风电功率预测方法综述

合集下载

风电功率预测技术综述

风电功率预测技术综述

风电功率预测技术综述摘要:风电是一种可再生能源,具有环境友好和经济可行性的特点。

然而,由于风力发电机的输出功率受到风速的影响,风电系统的功率预测对于实现风电站的有效运行和规划至关重要。

本文将综述当前常用的风电功率预测技术,包括统计模型、人工智能模型和混合模型,并探讨其优缺点及应用前景。

一、引言随着对可再生能源的需求不断增长,风力发电成为了一种重要的能源选择。

然而,由于风速的不稳定性和不可预测性,风力发电的发电功率产生了很大的波动性,这使得风电系统的管理和调度变得复杂。

为了更好地管理风电系统,准确地预测风电的功率变化是至关重要的。

二、风电功率预测的意义风电功率预测可以帮助风电站进行经济调度,合理制定运行策略,降低能源成本。

同时,预测风电功率可以提前调整传输和配电设备,减少能源浪费和环境污染。

在风电规划方面,准确的功率预测也可以帮助选址、布局和容量规划,提高风电站的经济效益和可靠性。

三、风电功率预测技术的分类目前,风电功率预测技术主要可分为统计模型、人工智能模型和混合模型三大类。

1. 统计模型:统计模型是最常用和最古老的功率预测方法之一。

常见的统计模型包括回归分析、时间序列分析和概率分布拟合等。

这些模型可以基于历史风速和功率数据分析风电功率与风速之间的关系,进而预测未来的功率输出。

统计模型的优点是简单易用、计算速度快;缺点是对历史数据要求较高,并且无法考虑其他影响因素。

2. 人工智能模型:人工智能模型包括人工神经网络、遗传算法、模糊逻辑等。

这些模型可以通过学习历史数据自动适应风电功率与风速的非线性关系。

人工智能模型的优点是可以处理复杂的非线性问题,并能够考虑多个影响因素;缺点是对训练数据的依赖性较强,模型的可解释性相对较弱。

3. 混合模型:混合模型是统计模型和人工智能模型的结合体。

该方法通过结合各种模型的优势,提高了预测的准确性和稳定性。

混合模型的优点是可以综合考虑多种影响因素,并对不同模型进行加权融合;缺点是模型的建立和参数调优过程较为繁琐。

《2024年风电集群短期及超短期功率预测精度改进方法综述》范文

《2024年风电集群短期及超短期功率预测精度改进方法综述》范文

《风电集群短期及超短期功率预测精度改进方法综述》篇一一、引言随着全球能源结构的转型,风力发电作为清洁可再生能源的代表,在电力系统中扮演着越来越重要的角色。

然而,风电的间歇性和波动性给电力系统的稳定运行带来了挑战。

为了有效利用和管理风电资源,提高风电集群短期及超短期功率预测的精度成为了研究热点。

本文将针对这一领域,对现有功率预测精度改进方法进行综述。

二、风电功率预测的意义及挑战风电功率预测是指通过预测模型,根据风能资源的特性和环境因素,对未来一段时间内风电场的输出功率进行估计。

这种预测不仅有助于电力系统的调度和运行,还有助于优化电力设备的配置和维护,降低能源浪费。

然而,由于风能的随机性和不确定性,以及风电设备的复杂性,风电功率预测仍面临诸多挑战。

三、短期及超短期风电功率预测方法(一)短期风电功率预测短期风电功率预测通常以小时为单位,主要依赖于历史数据和气象信息。

常用的方法包括物理模型、统计模型和混合模型等。

物理模型基于风力发电的物理原理进行预测,统计模型则通过分析历史数据和气象因素的关系进行预测,而混合模型则结合了两种或多种方法的优点。

(二)超短期风电功率预测超短期风电功率预测的时间尺度通常在分钟级甚至秒级,对电力系统的实时调度具有重要意义。

该方法主要依赖于实时气象数据和风电设备的运行状态。

常用的方法包括基于机器学习的模型和基于物理特性的模型等。

四、功率预测精度改进方法(一)数据预处理方法为了提高预测精度,首先需要对原始数据进行预处理,包括数据清洗、去噪、特征提取等步骤。

这些方法可以有效地提高数据的准确性和可靠性,为后续的预测模型提供高质量的输入数据。

(二)优化算法和模型针对不同的预测方法和模型,通过优化算法参数、改进模型结构等方式,可以提高预测精度。

例如,在统计模型中,可以通过优化参数选择和模型训练来提高预测精度;在机器学习模型中,可以通过引入新的算法和优化现有算法来提高模型的泛化能力和预测能力。

风电功率预测技术综述

风电功率预测技术综述

风电功率预测技术综述风电功率预测技术综述一、引言随着全球能源需求的增长和对可再生能源的关注度上升,风电作为一种清洁、可持续的能源形式受到了广泛关注。

然而,由于风能的不稳定性和不可控性,风电发电的波动性给电网的稳定运行和电力市场的管理带来了一定的挑战。

因此,准确预测风电功率成为提高风电系统经济性和可靠性的关键技术之一。

本文将综述风电功率预测技术的研究现状和发展趋势。

二、风电功率预测的重要性风电功率预测对电力系统的安全运行和规划具有重要意义。

准确的风电功率预测可以帮助电力系统运营商做出合理调度决策,优化电力资源的配置,降低电网的运行成本。

同时,风电功率预测也对电力市场的管理和规划起到了积极的促进作用,有利于高效利用风能资源,提高市场竞争力。

三、风电功率预测的方法与模型风电功率预测方法主要可以归纳为统计学方法、数学模型方法和人工智能方法。

1. 统计学方法统计学方法是基于历史数据的统计分析,通过时间序列分析、自回归移动平均模型(ARIMA)和指数平滑等方法进行风电功率预测。

这些方法简单易行,但在解释非线性关系和处理时间序列中的噪声方面存在一定的限制。

2. 数学模型方法数学模型方法采用物理学原理和数学方程来描述风电场的发电过程。

基于气象学和风力学模型,如Weibull分布模型、韦伯分布模型和功率曲线模型等,可以实现相对较准确的预测。

3. 人工智能方法人工智能方法包括神经网络、遗传算法、模糊理论等,通过对大量的历史数据进行学习和挖掘,建立预测模型。

这些方法可以处理非线性、非稳态、多变量等问题,具有较高的预测准确度和自适应能力。

四、风电功率预测的挑战与发展趋势尽管已经取得了一定的研究成果,但风电功率预测仍面临一些挑战。

首先,风能的不确定性和波动性导致预测误差较大,限制了预测的准确度。

其次,风电场的复杂多变性增加了预测模型的复杂性和难度。

此外,缺乏高质量的历史数据和标准化的评价指标也限制了预测模型的发展。

为了克服这些挑战,风电功率预测技术将会朝着以下方向进行发展:1. 集成多源数据:利用气象数据、风电场历史数据、机器学习算法等多种数据信息,提高预测精度和稳定性。

基于风力发电的风功率预测综述

基于风力发电的风功率预测综述

基于风力发电的风功率预测综述随着风力发电的快速发展,风电的穿透功率不断增加,随之带来的系统安全性和电能质量问题也日益凸显。

可靠的风功率预测可以有效地提高电力系统的运行稳定性,改善电能质量。

本文综述了当前各种风功率预测的方法包括物理方法、统计方法、学习方法等以及他们各自的适用场合,并展望了未来风功率预测的发展方向。

标签:风功率预测;预测方法;发展方向前言由于风能是清洁、安全的可再生能源,风力发电在全世界已经进入大规模发展阶段。

但由于风电的间歇性和随机性等缺点,随着风电装机容量的逐年增加,风电场穿透功率不断加大,无疑会对电力系统的电能质量造成一定的影响,尤其是大规模风电入网对系统的电能质量,诸如线路的潮流、无功补偿电压和频率带来很多不利影响[1],并且影响系统旋转备用容量的大小,从而限制了风电的进一步发展。

有效的风功率预测方法可以方便调度进行合理的用电安排,提高系统运行的可靠性,一定程度上可以改善风电并网后的系统运行。

1风电场功率预测分类按照不同的分类标准,风电场功率预测方法分类方式不同。

1.1按预测时间尺度分类风电场功率的预测,按时间分为长期预测、中期预测、短期预测和特短期预测。

(1)长期预测:以“年”为单位,主要应用于风电场设计的可行性研究,可预测风电场建成之后每年的发电量。

这种方法主要是根据气象站提前20年或30年的长期观测资料和风电场测风塔至少一年的测风数据,经过统计分析,再结合风机的功率曲线来预测风电场每年的发电量。

(2)中期预测:以“天”为预测单位。

中期预测主要是提前一周对每天得功率进行预测,主要用于安排检修。

一般是利用数值天气预报系统的数据进行预测。

主要用于安排检修或调试。

(3)短期预测:以“小时”为预测单位。

一般是提前1-48小时对功率进行预测,目的是便于电网合理调度,保证供电质量。

一般是基于数值天气预报模型和历史数据进行预测。

1.2按预测模型对象分类按照预测对象的不同,一般可以分為基于风速的预测和基于功率的预测。

风电功率预测技术综述与改进建议

风电功率预测技术综述与改进建议

风电功率预测技术综述与改进建议张文秀;武新芳;陆豪乾【摘要】With large scale wind power integrated into power system,in order to ensure the safe operation of power grid,it is necessary to predict the wind power generation.This paper introduces the prediction methods of wind power generation generally according to different classification criterion,then analyzes the wind power generation technologies based on historical and numerical weather respectively,and summarizes the main mod-els of wind power generation and its advantages and disadvantages,analyzes the predition evaluation index. Draws the conclusion that choosing the reasonable prediction model and optimizes its performance is the key to the wind power generation .After reviewing the status of the predition technologies at home and abroad,some existing problems in the current is pointed out,finally some advice about wind power generation research and development is proposed.%随着大规模风电接入电力系统,为了保证电网安全、稳定运行,需要对风电功率进行预测。

《2024年风电功率预测关键技术及应用综述》范文

《2024年风电功率预测关键技术及应用综述》范文

《风电功率预测关键技术及应用综述》篇一一、引言随着全球能源结构的转型和环境保护意识的提升,可再生能源的开发与利用日益受到重视。

其中,风电作为清洁、可再生的能源形式,已经成为全球能源发展的重要方向。

然而,由于风能的随机性、间歇性和不可预测性,风电功率的准确预测成为风电并网运行和调度管理的重要问题。

本文旨在综述风电功率预测的关键技术及其应用,以期为相关研究提供参考。

二、风电功率预测关键技术(一)数据驱动型预测技术数据驱动型预测技术主要依靠历史数据和统计方法进行预测。

其中,时间序列分析、机器学习和人工智能等方法被广泛应用于风电功率预测。

时间序列分析通过分析历史风电功率数据,建立时间序列模型进行预测。

机器学习和人工智能则通过训练大量的样本数据,学习风能的时空分布规律和风速、风向等气象因素对风电功率的影响,从而提高预测精度。

(二)物理驱动型预测技术物理驱动型预测技术基于风能产生的物理过程和气象学原理进行预测。

该技术利用气象学模型、大气数值预报模型等工具,对风速、风向等气象因素进行预测,进而推算出风电功率。

物理驱动型预测技术的优点在于考虑了风能的物理特性,能够提供更准确的长期预测。

(三)组合预测技术组合预测技术将数据驱动型预测技术和物理驱动型预测技术的优点相结合,通过组合不同的预测方法和模型,提高预测精度。

该技术可以充分利用历史数据和气象信息,同时考虑风能的随机性和可预测性,从而实现对风电功率的准确预测。

三、风电功率预测的应用(一)电网调度与管理风电功率预测在电网调度与管理中具有重要作用。

通过准确预测风电功率,可以合理安排电网调度计划,平衡电力供需,减少电网运行风险。

同时,风电功率预测还可以为电网运行优化提供支持,提高电网运行效率和可靠性。

(二)风电机组控制与维护风电功率预测对于风电机组的控制和维护具有重要意义。

通过预测风电功率,可以实现对风电机组的优化控制,提高风能利用率和发电效率。

同时,还可以根据预测结果合理安排风电机组的维护计划,延长设备使用寿命,降低运维成本。

《2024年风电功率预测关键技术及应用综述》范文

《2024年风电功率预测关键技术及应用综述》范文

《风电功率预测关键技术及应用综述》篇一一、引言随着全球对可再生能源的需求持续增长,风电作为其中的一种主要能源形式,在电力系统中的地位愈发重要。

为了确保电网的稳定运行和提高风电的利用效率,风电功率预测成为一项重要的研究课题。

本文将围绕风电功率预测的关键技术进行详细的阐述,并对其应用情况进行综述。

二、风电功率预测的关键技术1. 数据采集与预处理技术数据采集是风电功率预测的基础。

通过传感器、SCADA系统等手段,实时收集风电机组、气象站等的数据信息。

预处理技术则用于清洗数据,去除异常值、填补缺失值等,以保证数据的准确性和可靠性。

2. 预测模型构建技术预测模型是风电功率预测的核心。

目前,常用的预测模型包括统计模型、物理模型和混合模型。

统计模型基于历史数据和统计方法进行预测,如线性回归、支持向量机等。

物理模型则基于风能的物理特性进行预测,如大气物理模型等。

混合模型则结合了统计模型和物理模型的优点,以提高预测精度。

3. 机器学习技术机器学习技术在风电功率预测中发挥着重要作用。

通过训练大量的历史数据,机器学习算法可以自动提取数据的特征,建立复杂的非线性关系模型。

常用的机器学习算法包括神经网络、随机森林、支持向量机等。

4. 预测结果评估与优化技术预测结果的评估与优化是提高风电功率预测精度的关键。

通过对比实际值与预测值,评估模型的性能,如均方根误差、平均绝对误差等指标。

同时,根据评估结果对模型进行优化,如调整模型参数、引入新的特征等。

三、风电功率预测的应用情况1. 电网调度与运行风电功率预测在电网调度与运行中发挥着重要作用。

通过预测未来的风电功率,调度中心可以合理安排电网的运行计划,确保电力供应的稳定性和经济性。

同时,风电功率预测还可以为风电场的建设和运行提供参考依据。

2. 新能源并网与储能系统随着新能源的并网规模不断扩大,储能系统在电力系统中发挥着越来越重要的作用。

风电功率预测可以为储能系统的运行提供参考依据,实现能量的优化配置和利用。

风电功率预测文献综述

风电功率预测文献综述

风电功率预测方法的研究摘要由于风能具有间歇性和波动性性等特点,随着风力发电的不断开展风电并网对电力系统的调度和平安稳定运行带来了巨大的挑战。

进展风电功率预测并且不断提高预测准确度变得越来越重要。

通过对国内外研究现状的了解,根据已有的风电功率预测方法,按照预测时间、预测模型、预测方法等对现有的风电功率预测技术进展分类,着重分析几种短期风电功率预测方法的优缺点及其使用场合。

根据实际某一风电场的数据,选取适宜的风电预测模型进展预测,对结果予以分析和总结。

关键词:风电功率预测;电力系统;风力发电;预测方法;引言随着社会不断开展人们对能源需求越来越大而传统化石能源日益枯竭不可再生,以及化石能源带来了环境污染等问题影响人类生活,人们迫切需要新的清洁能源代替传统化石能源。

风能是清洁的可再生能源之一,大力开展风力发电成为各国的选择。

根据相关统计,截止至2021 年,全球风电产业新增装机63013MW,,同比增长22%[1]。

其中,中国风电新增装机容量达30500MW,占市场份额48.4%。

全球累计装机容量为432419MW,其中中国累计装机容量为145104,占全球市场份额的33.6%。

目前风力发电主要利用的是近地风能,近地风能具有波动性、间歇性、低能量密度等特点,因而风电功率也是波动的。

当接入到电网的风电功率到达一定占比时,风电功率的大幅度波动将破坏电力系统平衡和影响电能质量,给电力系统的调度和平安平稳运行带来严峻挑战。

根据风速波动对风力发电的影响按照时间长度可分为三类:一种是在几分钟之内的超短时波动,该时段内的波动影响风电机组的控制;另一种是几小时到几天内的短时波动,该时段内的波动影响风电并网和电网调度;最后一种是数周至数月的中长期波动,该时段内的波动影响风电场与电网的检修和维护方案。

本文主要研究不同的风电功率短期预测方法的优缺点。

通过对短期风电功率预测,能够根据风电场预测的出力曲线优化常规机组出力,降低运行本钱;增强电力系统的可靠性、稳定性;提升风电电力参与电力市场竞价能力。

风电功率预测方法研究综述

风电功率预测方法研究综述
表1风电功率预测方法特点的比较
风电功率预测的方法
的情况下得出的结论,但在实际中估计噪声的统计 特性不易实现。随机时间序列法利用大量的历史数 据来建模,经过模型识别、参数估计、模型检验来 确定能够描述所研究时间序列的数学模型,推导出 预测风电功率的模型,其特点是模型简单,理论成 熟,适用于提前量较短的预测,当增大提前量时, 预测效果较差。灰色系统理论是一种通过研究少量 信息和数据来解决~些不确定问题的方法,其建立 的灰色模型GM(1,1)能对数据量较少的样本建模, 适用于在快速跟踪实时风速数据条件下预测超短时 风速的情况,但其缺点是克服预测突变点的效果不 佳。回归分析法是利用多项式回归模型和已获得历 史数据以及在线实时采集的sCADA(监控和数据采 集)实时数据来计算预测风电功率,由于回归模型 是线性计算,因此在遇到本质非线性问题时就显得 无能为力。 2.3人工智能预测方法 用经典的数学统计方法预测风电功率具有速 度快、预测模型简单的特点。但由于实际中电力系 统的运行一般为非线性动态过程,采用数学统计方 法无法准确描述出风电场功率的实际变化情况, 而人工智能方法无需研究对象的精确数学模型, 可有效弥补上述缺陷。人工智能方法在20世纪70年 代以来得到迅速发展¨8’19J。目前,在风电功率预测

国内外对风电功率预测的研究现状
目前关于风电国内外已有很多文献加以研究,
文献【1】基于时间序列法和神经网络法研究了风速 的预测,但对较长时间的预测效果会比较差:文献 【2]研究了基于历史数据的风电场功率短期预测方 法,因为没有采用数值天气预报数据,预测的时间 尺度限制在1—6h。而电网的运行调度需要至少未 来24h的预测数据,l一6h的预测显然不能满足电网 调度的需要;文献【3】说明早在1990年L姐dberg就

风电场风速及风电功率预测方法研究综述

风电场风速及风电功率预测方法研究综述

电力电子• Power Electronics214 •电子技术与软件工程 Electronic Technology & Software Engineering【关键词】风电场 风速 风电速率 预测随着当今社会的发展,传统化石燃料使用的弊端越来越显著。

相比这些会对环境以及生态造成严重危害的传统化石燃料的使用,当今新型的环保能源,如风能发电显得更加的环保、更值得的提倡,因此在当今的社会,风力发电已经受到了前所未有的重视。

在二十一世纪以来,我国的风力发电不断的发展,并在不久之前,我国的风电装机更是取得了一项世界瞩目的成绩。

风能是自然形成的能源,然而它也具有自己的物理属性,倘若我们能够熟练的掌握各种现象的判断,并准确的分析,那么未来的风力发电一定会更加顺利。

1 预测风电场的变化有何作用对风电场的准确判断以及正确的预测整个过程的输入以及放出电量的功率不仅仅能够帮助相关电力控制人员的后续判断进行有效的理论支持,更能在当今风力发电尚未成熟的今天掌握更多的核心知识,以便后面在更大、更高效的未来取得更好的发展空间。

由于采用并网风力发电的过程中会受到众多因素的影响,因此,恰到好处的控制好风力发电的功率在当今的风力发电阶段更能保证整个风力发电系统的正常、有序运行。

因此,只有更加科学准确的得到风力发电的相关功率参数,才能做到最大限度地保障整个机制的有效运行,增强整个系统的稳定性和可行性。

只有这样,我们才能够更好的给电网的后台提供更加有效、准确的数据,在源头切实可行的降低整体的风力发电成本,让其在运行过程中风电场风速及风电功率预测方法研究综述文/余平达到效力最大化。

在当前这个电力市场相对开放的环境之中,进行风力发电的同时,不仅要考虑到其在工作过程中可能会出现不稳定的情况之外,还应当提前对相关构造误差成本进行有效的预估,进而取得最大化的收益。

除此之外,在进行风电场输出的相关考察之前还要对当地的风力资源以及相应的收益比进行评估,这样才能为后面具体的发电过程提供最优秀的支持。

风电功率预测技术综述

风电功率预测技术综述

风电功率预测技术综述风电功率预测技术综述一、引言风能是一种清洁、可再生的能源,具有巨大的发展潜力。

在全球范围内,风电作为一种主要的可再生能源之一,正逐步取代传统的化石能源,成为国家能源结构调整的重要组成部分。

然而,由于风速的不稳定性和不可预测性,风电的可靠性和经济性往往受到限制。

因此,风电功率预测技术的研究与应用对于提高风电的可靠性和经济性具有重要的意义。

二、风电功率预测的意义风电功率预测是指利用各种预测技术,根据历史的风速、风向、气温等多种气象数据,对未来一段时间内的风电功率进行预测。

其主要意义如下:1. 优化发电计划:通过准确预测风电功率,可以优化发电计划,合理分配发电机组的运行时间,提高发电效率。

2. 提高系统可靠性:可靠的功率预测有助于系统调度和规划,减少电网中的波动,提高电网的可靠性和稳定性。

3. 经济效益:准确预测风电功率有助于电力企业进行风电发电计划和电力交易,避免因风电波动带来的经济损失。

4. 能源管理:通过预测风电功率,可以更好地进行能源管理,合理调度各种能源资源,提高能源利用效率。

三、风电功率预测技术的分类风电功率预测技术通常可以分为以下几种类型:1. 基于物理模型的预测方法:该方法主要基于风力发电机组的数学物理模型,通过建立风电机组的运行方程,结合气象数据进行预测。

这种方法预测精度较高,但对系统参数的准确性要求较高,且计算量较大。

2. 统计学方法:该方法主要基于历史风速数据进行统计分析,利用统计方法建立数学模型进行预测。

常见的统计学方法有回归分析、时间序列分析等,这种方法适用于长期功率预测,但对历史数据的质量要求较高。

3. 神经网络方法:该方法通过模拟人脑神经元之间的相互作用,建立多层神经网络模型,通过训练网络模型实现风电功率预测。

神经网络方法具有较强的非线性处理能力,适用于复杂的风电功率预测问题,但对网络结构的选择和训练数据的数量要求较高。

4. 混合模型方法:该方法综合利用多种预测技术,通过建立多层次、多尺度的模型,实现对风电功率的精确预测。

《2024年风电功率预测关键技术及应用综述》范文

《2024年风电功率预测关键技术及应用综述》范文

《风电功率预测关键技术及应用综述》篇一一、引言随着全球对可再生能源的重视度不断提高,风电作为绿色能源的重要组成部分,其发展速度日益加快。

为了实现风电的高效、稳定运行,风电功率预测成为重要的研究课题。

本文将对风电功率预测的关键技术及其应用进行全面综述,以展示其在风电领域的重要地位及发展前景。

二、风电功率预测的重要性风电功率预测对于风力发电的稳定运行具有重要意义。

首先,准确的功率预测有助于电网调度机构制定合理的调度计划,实现电力供需平衡。

其次,风电功率预测可帮助运营商合理安排设备维护,减少因设备故障导致的能源损失。

此外,准确的预测还能提高风电的并网效率,减少对传统发电方式的依赖,有利于促进绿色能源的发展。

三、风电功率预测的关键技术1. 数据采集与处理技术数据采集与处理是风电功率预测的基础。

需要采集历史气象数据、风电场实时数据等,利用数据处理技术提取出与风电功率相关的关键信息。

此外,还需要对数据进行清洗和修正,以消除异常数据对预测结果的影响。

2. 预测模型与方法(1)物理模型:基于风力发电机组的物理特性和气象条件进行预测。

通过分析风速、风向、温度等气象因素对风电机组的影响,建立物理模型进行功率预测。

(2)统计模型:利用历史数据和统计方法建立预测模型。

如时间序列分析、回归分析等,通过对历史数据的分析,得出风电机组输出功率与各因素之间的关系,从而进行预测。

(3)人工智能模型:利用人工智能技术,如深度学习、神经网络等,建立风电机组的智能预测模型。

通过训练模型学习历史数据的内在规律,实现高精度的功率预测。

四、应用领域及发展前景风电功率预测技术在多个领域得到广泛应用。

首先,在电力系统中,通过准确的功率预测,有助于电网调度机构制定合理的调度计划,实现电力供需平衡。

其次,在风电场运营中,功率预测有助于合理安排设备维护,提高设备运行效率。

此外,在新能源并网、储能系统等领域也发挥着重要作用。

随着技术的不断发展,风电功率预测将朝着更高精度、更广泛的应用领域发展。

《2024年风电集群短期及超短期功率预测精度改进方法综述》范文

《2024年风电集群短期及超短期功率预测精度改进方法综述》范文

《风电集群短期及超短期功率预测精度改进方法综述》篇一一、引言随着可再生能源的日益发展和风电在全球能源结构中的地位不断提升,风电集群的功率预测已成为提升电网运行效率与减少能量损失的关键。

其中,短期及超短期功率预测作为实际运营中的重要环节,其预测精度的提高显得尤为重要。

本文旨在全面梳理当前风电集群短期及超短期功率预测精度改进方法,为相关领域的研究和实践提供参考。

二、风电集群功率预测的意义与挑战风电作为一种清洁、可再生的能源,对环境保护和能源结构优化具有重要意义。

然而,风电的间歇性和不确定性给电网调度带来了不小的挑战。

因此,对风电集群进行准确预测不仅有助于提升电力系统的运行效率,还有助于降低能源损耗,实现可再生能源的平稳接入。

三、短期及超短期功率预测的概念与重要性短期和超短期功率预测主要针对的是未来数小时至数天的风电出力预测。

其中,超短期预测通常用于实时调度和系统控制,其精度直接影响到电力系统的稳定性和电力设备的运行效率。

而短期预测则更多用于中长期规划和市场交易。

四、当前风电功率预测方法概述目前,风电功率预测方法主要包括物理方法、统计方法和组合方法等。

物理方法基于风力发电机的物理特性和气象信息来预测功率;统计方法则利用历史数据和统计模型进行预测;组合方法则结合了物理特性和统计信息,以实现更准确的预测。

五、短期及超短期功率预测精度改进方法(一)模型优化模型优化是提高预测精度的关键手段。

这包括对物理模型进行优化以提高其适应性,以及改进统计模型以增强其泛化能力。

此外,针对不同地域和气候条件的风电场,需要开发适合的模型以提升预测精度。

(二)多源数据融合通过整合多种数据源(如气象数据、风电场运行数据等)来提高预测模型的准确性。

多源数据融合能够更全面地反映风电场的实际运行情况,从而提高预测精度。

(三)算法优化与集成采用先进的算法和模型集成技术来提高预测精度。

例如,利用机器学习和人工智能技术来优化模型参数,以及通过集成多种模型来提高整体预测性能。

《2024年风电功率预测关键技术及应用综述》范文

《2024年风电功率预测关键技术及应用综述》范文

《风电功率预测关键技术及应用综述》篇一一、引言随着全球能源结构的转型和可再生能源的快速发展,风电作为清洁、可再生的能源形式,越来越受到各国的重视。

风电功率预测作为风电并网和运行的关键技术之一,对于提高风电的利用率、减少弃风现象、优化电网调度等方面具有重要意义。

本文旨在综述风电功率预测的关键技术及其应用现状,为进一步推动风电功率预测技术的发展和应用提供参考。

二、风电功率预测的关键技术1. 数据采集与预处理技术数据采集是风电功率预测的基础。

为了准确预测风电功率,需要采集风速、风向、温度、气压等气象数据,以及风电场的运行数据。

数据预处理技术则包括数据清洗、数据筛选、数据插补等,以提高数据的准确性和可靠性。

2. 预测模型与方法(1)物理模型:基于风力发电机的物理特性和气象数据,建立风电功率与气象因素之间的数学关系。

该模型具有较高的预测精度,但计算复杂,需要较高的气象学和机械学知识。

(2)统计模型:通过分析历史数据,建立风电功率与气象因素之间的统计关系。

该模型简单易行,但需要较长的历史数据支持。

常见的统计模型包括线性回归模型、时间序列分析模型等。

(3)人工智能模型:利用人工智能技术,如神经网络、支持向量机、深度学习等,建立风电功率与多种因素之间的非线性关系。

该模型具有较高的预测精度和适应性,尤其在处理复杂、非线性的问题时具有显著优势。

3. 预测算法的优化与改进针对不同的预测模型和方法,需要进行算法的优化与改进,以提高预测精度和计算效率。

例如,可以通过引入更多的气象因素、优化神经网络的架构、改进支持向量机的核函数等方法,提高风电功率预测的准确性。

三、风电功率预测的应用1. 风电并网与调度:通过准确的风电功率预测,可以实现风电的优化调度和并网运行,提高电网的稳定性和可靠性。

2. 风电场运行管理:风电功率预测可以为风电场运行管理提供决策支持,如风电机组的维护、检修等。

3. 新能源消纳与市场应用:通过准确的风电功率预测,可以实现新能源的消纳和优化配置,推动新能源的市场应用和发展。

风电功率的预测总结

风电功率的预测总结

风电功率的预测一、风电功率预测风速、风向、气温、气压等的SCADA实时数据,等高线、障碍物、粗糙度等数据,数值天气预报数据,把上面的某些数据通过一定的方法转换到风电机组轮毂高度的风速、风向,然后根据功率曲线得到风电场的出力,并根据风电场的效率进行修正。

二、预测的意义风电功率预测的意义如下:①用于经济调度,根据风电场预测的出力曲线优化常规机组的出力,达到降低运行成本的目的。

②根据风电出力变化规律增强系统的安全性、可靠性和可控性。

③在风电参与电力市场的系统中,优化电力市场中电力的价值。

在电力市场中,风电场对风电功率进行预测,参与电力市场竞价;电网公司对风电功率进行预测,保证系统安全经济运行。

①优化电网调度,减少旋转备用容量,节约燃料,保证电网经济运行对风电场出力进行短期预报,将使电力调度部门能够提前为风电出力变化及时调整调度计划;从而减少系统的备用容量、降低电力系统运行成本。

这是减轻风电对电网造成不利影响、提高系统中风电装机比例的一种有效途径。

②满足电力市场交易需要,为风力发电竞价上网提供有利条件从发电企业(风电场)的角度来考虑,将来风电一旦参与市场竞争,与其他可控的发电方式相比,风电的间歇性将大大削弱风电的竞争力,而且还会由于供电的不可靠性受到经济惩罚。

提前一两天对风电场出力进行预报,将在很大程度上提高风力发电的市场竞争力。

③便于安排机组维护和检修,提高风电场容量系数风电场可以根据预报结果,选择无风或低风时间段,即风电场出力小的时间,对设备进行维修,从而提高发电量和风电场容量系数。

三、预测方法的分类风功率预测方法可以分为2类:一种方法是根据数值天气预报的数据,用物理方法计算风电场的输出功率;另一种方法是根据数值天气预报与风电场功率输出的关系、在线实测的数据进行预测的统计方法。

考虑了地形、粗糙度等信息,采用物理方程进行预测的方法则称之为物理方法,根据历史数据进行统计分析,找出其内在规律并用于预测的方法称之为统计方法(如神经网络方法、模糊逻辑方法等)。

风电集群短期及超短期功率预测精度改进方法综述

风电集群短期及超短期功率预测精度改进方法综述

风电集群短期及超短期功率预测精度改进方法综述风电集群短期及超短期功率预测精度改进方法综述概述:随着可再生能源日益受到重视和普及,风电作为其中的重要组成部分之一,其功率预测在电力系统调度与运营中显得尤为关键。

然而,由于风力的不稳定性和难以准确把握的特点,风电集群短期及超短期功率预测存在一定的困难。

本文将综述当前学术界和工业界研究中针对风电集群短期及超短期功率预测精度改进的方法,介绍并评估不同方法的优缺点,并展望未来的研究方向。

一、基于统计方法的研究1. 统计建模方法:通过建立数学模型,利用历史数据进行预测。

例如利用时间序列分析方法,建立ARIMA模型进行功率预测。

这类方法相对简单易用,但对于非线性和复杂性的风电功率曲线拟合能力有限。

2. 数据挖掘方法:利用聚类、分类、回归等数据挖掘技术,从历史数据中提取规律和特征,进行功率预测。

例如利用神经网络、支持向量机等方法进行建模。

这些方法可以更好地捕捉风电功率的非线性特征,但对数据质量、样本数量和采集频率要求较高。

二、基于物理模型的研究1. 流场建模方法:通过对流场内风场的建模和仿真,预测风电功率。

例如利用计算流体力学(CFD)模拟风场,结合牛顿运动定律计算风机转速进而预测功率。

这类方法需要大量的气象数据和计算资源,难以快速应用于实际系统中。

2. 系统辨识方法:通过建立系统动态模型,利用传感器测量数据进行参数辨识,实现功率预测。

例如基于基于卡尔曼滤波器和最优化理论等算法进行系统辨识。

这些方法能够较准确地预测风电功率,但对系统模型的选择和参数调整较为敏感。

三、基于组合模型的研究1. 混合模型方法:将统计方法和物理模型相结合,通过组合、融合不同模型的优点,提高功率预测精度。

例如利用神经网络和ARIMA模型相结合,进行预测。

这些方法能够克服单一模型的局限性,提高预测精度,但模型的建立和参数的调整相对复杂。

2. 集成学习方法:通过集成多个预测模型,利用多数投票或加权平均的方法得到最终预测结果。

风电场风速及风电功率预测方法研究综述

风电场风速及风电功率预测方法研究综述

comprehensive
m舣imizes fIavomble fhctors and minimizes unfhvorable
contained in above—fnentioned methods.This paper brief ovenriew
on
p陀鸵nts

p捌iction
methods of wind
combining aJl the other methods.Based
accumte numericaJ weather prediction
method is seldom used in the short is
(NWP),the physic丑l
prediction,as its model
的神经网络模型,图2所示的RNN适合于提前期更
长些的预测闭。它只需利用短时间内的历史风速数 据就町以获得较好的预测结果。





图2
(隐齐坛)
RNN神经网络结构图
2)一些改进的神经网络预测方法。基于神经网
图1
BP神经网络结构图
络预测的一些改进方法包括:首先建立神经网络模
型预测气象数据,进而根据所得气象预数据再建 神经网络模型预测风电功率数据的双神经网络预 测模型嗍,但该模型只针对一个电场显示了有效性, 其适用性还有待进一步验证;从风速物理特性出发 提出的基于改进空间相关法和径向基神经网络的 短期风速分时预测模型I删,该模型采用空间平移法 对空间相关法进行改进,同时采用径向基神经网络 确定相关点与风电场的风速时间曲线之间的关系; 结合正交最小平方以及结构算法构建径向基神经
speed粕d
wind tlIe

《2024年风电集群短期及超短期功率预测精度改进方法综述》范文

《2024年风电集群短期及超短期功率预测精度改进方法综述》范文

《风电集群短期及超短期功率预测精度改进方法综述》篇一一、引言随着可再生能源的日益发展和风电产业技术的持续进步,风电在电力系统中占据的地位越来越重要。

然而,由于风力资源的不确定性和波动性,风电集群的功率预测面临着一系列挑战。

短期及超短期功率预测是提高风电利用率、平衡电力供需的关键技术。

本文将重点探讨风电集群短期及超短期功率预测精度改进方法的综述。

二、风电功率预测的重要性风电功率预测对于电力系统的稳定运行具有重要意义。

准确的预测能够为调度人员提供有效的决策支持,有助于平衡电力供需,减少因风力波动造成的电力损失,同时也有助于提高风电的并网效率和利用率。

三、短期及超短期功率预测概述短期功率预测通常指对未来几小时至一天内的风电功率进行预测,而超短期功率预测则是对未来几分钟至几小时的功率进行预测。

这两种预测方法在时间尺度上有所不同,但都依赖于风力资源的特点和气象条件的变化。

四、当前风电功率预测方法及其局限性目前,风电功率预测主要依赖于物理模型和统计学习方法。

物理模型根据大气物理规律进行模拟和预测,而统计学习方法则依赖于历史数据和数学模型进行预测。

然而,这两种方法都存在一定局限性,如对复杂天气情况的适应能力较弱、模型参数调校复杂等。

五、短期及超短期功率预测精度改进方法1. 多源数据融合技术:通过融合多种数据源(如卫星遥感数据、气象雷达数据等)提高预测精度。

多源数据能够提供更全面的风力信息,有助于提高预测模型的准确性。

2. 深度学习技术:利用深度学习算法(如卷积神经网络、循环神经网络等)对历史数据进行学习和分析,以优化预测模型。

深度学习技术能够更好地捕捉风力资源的非线性变化和复杂模式。

3. 动态模型调整:根据实时气象条件和风力变化动态调整模型参数,以适应不同天气情况下的风力变化。

这种方法能够提高模型的灵活性和适应性。

4. 误差修正算法:利用历史误差数据进行误差修正,以减少模型预测的误差。

误差修正算法可以有效地降低预测过程中的不确定性。

风电功率预测关键技术及应用综述

风电功率预测关键技术及应用综述

风电功率预测关键技术及应用综述随着可再生能源的快速发展,风能作为一种经济、环保的能源来源正得到越来越多的关注和应用。

而风电功率预测作为风能发电的重要环节,对于实现风电系统的高效运行、优化风能利用具有重要意义。

本文将综述风电功率预测的关键技术及其应用情况。

一、风电功率预测的意义风电功率预测是指通过分析风速、风向、风能密度等气象数据,预测未来风电场的发电功率。

准确的风电功率预测可以提前做好发电计划,优化发电调度,并为电力市场交易、能源管理等提供可靠的参考依据。

同时,风电功率预测还可以提高风电并网的可靠性和稳定性,减少对传统电源的依赖。

二、风电功率预测的关键技术1. 数据采集与处理技术风电功率预测的第一步是采集和处理气象数据。

传统的气象测量设备如风速仪、风向仪等可以用于采集风速和风向数据,而风能密度需要通过多个气象参数进行计算。

同时,为了提高数据的准确性和可靠性,还可以利用卫星遥感技术和气象雷达等现代化手段进行数据采集。

处理方面,常用的方法包括数据清洗、数据归一化、特征提取等。

2. 模型建立与算法选择模型建立是风电功率预测的核心环节之一。

常用的预测模型包括统计模型、基于物理的模型和机器学习模型。

统计模型如时间序列分析、自回归移动平均模型等,基于物理的模型如功率曲线模型、物理规律模型等,机器学习模型如人工神经网络、支持向量机等。

选择合适的算法需要考虑数据的特点、模型的可解释性和复杂度等因素。

3. 模型训练与优化技术模型训练是模型建立的重要环节。

通过利用历史数据进行训练,可以学习到风电功率与气象因素之间的关系。

常用的优化方法包括遗传算法、粒子群优化算法等,通过调整模型参数来提高预测精度。

同时,还可以利用交叉验证、自适应学习率等技术来改进模型训练的效果。

4. 特征选择与预测模型集成技术风电功率预测中,选择合适的特征对预测结果的准确性有着重要影响。

常用的特征选择方法包括相关性分析、主成分分析等,通过选择与预测目标相关性高的特征来提高预测精度。

风电功率预测方法综述ppt课件

风电功率预测方法综述ppt课件
风电功率预测综述
1
确定性 风电预 测方法
确定性风电预测方法旨在给出未来某一时 刻风速或者风功率具体预测值
预测方法
概率性 风电预 测方法
因为确定性预测模型提供的预测结果会有不同程度的预测误差, 从而给电力系统的操作带来一定的影响。为了更为有效的对电 力系统进行操作,预测模型还应当提供预测结果的概率分布特 性。这种预测模型叫做概率性预测模型
组合模 型
4
持续法 时间序 列分析 法
经典预测 方法
人工神 经网络 支持向 量机 SVM
5
持续法
风电领域中最经典的预测方法是持续法。持续法以当前时刻的风 速或者风电功率值作为未来的风速或者风电功率预测值。 持续法虽原理简单,但是预测精度尚可,特别是在预测时间短的 情况下,持续法的精度甚至可能超出其他原理复杂的机器学习方法。 因此持续法在风电预测领域通常被当做基准方法用来验证其他方法的 预测性能。
6
时间序列分析
时间序列分析是一种分析动态时间序列数据的有效分析方法。 ARMA 模型是一种比较常用的经典时间序列分析方法。 大量的历史数据可以在一定程度上提高 ARMA 模型的预测精度。 ARMA 相比持续法优势并不明显,但是随着预测时间的增加, ARMA 模型的预测精度比持续法就有了较大程度的提高。 对 ARMA 模型进行合理校正可以明显提高风电功率的中短期(72 h 之内)的预测精度。 附:Zhongyue Su 等人用 PSO 算法对 ARIMA 模型参数进行优 化,再与Kalman 滤波算法结合得到组合预测模型,该组合模型在风 速日均值预测中的性能比单纯的 ARIMA 相比有一定程度的提高
分解方法
3)EMD 分解。
4)fast ensemble EMD 分解。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

组合模型
1)原始序列分解得到子序列,对子序列进 行单独建模的组合。 2)对原始序列用数个模型进行预测,使用 加权方式综合各模型结果得到预测结果。
组合模型
3)对预测模型输出建立误差校正模型的组 合。 4)使用优化算法对基本预测模型参数进行 优化的组合。
1)小波分解。 2)小波包分解。
分解方法
3)EMD 分解。
组合模 型
持续法 时间序 列分析 法
经典预测 方法
人工神 经网络 支持向 量机 SVM
持续法
风电领域中最经典的预测方法是持续法。持续法以当前时刻的风 速或者风电功率值作为未来的风速或者风电功率预测值。 持续法虽原理简单,但是预测精度尚可,特别是在预测时间短的 情况下,持续法的精度甚至可能超出其他原理复杂的机器学习方法。 因此持续法在风电预测领域通常被当做基准方法用来验证其他方法的 预测性能。
人工神经网络
学者们研究了 ANN 在中长期日均值和月均值风速预测中的应用, 与 AR 模型对比,ANN 模型在中长期的风速预测中精度有明显提高。 结果表明应当针对风速集的特征选择合适的 ANN模型,没有一种 ANN 模型能够普适所有的风速预测情况。目前,对 ANN 在风电预测 中的应用主要集中在 ANN 模型的改进上。 对电力系统内的风电功率进行小时均值预测,结果表明,经过优 化后的 WNN 模型小时均值风电功率预测 RMSE 误差比持续法以及普 通 ANN 模型能够降低 20%~30%左右。
统计学 习方法
统计学习方法通过研究风电场的历史数据, 旨在建立不同历史数据之间的统计关系, 使用测量数据根据数据之间的统计关系对 风速以及风电功率进行预测
确定性预 测
物理模 型
物理模型使用数学模型研究气象演变过程,根据边界条件使用 反应气象演变的数学模型对气象数据进行预测。
经典预 测方法
统计学方 法
风电功率预测综述
确定性 风电预 测方法
பைடு நூலகம்
确定性风电预测方法旨在给出未来某一时 刻风速或者风功率具体预测值
预测方法
概率性 风电预 测方法
因为确定性预测模型提供的预测结果会有不同程度的预测误差, 从而给电力系统的操作带来一定的影响。为了更为有效的对电 力系统进行操作,预测模型还应当提供预测结果的概率分布特 性。这种预测模型叫做概率性预测模型
时间序列分析
时间序列分析是一种分析动态时间序列数据的有效分析方法。 ARMA 模型是一种比较常用的经典时间序列分析方法。 大量的历史数据可以在一定程度上提高 ARMA 模型的预测精度。 ARMA 相比持续法优势并不明显,但是随着预测时间的增加, ARMA 模型的预测精度比持续法就有了较大程度的提高。 对 ARMA 模型进行合理校正可以明显提高风电功率的中短期(72 h 之内)的预测精度。 附:Zhongyue Su 等人用 PSO 算法对 ARIMA 模型参数进行优 化,再与Kalman 滤波算法结合得到组合预测模型,该组合模型在风 速日均值预测中的性能比单纯的 ARIMA 相比有一定程度的提高
支持向量机SVM
支持向量机 SVM 作为一种基于核的机器学习方法具有良好的非 线性建模能力。 对比SVM 与 ANN 在日均值风速预测中的性能,SVM 的预测误差 比 ANN 降低 13%左右。 使用 Bayes 理论对传统 SVM 损失函数进行修正,建立 v-SVM 模型 提高了短期风速预测的性能。
4)fast ensemble EMD 分解。
感谢聆听
相关文档
最新文档