板块模型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1.如图1所示,光滑水平面上放置质量分别为m、2m的物块A和木板B,A、B间的最大静摩擦力为μmg,现用水平拉力F拉B,使A、B以同一加速度运动,求拉力F的最大值。
分析:为防止运动过程中A落后于B(A不受拉力F的直接作用,靠A、B间的静摩擦力加速),A、B一起加速的最大加速度由A决定。
解答:物块A能获得的最大加速度为:.
∴A、B一起加速运动时,拉力F的最大值为:
.
变式1.例1中若拉力F作用在A上呢?如图2所示。
解答:木板B能获得的最大加速度为:。
∴A、B一起加速运动时,拉力F的最大值为:
.
变式2.在变式1的基础上再改为:B与水平面间的动摩擦因数为(认为最大静摩擦力等于滑动摩擦力),使A、B以同一加速度运动,求拉力F的最大值。
解答:木板B能获得的最大加速度为:
设A、B一起加速运动时,拉力F的最大值为F m,则:
解得:
例2. 如图3所示,质量M=8kg的小车放在光滑的水平面上,在小车右端加一水平恒力F,F=8N,当小车速度达到1.5m/s时,在小车的前端轻轻放上一大小不计、质量m=2kg的物体,物体与小车间的动摩擦因数μ=0.2,小车足够长,求物体从放在小车上开始经t=1.5s 通过的位移大小。(g取10m/s2)
解答:物体放上后先加速:a1=μg=2m/s2
此时小车的加速度为:
当小车与物体达到共同速度时:
v共=a1t1=v0+a2t1
解得:t1=1s ,v共=2m/s
以后物体与小车相对静止:(∵,物体不会落后于小车)
物体在t=1.5s内通过的位移为:s=a1t12+v共(t-t1)+ a3(t-t1)2=2.1m
练习1.如图5所示,质量M=1kg的木板静止在粗糙的水平地面上,木板与地面间的动摩擦因数,在木板的左端放置一个质量m=1kg、大小可以忽略的铁块,铁块与木板间的动摩擦因数,取g=10m/s2,试求:
(1)若木板长L=1m,在铁块上加一个水平向右的恒力F=8N,经过多长时间铁块运动到木板的右端?
(2)若在铁块上施加一个大小从零开始连续增加的水平向右的力F,通过分析和计算后,请在图6中画出铁块受到木板的摩擦力f2随拉力F大小变化的图象。(设木板足够长)
(解答略)答案如下:(1)t=1s
(2)①当F≤N时,A、B相对静止且对地静止,f2=F;
②当2N ③当F >6N 时,A 、B 发生相对滑动,N . 画出f 2随拉力F 大小变化的图象如图7所示。 从以上几例我们可以看到,无论物体的运动情景如何复杂,这类问题的解答有一个基本技巧和方法:在物体运动的每一个过程中,若两个物体的初速度不同,则两物体必然相对滑动;若两个物体的初速度相同(包括初速为0),则要先判定两个物体是否发生相对滑动,其方法是求出不受外力F 作用的那个物体的最大临界加速度并用假设法求出在外力F 作用下整体的加速度,比较二者的大小即可得出结论。 练习2. 如图,在光滑水平面上有一质量为m 1的足够长的木板,其上叠放一质量为m 2的木块。假定木块和木板之间的最大静摩擦力和滑动摩擦力相等。现给木块施加一随时间t 增大的水平力F=kt (k 是常数),木板和木块加速度的大小分别为a 1和a 2,下列反映a 1和a 2变化的图线中正确的是( A ) 解析:主要考查摩擦力和牛顿第二定律。木块和木板之间相对静止时,所受的摩擦力为静摩擦力。在达到最大静摩擦力前,木块和木板以相同加速度运动,根据牛顿第二定律 2121m m kt a a += =。木块和木板相对运动时, 1 21m g m a μ=恒定不变,g m kt a μ-= 22。所以正确答案是A 。 例3.一小圆盘静止在桌布上,位于一方桌的水平桌面的中央.桌布的一边与桌的AB 边重合,如图.已知盘与桌布间的动摩擦因数为μ1,盘与桌面间的动摩擦因数为μ2.现突然以恒定加速度a 将桌布抽离桌面,加速度方向是水平的且垂直于AB 边.若圆盘最后未从桌面掉下,则加速度a 满足的条件是什么?(以g 表示重力加速度) 【分析与解】 本题涉及到圆盘和桌布两种运动,先定性分析清楚两者运动的大致过程,形成清晰的物理情景,再寻找相互间的制约关系,是解决这一问题的基本思路。 桌布从圆盘下抽出的过程中,圆盘的初速度为零,在水平方向上受桌布对它的摩擦力F 1=μ1mg 作用,做初速为零的匀加速直线运动。桌布从圆盘下抽出后,圆盘由于受到桌面对它的摩擦力F 2=μ2mg 作用,做匀减速直线运动。 设圆盘的质量为m ,桌长为L ,在桌布从圆盘下抽出的过程中,盘的加速度为a 1,则根据牛顿运动定律有 μ1mg =ma 1, 桌布抽出后,盘在桌面上做匀减速运动,以a 2表示加速度的大小,有 μ2mg =ma 2。 设盘刚离开桌布时的速度为v 1,移动的距离为x 1,离开桌布后在桌面上再运动距离x 2后便停下, 则有 11212x a v =,22212x a v =, 盘没有从桌面上掉下的条件是 122 x L x -≤ , 设桌布从盘下抽出所经历时间为t ,在这段时间内桌布移动的距离为x ,有 22 1at x = ,2112 1 t a x =, 而 12 x L x +=, 由以上各式解得 g a 12 2 12μμμμ+≥ 。 【解题策略】 这是一道牛顿运动定律与运动结合的问题,有一定的难度。命题中出现了两个相互关联的物体的运动,解决这类问题时,一要能对每个物体进行隔离分析,弄清每个物体的受力情况与运动过程;二要把握几个物体之间在空间位置和时间上的关系,注意各物理过程的衔接。 练习3. 如图所示,一足够长的木板静止在光滑水平面上,一物块静止在木板上,木板和物块间有摩擦。现用水平力向右拉木板,当物块相对木板滑动了一段距离但仍有相对运动时,撤掉拉力,此后木板和物块相对于水平面的运动情况为( )x 2 a L/2 x x 1 桌布