两角和与差正弦余弦公式PPT课件
合集下载
两角和与差的正弦、余弦、正切公式:课件十三(230张PPT)
tan tan tan( ) 1 tan tan tan tan tan( ) 1 tan tan
( C(-) ) ( C(+) ) ( S(+) ) ( S(-) ) ( T(+) )
( T(-) )
小结
三角函数求值及证明问题中, 变角是一种常用的技巧,如 ( ) ; ( ) (( ) ( ) 等, ( 4 4 2 这样可充分利用已知条件中的三角函数值,通过三角运算 来求值、化简和证明.
练习
求下列各式的值
4cos74 sin 14 sin 74 cos14 ; 3 原式=sin 14 74 sin 60 2 5sin 34 sin 26 cos34 cos26 ; 1 原式= cos 34 cos 26 sin 34 sin 26 cos34 26 2 6sin 20 cos110 cos160 sin 70. 原式=sin 20 cos110 cos 20 sin 110 sin 20 110 1
分析 : ( ) , 则 cos cos[( ) ] cos( ) cos sin( ) sin
练习
1 cos 2
小结 两角和与差的正弦、余弦、正切公式
cos(-)= coscos+sinsin cos(+)= coscos-sinsin sin(+)= sincos+cossin sin(-)= sincos-cossin
( C(-) ) ( C(+) ) ( S(+) ) ( S(-) ) ( T(+) )
( T(-) )
小结
三角函数求值及证明问题中, 变角是一种常用的技巧,如 ( ) ; ( ) (( ) ( ) 等, ( 4 4 2 这样可充分利用已知条件中的三角函数值,通过三角运算 来求值、化简和证明.
练习
求下列各式的值
4cos74 sin 14 sin 74 cos14 ; 3 原式=sin 14 74 sin 60 2 5sin 34 sin 26 cos34 cos26 ; 1 原式= cos 34 cos 26 sin 34 sin 26 cos34 26 2 6sin 20 cos110 cos160 sin 70. 原式=sin 20 cos110 cos 20 sin 110 sin 20 110 1
分析 : ( ) , 则 cos cos[( ) ] cos( ) cos sin( ) sin
练习
1 cos 2
小结 两角和与差的正弦、余弦、正切公式
cos(-)= coscos+sinsin cos(+)= coscos-sinsin sin(+)= sincos+cossin sin(-)= sincos-cossin
两角和与差的正弦、余弦和正切公式及二倍角公式PPT
1 cos 2α
2
;
(3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2.
教材研读 栏目索引
教材研读 栏目索引
1.sin 20°cos 10°-cos 160°sin 10°= ( D )
A.- 3 B. 3 C.- 1 D. 1
2
2
2
2
2.化简cos 18°cos 42°-cos 72°sin 42°的值为 ( B )
0,
2
,tan
α=2,则cos
α
4
=
.
(3)设sin
2α=-sin
α,α∈
2
,
,则tan
2α的值是
.
栏目索引
考点突破
栏目索引
答案 (1)A (2) 3 10 (3) 3
10
解析
(1)∵sin
6
α
=cos
6
α
,
∴ 1 cos α- 3 sin α= 3 cos α- 1 sin α.
2
5
故sin
4
α
=sin
4
cos
α+cos
4
sin
α
=
2 2
×
2
5 5
+2
2
×5
5
=-10
10
.
(2)由(1)知sin 2α=2sin αcos α=2× 5
5
×
2
5 5
=4-
5
,
考点突破
栏目索引
cos 2α=1-2sin2α=1-2×
5 2
5.5.1两角和与差的正弦、余弦和正切公式1PPT课件(人教版)
第五章 三角函数
5.5.1两角和与差的正弦、余弦和正切公式
第一课时 两角差的余弦公式
学习目标: 1.掌握两角差的余弦公式; 2.明确公式的推导过程; 3.能利用公式进行相关计算.
教学重点: 掌握两角差的余弦公式. 教学难点: 公式的推导过程.
根据两点间的 距离公式
思考 两角差的余弦公式有无巧记的方法呢?
跟踪训练1 化简下列各式: (1)cos(θ+21°)cos(θ-24°)+sin(θ+21°)sin(θ-24°);
解 原式=cos[θ+21°-(θ-24°)] =cos 45°= 22.
(2)-sin 167°·sin 223°+sin 257°·sin 313°.
解 原式=-sin(180°-13°)sin(180°+43°)+sin(180°+77°)·sin(360°-47°)
55×3 1010=
2 2.
又 sin α<sin β,∴0<α<β<π2,
∴-π2<α-β<0.故 α-β=-π4.
反 已知三角函数值求角的解题步骤
思
感 (1)界定角的范围,根据条件确定所求角的范围. 悟 (2)求所求角的某种三角函数值.为防止增解最好选取在范围内单调的三
角函数.
(3)结合三角函数值及角的范围求角.
1-172=4
7
3 .
∵β=α-(α-β)∴cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)
=17×1134+4 7 3×3143=12.
∵0<β<π2,∴β=π3.
随堂练习
1.cos 47°cos 137°+sin 47°sin 137°的值等于
5.5.1两角和与差的正弦、余弦和正切公式
第一课时 两角差的余弦公式
学习目标: 1.掌握两角差的余弦公式; 2.明确公式的推导过程; 3.能利用公式进行相关计算.
教学重点: 掌握两角差的余弦公式. 教学难点: 公式的推导过程.
根据两点间的 距离公式
思考 两角差的余弦公式有无巧记的方法呢?
跟踪训练1 化简下列各式: (1)cos(θ+21°)cos(θ-24°)+sin(θ+21°)sin(θ-24°);
解 原式=cos[θ+21°-(θ-24°)] =cos 45°= 22.
(2)-sin 167°·sin 223°+sin 257°·sin 313°.
解 原式=-sin(180°-13°)sin(180°+43°)+sin(180°+77°)·sin(360°-47°)
55×3 1010=
2 2.
又 sin α<sin β,∴0<α<β<π2,
∴-π2<α-β<0.故 α-β=-π4.
反 已知三角函数值求角的解题步骤
思
感 (1)界定角的范围,根据条件确定所求角的范围. 悟 (2)求所求角的某种三角函数值.为防止增解最好选取在范围内单调的三
角函数.
(3)结合三角函数值及角的范围求角.
1-172=4
7
3 .
∵β=α-(α-β)∴cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)
=17×1134+4 7 3×3143=12.
∵0<β<π2,∴β=π3.
随堂练习
1.cos 47°cos 137°+sin 47°sin 137°的值等于
两角和与差的正弦、余弦、正切公式 课件
即 tan(α-β)=________,这就是两角差的正切公式.
练习 5:1t+an4ta5n°4-5°ttaann1155°°=________________.
tan α-tan β 1+tan αtan β
练习:5.
3 3
思考应用
3.两角和与差的正切公式的适用范围及公式的特 征有哪些?
解析:(1) 适用范围:限制条件:α、β、α+β 均不为 kπ+π2(k∈Z);可以是数、字母和代数式.从公式推导过程进 行说理:cos(α+β)≠0,则 α+β≠kπ+π2;同除 cos α、cos β, 得 cos α≠0,cos β≠0,则 α≠kπ+π2,cos β≠kπ+π2.cos x≠0, 保证了 tan x 有意义.
∵cos(α-β)=1134,∴sin(α-β)=3143, 由 β=α-(α-β),得
cos β=cos[α-(α-β)]
=cos αcos(α-β)+sin αsin(α-β)
=17×1134+4 7 3×3143=7×4914=12, ∵0<β<π2,所以 β=π3.
点评: 解答此类问题分三步:第一步,求角的某 一个三角函数值;第二步,确定角所在的范围;第三 步,根据角的范围写出所求的角.特别注意选取角的 某一个三角函数值,是取正弦?还是取余弦?应先缩 小所求角的取值范围,最好把角的范围缩小在某一三 角函数值的一个单调区间内.
sin αcos β+cos αsin β
以-β 代替公式 sin(α+β)=sin αcos β+cos αsin β
中的 β,得到 sin[α+(-β)]=sin αcos(-β)+
cos αsin(-β)=sin αcos β-cos αsin β,
高中数学两角和与差的正弦、余弦、正切公式课件
Thanks.
小结:
1.掌握C ( ) , C( ) 公式的推导,小心
它们的差别与联系;
2.注意角的拆分与组合,如:
( ) , 2 ( ) ,
2 ( ) ( ),
2 ( ) ( ),
( − ) = − .
公式五
( − ) = ,
( − ) = .
公式六
( + ) = ,
2
( + ) = − .
2
3.两点间的距离公式
平面上任取两点A(x 1 , y1 ), B(x 2 , y 2 )
2
2
sin cos cos sin
两角差的正弦公式
两角和的正弦公式:sin( ) sin cos cos sin
两角差的正弦公式:sin( ) sin cos cos sin
法一:
sin( )
sin[ ( )]
A(x 1 , y 1 )
y
| y1 y 2 |
B(x 2 , y 2 )
| x1 x 2 |
0
x
2
2
AB (x1 x2 ) (y 1 y 2 )
02
两角和与差的余弦公式
终边
两角差的余弦公式
y
P1 (cos , sin )
终边
A1 (cos , sin )源自,
2
2
2
3.注意整体代换思想的应用.
2
;
1
④ cos
两角和与差的正弦、余弦、正切公式ppt
ห้องสมุดไป่ตู้
例题讲解
例7
sin(2a + b ) sin b (1)求证: - 2 cos(a + b ) = sin a sin a
(2)在△ABC中,求证: tanA+tanB+tanC=tanAtanBtanC
小结作业
1.明确各公式的内在联系,掌握公式的
形成过程. C 2.公式 S ( a + b ) 与 S ( a - b ) , ( a + b ) C 与 T ( a + b ) 与 T ( a - b ) 的结构相同,但运算 符号不同,必须准确记忆,防止混淆.
问题探究
怎样用任意角、的正弦、余弦值表示? cos( ) ? sin( ) ? sin( ) ? tan( ) ? tan( ) ?
公式变式
公式 S ( a + b ) ,C ( a + b ) ,T ( a + b ) 称为和角公式, 公式 S ( a - b ) , C a - b , T ( a - b ) 称为差角公式.
例题讲解
例5、 3 4 (1)sin sin , cos cos , 5 5 求 cos( ). (2)sin cos a, cos sin b 求 sin( )
例题讲解
3 12 例6、已知 ,cos( ) 2 4 13 3 sin( ) , 求 sin 2的值. 5
3.公式都是有灵性的,应用时不能生搬 硬套,要注意整体代换和适当变形.
小结作业
P137: (1)6、7、8、10、13、(1)-—(5); (2)《学海导航》第二课时
课件9:3.1.2 两角和与差的正弦、余弦、正切公式
类型 1 灵活应用和、差角公式化简三角函数式
例1
(1)
sin
47°-sin 17°cos cos 17°
30°=(
)
A.-
3 2
B.-12
C.12
D.
3 2
【解析】sin
47°-sin 17°cos cos 17°
30°
=sin(17°+30c°o)s -17s°in 17°cos 30°
=sin
∴sin α=sin[(α-β)+β]
=sin(α-β)cos β+cos(α-β)sin β
=45×7102+35×-102=
2 2.
又 α∈0,π2,∴α=π4.
探究点 辅助角公式的应用 探究 1 函数 y=sin x+cos x(x∈Z)的最大值为 2 对吗?
为什么?
【提示】 不对.因为 sin x+cos x
3.1.2 两角和与差的正弦、余弦、正切公式
学习目标 1.能根据两角差的余弦公式推导出两角和与差的正弦、 余弦公式,并灵活运用.(重点) 2.能利用两角和与差的正弦、余弦公式推导出两角 与差的正切公式.(难点) 3.掌握两角和与差的正切公式及变形应用.(难点、 易错点)
基础·初探
教材整理 1 两角和与差的余弦公式
【解析】 逆用两角和的余弦公式可得 cos 75°cos 15°-sin 75°sin 15°=cos(75°+15°)= cos 90°=0. 【答案】 0
教材整理 2 两角和与差的正弦公式
1.公式
名称
简记 符号
公式
两角和的正弦
S(α+β)
sin(α+β)=
_s_i_n_α_c_o_s__β_+__c_o_s_α_s_i_n_β_
《两角和与差的正弦、余弦、正切公式》三角函数PPT
何选择公式,选择哪一个公式会更好.需要说明的是,(4)运用到了切
化弦,将特殊值 化为tan 60°等,为此可以熟记一些常见的特殊角
的函数值,如1=sin 90°=cos 0°=tan 45°, =tan
3 60°等.
2.公式的推广:本例第(5)小题所得结论可以推广到一般情形:若
π
A+B= ,则(1+tan A)(1+tan B)=2;若(1+tan A)(1+tan B)=2,则
(4)sin 15°+cos 15°= 2 sin 60°.(
)
答案:(1)× (2)× (3)√ (4)√
)
课前篇
自主预习
一
二
三
四
三、两角和与差的正切公式
1.(1)求tan 15°的值.
提示:(1)∵sin 15°=sin(45°-30°)=sin 45°cos 30°-cos 45°sin
6- 2
2sin50°cos10°+2sin10°cos50°
×
cos10°
cos10°
2cos 10°
=2 2(sin 50°cos 10°+sin 10°cos 50°)
=
=2 2sin(50°+10°)=2 2 × 3 = 6.
2
1
(2)原式=sin(α+β)cos α-2[sin(α+α+β)-sin(α+β-α)]=sin(α+β)cos
(2)sin(α-β)=sin αcos β-cos αsin β.
课前篇
自主预习
一
二
三
四
3.判断正误
(1)sin(α-β)=sin αcos α-cos βsin β.(
化弦,将特殊值 化为tan 60°等,为此可以熟记一些常见的特殊角
的函数值,如1=sin 90°=cos 0°=tan 45°, =tan
3 60°等.
2.公式的推广:本例第(5)小题所得结论可以推广到一般情形:若
π
A+B= ,则(1+tan A)(1+tan B)=2;若(1+tan A)(1+tan B)=2,则
(4)sin 15°+cos 15°= 2 sin 60°.(
)
答案:(1)× (2)× (3)√ (4)√
)
课前篇
自主预习
一
二
三
四
三、两角和与差的正切公式
1.(1)求tan 15°的值.
提示:(1)∵sin 15°=sin(45°-30°)=sin 45°cos 30°-cos 45°sin
6- 2
2sin50°cos10°+2sin10°cos50°
×
cos10°
cos10°
2cos 10°
=2 2(sin 50°cos 10°+sin 10°cos 50°)
=
=2 2sin(50°+10°)=2 2 × 3 = 6.
2
1
(2)原式=sin(α+β)cos α-2[sin(α+α+β)-sin(α+β-α)]=sin(α+β)cos
(2)sin(α-β)=sin αcos β-cos αsin β.
课前篇
自主预习
一
二
三
四
3.判断正误
(1)sin(α-β)=sin αcos α-cos βsin β.(
3.1.2第1课时 两角和与差的正弦、余弦公式 课件
为啥总是听懂了, 但不会做,做不好?
栏目 导引
第三章 三角恒等变换
高效学习模型-内外脑模型
2
内脑- 思考内化
思维导图& 超级记忆法& 费曼学习法
1
外脑- 体系优化
知识体系& 笔记体系
内外脑高效学习模型
栏目 导引
第三章 三角恒等变换
超级记忆法
栏目 导引
第三章 三角恒等变换
超级记忆法-记忆规律
记忆前
第三章 三角恒等变换
3.1.2 两角和与差的正弦、余弦、正切 公式
第1课时 两角和与差的正弦、余弦公式
第三章 三角恒等变换
学习导航
学习目标
结合两角差 的余弦公式
―理―解→
两角和与差的正弦、 余弦推导过程及各 公式之间的联系
―掌―握→
两角和与差的正弦、 余弦公式的应用
重点难点 重点:公式的正用、逆用及变式应用. 难点:灵活运用公式解决相关的求值、化简.
=12sin x+ 23cos x+sin x- 3cos x+ 23cos x-32sin x
=(12+1-32)sin x+( 23-
3+
3 2 )cos
x=0.
栏目 导引
第三章 三角恒等变换
(2)原式=sin[α+β+α]s-in 2αcosα+βsin α
=sinα+βcos
α-cosα+βsin sin α
=csions 8100°°=1.
第三章 三角恒等变换
栏目 导引
第三章 三角恒等变换
【学习力-学习方法】
优秀同龄人的陪伴 让你的青春少走弯路
栏目 导引
第三章 三角恒等变换
小案例—哪个是你
栏目 导引
第三章 三角恒等变换
高效学习模型-内外脑模型
2
内脑- 思考内化
思维导图& 超级记忆法& 费曼学习法
1
外脑- 体系优化
知识体系& 笔记体系
内外脑高效学习模型
栏目 导引
第三章 三角恒等变换
超级记忆法
栏目 导引
第三章 三角恒等变换
超级记忆法-记忆规律
记忆前
第三章 三角恒等变换
3.1.2 两角和与差的正弦、余弦、正切 公式
第1课时 两角和与差的正弦、余弦公式
第三章 三角恒等变换
学习导航
学习目标
结合两角差 的余弦公式
―理―解→
两角和与差的正弦、 余弦推导过程及各 公式之间的联系
―掌―握→
两角和与差的正弦、 余弦公式的应用
重点难点 重点:公式的正用、逆用及变式应用. 难点:灵活运用公式解决相关的求值、化简.
=12sin x+ 23cos x+sin x- 3cos x+ 23cos x-32sin x
=(12+1-32)sin x+( 23-
3+
3 2 )cos
x=0.
栏目 导引
第三章 三角恒等变换
(2)原式=sin[α+β+α]s-in 2αcosα+βsin α
=sinα+βcos
α-cosα+βsin sin α
=csions 8100°°=1.
第三章 三角恒等变换
栏目 导引
第三章 三角恒等变换
【学习力-学习方法】
优秀同龄人的陪伴 让你的青春少走弯路
栏目 导引
第三章 三角恒等变换
小案例—哪个是你
2 第2课时 两角和与差的正弦、余弦、正切公式(共41张PPT)
=cos
17°sin 30° cos 17°
=sin 30°=12.
探究点 2 给值求值
已知π2<β<α<34π,cos(α-β)=1132,sin(α+β)=-35,求 cos 2α 与
cos 2β 的值. 【解】 因为π2<β<α<34π, 所以 0<α-β<π4,π<α+β<32π. 所以 sin(α-β)= 1-cos2(α-β) = 1-11232=153,
所以 cos (α+β)=cos π4+β-π4-α
=cos π4+β·cos π4-α
+sin π4+βsin π4-α
=-21× 23+
23×-12=-
3 2.
又因为π2<α+β<π,
所以 α+β=56π.
1.化简:sin 21°cos 81°-cos 21°sin 81°等于
A.12
B.-12
若 sin π4-α=-12,sin π4+β= 23,其中π4<α<π2,π4<β<π2, 求 α+β 的值. 解:因为π4<α<π2,π4<β<π2, 所以-π4<π4-α<0,π2<π4+β<34π. 所以 cos π4-α= 1-sin2π4-α= 23, cos π4+β=- 1-sin2π4+β=-12,
求下列各式的值.
(1)sin
105°;(2)tan
165°;(3)sin
47°-sin 17°cos sin 73°
30° .
解:(1)sin 105°=sin(45°+60°)=sin 45°cos 60°+cos 45°·sin 60°
= 22×12+ 22× 23=
6+ 4
两角和与差正弦余弦公式课件
于信号的合成、滤波等操作。
在数学竞赛中的应用
代数问题
在数学竞赛中,两角和与差的正弦、 余弦公式常与其他数学知识结合,用 于解决代数问题,例如求值、证明等 。
几何问题
在几何学中,两角和与差的正弦、余 弦公式常用于证明几何定理或解决几 何问题,例如角度计算、面积计算等 。
03
两角和与差正弦余弦公式的 扩展
案例三:数学竞赛中的应用
总结词
用于解决数学竞赛中的三角函数问题
详细描述
在数学竞赛中,两角和与差正弦余弦公式是解决三角函数问题的关键工具。通过这些公 式,可以快速求解复杂的三角函数表达式,解决诸如求三角函数的最值、判断三角函数 的单调性等问题。同时,这些公式也是数学竞赛中考察学生数学思维和解题能力的重要
两角和与差正弦余弦公式ppt课件
$number {01}
目录
• 两角和与差正弦余弦公式的基本 概念
• 两角和与差正弦余弦公式的应用 • 两角和与差正弦余弦公式的扩展 • 两角和与差正弦余弦公式的变种 • 两角和与差正弦余弦公式的实际
应用案例
01
两角和与差正弦余弦公式的 基本概念
定义
1 3
定义
两角和与差正弦余弦公式是三角函数中重要的公式之一,用 于计算两个角度的和或差的三角函数值。
利用扩展公式解决一些实 际问题,如测量、物理、 工程等领域的问题。
简化计算
扩展公式可以简化一些复 杂的三角函数计算,提高 计算的效率和准确性。
推广到其他领域
扩展公式可以推广到其他 领域,如复数、矩阵等领 域,促进数学和其他学科 的交叉融合。
扩展公式的证明
证明方法
利用三角函数的性质、三角恒等变换和代数运算等工具,证明扩展公式的正确 性。
在数学竞赛中的应用
代数问题
在数学竞赛中,两角和与差的正弦、 余弦公式常与其他数学知识结合,用 于解决代数问题,例如求值、证明等 。
几何问题
在几何学中,两角和与差的正弦、余 弦公式常用于证明几何定理或解决几 何问题,例如角度计算、面积计算等 。
03
两角和与差正弦余弦公式的 扩展
案例三:数学竞赛中的应用
总结词
用于解决数学竞赛中的三角函数问题
详细描述
在数学竞赛中,两角和与差正弦余弦公式是解决三角函数问题的关键工具。通过这些公 式,可以快速求解复杂的三角函数表达式,解决诸如求三角函数的最值、判断三角函数 的单调性等问题。同时,这些公式也是数学竞赛中考察学生数学思维和解题能力的重要
两角和与差正弦余弦公式ppt课件
$number {01}
目录
• 两角和与差正弦余弦公式的基本 概念
• 两角和与差正弦余弦公式的应用 • 两角和与差正弦余弦公式的扩展 • 两角和与差正弦余弦公式的变种 • 两角和与差正弦余弦公式的实际
应用案例
01
两角和与差正弦余弦公式的 基本概念
定义
1 3
定义
两角和与差正弦余弦公式是三角函数中重要的公式之一,用 于计算两个角度的和或差的三角函数值。
利用扩展公式解决一些实 际问题,如测量、物理、 工程等领域的问题。
简化计算
扩展公式可以简化一些复 杂的三角函数计算,提高 计算的效率和准确性。
推广到其他领域
扩展公式可以推广到其他 领域,如复数、矩阵等领 域,促进数学和其他学科 的交叉融合。
扩展公式的证明
证明方法
利用三角函数的性质、三角恒等变换和代数运算等工具,证明扩展公式的正确 性。
两角和与差的正弦、余弦、正切公式课件
3.两角和与差的正切公式
名称
公式
两角和的正切
tan(α+β) =
tan α+tan β 1-tan αtan β
两角差的正切
tan(α-β) =
tan α-tan β 1+tan αtan β
简记符号
使用条件
T(α+β)
α,β,α+β≠kπ+π2 (k∈Z)
T(α-β)
α,β,α-β≠kπ+π2 (k∈Z)
∴cos(α+β)=cos α·cos β-sin αsin β
=2 5 5·3 1010-
55·1100=
2 2.
由 0<α<2π,0<β<2π得 0<α+β<π,
又 cos(α+β)>0,∴α+β 为锐角,∴α+β=4π.
规律方法 此类题是给值求角问题,步骤如下:①求所求角的 某一个三角函数值,②确定所求角的范围,此类题常犯的错误 是对角的范围不加讨论,或范围讨论的程度过大或过小,这样 就会使求出的角不合题意或者漏解,同时要根据角的范围确定 取该角的哪一种三角函数值.
规律方法 化简三角函数式是为了更清楚地显示式中所含量之 间的关系,以便于应用,对于三角函数式的化简要求应熟练掌 握:(1)能求出值的应求出值.(2)使三角函数种数尽量少.(3) 使三角函数式中的项数尽量少.(4)尽量使分母不含有三角函 数.(5)尽量使被开方数不含三角函数.
题型二 给角求值问题
【例 2】 求下列各式的值:
两角和与差的正弦、余弦、正切公式
自学导引
1.两角和与差的余弦公式
C(α+β):cos(α+β)= cos αcos β-sin αsin β
;
C(α-β):cos(α-β)= cos αcos β+sin αsin β.来自2.两角和与差的正弦公式
两角和与差的正弦、余弦、正切公式 课件
由于角的范围过大致误
典例 4 已知 sinα= 55,sinβ= 1100,且 α、β 为锐角,求 α+β 的值. [错解] ∵α 为锐角,∴cosα= 1-sin2α=255. 又 β 为锐角,∴cosβ= 1-sin2β=31010. ∴sin(α+β)=sinαcosβ+cosαsinβ= 55×31010+255× 1100= 22. 由于 0°<α<90°,0°<β<90°, 所以 0°<α+β<180°,故 α+β=45°或 135°.
[辨析] 上述解法欠严密,仅由 sin(α+β)= 22以及 0°<α+β<180°就得到 α+β =45°或 α+β=135°是不正确的,因为角 α、β 的范围是有一定限制的,事实上 sinα = 55<12,sinβ= 1100<12,故 α<30°,β<30°,从而 0°<α+β<60°,故应仅有 α+β= 45°.为了避免出现上述失误我们可以选用两角和的余弦公式计算.
又 cos(α-β)=1123,sin(α+β)=-35,
所以 sin(α-β)= 1-cos2α-β=
1-11232=153,
cos(α+β)=- 1-sin2α+β=- 所以 sin2α=sin[(α-β)+(α+β)]
1--352=-45.
=sin(α-β)cos(α+β)+cos(α-β)sin(α+β)
=153×(-45)+1123×(-35)=-5665.
辅助角公式及其运用
(1)公式形式:公式 asinα+bcosα= a2+b2sin(α+φ)(或 asinα+bcosα)= a2+b2cos(α-φ)将形如 asinα+bcosα(a,b 不同时为零)的三角函数式收缩为同一 个角的一种三角函数式.
两角和与差的正弦、余弦、正切公式 课件
1.求解该类问题常犯的错误是对角的范围讨论程度过 大(小),导致求出的角不合题意或者漏解.
2.求角的大小,要解决两点:(1)确定所求角的范围, (2)求角的某一三角函数值,特别是要根据角的范围确定取该 角的哪一种三角函数值.
若把本例题的条件改为“α∈(0,2π),β∈(-π2,0),且 cos(α-β)=35,sin β=-102”,试求角 α 的大小.
化简求值: (1)sin1π2- 3cos1π2;
sin 15°-cos 15° (2)cos 15°+sin 15°.
【思路探究】 解答本题中的(1)可先考虑如何去变换系 数,才能与学习的公式相联系,可以考虑 1=2×12, 3= 2× 23,引入特殊角的三角函数;(2)可先分子分母同除以 cos 15°得出t1a+n 1ta5n°-151°,然后再把该式向公式 tan(α±β)转化.
= 22sin(x+51π2).
1.对于形如 sin α±cos α, 3sin α±cos α 的三角函数式均 可利用特殊值与特殊角的关系,运用和差角正、余弦公式化 简为含有一个三角函数的形式.
2.在解法上充分体现了角的变换和整体思想,在三角 函数求值化简的变换过程中,一定要本着先整体后局部的基 本原则.
【自主解答】
(1)法一
原式=2(12sin1π2-
3π 2 cos12)
=2(sinπ6sin1π2-cosπ6cos1π2)
=-2cos(π6+1π2)=-2cosπ4
=- 2.
法二
原式=2(12sin1π2-
3π 2 cos12)
=2(cosπ3sin1π2-sinπ3cos1π2)
=-2sin(π3-1π2)
将本例中条件“已知 α、β 是锐角”改为“α、β 都是钝 角”.仍求 sin β 的值.
两角和与差的正弦、余弦函数-PPT课件
如何求sin 的值?
解:sin
cos
2
cos
2
cos
2
cos
sin
2
sin
sin cos cos sin
sin sin cos cos sin
20
用 代
sin[ ( )] sin cos( ) cos sin( )
sin( ) sin cos cos sin
思考5:如果能,那么一般情况下cos(α-β)能否用角 α,β的三角函数值来表示?请进入本节课的学习!
5
1.利用向量的数量积发现两角差的余弦公式.(重点) 2.能由两角差的余弦公式得到两角和的余弦公式和两 角和与差的正弦公式.(难点) 3.灵活正反运用两角和与差的正弦、余弦函数. (难点)
6
探究点1 两角差的余弦函数
向量b OP2 (cos ,sin ),
因为a b a b cos( )
y
P1(cos ,sin )
O
P2(cos ,sin )
P0 (1,0)
x
a b coscos sinsin 所以 cos( - ) coscos sinsin
我们称上式为两角差的余弦公式,记作 C
8
思 考 : 公 式 cos(α-β)=cosαcosβ+sinαsinβ 是 否对任意角α,β都成立? 提示:当0≤α-β≤π时,公式显然成立; 当α-β不在[0,π]内时,利用诱导公式,存在θ∈ [0,2π],使α-β=θ+2kπ,k∈Z,若θ∈[0,π], cosθ=cos(α-β) ; 若 θ∈(π , 2π ] , 2π-θ∈ [0,π),cos(2π-θ)=cosθ=cos(α-β),故上述公 式对任意角α,β都成立.
解:sin
cos
2
cos
2
cos
2
cos
sin
2
sin
sin cos cos sin
sin sin cos cos sin
20
用 代
sin[ ( )] sin cos( ) cos sin( )
sin( ) sin cos cos sin
思考5:如果能,那么一般情况下cos(α-β)能否用角 α,β的三角函数值来表示?请进入本节课的学习!
5
1.利用向量的数量积发现两角差的余弦公式.(重点) 2.能由两角差的余弦公式得到两角和的余弦公式和两 角和与差的正弦公式.(难点) 3.灵活正反运用两角和与差的正弦、余弦函数. (难点)
6
探究点1 两角差的余弦函数
向量b OP2 (cos ,sin ),
因为a b a b cos( )
y
P1(cos ,sin )
O
P2(cos ,sin )
P0 (1,0)
x
a b coscos sinsin 所以 cos( - ) coscos sinsin
我们称上式为两角差的余弦公式,记作 C
8
思 考 : 公 式 cos(α-β)=cosαcosβ+sinαsinβ 是 否对任意角α,β都成立? 提示:当0≤α-β≤π时,公式显然成立; 当α-β不在[0,π]内时,利用诱导公式,存在θ∈ [0,2π],使α-β=θ+2kπ,k∈Z,若θ∈[0,π], cosθ=cos(α-β) ; 若 θ∈(π , 2π ] , 2π-θ∈ [0,π),cos(2π-θ)=cosθ=cos(α-β),故上述公 式对任意角α,β都成立.
两角和与差的正弦、余弦和正切公式(共37张PPT)
(2)在△ABC 中,∵cos B=-34,
∴π2<B<π,sin B=
1-c<A+B<π,sin(A+B)=23,
∴cos(A+B)=- 1-sin2A+B=- 35,
∴cosA=cos[(A+B)-B]
=cos(A+B)cos B+sin(A+B)sin B
=- 35×-34+23× 47=3
解析:cos x+cosx-π3
=cos
x+12cos
x+
3 2 sin
x=32cos
x+
3 2 sin
x
= 3 23cos x+12sin x= 3cosx-π6=-1. 答案:C
4.设 α,β 都是锐角,那么下列各式中成立的是( ) A.sin(α+β)>sin α+sin β B.cos(α+β)>cos αcos β C.sin(α+β)>sin(a-β) D.cos(α+β)>cos(α-β)
2.若 sin α2= 33,则 cos α=( )
A.-23 B.-13
1 C.3
2 D.3
解析:因为 sin
α2= 33,所以 cos α=1-2sin2
α2=1-2×
3 3
2=13.
答案:C
3.已知 cosx-π6=- 33,则 cos x+cosx-π3的值是(
)
A.-233 B.±233 C.-1 D.±1
1t+antaαn+αβ+-βttaannαα--π3π3=1+1-1×13 13=12. 答案:12
4.已知
cos(α -
π 6
)+
sin
α
=
4 5
3
,
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求证tan=3tan(+)
证明:由题设:
即:
∴ ∴
tan=3tan(+)
练习:①已知
,
, 求sin2的值 (
,
)
②已知
求
③ 求证:
的值。
(4)利用和角公式计算; (5)已知, 求角 (1)求 的值 ; (6)若锐角满足,
(2)求
1.(7)
的值;
中 , , ;(2)求 , 的值;
求(1)
练习题选
1.已知: ,
求证:
2.求值: 3.求 4.已知, 求; 的值;
5.若锐角
求
满足 ,求
ቤተ መጻሕፍቲ ባይዱ
, 的值;
6.已知
7.已知, 求证:
8.求证:
9.已知一元二次方程
的两个根为 10.已知一元二次方程 为 ,求 ,求 的值; 的两个根 的值; 11.已知 是 12.求 的值; 是锐角,证明: ; 的充要条件
(1)关于辅助角问题 例1、化简 解:原式= 例2、 已知,
求函数
,
的值域。
解: 又 ∵
∴
∴
∴函数y的值域是 。
例3、求函数
的值域。
分析:若设
,则
于是原函数可变为: 又
所以原问题可转化为二次函数在给定范围上 的最值问题。
(2)关于角变换
例4、已知 求 解:∵ 即: ∵ 又: ∴ 的值 , ,
∴
例5、 已知
证明:由题设:
即:
∴ ∴
tan=3tan(+)
练习:①已知
,
, 求sin2的值 (
,
)
②已知
求
③ 求证:
的值。
(4)利用和角公式计算; (5)已知, 求角 (1)求 的值 ; (6)若锐角满足,
(2)求
1.(7)
的值;
中 , , ;(2)求 , 的值;
求(1)
练习题选
1.已知: ,
求证:
2.求值: 3.求 4.已知, 求; 的值;
5.若锐角
求
满足 ,求
ቤተ መጻሕፍቲ ባይዱ
, 的值;
6.已知
7.已知, 求证:
8.求证:
9.已知一元二次方程
的两个根为 10.已知一元二次方程 为 ,求 ,求 的值; 的两个根 的值; 11.已知 是 12.求 的值; 是锐角,证明: ; 的充要条件
(1)关于辅助角问题 例1、化简 解:原式= 例2、 已知,
求函数
,
的值域。
解: 又 ∵
∴
∴
∴函数y的值域是 。
例3、求函数
的值域。
分析:若设
,则
于是原函数可变为: 又
所以原问题可转化为二次函数在给定范围上 的最值问题。
(2)关于角变换
例4、已知 求 解:∵ 即: ∵ 又: ∴ 的值 , ,
∴
例5、 已知