分,共100分)1.已知a,b为常数,若f(x)=x+4,f(ax+b)=x+10,则a+b=.2.若函数f(x)和g(x)的自然量和函数值的对应表格如下:则f(g(1))=,g(f(1))=.3.若函数221,1,()2,1,x xf xx x x⎧-⎪=⎨+-⎪⎩≤>则1(2)ff⎛⎫⎪⎝⎭的值为.4.已知函数2,0,()2,0,x xf xx x+⎧=⎨-+⎩≤>则不等式f(x)≥2x的解集为.5.已知函数21,1,()1, 1.x xf xxx-⎧⎪=⎨⎪⎩<≥若f(f(x))=0,则x=.6.若函数f(x)的定义域为R,且满足f(xy)=f(x)+f(y),则1()f f xx⎛⎫+= ⎪⎝⎭.x 1 2 3 4 x 1 2 3 4 f(x) 3 4 2 1 f(x) 4 3 1 27.函数f (x )对于任意的实数x 满足条件1(1)()f x f x +=,若f (1)=-5,则f (f (5)) =.8.已知函数22,,()52,.x x a f x x x x a +⎧=⎨++⎩>≤若f (x )=2x 恰有3个实数根,则实数a 的取值范围是.9.已知函数[][]2,0,1,(),0,1,x f x x x ⎧∈⎪=⎨∉⎪⎩则使f (f (x ))=2成立的实数x 的集合为.10.用min {a ,b }表示a ,b 两个数中的较小值,若函数f (x )=min {x +2,4-x }则 f (x )max =.11.定义运算“*”为*a b a b =+,其中a ,b 是正实数,已知1*k =3. (1)求正实数k 的值;(2)求函数f (x )=k *x 的值域.12.已知函数11()(1)1xf x x x+=≠-,定义*11()(())()n n f x f f x n N +=∈,试求函数4()f x 的解析式.第2课时函数表示方法的应用课标定位 进一步理解并掌握函数的三种表示方法,并能通过建立函数模型求解一些简单的应用性问题.创新练习 (1~10题每小题7分,11~12题美小题15分,共100分)1.若函数1,0,()0,0,1,0,x f x x x ⎧⎪==⎨⎪-⎩><1,()0,x g x x ⎧=⎨⎩为有理数,为无理数,则()()f g e =.2.已知函数f (x ),g (x )分别由下表给出:则()(1)f g 的值为;当()()2g f x =时,x =. 3.已知函数()f x 满足112()32f x f x x ⎛⎫-=-⎪⎝⎭,则(2)f =. 4.若函数[]2()(2)3,,f x x a x x a b =+++∈的图像关于直线x =1对称,则b =.5.制衣定义域为R 的函数()f x 满足(+2)=2()f x f x ,且当[]0,2x ∈时,2()=f x x ,则当[]4,2x ∈--时,()f x 的最大值为.6.已知函数()y f x =的图像关于直线x =1对称,且当x <0时,1()=f x x,则当x >0 时,()f x =.7.某公司将进货单价为8元一个的商铺,按10元一个销售,每天可卖出100个,若这种商品的销售单价每上涨1元,则销售量就减少10个,为获得最大利润,此商品销售价应该为. 8.用min {a ,b }表示a ,b 两个数中的最小值,若函数{}()=min ,f x x x t +的图像关于直线12x =-对称,则t 的值为. 9.已知函数2()=f x x 的值域为{1,4},这样的函数的个数为.10.已知a ,t 为正实数,函数2()=2f x x x a -+,且对任意的[]0,x t ∈,都有[](),f x a a ∈-.若对每一个正实数a ,记t 的最大值为()g a ,则函数()g a 的值域为.11.已知函数2(1),01,()=1,12,x x f x x x -⎧⎨-⎩≤≤<≤记()()3()=()f x f f f x ,(1)解不等式()f x x ≤;(2)设集合A ={0,1,2},求证:对任意的3,()x A f x x ∈=.12.由市场调查,某商品在最近40天内的价格()f t 与实际t 满足关系**111,020,,()241,2040,.t t t N f t t t t N ⎧+∈⎪=⎨⎪-+∈⎩≤<≤≤销售量()g t 与实际t 满足关系*143()(040,)33g t t t t N =-+∈≤≤,求这种商品的日销售额(销售量与价格的乘积)的最大值.2.2函数的简单性质 2.2.1 函数的单调性 第1课时 函数单调性的概念创新练习 (1~10题每小题7分,11~12题每小题15分,共100分) 1.若函数y =(k -1)x +1是R 上的减函数,则k 的取值范围是 .2.函数y =-x ²+2x 的单调区间是.3.函数2,0,(),0x x f x x x ⎧=⎨⎩≥<的单调区间是.4.若函数()=2f x x a +的单调区间是(]-3∞,,则a =.5.已知函数2()=3f x x mx =+在区间[)2+∞,(]-0∞,上是单调减函数,则实数b 的取值范围是.6.已知2()=23f x x mx -+在(]-2∞,上是减函数,在上是增函数,则(1)f =.7.函数()=1f x x x +-的单调区间是.8.下列函数:①1()f x x=;②()=f x x ;③2()=(1)f x x -;④()=1f x ax +(a 为长),其中一定满足:“对任意的12,(0,)x x ∈+∞,当12x x <时,都有12()()f x f x <成立”的是 (用序号表示).9.函数2()=4f x x x x +-的单调区间是.10.函数2()=1xf x x -在区间(-1,1)上的单调性为.11.已知a >0,函数2()2x a f x x a-+在区间[1,4]上的最大值为13,求实数a 的值.12.已知()f x 是定义R 上的函数,对任意的1212,()x x R x x ∈≠,恒有[]1212()()()0x x f x f x -->,且存在0x R ∈,对任意的12,x x R ∈,恒有0102012()()()()f x x x x f x f x f x +=++的成立.(1)求(0)+(1)f f 的值;(2)求0x 的值.第2课时 函数单调性的应用创新练习 (1~10题每小题7分,11~12题每小题15分,共100分)1.若函数()a f x x x=-在(0,+∞)上是减函数,则实数a 的取值范围是. 2.若2()2f x x ax =-+与()a g x x =在区间[1,2]上都是减函数,则实数a 的取值范围 是. 3.已知2,0,(),0,x x f x x x ⎧=⎨⎩≤>则使(2)()f x f x ->的x 的取值范围是. 4.若c <0,()f x 是区间[a ,b ]上的减函数,则()+f x c 在[a ,b ]上的最小值为; ()cf x 在[a ,b ]上的最小值为.5.函数(f x .6.若()1ax f x x=-为区间(-1,1)上的增函数,则实数a 的取值范围是. 7.若函数()f x x a =-在区间[0,1]上的最大值为M (a ),则M (a )的最小值为.8.已知函数()f x 是R 上的单调函数,则满足4()3x f x f x -⎛⎫= ⎪-⎝⎭的x 的值为. 9.已知函数1()=x-f x x ,1()g x x m x---,若对任意的[]11,3x ∈,存在[]22,1x ∈--, 使得12()()f x g x ≥成立,则实数m 的取值范围是.10.已知函数2,0,(),0,x x f x x x ⎧=⎨-⎩≥<则满足不等式(()3)4f f x ->的x 的取值范围 是.11.设函数()f x 是定义在(0,+∞)上的减函数,且对任意的x ,y ∈(0,+∞)满足()()()f xy f x f y =+.若(2)=1f ,求满足不等式()(1)2f a f a -+≥的a 的取值范围.12.已知函数1()1(0)f x x x=->.(1)求()f x 的单调区间.(2)是否存在实数a ,b (0<a <b ),使得当x ∈[a ,b ]时,()f x 的值域为11,22a b --⎡⎤⎢⎥⎣⎦.若存在,求a ,b 的值;若不存在,青请说明理由.2.2.2 函数的奇偶性第1课时 函数奇偶性的概念1.函数y =.2.对于定义在R 上的函数()f x ,给出下列三个命题:①若(-2)=(2)f f ,则()f x 是偶函数;②若(-2)(2)f f ≠,则()f x 不是偶函数;③若 (-2)=(2)f f ,则f (x )一定不是奇函数.其中正确的命题为(永序号表示).3.若函数22,0,()=,0x ax x f x x x x ⎧+⎪⎨-+⎪⎩<≥是奇函数,则a =. 4.下列函数:①()=f x x x +;②()=f x x x ;③2()=1x f x x+;④3()=f x x x +.其中既是奇函数,又是增函数是(用序号表示).5.奇函数()f x 的定义域为R ,则下列说法:①()()f f x 是奇函数;②()y f x =的图 像必经过点(,())a f x -;③()y f x =的图像关于原点对称;④(-)+()0f x f x =.其中 正确说法的个数是.6.若()f x 是R 上的任意函数,则下列叙述:①()()f x f x - 是奇函数;②()()f x f x - 是奇函数;③()-()f x f x -是偶函数;④()+()f x f x -是偶函数,其中正确的是(用 序号表示).7.若不恒为0的函数()f x 和()g x 分别是R 上的偶函数和奇函数,则下列结论:①|f (x )·|-g (x )是奇函数;②|f (x )|+g (x )是偶函数;③f (x )-|g (x )|是奇函数; ④f (x )+|g (x )|是偶函数.其中正确的是(用序号表示).8.若f (x )与g (x )都是定义在R 上的奇函数,则:①f (x )+g (x );②f (x )-g (x ); ③f (x )·g (x );④f (g (x )).其中一定是奇函数的是(永序号表示).9.若f (x )是R 上的奇函数,则下列函数:①y =f (|x |);②y =|f (x )|;③y =xf (x );④y =f (f (x )).其中奇函数是(用序号表示).10.定义在(-1,1)上的函数f (x )满足f (x )-f (x )=()()1x y f x f x f xy ⎛⎫-==⎪-⎝⎭,则f (x )的奇偶性是.11.判断下列函数的奇偶性,并给出证明.(1)f (x )=x ²+|x |; (2)f (x )=x ³-1x; (3)f (x )=1x ; (4)f (x )=22,0,,0.x x x x x x ⎧-⎪⎨+⎪⎩≤>12.已知f(x)是定义R上的不恒为零的函数,且对于任意的a,b∈R都是满足f(ab)=af(b)+bf(a).(1)求f(0),f(1)与f(-1)的值;(2)判断f(x)的奇偶性.第2课时函数奇偶性的应用创新练习(1~10题每小题7分,11~12题每小题15分,共100分)1.对于下列命题:①偶函数的图像一定与y轴相交;②奇函数的图像一定过原点;③既是奇函数又是偶函数的函数一定是f(x)=0(x∈R).其中正确的个数是.2.已知函数f(x)是R是哪个的奇函数,当x≥0时,f(x)=x(1-x)+b(b为常数),则f(-2)=.3.已知函数f(x)=x²+|x+a|是偶函数,则a=.4.已知函数f(x)是奇函数,当x>0时,f(x)=x-|x|,则当x<0时,f(x)=.5.已知函数f(x)是偶函数,且当x≥0时,f(x)=x²-2x,则f(x)的单调增区间为.6.若f(x)是偶函数,且当x∈[0,+∞)时,f(x)=x-1,则f(x-1)<0的解集是.7.已知f(x)是偶函数,且在(-∞,0)上是减函数,若f(1)=0,则xf(x)>0的解集为.8.已知函数224,0,()=4,0.x x xf xx x x⎧+⎪⎨-⎪⎩≥<若f(a-2)+f(a)>0,则A的取值范围是.9.已知函数f(x)=(x-a)(bx-2a)(常数a,b∈R)是偶函数,且它的值域为(-∞,8],则a+b=.10.已知函数f(x)满足f(-x)=f(x)(x∈R),且对任意的x1,x2∈(0,+∞),当x1<x2 时,都有f(x1)>f(x2),若f(2-a)≥f(a),则a的取值范围是.11.已知函数f(x)=|x+1|+|x-a|(x∈R,a是常数)的图像关于y轴对称.(1)求a的值;(2)设g(x)=f(x-t)-f(x+t)(t≠0),试判断g(x)的奇偶性,并给出证明.12.已知函数f(x)是定义域为R的函数,对任意的x∈R满足f(x)f(-x)=1,f(x)≠1.(1)若1()()1()f xg xf x+=-,求证g(x)的奇函数;(2)若11()()12h xf x=+-,试判断h(x)的奇偶性,并给出证明.第3课时函数的单调性与奇偶性创新练习(1~10题每小题7分,11~12题每小题15分,共100分)1.给定函数:①y=-x²,x∈R;②y=-x|x|,x∈R;③y=x,x∈R;④y=|x|,x∈R.在其定义域内既是奇函数又是减函数的是(用序号表示).2.若函数f(x)=x|x+a|+b是奇函数,则a=,b=.3.若函数y=f(x)是偶函数,y=f(x-2)在[0,2]上单调递增,则f(-1),f(0),f(2)的大小关系是.4.已知f(x)是R上的增函数,集合A={x|f(x+t)<f(2)},B={x|f(x)<f(-1)},若A ≠⊂B ,则实数t 的取值范围是. 5.已知函数221()1x x f x x ++=+,若2()3f a =,则f (-a )=. 6.对于函数:①f (x )=|x -2|+1;②f (x )=(x -2)²;③1()=2f x x -,有如下三个命题.命题甲:f (x +2)是偶函数;命题乙:f (x )在(-∞,2)上是减函数,在(2,+∞)上是增函数;命题丙:f (x +2)-f (x )在(-∞,+∞)上是增函数.使命题甲、乙、丙都正确的函数是(用序号表示).7.已知函数f (x )在定义域[-1,1]上单调递减,若f (a )+f (a -1)≤0,则实数a 的取值范围是.8.已知函数f (x )是定义在R 上的偶函数,在[-∞,0]上是减函数,且f (2)=0,则使f (x )<0的x 的取值范围是.9.已知f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=x ².若福任意的x ∈[a ,a +2],不等式())f x a f +≥恒成立,则实数a 的取值范围是.10.如果对于函数f (x )定义域D 上的任意x 1,x 2,当x 1<x 2时,都有f (x 1)≤f (x 2),且存在m 1,m 2∈D ,m 1≠m 2,单f (m 1)=f (m 2),则称f (x )是定义域D 是哪个的不严格增函数.已知函数g (x )是定义在A ={-1,0,1}上的不严格增函数,且值域B ⊆A ,那么这样的函数g (x )有个.11.已知函数f (x )是定义在R 上的单调函数,且对任意的x ∈R ,有f (x )-f (-x )=0恒成立,若f (-3)=2.(1)试判断f (x )在R 上的单调性,并说明理由;(2)求使f (1-x )+f (1+2x )<0成立的x 的取值范围.12.已知函数f (x )=x |x -a |(a ∈R ,x ∈R ).(1)判断函数f (x )的奇偶性,并说明理由.(2)函数f (x )在[0,+∞)上能否单调递增?若能,求出实数a 的取值范围;若不能,请说明理由.2.3 映射的概念创新练习 (1~10题每小题7分,11~12题每小题15分,共100分)1.已知集合,1b M a ⎧⎫=⎨⎬⎩⎭,N ={a ,0},若f :x →x 表示M 到N 的映射,则a +b =.2.集合A 中有两个元素,B ={-1,1,-4,4},f 是A 到B 的映射,若对应法则f 是求算术 平方根,则A =.3.已知集合A ={1+x ,1+2x },B ={y ,y ²},若f :x →x 表示A 到B 的映射,则x +y =.4.已知集合A ={a ,b },B ={-1,0,1},则满足f (a )+f (b )=0的映射f :A →B 的个数 为.5.已知集合A={a,b,c},B={-1,0,1},则f:A→B中满足f(b)=0的映射共有个.6.若集合A={x|0≤x≤2},B={y|0≤y≤6},则下列从A到B的对应:①x→y=2x;②x→y=2.5x;③x→y=3x;④x→y=3.5x.其中不少映射的是(用序号表示).7.已知集合A中的元素(x,y)在映射f的作用下与B中元素(xy,x+y)对应,则在f 的作用下,A中元素(2,3)在B中对应的元素为;与B众元素(2,3)对应的A的元素为.8.若集合A={-1,1,2},B={3,4,5,6},试写出一个从集合A到集合B的函数:.9.已知f:x→x²+1是A到B的一个函数,若值域B={1,2},则定义域A=.10.已知集合A={3,k},B={a4,a2+3a},定义映射f:A→B,使x→3x+1,则整数k和a的值分别为 .11.已知集合A到集合110,1,,23B⎧⎫=⎨⎬⎩⎭的映射f:11xx→-,那么集合A中的元素最多有几个?试写出元素最多的集合A.12.设集合A ={a ,b ,c },B ={-1,0,1},f 是A 到B 的映射,试问:满足f (a )+f (b )=f (c )的映射共有多少个?阶段检测(二)一、填空题(本大题共14小题,每小题5分,共70分)1.函数()f x =.2.已知函数f (x )=ax ²+bx +c (a ≠0)是偶函数,那么函数g (x )=ax ³+bx ²+cx 的奇偶性是.3.设S =max {a ,b }为a ,b 中的最大者,当x >0时,1max ,S x x ⎧⎫=⎨⎬⎩⎭,则S 的最小值 为.4.下列函数:①()f x =1()f xx =;③1()f x x =;④()f x =.其中以(0,+∞)为定义域的是(用序号表示).5.已知定义在R 上的函数f (x ),当x ∈[-1,1]时,f (x )=x ²-x ,且对任意的实数x 满 足f (x -1)=2f (x ),则f (x )在区间[5,7]上的最大值是.6.下列说法:①图像关于原点对称的函数是奇函数;②图像关于y 轴对称的函数是偶函 数;③奇函数的图像一定过原点;④偶函数的图像一定与y 轴相交.其中错误的是(用序号表示).7.若函数f (x )是定义在R 上的奇函数,则函数f (x )=|f (x )|+f (|x |)的图像关 于对称.8.下列函数:①y =1+x ³;②1y x =;③y =x +x ³;④1-y x=.其中既是奇函数,又在定义 域上是增函数的是(用序号表示).9.当x ∈[0,2]时,函数f (x )=ax ³+4(a -1)x-3在x =2是取得最大值,则a 的取值范围是.10.已知函数2()()a f x x a R x=+∈,则下列说的:①任给a ∈R ,f (x )在(0,+∞)上 是增函数;②任给a ∈R ,f (x )在(-∞,0)上是减函数;③存在a ∈R ,f (x )是奇函数; ④存在a ∈R ,f (x )是偶函数.其中正确的是(用序号表示).11.若函数22(1)()1x x f x x ++=+的最大值为M ,最小值为m ,则M +m =. 12.已知函数()12ax f x x=-满足f (f (x ))=x ,那么实数a =. 13.对任意的a ,b ∈R ,记{},,max ,,,a a b a b b a b ⎧=⎨⎩≥<则函数f (x )=max {|x +1|,|x -2|}(x ∈R )的最小值是.14.函数f (x )的定义域为D ,若对应任意的x 1,x 2∈D ,当x1<x2时,都有f (x 1)≤f (x 2), 则称函数f (x )在D 上为非减函数.若函数f (x )在[0,1]上为非减函数,且满足一下三个 条件:①f (0)=0;②1()32x f f x ⎛⎫= ⎪⎝⎭;③f (1-x )=1-f (x ),则1138f ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭=.二、解答题(本大题栋6小题,共90分)15.(本小题满分14分)已知函数2()f x x n =-满足f (m )=n ,且x =1是方程f (x )=x 的一个根,求f (4)的值.16.(本小题满分14分)已知a >1,且对任意的x ∈[a ,2a ],都存在y ∈[a ,a ²]满足xy =a ³,求实数a 的取值范围.17.(本小题满分14分)某厂生产某产品x 吨所需要的费用为P 元,卖出x 吨的价格为每吨Q 元.已知2110005,10x P x x Q a b=++=+.若生产出的产品能全部卖掉,且当产量为150吨时利润最大,此时每吨的价格为40元,求实数a ,b 的值.18.(本小题满分16分)定义:如果函数y =f (x )在定义域内给定的区间[a ,b ]上存在x 0(a <x 0<b ),满足0()()()f b f a f x b a-=-,则称函数y =f (x )是[a ,b ]上的“平均值函数”. (1)若f (x )=|x |-mx 是[-1,1]上的“平均值函数”,求实数m 的取值范围.(2)若g (x )=x ²-mx -1,问:g (x )是不是[0,1]上的“平均值函数”?若是,求出实数m 的取值范围;若不是,说明理由.19.(本小题满分16分)设函数f (x )=x ²+bx +c (b ,c ∈R ).(1)若y =xf (x )是奇函数,求b 的值;(2)若对任意的x 1,x 2∈[-1,1],恒有|f (x 1)-f (x 2)|≤4,求b 的取值范围.20.(本小题满分16分)在区间D 上,如果函数f (x )为增函数,而函数1()f x x为减函数,则称函数f (x )为“弱增”函数.已知函数()1f x =. (1)判断函数f (x )在区间(0,1)上是否为“若增”函数;(2)当x ∈[0,1]时,不等式11ax bx --恒成立,求实数a ,b 的取值范围.。

2019学年高一数学必修一课时作业:第2章 2.1 2.1.2 第2课时 指数函数及其性质的应用 (人教A版含解析)

2019学年高一数学必修一课时作业:第2章 2.1 2.1.2 第2课时 指数函数及其性质的应用 (人教A版含解析)

[课时作业][A 组 基础巩固]1.如果某林区森林木材蓄积量每年平均比上一年增长11.3%,经过x 年可以增长到原来的y 倍,则函数y =f (x )的图象大致为( )解析:y =(1+11.3%)x =1.113x .答案:D2.设函数f (x )=⎩⎨⎧ 2x , x <0,g (x ), x >0.若f (x )是奇函数,则g (2)的值是( )A .-14B .-4 C.14 D .4解析:由题设知g (2)=f (2)=-f (-2)=-2-2=-122=-14.答案:A3.函数y =2-x +1+2的图象可以由函数y =⎝ ⎛⎭⎪⎫12x 的图象经过怎样的平移得到( ) A .先向左平移1个单位,再向上平移2个单位B .先向左平移1个单位,再向下平移2个单位C .先向右平移1个单位,再向上平移2个单位D .先向右平移1个单位,再向下平移2个单位解析:y =2-x +1+2=⎝ ⎛⎭⎪⎫12x -1+2,设f (x )=⎝ ⎛⎭⎪⎫12x , 则f (x -1)+2=⎝ ⎛⎭⎪⎫12x -1+2,要想得到y =2-x +1+2的图象,只需将y =⎝ ⎛⎭⎪⎫12x 图象先向右平移1个单位,再向上平移2个单位.答案:C4.若定义运算a ⊙b =⎩⎨⎧ a ,a <b ,b ,a ≥b ,则函数f (x )=3x ⊙3-x 的值域是( ) A .(0,1]B.[1,+∞) C .(0,+∞) D .(-∞,+∞)解析:解法一:当x >0时,3x >3-x ,f (x )=3-x ,f (x )∈(0,1);当x =0时,f (x )=3x =3-x =1;当x <0时,3x <3-x ,f (x )=3x ,f (x )∈(0,1).综上,f (x )的值域是(0,1].解法二:作出f (x )=3x ⊙3-x 的图象,如图.可知值域为(0,1].答案:A5.设函数f (x )定义在实数集上,它的图象关于直线x =1对称,且当x ≥1时,f (x )=3x -1,则有( )A .f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫23 B .f ⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫13 C .f ⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫32 D .f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫13 解析:依对称性有f ⎝ ⎛⎭⎪⎫13=f ⎝ ⎛⎭⎪⎫1-23=f ⎝ ⎛⎭⎪⎫1+23=f ⎝ ⎛⎭⎪⎫53,f ⎝ ⎛⎭⎪⎫23=f ⎝ ⎛⎭⎪⎫1-13=f ⎝ ⎛⎭⎪⎫1+13= f ⎝ ⎛⎭⎪⎫43,又f (x )在x ≥1时为增函数,43<32<53,∴f ⎝ ⎛⎭⎪⎫43<f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫53,即f ⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫13. 答案:B6.已知函数f (x )=⎝ ⎛⎭⎪⎫12|x -1|,则f (x )的单调递增区间是________. 解析:解法一:由指数函数的性质可知f (x )=(12)x 在定义域上为减函数,故要求f (x )的单调递增区间,只需求y =|x -1|的单调递减区间.又y =|x -1|的单调递减区间为(-∞,1],所以f (x )的单调递增区间为(-∞,1].解法二:f (x )=⎝ ⎛⎭⎪⎫12|x -1|=⎩⎪⎨⎪⎧ ⎝ ⎛⎭⎪⎫12x -1,x ≥1,2x -1,x <1.可画出f (x )的图象求其单调递增区间.答案:(-∞,1]7.函数f (x )=a 2x -3a x +2(a >0,且a ≠1)的最小值为________.解析:设a x =t (t >0),则有f (t )=t 2-3t +2=(t -32)2-14,∴t =32时,f (t )取得最小值-14.答案:-148.若直线y =2a 与函数y =|a x -1|+1(a >0,且a ≠1)的图象有两个公共点,则a 的取值范围是________.解析:当a >1时,通过平移变换和翻折变换可得如图(1)所示的图象,则由图可知1<2a <2,即12<a <1,与a >1矛盾.当0<a <1时,同样通过平移变换和翻折变换可得如图(2)所示的图象,则由图可知1<2a <2,即12<a <1,即为所求.故填12<a <1.答案:12<a <19.求函数y =⎝ ⎛⎭⎪⎫12232x x --的单调区间和值域.解析:函数y =⎝ ⎛⎭⎪⎫12232x x --的定义域为R. 令t =x 2-3x -2,对称轴为x =32,在⎝ ⎛⎦⎥⎤-∞,32上是减函数,在⎣⎢⎡⎭⎪⎫32,+∞上是增函数,而y =⎝ ⎛⎭⎪⎫12t 在R 上为减函数.所以由复合函数的单调性可知,y =⎝ ⎛⎭⎪⎫12x 2-3x -2在⎝ ⎛⎦⎥⎤-∞,32上为增函数,在⎣⎢⎡⎭⎪⎫32,+∞上为减函数. 又∵t =x 2-3x -2在x =32时,t min =-174,∴y =(12)t 在t =-174时,取得最大值y max =2174.∴所求函数的值域为(0,2174)10.已知函数f (x )=a 2-2x2x +1(a 为常数). (1)证明:函数f (x )在(-∞,+∞)上是减函数;(2)若f (x )为奇函数,求a 的值.解析:(1)在(-∞,+∞)上任取两个值x 1,x 2且x 1<x 2,f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫a 2-2x 12x 1+1-⎝ ⎛⎭⎪⎫a 2-2x 22x 2+1 =2x 22x 2+1-2x 12x 1+1=2x 2-2x 1(2x 1+1)(2x 2+1), ∵2>1且x 1<x 2,∴2x 2-2x 1>0.又(2x 1+1)(2x 2+1)>0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2).∴函数f (x )在(-∞,+∞)上是减函数.(2)∵f (x )为奇函数且在x =0处有意义,∴f (0)=0,即a 2-2020+1=0. ∴a =1.[B 组 能力提升]1.已知定义在R 上的奇函数f (x )和偶函数g (x )满足f (x )+g (x )=a x -a -x +2(a >0,且a ≠1).若g (2)=a ,则f (2)等于( )A .2B.154C.174D .a 2 解析:∵f (x )是奇函数,g (x )是偶函数,∴由f (x )+g (x )=a x -a -x +2,①得-f (x )+g (x )=a -x -a x +2,②①+②,得g (x )=2,①-②,得f (x )=a x -a -x .又g (2)=a ,∴a =2,∴f (x )=2x -2-x ,∴f (2)=22-2-2=154.答案:B2.若函数f (x )=⎩⎨⎧ f (x +2),x <2,2-x , x ≥2,则f (-3)的值为( ) A.18B.12 C .2 D .8解析:f (-3)=f (-3+2)=f (-1)=f (-1+2)=f (1)=f (1+2)=f (3)=2-3=18.答案:A3.若存有正数x 使2x (x -a )<1成立,则a 的取值范围是( )A .(-∞,+∞)B.(-2,+∞) C .(0,+∞)D .(-1,+∞)解析:∵2x (x -a )<1,∴x -a <12x =⎝ ⎛⎭⎪⎫12x ∴a >x -⎝ ⎛⎭⎪⎫12x ,∵y =x 在(0,+∞)是增函数, y =⎝ ⎛⎭⎪⎫12x 在(0,+∞)是减函数,∴y =x -⎝ ⎛⎭⎪⎫12x 在(0,+∞)是增函数, 要使a >x -⎝ ⎛⎭⎪⎫12x 在(0,+∞)有解,需使a >0-⎝ ⎛⎭⎪⎫120=-1. 答案:D4.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=1-2-x ,则不等式f (x )<-12的解集是______.解析:∵f (x )是定义在R 上的奇函数,∴f (0)=0.当x <0时,f (x )=-f (-x )=-(1-2x )=2x -1.由2x -1<-12,2x <2-1,得x <-1.当x >0时,由1-2-x <-12,⎝ ⎛⎭⎪⎫12x >32,得x ∈∅; 当x =0时,f (0)=0<-12不成立;综上可知x ∈(-∞,-1).答案:(-∞,-1)5.已知函数f (x )=2x -12x +1. (1)求f [f (0)+4]的值;(2)求证:f (x )在R 上是增函数;(3)解不等式:0<f (x -2)<1517.解析:(1)∵f (0)=20-120+1=0, ∴f [f (0)+4]=f (0+4)=f (4)=24-124+1=1517. (2)设x 1,x 2∈R 且x 1<x 2,则2x 2>2x 1>0,2x 2-2x 1>0,∴f (x 2)-f (x 1)=2x 2-12x 2+1-2x 1-12x 1+1=2(2x 2-2x 1)(2x 2+1)(2x 1+1)>0, 即f (x 1)<f (x 2),所以f (x )在R 上是增函数.(3)由0<f (x -2)<1517得f (0)<f (x -2)<f (4),又f (x )在R 上是增函数,∴0<x -2<4,即2<x <6,所以不等式的解集是{x |2<x <6}.6.关于x 的方程⎝ ⎛⎭⎪⎫35x =3a +25-a有负根,求a 的取值范围. 解析:y =⎝ ⎛⎭⎪⎫35x 的定义域为x ∈R. ∵⎝ ⎛⎭⎪⎫35x =3a +25-a有负根,∴x <0. 又∵0<35<1,∴3a +25-a>1, ∴3a +25-a-1>0. ∴4a -35-a>0. 即⎩⎨⎧ 4a -3>0,5-a >0或⎩⎨⎧ 4a -3<0,5-a <0. 解得34<a <5.。

高中数学(苏教版,必修一) 第二章函数 2.1.4 课时作业(含答案)

高中数学(苏教版,必修一) 第二章函数 2.1.4 课时作业(含答案)

2.1.4 映射的概念 课时目标 1.了解映射的概念.2.了解函数与映射的区别与联系.1.一般地,设A 、B 是两个非空集合,如果按某种对应法则f ,对于A 中的________元素,在B 中都有______的元素与之对应,那么,这样的__________叫做集合A 到集合B 的映射,记作________.2.映射与函数由映射的定义可以看出,映射是______概念的推广,函数是一种特殊的映射,要注意构成函数的两个集合A ,B 必须是__________.一、填空题1.设f :A →B 是从集合A 到集合B 的映射,则下面说法正确的是________.(填序号) ①A 中的每一个元素在B 中必有元素与之对应;②B 中每一个元素在A 中必有元素与之对应;③A 中的一个元素在B 中可以有多个元素与之对应;④A 中不同元素在B 中对应的元素必不同.2.已知集合P ={x |0≤x ≤4},Q ={y |0≤y ≤2},下列能表示从P 到Q 的映射的是________.(填序号)①f :x →y =12x ;②f :x →y =13x ;③f :x →y =23x ; ④f :x →y =x .3.下列集合A 到集合B 的对应中,不能构成映射的是________.(填序号)4.下列集合A ,B 及对应法则能构成函数的是________.(填序号)①A =B =R ,f (x )=|x |;②A =B =R ,f (x )=1x; ③A ={1,2,3},B ={4,5,6,7},f (x )=x +3;④A ={x |x >0},B ={1},f (x )=x 0.5.给出下列两个集合之间的对应法则,回答问题:①A ={你们班的同学},B ={体重},f :每个同学对应自己的体重;②M ={1,2,3,4},N ={2,4,6,8},f :n =2m ,n ∈N ,m ∈M ;③M =R ,N ={x |x ≥0},f :y =x 4;④A ={中国,日本,美国,英国},B ={北京,东京,华盛顿,伦敦},f :对于集合A 中的每一个国家,在集合B 中都有一个首都与它对应.上述四个对应中映射的个数为______,函数的个数为______.6.集合A ={1,2,3},B ={3,4},从A 到B 的映射f 满足f (3)=3,则这样的映射共有________个.7.设A =Z ,B ={x |x =2n +1,n ∈Z },C =R ,且从A 到B 的映射是x →2x -1,从B 到C 的映射是y →12y +1,则经过两次映射,A 中元素1在C 中的对应的元素为________. 8.设f ,g 都是由A 到A 的映射,其对应法则如下表:映射f映射g则f [g (1)]的值为9.已知f 是从集合M 到N 的映射,其中M ={a ,b ,c },N ={-3,0,3},则满足f (a )+f (b )+f (c )=0的映射f 的个数是________.二、解答题10.设f :A →B 是集合A 到集合B 的映射,其中A ={正实数},B =R ,f :x →x 2-2x -1,求A 中元素1+2在B 中的对应元素和B 中元素-1在A 中的对应元素.11.已知A ={1,2,3,m },B ={4,7,n 4,n 2+3n },其中m ,n ∈N *.若x ∈A ,y ∈B ,有对应法则f :x →y =px +q 是从集合A 到集合B 的一个映射,且f (1)=4,f (2)=7,试求p ,q ,m ,n 的值.能力提升12.已知集合A =R ,B ={(x ,y )|x ,y ∈R },f :A →B 是从A 到B 的映射,f :x →(x +1,x 2+1),求A 中元素2在B 中的对应元素和B 中元素⎝⎛⎭⎫32,54在A 中的对应元素.13.在下列对应法则中,哪些对应法则是集合A 到集合B 的映射?哪些不是.(1)A ={0,1,2,3},B ={1,2,3,4},对应法则f :“加1”;(2)A =(0,+∞),B =R ,对应法则f :“求平方根”;(3)A =N ,B =N ,对应法则f :“3倍”;(4)A =R ,B =R ,对应法则f :“求绝对值”;(5)A =R ,B =R ,对应法则f :“求倒数”.1.映射中的两个集合A 和B 可以是数集、点集或由图形组成的集合等,映射是有方向的,A 到B 的映射与B 到A 的映射往往是不一样的.2.对应、映射、函数三个概念既有区别又有联系,在了解映射概念的基础上,深刻理解函数是一种特殊的映射,而映射又是一种特殊的对应.3.判断一个对应是否是映射,主要看第一个集合A 中的每一个元素在对应法则下是否都有对应元素,若有,再看对应元素是否唯一,若惟一则这个对应就是映射.2.1.4 映射的概念知识梳理1.每一个 惟一 单值对应 f :A →B 2.函数 非空数集 作业设计1.①2.①②④解析 如果从P 到Q 能表示一个映射,根据映射的定义,对P 中的任一元素,按照对应法则f 在Q 中有惟一元素和它对应,选项③中,当x =4时,y =23×4=83∉Q . 3.①②③解析 ①、②中的元素2没有对应的元素;③中1的对应有两个;只有④满足映射的定义.4.①③④解析 在②中f (0)无意义,即A 中的数0在B 中找不到和它对应的数.5.4 2解析 ①、②、③、④都是映射;②、③是函数.6.4解析 由于要求f (3)=3,因此只需考虑剩下两个元素的对应元素的问题,总共有如图所示的4种可能.7.13解析 A 中元素1在B 中对应的元素为2×1-1=1,而1在C 中对应的元素为12×1+1=13. 8.1解析 ∵g (1)=4,∴f [g (1)]=f (4)=1.9.7解析 ⎩⎪⎨⎪⎧ f (a )=3,f (b )=0,f (c )=-3,⎩⎪⎨⎪⎧ f (a )=-3,f (b )=0,f (c )=3, ⎩⎪⎨⎪⎧ f (a )=3,f (b )=-3,f (c )=0, ⎩⎪⎨⎪⎧ f (a )=-3,f (b )=3,f (c )=0, ⎩⎪⎨⎪⎧ f (a )=0,f (b )=3,f (c )=-3, ⎩⎪⎨⎪⎧ f (a )=0,f (b )=-3,f (c )=3,f (a )=f (b )=f (c )=0.10.解 当x =1+2时,x 2-2x -1=(1+2)2-2×(1+2)-1=0,所以1+2的对应元素是0.当x 2-2x -1=-1时,x =0或x =2.因为0∉A ,所以-1的对应元素是2.11.解 由f (1)=4,f (2)=7,列方程组:⎩⎪⎨⎪⎧ p +q =42p +q =7⇒⎩⎪⎨⎪⎧ p =3q =1. 故对应法则为f :x →y =3x +1.由此判断出A 中元素3的对应值是n 4或n 2+3n .若n 4=10,因为n ∈N *,不可能成立,所以n 2+3n =10,解得n =2(舍去不满足要求的负值).又当集合A 中的元素m 的对应元素是n 4时,即3m +1=16,解得m =5.当集合A 中的元素m 的对应元素是n 2+3n 时,即3m +1=10,解得m =3.由元素互异性知,舍去m =3.故p =3,q =1,m =5,n =2.12.解 将x =2代入对应法则,可求出其在B 中的对应元素(2+1,3).由⎩⎨⎧x +1=32,x 2+1=54, 得x =12. 所以2在B 中的对应元素为(2+1,3),⎝⎛⎭⎫32,54在A 中对应元素为12. 13.解 (1)中集合A 中的每一个元素通过对应法则f 作用后,在集合B 中都有唯一的一个元素与之对应,显然,对应法则f 是A 到B 的映射.(2)中集合A 中的每一个元素通过对应法则f 作用后,在集合B 中都有两个元素与之对应,显然对应法则f 不是A 到B 的映射.(3)中集合A 中的每一个元素通过对应法则f 作用后,在集合B 中都有唯一的元素与之对应,故对应法则f 是从A 到B 的映射.(4)中集合A 中的每一个元素通过对应法则f 作用后,在集合B 中都有唯一的元素与之对应,故对应法则f 是从A 到B 的映射.1(5)当x=0∈A,x无意义,故对应法则f不是从A到B的映射.。

北师版高中数学必修第一册课后习题 第2章函数 2.2 函数的表示法

北师版高中数学必修第一册课后习题 第2章函数 2.2 函数的表示法

2.2 函数的表示法课后训练巩固提升1.函数y=f(x)的图象如图所示,则函数y=f(x)的解析式为( ).A.f(x)=(x-a)2(b-x)B.f(x)=(x-a)2(x+b)C.f(x)=-(x-a)2(x+b)D.f(x)=(x-a)2(x-b),当x=b时,f(x)=0,故排除B,C;又当x>b时,f(x)<0,故排除D.2.(多选题)已知f(2x+1)=4x2,则下列结论正确的是( ).A.f(3)=36B.f(-3)=16C.f(x)=16x2+16x+4D.f(x)=x2-2x+12x+1=3时,x=1,因此f(3)=4×12=4;当2x+1=-3时,x=-2,因此f(-3)=4×(-2)2=16;令2x+1=t,则x=t -12,因此有f(t)=t 2-2t+1,即f(x)=x 2-2x+1.3.已知函数y=f(x)的对应关系如下表,函数y=g(x)的图象是如图的曲线ABC,其中点A(1,3),B(2,1),C(3,2),则f(g(2))的值为( ).(第3题)A.3B.2C.1D.0y=g(x)的图象与y=f(x)的对应关系表可知g(2)=1,f(1)=2,所以f(g(2))=f(1)=2.4.已知函数g(x)=1-2x,f(g(x))=1-x 2x 2(x≠0),则f(0)等于( ).A.-3B.-32C.32D.3g(x)=1-2x=0,得x=12,则f(0)=1-(12)2(12)2=3414=3.故选D.5.已知函数f(x)满足:f(x-1x)=x 2+1x2,则f(x)的解析式为( ).A.f(x)=x 2+2B.f(x)=x 2C.f(x)=x 2+2(x≠0)D.f(x)=x 2-2(x≠0)f(x-1x)=x 2+1x2=(x-1x)2+2,∴f(x)=x 2+2,故选A.6.已知函数f(x)对任意x ∈R,且x≠0均有f(x)+2f(1024x)=3x,则f(1024)= .x=1和x=1024,得{f (1)+2f (1024)=3,f (1024)+2f (1)=3072,解得f(1024)=-1022.7.已知函数f(x-1)=x 2-4x,求函数f(x),f(2x+1)的解析式.f(x-1)=x 2-4x,令x-1=t,则x=t+1,所以f(t)=(t+1)2-4(t+1)=t 2-2t-3,即f(x)=x 2-2x-3.因此f(2x+1)=(2x+1)2-2(2x+1)-3=4x 2-4.8.(1)已知f(x)是一次函数,且f(f(x))=4x-1,求f(x)的解析式; (2)已知f(x)是二次函数,且f(0)=1,f(x+1)-f(x)=2x,求f(x)的解析式.∵f(x)是一次函数,∴可设f(x)=ax+b(a≠0),则f(f(x))=f(ax+b)=a(ax+b)+b=a 2x+ab+b. 又f(f(x))=4x-1,∴a 2x+ab+b=4x-1. 则{a 2=4,ab +b =-1,解得{a =2,b =-13,或{a =-2,b =1. ∴f(x)=2x-13,或f(x)=-2x+1.(2)∵f(x)是二次函数, ∴可设f(x)=ax 2+bx+c(a≠0). 由f(0)=1,知c=1. 又f(x+1)-f(x)=2x,∴a(x+1)2+b(x+1)+1-ax 2-bx-1=2x. 整理得2ax+(a+b)=2x.∴{2a =2,a +b =0,解得{a =1,b =-1.∴f(x)=x 2-x+1.1.数学家狄利克雷曾提出:“如果对于x 的每一个值,y 总有一个完全确定的值与之对应,则y 是x 的函数”.这个定义较清楚地说明了函数的内涵:只要有一个法则,使得x 在取值范围中的每一个值,都有一个确定的y 和它对应就行了,不管这个对应法则是公式、图象、表格,还是其他形式.已知函数f(x)由下表给出,则f (10f (12))的值为( ).A.0B.1C.2D.3解析:因为12∈(-∞,1],所以f 12=1,则10f12=10,所以f 10f12=f(10).又因为10∈[2,+∞),所以f(10)=3.2.已知f(x-1)=x 2+4x-5,则f(x)的解析式是( ). A.f(x)=x 2+6x B.f(x)=x 2+8x+7 C.f(x)=x 2+2x-3D.f(x)=x 2+6x-10x-1=t,则x=t+1,所以f(t)=(t+1)2+4(t+1)-5=t 2+6t.所以f(x)=x 2+6x.3.如图,☉O 的半径为2,点A,B,C,D 为☉O 的四等分点,在☉O 内有两条半圆弧,一质点M 自点A 开始沿弧按A-B-C-O-A-D-C 的顺序做匀速运动,则其在水平方向(向右为正)的速度v=v(t)的图象大致为( ).AB⏜=BC ⏜=CD ⏜=DA ⏜=14×π×2×2=π,CO ⏜=OA ⏜=12×π×2×1=π,所以质点M 自点A 开始沿弧按A-B-C-O-A-D-C 的顺序做匀速运动时,走每一段弧所用的时间比为1∶1∶1∶1∶1∶1.又因为在水平方向上向右的速度为正,所以在AB⏜段速度为负,BC ⏜段速度为正,CO ⏜段速度先正后负,OA ⏜段速度先负后正,AD ⏜段速度为正,DC ⏜段速度为负,所以满足条件的函数图象是B.4.(多选题)设f(x)=1+x 21-x 2,则下列结论错误的是( ).A.f(-x)=-f(x)B.f(1x)=-f(x)C.f(-1x)=f(x) D.f(-x)=f(x)f(x)=1+x 21-x 2,所以f(-x)=1+(-x )21-(-x )2=f(x),f(1x )=1+(1x ) 21-(1x)2=x 2+1x 2-1=-f(x),f(-1x )=1+(-1x ) 21-(-1x)2=x 2+1x 2-1=-f(x),所以AC 错误.5.一等腰三角形的周长是20,底边长y 是关于腰长x 的函数,则y 关于x 的函数解析式为 .20,腰长为x,所以底边长y=20-2x,又20-2x>0,所以x<10,又三边长必须构成三角形,所以2x>y,即2x>20-2x,所以x>5,故y=20-2x(5<x<10).6.已知函数F(x)=f(x)+g(x),其中f(x)是x 的正比例函数,g(x)是x 的反比例函数,且F (13)=16,F(1)=8,则F(x)的解析式为 .f(x)=k 1x(k 1≠0),g(x)=k2x (k 2≠0),则由F (13)=16,F(1)=8,得{13k 1+3k 2=16,k 1+k 2=8,解得{k 1=3,k 2=5,故F(x)=3x+5x .:F(x)=3x+5x7.某客运公司确定车票价格的方法是:如果行程不超过100 km,票价是每千米0.5元;如果超过100 km,超过部分按每千米0.4元定价,则客运车票价格y(元)与行程数x(km)之间的函数关系式是 .0≤x≤100时,y=0.5x;当x>100时,y=100×0.5+(x -100)×0.4=10+0.4x. 所以y={0.5x ,0≤x ≤100,10+0.4x ,x >100.{0.5x ,0≤x ≤100,10+0.4x ,x >1008.已知f(x)对任意的实数a,b,都有f(ab)=f(a)+f(b)成立. (1)求f(0)与f(1)的值; (2)求证:f (1x)=-f(x);(3)若f(2)=p,f(3)=q(p,q 均为常数),求f(36)的值.a=b=0,得f(0)=f(0)+f(0),解得f(0)=0; 令a=1,b=0,得f(0)=f(1)+f(0),解得f(1)=0.a=1x ,b=x,得f(1)=f (1x )+f(x)=0,即f (1x)=-f(x).a=b=2,得f(4)=f(2)+f(2)=2p,令a=b=3,得f(9)=f(3)+f(3)=2q. 令a=4,b=9,得f(36)=f(4)+f(9)=2p+2q.。

北师版高中数学必修第一册课后习题 第2章函数 2.1 函数概念

北师版高中数学必修第一册课后习题 第2章函数 2.1 函数概念

2.1 函数概念课后训练巩固提升1.已知函数y=f(x)的定义域为(-1,3),则在同一平面直角坐标系中,函数f(x)的图象与直线x=2的交点有( ).A.0个B.1个C.2个D.0个或多个,函数f(x)的图象与直线x=2的交点个数为1,故选B.2.在下列图象中,可能是函数y=f(x)的图象的是( ).,任意一个自变量的值对应因变量唯一的值,所以可作直线x=a,将直线x=a从左向右在定义域内移动,看直线x=a与图象的交点个数是否唯一,显然,A,B,C均不满足,只有D满足,故选D.3.(多选题)下列函数中,满足f(2x)=2f(x)的是( ).A.f(x)=|x|B.f(x)=x-|x|C.f(x)=x+1D.f(x)=-xA 中,f(2x)=|2x|=2|x|,2f(x)=2|x|,满足f(2x)=2f(x);在B 中,f(2x)=2x-|2x|=2(x-|x|)=2f(x),满足题意;在C 中,f(2x)=2x+1,2f(x)=2(x+1)=2x+2,不满足f(2x)=2f(x);在D 中,f(2x)=-2x=2(-x)=2f(,则f(f(-1))= ,f(f(x))= .{1-m +n =-1,n 2-mn +n =m ,解得{m =1,n =-1. 所以f(x)=x 2-x-1,所以f(-1)=1.所以f(f(-1))=-1,f(f(x))=f(x 2-x-1)=(x 2-x-1)2-(x 2-x-1)-1=x 4-2x 3-2x 2+3x+1.x 4-2x 3-2x 2+3x+15.函数f(x)=(√x -1-2)0+√x -1的定义域是 .,需{√x -1-2≠0,x -1>0,解得x>1,且x≠5. 故所求函数的定义域为{x|x>1,且x≠5}.且x≠5}6.已知函数f(x)=x+1x+2.(1)求f(2)的值;(2)求函数f(x)的值域. :(1)f(2)=2+12+2=34. (2)f(x)=x+1x+2=x+2-1x+2=1-1x+2, 又1x+2≠0,则1-1x+2≠1.故函数f(x)的值域是(-∞,1)∪(1,+∞).7.求下列函数的定义域.(1)f(x)=√x x 2-x -2; (2)f(x)=√3x -1+√1-2x +4.要使函数有意义,只需{x ≥0,x 2-x -2≠0,解得x≥0,且x≠2. 故函数f(x)的定义域为{x|x≥0,且x≠2}.(2)要使函数有意义,只需{3x -1≥0,1-2x ≥0,解得13≤x≤12. 故函数f(x)的定义域为[13,12].1.(多选题)下列各组函数是同一个函数的是( ).A.f(x)=√-2x 3与g(x)=x √-2xB.f(x)=x 与g(x)=√x 2C.f(x)=x 0与g(x)=1x 0 D.f(x)=x 2-2x-1与g(t)=t 2-2t-1中,f(x)=-x √-2x ,g(x)=x √-2x ,对应关系不同,故f(x)与g(x)不是同一个函数;B 中,f(x)=x,g(x)=√x 2=|x|,对应关系不同,故f(x)与g(x)不是同一个函数;C 中,f(x)=x 0=1(x≠0),g(x)=1x 0=1(x≠0),对应关系与定义域均相同,故是同一个函数;D 中,f(x)=x 2-2x-1与g(t)=t 2-2t-1,对应关系和定义域均相同,故是同一个函数.2.下列四个函数:①y=3-x;②y=1x ;③y=x 2+2x-10;④y={-x ,x ≤0,-1x,x >0.其中定义域与值域相同的函数有( ).A.1个B.2个C.3个D.4个y=3-x 的定义域和值域均为R;②y=1x 的定义域为{x ∈R|x≠0},值域为{y ∈R|y≠0},定义域与值域相同; ③y=x 2+2x-10的定义域为R,值域为{y|y≥-11},定义域与值域不相同;④y={-x ,x ≤0,-1x,x >0的定义域和值域均为R. 所以定义域与值域相同的函数是①②④,共3个,故选C.3.若函数f(x)=ax 2-1,a 为正实数,且f(f(-1))=-1,则a 的值是( ).A.1B.0C.-1D.2,f(-1)=a-1,则f(f(-1))=a(a-1)2-1=-1,∴a(a-1)2=0.∵a>0,∴a=1.4.已知函数y=f(x)的定义域[-8,1],则函数g(x)=f (2x+1)x+2的定义域是( ).A.(-∞,-2)∪(-2,3]B.[-8,-2)∪(-2,1]C.[-92,-2)∪(-2,0]D.[-92,-2]-8≤2x+1≤1,解得-92≤x≤0, 由x+2≠0,解得x≠-2,故函数g(x)的定义域是[-92,-2)∪(-2,0].5.已知函数f()=2,则m 的值为 .f(m)=2,得m+1m+2=2,解得m=-3.6.若函数f(x)的定义域为[-2,1],则y=f(x)+f(-x)的定义域为 ,y=f(2x+1)的定义域为 .,得{-2≤x ≤1,-2≤-x ≤1,解得-1≤x≤1. 故y=f(x)+f(-x)的定义域为[-1,1]. 由-2≤2x+1≤1,得-32≤x≤0, 即函数y=f(2x+1)的定义域为[-32,0].[-32,0] 7.已知函数f(x)=x 1+x . (1)求f(2)与f (12),f(3)与f (13)的值;(2)由(1)中求得的结果,你发现f(x)与f (1x )有什么关系?并证明你的发现;(3)求f(1)+f(2)+…+f(1 020)+f (12)+f (13)+…+f (11020).∵函数f(x)=x 1+x , ∴f(2)=23,f (12)=13,f(3)=34,f (13)=14. (2)由(1)中求得的结果,可猜测f(x)+f (1x )=1. 证明如下:f(x)+f (1x )=x 1+x+1x 1+1x =x 1+x +1x+1=1. (3)由(2)知f(x)+f (1x)=1, ∴f(2)+f (12)=1,f(3)+f (13)=1,… f(1020)+f (11020)=1,又f(1)=12, ∴原式=f(1)+[f (2)+f (12)]+[f(3)+f(13)]+…+[f (1020)+f (11020)] =12+1+1+…+1⏟ 1019=12+1019=2.。

高中数学(苏教版,必修一) 第二章函数 2.5习题课 课时作业(含答案)

高中数学(苏教版,必修一) 第二章函数 2.5习题课 课时作业(含答案)

习题课 课时目标 1.进一步了解函数的零点与方程根的联系.2.进一步熟悉用“二分法”求方程的近似解.3.初步建立用函数与方程思想解决问题的思维方式.1.函数f (x )在区间(0,2)内有零点,则下列正确命题的个数为________.①f (0)>0,f (2)<0;②f (0)·f (2)<0;③在区间(0,2)内,存在x 1,x 2使f (x 1)·f (x 2)<0.2.函数f (x )=x 2+2x +b 的图象与两条坐标轴共有两个交点,那么函数y =f (x )的零点个数是________.3.设函数f (x )=log 3x +2x-a 在区间(1,2)内有零点,则实数a 的取值范围是________. 4.方程2x -x -2=0在实数范围内的解的个数是________.5.函数y =(12)x 与函数y =lg x 的图象的交点的横坐标是________.(精确到0.1) 6.方程4x 2-6x -1=0位于区间(-1,2)内的解有________个.一、填空题1.用二分法研究函数f (x )=x 3+3x -1的零点时,每一次经计算f (0)<0,f (0.5)>0,可得其中一个零点x 0∈________,第二次应计算________.2.函数f (x )=x 5-x -1的一个零点所在的区间可能是________.(填你认为正确的一个区间即可)3.函数f (x )=1-x 21+x的零点是________. 4.已知二次函数y =f (x )=x 2+x +a (a >0),若f (m )<0,则在(m ,m +1)上函数零点的个数是______________.5.已知函数f (x )=(x -a )(x -b )+2(a <b ),并且α,β(α<β)是函数y =f (x )的两个零点,则实数a ,b ,α,β的大小关系是________.6.若函数y =f (x )在区间(-2,2)上的图象是连续不断的曲线,且方程f (x )=0在(-2,2)上仅有一个实数根,则f (-1)·f (1)的值________.(填“大于0”,“小于0”,“等于0”或“无法判断”)7.已知偶函数y =f (x )有四个零点,则方程f (x )=0的所有实数根之和为________.8.若关于x 的二次方程x 2-2x +p +1=0的两根α,β满足0<α<1<β<2,则实数p 的取值范围为______________.9.已知函数f (x )=ax 2+2x +1(a ∈R ),若方程f (x )=0至少有一正根,则a 的取值范围为________.二、解答题10.若函数f (x )32求方程x 3+x 211.分别求实数m的范围,使关于x的方程x2+2x+m+1=0,(1)有两个负根;(2)有两个实根,且一根比2大,另一根比2小;(3)有两个实根,且都比1大.能力提升12.已知函数f(x)=x|x-4|.(1)画出函数f(x)=x|x-4|的图象;(2)求函数f(x)在区间[1,5]上的最大值和最小值;(3)当实数a为何值时,方程f(x)=a有三个解?13.当a取何值时,方程ax2-2x+1=0的一个根在(0,1)上,另一个根在(1,2)上.1.函数与方程存在着内在的联系,如函数y=f(x)的图象与x轴的交点的横坐标就是方程f(x)=0的解;两个函数y=f(x)与y=g(x)的图象交点的横坐标就是方程f(x)=g(x)的解等.根据这些联系,一方面,可通过构造函数来研究方程的解的情况;另一方面,也可通过构习题课双基演练1.0解析 函数y =f (x )在区间(a ,b )内存在零点,我们并不一定能找到x 1,x 2∈(a ,b ),满足f (x 1)·f (x 2)<0,故①、②、③都是错误的.2.1或2解析 当f (x )的图象和x 轴相切与y 轴相交时,函数f (x )的零点个数为1,当f (x )的图象与y 轴交于原点与x 轴的另一交点在x 轴负半轴上时,函数f (x )有2个零点.3.(log 32,1)解析 f (x )=log 3(1+2x)-a 在(1,2)上是减函数, 由题设有f (1)>0,f (2)<0,解得a ∈(log 32,1).4.2解析 作出函数y =2x 及y =x +2的图象,它们有两个不同的交点,因此原方程有两个不同的根.5.1.9解析 令f (x )=(12)x -lg x ,则f (1)=12>0,f (3)=18-lg 3<0,∴f (x )=0在(1,3)内有一解,利用二分法借助计算器可得近似解为1.9.6.2解析 设f (x )=4x 2-6x -1,由f (-1)>0,f (2)>0,且f (0)<0,知方程4x 2-6x -1=0在 (-1,0)和(0,2)内各有一解,因此在区间(-1,2)内有两个解.作业设计1.(0,0.5),f (0.25)解析 ∵f (0)<0,f (0.5)>0,∴f (0)·f (0.5)<0,故f (x )在(0,0.5)必有零点,利用二分法,则第二次计算应为f (0+0.52)=f (0.25). 2.[1,2](答案不唯一)解析 因为f (0)<0,f (1)<0,f (2)>0,所以存在一个零点x ∈[1,2].3.1解析 由f (x )=0,即1-x 21+x=0,得x =1,即函数f (x )的零点为1. 4.1解析 二次函数y =f (x )=x 2+x +a 可化为y =f (x )=(x +12)2+a -14,则二次函数对称轴为x =-12,其图象如图.∵f (m )<0,由图象知f (m +1)>0,∴f (m )·f (m +1)<0,∴f (x )在(m ,m +1)上有1个零点.5.a <α<β<b解析 函数g (x )=(x -a )(x -b )的两个零点是a ,b .由于y =f (x )的图象可看作是由y =g (x )的图象向上平移2个单位而得到的,所以a <α<β<b .6.无法判断解析 由题意不能断定零点在区间(-1,1)内部还是外部.故填“无法判断”. 7.0解析 不妨设它的两个正零点分别为x 1,x 2.由f (-x )=f (x )可知它的两个负零点分别是-x 1,-x 2,于是x 1+x 2-x 1-x 2=0.8.(-1,0)解析 设f (x )=x 2-2x +p +1,根据题意得f (0)=p +1>0,且f (1)=p <0,f (2)=p +1>0,解得-1<p <0.9.a <0解析 对ax 2+2x +1=0,当a =0时,x =-12,不符题意; 当a ≠0,Δ=4-4a =0时,得x =-1(舍去).当a ≠0时,由Δ=4-4a >0,得a <1,又当x =0时,f (0)=1,即f (x )的图象过(0,1)点,f (x )图象的对称轴方程为x =-22a =-1a, 当-1a>0,即a <0时, 方程f (x )=0有一正根(结合f (x )的图象);当-1a<0,即a >0时,由f (x )的图象知f (x )=0有两负根, 不符题意.故a <0.10.解 ∵f (1.375)·f (1.437 5)<0,且1.375与1.4375精确到0.1的近似值都是1.4,故方程x 3+x 2-2x -2=0的一个近似根为1.4.11.解 (1)方法一 (方程思想)设方程的两个根为x 1,x 2,则有两个负根的条件是⎩⎪⎨⎪⎧ Δ=4-4(m +1)≥0,x 1+x 2=-2<0,x 1x 2=m +1>0,解得-1<m ≤0.方法二 (函数思想)设函数f (x )=x 2+2x +m +1,则原问题转化为函数f (x )与x 轴的两个交点均在y 轴左侧,结合函数的图象,有⎩⎪⎨⎪⎧ Δ=4-4(m +1)≥0,-b 2a =-1<0,f (0)=m +1>0,解得-1<m ≤0. (2)方法一 (方程思想)设方程的两个根为x 1,x 2,则令y 1=x 1-2>0,y 2=x 2-2<0,问题转化为求方程(y +2)2+2(y +2)+m +1=0,即方程y 2+6y +m +9=0有两个异号实根的条件,故有y 1y 2=m +9<0,解得m <-9.方法二 (函数思想)设函数f (x )=x 2+2x +m +1,则原问题转化为函数f (x )与x 轴的两个交点分别在2的两侧,结合函数的图象,有f (2)=m +9<0,解得m <-9.(3)由题意知,⎩⎪⎨⎪⎧ Δ=4-4(m +1)≥0,x 1-1+x 2-1>0,(x 1-1)(x 2-1)>0(方程思想), 或⎩⎪⎨⎪⎧ Δ=4-4(m +1)≥0,-b 2a =-1>1,f (1)=m +4>0(函数思想),因为两方程组无解,故解集为空集.12.解 (1)f (x )=x |x -4|=⎩⎪⎨⎪⎧x 2-4x , x ≥4,-x 2+4x , x <4.图象如图所示.(2)当x ∈[1,5]时,f (x )≥0且当x =4时f (x )=0,故f (x )min =0;又f (2)=4,f (5)=5,故f (x )max =5.(3)由图象可知,当0<a <4时,方程f (x )=a 有三个解.13.解 ①当a =0时,方程即为-2x +1=0,只有一根,不符合题意.②当a >0时,设f (x )=ax 2-2x +1,∵方程的根分别在区间(0,1),(1,2)上,∴⎩⎪⎨⎪⎧ f (0)>0f (1)<0f (2)>0,即⎩⎪⎨⎪⎧1>0a -2+1<04a -4+1>0,解得34<a <1. ③当a <0时,设方程的两根为x 1,x 2,则x 1x 2=1a<0,x 1,x 2一正一负不符合题意.3综上,a的取值范围为4<a<1.。

高中数学(苏教版,必修一) 第二章函数 2.2.1 课时作业(含答案)

高中数学(苏教版,必修一) 第二章函数 2.2.1 课时作业(含答案)

§2.2 指数函数 2.2.1 分数指数幂课时目标 1.了解指数函数模型的实际背景,体会引入有理数指数幂的必要性.2.理解有理数指数幂的含义,知道实数指数幂的意义,掌握幂的运算.1.如果一个实数x 满足________________,那么称x 为a 的n 次实数方根. 2.式子na 叫做______,这里n 叫做________,a 叫做__________. 3.(1)n ∈N *时,(na )n =____.(2)n 为正奇数时,n a n =____;n 为正偶数时,na n =______.4.分数指数幂的定义:(1)规定正数的正分数指数幂的意义是:m na =__________(a >0, m 、n ∈N *,且n >1);(2)规定正数的负分数指数幂的意义是:m na -=____________(a >0,m 、n ∈N *,且n >1); (3)0的正分数指数幂等于____,0的负分数指数幂__________. 5.有理数指数幂的运算性质: (1)a r a s =______(a >0,r 、s ∈Q ); (2)(a r )s =______(a >0,r 、s ∈Q ); (3)(ab )r =______(a >0,b >0,r ∈Q ).一、填空题1.下列说法中:①16的4次方根是2;②416的运算结果是±2;③当n 为大于1的奇数时,n a 对任意a ∈R 都有意义;④当n 为大于1的偶数时,n a 只有当a ≥0时才有意义.其中正确的是________(填序号).2.若2<a <3,化简(2-a )2+4(3-a )4的结果是________. 3.在(-12)-1、122-、1212-⎛⎫⎪⎝⎭、2-1中,最大的是______________________________. 4.化简3a a 的结果是________.5.下列各式成立的是________.(填序号)①3m 2+n 2=()23m n +;②(b a)2=12a 12b ;③6(-3)2=()133-;④34=132.6.下列结论中,正确的个数为________.①当a <0时,()322a=a 3;②na n =|a |(n >0);③函数y =()122x --(3x -7)0的定义域是(2,+∞);④若100a =5,10b =2,则2a +b =1. 7.614-3338+30.125的值为________. 8.若a >0,且a x=3,a y=5,则22y x a+=________.9.若x >0,则(214x +323)(214x -323)-412x -·(x -12x )=________.二、解答题10.(1)化简:3xy 2·xy -1·xy ·(xy )-1(xy ≠0); (2)计算:122-+(-4)02+12-1-(1-5)0·238.11.设-3<x <3,求x 2-2x +1-x 2+6x +9的值.能力提升12.化简:4133223384a a b b a-+÷(1-23b a)×3a .13.若x >0,y >0,且x -xy -2y =0,求2x -xyy +2xy的值.§2.2 指数函数 2.2.1 分数指数幂知识梳理1.x n =a (n >1,n ∈N *) 2.根式 根指数 被开方数 3.(1)a (2)a |a | 4.(1)na m (2)1m na(3)0 没有意义 5.(1)a r +s (2)a rs (3)a r b r作业设计 1.③④解析 ①错,∵(±2)4=16, ∴16的4次方根是±2; ②错,416=2,而±416=±2. 2.1解析 原式=|2-a |+|3-a |,∵2<a <3,∴原式=a -2+3-a =1. 3.1212-⎛⎫⎪⎝⎭解析 ∵(-12)-1=-2, 122-=22,1212-⎛⎫⎪⎝⎭=2,2-1=12,且2>22>12>-2, ∴1212-⎛⎫ ⎪⎝⎭>122->2-1>(-12)-1.4.12a解析 12a .5.④解析 ①被开方数是和的形式,运算错误;(b a )2=b 2a2,②错;6(-3)2>0,()133-<0,③错.6.1解析 ①中,当a <0时,()322a =[()122a ]3=(-a )3=-a 3,∴①不正确;②中,若a =-2,n =3,则3(-2)3=-2≠|-2|,∴②不正确;③中,有⎩⎪⎨⎪⎧x -2≥0,3x -7≠0,即x ≥2且x ≠73,故定义域为[2,73)∪(73,+∞),∴③不正确;④中,∵100a =5,10b =2,∴102a =5,10b =2,102a ×10b =10,即102a +b =10. ∴2a +b =1,④正确. 7.32解析 原式=(52)2-3(32)3+3(12)3 =52-32+12=32. 8.9 5 解析 22y x a +=(a x )2·()12y a=32·125=9 5. 9.-23解析 原式=412x -33-412x +4=-23.10.解 (1)原式=()113212xy xy-⎡⎤⎢⎥⎣⎦·()12xy ·(xy )-1 =13x ·23y 16x16y-·12x-·12y-=13x ·13x-=⎩⎪⎨⎪⎧1, x >0-1, x <0. (2)原式=12+12+2+1-22 =22-3.11.解 原式=(x -1)2-(x +3)2 =|x -1|-|x +3|,∵-3<x <3,∴当-3<x <1时,原式=-(x -1)-(x +3)=-2x -2; 当1≤x <3时,原式=(x -1)-(x +3)=-4.∴原式=⎩⎪⎨⎪⎧-2x -2 (-3<x <1)-4 (1≤x <3).12.解 原式=()1321123333842aa b b a b a-++÷1133132a b a-×13a=()1321123333842aa b b a b a -++·1311332aa b-·13a =()33113382a a b a b -⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭=a (a -8b )a -8b=a .13.解 ∵x -xy -2y =0,x >0,y >0, ∴(x )2-xy -2(y )2=0, ∴(x +y )(x -2y )=0, 由x >0,y >0得x +y >0, ∴x -2y =0,∴x =4y , ∴2x -xy y +2xy =8y -2y y +4y =65.。

北师版高中数学必修第一册课后习题 第2章函数 4.2 简单幂函数的图象和性质

北师版高中数学必修第一册课后习题 第2章函数 4.2 简单幂函数的图象和性质

4.2 简单幂函数的图象和性质课后训练巩固提升1.下列说法正确的有( ).①幂函数的图象都经过点(1,1)和点(0,0);②幂函数的图象不可能在第四象限;③n=0时,函数y=x n的图象是一条直线;④当n>0时,幂函数y=x n是增函数;⑤当n<0时,幂函数y=x n在第一象限内函数值y随自变量x的增大而减小.A.①④B.④⑤C.②③D.②⑤:y=1的图象不过点(0,0),所以①错误,排除A;当n=0时,y=x n的图象x为直线除去一点,③错误,排除C;当n=2时,y=x2在整个定义域上不具有单调性,④错误,排除B.因此答案选D.2.如图所示,曲线C1与C2分别是函数y=x m和y=x n在第一象限内的图象,则下列结论正确的是( ).(第2题)A.n<m<0B.m<n<0C.n>m>0D.m>n>0,两函数在第一象限内单调递减,故m<0,n<0,且2m >2n ,则m>n.3.已知点(a ,12)在幂函数f(x)=(a-1)x b 的图象上,则函数f(x)是( ).A.奇函数B.偶函数C.定义域内的减函数D.定义域内的增函数f(x)=(a-1)x b 是幂函数, ∴a-1=1,解得a=2.∵点(a ,12)在幂函数f(x)=(a-1)x b 的图象上,即点(2,12)在幂函数f(x)=x b 的图象上,∴f(2)=2b =12,解得b=-1,∴f(x)=1x.故函数f(2-3m+3)xm 2-m -2的图象不过原点,则m 的值是 .,m 2-3m+3=1,即m 2-3m+2=0,解得m=1或m=2.经检验m=1或m=2均符合题意,即m=1或m=2.或25.为了保证信息的安全传输,有一种密码系统,其加密、解密原理为:发送方由明文到密文(加密),接收方由密文到明文(解密).现在加密密钥为y=x α(α为常数),若“4”通过加密后得到密文“2”,现接收方接到密文“3”,则解密后得到的明文是 .2=4α,解得α=12,则y=√x .由√x =3,得x=9.6.已知函数f(,且f(4)=-72.(1)求m 的值;(2)判断f(x)在区间(0,+∞)上的单调性,并给予证明.∵f(4)=-72,∴24-4m =-72,解得m=1.(2)由(1)知,f(x)=2x-x,其在区间(0,+∞)上单调递减.证明如下:任取x 1,x 2∈(0,+∞),且x 1<x 2,则f(x 1)-f(x 2)=(2x 1-x 1)−(2x 2-x 2)=(x 2-x 1)(2x1x 2+1).∵0<x 1<x 2,∴x 2-x 1>0,2x 1x 2+1>0.∴f(x 1)-f(x 2)>0,∴f(x 1)>f(x 2).∴函数f(x)=2x -x 在区间(0,+∞)上单调递减.1.已知f(x)=√x ,若0<a<b<1,则下列各式正确的是( ). A.f(a)<f(b)<f (1a )<f (1b )B.f (1a )<f (1b )<f(b)<f(a)C.f(a)<f(b)<f (1b )<f (1a )D.f (1a )<f(a)<f (1b)<f(b)f(x)=√x 在区间(0,+∞)上单调递增,又0<a<b<1b<1a ,所以f(a)<f(b)<f (1b )<f (1a ).2.幂函数y=x α中α的取值集合C 是{-1,0,12,1,2,3}的子集,当幂函数的值域与定义域相同时,集合C 可以为( ). A.{-1,0,12} B.{12,1,2} C.{-1,12,1,3} D.{12,1,2,3}y=1x,y=x 0,y=√x ,y=x,y=x 2,y=x 3的图象和解析式可知,当α=-1,12,1,3时,相应幂函数的值域与定义域相同.3.若函数f(x)是幂函数,且满足f (4)f (2)=12,则f (12)的值为( ). A.-2B.-12C.2D.12f(x)=x α(α为常数). ∵f (4)f (2)=12,∴4α2α=12,解得α=-1.∴f(x)=1x .于是f (12)=2.4.(多选题)已知函数f(x)=√x ,则下列说法正确的有( ). A.若x>1,则f(x)>1 B.若0<x 1<x 2,则f (x 1)+f (x 2)2>f(x 1+x 22) C.若0<x 1<x 2,则f (x 1)+f (x 2)2<f(x 1+x 22)D.若0<x 1<x 2,则x 2f(x 1)<x 1f(x 2)且函数f(x)在区间(0,+∞)上单调递增,所以当x>1时,f(x)>1,A 正确;根据f(x)=√x 的图象得当0<x 1<x 2时,f (x 1)+f (x 2)2<f(x 1+x 22),所以C 正确,B 错误;当0<x 1<x 2时,x 2f(x 1)<x 1f(x 2)⇒f (x 1)x 1<f (x 2)x 2,表明在[0,+∞)上,函数图象上任意一点与原点连线的斜率随x 的变大而变大,由幂函数f(x)=√x 的图象知,该结论是错误的,所以D 错误.5.已知幂函数f(x)=x α的部分对应值如下表:则函数f(x)的单调递增区间是 .f (12)=√22,所以(12)α=√22,得α=12,所以f(x)=√x ,它的单调递增区间是[0,+∞).6.已知幂函数f(+1)x12(1-8m -m 2)的图象与x 轴和y 轴都无交点.(1)求f(x)的解析式; (2)解不等式f(=±1.又f(x)的图象与=1,此时f(x)=x -4. (2)由(1)知,f(x)=x -4.f(x)=x -4是偶函数且在区间(0,+∞)上单调递减,所以要使得f(x+1)>f(x-2),只需|x+1|<|x-2|,解得x<12.又f(x)的定义域为{x|x≠0},所以x≠-1,且x≠2,,且x≠-1}. 综上所述,不等式的解集为{x|x<12。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2章 函 数2.1 函数的概念 2.1.1 函数的概念与图像 第1课时 函数的概念创新练习 (1~10题每小题7分,11~12题美小题15分,共100分) 1.对应x →y (其中y =21x,x ∈R ,y ∈R +)(填“是”或“不是”)R 到R +的函数.2.函数12f x x-(的定义域为. 3.已知函数f (x )=2x +1的值域为{-1,1,3,5,7},则其定义域为.4.已知函数221()1x f x x-=+,若3()5f x =。

则x =. 5.给出下列函数:①()f x =②2()f x =;③2()x f x x=;④()f x =.其中与f (x )=x 表示同一函数的是(用序号表示).6.若函数21,1()1,1x x f x x x-⎧⎪⎨⎪⎩<,≥,则()(2)f f =.7.已知函数()f x =A ,若2∉A ,则a 的取值围 是 .8.已知函数21,1()(3),1,x x f x f x x +⎧=⎨+⎩≥<则5()2f f ⎛⎫- ⎪⎝⎭=.9.若函数1,0,()1,x 0,x f x ⎧=⎨-⎩><则对于任意不想打的两个实数a ,b ,代数式a ()22b a bf a b +-+-的值为.10.已知函数f (x )=x ²-2x ,x ∈[a ,b ]的值域为[-1,3],则b -a 的取值围是.11.已知函数,0,()2,0.x bx c x f x x ++⎧=⎨⎩≤>f (-4)=f (0),f (-2)=-2.(1)求函数f (x )的解析式;(2)定义满足f (x 0)=x 0的x 0为函数f (x )的不动点,求函数出f (x )的所有不动点.12.已知函数21122,0,22()122,,1.2x x x f x x x ⎧⎡⎫-++∈⎪⎪⎢⎪⎣⎭=⎨⎡⎤⎪-+∈⎢⎥⎪⎣⎦⎩,若0101x 0,,(),2x f x ⎡⎫∈=⎪⎢⎣⎭00()f x x =,求x 0的值.第2课时 函数的图像创新练习 (1~10题每小题7分,11~12题每小题15分,共100分) 1.函数f (x )=x ²(x =-1,0,1,2)的图像为.2.函数,0,()1,0x x f x x x⎧⎪=⎨⎪⎩≥<的图像为.3.若函数f (x )的图像恒过定点(0,-1),则函数f (x +2)的图像恒过定点.4.函数31,0,()11,0x x f x x x⎧+⎪=⎨+⎪⎩<>的图像大致是.5.已知函数y =f (x )的定义域为R ,则函数y =f (x -1)与y =f (1-x )的图像关于直线 对称.6.函数12,0,()12,0x x f x ax x +⎧=⎨+⎩>≤的图像关于y 轴对称,则实数a 的值为.7.若y =f (x )的图像如图所示,则不等式f (x )>0的解集为.8.若集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},则从M 到N 的四中对应如图所示,其中能表示为M 到N 的函数关 系的是(用序号表示).9.已知函数y =f (x )的图像如图所示,则不等式xf (x )<0的解集为.10.若函数2()()ax bf x x c +=+的图像如图所示,则a ,b ,c ,的值的符号是.11.作出下列函数的图像:(1)21,1,2,1;x x y x x x -⎧=⎨-⎩≥<(2)11,0,,0.x x y x x ⎧--⎪=⎨-⎪⎩≥<12.已知函数1()(0)f x x x x=->的图像如图所示,分别作出下列函数的图像: (1)y =f (|x |);(2)y =|f (x )|;(3)y =|f (-x )|;(4)y =-f (-x );(5)y =f (x )+|f (x )|.2.1.2 函数的表示方法第1课时 函数的表示方法创新练习 (1~10题每小题7分,11~12题美小题15分,共100分) 1.已知a ,b 为常数,若f (x )=x +4,f (ax +b )=x +10,则a +b =. 2.若函数f (x )和g (x )的自然量和函数值的对应表格如下:则f (g (1))=,g (f (1))=.3.若函数221,1,()2,1,x x f x x x x ⎧-⎪=⎨+-⎪⎩≤>则1(2)f f ⎛⎫⎪⎝⎭的值 为.4.已知函数2,0,()2,0,x x f x x x +⎧=⎨-+⎩≤>则不等式f (x )≥2x 的解集为.5.已知函数21,1,()1, 1.x x f x x x-⎧⎪=⎨⎪⎩<≥若f (f (x ))=0,则x =.6.若函数f (x )的定义域为R ,且满足f (xy )=f (x )+f (y ),则1()f f x x ⎛⎫+=⎪⎝⎭. 7.函数f (x )对于任意的实数x 满足条件1(1)()f x f x +=,若f (1)=-5,则f (f (5)) =.8.已知函数22,,()52,.x x a f x x x x a +⎧=⎨++⎩>≤若f (x )=2x 恰有3个实数根,则实数a 的取值围是.9.已知函数[][]2,0,1,(),0,1,x f x x x ⎧∈⎪=⎨∉⎪⎩则使f (f (x ))=2成立的实数x 的集合为.x 12 3 4 x 12 3 4 f (x ) 3 4 2 1 f (x ) 4 3 1 210.用min {a ,b }表示a ,b 两个数中的较小值,若函数f (x )=min {x +2,4-x }则 f (x )max =.11.定义运算“*”为*a b a b =+,其中a ,b 是正实数,已知1*k =3. (1)求正实数k 的值;(2)求函数f (x )=k *x 的值域.12.已知函数11()(1)1xf x x x+=≠-,定义*11()(())()n n f x f f x n N +=∈,试求函数4()f x 的解析式.第2课时 函数表示方法的应用课标定位 进一步理解并掌握函数的三种表示方法,并能通过建立函数模型求解一些简单的应用性问题.创新练习 (1~10题每小题7分,11~12题美小题15分,共100分)1.若函数1,0,()0,0,1,0,x f x x x ⎧⎪==⎨⎪-⎩><1,()0,x g x x ⎧=⎨⎩为有理数,为无理数,则()()f g e =.2.已知函数f (x ),g (x )分别由下表给出:则()(1)f g 的值为;当()()2g f x =时,x =. 3.已知函数()f x 满足112()32f x f x x ⎛⎫-=-⎪⎝⎭,则(2)f =. 4.若函数[]2()(2)3,,f x x a x x a b =+++∈的图像关于直线x =1对称,则b =.5.制衣定义域为R 的函数()f x 满足(+2)=2()f x f x ,且当[]0,2x ∈时,2()=f x x ,则当[]4,2x ∈--时,()f x 的最大值为.6.已知函数()y f x =的图像关于直线x =1对称,且当x <0时,1()=f x x,则当x >0时,()f x =.7.某公司将进货单价为8元一个的商铺,按10元一个销售,每天可卖出100个,若这种商品的销售单价每上涨1元,则销售量就减少10个,为获得最大利润,此商品销售价应该为. 8.用min {a ,b }表示a ,b 两个数中的最小值,若函数{}()=min ,f x x x t +的图像关于直线12x =-对称,则t 的值为. 9.已知函数2()=f x x 的值域为{1,4},这样的函数的个数为.10.已知a ,t 为正实数,函数2()=2f x x x a -+,且对任意的[]0,x t ∈,都有[](),f x a a ∈-.若对每一个正实数a ,记t 的最大值为()g a ,则函数()g a 的值域为. 11.已知函数2(1),01,()=1,12,x x f x x x -⎧⎨-⎩≤≤<≤记()()3()=()f x f f f x ,(1)解不等式()f x x ≤;(2)设集合A ={0,1,2},求证:对任意的3,()x A f x x ∈=.12.由市场调查,某商品在最近40天的价格()f t 与实际t 满足关系**111,020,,()241,2040,.t t t N f t t t t N ⎧+∈⎪=⎨⎪-+∈⎩≤<≤≤销售量()g t 与实际t 满足关系*143()(040,)33g t t t t N =-+∈≤≤,求这种商品的日销售额(销售量与价格的乘积)的最大值.2.2 函数的简单性质 2.2.1 函数的单调性 第1课时 函数单调性的概念创新练习 (1~10题每小题7分,11~12题每小题15分,共100分) 1.若函数y =(k -1)x +1是R 上的减函数,则k 的取值围是 .2.函数y =-x ²+2x 的单调区间是.3.函数2,0,(),0x x f x x x ⎧=⎨⎩≥<的单调区间是.4.若函数()=2f x x a +的单调区间是(]-3∞,,则a =.5.已知函数2()=3f x x mx =+在区间[)2+∞,(]-0∞,上是单调减函数,则实数b 的取值围是.6.已知2()=23f x x mx -+在(]-2∞,上是减函数,在上是增函数,则(1)f =.7.函数()=1f x x x +-的单调区间是.8.下列函数:①1()f x x=;②()=f x x ;③2()=(1)f x x -;④()=1f x ax +(a 为长),其中一定满足:“对任意的12,(0,)x x ∈+∞,当12x x <时,都有12()()f x f x <成立”的是(用序号表示).9.函数2()=4f x x x x +-的单调区间是.10.函数2()=1xf x x -在区间(-1,1)上的单调性为.11.已知a >0,函数2()2x a f x x a-+在区间[1,4]上的最大值为13,数a 的值.12.已知()f x 是定义R 上的函数,对任意的1212,()x x R x x ∈≠,恒有[]1212()()()0x x f x f x -->,且存在0x R ∈,对任意的12,x x R ∈,恒有0102012()()()()f x x x x f x f x f x +=++的成立.(1)求(0)+(1)f f 的值; (2)求0x 的值.第2课时 函数单调性的应用创新练习 (1~10题每小题7分,11~12题每小题15分,共100分)1.若函数()a f x x x=-在(0,+∞)上是减函数,则实数a 的取值围是. 2.若2()2f x x ax =-+与()a g x x =在区间[1,2]上都是减函数,则实数a 的取值围 是.3.已知2,0,(),0,x x f x x x ⎧=⎨⎩≤>则使(2)()f x f x ->的x 的取值围是.4.若c <0,()f x 是区间[a ,b]上的减函数,则()+f x c 在[a ,b ]上的最小值为;()cf x 在[a ,b ]上的最小值为.5.函数(f x . 6.若()1ax f x x=-为区间(-1,1)上的增函数,则实数a 的取值围是. 7.若函数()f x x a =-在区间[0,1]上的最大值为M (a ),则M (a )的最小值为.8.已知函数()f x 是R 上的单调函数,则满足4()3x f x f x -⎛⎫= ⎪-⎝⎭的x 的值为. 9.已知函数1()=x-f x x ,1()g x x m x---,若对任意的[]11,3x ∈,存在[]22,1x ∈--, 使得12()()f x g x ≥成立,则实数m 的取值围是.10.已知函数2,0,(),0,x x f x x x ⎧=⎨-⎩≥<则满足不等式(()3)4f f x ->的x 的取值围 是.11.设函数()f x 是定义在(0,+∞)上的减函数,且对任意的x ,y ∈(0,+∞)满足()()()f xy f x f y =+.若(2)=1f ,求满足不等式()(1)2f a f a -+≥的a 的取值围.12.已知函数1()1(0)f x x x=->. (1)求()f x 的单调区间.(2)是否存在实数a ,b (0<a <b ),使得当x ∈[a ,b ]时,()f x 的值域为11,22a b --⎡⎤⎢⎥⎣⎦.若存在,求a ,b 的值;若不存在,青请说明理由.2.2.2 函数的奇偶性第1课时 函数奇偶性的概念1.函数y =.2.对于定义在R 上的函数()f x ,给出下列三个命题:①若(-2)=(2)f f ,则()f x 是偶函数;②若(-2)(2)f f ≠,则()f x 不是偶函数;③若 (-2)=(2)f f ,则f (x )一定不是奇函数.其中正确的命题为(永序号表示).3.若函数22,0,()=,0x ax x f x x x x ⎧+⎪⎨-+⎪⎩<≥是奇函数,则a =. 4.下列函数:①()=f x x x +;②()=f x x x ;③2()=1x f x x+;④3()=f x x x +.其中 既是奇函数,又是增函数是(用序号表示).5.奇函数()f x 的定义域为R ,则下列说法:①()()f f x 是奇函数;②()y f x =的图 像必经过点(,())a f x -;③()y f x =的图像关于原点对称;④(-)+()0f x f x =.其中 正确说法的个数是.6.若()f x 是R 上的任意函数,则下列叙述:①()()f x f x -是奇函数;②()()f x f x - 是奇函数;③()-()f x f x -是偶函数;④()+()f x f x -是偶函数,其中正确的是(用 序号表示).7.若不恒为0的函数()f x 和()g x 分别是R 上的偶函数和奇函数,则下列结论:①|f (x )·|-g (x )是奇函数;②|f (x )|+g (x )是偶函数;③f (x )-|g (x )|是奇函数; ④f (x )+|g (x )|是偶函数.其中正确的是(用序号表示).8.若f (x )与g (x )都是定义在R 上的奇函数,则:①f (x )+g (x );②f (x )-g (x ); ③f (x )·g (x );④f (g (x )).其中一定是奇函数的是(永序号表示).9.若f (x )是R 上的奇函数,则下列函数:①y =f (|x |);②y =|f (x )|;③y =xf (x );④y =f (f (x )).其中奇函数是(用序号表示).10.定义在(-1,1)上的函数f (x )满足f (x )-f (x )=()()1x y f x f x f xy ⎛⎫-==⎪-⎝⎭,则f (x )的奇偶性是.11.判断下列函数的奇偶性,并给出证明.(1)f (x )=x ²+|x |; (2)f (x )=x ³-1x; (3)f (x )=1x ; (4)f (x )=22,0,,0.x x x x x x ⎧-⎪⎨+⎪⎩≤>12.已知f (x )是定义R 上的不恒为零的函数,且对于任意的a ,b ∈R 都是满足f (ab )=af (b )+bf (a ).(1)求f (0),f (1)与f (-1)的值;(2)判断f (x )的奇偶性.第2课时函数奇偶性的应用创新练习(1~10题每小题7分,11~12题每小题15分,共100分)1.对于下列命题:①偶函数的图像一定与y轴相交;②奇函数的图像一定过原点;③既是奇函数又是偶函数的函数一定是f(x)=0(x∈R).其中正确的个数是.2.已知函数f(x)是R是哪个的奇函数,当x≥0时,f(x)=x(1-x)+b(b为常数),则f(-2)=.3.已知函数f(x)=x²+|x+a|是偶函数,则a=.4.已知函数f(x)是奇函数,当x>0时,f(x)=x-|x|,则当x<0时,f(x)=.5.已知函数f(x)是偶函数,且当x≥0时,f(x)=x²-2x,则f(x)的单调增区间为.6.若f(x)是偶函数,且当x∈[0,+∞)时,f(x)=x-1,则f(x-1)<0的解集是.7.已知f(x)是偶函数,且在(-∞,0)上是减函数,若f(1)=0,则xf(x)>0的解集为.8.已知函数224,0,()=4,0.x x xf xx x x⎧+⎪⎨-⎪⎩≥<若f(a-2)+f(a)>0,则A的取值围是.9.已知函数f(x)=(x-a)(bx-2a)(常数a,b∈R)是偶函数,且它的值域为(-∞,8],则a+b=.10.已知函数f(x)满足f(-x)=f(x)(x∈R),且对任意的x1,x2∈(0,+∞),当x1<x2时,都有f(x1)>f(x2),若f(2-a)≥f(a),则a的取值围是.11.已知函数f(x)=|x+1|+|x-a|(x∈R,a是常数)的图像关于y轴对称.(1)求a的值;(2)设g(x)=f(x-t)-f(x+t)(t≠0),试判断g(x)的奇偶性,并给出证明.12.已知函数f(x)是定义域为R的函数,对任意的x∈R满足f(x)f(-x)=1,f(x)≠1.(1)若1()()1()f xg xf x+=-,求证g(x)的奇函数;(2)若11()()12h xf x=+-,试判断h(x)的奇偶性,并给出证明.第3课时函数的单调性与奇偶性创新练习(1~10题每小题7分,11~12题每小题15分,共100分)1.给定函数:①y=-x²,x∈R;②y=-x|x|,x∈R;③y=x,x∈R;④y=|x|,x∈R.在其定义域既是奇函数又是减函数的是(用序号表示).2.若函数f(x)=x|x+a|+b是奇函数,则a=,b=.3.若函数y=f(x)是偶函数,y=f(x-2)在[0,2]上单调递增,则f(-1),f(0),f(2)的大小关系是.4.已知f(x)是R上的增函数,集合A={x|f(x+t)<f(2)},B={x|f(x)<f(-1)},若A≠⊂B,则实数t的取值围是.5.已知函数221()1x xf xx++=+,若2()3f a=,则f(-a)=.6.对于函数:①f(x)=|x-2|+1;②f(x)=(x-2)²;③1()=2f xx-,有如下三个命题.命题甲:f(x+2)是偶函数;命题乙:f(x)在(-∞,2)上是减函数,在(2,+∞)上是增函数;命题丙:f(x+2)-f(x)在(-∞,+∞)上是增函数.使命题甲、乙、丙都正确的函数是(用序号表示).7.已知函数f(x)在定义域[-1,1]上单调递减,若f(a)+f(a-1)≤0,则实数a的取值围是.8.已知函数f (x )是定义在R 上的偶函数,在[-∞,0]上是减函数,且f (2)=0,则使f (x )<0的x 的取值围是.9.已知f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=x ².若福任意的x ∈[a ,a +2],不等式())f x a f +≥恒成立,则实数a 的取值围是.10.如果对于函数f (x )定义域D 上的任意x 1,x 2,当x 1<x 2时,都有f (x 1)≤f (x 2),且存在m 1,m 2∈D ,m 1≠m 2,单f (m 1)=f (m 2),则称f (x )是定义域D 是哪个的不严格增函数.已知函数g (x )是定义在A ={-1,0,1}上的不严格增函数,且值域B ⊆A ,那么这样的函数g (x )有个.11.已知函数f (x )是定义在R 上的单调函数,且对任意的x ∈R ,有f (x )-f (-x )=0恒成立,若f (-3)=2.(1)试判断f (x )在R 上的单调性,并说明理由;(2)求使f (1-x )+f (1+2x )<0成立的x 的取值围.12.已知函数f (x )=x |x -a |(a ∈R ,x ∈R ).(1)判断函数f (x )的奇偶性,并说明理由.(2)函数f (x )在[0,+∞)上能否单调递增?若能,求出实数a 的取值围;若不能,请说明理由.2.3 映射的概念创新练习 (1~10题每小题7分,11~12题每小题15分,共100分)1.已知集合,1b M a ⎧⎫=⎨⎬⎩⎭,N ={a ,0},若f :x →x 表示M 到N 的映射,则a +b =.2.集合A 中有两个元素,B ={-1,1,-4,4},f 是A 到B 的映射,若对应法则f 是求算术 平方根,则A =.3.已知集合A ={1+x ,1+2x },B ={y ,y ²},若f :x →x 表示A 到B 的映射,则x +y =.4.已知集合A ={a ,b },B ={-1,0,1},则满足f (a )+f (b )=0的映射f :A →B 的个数 为.5.已知集合A ={a ,b ,c },B ={-1,0,1},则f :A →B 中满足f (b )=0的映射共有个.6.若集合A ={x |0≤x ≤2},B ={y |0≤y ≤6},则下列从A 到B的对应:①x →y =2x ;②x →y =2.5x ;③x →y =3x ;④x →y =3.5x .其中不少映射的是(用序号表示).7.已知集合A 中的元素(x ,y )在映射f 的作用下与B 中元素(xy ,x +y )对应,则在f 的作用下,A 中元素(2,3)在B 中对应的元素为;与B 众元素(2,3)对应的A 的元素为.8.若集合A ={-1,1,2},B={3,4,5,6},试写出一个从集合A 到集合B 的函数:.9.已知f:x→x²+1是A到B的一个函数,若值域B={1,2},则定义域A=.10.已知集合A={3,k},B={a4,a2+3a},定义映射f:A→B,使x→3x+1,则整数k和a的值分别为 .11.已知集合A到集合110,1,,23B⎧⎫=⎨⎬⎩⎭的映射f:11xx→-,那么集合A中的元素最多有几个?试写出元素最多的集合A.12.设集合A={a,b,c},B={-1,0,1},f是A到B的映射,试问:满足f(a)+f(b)=f(c)的映射共有多少个?阶段检测(二)一、填空题(本大题共14小题,每小题5分,共70分)1.函数()f x =.2.已知函数f (x )=ax ²+bx +c (a ≠0)是偶函数,那么函数g (x )=ax ³+bx ²+cx 的奇偶性是.3.设S =max {a ,b }为a ,b 中的最大者,当x >0时,1max ,S x x ⎧⎫=⎨⎬⎩⎭,则S 的最小值 为.4.下列函数:①()f x =②1()f xx =;③1()f x x =;④()f x =.其中 以(0,+∞)为定义域的是(用序号表示).5.已知定义在R 上的函数f (x ),当x ∈[-1,1]时,f (x )=x ²-x ,且对任意的实数x 满 足f (x -1)=2f (x ),则f (x )在区间[5,7]上的最大值是.6.下列说法:①图像关于原点对称的函数是奇函数;②图像关于y 轴对称的函数是偶函 数;③奇函数的图像一定过原点;④偶函数的图像一定与y 轴相交.其中错误的是(用序号表示).7.若函数f (x )是定义在R 上的奇函数,则函数f (x )=|f (x )|+f (|x |)的图像关 于对称.8.下列函数:①y =1+x ³;②1y x =;③y =x +x ³;④1-y x=.其中既是奇函数,又在定义 域上是增函数的是(用序号表示).9.当x ∈[0,2]时,函数f (x )=ax ³+4(a -1)x-3在x =2是取得最大值,则a 的取值围是.10.已知函数2()()a f x x a R x=+∈,则下列说的:①任给a ∈R ,f (x )在(0,+∞)上 是增函数;②任给a ∈R ,f (x )在(-∞,0)上是减函数;③存在a ∈R ,f (x )是奇函数; ④存在a ∈R ,f (x )是偶函数.其中正确的是(用序号表示).11.若函数22(1)()1x x f x x ++=+的最大值为M ,最小值为m ,则M +m =. 12.已知函数()12ax f x x=-满足f (f (x ))=x ,那么实数a =. 13.对任意的a ,b ∈R ,记{},,max ,,,a a b a b b a b ⎧=⎨⎩≥<则函数f (x )=max {|x +1|,|x -2|}(x ∈R ) 的最小值是.14.函数f (x )的定义域为D ,若对应任意的x 1,x 2∈D ,当x1<x2时,都有f (x 1)≤f (x 2), 则称函数f (x )在D 上为非减函数.若函数f (x )在[0,1]上为非减函数,且满足一下三个 条件:①f (0)=0;②1()32x f f x ⎛⎫= ⎪⎝⎭;③f (1-x )=1-f (x ),则1138f ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭=.二、解答题(本大题栋6小题,共90分)15.(本小题满分14分)已知函数2()f x x n =-满足f (m )=n ,且x =1是方程f (x )=x 的一个根,求f (4)的值.16.(本小题满分14分)已知a >1,且对任意的x ∈[a ,2a ],都存在y ∈[a ,a ²]满足xy =a ³,数a 的取值围.17.(本小题满分14分)某厂生产某产品x 吨所需要的费用为P 元,卖出x 吨的价格为每吨Q 元.已知2110005,10x P x x Q a b=++=+.若生产出的产品能全部卖掉,且当产量为150吨时利润最大,此时每吨的价格为40元,数a ,b 的值.18.(本小题满分16分)定义:如果函数y =f (x )在定义域给定的区间[a ,b ]上存在x 0(a <x 0<b ),满足0()()()f b f a f x b a-=-,则称函数y =f (x )是[a ,b ]上的“平均值函数”.(1)若f(x)=|x|-mx是[-1,1]上的“平均值函数”,数m的取值围.(2)若g(x)=x²-mx-1,问:g(x)是不是[0,1]上的“平均值函数”?若是,求出实数m 的取值围;若不是,说明理由.19.(本小题满分16分)设函数f(x)=x²+bx+c(b,c∈R).(1)若y=xf(x)是奇函数,求b的值;(2)若对任意的x1,x2∈[-1,1],恒有|f(x1)-f(x2)|≤4,求b的取值围.20.(本小题满分16分)在区间D上,如果函数f(x)为增函数,而函数1()f xx为减函数,则称函数f(x)为“弱增”函数.已知函数()1f x =. (1)判断函数f (x )在区间(0,1)上是否为“若增”函数;(2)当x ∈[0,1]时,不等式11ax bx --恒成立,数a ,b 的取值围.。

相关文档
最新文档