不定方程常用解题方法
不定方程的四种基本解法
不定方程的四种基本解法哎,说起不定方程啊,可能不少小伙伴儿一听这个词儿,脑瓜子就开始嗡嗡的。
但其实呢,不定方程这东西,虽然看上去复杂了点儿,但咱们只要掌握了四种基本解法,就能跟它说拜拜,从此不再头疼啦!第一种解法,咱们叫它“试探法”,也叫“瞎猫碰上死耗子法”。
为啥这么说呢?因为这种方法就是靠咱们的感觉和运气,去猜一个可能的解。
听起来有点儿不靠谱是吧?但其实,有时候咱们还真能歪打正着,找到答案呢!比如说,给定一个不定方程,咱们可以先试着代入几个数,看看符不符合条件。
如果不行,就再换几个试试。
这种方法虽然有点笨,但有时候还真能解决问题。
毕竟,谁说运气不是实力的一部分呢?第二种解法,咱们得叫它“枚举法”,听着就挺高大上的吧?其实说白了,就是“一一列举法”。
这种方法适用于那些可能的解不太多的情况。
咱们可以把所有可能的解都列出来,然后一个个地检查,看哪个是符合条件的。
这种方法虽然有点儿费时费力,但胜在稳妥。
毕竟,咱们只要耐心点儿,总能找到正确答案的。
这就跟咱们平时找东西一样,虽然过程可能有点儿曲折,但总能找到的,对吧?第三种解法,咱们叫它“公式法”。
这种方法比较厉害,它是根据不定方程的特点,推导出一种公式,然后用这个公式去求解。
这种方法的好处是,只要咱们掌握了公式,就能很快地找到答案。
不过呢,这种方法也有个缺点,就是公式有时候挺难记的。
不过,这难不倒咱们,咱们可以多练习几次,就能把公式牢牢地记在脑子里了。
毕竟,熟能生巧嘛!第四种解法,咱们叫它“图像法”。
这种方法比较直观,它是用图形来表示不定方程的解。
咱们可以在坐标轴上画出不定方程的图像,然后通过观察图像,来找到符合条件的解。
这种方法的好处是,能让咱们更直观地理解不定方程的解,而且有时候还能发现一些隐藏的规律呢!不过呢,这种方法也有个缺点,就是得有点儿想象力。
毕竟,咱们得把抽象的不定方程想象成具体的图形,这可得费点儿劲儿。
不过,只要咱们肯动脑筋,就一定能做到的!其实啊,不定方程的解法还有很多,但上面这四种是最常用的。
不定方程常用六大解法
不定方程常用六大解法不定方程,听起来是不是有点高深?其实嘛,这就像找一把钥匙,钥匙能打开无数扇门。
今天咱们就聊聊不定方程的常用六大解法,轻松又幽默地走一遭,保证你听了后,能够眉开眼笑。
我们得说说“枚举法”。
这法子就像是逛超市,看见什么就试什么。
对于简单的不定方程,咱可以一个个地把可能的解都试一遍,最后总能找到那个合适的,简直就是开盲盒的乐趣!比如,假如有个方程让你找两个数,能不能说得通呢?你就一个个试着往里代,嘿,看看有没有合适的答案,简直像是在和数学玩捉迷藏。
接下来是“辗转相除法”。
这法子就像是把问题拆开,从大到小,一步步走。
这就像是做减法,遇到难题,咱就把它分解成更小的部分,慢慢来。
比如说你有个复杂的方程,先算出个简单的结果,然后再逐步递推,真是稳扎稳打,像是爬山一样,一步一个脚印,最后能看到山顶的美景。
然后,我们不能忘记“数形结合法”。
这玩意儿就像把方程画成图,形象化的东西总是让人觉得好理解。
想象一下,把数轴上点一点,给每个可能的解都标上一个小旗子,嘿!一眼就能看出哪些地方有解,哪些地方是死胡同,简直就像开了一场小小的数学派对,大家欢聚一堂,热热闹闹。
再往下说“求解特解法”。
这个方法有点像找特定的那种解,比如你想找一个特定的答案,可以试着先求出特解,然后再加上一些通解,哇,简直就是在做数学的“DIY”。
把各种材料拼凑在一起,最终呈现出一个完整的方程,就像做蛋糕,先有底再加上奶油,最后切开一看,哇,真香!接着咱们说说“同余法”。
这玩意儿有点像打麻将,讲究的是配合和策略。
你得找到一些数字之间的关系,像是把牌搭配起来,才能找到那种刚刚好的解。
用同余法解决不定方程,就像是在解谜,你得灵活应对,变换策略,嘿,最后能把谜底揭开,真是让人倍感成就感。
最后得提一下“二次方程法”,听上去很专业对吧?但其实不然。
这个方法就像是利用已知的解来推导未知的解。
比如说,你已经知道了一个方程的解,接着就可以运用二次方程的方法,推导出更多的解,简直就像是在编故事,从一个角色引出另外的角色,最后形成一个完整的故事链。
简单不定方程的四种基本解法
简单不定方程的四种基本解法
简单不定方程的四种基本解法
简介
不定方程是指含有未知数的整数方程,其解为整数或分数。
不定方程
是数论中的一个重要分支,具有广泛的应用价值。
在实际问题中,往
往需要求解不定方程来得到问题的解答。
本文将介绍四种基本的解决
不定方程的方法。
一、贪心算法
贪心算法是一种常见且有效的算法,它通常用于求解最优化问题。
在
求解不定方程时,贪心算法可以通过枚举未知数的值来逐步逼近最优解。
二、辗转相除法
辗转相除法也称为欧几里得算法,它是一种求最大公约数的有效方法。
在求解不定方程时,我们可以使用辗转相除法来判断是否存在整数解。
三、裴蜀定理
裴蜀定理是指对于任意给定的整数a和b,它们的最大公约数d可以
表示成ax+by的形式,其中x和y为整数。
在求解不定方程时,我们可以使用裴蜀定理来判断是否存在整数解,并且可以通过扩展欧几里
得算法来求得x和y。
四、同余模运算
同余模运算是指在模n的情况下,两个整数a和b满足a≡b(mod n)。
在求解不定方程时,我们可以使用同余模运算来判断是否存在整数解,并且可以通过中国剩余定理来求得解的具体值。
结论
以上四种方法是求解不定方程的基本方法,在实际问题中,我们可以
根据具体情况选择合适的方法来求解问题。
同时,需要注意的是,在
使用这些方法时需要注意算法复杂度和精度问题,以保证算法的正确
性和效率。
不定方程的所有解法
不定方程的所有解法全文共四篇示例,供读者参考第一篇示例:不定方程是指含有未知数的方程,且未知数的值不受限制,可以是整数、分数、无理数等。
解不定方程的方法有很多种,根据方程的形式和要求选择不同的解法。
本文将介绍不定方程的所有解法,包括质因数分解法、辗转相除法、模运算法、裴蜀定理、试错法等各种方法。
1. 质因数分解法对于形如ax+by=c的不定方程,可以通过质因数分解的方法来求解。
首先分别对a和b进行质因数分解,得到a=p1^a1 * p2^a2 * ... * pn^an,b=q1^b1 * q2^b2 * ... * qm^bm。
然后利用质因数分解的特性,可知如果c不能被a和b的所有质因数整除,那么方程就无整数解;如果c能被a和b的所有质因数整除,那么方程就有整数解。
这个方法在求解一些简单的不定方程时很有效。
2. 辗转相除法辗转相除法又称为欧几里德算法,用于求两个整数的最大公约数。
对于形如ax+by=c的不定方程,可以先利用辗转相除法求出a和b的最大公约数d,然后如果c能被d整除,就存在整数解;如果不能被d整除,那么方程就无解。
这个方法比较简单,但只适用于求解一次不定方程。
3. 模运算法模运算法是一种基于模运算的解法,对于形如ax≡b(mod m)的不定方程,可以通过求解同余方程得到解。
将方程转化为标准形式ax-my=b,然后求解同余方程ax≡b(mod m),如果方程有解,则可以通过一些变换得到原方程的解。
这个方法适用于求解模运算的不定方程。
4. 裴蜀定理裴蜀定理也称为贝祖定理,是解一元不定方程的重要方法。
对于形如ax+by=c的不定方程,根据裴蜀定理,当且仅当c是a和b的最大公约数的倍数时,方程有整数解。
此时可以通过扩展欧几里德算法求出一组解,然后通过变换得到所有解。
这个方法适用于求解一元不定方程的情况。
5. 试错法试错法是一种通过列举所有可能解,然后逐一验证的方法。
对于一些简单的不定方程,可以通过试错法找到所有整数解。
不定方程组的解法
不定方程组的解法1. 引言在高中数学中,不定方程组通常是初等代数学习中的一部分。
不定方程组是指方程组中未知数的个数等于或大于方程的个数,同时这些方程中的系数不全为常数的方程组。
解决这些方程组的问题通常是找到一组合适的值满足所有方程,即找到所有未知数的值,这些值称为方程组的解。
本文将介绍几种不定方程组的解法。
2. 全消元法全消元法是求解不定方程组的一种基本方法。
它的基本思想是通过将方程组中一部分未知数用其他未知数来表示,逐步消去所有未知数的系数,以达到求解的目的。
举例来说,考虑以下不定方程组:$$\begin{cases}x+2y+3z=6\\2x-y+z=1\\3x+y+2z=8\end{cases}$$我们可以使用全消元法解决这个问题。
我们可以先使用第二个方程的系数消除第一和第三个方程中的$x$系数。
消去后,方程组变为:$$\begin{cases}x+4y=4\\-9y-4z=-10\\5y+4z=4\end{cases}$$然后,我们使用第一和第三个方程的系数消除$y$系数。
消去后,方程组变为:$$\begin{cases}29x=-8\\-29z=-42\end{cases}$$这里$x=\frac{-8}{29}$,$z=\frac{42}{29}$。
通过代回,我们可以求出$y$。
因此,由于全消元法,我们可以找到方程组的唯一解。
3. 高斯-约旦消元法高斯-约旦消元法也是一种求解不定方程组的方法。
它的基本思想是通过加减消元和除法操作来将方程组转化为阶梯形矩阵,从而解决问题。
举例来说,考虑以下不定方程组:$$\begin{cases}x+2y+3z=6\\2x-y+z=1\\3x+y+2z=8\end{cases}$$我们可以使用高斯-约旦消元法解决这个问题。
我们可以先使用第一个方程的系数消除第二个方程中的$x$系数。
消去后,方程组变为:$$\begin{cases}x+2y+3z=6\\-5y-z=-11\\3x+y+2z=8\end{cases}$$然后,我们使用第二个方程的系数消除第三个方程中的$x$系数。
3.2 不定方程的常用解法
3.2 不定方程的常用解法对于高次不定方程,求出其通解然后再讨论有时是不现实的,因为我们甚至还没有找到判别一个高次不定方程是否有解的统一方法,当然要求出通解就更难了.或许正是因为没有统一的方法来处理高次不定方程,对具体的问题往往有许多方法来处理,并且每一种方法都表现出一定的创造性,所以,高次不定方程的问题频繁在数学竞赛中出现.当然,结合整除与同余的一些理论,求解高次不定方程也有一些常见的处理思路和解决办法. 一、因式分解法将方程的一边变为常数,而含字母的一边可以进行因式分解,这样对常数进行素因数分解后,对比方程两边,考察各因式的每种取值情况就可将不定方程变为若干个方程组去求解.这就是因式分解法处理不定方程的基本思路.例1 求方程()101xy x y -+= ① 的整数解.解:利用十字相乘,可将①变形为()()1010101x y --= 而101为素数,故()1010x y -,-=(1,101),(101,1),(-1,-101),(-101,-1). 分别求解,得方程的整数解为()x y ,=(11,111),(111,11),(9,-91),(-91,9). 例2 是否存在整数x 、y 、z ,使得44422222222224x y z x y y z z x ++=+++?解:若存在整数x 、y 、z 满足条件,则()22222244424222x y y z z x x y z -=++-++ =()()22222242224x yx y z z x y-+++-+=()2222224x y zxy -+-+=()()22222222xy x y z xy x y z ++---+=()()()()2222x y z z x y +---=()()()()x y z x y z z x y y z x +++-+-+-,这要求-24能表示为4个整数x y z ++,x y z +-,z x y +-,y z x +-的乘积的形式,而这4个数中任意两个数之差都为偶数,故这4个数具有相同的奇偶性,由-24为偶数,知它们都是偶数,但这要求42|24,矛盾. 所以,不存在符合要求的整数.说明 熟悉海伦公式的读者可以一眼看穿问题的本质.事实上,ABC S ∆a 、b 、c 为△ABC的三边长,这就是海伦公式.根号里面的式子展开后就是222a b +222b c +222c a -4a -4b -4c .例3 求所有的正整数对(m ,n ),使得5471mn n +=-. ①解:将①移项后作因式分解,得()545433711m n n n n n n =++=++-- =()()()322111n n n n n n ++--++=()()3211n n n n -+++ ② 由①知n >1,而n =2时,可得m =2.下面考虑n >2的情形,我们先看②式右边两个式子的最大公因数.()()()()32322111111n n n n n n n n n n n -+,++=-+-+++-,+=()()()()22212123n n n n n n n n -+,++=-++++-+,+ =()27n -+,.故()3211|7n n n n -+,++.结合②式知31n n -+与21n n ++都是7的幂次,而它们在n ≥3时,都大于7,这导致 ()()2327|11n n n n -+++,与前所得矛盾.综上可知,只有(m ,n )=(2,2)符合要求.说明 对①式变形后,所得②式两边符合因式分解方法解不定方程的套路,但7m并不是一个常数,这里需要有另外的方法来处理才能继续下去.活学活用方能攻城拔寨.二、配方法配方是代数变形中的常见方法,在处理不定方程的问题时还可综合利用完全平方数的特性,因此配方法在求解不定方程时大有用武之地.例4 求不定方程2234335x xy y -+=的全部整数解. 解:对方程两边都乘以3,配方后即得()22325105x y y -+=. ①由①式得 25105y ≤, 所以 4y ≤.当4y =时,325x y -=,此时原方程的解为(x ,y )=(1,4),(―1,―4). 当1y =时,3210x y -=,此时原方程的解为(x ,y )=(4,1),(―4,―1).当023y =,,时,()232x y -分别为105,85,60 .此时,所得的方程组显然无整数解. 上面的讨论表明,原方程有4组解:(x ,y )=(4,1),(1,4),(―4,―1),(―1,―4). 例5 求方程2432x x y y y y +=+++的整数解.解:同上例,对方程两边同乘以4,并对左边进行配方,得()()24322141x y y y y +=++++. ①下面对①式右端进行估计.由于()43241y y y y ++++ ()222212y y y y =++-+ ()2222341y y y y =++++, 从而,当y >2或y <-1时,有()()()2222222121y y x y y +<+<++.由于22y y +与22y y ++1是两个连续的整数,它们的平方之间不会含有完全平方数,故上式不成立. 因此只需考虑当-1≤y ≤2时方程的解,这是平凡的,容易得到原方程的全部整数解是 (x ,y )=(0,-1),(-1,-1),(0,0)(-1,0),(-6,2),(5,2). 例6 求所有的正整数n ≥2,使得不定方程组22121222232322112211501612501612501612501612n nn n nn x x x x x x x x x x x xx x x x ⎧⎪⎪⎪⋯⎨⎪⎪⎪⎩--++=+++=+++=+++=+ 有整数解.解:移项后配方,方程组变形为()()()()()()()()122122223221221850850850850n n n n x x x x x x n x x ⎧⎪⎪⎪⎪⋯⎨⎪⎪⎪⎪⎩---+-6=, ①-+-6=, ②-+-6=, -+-6=.由于50表示为两个正整数的平方和只有两种:2222501755=+=+,所以,由①知261x -=、5或7,而由②知281x -=、5或7,从而21x =、7、13.进一步,可知对每个1≤i ≤n ,都有1i x =,7或13,依11x =、7、13 ,分三种情况讨论. 若11x =,则由①知27x =,再由②知313x =,依次往下递推,可知当()1mod3k ≡时,1k x =;当()2mod3k ≡时,7k x =;当()0mod3k ≡时,13k x =.所以,由第n 式,知当且仅当()11mod3n ≡+时,原方程组有整数解,即当且仅当3|n 时,n 符合要求.对另外两种情况17x =和113x =同样讨论,得到的条件是一样的. 综上可知,满足条件的n 是所有3的倍数.说明 进一步讨论可知,当3|n 时,方程组恰有3组整数解.三、不等式估计利用不等式的知识,先确定不定方程中的某个字母的范围,然后逐个枚举得到所有解,这个方法称为不等式估计,它也是我们处理不定方程的常见方法.当然,如果能够恰当地利用字母的对称性等,那么作不等式估计时会简洁很多.例7 求不定方程3361x y xy -=+的正整数解.解:设(x ,y )为方程的正整数解,则x >y .设x =y +d ,则d 为正整数,且()()3361y d y y d y ++=+-22333dy yd d =++,即有 ()()23313161d y d d y d -+-+=.故 361d <, 于是 3d ≤. 分别令1d =、2、3代入,得222161y y ++=, 2510861y y ++=, 28242761y y ++=.只有第一个方程有整数解,并由y 为正整数知y =5,进而x =6.所以,原方程只有一组正整数解(x ,y )=(6,5). 例8 求所有的正整数a 、b ,使得22444aa b ++=. ①解:若(a ,b )是满足①的正整数数对,则2b 为偶数,且24ab >,从而b 为偶数,且2ab >,故22ab ≥+.于是()22244422a aa b ++=≥+4a =+4·2a +4,知22aa ≥,可得4a ≤(对a 归纳可证:当5a ≥时,有22aa <).分别就a =1,2,3,4代入①式,可得方程的所有正整数解为(a ,b )=(2,6)或(4,18).例9 求所有的正整数数组(a ,b ,c ,x ,y ,z ),使得a b c xyz x y z abc ⎧⎨⎩++=,++=,这里a b c ≥≥,x y z ≥≥.解:由对称性,我们只需考虑x a ≥的情形.这时 33xyz a b c a x =++≤≤, 故 3yz ≤,于是 (y ,z )=(1,1),(2,1),(3,1).当(y ,z )=(1,1)时,a b c x ++=且2x abc +=,于是 2abc a b c =+++. 若2c ≥,则2324a b c a a abc +++≤+≤≤, 等号当且仅当2a b c ===时成立.若1c =,则3ab a b =++, 即 ()()114a b --=,得 (a ,b )=(5,2),(3,3).当(y ,z )=(2,1)时,2266abc x a b c =+=+++,与上述类似讨论可知c =1,进而()()212115a b --=,得 (a ,b )=(3,2). 当(y ,z )=(3,1)时,331212abc x a b c =+=+++,类似可知,此时无解.综上所述,可知(a ,b ,c ,x ,y ,z ) =(2,2,2,6,1,1),(5,2,1,8,1,1),(3,3,1,7,1,1), (3,2,1,3,2,1),(6,1,1,2,2,2),(8,1,1,5,2,1), (7,1,1,3,3,1).说明 此题中如果没有条件a ≥b ≥c 和x ≥y ≥z ,也需要利用对称性作出这样的假设后再处理,解题中利用对称性假设x ≥a 是巧妙的,这样问题就转化为只有3种情况而便于处理了.四、同余方法若不定方程()120n F x x x ,,…,=有整数解,则对任意的*m N ∈,其整数解(1x ,2x ,…,n x )均满足()()120mod n F x x x m ≡,,…,.运用这一条件,同余可以作为不定方程是否有整数解的一块试金石. 例10 证明:不定方程22386x y z +-= ①没有整数解.证明 若(x ,y ,z )是方程①的整数解,对①的两边模2,可知x 、y 同奇偶;再对①两边模4可知x 、y 都为奇数,于是()221mod8x y ≡≡,这要求6()22382mod8x y z ≡=+-,矛盾.故方程①没有整数解.说明 利用同余方法解不定方程问题时,选择恰当的数作为模是十分重要的,它不仅涉及问题解决的繁简程度,重要的是能否卡住字母的范围或导出矛盾. 例11 求所有的非负整数x 、y 、z ,使得223xyz +=. ①解:(1)当y =0时,有()()22111xz z z =-=-+,于是可设 2z α-1=,2z β+1=,0αβ≤≤,因此 222βα-=.此时,若2α≥,则4|22βα-,与42矛盾,故1α≤.而0α=导致23β=,矛盾,故1α=,2β=,所以 z =3,x =3,得 (x ,y ,z )=(3,0,3)(2)当y >0时,由于323xy+,故3z ,所以 ()21mod3z ≡.对①两边模3,知()()11mod3x≡-, 故x 为偶数,现在设x =2m ,则 ()()223mmyz z -+=,所以可设 23mz α-=,23m z β+=,0αβ≤≤,y αβ+=, 于是 1332m βα+-=,若α≥1,则3|33βα-,但132m +,矛盾,故α=0,因此1312m β+-=. 当m =0时,β=1,得(x ,y ,z )=(0,1,2); 当m >0时,()120mod4m +=,故 ()31mod4β=, 这要求β位偶数,设β=2n ,则()()122313131m n n n +=-=-+, 同y =0时的讨论,可知 312n-=,即n =1,进而m =2,得 (x ,y ,z )=(4,2,5). 所以(x ,y ,z )=(3,0,3),(0,1,2),(4,2,5).例12 设m 、n 为正整数,且n >1,求25m n -的最小值.解:由于25m n -为奇数,而m =7,n =3时,253m n -=,故若能证明n >1时,251m n -≠,则所求的最小值为3.若存在正整数m 、n ,使得n >1,且251m n -=,则251m n -=或251m n-=-. 如果251mn-=,那么m ≥3,两边模8,要求()57mod8n ≡, 但对任意正整数n ,51n≡或()5mod8,矛盾,故251mn-=不成立. 如果251m n-=-,那么由n >1,知m ≥3.两边模8,得 ()51mod8n≡,可知n 为偶数.设n =2x ,x 为正整数,则 ()()25151m x x =-+, 由于51x-与51x+是两个相邻偶数,这要求512x -=,514x+=, 不可能.所以,25mn-的最小值为3.说明 上面的两个例子都用到了一个结论:两个差为2的正整数之积为2的幂次,则这两个数只能为2和4.该结论在例11的前半段解答中已予以证明.五、构造法有些不定方程的问题只需证明该方程有解或有无穷多个解,这时经常采用构造法来处理. 例13 证明:方程253x y z +=有无穷多组满足0xyz ≠的整数解.证明 取15102k x +=,642k y +=,1072k z +=,k 为非负整数,则这样的x 、y 、z 满足253x y z +=,所以方程有无穷多组满足0xyz ≠的整数解.另证 先求方程的一组特解,易知x =10,y =3,z =7 是方程253x y z +=的一组解.因而1510k x a =,63k y a =,107k z a =(a ,k 为非负整数)是方程的解.例14 证明:对任意整数n ,方程222x y z n +-= ①证明 现有命题“当m 为奇数或4的倍数时,方程22a b m -=有整数解(a ,b )”,它对解决本题是有用的.这个命题基于下面2个恒等式:()22121k k k +-=+,()()2214k k k +--1=.对于方程①,只需取x ,使x 与n 的奇偶性相反(这样的x 有无穷多个),从而利用上述命题,方程 222y z n x -=- 有整数解,可知方程①有无穷多组整数解.例15 是否存在两两不同的正整数m 、n 、p 、q ,使得m n p q +=+2012都成立?解:存在满足条件的正整数.由方程的结构,我们寻找形如2m a =,3n b =,2p c =,3q d =的正整数.这里a 、b 、c 、d 为正整数. 此时,条件转化为2012a b c d +=+>,2323a b c d +=+,即 a c d b -=-,()()()()22a c a c d b d bd b -+=-++.令1d b -=,即1b d =-,且使2012b >,则b 、d 的奇偶性不同,现令2212b bd d a +++=,2212b bd dc ++-=,那么a 、c 为正整数,且由a 、b 、c 、d 确定的m 、n 、p 、q 满足条件.例16 证明:存在无穷多组正整数组()x y z ,,,使得x 、y 、z 两两不同,并且 33xx y z =+.证明 一个想法是:将x 取为3k +1形式的数,这时()3131k x x k +=+()()33131kk k =++ ()()3333131k kk k k =+++因此,如果使3k 为一个完全立方数,那么符合要求的正整数x 、y 、z 就找到了.为此,令323m k +=,这里m 为正整数,那么令31x k =+,()1331km x k +=+,()31kz k =+,则x 、y 、z 两两不同,且满足33xx y z =+.命题获证.说明 如果不要求x 、y 、z 两两不同,我们还可以这样来构造:取2m y z ==,2x α=,则当231m αα•=+时,就有33xx y z =+.容易看出满足231m αα•=+的正整数对()m α,有无穷多对.。
不定方程三种解法
不定方程三种解法不定方程是指方程中含有一个或多个未知量,并且在给定范围内存在多个整数解的方程。
解决不定方程的问题在数学中具有重要意义,因为它们可以应用于各种实际问题,如商业、工程和密码学等领域。
在这篇文章中,我们将讨论三种解决不定方程的常见方法。
## 1. 穷举法穷举法是最简单的解决不定方程的方法之一。
它的原理是通过穷举所有可能的解来找到符合方程要求的整数解。
首先,我们需要确定未知数的取值范围。
然后,使用循环结构,从最小值开始逐个尝试,直到找到满足方程条件的解或超出最大值。
例如,考虑求解方程x + y = 8,其中x和y是整数。
我们可以通过以下伪代码来实现穷举法:```for x in range(1, 9):for y in range(1, 9):if x + y == 8:print("x =", x, "y =", y)```通过这个方法,我们可以得到方程的所有整数解:(1, 7), (2, 6), (3, 5), (4, 4), (5, 3), (6, 2), (7, 1)和(8, 0)。
然而,穷举法在大规模的问题上效率较低,因为它需要遍历所有可能的解,而不是有针对性地解决问题。
## 2. 辗转相除法辗转相除法,也称为欧几里德算法,用于求解关于两个未知数的不定方程。
这种方法的关键思想是利用两个整数的最大公约数来解决方程。
例如,考虑求解方程ax + by = c,其中a、b和c是已知整数,x和y是未知数。
我们可以使用辗转相除法来求解。
首先,我们需要计算a和b的最大公约数。
然后,检查c是否可以被最大公约数整除。
如果是,则方程有解,否则方程无解。
如果方程有解,我们可以使用扩展欧几里德算法来找到x和y的值。
扩展欧几里德算法可以通过递归方式计算出未知数的值。
辗转相除法是一种较为高效的方法,因为它只需要计算最大公约数和进行有限次的递归运算。
## 3. 数论方法数论方法是解决特定类型不定方程的一种方法。
行测数学运算不定方程的三种常用解法
行测数学运算不定方程的三种常用解法行测数量关系答题技巧你掌握了多少?为大家提供行测数学运算不定方程的三种常用解法,一起来看看吧!祝大家备考顺利!行测数学运算不定方程的三种常用解法在行测运算题当中,设方程是常用的技巧,含有未知数的等式叫做方程。
不定方程中未知数的个数多于独立方程的个数。
比如:x+y=5。
在行测里也经常列出不定方程,但是很多人都不会解。
其实只要掌握好三种常用的方法,问题自然迎刃而解。
1、整除法:利用不定方程中各数能被同一个数整除的关系来求解。
例1:小张的孩子出生的月份乘以29,出生的日期乘以24,所得的两个乘积加起来刚好等于900。
问孩子出生在哪一个季度?A.第一季度B.第二季度C.第三季度D.第四季度【答案】D【解析】关键词:等于,所以找到等量关系。
设出生月份为x,出生的日期为y。
29x+24y=900,24与900的最大公约数为12,意味着24y能被12整除,900能被12整除,29为质数,所以x能被12整除,由于12表示的是月份,所以是第四季度。
2、奇偶性:未知数的系数奇偶性不同例2:办公室工作人员使用红、蓝两种颜色的文件袋装29份相同的文件。
每个红色文件袋可以装7份文件,每个蓝色文件袋可以装4份文件。
要使每个文件袋都恰好装满,需要红色、蓝色文件袋的数量分别为()个。
A.1、6B.2、4C.4、1D.3、2【答案】D【解析】由题可知袋子的个数肯定是为整数,设红色袋子数量为x,蓝色袋子数量为y,由题意可得7x+4y=29,此时未知数的系数为7和4,奇偶性不同。
4y为偶数,29为奇数,则 7x为奇数,得出x为奇数,排除B、C。
接下来代入A选项,x=1,y不是整数,排除A,选择D。
验证:x=3,y=2满足题意。
3、尾数法:未知数的系数是5的倍数超市将99个苹果装进两种包装盒,大包装盒每个装12个苹果,小包装盒每个装5个苹果,共用了十多个盒子刚好装完。
问两种包装盒相差多少个?A.3B.4C.7D.13【答案】D【解析】由题可知,大包装盒的个数和小包装盒的个数为整数,设大包装盒的个数为x,小包装盒为y,可得到12x+5y=99,x+y>10。
不定式方程的四种解法
不定式方程的四种解法一、什么是不定式方程?不定式方程是一类形式为a1·f1(x) + a2·f2(x) + … + an·fn(x) = 0的方程,其中fi(x)是关于未知量x的不同函数,ai是常数系数。
该方程中未知量的次数可以是正整数、负整数、零甚至有理数。
不定式方程求解的目标是找出所有满足该方程的x值。
二、解法一:图像法使用图像法求解不定式方程时,可以根据函数的图像来确定方程的解。
1.将不同函数fi(x)分别绘制出来,并确定它们与x轴的交点。
这些交点将有可能是方程的解。
2.将方程转化为f1(x) + f2(x) + … + fn(x) = 0的形式,即所有函数画在同一坐标系中。
3.根据图像的交点来确定方程的解。
交点的横坐标即为方程的解。
三、解法二:代数法代数法是通过代数运算来求解不定式方程的一种方法。
1.根据方程的形式,可以对方程进行合并和分解,使得方程具有相同的指数。
2.对方程采用因式分解、配方法、换元等代数运算,将方程转化为较简单的形式。
3.根据简化后的方程,可以直接求解得到方程的解。
四、解法三:迭代法迭代法是通过迭代计算来逼近方程解的方法。
1.将方程化为f(x) = 0的形式。
2.选取一个初始解x0,代入方程,计算出f(x0)的值。
3.根据f(x)的性质,使用迭代公式xn+1 = g(xn)来逼近方程的解,直到满足精度要求为止。
4.最终得到的逼近解xn就是方程的解。
五、解法四:数值法数值法是使用数值计算的方法来求解不定式方程的一种方法。
1.将方程化为f(x) = 0的形式。
2.选取一个初始解x0,代入方程,计算出f(x0)的值。
3.根据f(x)的性质,使用数值迭代公式xn+1 = xn - f(xn)/f’(xn)来逼近方程的解,直到满足精度要求为止。
4.最终得到的逼近解xn就是方程的解。
六、总结不定式方程是一类形式为a1·f1(x) + a2·f2(x) + … + an·fn(x) = 0的方程,其求解可以通过图像法、代数法、迭代法和数值法。
简单不定方程的四种基本解法
简单不定方程的四种基本解法一、一元不定方程求解1.穷举法简单不定方程指的是形如ax + b = c的方程,其中a、b、c为已知实数。
对于这种类型的方程,一种常见的解法是穷举法。
穷举法的基本思路是通过遍历所有可能的解来找到满足方程的解。
具体步骤如下:1.设定一个变量x,从一个初始值开始(如0)。
2.将x代入方程ax + b = c中。
3.检查方程是否成立,即判断等式左右两边是否相等。
4.如果等式成立,则找到一个解,否则增加x的值并重复步骤2和步骤3,直到找到满足方程的解。
穷举法的优点是简单易行,但是对于复杂的方程可能需要较长的时间来找到解。
2.代入法代入法是另一种求解一元不定方程的常见方法。
与穷举法不同,代入法通过代入不同的值来逐步确定解。
具体步骤如下:1.将方程ax + b = c转化为x = (c - b) / a的形式。
2.选定一个合适的值代入右侧的表达式中。
3.计算等式左侧的值。
4.如果等式成立,则找到一个解;否则选取另一个值重复步骤2和步骤3,直到找到满足方程的解。
代入法的优点是可以提高求解的效率,但在某些情况下,可能需要多次尝试才能找到满足方程的解。
二、二元不定方程求解1.等价变形法对于形如ax + by = c的二元不定方程,我们可以利用等价变形法来求解。
等价变形法的基本思路是通过变换等价方程,将方程转化为求解一元不定方程的问题。
具体步骤如下:1.将方程ax + by = c转化为ax = c - by的形式。
2.将x用y的表达式表示,即x = (c - by) / a。
3.根据所给的条件,取合适的整数值代入y。
4.计算等式右侧的值。
5.如果等式成立,则找到一个解;否则选取另一个整数值重复步骤3和步骤4,直到找到满足方程的解。
等价变形法的优点是可以将复杂的二元不定方程问题转化为求解一元不定方程的问题,降低了求解难度。
2.消元法消元法是另一种常见的二元不定方程求解方法。
该方法利用两个方程的线性组合,通过消去其中一个变量,从而得到一个只含有一个未知数的方程。
六年级知识点不定方程
六年级知识点不定方程不定方程是数学中的一个重要概念,对于六年级的学生来说,掌握不定方程的解法对于提高数学解题能力至关重要。
本文将为大家介绍六年级知识点不定方程的概念、解法及应用。
一、不定方程的概念不定方程是指方程中含有未知数的数值不确定,通常表示为形如ax + by = c的方程,其中a、b、c为已知的系数,x、y为未知数。
不定方程中,我们需要找到满足方程的整数解。
二、不定方程的解法1. 列举法列举法是最常用的解不定方程的方法。
具体步骤是:(1)将方程中的系数a、b与结果c分别取不同的整数值,列出方程的多组解;(2)逐个验证所列出的解是否满足原方程,验证通过即为方程的解。
2. 辗转相除法当方程中的系数a、b较大时,使用列举法效率较低,这时可以尝试使用辗转相除法。
具体步骤是:(1)先令a、b互换,使得a > b;(2)用b去除以a,得到余数r;(3)如果r为0,则a为原方程的最大公约数,b为原方程的解之一;(4)如果r不为0,则继续用r去除以b;(5)重复以上步骤,直到余数为0为止,最后一个余数不为0的除数即为原方程的最大公约数。
三、不定方程的应用不定方程在实际生活中有广泛的应用。
以下举例说明:1. 整数约分在分数的运算中,我们需要进行整数的约分操作。
不定方程的解法可以帮助我们快速找到分数的最大公约数,从而进行有效地约分操作。
2. 货币找零问题在日常购物中,我们经常遇到需要找零的情况。
不定方程的解法可以帮助我们计算出最少需要的货币张数,从而进行合理的找零操作。
3. 奥数问题奥数中有很多涉及不定方程的问题,掌握不定方程的解法可以帮助我们更好地解决这类问题,提高奥数竞赛的成绩。
四、总结六年级的学生通过掌握不定方程的概念、解法及应用,可以提高数学解题的能力,为提高数学成绩打下坚实基础。
在实际生活中,不定方程的应用也随处可见,能够帮助我们解决各种问题。
以上是关于六年级知识点不定方程的相关介绍。
通过学习和掌握,相信大家能够在数学学习中取得更好的成绩!。
不定方程求解题技巧
不定方程求解题技巧不定方程是指在未知数为整数的条件下,求满足方程的整数解的问题。
解不定方程的方法有很多种,下面将介绍一些常见的技巧和方法。
1. 分类讨论法这种方法适用于一元不定方程,即方程只有一个未知数。
根据方程中未知数的系数,可以将不定方程分为以下几类:A. 当方程中未知数系数为1时,通常可以考虑逐个尝试法,即从0开始尝试,逐渐增加或减少,直到找到满足方程的整数解为止。
B. 当方程中未知数系数为负数时,可以将方程两边同时乘以-1,转化为系数为正数的方程,然后按照分类A的方法求解。
C. 当方程中未知数系数为其他整数时,可以将方程两边同时乘以适当的倍数,转化为系数为1或负数的方程,然后按照分类A或B的方法求解。
2. 辗转相除法辗转相除法是求解线性不定方程(即方程的最高次数为1)的有效方法。
假设要解形如ax + by = c的方程(a、b、c为整数),首先通过欧几里得算法求得a和b的最大公约数d。
然后,如果c不是d的倍数,那么方程无整数解。
如果c是d的倍数,可以将方程两边同除以d,得到形如(a/d)x + (b/d)y = c/d的新方程。
由于a/d和b/d互质,可以通过扩展欧几里得算法求得一个整数解x0和y0。
然后,通解可以表示为x = x0 + (b/d)t和y = y0 - (a/d)t (t为整数),对所有整数t都满足原方程。
3. 特殊解与通解对于一些特殊的不定方程,可以通过观察得到一个或多个特殊解,并通过特殊解推导出通解。
例如,对于二次不定方程x^2 + y^2 = z^2(其中x、y、z为整数),可以取特殊解x = 3,y = 4,z = 5,然后可以推导出通解x = 3(m^2 - n^2),y = 4mn,z = 5(m^2 + n^2)(m、n 为整数)。
通过这个通解,可以找到无穷多个满足方程的整数解。
4. 数论方法数论是研究整数性质的一门学科,其中有许多定理和技巧可以应用于解不定方程。
不定方程的所有解法
不定方程的所有解法
不定方程是指含有未知数的方程,但未知数的个数多于方程的个数,因此方程无法唯一确定未知数的值。
不定方程的所有解法取决于方程的具体形式和条件。
以下是解决不定方程的常见方法:
一、列举法:对于简单的不定方程,可以通过列举所有可能的解来确定方程的解。
例如,对于一元一次方程ax = b,其中a和b为已知常数,可以通过计算x = b/a 来确定方程的解。
二、参数法:对于形如ax + by = c的不定方程,可以引入参数t,将方程转化为x = at + x0,y = bt + y0的形式,其中x0和y0为常数,然后通过选择合适的t值来确定方程的解。
三、降维法:对于高维的不定方程,可以通过将方程进行降维处理,转化为更简单的形式来求解。
例如,对于二元二次方程ax^2 + by^2 = c,可以通过代换u = x^2 和v = y^2来将方程转化为线性方程的形式,然后求解。
四、递归法:对于某些特殊形式的不定方程,可以通过递归的方式求解。
例如,对于费马大定理中的不定方程x^n + y^n = z^n,可以利用递归方法求解。
五、数学工具:对于一些复杂的不定方程,可以利用数学工具如数值方法、图形法、线性规划等来求解。
需要注意的是,不定方程的解并不总是存在或唯一的,有时候可能存在无穷多个解,有时候可能不存在解。
因此,在求解不定方程时,需要根据具体的问题和条件来选择合适的解法和策略。
福州事业单位考试:不定方程的常用解题方法
不定方程的常用解题方法中公事业单位为帮助各位考生顺利通过事业单位招聘考试!今天为大家带来数量关系解题技巧:不定方程的常用解题方法。
在近几年的考试中方程法是大多数考生在拿到题目的时候首先想到的解题方法,在方程中不定方程也是一种惯用方法,主要从奇偶性、尾数法、整除法和同余特性几个常用的入手。
接下来我们一起来具体看看涉及2个未知数1个方程的不定方程中这些方法怎么能够帮助我们快速的解题。
一、常用方法1.奇偶性。
例3x+8y=284,已知x、y均为正整数,则x可能为?解析:根据题干信息,有x、y两个未知数只有一个方程,从正面来看x可以取的正整数的情况数就比较多了。
而从方程来看284为偶数,8y也为偶数,根据偶偶相加才为偶数,判断3x一定为偶数;3为奇数,只有奇数*偶数=偶数,则x为偶数。
2.尾数法。
例3x+5y=284,,已知x、y均为正整数,则y可能为?解析:从方程来看284为偶数,5y和3x可同为奇数也为偶数,则x和y的奇偶性就不能确定。
但系数5乘以任何一个数要么是0结尾要么是5结尾,加上3x等于284,那么3x只能是4或者是9结尾两种情况。
3.整除数法。
例3x+11y=384,,已知x、y均为正整数,则y可能为?解析:从方程来看384为偶数,11y和3x可同为奇数也为偶数且系数3和11无明显尾数特征。
而3x和384同时均可被3整除,那么11y就必定能被3整除,11不能被3整除,则y一定能被3整除。
二、常见应用春节期间市场上主要出售两种草莓,单价分别为15和18元。
老张分别买了这两种若干回家,恰好用了120元。
则这两种草莓最多可能有多少斤?A5 B6 C7 D8解析:选C。
根据题干可以设两种不同单价的草莓数量为x、y,总价为15x+18y=120从方程来看120为偶数,18y为偶数,则15x一定为偶数。
15为奇数,只有奇数*偶数=偶数,则x为偶数。
系数15乘以任何一个数要么是0结尾要么是5结尾,加上18y等于120,那么18y只能为0结尾的数,y只能区5,代入x=2,x+y=7。
不定方程三种解法
不定方程三种解法不定方程是一个未知数在给定条件下需要满足的方程。
解决不定方程的问题在数学中起着重要的作用,因为它们经常出现在实际问题中,例如计算和数学建模中。
下面将介绍三种常见的解决不定方程的方法:试位法、绝对值法和齐次方程法。
1. 试位法:试位法是一种通过试探不同的解来逐步逼近正确解的方法。
该方法常用于寻找近似解或数值解的情况下。
它的基本思想是将不定方程转化为函数或方程组的零点问题,通过迭代逼近的方法找到近似解。
试位法的具体步骤如下:a. 确定一个初始区间,例如[1, 2]。
b. 按照二分法的原理,取中间值x,计算函数或方程组的值f(x)。
c. 根据函数或方程组的值与0的关系,确定下一个区间,继续迭代。
d. 重复步骤b和c,直到找到近似解。
2. 绝对值法:绝对值法是一种通过将不定方程转化为绝对值方程来求解的方法。
该方法常用于涉及到绝对值的方程问题。
它的基本思想是将绝对值方程拆分为条件方程,然后求解条件方程,最后检查解是否满足原方程。
绝对值法的具体步骤如下:a. 将绝对值方程拆分为条件方程。
b. 分别求解条件方程,得到两组解。
c. 检查解是否满足原方程,找到满足条件的解。
3. 齐次方程法:齐次方程法是一种通过将不定方程转化为齐次方程来求解的方法。
该方法常用于线性方程组或关于两个未知数的方程问题。
它的基本思想是将原方程中的零次项消去,然后将方程转化为齐次方程,从而简化求解。
齐次方程法的具体步骤如下:a. 消去原方程中的零次项,得到齐次方程。
b. 令其中一个未知数为常数,求解另一个未知数的表达式。
c. 根据所得表达式,求解第一个未知数。
d. 检查求得的解是否满足原方程。
以上是三种常见的解决不定方程的方法:试位法、绝对值法和齐次方程法。
具体的解决方法根据不同的具体问题而定,这些方法在数学中具有广泛的应用,并且可以通过适当的转换和计算得到准确的解。
这些方法虽然没有直接给出解析解,但是它们为求解不定方程问题提供了有效的途径。
不定方程组求解技巧
不定方程组求解技巧不定方程组指的是未知量个数大于方程个数的方程组。
由于未知量个数大于方程个数,所以不定方程组在一般情况下存在无穷多解。
求解不定方程组需要采用一定的技巧和方法,下面介绍几种常见的求解技巧。
1. 参数法:参数法是求解不定方程组的常用方法之一。
首先,找出方程组中的一个方程,通过变量的代换,使得方程中的一个未知量等于一个参数(通常用字母表示),然后解出其他未知量。
最后,将参数取遍所有可能的值,得到方程组的全部解。
例如,考虑不定方程组:x + 2y = 32x + 3y = 5取方程组第一个方程中的x 作为参数t ,则可以将x 表示为 x = t,代入第二个方程中,得到:2t + 3y = 5解这个方程得到:y = (5 - 2t) / 3因此,不定方程组的解为:(x, y) = (t, (5 - 2t) / 3),其中 t 可以取任意实数。
2. 等式法:等式法是另一种常用的不定方程组求解方法。
在等式法中,通过将其中一个方程两边同时乘以某个常数,使得方程中的一个未知量的系数和另一个方程中该未知量的系数相等,然后将两个方程相加或相减,得到一个只含有一个未知量的方程,进而求解该未知量。
最后,将求得的未知量代入其中一个方程,解出其他未知量。
例如,考虑不定方程组:2x - 3y = 14x + 6y = 8将第一个方程两边同时乘以2,得到:4x - 6y = 2将该式与第二个方程相加,得到:8x + 0y = 10解得 x = 10 / 8 = 5 / 4将求得的 x 值代入第一个方程,解得 y = (2 - 2x) / -3 = (2 - 2 * 5 / 4) / -3 = -1 / 2因此,不定方程组的解为:(x, y) = (5 / 4, -1 / 2)3. 消元法:消元法也是求解不定方程组的一种常用方法。
通过对方程组进行加减运算,将其中一个未知量的系数化为零,从而得到一个新的方程组,可以继续消元,直到最后只剩下一个只含有一个未知量的方程,然后解此方程。
解不定方程的常用技法
p ( x , a , b)
2 2 2 = ( a + b) x + ( a + b - 9 ab + 1) x +
数解 . ( 第 12 届全俄数学奥林匹克) 讲解 : 注意到
( a + b) ( ab + 1) =0
© 1994-2007 China Academic Journal Electronic Publishing House. All rights reserved.
8
中 等 数 学
的一组解 ,且 x ≤a ≤b .
ab + 1 由韦达定 理 知 , y = > b 是方程 x p ( x , a , b) = 0 的另一个解 .
5 不等式估计
先通过对所考察的量的放缩得到未知数 取值条件的不等式 , 再解这些不等式得到未 知数的取值范围 , 这是解不定方程的一个常 用技巧 . 例6 试求出所有的正整数 a 、 b、 c ,其 中 1 < a < b < c , 使得 ( a - 1) ( b - 1 ) ( c - 1 ) 是 abc - 1 的约数 . ( 第 33 届 IMO) 讲解 : 首先估计
s= abc - 1 ( s ∈N+ ) ( a - 1 ) ( b - 1) ( c - 1)
设 a0 = a1 = a2 = 1 ,定义
an + 2 an an + 1 + 1 (n≥ = 1) . an - 1
下面证明 : ( 1) an - 1 | ( an an + 1 + 1) ;
( 2) an | ( an - 1 + a n + 1 ) ; ( 3) an + 1 | ( an - 1 a n + 1) .
解不定方程的方法大全
解不定方程的方法大全
解不定方程的方法大全:
1. 试错法:通过不断尝试不同的数值来解决方程,直至找到符合条件的解。
2. 消元法:将方程中的变量进行化简,化为具有唯一解的形式。
3. 借用复数方法:将方程中的变量引入到复数范围内,通过复数运算求解出方程的解。
4. 迭代法:通过不断迭代方程的解,直至找到符合条件的解。
5. 矩阵方法:将方程转化为矩阵的形式,通过矩阵运算求解出方程的解。
6. 贝祖定理:通过贝祖定理来判断方程的解的存在性和唯一性。
7. 二分法:通过不断二分解空间来逐步逼近方程的解。
8. 牛顿迭代法:通过牛顿迭代公式来求解方程的解。
9. 高斯消元法:通过高斯消元的方法,将方程的系数矩阵消元为上三角矩阵,从而求解出方程的解。
总之,解不定方程需要依据具体问题具体分析,选择合适的方法进行求解,才能得到正确的答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整除法
【例题1】:某国家对居民收入实行下列税率方案:每人每月不超过3000美元的部
分按照1%税率征收,超过3000美元不超过6000美元的部分按照X%税率征收,超过6000
美元的部分按Y%税率征收(X,Y为整数)。
假设该国居民月收入为6500美元,支付了120
美元所得税,则Y为多少?
A.6
B.3
C.5
D.4
【参考答案】:A.
【解析】:整除法。
列方程可得,3000×1%+3000×X%+500×Y%=120,化简可得
6X+Y=18,观察发现,18以及X的系数6都是6的倍数,根据整除可以确定Y一定是6的倍数,所以结合选项答案选择A选项。
【小结】:当列出的方程中未知数的系数以及结果是同一个数的倍数的时候,可以考
虑用整除法结合选项选择答案。
奇偶法
【例题2】:装某种产品的盒子有大、小两种,大盒每盒能装11个,小盒每盒能装8个,要把89个产品装入盒内,要求每个盒子都恰好装满,需要大、小盒子各多少个?
A.3,7
B.4,6
C.5,4
D.6,3
【参考答案】:A.
【解析】:奇偶法。
设需要大、小盒子分别为x、y个,则有11x+8y=89,由此式89为
奇数,8y一定为偶数,所以11x一定为奇数,所以x一定为奇数,结合选项,排除B和D,剩余两个代入排除,可以选择A选项。
【小结】:列出的方程未知数系数和结果奇偶性可确定时,可以考虑用奇偶性结合选
项破解题目。
尾数法
【例题3】:有271位游客欲乘大、小两种客车旅游,已知大客车有37个座位,小
客车有20个座位。
为保证每位游客均有座位,且车上没有空座位,则需要大客车的辆数是:
A.1辆
B.3辆
C.2辆
D.4辆
【参考答案】:B.
【解析】:尾数法。
大客车需要x辆,小客车需要y辆,可列37x+20y=271,20y的尾数一定是0,则37x的尾数等于271的尾数1,结合选项x只能是3,所以选择B选项。
【小结】:列出方程的未知数的系数出现5或10的倍数时,尾数可以确定,可以考虑用尾数法结合选项来选择答案。