时间数列分析
时间数列分析
14
a 1 ,a 2 , ,a N 1 ,a N ( N 项数据)
最初水平 中间水平 最末水平
或:a 0 ,a 1 , ,a n 1 ,a n ( n+1 项数据)
09.05.2020
15
例:我国1995-1999年我国进出口总额
年份
1995
进出口总额 (人民币亿元) 23500
1996 24134
a =(766 + 664 + 843 + 578 + 639)/ 5 =
698(万元)
例2: 某股票连续 5 个交易日价格资料如下:
09.05.2020
22
解 aa N
16.216.717.518.217.817.28(元) 5
09.05.2020
23
间隔登记时,采用加权算术平均法
m
aa1f1 a2 f2 amfm f1 f2 fm
❖ 时点数列的序时平均数
时 点 数 列
09.05.2020
连续时点 数列
按日登记
间断时点 数列
按年或月登记
逐日登记 间隔登记 间隔相等 间隔不等
20
2、时点数列计算平均发展水平
(1)连续的时点数列
逐日登记时,采用简单算术平均 法
aa1a2Lan a
n
n
09.05.2020
21
例 1 : 某 商 业 银 行 某 年 1 月 13 日 —17 日 的 存 款 余 额 (万元)分别为:766、664、843、578、639, 则这5天的平均余额为:
1997 26967
1998 26858
1999 29896
在本例中,如果以1995年作为基期水平,记为a0,则 1996年、1997年、1998年、1999年进出口总额分别
应用统计学时间数列分析
应用统计学时间数列分析时间数列分析是统计学中的一项重要内容,通过对时间序列数据进行分析,可以揭示数据之间的内在关联和规律。
本文将探讨时间数列分析在实际应用中的重要性和方法。
什么是时间数列分析时间数列(Time Series)指的是按时间顺序排列的一系列数据观测值。
时间数列分析是指根据时间数列数据进行的统计分析方法,旨在发现数据中存在的趋势、季节性、周期性等规律,以便进行预测和决策。
时间数列分析的重要性时间数列分析在许多领域都有广泛的应用,包括经济学、金融、医学、气象等。
通过时间数列分析,我们可以:•发现数据中的趋势和规律•预测未来数据走势•制定决策和策略•检验模型的有效性•揭示不同变量之间的关联时间数列分析方法1. 平稳性检验平稳性是时间数列分析的前提条件之一,可以通过单位根检验、ADF检验等方法来判断时间数列是否平稳。
如果时间数列不平稳,需要进行差分处理或其他转换方法使其平稳化。
2. 自相关性分析自相关性分析是检验数据是否存在自相关性(即相邻数据之间的相关性)的方法,可以通过自相关图和偏自相关图来判断数据中的自相关性程度。
3. 移动平均法移动平均法是一种基本的时间数列预测方法,通过计算一定窗口内的数据均值来平滑数据曲线,以便更好地观察数据走势和预测未来走向。
4. 季节性调整在时间数列分析中,常常需要对数据进行季节性调整,以消除季节性影响,使预测结果更为准确。
应用实例1. 股票价格预测时间数列分析在金融领域有着广泛的应用。
通过分析股票价格的时间数列数据,可以预测股价的未来走势,指导投资决策。
2. 气象预测气象数据也是时间数列数据的一种,通过对气象数据进行时间数列分析,可以预测未来的气候变化和天气情况,为灾害预警和农业生产提供依据。
3. 经济指标分析经济数据的时间数列分析可以揭示经济增长趋势、波动周期等信息,帮助政府和企业做出相应决策。
结语时间数列分析是统计学中一个重要的分析方法,通过对时间序列数据进行分析,可以揭示数据之间的规律、趋势和关联。
统计学时间数列分析指标
43
▪ 按照几何平均法所确定的平均发展速度,所推算最末一年的发展水平,与实际资料 最末一年的发展水平相同。
▪ 按方程按照方程式法所确定的平均发展速度,所推算全期各年发展水平的总和与全 期各年的实际发展水平的总和相同。
44
三、计算和运用速度指标注意的问题
个发展水平。
▪ 最初水平,最末水平,中间各项水平(中间水平)。
5
(二)平均发展水平
▪
平均发展水平是时间数列中各不同时期发展水平计算的平均数,又称序时平
均数或时间平均数。
1、绝对数时间数列的序时平均数
2、相对数时间数列&平均数时间的序时平均数
6
1、绝对数时间数列的序时平均数
(1)由时期数列计算序时平均数
▪ 用符号表示为:
a1 , a2 , a3 ,, an
a0 a0 a0
a0
26
2.环比发展速度
环比发展速度
报告期水平 前一期水平
▪ 用符号表示为:
a1 , a2 , a3 ,, an
a0 a1 a2
an1
27
3. 定基发展速度与环比发展速度的关系。
a1 a2 a3 an an
a0 a1 a2
增长速度 平均增长速度
动 态 平 均 指 标
46
某企业产值与月初职工人数资料
a.产值(万元) b.月初职工人数(人)
7月 750 870
8月 830 910
9月 800 900
10月 … 920
18
▪ 二、增长量与平均增长量
(一)增长量 ▪ 也称增减量,其计算公式为:
▪ 增长量=报告期水平–基期水平
《统计学原理与应用》课件第08章 时间数列分析
时间
1月底
3月底
8月底
12月底
固定资产原值(万元) 230
238
229
240
Fundamentals of Statistics
统计学基础
第八章 时间数列 (二)相对指标时间数列 (三)平均指标时间数列
相对指标和平均指标时间数列的形成—都需要分子和分母
时期数列 时期数列
时点数列 时点数列
例如
月份
生产工人劳动生产率
一、发 展 水 平 二、平均发展水平 三、增长量 四、平均增长量
Fundamentals of Statistics
统计学基础
第八章 时间数列
一、发 展 水 平
发展水平就是动态数列中的每一项具体指标数值。 其数值可以表现为绝对数、相对数或平均数。 用符号表示为:
a0,a1,a2,a3,a4,…an-1,an
Fundamentals of Statistics
统计学基础
第八章 时间数列
第一节 时间数列的意义和种类
一、时间数列的意义 二、时间数列的种类 三、编制时间数列的原则
Fundamentals of Statistics
统计学基础
第八章 时间数列
第一节 时间数列的意义和种类
一、时间数列的意义
2.分子和分母都为时点数列时,(有16个公式) 常用的有:
c
a
a1 2
a2
a3
an1
an 2
b
b1 2
b2
b3
bn1
bn 2
Fundamentals of Statistics
统计学基础
(二第八)章由时相间数对列指标或平均指标动态数列计算序时 平均数
第10章-时间序列分析
67885
•1991~1996年平均国内生产总值:
•时期数列
•2023/5/3
•【例】
年份
•19941998年中 国能源生产 总量
1994 1995 1996 1997 1998
能源生产总量(万吨标 准煤) 118729 129034 132616 132410 124000
•2023/5/3
❖2.绝对指标时点数列的序时平均数
如:1991—1996年间,我国逐年的GDP,构
成一个时间序列。
记:a1 , a2 , … , an ( n项 ) 或:a0 , a1 , a2 , … , an ( n+1项 )
•2023/5/3
•
时间数列的构成要素:
1. 现象所属的时间;
2. 不同时间的具体指标数值。
•2023/5/3
例如
年底人数
(万 人)
8350 9949 11828 14071 16851 18375
间隔年数 3 2 3 2 2
•间断时点数列(间隔不等)
•2023/5/3
•我国第三产业平均从业人数:
•2023/5/3
•【例】 •某地区1999年社会劳动者人数资料如下
:
•单位:万人
时间 1月1日 5月31日 8月31日 12月31日
•2023/5/3
•定基和环比发展速度相互关系
•2023/5/3
【例】
❖ 某产品外贸进出口量各年环比发展速度资料如下: ❖ 1996年为103.9%,1997年为100.9%, ❖ 1998年为95.5%,1999年为101.6%,2000年为
108%,试计算2000年以1995年为基期的定基发 展速度。 ❖ (109.57%)
第六章 时间数列分析
例如,某企业资料如表6-9,求平均职工人数及平均固定资产 额。
表6-9 某企业上半年统计资料
月 份 1月 2月 3月 4月 5月 6月 7月 月初职工数 (人) 124 126 124 122 126 128 124 月初固定资产额(万元) 60 60 61 64 64 70 70 其计算公式为:平均数=(期初数+期末数)/2 在这里,可将本月期初数当作上月期末数,因为本月初与上 月末这两个时点一般是同一数值。同理,可将本月期末数当作上 月期初数。因此,各月平均数如下: 1月平均人数 = (124+126)/2 = 125(人) 2月平均人数 = (126+124)/2 = 125(人) 3月平均人数 = (124+122)/2 = 123(人) 4月平均人数 = (122+126)/2 = 124(人) 5月平均人数 = (126+128)/2 = 127(人) 6月平均人数 = (128+124)/2 = 126(人)
表6-8 某企业六月份职工平均人数计算表
日期
日数f
人数a
af
1~8 9~15 16~25 26~30 合 计
8 7 10 5 30
500 510 520 516 —
4000 3570 5200 2580 15350
af 15350 511.7 512人 a 30 f (2)间断时点数列序时平均数的计算 ①间隔相等间断时点数列序时平均数的计算 首先将期初值加期末值除以2得出本期平均值,然后将各时 段平均值相加除以间隔期数则得该时点数列的序时平均数。
表6-5 某商场销售资料(单位:万元)
时 间 平均销售额
一季度 800
二季度 850
时间数列分析指标
居民消费 水平(元)
——
2236 2641 2834 2972 3138 3397
3609
• 3 时间数列与变量数列旳区别:
• (1)两者所涉及旳范围不同。时间数列 是变量数列旳一种。
• (2)两者旳构成要素不同。时间数列由 时间和发展水平构成,变量数列由变量 和次数构成。
• (3)变量数列是建立在统计分组基础上 旳,时间数列不是分组数列。
46759.4
31.9
119850
58478.1
30.7
121121
67884.6
30.1
122389
74462.6
30.9
123626
78345.2
32.1
124761
82067.5
32.9
125786
89468.1
33.4
126743
97314.8
人均国内生产 总值(元/人)
—— 1879 2287 2939 3923 4854 5576 6054 6308 6551
注:1995年末社会劳动者人数为:67947万人
67884.6 74462.6 79395.7
3 73914.3(亿元)
年份
1996 1997 1998
73914.3(亿元) 国内生产总值(亿元) 67884.6 74462.6 79395.7
年末社会劳动者人数(万人) 68850 69600 69957
– 阐明现象在观察期内增长旳绝对数量;
– 基期不同,有逐期增长量与合计增长量之分:
*
逐期增长量=报告期水平-上期水平 – 逐期增长量阐明现象逐期增长旳数量。
yi yi1
* 合计增长量=报告期水平-固定基期水平 yt y0
第10章时间数列分析及答案
第十章时间数列分析一、本章重点1.时间数列的意义和种类。
时间数列是同一社会经济现象的统计指标按一定的时间顺序排列而成的数列,时间数列有绝对数时间数列、相对数时间数列和平均数时间数列。
绝对数时间数列是基础数列,相对数时间数列和平均数时间数列是派生数列。
绝对数时间数列又分时期数列和时点数列。
2.序时平均数的计算。
序时平均数是本章的重点和难点,要区分绝对数时间数列、相对数时间数列和平均数时间数列,在绝对数时间数列计算序时平均数时有间隔相等的连续时点数列、间隔不等的连续时点数列、间隔相等的间断时点数列和间隔不等的间断时点数列。
由平均数时间数列计算序时平均数时有一般平均数时间数列和序时平均数时间数列两种形势。
3.平均发展速度的计算。
平均发展速度是速度指标的基础,平均增长速度就是根据平均发展速度计算出来的。
平均发展速度的计算方法有两种:几何平均法(水平法)和方程法(累计法)。
这两种方法的应用条件要弄清楚。
4.长期趋势的测定,主要是移动平均法。
长期趋势的测定是时间数列分解的基础,有时距扩大法和移动平均法两种,同时应掌握季节变动测定的两种方法:按月(季)平均法和移动平均趋势剔除法。
二、难点释疑1.对于序时平均数的计算,关键是要掌握什么是时期指标,什么是时点指标,如果是时点指标,要分清是连续时点还是间断时点。
凡是逐日登记的,就是连续时点指标,若是每隔一段时间登记一次,则是间断时点指标。
在进行计算的时候,要一步一步来,理清头绪,问题便容易解决了。
2.对平均发展速度的计算,只要把握住各自的使用条件就可以了。
三、练习题(一)填空题1.时间数列的两个构成要素是(时间)和(指标数值)。
2.如果某种经济现象的发展变化比较稳定,则宜利用(几何平均法)来计算平均发展速度。
3.编制时间数列的基本原则是(可比性)、(时期长短要一致)、(总体范围一致)、(指标的经济内容要相同)和(指标的计算价格、计量单位和计算方法要一致)。
4.时间数列按其数列中所排列的指标性质的不同,可以分为(绝对数)时间数列、(相对数)时间数列和(平均数)时间数列三种。
第六章时间序列分析
第六章时间序列分析重点:1、增长量分析、发展水平及增长量2、增长率分析、发展速度及增长速度3、时间数列影响因素、长期趋势分析方法难点:1、增长量与增长速度2、长期趋势与季节变动分析第一节时间序列的分析指标知识点一:时间序列的含义时间序列是指经济现象按时间顺序排列形成的序列。
这种数据称为时间序列数据。
时间序列分析就是根据这样的数列分析经济现象的发展规律,进而预测其未来水平。
时间数列是一种统计数列,它是将反映某一现象的统计指标在不同时间上的数值按时间先后顺序排列所形成的数列。
表现了现象在时间上的动态变化,故又称为动态数列。
一个完整的时间数列包含两个基本要素:一是被研究现象或指标所属的时间;另一个是该现象或指标在此时间坐标下的指标值。
同一时间数列中,通常要求各指标值的时间单位和时间间隔相等,如无法保证相等,在计算某些指标时就涉及到“权”的概念。
研究时间数列的意义:了解与预测。
[例题·单选题]下列数列中哪一个属于时间数列().a.学生按学习成绩分组形成的数列b.一个月内每天某一固定时点记录的气温按度数高低排列形成的序列c.工业企业按产值高低形成的数列d.降水量按时间先后顺序排列形成的数列答案:d解析:时间序列是一种统计数列,它是将反映某一现象的统计指标在不同时间上的数值按时间先后顺序排列所形成的数列,表现了现象在时间上的动态变化。
知识点二:增长量分析(水平分析)一.发展水平发展水平是指客观现象在一定时期内(或时点上)发展所达到的规模、水平,一般用yt(t=1,2,3,…,n) 。
在绝对数时间数列中,发展水平就是绝对数;在相对数时间数列中,发展水平就是相对数或平均数。
几个概念:期初水平y0,期末水平yt,期间水平(y1,y2,….yn-1);报告期水平(研究时期水平),基期水平(作为对比基础的水平)。
二.增长量增长量是报告期发展水平与基期发展水平之差,增长量的指标数值可正可负,它反映的是报告期相对基期增加或减少的绝对数量,用公式表示为:增长量=报告期水平-基期水平根据基期的不同确定方法,增长量可分为逐期增长量和累计增长量。
第九章 时间数列分析
STAT
第九章 时间数列分析
三、时间数列的编制原则
保证数列中各期指标数值的可比性
各期指标数值所属时间可比 各期指标数值总体范围可比 指标内容上的可比性 各项指标数值的计算方法、计算
单位、以及计算价格等的可比性
第九章 时间数列分析
第二节 时间数列描述性分析指标 一、发展水平和平均发展水平
STAT
第九章 时间数列分析
序时平均数的计算方法
⒉计算相对数时间数列的序时平均数
基本公式
ai 若时间数列ci bi
a 则: c b
⑴ a、b均为时期数列时
a a N a cb c b b N b b
a 1 ca
第九章 时间数列分析
【例】 某化工厂某年一季度利润计划完成情况如下:
第九章 时间数列分析
第九章
时间数列分析
STAT
第一节 时间数列分析的一般问题 第二节 时间数列的描述性分析指标
第三节 长期趋势分析
第九章 时间数列分析
1979-1998年中国国内生产总值环比指数
116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100
19
繁荣 拐点 衰退 拐点
萧条 拐点 复苏 拐点
繁荣 拐点
STAT
环比指数(%)
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
经济周期:循环性变动 年份
19 19 19 19 19 19 19 19 19 19 19
时间序列分析(趋势分析)
—— —— 102.0 103.0 105.4 108.8 112.0 113.0 116.0 119.6 —— ——
—— —— —— 1.0 2.4 3.4 3.2 2.0 3.0 3.6 —— ——
100.0 102.5 105.0 107.3 109.3 112.5 115.0 118.3 120.8
—— —— 102.0 103.0 105.4 108.8 112.0 113.0 116.0 119.6 —— ——
—— —— —— 1.0 2.4 3.4 3.2 2.0 3.0 3.6 —— ——
例:某市客运站旅客运输量及三项移动平均数、 五项移动平均数和四项移动平均数
年份 1998 季度 一 二 三 四 一 二 三 四 一 二 三 四 客运量 100 95 98 107 110 105 107 115 123 115 120 125 三项移动平均
指标值 逐期增长
五项移动平均
指标值 逐期增长 指标值
四项移动平均
移匀平均 逐期增长
1999
2001
—— 97.7 100.0 105.0 107.3 107.3 109.0 115.0 117.7 119.3 120.0 ——
—— —— 2.3 5.0 2.3 0.0 1.7 8.0 2.7 1.6 0.7 ——
1、时距扩大法 时距扩大法就是把时间数列中间隔较短的 各个时期或时点的数值加以归并,得到 间隔较长的各个数值,形成一个新的时 间数列,以消除原时间数列中的季节变 动和各种偶然因素的影响,呈现出长期 趋势。
举例;某企业2003年各月产量 2 3 4 5 6 7 8 9 10 11 12 21 20 23 25 24 26 25 27 28 27 29 31
第七章 时间数列分析
二、时间序列的种类
㈠总量指标时间序列 ㈡相对指标时间序列 ㈢平均指标时间序列
(三)平均数时间序列:把一系列同类平均数按时间顺序排列 而成的数列,反映现象一般水平的发展变化过程.
A、种类:静态、动态两种。 B、各期指标数值不可直接相加。
某地积累率及职工年平均工资资料 时间 2002 2003 2004 2005 积累率% 23.76 26.39 24.21 27.81 平均工资(元) 2200 2450 3010 3280
法也有所不同。
(1)时期序列的序时平均数。时期序列中的各观察值可以相 加,形成一段时期内的累计总量,所以时期序列的序时平均 数可直接用各时期的指标值之和除以时期项数来计算。
a1 a 2
an -1 a n
a
a1 a2 L an a n
a
i 1
n
i
n
根据表中的国内生产总值序列,计算2002—2006年的年平 均国内生产总值。
总规模和总水平及其发展变化的情况 。
A、种类:时期指标时期数列;时点指标时点数列。 B、时点:“某一瞬间”日、 月(季、年)初、末。 C、间隔:相邻两个时点之间的时间跨度 f;
我国国内生产总值等时间数列 2004 2005 2006 2007 136515 182321 210871 257306 129988 130756 131448 132129
年份 GDP (亿元) 年末人口数 (万人) 人均GDP (元/人) 职工平均工资 (元)
2002 102398 128045 7997 12422 9371 2003a 116694 129227 14040 a 简单算术平均法, ai:各期发展水平;n:时期项数 n 10502 2004 136515 129988 16024 102398 116694 136515 182321 210871 2005 13926 149759 .8(亿元) 182321 130756 18405 5 16084 2006 210871 131448 21001
房地产统计第4章 时间数列分析
21
平均发展水平与一般平均数的区别具体表现为:
静态平均数是根据变量数列计算的,而动态平 均数是根据时间数列计算的;
静态平均数是将总体各单位的某一标志在同一 时间上的数量差异抽象化、从时间截面上反映 总体的一般水平,而动态平均数是将总体的某 一指标在不同时间上的数量差异抽象化、从时 间过程上反映总体的一般水平。
年距发展速度
报告期发展水平 上年同期发展水平
100 %
第4章 时间数列分析
18
4.2.4 增长速度
增长速度又称为增减速度,是报告期增 长量与基期发展水平之比。 增长速度=发展速度-1 定基增长速度=定基发展速度-1 环比增长速度=环比发展速度-1
第4章 时间数列分析
19
为了把速度指标、水平指标结合起来, 深入分析环比增长速度与逐期增长量之 间的关系,进一步反映增长速度的实际 效果,有必要计算环比增长速度每增减 一个百分点所代表的绝对量。
第4章 时间数列分析
5
(二)相对数时间数列
相对数时间数列又称为相对指标时间数 列,是由一系列同类相对指标数值按时 间先后顺序排列而成的统计数列。
第4章 时间数列分析
6
(三)平均数时间数列
平均数时间数列又称为平均指标时间数 列,是由一系列同类平均指标数值按时 间先后顺序排列而成的统计数列。
第4章 时间数列分析
第4章 时间数列分析
4
时点数列是指反映某种社会经济现象在一定时 点(时刻)上的状况及其水平的绝对数时间数 列。
时点数列有如下特点:数列中的每一项指标数 值,都是在某一时刻的特定状况下进行一次性 登记取得的;数列指标的数值大小,与时点间 隔的长短无直接关系;数列中各项指标不能相 加,加总后的结果不具有实际意义。
时间数列分析
第六章时间数列分析第一节时间数列分析概述一、时间数列的概念我们对现象总体的数量方面进行分析研究时,通常需要掌握和积累现象各个时期的统计资料,从时间上反映和研究现象发展变化的过程、趋势及其规律。
所谓时间数列也称动态数列,它是指各个不同时间的社会经济统计指标,按时间先后顺序排列而形成的一列数.表6—1显示的都是我国1995年—2005年若干统计指标的时间数列,从中可以看出时间数列有两个基本要素构成:一是统计指标所属的时间;二是统计指标在特定时间的具体指标值。
表6—1 中国的国内生产总值、人口及第三产业产值注:人均国内生产总值按年平均人口数计算资料来源:《中国统计年鉴》(2006),北京:中国统计出版社研究时间数列具有重要的作用,通过时间数列的编制和分析:⑴可以描述社会经济现象的发展状况和结果;⑵可以研究社会经济现象的发展速度、发展趋势,探索现象发展变化的规律,并据以进行统计预测;⑶分析长期趋势、季节变动和循环变动等了解和分析社会现象发展变化的规律性。
二、时间数列的种类时间数列按照其指标的性质,可以分为总量指标、相对指标和平均指标时间数列等三大类型。
总量指标时间数列也称绝对数时间数列,是基本的时间数列,相对指标和平均指标时间数列都是在总量指标时间数列的基础上派生出来的。
㈠总量指标时间数列总量指标时间数列是指把一系列同类的总量指标按时间先后顺序排列起来形成的时间数列。
它反映社会经济现象在各个时期达到的绝对水平及其变化发展的状态。
表6—1中的国内生产总值、年末人口和第三产业产值都属于总量指标时间数列。
按照总量指标所反映的内容的不同,可以分为总体单位总量和总体标志总量两种。
年末人口数是总体单位总量指标,而国内生产总值和第三产业产值是总体标志总量指标.根据总量指标反映的社会经济现象所属的时间不同,又可将总量指标时间数列分为时期数列和时点数列。
下面来讨论时期数列和时点数列的特点.⒈时期序列各项指标都是反映某种现象在一段时期内发展过程的总量,该时间数列称为时期序列。
第三章 时间数列分析
具体地应注意下列几点:
15
时间长短应该前后一致
在时期数列中各个指标数值的大小与时期长短 有直接的关系,如果各个指标所属的时期长短 不等,一般就难作直接比较。但这个原则也不 能绝对化。
对时点数列来说,由于各个指标数值都表明一 定瞬间的状态,不存在时期长短应该相等的问 题。但是,为了便于分析,时点数列指标数值 间的间隔最好能相等。 16
50
发展速度的分类
发展速度由于计算时基期的不同而
分为环比发展速度和定基发展速度。
51
定基发展速度
定基发展速度是各报告期水平同某一固 定基期水平对比,说明现象在较长时期 内发展的总速度。 特点:基期固定
计算方法:
定基发展速度=
ai a0
52
环比发展速度
环比发展速度是报告期水平与前一期水 平之比,反映现象在前后两期的发展变 化情况。 特点:基期不固定 计算方法: 环比发展速度=
第三章
时间数列分析
1
一、时间数列的概念和种类
㈠ ㈡
时间数列的概念 时间数列的种类
2
㈠
时间数列的概念
时间数列又称动态数列,它是指某社会经济 现象在不同时间上的一系列统计指标值按时间 先后顺序加以排列后形成的数列。
例:下表是一个时间数列。
3
构成时间数列的两个要素
时间数列由两部分构成:
是反映时间顺序变化的数列,
是反映各个指标值变化的数列。
4
㈡ 时间数列的种类
按其指标表现形式的不同分为三种:
总量指标时间数列 相对指标时间数列 平均指标时间数列
统计学基础-时间数列分析
总量指标时间数列序时平均数的计算 • 计算 相对指标时间数列序时平均数计算
平均指标时间数列序时平均数计算
二、时间数列的水平分析指标
a a1 a2 an / n a / n
a为平均发展水平(序时 平均数) n为时期数 a1, a2 ,an为各期发展水平
逐期增长量之和 逐期增长量项数
累计增长量 发展水平项数-1
三、时间数列的速度分析指标
• (一)发展速度和增长速度
• 1.发展速度:表明现象发展程度的动态相对指标,是两个不同
时期发展水平的对比。
发展速度
报告期水平 基期水平
• 发展速度指标值总是一个正数。
• 注意
当发展速度指标值大于0小于1时,报告期水平低于基期水平 当发展速度指标值等于1或大于1时,报告期水平达到或超过 基期水平
意义 观察社会经济现象之间的联系程度及其发展变化的趋势 可以对比分析不同国家、地区、单位的发展水平,揭示其社会 经济现象在发展过程中的差距
一、时间数列的意义与种类
(二)时间数列的种类
表现形式 基本数列:总量指标时间数列
相对指标时间数列
派生数列 1.总量指标时间数列
平均指标时间数列
概念:又称绝对数时间数列,是由同一总量指标的数值 按时间先后顺序排列形成的数列。用以反映社会经济现象的总 体规模或总体水平及其发展变化情况。
年度增长速度
年距增长量 上年同期发展水平
年距发展速度 -1
• 注意:环比增长速度和定基增长速度无直接换算关系,必须通 过发展速度才能达到换算的目的。
三、时间数列的速度分析指标
• (一)发展速度和增长速度
• 3.增长1%的绝对值:是指在报告期与基期水平的比较中,报告 期比基期每增长1%所包含的绝对量,它是用增长量除以增长速 度后的1%求得。
第4章时间数列分析
本章主要内容
第一节 时间数列的种类和编制方法 第二节 时间数列的传统分析指标 第三节 长期趋势的测定 第四节 季节变动、循环变动和剩余变动的测定 第五节 时间数列预测方法
第一节 时间数列的种类和编制方法
一、时间数列的概念 时间数列是统计数据(指标数值)按时间顺序排列而形
成的数列,又称时间序列或动态数列。
计量单位相同的总 量指标
Y=T·S·C·I
是对原数列指标增 加或减少的百分比
3.变动因素的分解: (1)加法模型用减法。例:T=Y-(S+C+I) (2)乘法模型用除法。例:T=Y/(S·C·I)
二、长期趋势(T)的测定
(一)修匀法:基本目的就是消除影响事物变化的非基本因素
1、随手法 2、时距扩大法和序时平均法 时距扩大法是按较长的时距将原数列加以归并,以消除季节变动 和偶然因素的影响。只适用于时期数列。 序时平均法是分段计算序时平均数,以消除季节变动和偶然因素 的影响。适用于时期数列和时点数列。
c1
a1 b1
;
c2
a2 ; b2
;c an ቤተ መጻሕፍቲ ባይዱn
ca b
a、b均为时期数列时
ca
aN
a
cb
b
bN
b
b
a、b均为时点数列时
ca b
a1 2
a2
b1 2
b2
aN 1
aN 2
bN 1
bN 2
a 1a c
N1 N1
a为时期数列、b为时点数列时
ca b
a1 a2
b1 2
b2
aN 1 aN N
例
bN
bN 1 2
二、时间数列种类
统计学(6章时间数列分析)
解方程组得: 解方程组得:
n ∑ ty − ∑ t ∑ y b= n ∑ t 2 − (∑ t) 2 a = y − bt
仍用上例 年份
2001 2002 2003 2004 2005 2006 2007 2008
t
1 2 3 4 5 6 7 8 36
产量 Y t
10.54 10.80 10.87 11.16 11.51 12.40 13.61 13.75 94.64
第五章
时间数列
本章重点
时间数列的概念、种类 时间数列分析的基本指标 序时平均数 长期趋势和季节变动分析
第一节 时间数列的概念及种类
一、时间数列的含义
二、时间数列的种类
总量指标时间数列 ----时期数列 时期数列 ----时点数列 时点数列 相对数时间数列 平均数时间数列
三、编制时间数列的原则
∑a a= n
a n
a
:现象水平值 :时间间隔 :序时平均数
(2)由时点数列计算 ) 第一, 第一,连续时点数列 未分组资料: 分组资料: 未分组资料: 分组资料:
∑a a= n
∑ af a= ∑f
f -- 时间间隔
第二, 第二,间断时点数列 等间隔时点数列: 等间隔时点数列:
a1 an +a 2 +L +a n-1 + 2 a= 2 n-1
增减速度=发展速度- 增减速度 发展速度-100% 发展速度
----环比增长速度 环比增长速度 ----定基增长速度 ----定基增长速度
增长1%的绝对值 的绝对值 增长 表示报告期数值比基期每增长1%所包 表示报告期数值比基期每增长 所包 含的绝对量是多少。 含的绝对量是多少。即
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Bureau of Census in the 1950’s. It was brought to A-
B in the early 1960’s and has become the standard for
reporting sales.
2020/7/16
O:/Network/Path/Filename.ppt
2020/7/16
O:/Network/Path/Filename.ppt
Why Time Series ?
• Beer sales are highly seasonal • It is very difficult to evaluate monthly sales over time.
2020/7/16
Seasonally Adjusted Sales =
Raw Sales X Selling Day Factor ÷ Seasonal Factor
2020/7/16
O:/Network/Path/Filename.ppt
Raw Sales
How do time series work?
Selling Day Adjusted
2020/7/16
O:/Network/Path/Filename.ppt
Selling Days
All other things being equal, sales in Aug-03 would decrease 4.8% because of one less selling day. In order to compare the two months Aug-03 sales will have to be adjusted up +4.8%.
0%
+21%
2020/7/16
O:/Network/Path/Filename.ppt
More Misleading Growth Rates
-21%
+15%
2020/7/16
O:/Network/Path/Filename.ppt
What are time series used for?
• At A-B we use time series to… – Assess current sales performance – Develop current year sales projections…PYE (projected year-end) – Forecast next year sales… develop budgets and monthly spreads – Other quantitative sales analysis
• Time series significantly improve decision making… – Allows us to take corrective action sooner – Allows us to take the right corrective action – Helps to establish appropriate sales objectives
பைடு நூலகம்
• Time Series technique statistically removes the effects of these two factors
• Time Series technique uses the X-11 procedure for seasonal
adjustments
– The X-11 procedure was developed by the U.S.
– Establish appropriate budgets for next year and estimate
monthly budget spreads
Time series analysis is the primary sales analysis technique at A-B
2020/7/16
Seasonally Adjusted
2020/7/16
O:/Network/Path/Filename.ppt
Dissecting a Time Series Plot
STR’s; Ontario STC’s
Data Description … tells us the type of data plotted
• Uses of time series
– Assess current sales performance and evaluate the
effectiveness of sales programs
– Determine underlying sales trend and project year end sales
2020/7/16
O:/Network/Path/Filename.ppt
Seasonality
• Seasonality is expressed as an index for a month compared to an average month.
• A month where sales were 20% higher than average would have a seasonal factor of 120.
时间数列分析
2020年7月16日星期四
Benefits and Uses of Time Series
• Benefits of time series – Monitor sales performance over time… remove variation in monthly sales caused by calendar differences and seasonality that can conceal potential problems with sales – Accurately determine the direction and rate of growth/decline in sales – Quickly identify changes in sales trends and correlate them to factors affecting sales… industry, company, competition – Improve decision making regarding sales and marketing actions
Irregular variations … shows us the impact of market place actions Trend Line … tells us the direction of sales based on past & present performance Annualized Sales … tells us how big the market is.
• A seasonal factor is computed and applied to the selling day adjusted sales
– This factor, when applied, gives you monthly data directly comparable to any other month … e.g. accurately compare June this year with May this year
• A month which was 10% lower than average would have a seasonal factor of 90.
No Seasonality
Strong Seasonality
2020/7/16
O:/Network/Path/Filename.ppt
Adjusting Sales
O:/Network/Path/Filename.ppt
Time Series Analysis
• What is Time Series Analysis? • How are Time Series plots developed? • What are the advantages of Time Series Analysis? • What are Time Series used for?
2020/7/16
O:/Network/Path/Filename.ppt
Assessing Sales Performance
2020/7/16
How is our YTD performance?
How do time series adjust sales ?
• A selling day adjustment factor for each month is computed and applied to the raw sales
– This factor allows you to compare months as if they had the same number of selling days … e.g. accurately compare the June this year vs. June last year
• But, if there was a significant market event or change, the year over year trends will be misleading
+50%
2020/7/16
O:/Network/Path/Filename.ppt
Misleading Growth Rates