理想光学系统与共线成像理论 复习重点1

合集下载

工程光学第二章

工程光学第二章

高斯公式
1 1 1 l l f
y l yl
牛顿与高斯公式的转换: x l f ......x l f
当系统确定时,f
可根据公式,改变 x(l) 可得到不同β, 或β按要求,可计算出相应的 x(l) .
例:有一理想光组,其焦距为 f f 75mm
其前方150mm处有一物高为20mm的物体,
求像的位置和大小.若要求 0.5x 问物体应位于何处?
解:
1)根据 1 1 1 l l f
Q Q' B y
A
F
H H'
F
A'
l 150mm
-y'
f 75mm
R
R'
-x
-f
f'
B' x'
l 150mm
-l
l 1 l
一个理想光学系统可以用其基点(面)来表示,而 不需考虑其具体结构如何。
O
B O2
O1 A
A'
O' B' O'2
M
图2-3 两对共轭面已知的情况
O
B
A
O3
O1 O2
O'
A'
B'
M
图2-4 一对共轭面及两对共轭点已知的情况
第二节 理想光学系统的基点和基面
一.焦点与焦平面
1.像方焦点与像方焦平面(对应 L=-∞)
l x f 902.605mm
以O1为原点! 以H 为原点!
x f 8.2055mm l x f 90.2605mm
L=-∞ F'

第2章 理想光学系统

第2章 理想光学系统

如果已知共轴光 学系统的一对主 平面和两个焦点 的位置,就能根 据它们找出物空 间任意物点的像!
理想光组可有任意多个折、反射球面或多个光组组成。 寻找理想光组的特征点、面——基点、基面,就可以代 表整个光组的光学特性,用以讨论成像规律。
※ 若 f ’ >0,为正光组(会聚光组) 若 f ’ <0,为负光组(发散光组)
B
F
H
B H

F


节点就是主轴上角 放大率正1(=+1) 的物像共轭点。 通过节点的光线方 向不变。
H
H
P
u
P
A
• •• •M M
K K
A
u

若:光学系统在空气中(光学系统两边介质 相同), 由亥姆霍兹—拉格朗日定理可知 当 =1 时, =1 。
因此:这时两节点分别与两主点重合。
• 总能找到:在像方折射光 线中一定有一条光线与入 P 射光线平行,即u = u 。 • 根据主平面的性质,存在一对共轭点M、M' • 即入射光线PAM与出射光线M'B'F'平行,并且共轭。 (过M点只有一条光线平行于光束。)
A
M
• • M K
u
F
• 节点:这两条光线的延长线与光轴的交点K和 K',分别称为物方节点和像方节点。
B A’ 2F ’ F’ H
H’
F
A 2F
B’
作图题都要写出作图步骤
第三节:理想光学系统的物像关系 3.解析法求像: x—以物方焦点 为原点的物距。 称为焦物距。 以F为起始点, x 方向与光线方向 一致为正。(图 中为-)
11
三、基点、基面的概念

理想光学系统

理想光学系统
y tan L
tan L ★显微镜视角放大率 tan f1 f 2
2-6 透镜
一、透镜的分类
分类: 球面透镜(工艺简单) 非球面透镜(像质更好,工艺复杂)
d > tm 凸透镜 (双凸,平凸,月凸) d < tm 凹透镜 (双凹,平凹,月凹)
d
tm
思考:平行平板对光线没有汇聚或发散作用, 但若整体弯曲后呢?
二、透镜参数计算
透镜是由两个折射球面组成的光组。对于单个折射球面:
n' n n' n 由: l' l r
n
F
Q Q’
n’
F’
n’ r f’ n’ n 得: nr f n’ n
H H’ O
-f
r f’
C
结论:单折射球面在近轴区是理想系统,两主面重合。 提示:透镜在近轴区也是理想系统。透镜的理想系统模型, 是两折射球面理想光组组合的等效系统。
d f1 ' f 2
lF '
lH
xH '
蓝△相似 红△相似
f ' Q' H ' f2 ' H2 ' M 2 '
f1 ' M 1 ' H1 ' F2 N 2
f ' f1 ' f2 '
同理
f1 ' f 2 ' f ' f1 f 2 f
由图可知: F1’和 F’是第二光组的一对共轭点; x F 和 F2 是第一光组的一对共轭点。 x '
★一对主点、一对主平面; (共轭)
★一对焦点、一对焦平面; (非共轭,f和f ’不一定相 等,说焦距一般指f ’) ★一对节点、一对节平面; 理想系统的焦点、主点确 定后,焦距也就随之确定, 该理想系统的模型也就完全 确定了,从而可方便地建立 理想光学系统图解法和解析 法求像理论。

第三章理想光学系统

第三章理想光学系统

引入理想光学系统的意义: 1、提供了方便的研究方法和工具; 2、指明了实际系统的设计方向和目标; 3、提供了衡量实际系统成像质量的标准。
3
二、理想光学系统的基本性质(共线理论)
理想光学系统 —— 物经这种光学系统所成的像是完善的。

本 性 质
物空间 点 直线 平面
像空间 点 直线 平面
R M S
光 学 系 统
重要性质:射向物方主面上某点的 光线,必从像方主面等高点出射。 H H′
f’
节点J、J’,节平面(略)
8
三、焦距
物方焦距 f : 定 物方主点H到物方焦点F的距离;
F
-f
H
H’
f’
F’
像方焦距 f′: 义 像方主点H′到像方焦点F′的距离。
特别注意:1、系统有两个焦距: f 、f′; 2、注意两个焦距的起点和终点; 3、折射系统两个焦距的符号相反; 4、两个焦距的绝对值不一定相等。 理想系统的一对焦点、一对主点确定后,焦距也就随之确定, 并且该理想系统的模型也完全确定了,进一步可方便地建立理 想光学系统理论的两个重要基本方法——图解法和解析法。
H H′ F′
F
A′
H
F
H′
F′
A′
12
练习:作图求像
A
H′ F H F′
A
H F H′ F′
A′
A′
F
A′
A
A A′
F′ H H′ F
H
H′
F′
A
F H
H
H′ F′
A′
A′ H′ F′
A
F
A
F
H
H′ F′
A′
13

工程光学第三章知识点

工程光学第三章知识点

理想光学系统第三章 理想光学系统第一节 理想光学系统的共线理论● 理想光学系统:在任意大的空间内、以任意宽的光束都能成完善像的光学系统 ● 理想光学系统理论又称“高斯光学”,理想光学系统所成的完善像又称“高斯像” ●描述理想光学系统必须满足的物像关系的理论称为“共线理论”共线理论(1)物空间的每一点对应像空间的相应一点,且只对应一点(点对应点)(2)物空间的每一条直线对应像空间的相应直线,且只对应一条直线(直线对应直线) (3)物空间的每一平面对应像空间的相应平面,且只对应一个平面(平面对应平面)● 这种对应关系称为“共轭”,相应的点构成一对共轭点,直线构成一对共轭直线,平面构成一对共轭平面● 推论:物空间某点位于一条直线上,则像空间中该点的共轭点必定也位于这条直线的共轭直线上(点在线上对应点在线上)● 共轴球面系统用结构参数(r 、d 、n )描述系统 ● 理想光学系统用“基点”和“基面”来描述系统 ● 基点基面就是理想光学系统的特征参数第二节 无限远轴上物点与其对应像点F ’---像方焦点● 设有一理想光学系统● 有一条平行于光轴的光线A1E1入射到这个系统● 在像空间必有一条直线与之共轭,即PkF’,交光轴于F’点●在物空间中平行于光轴入射的光线都将汇聚在F’点上,F’点称为“像方焦点”共轴球面系统焦点、焦平面、主平面示意图焦点、焦平面、主平面示意图● 过F’点作垂直于光轴的平面,称为“像方焦平面” ● 像方焦平面与物方无限远处垂直于光轴的物平面共轭● 物方的任何平行光线若不与光轴平行,表示无限远处的轴外点,将汇聚在像方焦平面上的一点2,无限远的轴上像点和它所对应的物方共轭点F ——物方焦点● 像方平行于光轴的光线,表示像方光轴上的无限远点● 在物方光轴上必定有一点F 与之共轭,F 点称为物方焦点,过F 点的垂轴平面称为物方焦平面 ● 物方焦点F 与像方焦点F’不是一对共轭点3,垂轴放大率β=+1的一对共轭面——主平面● 在光学系统中存在着垂轴放大率β=+1的一对共轭平面,这一对共轭面称为“主平面”即物方主平面和像方主平面● 共轭垂轴平面QH 和Q’H’满足β=+1(因为高度h 相等) ● QH 为物方主平面,Q’ H’为像方主平面 ● H 为物方主点,H’为像方主点 ● 物方主平面QH 与像方主平面Q’H’共轭 ● 物方主点H 与像方主点H’共轭● 对于理想光学系统,不论其实际结构如何,只要知道了主点和焦点的位置,其特性就完全被决定了 4,光学系统焦距● 像方焦距:像方主点H ’到像方焦点F ’的距离f ’ ● 物方焦距:物方主点H 到物方焦点F 的距离f●焦距均以各自的主点为原点,与光线传播方向一致为正,相反为负 光学系统的焦距计算式tan tan h f U h f U '='=焦距包含了光学系统主点和焦点的相对位置,是描述光学系统性质的重要参数 像方焦距f ’>0的光组称为正光组,f ’<0的光组称为负光组无限远轴外物点的共轭像点焦点、焦平面、主平面示意图当光学系统的物方与像方处于同一介质中时,物方焦距与像方焦距数值相等,符号相反f = -f ’单折射球面的主平面和焦点共轴球面系统的成像性质可以用一对主平面和两焦点表示,为此目的,先研究单个折射球面的主平面和焦点位置。

第二章理想光学系统

第二章理想光学系统

8
一对主平面,加上无限远轴上物点和像方焦点F′,以及 物方焦点F和无限远轴上像点这两对共轭点,就是最常用 的共轭系统的基点,它们构成了光学系统的基本模型, 可以和具体的系统相对应。
理想光 学系统 简化图
9
§2-3 理想光学系统的物像关系
一、图解法求像 指已知一个理想光学系统的主点(主面)和焦点位置,利用 光线通过它们后的性质,对物空间给定的点、线和面,通过 画图追踪典型光线求出像的方法。 典型的光线有: ①平行于光轴入射光线,出射光线经过像方焦点。 ②过物方焦点的光线,出射光线平行于光轴。 ③倾斜于光轴的平行光束入射后会交于像方焦平面上一点。 ④自物方焦平面上一点发出的光束经系统后成倾斜于光轴的 平行光束。 ⑤共轭光线在主面上的投射高度相等。
五、应用(用平行光管测定焦距)
y f tg
23
§2-5 理想光学系统的组合
当两个或两个以上光学系统组合在一起时,求其等效系 统,等效焦距、焦点、主点。 一、两个光组组合分析 已知两光学系统的焦距分别为 f1 , f1, f 2 , f 2 两者之间的相对位置用第一系统的像方焦点到第二系统 的物方焦点的距离Δ (光学间隔,顺光线为正)。
该方法称为正切计算法。
28
例1:远摄型光组。设单个光组由两个薄光组组合而成。
f1 500mm, f 2 40mm, d 300mm .
求组合光组的焦距,像方主面位置,像方焦点位 置。并比较筒长与焦距的大小。
29
例2:反远距型光组。已知
f1 35mm, f 2 25mm, d 15mm .
曲率半径 D为透镜两球面顶点距离。 的倒数 2 1 n 1 n 11 2 d 1 2 f n 主面位置: 相应焦点位置:

南京理工大学-研究生入学考试大纲-819光学工程

南京理工大学-研究生入学考试大纲-819光学工程

《光学工程》考试大纲
一、复习参考书
1、工程光学. 第二版郁道银、谈恒英编,机械工业出版社,2007.2
二、复习要点
物理光学部分
第一章光的电磁场理论
1.光的电磁性质
2.光在电介质分界面上的反射和折射
3.光波的叠加和傅里叶分析
重点:熟练掌握光的电磁波表达形式和电磁场的复振幅描述;掌握光在介质分界面上反射和折射时光波的变化情况,尤其是正入射的情况;掌握光波的叠加原理与傅里叶分析方法。

第二章光的干涉和干涉系统
1.光波干涉的条件及干涉图样的计算
2.干涉条纹的可见度
3.平行平板产生的双光束干涉及典型双光束干涉仪
4.平行平板产生的多光束干涉及其应用
重点:熟练掌握光程差概念以及对条纹的影响及基本的双光束干涉系统。

掌握条纹定域和非定域的概念及条纹可见度、空间相干性、时间相干性概念;典型的双光束、多光束干涉系统以及单层增透、减反膜的计算结论和实际应用。

第三章光的衍射
1.菲涅耳衍射公式与夫琅和费衍射公式
2.典型孔径(矩孔,单缝和圆孔)的夫琅和费衍射
3.光学成像系统的衍射和分辨本领
4.多缝的夫琅和费衍射与衍射光栅
5.菲涅耳波带片
重点:熟练掌握典型的夫朗和费衍射系统概念和计算;掌握光栅的原理和计算;菲涅耳波带片的概念和使用。

2第二章理想光学系统(精通)

2第二章理想光学系统(精通)

h1 r1
经过计算得 l 67.4907, u 0.121869,
焦距为 f h 82.055, tan u
主点位置l f 14.5644在最后折射面
左侧14.5644mm处
2020/6/15
14
3:物像关系
几何光学目的就是求像,(对于确定的光学系 统,给定物体的位置、大小、方向,求像的位 置、大小、正倒及虚实)。
2020/6/15
31
例题2
已知一个透镜把物体放大 -2倍,当透镜向物 体移近20mm时,放大倍数为 -3倍,求一开始 的物距以及透镜的焦距?
1
l l
1
1
f 1
l 2 l 1 (2)
3 (l 20) 1 (3)
l l f
l 180mm, f 2 (180) 120mm, 3
B
A
F
A’ F’
B’
注意:图像法只能求得像的大致位置,至 于具体位置在哪,完全不清楚!因此需要 一种可以定量求得像的位置的方法!!!
2020/6/15
24
解析法(牛顿公式以焦点为基准)
-x
A
FM
-f
H -y
x‘
M’ B’
f'
y’
H’ F’ A’
B
N
N’
-l
ABF MHF
MH
FH
l’
y
f
AB FA y x
二:选择主平面和焦点,在一定程度上决定了 光学系统的成像特性,加上后面的解析公式可 以更加方便的计算。
三:选择主平面的好处:将实际光学系统中多 次折射反射等效于共轭光线的一次偏折代替。
2020/6/15
11

应用光学(第二章)

应用光学(第二章)
※ F ’ 就是无限远轴上物点的像点,称像方焦点
A
E
Q’ E’
h
H’
U’
F’
※ 过F ’ 点作垂直于光轴的平面,称为像方焦平面
它是无限远处垂直于光轴的物平面的共轭像平面
将AE延长与出射光线E’F ’的反向延长线交于Q’
通过Q’点作垂直于光轴的平面交光轴于H’点,
※ 则Q’H’平面称为像方主平面,H’称为像方主点
N
A’
A
F
H H’ F ’
也可以利用像方焦平面。作和入射光线平行的辅 助光线,利用与光轴成一定角度的光束过光组后 交于像方焦平面。
N’
A’
A
F
H H’ F ’
(二)负光组轴上点作图★
方法1:
R
R’
Q Q’
(1)AQ
N
(2)辅助焦平面
(3)延长AQ到N
F’ A
A’ H H’
(4)NR
F (5)RR’(主面上投射高 度相等)
光轴有一定的夹角,
用 w 表示。
这样一束平行光线经过理想光组后,一定相交于像
方焦平面上的某一点,这一点就是无限远轴外物点 的共轭像。
(四)物方焦点、物方焦平面;物方主点、 主平面;物方焦距
E
E’
B
F
-U
h
※ 如果轴上某一点F的共轭像点在无限远处,即由 F发出的光线经光组后与光轴平行,则 F 称为系统
N’
A’
A
F
H H’ F ’
方法3:
过A作垂直于光轴的辅助物AB,按照前面 的方法求出B’,由B’作光轴的垂线,则交点A’ 就是A的像。
B
A’
A
F
H H’ F ’

第三章 理想光学系统

第三章 理想光学系统
f = h tgU
f′=
h tgU ′
f′ n′ n =n′ 2) = − ) f n
f =−f′
h = ltgU = l ′tgU ′
(x + f )tgU = (x′ + f ′)tgU ′
y y′ ′=− f′ x = − f ,x y′ y ′ yftgU = − y ′f tgU ′
yfu = − y ′f ′ ′ u nuy = n ′u ′y ′
α = β1 β 2
3.角放大率: 3.角放大率: 角放大率
tgU ′ γ = tgU
tgU ′ y f 1 f 1 n γ = =− =− = tgU y′ f ′ β f ′ β n′
f x′ β =− =− x f′
γ =
1
β
x f 1 f = = γ =− β f ′ f ′ x′
4.三者关系: 4.三者关系: 三者关系
′ x2 = x1 − ∆1
……… …
d1 = H 1′H 2
相应于牛顿公式: 相应于牛顿公式:
光学间隔) ′ x k = x k −1 − ∆ k −1 (光学间隔)
∆1 = d1 − f1′ + f 2
……… …
∆1 = F1′F2
光学间隔Δ和主面间隔d 光学间隔Δ和主面间隔d 的关系为: 的关系为:
β<0, 物象虚实一致。 β<0, 物象虚实一致。 β>0, 物象虚实相反。 β>0, 物象虚实相反。
例:空气中有一薄光组,当把一高20mm的物置于物方焦 空气中有一薄光组,当把一高 的物置于物方焦 点左方400mm处时,将会在光组像方焦点右方 处时, 点左方 处时 将会在光组像方焦点右方25mm处 处 成一虚像。 成一虚像。 光组的焦距; 求:1. 光组的焦距; 2. 像的大小; 像的大小; 3. 物右移 物右移200mm,像移动多大距离? ,像移动多大距离?

光学第2章_理想光学系统

光学第2章_理想光学系统

透镜
(6)
空气中的薄透镜焦距
时为正透镜, 正透镜中心比边缘厚, 又称为凸透镜; f ′= f > 0 时为正透镜 正透镜中心比边缘厚 又称为凸透镜 f ′= f <0 时 为负透镜,负透镜中心比边缘薄 又称为凹透镜. 负透镜中心比边缘薄, 为负透镜 负透镜中心比边缘薄 又称为凹透镜
由( 3) 和(5)式, 得空气中的薄透镜成像公式:
按照这种设想,来自无穷远物点和焦点F的两条光线 将既通过Q点亦通过Q'点.Q,Q'是一对共轭点,两个主 平面是一对共轭面,且 β ≡ +1 总之,对于一个光学系统,找到其主平面(一对)和 两个焦点F,F',其系统的基本结构模型就构成了,它们 完全可以代表光学系统的成像性质.
第二节
理想光学系统的基点和基面
Q Q'
.
F
H
H'
.
f'
F'
-f
第二节
理想光学系统的基点和基面
自物方焦点入射的光线与其出射平行于光轴的光线的延长线的交 点Q的垂点H称为主点,相应的垂直于光轴的平面称为物方主平面. 类似地,H'为像方主点,相应垂直于光轴的平面为像方主平面.
Q Q'
.
F
H
H'
.
f'
F'
-f
注意:图中,Q,Q'点并非实际光线的交点,而是实际光线延 长线的交点.引入主平面的概念后,可大大简化成像过程的计算 .不妨就"认为"Q,Q'是实际光线的交点.
y' f l' β = = y f'l
f '= -f
l' β = l

第二章理想光学系统

第二章理想光学系统

h -U A
-L
由三角关系: tgU h
6
L
当 L 即物点向无限远处左移时,由于任何 光学系统口径有限,所以此时 U 0
h
-L
※ 无限远轴上物点发出的光线与光轴平行
7
(二)像方焦点、像方焦平面;像方主点、主平面;
像方焦距
像方
焦平
A
B
Q ’ E’

h
H’
像方主平面
U’
像方 主点
f’
F’
像方 焦点
F
(1)辅助物AB (2)由B作 BQ // 光轴 (3)QQ’
(4)由Q’作直线过F ’ (5)BF (6)N ’M
(7)由B’作直线垂线于光轴交点即是A’
21
求AQ的出射光线:
F’ A
F’
R
R’
Q Q’
A’ H H’
(1)AQ N (2)辅助焦平面
(3)延长AQ到N (4)NR F (5)R’F ’
(3)平行平板,f ’为∞, Φ=0,对光束不起会聚或 发散作用。
14
第三节 理想光学系统的物象关系
一、用作图法求光学系统的理想像 ※ 已知一个理想光学系统的主点和焦点的位 置,利用光线通过它们后的性质,对物空间 给定的点、线、面通过画图追踪典型光线求 像,称为图解法求像。
这可是 重点呦!
15
可供选择的典型光线和可供利用的性质有:
y f x
y
x
f
结论:光组焦距一定时,物在距焦点距离不同时, 垂轴放大率也不同。
33
第二种表达方式:用主物距、主像距与焦距表达
在x ff x 的两边各加f '得
x f ' ff f ' f f x

大学物理:第三章 理想光学系统

大学物理:第三章 理想光学系统
2. 像的大小;
3. 物右移200mm,像移动多大距离?
例:有一光组将物放大3倍,成像在影屏上,当透镜向物 体方向移动18mm时,物象放大率为4倍。求光组焦距。
三、由多个光组组成的理想光学系统
相应于高斯公式:
l2 l1 d1
………
d1 H1H 2
lk …lk1 d k1 (主面间隔)
相应于牛顿公式:
l HA,l H A
由图,有: x l f , x l f
代入牛顿公式,得: lf lf ll
f f 1 l l
n n n n l l f f
放大率公式为:
f f f f l nl
x f x f l n l
x f f f f f x f
x2 x1 1
………
1 F1F2
xk … xk 1 k1 (光学间隔)
光学间隔Δ和主面间隔d 的关系为:
1 d1 f1 f 2
………
k 1 …d k 1 f k1 f k 1
垂轴放大率为: yk y1 y2 yk
y1 y1 y2
yk
1 2 k
四、光学系统的光焦度
f h tgU
象方主点H′到象方焦点F′的距离称为象方 焦距(后焦距或第二焦距)
f h tgU
说明:
1)对于理想光学系统,不管其结构(r,d,n)如何,只 要知道其焦距值和焦点或主点的位置,其光学性质就确 定了。
2) f n n =n′ f f
fn
h ltgU ltgU
x f tgU x f tgU
§ 3-2 理想光学系统的基点、基面
1. 焦点、焦平面 物方焦点:对应像点在像方光轴上无限远处
焦点 像方焦点:对应物点在物方光轴上无限远处

【课堂笔记】理想光学系统

【课堂笔记】理想光学系统
dx x'
对高斯公式微分,可得高斯公式的轴向放大率
f' f 2 dl ' 2 dl 0 l' l
dl' l '2 f 2 dl l f'
f' 2 f
由式(2-44)与式(2-41)比较,可得

角放大率
• 定义
tgU ' tgU
计算
l l'
f 1 f'

f l' f x' f 'l x f'
垂轴放大 率β 轴向放大 率α
nl ' n' l
nl ' 2 n' l 2
物像方处于 相同介质 l l'
l '2 2 l
l '2 f x' 2 x l f'
角放大率γ
拉赫不变 量J
l l'
主面和主点
垂轴放大率等于+1的一对共轭平面称为主 面 主面与光轴的交点为主点 在物方的称为物方主面和物方主点 在像方的称为像方主面和像方主点 图
返回
光学系统的焦距
主面和主点

在一对主面上,只要知道其中一个面上的点, 就可以找到共轭点----等高度.

作图时,一般将物方光线延长交于物方主面, 根据共轭关系找到像方主面上的共轭点,然 后再确定光线经像方主面后的出射方向.
理想光学系统
理想光学系统
理想光学系统和共线成像
理想光学系统的基点、基面
理想光学系统的物象关系
理想光学系Байду номын сангаас的放大率

华中科技大学《应用光学》课程——第三章理想光学系统全解

华中科技大学《应用光学》课程——第三章理想光学系统全解
f h tgU
f
h tgU
说明: 1)对于理想光学系统,不管其结构(r,d,n)如何,只 要知道其焦距值和焦点或主点的位置,其光学性质就确 定了。
f n n =n′ 2) f n
f f
h ltgU l tgU
x f tgU x f tgU
x x f f
(牛顿公式)
放大率公式为:
y f x y x f
2. 高斯公式 物和象的位置以主点 H、H′为原点来确定, 以l、l′表示。
-f f’
l HA, l H A
由图,有:
x l f , x l f
代入牛顿公式,得:
A点的像有几种方法?
H
H’ F’
例:正光组( f′> 0 )
物在焦面上,成像无限远 实物成实像
实物点成实像点
B F A H H’ F’
实物成虚像
虚物成实像
例:负光组( f′<0 )
实物成虚像
说明:
虚物成虚像
用图解法求像较为简明和直观,但精度是不高的。
上一次课
1、共线成像理论 2、焦点、焦平面 3、主点、主平面 1 4、焦距 5、节点 f n 6、两焦距关系 f n 7、画图法,物方主焦点在一起,像方主焦点在一起 y f x 8、牛顿公式 x x f f y x f f f 9、高斯1)F、F′不是一对共轭点,物 方焦平面和像方焦平面也不为共轭面。 2)由物方无限远处射来的任何 方向的平行光束,汇聚于像方焦平面上 一点。
2. 主点、主平面
定义:物象方β=+1 的共轭平面为物象方主平面。 主平面与光轴的交点为主点H、H′。 说明:

几何光学期末复习 (1)

几何光学期末复习 (1)

三、物方主平面与像方主平面间的关系
1、主平面的物理意义
QH 1 QH
★ 垂轴放大率为+1
★ 共轭面:QH,Q'H'
——出射光线在像方主平面的投射高度与入射光线 在物方主平面的投射高度相等。 2、共轴理想光学系统的基点和基面 ★一对主点、一对主平面; ★一对焦点、一对焦平面; 共轴理想光学系统的简化图:用基 点和基面的位置表征。
dl nl 2 2 dl nl
n 2 n
3、角放大率
l u lu h

l n 1 ——取决于共轭点位置。 l n
u ——反映折射球面将光束变宽或变细的能力。 u
n 2 n

★ 拉格朗日—— 赫姆霍兹不变量 nuy nuy J ——拉赫不变量!
第三节 光路计算与近轴光学系统 一、基本概念与符号法则
1、单个折射球面 光轴、顶点、子午面、物/像距 2、笛卡尔(坐标)法则 左 (1) 像方参量:
加撇号´与物方参量加以区别。

(2) 光线传播方向: 一般假定自左向右为正. (3) 沿轴线段:(如,物/像距) 以折射面顶点为坐标原点:其右方者为正,左方者为负. (如,物像位置) 以主光轴为界: 其上方为正,下方为负。 (4) 垂轴线段: (5) 夹角:按锐角方向旋转,顺时针为正,逆时针为负; 光轴与法线夹角:光轴转向法线 N 转向:光线与法线夹角:光线转向法线 N 光线与光轴夹角(孔径角):光轴转向光线 (6) 光路图中,都用各量的绝对值表示,即全正。凡负值的量, 在图中均加负号。 L | L | 例:
3、无限远轴外物点发出的光线 ★ 共轭像点位于像方焦平面上
反映轴外物点偏离光轴的角距离。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2.1 理想光学系统与共线成像理论一、基本概念1、高斯光学:暂时抛开光学系统的具体结构, 将一般仅在光学系统的近轴区存在的完善成像拓展成在任意大的空间中以任意宽的光束都成完善像的理想模型, 这个理想模型就是理想光学系统。

理想光学系统理论是在1841年由高斯所提出来的,所以理想光学系统理论又被称为“高斯光学”。

2、共轭:将这种物像对应关系叫做“共轭”。

3、共线成像:这种点对应点、直线对应直线、平面对应平面的成像变换谓之共线成像。

二、共轴理想光学系统的成像性质1、位于光轴上的物点对应的共轭像点必然在光轴上;位于过光轴的某一截面内的物点对应的共轭像点必位于该平面内,且在物面的共轭像面内;过光轴的任意截面成像性质都相同;垂直于光轴的物平面,它的共轭像平面也必然垂直于光轴。

2、垂直于光轴的平面物与其共轭平面像的几何形状完全相似,即:在垂直于光轴的同一平面内,物体的各部分具有相同的放大率β。

3、一个共轴理想光学系统,如果已知两对共轭面的位置和放大率,或者一对共轭面的位置和放大率,以及轴上两对共轭点的位置,则其它一切物点的共轭像点都可以根据这些已知的共轭面和共轭点来表示。

基面和基点:通常将这些已知的共轭面和共轭点分别称为共轴系统的“基面”和“基点”。

作图法证明:①已知两对共轭面的位置和放大率②已知一对共轭面的位置和放大率,以及轴上两对共轭点的位置§2.2 理想光学系统的基点和基面一、无限远的轴上物点和它对应的像点F’无限远的轴上物点发出的光线:结论:无限远的轴上物点发出的光线与光轴平行。

像方焦点、焦平面;像方主点、主平面;像方焦距定义:像方焦点、焦平面;像方主点、主平面;像方焦距焦距公式:无限远的轴外物点发出的光线:由于光学系统的口径大小总是有限的,所以无限远的轴外物点发出的、能进入光学系统的光线总是相互平行的,且与光轴有一定的夹角ω。

说明:ω的大小反映了轴外物点离开光轴的角距离,当ω→0时,轴外物点就重合于轴上物点。

这一束平行光线经过系统后,一定相交于像方焦平面上的某一点。

无限远的轴上像点和它对应的物点F定义:物方焦点、物方焦面、物方主点、物方主面、物方焦距公式:二、物方主平面与像方主平面的关系结论:物方主平面与像方主平面是一对共轭面;主平面的垂轴放大率为+1,即:出射光线在像方主平面上的投射高度一定与入射光线在物方主平面上的投射高度相等。

最常用的共轴系统的基点和基面:一对主平面、无限远轴上物点和像方焦点F’、物方焦点F和像方无限远轴上点通常用一对主平面和两个焦点位置来表示一个光学系统三、实际光学系统的基点位置和焦距的计算方法:在实际系统的近轴区追迹平行于光轴的光线,就可以计算出实际系统的近轴区的基点位置和焦距。

例:已知三片型照相物镜的结构参数如下,求光学系统的基点位置和焦距。

为求物镜的像方焦距f’、像方焦点的位置F’、像方主点的位置H’,可沿正向光路追迹一条平行于光轴的光线利用近轴光线的光路计算公式逐面计算,其结果为:为求物镜的物方焦距f、物方焦点的位置F、物方主点的位置H,可沿反向光路追迹一条平行于光轴的光线:§2.3 理想光学系统的物像关系几何光学的一个基本内容:求像。

(对于确定的光学系统,给定物体的位置、大小、方向,求像的位置、大小、正倒及虚实。

)一、图解法求像1、什么是图解法求像?已知一个光学系统的主点(主面)和焦点的位置,利用光线通过它们后的性质,对物空间给定的点、线和面,通过画图追踪典型光线的方法求像。

2、可选择的典型光线和可利用的性质:平行于光轴入射的光线,经过系统后过像方焦点;过物方焦点的光线,经过系统后平行于光轴;倾斜于光轴入射的平行光束经过系统后会交于像方焦平面上的一点;自物方焦平面上一点发出的光束经系统后成倾斜于光轴的平行光束;共轭光线在主面上的投射高度相等。

3、实例:对于轴外点B或一垂轴线段AB的图解法求像:轴上点的图解法求像:方法一:方法二:轴上点经两个光组的成像: 请同学们自学。

二、解析法求像理论依据:共轴理想光学系统成像理论(若已知主平面这一对共轭面、以及无限远物点与像方焦点、物方焦点与无限远像点这两对共轭点,则其他一切物点的像点都可以表示出来)牛顿公式:物和像的位置相对于光学系统的焦点来确定,以焦点为原点,用x、x’分别表示物距和像距。

由两对相似三角形△BAF、△FHM和△H’N’F’、△F’A’B’ 可得:由此可得牛顿公式:牛顿公式的垂轴放大率公式为:高斯公式:物和像的位置相对于光学系统的主点来确定:以主点为原点,用l、l’来表示物距和像距。

得l、l’与x、x’的关系:代入牛顿公式整理得高斯公式:相应地,高斯公式的垂轴放大率公式为:当光学系统物空间和像空间的介质相同时,物方焦距和像方焦距有简单的关系:f’= -f。

说明几点:垂轴放大率β与物体的位置有关,某一垂轴放大率只对应一个物体位置;对于同一共轭面,β是常数,因此平面物与其像相似;理想光学系统的成像性质主要表现在像的位置、大小、虚实、正倒上,利用上述公式可描述任意位置物体的成像问题;工程实际中有一类问题是寻求物体放于什么位置,可以满足合适的倍率。

例:三片型照相物镜, 若要求此物镜成像-1/10x, 问物平面应放在什么位置。

利用垂轴放大率公式并代入前面求得的数据f= - 82.055mm有=-820.55mm-890.5684mm即物平面应放在离开三片型物镜第一面顶点左侧890.5684mm的地方。

三、由多个光组组成的理想光学系统的成像1、光组:一个光学系统可由一个或几个部件组成, 每个部件可以由一个或几个透镜组成, 这些部件被称为光组。

2、光组间的过渡公式:①过渡关系式:,②焦点间隔或光学间隔:第一光组的像方焦点F1'到第二光组物方焦点F2的距离。

符号规定:③光学间隔与主面间隔之间的关系:④一般的过渡公式和两个间隔间的关系为:⑤整个系统的放大率β等于各光组放大率的乘积四、理想光学系统两焦距之间的关系物方焦距和像方焦距之间的关系式说明:光学系统两焦距之比等于相应空间介质折射率之比。

绝大多数光学系统都在同一介质(一般是空气)中使用, 即,故两焦距是绝对值相同, 符号相反, 即。

若光学系统中包括反射面, 则两焦距之间的关系由反射面个数决定, 设反射面的数目为k, 则可写成如下更一般的形式:3、理想光学系统的拉赫公式:§2.4 理想光学系统的放大率理想光学系统的放大率有三种:垂轴放大率、轴向放大率和角放大率。

一、轴向放大率1、定义:当物平面沿光轴作一微量的移动dx或dl时, 其像平面就移动一相应的距离dx'或dl'。

通常定义二者之比为轴向放大率, 用表示, 即:2、公式:(1)(2)如果理想光学系统的物方空间的介质与像方空间的介质一样, 上式可简化为:3、说明:一个小的正方体的像一般不再是正方体。

除非正方体处于位置。

如果轴上点移动有限距离, 相应的象点移动距离, 则轴向放大率可定义为:其中, 是物点处于物距为时的垂轴放大率, 是物点移动后处于物距为时的垂轴放大率。

二、角放大率1、定义:过光轴上一对共轭点, 任取一对共轭光线, 它们与光轴的夹角分别为U和U ', 这两个角度的正切之比定义为这一对共轭点的角放大率, 以γ表示:2、公式:3、说明:角放大率仅随物像位置而异在同一对共轭点上, 任一对共轭光线与光轴夹角U '和U 的正切之比恒为常数。

三种放大率之间的关系式:三、光学系统的节点1、定义:光学系统中角放大率等于+1的一对共轭点称为节点。

2、说明:若光学系统位于空气中, 则公式可简化为,在这种情况下, 当时,, 即主点即为节点。

物理意义:过主点的入射光线经过系统后出射方向不变。

②若光学系统物方空间折射率与像方空间折射率不相同时, 角放大率的物像共轭点(即节点)不再与主点重合。

可求得这对共轭点的位置是:③光学系统的基点:一对节点、一对主点和一对焦点。

知道它们的位置以后, 就能充分了解理想光学系统的成像性质。

四、用平行光管测定焦距的计算依据1、原理:①一束与光轴成角入射的平行光束经系统以后, 会聚于焦平面上的B'点, 这就是无限远轴外物点B的像。

B'点的高度, 即像高y'是由这束平行光束中过节点的光线决定的。

如果被测系统放在空气中, 则主点与节点重合,由图可得:给定倾角的平行光束可由平行光管提供结构:在平行光管物镜的焦平面上设置一刻有几对已知间隔线条的分划板, 用以产生平行光束。

平行光管物镜的焦距为已知, 所以角满足是已知的。

据此, 被测物镜的焦距为§2.5 理想光学系统的组合一、两个光组组合分析光学间隔:第一个系统的像方焦点到第二个系统的物方焦点F2的距离,以为起算原点, 由左向右为正。

已知:两个光学系统的焦距分别为、和、。

两个光学系统间的光学间隔为。

求:①像方焦点F'的位置, ②物方焦点F的位置,③主平面位置解:①方法:追迹一条平行于光轴入射的光线。

这里是由到的距离。

②方法:据定义对第一个系统利用牛顿公式有这里指F1到F的距离。

③焦点位置确定后, 只要求出焦距, 主平面位置随之也就确定了。

,④光焦度及光焦度公式(系统置于空气中):光焦度:像方焦距的倒数, 。

d的意义与符号规则:光焦度公式:密接薄镜组光焦度公式:⑤焦点位置公式:,主平面位置公式:,二、多光组组合计算:一个基于计算来求组合系统的方法。

方法:追迹一条投射高度为的平行于光轴的光线,只要计算出最后的出射光线与光轴的夹角(孔径角), 则过渡公式的推导:对任意一个单独的光组来说, 将高斯公式两边同乘以共轭点的光线在其上的投射高度h有因有,, 所以利用过渡公式(2-9)和, 容易得到同一条计算光线在相邻两个光组上的投射高度之间的关系其中k是光组序号。

若将上式连续用于3个光组的组合系统, 任取,并令,则有这个算法称谓正切计算法。

三、举例例1. 远摄型光组一光组由两个薄光组组合而成。

第一个薄光组的焦距,第二个薄光组的焦距,两光组的间隔d=300mm。

求组合光组的焦距',组合光组的象方主面位置H'及像方焦点的位置,并比较筒长与'的大小。

特点:这种组合光组的焦距f’大于光组的筒长(d+lF’)。

应用:长焦距镜头的设计。

例2.反远距型光组一光组由两个薄光组组合而成。

第一个薄光组的焦距f1’=-35mm,第二个薄光组的焦距f2’=25mm,两薄光组之间的间隔d=15mm。

求合成焦距f’并比较工作距lF’与f’的长短。

特点:这个组合光组的工作距比焦距f’要长。

例3.望远系统1、无焦系统:2、结构特点:第一个光组的像方焦点F1’与第二个光组的物方焦点F2重合3、望远系统: f1’>f2’望远系统的垂轴放大率为:望远系统的角放大率为:角放大率的物理意义:4、目视光学系统:物镜、目镜:例4.显微镜系统显微镜系统的结构与光路:§2.6 透镜一、透镜的概念透镜是构成系统的最基本单元,它是由两个折射面包围一种透明介质(例如玻璃)所形成的光学零件。

相关文档
最新文档