长方体正方体切拼练习题汇总.doc
长方体正方体经典题型汇总
长⽅体正⽅体经典题型汇总长⽅体和正⽅体典型习题棱长和问题:1.⼀个长⽅体长是10分⽶,宽是8分⽶,⾼是6分⽶,这个长⽅体的棱长总和是多少分⽶2.⽤⼀根长80分⽶的铁丝焊接成⼀个长10分⽶,宽6分⽶的长⽅体框架,⾼是多少分⽶3.是15厘⽶、11厘⽶、4厘⽶,如右图那样捆扎⼀道并留下18厘⽶长为⼿提环,这样⼀共需要多少厘⽶长的塑料带4.⼀个长⽅体的长宽⾼分别是5厘⽶,4厘⽶,3厘⽶,⼀个正⽅体的棱长总和与这个长⽅体的棱长总和相等,这个正⽅体的棱长是多少厘⽶5.⼀个长⽅体中相交于⼀个顶点的三条棱的长度和是15分⽶,这个长⽅体的棱长总和是多少分⽶6.⽤⼀根长60厘⽶的铁丝围成⼀个长8CM,宽5CM的长⽅体框架,这个长⽅体框架的⾼是多少厘⽶7.把⼀根长84⽶的铁丝围成⼀个正⽅体框架,棱长是多少分⽶8.⼀个长⽅体相交于同⼀顶点的三条棱长度分别是10厘⽶,5分⽶,6厘⽶,这个长⽅体的棱长总和是多少分⽶9.有⼀个长⽅体⽊块正好可以切成两个完全相同的正⽅体⽅块,已知长⽅体⽊块的棱长总和是80厘⽶,求切成的每个正⽅体⽊块的棱长总和。
表⾯积问题:1.⼀个长⽅体的⽆盖铁⽪⽔桶,长和宽都是3分⽶,深5分⽶。
做⼀对这样的⽔桶,⾄少需要多少平⽅分⽶铁⽪2.⼀盒饼⼲长20厘⽶,宽15厘⽶,⾼30厘⽶,现在要在它的四周贴上商标纸,如果商标纸的接头处是4厘⽶,这张商标纸的⾯积是多少平⽅厘⽶3.有⼀块正⽅形铁⽪,从四个顶点分别剪下⼀个边长5厘⽶的正⽅形后,所剩部分正好焊接成⼀个⽆盖的正⽅体铁⽪盒。
原来正⽅形铁⽪的⾯积是多少平⽅厘⽶4.⼀个长⽅体的棱长和是72厘⽶,它的长是9厘⽶,宽6厘⽶,它的表⾯积是多少平⽅厘⽶5.⼀个房间的长6⽶,宽⽶,⾼3⽶,门窗⾯积是8平⽅⽶。
现在要把这个房间的四壁和顶⾯粉刷⽔泥,粉刷⽔泥的⾯积是多少平⽅⽶如果每平⽅⽶需要⽔泥4千克,⼀共要⽔泥多少千克6.做⼀节长12分⽶,宽和⾼都是10厘⽶的通风管,⾄少需要铁⽪多少平⽅厘⽶做12节这样的通风管呢7.⼀个长⽅体的侧⾯展开是⼀个边长为20厘⽶的正⽅形,做这样20个这样的长⽅体需要多少平⽅厘⽶的硬纸8. ⼀盒饼⼲长20厘⽶,宽15厘⽶,⾼30厘⽶,现在要在它的四周贴上⾼6厘⽶的商标纸,这张商标纸的⾯积是多少平⽅厘⽶侧⾯积问题:⼀个长⽅体侧⾯积是360平⽅厘⽶,⾼是9厘⽶,长是宽的3倍,求它的表⾯积。
长方体正方体切拼练习题
长方体正方体切拼练习题1. 两个棱长4厘米的正方体木块.拼成一个长方体.这个长方体表面积是()平方厘米。
体积是()立方厘米。
2. 把三块棱长5厘米的正方体的拼成一个长方体.这个长方体的表面积是( )平方厘米。
3. 用3个长5厘米.宽4厘米.高1厘米的长方体木块.拼成一个表面积最大的长方体.这个长方体的表面积是()。
4. 一个正方体的棱长是4分米.如果把它切成两个相同的长方体.每个长方体的表面积是()。
5. 把三个棱长是3厘米的正方体拼成一个长方体.这个长方体的表面积是().比原来3个正方体表面积之和减少了()。
6. 将一个底面是正方形的长方体分成两个完全一样的正方体.表面积会增加50平方厘米。
原来长方体的表面积是()平方厘米.体积是()平方厘米。
7. 用4个棱长2分米的正方体拼成一个长方体.这个长方体的表面积最小是().表面积最大是()。
8. 用27个体积是1立方厘米的小正方体粘合成一个大正方体.粘合后的大正方体的表面积是()。
9. 把一个长6厘米.宽5厘米.高4厘米的长方体木块锯成两个小长方体.表面积最少增加( )平方厘米.最多增加( )平方厘米。
10. 一个长方体表面积是60平方厘米.刚好可以分成两个相同的正方体.一个正方体的表面积是()平方厘米。
11. 一个长方体的表面积是210平方厘米.刚好可以分成三个相同的小正方体.一个小正方体的表面积是()平方厘米。
12. 一个长方体的长、宽、高分别是8厘米、5厘米、2厘米.如果高增加2厘米.表面积增加( )平方厘米。
13. 一个棱长6厘米正方体木块.把它的表面涂上红色.然后把它锯成棱长1厘米的小正方体.问一面红色的有( )块;二面红色的有( )块;三面红色的有( )块;没有红色的有( )块。
14. 将一个表面漆有红色的长方体分割成若干个体积为1立方厘米的小正方体.其中一点红色都没有的小正方体有3块.原来长方体的表面积是()。
15. 把若干个体积相等的正方体拼成一个大正方体.然后在其表面涂上红色.已知一面涂色的小正方体有96个.那么两面涂色的小正方体有()个。
长方体拼、切问题
长方体和正方体(拼、切问题)专题分析:解答有关长方体和正方体的拼、切问题,除了要切实掌握长方体、正方体的特征,熟悉计算方法,仔细分析每一步操作后表面几何体积的等比情况外,还必须知道:把一个长方体或正方体沿水平方向或垂直方向切割成两部分,新增加的表面积等于切面面积的两倍。
二、精讲精练【例题1】有一个正方体木块,把它分成两个长方体后,表面积增加了24平方厘米,这个正方体木块原来的表面积是多少平方厘米?【思路导航】把正方体分成两个长方体后,增加了两个面,每个面的面积是24÷2=12平方厘米,而正方体有6个这样的面。
所以原正方体的表面积是12×6=72平方厘米。
练习1:1.把三个棱长都是2厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?2.有一个正方体木块,长4分米、宽3分米、高6分米,现在把它锯成两个长方体,表面积最多增加多少平方分米?3.有三块完全一样的长方体积木,它们的长是8厘米、宽4厘米、高2厘米,现把三块积木拱成一个大的长方体,怎样搭表面积最大?最大是多少平方厘米?【例题2】有一个正方体,棱长是3分米。
如果按下图把它切成棱长是1分米的小正方体,这些小正方体的表面积的和是多少?想一想:在切的过程中,每切一切,就会增加两个3×3平方分米的面,你能用这种思路来计算所求问题吗?练习2:1.用棱长是1厘米的小正方体摆成一个稍大一些的正方体,至少需要多少个小正方体?如果要摆一个棱长是6厘米的正方体,需要多少个小正方体?2.有一个长方体,长10厘米、宽6厘米、高4厘米,如果把它锯成棱长是1厘米的小正方体,一共能锯多少个?这些小正方体的表面积和是多少?3.把24个棱长是1厘米的小正方体摆成一个长方体,这个长方体的表面积至少是多少平方厘米?【例题3】一个棱长为6厘米的正方体木块,如果把它锯成棱长为2厘米的正方体若干块,表面积增加多少厘米?【思路导航】把棱长为6厘米的正方体锯成棱长为2厘米的正方体,可以按下图中的线共锯6次,每锯一次就增加两个6×6=36平方厘米的面,锯6次共增加36×2×6=432平方厘米的面积。
长方体和正方体全套练习题(8套)
长方体和正方体练习一一、填空1、长方体有()个面,它们一般都是()形,也可能有()个面是正方形.2、长方体的上面和下面、前面和后面、左面和右面都叫做(),它们的面积().3、长方体的12条棱,每相对的()条棱算作一组,12条棱可以分成()组.4、正方体有()个面,每个面都是()形,面积都().5、一个正方体的棱长是6厘米,它的棱长总和是().6、一个长方体的长是1.5分米,宽是1.2分米,高是1分米,它的棱长和是()分米.7、一个长方体的棱长总和是80厘米,其中长是10厘米,宽是7厘米,高是()厘米.8、把两个棱长1厘米的正方体拼成一个长方体,这个长方体的棱长总和是()厘米.二、判断题1、长方体和正方体都有6个面,12条棱,8个顶点.()2、长方体的6个面不可能有正方形.()3、长方体的12条棱中,长、宽、高各有4条.()4、正方体不仅相对的面的面积相等,而且所有相邻的面的面积也都相等.()5、长方体(不包括正方体)除了相对的面相等,也可能有两个相邻的面相等.()6、一个长方体长12厘米,宽8厘米,高7厘米,把它切成一个尽可能大的正方体,这个正方体的棱长是8厘米.()三、选择题1、下列物体中,形状不是长方体的是()①火柴盒②红砖③茶杯④木箱2、长方体的12条棱中,高有()条.①4 ②6 ③8 ④123、下列三个图形中,能拼成正方体的是()4、把一个棱长3分米的正方体切成两个相等的长方体,增加的两个面的总面积是()平方分米.①18 ②9 ③36 ④以上答案都不对练习二1、有一根长52厘米的铁丝,恰好可以焊接成一个长6厘米,宽4厘米,高多少厘米的长方体?2、一个长方体的水池,长20厘米,宽10厘米,深2米,占地多少平方米?3、用96厘米长的铁丝焊接成一个正方体的框架,然后用纸给它的表面包裹起来,至少需要多少平方厘米的纸?4、一个长方体,长12厘米,宽和高都是8厘米,这个长方体的表面积是多少平方厘米?5、用两个棱长为5厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?6、一个长方体和一个正方体的棱长之和相等,已知长方体的长为5厘米,宽为3厘米,高为4厘米,求正方体的棱长。
人教版五年级下册长方体和正方体切拼练习题doc
长方体和正方体切拼练习题一、推断:〔1〕长方体有6个面,可能会有4个面面积一样。
〔〕〔2〕棱长是6分米的正方体体积与外表积一样大。
〔〕〔3〕1立方米铁的体积比1立方米的棉花体积大。
〔〕〔4〕体积为1立方分米的纸盒放在桌面上,纸盒所占的面积一定是1平方分米。
〔〕〔5〕正方体的棱长扩大2倍,体积扩大4倍。
〔〕二、应用题:一个长方体,长12厘米,宽8厘米,高6厘米。
〔1〕假如从那个长方体上切下一个最大的正方体,那个正方体的体积应该是多少?〔2〕假如将那个长方体切成假设干个大小一样的正方体〔不许有剩余〕,最少能切多少块?〔3〕假如用假设干个如此一样的长方体拼成一个更大的正方体,至少需要多少个长方体?三、练习1.把一个长16厘米,宽6厘米,高8厘米的大长方体切成两个小长方体,这两个小长方体的外表积的和最大是多少平方厘米,最小是多少?2.一个正方体的外表积是24平方分米,把它分成两个完全一样的长方体,每个长方体的外表积是多少平方分米?3.把一个长6厘米,宽5厘米,高4厘米的长方体木块锯成两个小长方体,外表积最少增加多少平方厘米?最多增加多少平方厘米?4.把1立方米的正方体木料,全锯成1立方厘米的小木块〔损耗不在计算之内〕,把这些小木块一个紧挨一个地排成一行,这一行总共有多少米5.一个正方体木块,外表积是30平方分米,假如把它据成大小一样的8个小正方体木块,每个小木块的外表积是多少?6.把长5厘米、宽4厘米、高3厘米的两块一样的长方体拼成一个新长方体,有几种拼法,外表积分不是多少?7.把两块棱长5厘米的正方体的拼成一个长方体,那个长方体的外表积是多少平方厘米?〔你能用几种方法解答〕8.一个正方体的底面周长是16厘米,它的外表积是多少平方厘米,体积是多少立方厘米?9.至少要几个小正方体才能拼成一个大正方体,假如一个小正方体的棱长是5厘米,那么大正方体的外表积是多少平方厘米,体积是多少立方厘米?10.一个长方体,假如高减少3厘米,就成为一个正方体。
五年级下册长方体和正方体切拼练习题
五年级下册长方体和正方体切拼练习题班级姓名一、判断:(1)长方体有6个面,可能会有4个面面积相同。
()(2)棱长是6分米的正方体体积与表面积一样大。
()(3)1立方米铁的体积比1立方米的棉花体积大。
()(4)体积为1立方分米的纸盒放在桌面上,纸盒所占的面积一定是1平方分米。
()(5)正方体的棱长扩大2倍,体积扩大4倍。
()二、应用题:一个长方体,长12厘米,宽8厘米,高6厘米。
(1)如果从这个长方体上切下一个最大的正方体,这个正方体的体积应该是多少?(2)如果将这个长方体切成若干个大小一样的正方体(不许有剩余),最少能切多少块?(3)如果用若干个这样相同的长方体拼成一个更大的正方体,至少需要多少个长方体?练习1.把一个长16厘米,宽6厘米,高8厘米的大长方体切成两个小长方体,这两个小长方体的表面积的和最大是多少平方厘米,最小是多少?2.一个正方体的表面积是24平方分米,把它分成两个完全相同的长方体,每个长方体的表面积是多少平方分米?3.把一个长6厘米,宽5厘米,高4厘米的长方体木块锯成两个小长方体,表面积最少增加多少平方厘米?最多增加多少平方厘米?4.把1立方米的正方体木料,全锯成1立方厘米的小木块(损耗不在计算之内),把这些小木块一个紧挨一个地排成一行,这一行总共有多少米5.一个正方体木块,表面积是30平方分米,如果把它据成大小一样的8个小正方体木块,每个小木块的表面积是多少?6.把长5厘米、宽4厘米、高3厘米的两块相同的长方体拼成一个新长方体,有几种拼法,表面积分别是多少?7.把两块棱长5厘米的正方体的拼成一个长方体,这个长方体的表面积是多少平方厘米?(你能用几种方法解答)8.一个正方体的底面周长是16厘米,它的表面积是多少平方厘米,体积是多少立方厘米?9.至少要几个小正方体才能拼成一个大正方体,如果一个小正方体的棱长是5厘米,那么大正方体的表面积是多少平方厘米,体积是多少立方厘米?10.一个长方体,如果高减少3厘米,就成为一个正方体。
人教版五年级下册长方体和正方体切拼练习题
长方体和正方体切拼练习题一、判断:(1)长方体有6个面,可能会有4个面面积相同。
()(2)棱长是6分米的正方体体积与表面积一样大。
()(3)1立方米铁的体积比1立方米的棉花体积大。
()(4)体积为1立方分米的纸盒放在桌面上,纸盒所占的面积一定是1平方分米。
()(5)正方体的棱长扩大2倍,体积扩大4倍。
()二、应用题:一个长方体,长12厘米,宽8厘米,高6厘米。
(1)如果从这个长方体上切下一个最大的正方体,这个正方体的体积应该是多少?(2)如果将这个长方体切成若干个大小一样的正方体(不许有剩余),最少能切多少块?(3)如果用若干个这样相同的长方体拼成一个更大的正方体,至少需要多少个长方体?三、练习1.把一个长16厘米,宽6厘米,高8厘米的大长方体切成两个小长方体,这两个小长方体的表面积的和最大是多少平方厘米,最小是多少?2.一个正方体的表面积是24平方分米,把它分成两个完全相同的长方体,每个长方体的表面积是多少平方分米?3.把一个长6厘米,宽5厘米,高4厘米的长方体木块锯成两个小长方体,表面积最少增加多少平方厘米?最多增加多少平方厘米?4.把1立方米的正方体木料,全锯成1立方厘米的小木块(损耗不在计算之内),把这些小木块一个紧挨一个地排成一行,这一行总共有多少米5.一个正方体木块,表面积是30平方分米,如果把它据成大小一样的8个小正方体木块,每个小木块的表面积是多少?6.把长5厘米、宽4厘米、高3厘米的两块相同的长方体拼成一个新长方体,有几种拼法,表面积分别是多少?7.把两块棱长5厘米的正方体的拼成一个长方体,这个长方体的表面积是多少平方厘米?(你能用几种方法解答)8.一个正方体的底面周长是16厘米,它的表面积是多少平方厘米,体积是多少立方厘米?9.至少要几个小正方体才能拼成一个大正方体,如果一个小正方体的棱长是5厘米,那么大正方体的表面积是多少平方厘米,体积是多少立方厘米?10.一个长方体,如果高减少3厘米,就成为一个正方体。
人教版五年级下册长方体和正方体切拼练习题(精品)
长方体和正方体切拼练习题一、判断:(1)长方体有6个面,可能会有4个面面积相同。
()(2)棱长是6分米的正方体体积与表面积一样大。
()(3)1立方米铁的体积比1立方米的棉花体积大。
()(4)体积为1立方分米的纸盒放在桌面上,纸盒所占的面积一定是1平方分米。
()(5)正方体的棱长扩大2倍,体积扩大4倍。
()二、应用题:一个长方体,长12厘米,宽8厘米,高6厘米。
(1)如果从这个长方体上切下一个最大的正方体,这个正方体的体积应该是多少?(2)如果将这个长方体切成若干个大小一样的正方体(不许有剩余),最少能切多少块?(3)如果用若干个这样相同的长方体拼成一个更大的正方体,至少需要多少个长方体?三、练习1.把一个长16厘米,宽6厘米,高8厘米的大长方体切成两个小长方体,这两个小长方体的表面积的和最大是多少平方厘米,最小是多少?2.一个正方体的表面积是24平方分米,把它分成两个完全相同的长方体,每个长方体的表面积是多少平方分米?3.把一个长6厘米,宽5厘米,高4厘米的长方体木块锯成两个小长方体,表面积最少增加多少平方厘米?最多增加多少平方厘米?4.把1立方米的正方体木料,全锯成1立方厘米的小木块(损耗不在计算之内),把这些小木块一个紧挨一个地排成一行,这一行总共有多少米5.一个正方体木块,表面积是30平方分米,如果把它据成大小一样的8个小正方体木块,每个小木块的表面积是多少?6.把长5厘米、宽4厘米、高3厘米的两块相同的长方体拼成一个新长方体,有几种拼法,表面积分别是多少?7.把两块棱长5厘米的正方体的拼成一个长方体,这个长方体的表面积是多少平方厘米?(你能用几种方法解答)8.一个正方体的底面周长是16厘米,它的表面积是多少平方厘米,体积是多少立方厘米?9.至少要几个小正方体才能拼成一个大正方体,如果一个小正方体的棱长是5厘米,那么大正方体的表面积是多少平方厘米,体积是多少立方厘米?10.一个长方体,如果高减少3厘米,就成为一个正方体。
人教版五年级下册长方体和正方体切拼练习题
长方体和正方体切拼练习题一、判断:(1)长方体有6个面,可能会有4个面面积相同。
()(2)棱长是6分米的正方体体积与表面积一样大。
()(3)1立方米铁的体积比1立方米的棉花体积大。
()(4)体积为1立方分米的纸盒放在桌面上,纸盒所占的面积一定是1平方分米。
()(5)正方体的棱长扩大2倍,体积扩大4倍。
()二、应用题:一个长方体,长12厘米,宽8厘米,高6厘米。
(1)如果从这个长方体上切下一个最大的正方体,这个正方体的体积应该是多少?(2)如果将这个长方体切成若干个大小一样的正方体(不许有剩余),最少能切多少块?(3)如果用若干个这样相同的长方体拼成一个更大的正方体,至少需要多少个长方体?三、练习1.把一个长16厘米,宽6厘米,高8厘米的大长方体切成两个小长方体,这两个小长方体的表面积的和最大是多少平方厘米,最小是多少?2.一个正方体的表面积是24平方分米,把它分成两个完全相同的长方体,每个长方体的表面积是多少平方分米?3.把一个长6厘米,宽5厘米,高4厘米的长方体木块锯成两个小长方体,表面积最少增加多少平方厘米?最多增加多少平方厘米?4.把1立方米的正方体木料,全锯成1立方厘米的小木块(损耗不在计算之内),把这些小木块一个紧挨一个地排成一行,这一行总共有多少米5.一个正方体木块,表面积是30平方分米,如果把它据成大小一样的8个小正方体木块,每个小木块的表面积是多少?6.把长5厘米、宽4厘米、高3厘米的两块相同的长方体拼成一个新长方体,有几种拼法,表面积分别是多少?7.把两块棱长5厘米的正方体的拼成一个长方体,这个长方体的表面积是多少平方厘米?(你能用几种方法解答)8.一个正方体的底面周长是16厘米,它的表面积是多少平方厘米,体积是多少立方厘米?9.至少要几个小正方体才能拼成一个大正方体,如果一个小正方体的棱长是5厘米,那么大正方体的表面积是多少平方厘米,体积是多少立方厘米?10.一个长方体,如果高减少3厘米,就成为一个正方体。
新人教版五年级下册长方体和正方体切拼练习题
长方体和正方体切拼练习题一、判断:(1)长方体有6个面,可能会有4个面面积相同。
()(2)棱长是6分米的正方体体积与表面积一样大。
()(3)1立方米铁的体积比1立方米的棉花体积大。
()(4)体积为1立方分米的纸盒放在桌面上,纸盒所占的面积一定是1平方分米。
()(5)正方体的棱长扩大2倍,体积扩大4倍。
()二、应用题:一个长方体,长12厘米,宽8厘米,高6厘米。
(1)如果从这个长方体上切下一个最大的正方体,这个正方体的体积应该是多少?(2)如果将这个长方体切成若干个大小一样的正方体(不许有剩余),最少能切多少块?(3)如果用若干个这样相同的长方体拼成一个更大的正方体,至少需要多少个长方体?三、练习1.把一个长16厘米,宽6厘米,高8厘米的大长方体切成两个小长方体,这两个小长方体的表面积的和最大是多少平方厘米,最小是多少?2.一个正方体的表面积是24平方分米,把它分成两个完全相同的长方体,每个长方体的表面积是多少平方分米?3.把一个长6厘米,宽5厘米,高4厘米的长方体木块锯成两个小长方体,表面积最少增加多少平方厘米?最多增加多少平方厘米?14.把1立方米的正方体木料,全锯成1立方厘米的小木块(损耗不在计算之内),把这些小木块一个紧挨一个地排成一行,这一行总共有多少米5.一个正方体木块,表面积是30平方分米,如果把它据成大小一样的8个小正方体木块,每个小木块的表面积是多少?6.把长5厘米、宽4厘米、高3厘米的两块相同的长方体拼成一个新长方体,有几种拼法,表面积分别是多少?7.把两块棱长5厘米的正方体的拼成一个长方体,这个长方体的表面积是多少平方厘米?(你能用几种方法解答)8.一个正方体的底面周长是16厘米,它的表面积是多少平方厘米,体积是多少立方厘米?9.至少要几个小正方体才能拼成一个大正方体,如果一个小正方体的棱长是5厘米,那么大正方体的表面积是多少平方厘米,体积是多少立方厘米?10.一个长方体,如果高减少3厘米,就成为一个正方体。
新人教版五年级下册长方体和正方体切拼练习题
长方体和正方体切拼练习题一、判断:(1)长方体有6个面,可能会有4个面面积相同。
()(2)棱长是6分米的正方体体积与表面积一样大。
()(3)1立方米铁的体积比1立方米的棉花体积大。
()(4)体积为1立方分米的纸盒放在桌面上,纸盒所占的面积一定是1平方分米。
()(5)正方体的棱长扩大2倍,体积扩大4倍。
()二、应用题:一个长方体,长12厘米,宽8厘米,高6厘米。
(1)如果从这个长方体上切下一个最大的正方体,这个正方体的体积应该是多少?(2)如果将这个长方体切成若干个大小一样的正方体(不许有剩余),最少能切多少块?(3)如果用若干个这样相同的长方体拼成一个更大的正方体,至少需要多少个长方体?三、练习1.把一个长16厘米,宽6厘米,高8厘米的大长方体切成两个小长方体,这两个小长方体的表面积的和最大是多少平方厘米,最小是多少?2.一个正方体的表面积是24平方分米,把它分成两个完全相同的长方体,每个长方体的表面积是多少平方分米?3.把一个长6厘米,宽5厘米,高4厘米的长方体木块锯成两个小长方体,表面积最少增加多少平方厘米?最多增加多少平方厘米?4.把1立方米的正方体木料,全锯成1立方厘米的小木块(损耗不在计算之内),把这些小木块一个紧挨一个地排成一行,这一行总共有多少米5.一个正方体木块,表面积是30平方分米,如果把它据成大小一样的8个小正方体木块,每个小木块的表面积是多少?6.把长5厘米、宽4厘米、高3厘米的两块相同的长方体拼成一个新长方体,有几种拼法,表面积分别是多少?7.把两块棱长5厘米的正方体的拼成一个长方体,这个长方体的表面积是多少平方厘米?(你能用几种方法解答)8.一个正方体的底面周长是16厘米,它的表面积是多少平方厘米,体积是多少立方厘米?9.至少要几个小正方体才能拼成一个大正方体,如果一个小正方体的棱长是5厘米,那么大正方体的表面积是多少平方厘米,体积是多少立方厘米?10.一个长方体,如果高减少3厘米,就成为一个正方体。
人教版五年级下册长方体和正方体切拼练习题
长方体和正方体切拼练习题一、判断:(1)长方体有6个面,可能会有4个面面积相同。
()(2)棱长是6分米的正方体体积与表面积一样大。
()(3)1立方米铁的体积比1立方米的棉花体积大。
()(4)体积为1立方分米的纸盒放在桌面上,纸盒所占的面积一定是1平方分米。
()(5)正方体的棱长扩大2倍,体积扩大4倍。
()二、应用题:一个长方体,长12厘米,宽8厘米,高6厘米。
(1)如果从这个长方体上切下一个最大的正方体,这个正方体的体积应该是多少?(2)如果将这个长方体切成若干个大小一样的正方体(不许有剩余),最少能切多少块?(3)如果用若干个这样相同的长方体拼成一个更大的正方体,至少需要多少个长方体?三、练习1.把一个长16厘米,宽6厘米,高8厘米的大长方体切成两个小长方体,这两个小长方体的表面积的和最大是多少平方厘米,最小是多少?2.一个正方体的表面积是24平方分米,把它分成两个完全相同的长方体,每个长方体的表面积是多少平方分米?3.把一个长6厘米,宽5厘米,高4厘米的长方体木块锯成两个小长方体,表面积最少增加多少平方厘米?最多增加多少平方厘米?4.把1立方米的正方体木料,全锯成1立方厘米的小木块(损耗不在计算之内),把这些小木块一个紧挨一个地排成一行,这一行总共有多少米5.一个正方体木块,表面积是30平方分米,如果把它据成大小一样的8个小正方体木块,每个小木块的表面积是多少?6.把长5厘米、宽4厘米、高3厘米的两块相同的长方体拼成一个新长方体,有几种拼法,表面积分别是多少?7.把两块棱长5厘米的正方体的拼成一个长方体,这个长方体的表面积是多少平方厘米?(你能用几种方法解答)8.一个正方体的底面周长是16厘米,它的表面积是多少平方厘米,体积是多少立方厘米?9.至少要几个小正方体才能拼成一个大正方体,如果一个小正方体的棱长是5厘米,那么大正方体的表面积是多少平方厘米,体积是多少立方厘米?10.一个长方体,如果高减少3厘米,就成为一个正方体。
人教版五年级下册长方体和正方体切拼练习题
长方体和正方体切拼练习题一、判断:(1)长方体有6个面,可能会有4个面面积相同。
()(2)棱长是6分米的正方体体积与表面积一样大。
()(3)1立方米铁的体积比1立方米的棉花体积大。
()(4)体积为1立方分米的纸盒放在桌面上,纸盒所占的面积一定是1平方分米。
()(5)正方体的棱长扩大2倍,体积扩大4倍。
()二、应用题:一个长方体,长12厘米,宽8厘米,高6厘米。
(1)如果从这个长方体上切下一个最大的正方体,这个正方体的体积应该是多少?(2)如果将这个长方体切成若干个大小一样的正方体(不许有剩余),最少能切多少块?(3)如果用若干个这样相同的长方体拼成一个更大的正方体,至少需要多少个长方体?三、练习1.把一个长16厘米,宽6厘米,高8厘米的大长方体切成两个小长方体,这两个小长方体的表面积的和最大是多少平方厘米,最小是多少?2.一个正方体的表面积是24平方分米,把它分成两个完全相同的长方体,每个长方体的表面积是多少平方分米?3.把一个长6厘米,宽5厘米,高4厘米的长方体木块锯成两个小长方体,表面积最少增加多少平方厘米?最多增加多少平方厘米?4.把1立方米的正方体木料,全锯成1立方厘米的小木块(损耗不在计算之内),把这些小木块一个紧挨一个地排成一行,这一行总共有多少米5.一个正方体木块,表面积是30平方分米,如果把它据成大小一样的8个小正方体木块,每个小木块的表面积是多少?6.把长5厘米、宽4厘米、高3厘米的两块相同的长方体拼成一个新长方体,有几种拼法,表面积分别是多少?7.把两块棱长5厘米的正方体的拼成一个长方体,这个长方体的表面积是多少平方厘米?(你能用几种方法解答)8.一个正方体的底面周长是16厘米,它的表面积是多少平方厘米,体积是多少立方厘米?9.至少要几个小正方体才能拼成一个大正方体,如果一个小正方体的棱长是5厘米,那么大正方体的表面积是多少平方厘米,体积是多少立方厘米?10.一个长方体,如果高减少3厘米,就成为一个正方体。
人教版五年级下册长方体和正方体切拼练习题
长方体和正方体切拼练习题一、判断:(1)长方体有6个面,可能会有4个面面积相同。
()(2)棱长是6分米的正方体体积与表面积一样大。
()(3)1立方米铁的体积比1立方米的棉花体积大。
()(4)体积为1立方分米的纸盒放在桌面上,纸盒所占的面积一定是1平方分米。
()(5)正方体的棱长扩大2倍,体积扩大4倍。
()二、应用题:一个长方体,长12厘米,宽8厘米,高6厘米。
(1)如果从这个长方体上切下一个最大的正方体,这个正方体的体积应该是多少?(2)如果将这个长方体切成若干个大小一样的正方体(不许有剩余),最少能切多少块?(3)如果用若干个这样相同的长方体拼成一个更大的正方体,至少需要多少个长方体?三、练习1.把一个长16厘米,宽6厘米,高8厘米的大长方体切成两个小长方体,这两个小长方体的表面积的和最大是多少平方厘米,最小是多少?2.一个正方体的表面积是24平方分米,把它分成两个完全相同的长方体,每个长方体的表面积是多少平方分米?3.把一个长6厘米,宽5厘米,高4厘米的长方体木块锯成两个小长方体,表面积最少增加多少平方厘米?最多增加多少平方厘米?4.把1立方米的正方体木料,全锯成1立方厘米的小木块(损耗不在计算之内),把这些小木块一个紧挨一个地排成一行,这一行总共有多少米5.一个正方体木块,表面积是30平方分米,如果把它据成大小一样的8个小正方体木块,每个小木块的表面积是多少?6.把长5厘米、宽4厘米、高3厘米的两块相同的长方体拼成一个新长方体,有几种拼法,表面积分别是多少?7.把两块棱长5厘米的正方体的拼成一个长方体,这个长方体的表面积是多少平方厘米?(你能用几种方法解答)8.一个正方体的底面周长是16厘米,它的表面积是多少平方厘米,体积是多少立方厘米?9.至少要几个小正方体才能拼成一个大正方体,如果一个小正方体的棱长是5厘米,那么大正方体的表面积是多少平方厘米,体积是多少立方厘米?10.一个长方体,如果高减少3厘米,就成为一个正方体。
人教版五年级下册长方体和正方体切拼练习题
长方体和正方体切拼练习题一、判断:(1)长方体有6个面,可能会有4个面面积相同。
()(2)棱长是6分米的正方体体积与表面积一样大。
()(3)1立方米铁的体积比1立方米的棉花体积大。
()(4)体积为1立方分米的纸盒放在桌面上,纸盒所占的面积一定是1平方分米。
()(5)正方体的棱长扩大2倍,体积扩大4倍。
()二、应用题:一个长方体,长12厘米,宽8厘米,高6厘米。
(1)如果从这个长方体上切下一个最大的正方体,这个正方体的体积应该是多少?(2)如果将这个长方体切成若干个大小一样的正方体(不许有剩余),最少能切多少块?(3)如果用若干个这样相同的长方体拼成一个更大的正方体,至少需要多少个长方体?三、练习1.把一个长16厘米,宽6厘米,高8厘米的大长方体切成两个小长方体,这两个小长方体的表面积的和最大是多少平方厘米,最小是多少?2.一个正方体的表面积是24平方分米,把它分成两个完全相同的长方体,每个长方体的表面积是多少平方分米?3.把一个长6厘米,宽5厘米,高4厘米的长方体木块锯成两个小长方体,表面积最少增加多少平方厘米?最多增加多少平方厘米?4.把1立方米的正方体木料,全锯成1立方厘米的小木块(损耗不在计算之内),把这些小木块一个紧挨一个地排成一行,这一行总共有多少米5.一个正方体木块,表面积是30平方分米,如果把它据成大小一样的8个小正方体木块,每个小木块的表面积是多少?6.把长5厘米、宽4厘米、高3厘米的两块相同的长方体拼成一个新长方体,有几种拼法,表面积分别是多少?7.把两块棱长5厘米的正方体的拼成一个长方体,这个长方体的表面积是多少平方厘米?(你能用几种方法解答)8.一个正方体的底面周长是16厘米,它的表面积是多少平方厘米,体积是多少立方厘米?9.至少要几个小正方体才能拼成一个大正方体,如果一个小正方体的棱长是5厘米,那么大正方体的表面积是多少平方厘米,体积是多少立方厘米?10.一个长方体,如果高减少3厘米,就成为一个正方体。
新人教版五年级下册长方体和正方体切拼练习题
长方体和正方体切拼练习题一、判断:(1)长方体有6个面,可能会有4个面面积相同。
()(2)棱长是6分米的正方体体积与表面积一样大。
()(3)1立方米铁的体积比1立方米的棉花体积大。
()(4)体积为1立方分米的纸盒放在桌面上,纸盒所占的面积一定是1平方分米。
()(5)正方体的棱长扩大2倍,体积扩大4倍。
()二、应用题:一个长方体,长12厘米,宽8厘米,高6厘米。
(1)如果从这个长方体上切下一个最大的正方体,这个正方体的体积应该是多少?(2)如果将这个长方体切成若干个大小一样的正方体(不许有剩余),最少能切多少块?(3)如果用若干个这样相同的长方体拼成一个更大的正方体,至少需要多少个长方体?三、练习1.把一个长16厘米,宽6厘米,高8厘米的大长方体切成两个小长方体,这两个小长方体的表面积的和最大是多少平方厘米,最小是多少?2.一个正方体的表面积是24平方分米,把它分成两个完全相同的长方体,每个长方体的表面积是多少平方分米?3.把一个长6厘米,宽5厘米,高4厘米的长方体木块锯成两个小长方体,表面积最少增加多少平方厘米?最多增加多少平方厘米?4.把1立方米的正方体木料,全锯成1立方厘米的小木块(损耗不在计算之内),把这些小木块一个紧挨一个地排成一行,这一行总共有多少米5.一个正方体木块,表面积是30平方分米,如果把它据成大小一样的8个小正方体木块,每个小木块的表面积是多少?6.把长5厘米、宽4厘米、高3厘米的两块相同的长方体拼成一个新长方体,有几种拼法,表面积分别是多少?7.把两块棱长5厘米的正方体的拼成一个长方体,这个长方体的表面积是多少平方厘米?(你能用几种方法解答)8.一个正方体的底面周长是16厘米,它的表面积是多少平方厘米,体积是多少立方厘米?9.至少要几个小正方体才能拼成一个大正方体,如果一个小正方体的棱长是5厘米,那么大正方体的表面积是多少平方厘米,体积是多少立方厘米?10.一个长方体,如果高减少3厘米,就成为一个正方体。
人教版五年级下册长方体和正方体切拼练习题
长方体和正方体切拼练习题一、判断:(1)长方体有6个面,可能会有4个面面积相同。
()(2)棱长是6分米的正方体体积与表面积一样大。
()(3)1立方米铁的体积比1立方米的棉花体积大。
()(4)体积为1立方分米的纸盒放在桌面上,纸盒所占的面积一定是1平方分米。
()(5)正方体的棱长扩大2倍,体积扩大4倍。
()二、应用题:一个长方体,长12厘米,宽8厘米,高6厘米。
(1)如果从这个长方体上切下一个最大的正方体,这个正方体的体积应该是多少?(2)如果将这个长方体切成若干个大小一样的正方体(不许有剩余),最少能切多少块?(3)如果用若干个这样相同的长方体拼成一个更大的正方体,至少需要多少个长方体?三、练习1.把一个长16厘米,宽6厘米,高8厘米的大长方体切成两个小长方体,这两个小长方体的表面积的和最大是多少平方厘米,最小是多少?2.一个正方体的表面积是24平方分米,把它分成两个完全相同的长方体,每个长方体的表面积是多少平方分米?3.把一个长6厘米,宽5厘米,高4厘米的长方体木块锯成两个小长方体,表面积最少增加多少平方厘米?最多增加多少平方厘米?4.把1立方米的正方体木料,全锯成1立方厘米的小木块(损耗不在计算之内),把这些小木块一个紧挨一个地排成一行,这一行总共有多少米5.一个正方体木块,表面积是30平方分米,如果把它据成大小一样的8个小正方体木块,每个小木块的表面积是多少?6.把长5厘米、宽4厘米、高3厘米的两块相同的长方体拼成一个新长方体,有几种拼法,表面积分别是多少?7.把两块棱长5厘米的正方体的拼成一个长方体,这个长方体的表面积是多少平方厘米?(你能用几种方法解答)8.一个正方体的底面周长是16厘米,它的表面积是多少平方厘米,体积是多少立方厘米?9.至少要几个小正方体才能拼成一个大正方体,如果一个小正方体的棱长是5厘米,那么大正方体的表面积是多少平方厘米,体积是多少立方厘米?10.一个长方体,如果高减少3厘米,就成为一个正方体。
长方体正方体切与拼练习题
长方体和正方体切与拼练习题1. 两个棱长4厘米的正方体木块,拼成一个长方体,这个长方体表面积是(160)平方厘米。
体积是(128)立方厘米。
2. 把三块棱长5厘米的正方体的拼成一个长方体,这个长方体的表面积是( 350)平方厘米。
3. 用3个长5厘米,宽4厘米,高1厘米的长方体木块,拼成一个表面积最大的长方体,这个长方体的表面积是(158平方厘米)。
4. 一个正方体的棱长是4分米,如果把它切成两个相同的长方体,每个长方体的表面积是(32平方分米)。
5. 把三个棱长是3厘米的正方体拼成一个长方体,这个长方体的表面积是(126 平方厘米),比原来3个正方体表面积之和减少了(48平方厘米)。
6. 将一个底面是正方形的长方体分成两个完全一样的正方体,表面积会增加50平方厘米。
原来长方体的表面积是()平方厘米,体积是()平方厘米。
7. 用4个棱长2分米的正方体拼成一个长方体,这个长方体的表面积最小是(),表面积最大是()。
8. 用27个体积是1立方厘米的小正方体粘合成一个大正方体,粘合后的大正方体的表面积是()。
9. 把一个长6厘米,宽5厘米,高4厘米的长方体木块锯成两个小长方体,表面积最少增加( )平方厘米,最多增加( )平方厘米。
10. 一个长方体表面积是60平方厘米,刚好可以分成两个相同的正方体,一个正方体的表面积是()平方厘米。
11. 一个长方体的表面积是210平方厘米,刚好可以分成三个相同的小正方体,一个小正方体的表面积是()平方厘米。
12. 一个长方体的长、宽、高分别是8厘米、5厘米、2厘米,如果高增加2厘米,表面积增加( )平方厘米。
13. 一个棱长6厘米正方体木块,把它的表面涂上红色,然后把它锯成棱长1厘米的小正方体,问一面红色的有( )块;二面红色的有( )块;三面红色的有( )块;没有红色的有( )块。
14. 将一个表面漆有红色的长方体分割成若干个体积为1立方厘米的小正方体,其中一点红色都没有的小正方体有3块,原来长方体的表面积是()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长方体正方体切拼练习题汇总
1.两个棱长4厘米的正方体木块,拼成一个长方体,这个长方体表面积是()平方厘米。
2.把两块棱长5厘米的正方体的拼成一个长方体,这个长方体的表面积是( )平方厘米。
3.用3个长5厘米,宽4厘米,高1厘米的长方体木块,拼成一个表面积最大的长方体,这个长方体的表面积是()。
4.一个正方体的棱长是4分米,如果把它切成两个相同的长方体,每个长方体的表面积是()。
5.把三个棱长是1厘米的正方体拼成一个长方体,这个长方体的表面积是(),比原来3个正方体表面积之和减少了()。
6.将一个底面是正方形的长方体分成两个完全一样的正方体,表面积会增加50平方厘米。
原来长方体的表面积是()平方厘米。
7.用4个棱长2分米的正方体拼成一个长方体,这个长方体的表面积最小是()
8.用27个体积是1立方厘米的小正方体粘合成一个大正方体,粘合后的大正方体的表面积是()
9.把一个长6厘米,宽5厘米,高4厘米的长方体木块锯成两个小长方体,表面积最少增加( )平方厘米,最多增加( )平方厘米。
10.一个长方体表面积是60平方厘米,刚好可以分成两个相同的正方体,一个正方体的表面积是()平方厘米。
11.一个长方体的表面积是210平方厘米,刚好可以分成三个相同的小正方体,一个小正方体的表面积是()平方厘米。
12.一个长方体的长宽高分别是8厘米 5厘米 2厘米,如果高增加2厘米,表面积增加( )平方厘米.
13.一个棱长6厘米正方体木块,把它的表面涂上红色,然后把它锯成棱长1厘米的小正方体,问一面红色的有( )块;二面红色的有( )块;三面红色的有( )块;没有红色的有( )块。
14.将一个表面漆有红色的长方体分割成若干个体积为1立方厘米的小正方体,其中一点红色都没有的小正方体有3块,求原来长方体的表面积是()。
15.把若干个体积相等的正方体拼成一个大正方体,然后在其表面涂上红色,已知一面涂色的小正方体有96个,那么两面涂色的小正方体有()个。