小学数学应用题及解答方法大全
小学数学应用题解答方法公式整理汇总大全
小学数学应用题解答方法公式整理汇总大全(一)整数和小数的应用1简单应用题(1)简单应用题:只含有一种基本数量关系,或用一步运算解答的应用题,通常叫做简单应用题。
(2)解题步骤:a审题理解题意:了解应用题的内容,知道应用题的条件和问题。
读题时,不丢字不添字边读边思考,弄明白题中每句话的意思。
也可以复述条件和问题,帮助理解题意。
b选择算法和列式计算:这是解答应用题的中心工作。
从题目中告诉什么,要求什么着手,逐步根据所给的条件和问题,联系四则运算的含义,分析数量关系,确定算法,进行解答并标明正确的单位名称。
C检验:就是根据应用题的条件和问题进行检查看所列算式和计算过程是否正确,是否符合题意。
如果发现错误,马上改正。
2复合应用题(1)有两个或两个以上的基本数量关系组成的,用两步或两步以上运算解答的应用题,通常叫做复合应用题。
(2)含有三个已知条件的两步计算的应用题。
求比两个数的和多(少)几个数的应用题。
比较两数差与倍数关系的应用题。
(3)含有两个已知条件的两步计算的应用题。
已知两数相差多少(或倍数关系)与其中一个数,求两个数的和(或差)。
已知两数之和与其中一个数,求两个数相差多少(或倍数关系)。
(4)解答连乘连除应用题。
(5)解答三步计算的应用题。
(6)解答小数计算的应用题:小数计算的加法、减法、乘法和除法的应用题,他们的数量关系、结构、和解题方式都与正式应用题基本相同,只是在已知数或未知数中间含有小数。
答案:根据计算的结果,先口答,逐步过渡到笔答。
( 7 )解答加法应用题:a求总数的应用题:已知甲数是多少,乙数是多少,求甲乙两数的和是多少。
b求比一个数多几的数应用题:已知甲数是多少和乙数比甲数多多少,求乙数是多少。
(8 )解答减法应用题:a求剩余的应用题:从已知数中去掉一部分,求剩下的部分。
-b求两个数相差的多少的应用题:已知甲乙两数各是多少,求甲数比乙数多多少,或乙数比甲数少多少。
c求比一个数少几的数的应用题:已知甲数是多少,,乙数比甲数少多少,求乙数是多少。
小学四年级数学应用题大全有答案解析
小学四年级数学应用题大全一.解答题(共50题,共291分)1.我们在日常生活中经常提到“千千万”和“万万千”,而且我们知道“千千万”是形容数量多,“万万千”也是形容数量多.那么同学们,你知道究竟是“千千万”多呢,还是“万万千”多呢?从严格意义上来讲,它们存在怎样的关系?2.一个十一位数,最高位和最低位上的数字都是6,亿级上所有数字的和是8,个级上所有数字的和是6,万级上所有数字都是0,这个数可能是多少?3.用2,4,6这3个数字和6个0按下列要求分别写出一个九位数。
(每个数字只能用一次)(1)只读一个0。
(2)读两个0。
(3)一个0都不读。
4.全校师生去旅游,共有130人,每辆车限载客35人,需要准备几辆车?5.水果店运来480千克的苹果,一共装了2车,每车装了40箱,平均每箱装了多少千克?6.有104只气球,每个小动物拿20只,可以分给多少个小动物?还剩下几只气球?7.一辆汽车从甲地开往乙地,行驶了12小时后离乙地还有432千米。
已知甲、乙两地之间的距离是1368千米,这辆汽车每小时行多少千米?8.有一块占地1公顷的正方形菜地,如果它的边各延长100米,那么菜地的面积增加多少公顷?9.少先队员种了24棵蓖麻,192棵向日葵.向日葵的棵数是蓖麻的多少倍?10.琪琪家的电话号码是一个八位数,千万位上的数字是3,千位上的数字是8,任意相邻的三个数字之和都是13。
琪琪家的电话号码是多少?11.明明上学时步行,回家时跑步,共用了45分钟。
如果上学和回家时都跑步,则共用时间30分钟。
已知他步行每分钟走60米,你知道他家离学校有多少米吗?12.一块长方形的林地,长是16千米,宽是7千米。
这个林地的面积是多少平方千米?合多少公顷?13.一座大桥长2600米,一列火车通过大桥时每分钟行960米,从车头开始上桥到车尾离开桥共需3分钟,这列火车车身长多少米?14.京沪高铁大约长1312千米,动车组列车从北京到上海大约4小时,而普通列车大约8小时,那么动车组列车比普通列车每小时快多少千米?15.李伯伯家一块土地的面积是20公顷,其中圈了一块边长为400米的正方形地种花生,其余的土地种玉米,问花生和玉米各种多少公顷?16.广场上有108盆郁金香,月季花的盆数是郁金香盆数的12倍。
小学数学应用题解题方法与例题荟萃
小学数学应用题解题方法与例题荟萃应用题是小学阶段学习的一个重点,也是一个难点。
对于很多老师和家长都设法找题,试图用题海战术提高小学生的应用题能力。
其实这种盲目的题海战术只能加大学生负担。
本人为了解决这一问题,应用自己多年的从教经验,总结出来了多种解题方法,并配有一定的习题供大家参考,希望对老师和家长有所帮助。
一、综合法:从已知条件出发,根据数量关系先选择两个已知数量,提出可以解答的问题,然后把所求出的数量作为新的已知条件,与其他的已知条件搭配,再提出可以解答的问题,这样逐步推导,直到求出所要求的结果为止,这就是综合法。
在运用综合法的过程中,把应用题的未知条件分解成可以依次解答的几个简单的应用题。
1、希望小学订数学作业本3248本,比作文本多516本,两种作业本共有多少本?2、小巧骑自行车从甲地到乙地,每小时行15千米,2小时后,因自行车出了故障,她又步行了2千米才到达乙地。
甲乙两地之间的距离是多少千米?3、蛋糕厂需要面粉7285千克,如果面粉厂每天加工925千克,4天后还有多少千克没有完成?4、同学们做早操,20人排成一行,正好排18行。
如果改成24人排一行,可以排多少行?5、王师傅做零件312个,如果再做38个就是李师傅的2倍,李师傅做了多少个零件?6、运输队第一天运进原料38吨,第二天运进的原料是第一天的3倍,第三天运进的原料比第一、二天运进的总数多20吨。
第三天运进多少吨原料?7、某化肥厂全年计划生产化肥1500吨,实际前半年每月生产146吨,剩下的要在4个月完成任务,平均每个月要生产化肥多少吨?8、工程队修一条公路,原计划每天修300米,8天完成任务。
实际只用了6天就完成了任务,实际平均每天修多少米?9、服装厂原计划15天制作1575套儿童服装,实际每天比原计划多制作70套。
实际比原计划提前多少天完成任务。
10、运输队要运送730吨货物,每天运43吨,4天后因任务紧急,需要把余下的货物9天运完,这样平均每天要运多少吨?11、学联服装厂做一套学生衣服用布2.1米,改进裁剪方法后,每套节省用布0.1米,原来做300套学生衣服所用的布,现在可以做多少套衣服?12、玩具厂原计划25天生产5400件玩具,实际每天比原计划多生产54件,这样可以提前多少天完成任务?13、水果店有一些每箱重量相等的苹果,如果从每个箱子里取出15千克,5个箱子里剩下苹果的总重量正好是原来两箱苹果的重量,原来每个箱子装多少千克苹果?14、造砖厂制造水泥砖,每吨水泥可以配制40块水泥砖,改进技术后,每块水泥砖节省水泥5千克,现在1吨水泥可以多配制多少块?15、水泵厂生产一批水泵,原计划每天生产84台,15天完成。
小学数学应用题10道(附带答案及详解)
以下是10道小学数学应用题,每道题都附有答案和详细解释。
题目1:班里有20个男生和15个女生。
男生人数占全班总人数的百分之几?解答:先计算男生人数占全班总人数的比例。
男生人数为20,全班总人数为20 + 15 = 35。
所以男生人数占总人数的比例为20/35。
将这个比例转化为百分数,可以得到(20/35) ×100% = 57.14%。
答案:男生人数占全班总人数的57.14%。
题目2:一辆汽车每小时行驶60公里。
如果一个人行走的速度是每小时5公里,那么他需要多长时间才能走完汽车行驶的距离的1/4?解答:汽车每小时行驶60公里,所以它行驶1/4的距离需要(1/4) ×60 = 15公里。
一个人行走的速度是每小时5公里,所以他需要走15/5 = 3小时。
答案:他需要走3小时才能走完汽车行驶距离的1/4。
题目3:在一家餐厅,一份披萨可以分给8个人吃。
如果有24个人,他们需要几份披萨才能每个人都吃到?解答:每份披萨可以分给8个人吃,所以24个人需要分成24/8 = 3份披萨。
答案:他们需要3份披萨才能每个人都吃到。
题目4:班上有30个学生,其中1/3的学生喜欢足球,1/6的学生喜欢篮球。
至少有几个学生喜欢足球或篮球?解答:先计算喜欢足球的学生人数,30 ×(1/3) = 10人。
然后计算喜欢篮球的学生人数,30 ×(1/6) = 5人。
但是这两个群体可能有重叠,所以我们需要将重叠的人数减去。
由于5人中有2人同时喜欢足球和篮球,所以总共有10+5-2=13个学生至少喜欢足球或篮球。
答案:至少有13个学生喜欢足球或篮球。
题目5:一个盒子里有12个苹果和8个橙子,小明闭上眼睛从盒子里随机摸出1个水果。
他拿到苹果的概率是多少?解答:总共有20个水果,其中12个是苹果,所以小明拿到苹果的概率是12/20。
答案:小明拿到苹果的概率是12/20或60%。
题目6:一家商店原价卖一件衣服为100元。
小学数学各类应用题类型及解题方法
2016-06-05差倍问题:已知两个数的差及两个数的倍数关系,求这两个数的应用题,叫做差倍问题。
基本关系式是:两数差÷倍数差=较小数。
例:有两堆煤,第二堆比第一堆多40吨,如果从第二堆中拿出5吨煤给第一堆,这时第二堆煤的重量正好是第一堆的3倍。
原来两堆煤各有多少吨?分析:原来第二堆煤比第一堆多40吨,给了第一堆5吨后,第二堆煤比第一堆就只多40-5×2吨,由基本关系式列式是:(40-5×2)÷(3-1)-5 =(40-10)÷2-5 =30÷2-5 =15-5 =10(吨)第一堆煤的重量10+40=50(吨)→第二堆煤的重量答:第一堆煤有10吨,第二堆煤有50吨和差问题:已知两个数的和与差,求这两个数的应用题,叫做和差问题。
一般关系式有:(和-差)÷2=较小数(和+差)÷2=较大数。
例:甲乙两数的和是24,甲数比乙数少4,求甲乙两数各是多少?(24+4)÷2 =28÷2 =14 乙数(24-4)÷2 =20÷2 =10 甲数答:甲数是10,乙数是14差倍问题:已知两个数的差及两个数的倍数关系,求这两个数的应用题,叫做差倍问题。
基本关系式是:两数差÷倍数差=较小数例:有两堆煤,第二堆比第一堆多40吨,如果从第二堆中拿出5吨煤给第一堆,这时第二堆煤的重量正好是第一堆的3倍。
原来两堆煤各有多少吨?分析:原来第二堆煤比第一堆多40吨,给了第一堆5吨后,第二堆煤比第一堆就只多40-5×2吨,由基本关系式列式是:(40-5×2)÷(3-1)-5 =(40-10)÷2-5 =30÷2-5 =15-5 =10(吨)第一堆煤的重量10+40=50(吨)→第二堆煤的重量答:第一堆煤有10吨,第二堆煤有50吨。
还原问题:已知一个数经过某些变化后的结果,要求原来的未知数的问题,一般叫做还原问题。
小学数学-归总法应用题大全及解题思路
归总法应用题大全已知单位数量和单位数量的个数,先求出总数量,再按另一个单位数量或单位数量的个数求未知数量的解题方法叫做归总法。
解答这类问题的基本方法是:总数量=单位数量×单位数量的个数;另一单位数量(或个数)=总数量÷单位数量的个数(或单位数量)。
例1李明从学校步行回家,每小时走4千米,5小时到家。
如果他每小时走5千米,几小时到家?(适于三年级程度)解:要求每小时走5千米,几小时到家,要先求出学校到家有多远,再求几小时到家。
因此,4×5÷5=20÷5=4(小时)答:如果他每小时走5千米,4小时到家。
例 2王明看一本故事书,计划每天看 15页,20天看完。
如果要在12天看完,平均每天要看多少页?(适于三年级程度)解:要求12天看完,平均每天看多少页,必须先求出这本故事书一共有多少页,再求平均每天看多少页。
因此,15×20÷12=300÷12=25(页)答:如果要在12天看完,平均每天要看25页。
例3某工厂制造一批手扶拖拉机,原计划每天制造6台,30天完成。
实际上只用了一半的时间就完成了任务。
实际每天制造多少台?(适于四年级程度)解:原来时间的一半就是30天的一半。
6×30÷(30÷2)=180÷15=12(台)答:实际每天制造12台。
例4永丰化肥厂要生产一批化肥,计划每天生产45吨,24天可以完成任务。
由于改进生产技术,提高了工作效率,平均每天比原计划多生产15吨。
实际几天完成任务?(适于四年级程度)解:计划生产的这批化肥是:45×24=1080(吨)改进生产技术后每天生产:45+15=60(吨)实际完成任务的天数是:1080÷60=18(天)综合算式:45×24÷(45+15)=45×24÷60=1080÷60=18(天)答:实际18天完成任务。
小学数学应用题解题的十大方法
小学数学应用题解题的十大方法观察法是一种解题方法,通过观察题目中数字的变化规律及位置特点、条件与结论之间的关系、题目的结构特点及图形的特征,从而发现题目中的数量关系。
在观察中要动脑,要想出道理、找出规律。
尝试法是一种解题方法,按照自己认为可能的想法,通过尝试,探索规律,从而获得解题方法。
在尝试时可以提出假设、猜想,都要目的明确,尽可能恰当、合理,从而减少尝试的次数,提高解题的效率。
列举法是一种解题方法,把问题分为不重复、不遗漏的有限情况,一一列举出来加以分析、解决,最终达到解决整个问题的目的。
用列举法解应用题时,往往把题中的条件以列表的形式排列起来,有时也要画图。
综合法是一种解题方法,从已知数量和未知数量的关系入手,逐步分析出已知数量和未知数量间的关系,一起到求出未知数量的解题方法。
以综合法解应用题时,先选择两个已知数量,并通过这两个已知数量解出一个问题,然后将这个解出的问题作为一个新的已知条件,与其它已知条件配合,再解出一个问题,一直到解出应用题所求解的未知数量。
分析法是一种解题方法,从求解的问题出发,正确选择所需要的两个条件,依次推导,一直到问题得到解决的解题方法。
用分析法解应用题时,如果解题所需要的两个条件(或其中一个条件)是未知的,就要分别求解找出这两个(或一个)条件,一直到所需要的条件都是已知的为止。
综合-分析法是将综合法和分析法结合起来使用的解题方法,适用于解比较复杂的应用题。
归一法是一种解题方法,先求出单位数量(如单价、工效、单位面积的产量等),再以单位数量为标准,计算出所求数量的解题方法。
归总法是一种解题方法,将问题分解为若干个子问题,分别解决后再将结果合并起来,最终得到整个问题的解。
删除明显有问题的段落剔除下面文章的格式错误已知单位数量和单位数量的个数,先求出总数量,再按另一个单位数量或单位数量的个数求未知数量的解题方法叫做妆总法。
解答这类问题的基本原理是:(1)总数量=单位数量×单位数量的个数;(2)另一单位数量(或个数)=总数量÷单位数量的个数(或单位数量)。
小学三年级数学应用题大全加解析答案
小学三年级数学应用题大全一.解答题(共50题,共266分)1.环卫叔叔6月份收集塑料瓶384个,7月份收集塑料瓶617个,估计一下,环卫叔叔这两个月共收集塑料瓶大约有多少个?2.同学们登山比赛。
上山走了550米,下山走另一条山路,下山比上山少走170米。
上、下山一共走了多少米?3.一根木棍一周长9厘米,小明有一根绳子绕这根木棍缠绕了4周,还剩4厘米,这根绳子长多少分米?。
4.昨天晚上10点30分开始下雨,今天凌晨4时30分才停,这场雨下了多少时间?昨天下了多少时间?今天又下了多少时间?5.同学们参加爬山比赛,女同学分成4组,每组15人,参赛的男同学有76人,一共有多少名同学参加爬山比赛?6.爸爸的表比家里的钟表慢1分10秒,妈妈的表比家里的钟表快1分10秒,家里的钟表比电视台的报时快1分10秒.爸爸和妈妈两人谁的表是准的?7.一辆摩托车价钱是3800元,一辆小汽车的价钱比一辆摩托车的10倍还多1200元,一辆小汽车的价钱是多少元?一辆小汽车比一辆摩托车的价钱多多少钱?8.一个电饭锅285元,一个豆浆机193元,电饭锅比豆浆机贵多少钱?9.有一堆钢材140吨,卡车的载重量是8吨,16辆这样的卡车一次能全部运完吗?10.小丽有5本一样厚的书,每本厚8毫米,5本叠一起厚多少毫米?合多少厘米?11.一头狮子约重250千克,一头蓝鲸舌头的重量是狮子的8倍。
蓝鲸舌头重多少吨?12.一个电磁炉495元,一个平底锅109元,一个电饭煲399元。
(1)李阿姨买这三样物品大约需要准备多少钱?(2)收银员应收多少元?13.菜市场运来黄瓜455千克,比运来的西红柿多217千克,运来的西红柿有多少千克?14.每千克大米4元,王阿姨的餐厅要买150千克大米,一共要花多少钱?15.王大爷种了28棵杨树,柳树的棵数是杨树的3倍,柳树比杨树多多少棵?16.合唱队有8名男生,女生人数是男生的2倍,如果将合唱队的人排成4排,每排应该站几名学生?17.用900个鸡蛋孵小鸡,上午孵出335只小鸡。
小学数学常见应用题公式汇总, 附40道练习及答案
小学数学常见应用题公式汇总, 附40道练习及答案★反向行程问题公式反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。
这两种题,都可用下面的公式解答:(速度和)×相遇(离)时间=相遇(离)路程;相遇(离)路程÷(速度和)=相遇(离)时间;相遇(离)路程÷相遇(离)时间=速度和★相遇问题公式相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间★工程问题公式一般公式:工效×工时=工作总量;工作总量÷工时=工效;工作总量÷工效=工时。
用假设工作总量为“1”的方法解工程问题的公式:1÷工作时间=单位时间内完成工作总量的几分之几;1÷单位时间能完成的几分之几=工作时间。
(注意:用假设法解工程题,可任意假定工作总量为2、3、4、5……。
特别是假定工作总量为几个工作时间的最小公倍数时,分数工程问题可以转化为比较简单的整数工程问题,计算将变得比较简便。
) ★利润与折扣公式利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣〈1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)★简易方程知识点1、用字母表运算定律。
加法交换律:a+b=b+a加法结合律:a+b+c=a+(b+c)乘法交换律:a×b=b×a乘法结合律:a×b×c=a×(b×c)乘法分配律:(a±b)×c=a×c±b×c2、用字母表示计算公式。
长方形的周长公式:c=(a+b)×2长方形的面积公式:s=ab正方形的周长公式:c=4a正方形的面积公式:s=a×a3、x² 读作:x的平方,表示:两个x相乘。
小学数学30种典型应用题分类讲解附带例题和解题过程
小学数学30种典型应用题讲解应用题可分为一般应用题与典型应用题。
没有特定的解答规律的两步以上运算的应用题,叫做一般应用题。
题目中有特殊的数量关系,可以用特定的步骤和方法来解答的应用题,叫做典型应用题. 以下主要研究30类典型应用题:1、归一问题2、归总问题3、和差问题4、和倍问题5、差倍问题6、倍比问题7、相遇问题8、追及问题9、植树问题10、年龄问题11、行船问题12、列车问题13、时钟问题14、盈亏问题15、工程问题16、正反比例问题17、按比例分配18、百分数问题19、“牛吃草”问题20、鸡兔同笼问题21、方阵问题22、商品利润问题23、存款利率问题24、溶液浓度问题25 、构图布数问题26、幻方问题27、抽屉原则问题28、公约公倍问题29、最值问题30、列方程问题1 归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
这类应用题叫做归一问题。
【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。
例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱? 0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式 0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。
例2 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷? 90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷? 10×5×6=300(公顷)列成综合算式 90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6 天耕地300公顷。
小学二年级数学应用题大全及参考答案(典型题)
小学二年级数学应用题大全一.解答题(共50题,共259分)1.乐乐送给欢欢3盒苹果,每盒8个,共有苹果多少个?2.奇奇拍了62下,小芳拍了22下。
小红拍的比他们两个的和少8下。
你知道小红拍了多少下?3.学校手工组做了25艘轮船、33艘军舰,做的军舰比轮船多多少艘?4.同学们去郊游,租了4辆面包车,每辆面包车坐7人,所有人上车后还有3个空位。
这次一共去了多少人?5.商店运进7箱粉笔,每箱8盒,其中白粉笔30盒,其余是彩色粉笔,彩色粉笔有多少盒?6.一、二年级有6个班,每个班有4人参加舞蹈组,一共有多少人?后来,舞蹈组增加了10人,现在舞蹈组有多少人?7.同学们去登山。
男同学去了28人,女同学去了23人.女同学比男同学少去多少人?一共去了多少人?8.二年级(1)班有28名男生,女生比男生多3名。
谁多谁少?有多少名女生?9.看图回答。
10.手工课上,二(1)班的同学做剪纸,剪出了两种不同形状的星星,一种有15颗,另一种有20颗。
还剪出了4串灯笼,每串有5个。
(1)同学们剪出了多少颗星星?(2)同学们剪出了多少个灯笼?11.明明一家去果园摘苹果,明明、爸爸和妈妈每人摘了9个苹果,妹妹摘了6个,全家一共摘了多少个苹果?12.小猴子玩具店里头有18个白皮球和23个花皮球,小羊要买22个皮球,还剩多少个皮球?13.三年级植了8棵树,四年级植的树比三年级多15棵,五年级植的树是三年级的3倍。
(1)四年级植了多少棵树?(2)五年级植了多少棵树?(3)三个年级一共植了多少棵树?14.一座教学楼有4层,每层有5个教室和1个办公室。
这座教学楼里共有多少个房间?15.小明和小芳一起跳绳,小明跳了60下,小芳跳了48下,小芳再跳多少下就和小明一样多?16.一、二年级有4个班,每班有4人参加舞蹈组,一共有多少人?后来舞蹈组增加了10人,现在舞蹈组有多少人?17.果园里苹果树有8行,每行8棵,梨树比苹果树多10棵,梨树有多少棵?18.兰兰家养了白兔47只,黑兔19只,17只兔子正在吃萝卜。
小学数学应用题解题方法大全36-40
小学数学应用题解题方法大全36-40三十六、解工程问题的方法工程问题是研究工作量、工作效率和工作时间三者之间关系的问题。
这三者之间的关系是:工作效率×工作时间=工作量工作量÷工作时间=工作效率工作量÷工作效率=工作时间根据上面的数量关系,只要知道三者中的任意两种量,就可求出第三种量。
由于工作量的已知情况不同,工程问题可分为整数工程问题和分数工程问题两类。
在整数工程问题中,工作量是已知的具体数量。
解答这类问题时,只要按照上面介绍的数量关系计算就可解题,计算过程中一般不涉及分率。
在分数工程问题中,工作量是未知数量。
解这类题时,也要根据上面介绍的数量关系计算,但在计算过程中要涉及到分率。
(一)工作总量是具体数量的工程问题例1 建筑工地需要1200吨水泥,用甲车队运需要15天,用乙车队运需要10天。
两队合运需要多少天?(适于四年级程度)解:这是一道整数工程问题,题中给出了总工作量是具体的数量1200吨,还给出了甲、乙两队完成总工作量的具体时间。
先根据“工作量÷工作时间=工作效率”,分别求出甲、乙两队的工作效率。
再根据两队工作效率的和及总工作量,利用公式“工作量÷工作效率=工作时间”,求出两队合运需用多少天。
甲车队每天运的吨数:(甲车队工作效率)1200÷15=80(吨)乙车队每天运的吨数:(乙车队工作效率)1200÷10=120(吨)两个车队一天共运的吨数:80+120=200(吨)两个车队合运需用的天数:1200÷200=6(天)综合算式:1200÷(1200÷15+1200÷10)=1200÷(80+120)=1200÷200=6(天)答略。
*例2 生产350个零件,师傅14小时可以完成。
如果师傅和他的徒弟小王合作,则10小时可以完成。
如果小王单独做这批零件,需多少小时?(适于四年级程度)解:题中工作总量是具体的数量,师傅完成工作总量的时间也是具体的。
小学数学常见的应用题的解答方法
小学数学常见的应用题的解答方法:1.和差问题:(和+差)÷2=较大数 ,(和-差)÷2=较小数或 和-较小数=较大数2. 和倍问题:和÷(倍+1)=较小数,和-较小数=较大数或 较小数×倍数=较大数3. 差倍问题:差÷(倍-1)=较小数 ,较小数×倍数=较大数或 较小数+差=较大数4. 行程问题:路程=速度×时间,速度=路程÷时间,时间=路程÷速度5. 相遇问题:相遇路程=速度和×共行时间 ,相遇时间=相遇路程÷速度和速度和=相遇路程÷共行时间6. 追及问题:追及路程=速度差×追及时间追及时间=追及路程÷速度差速度差=追及路程÷追及时间7. 利润与折扣:利润=售价-成本利润率=成本利润×100%利息=本金×利率×时间8. 价钱问题:总价=单价×数量单价=总价÷数量数量=总价÷单价9. 工作量问题:工作总量=工作效率×工作时间工作时间=工作总量÷工作效率工作效率=工作总量÷工作时间10. 产量问题:总产量=亩产量×亩数,亩产量=总产量÷亩数,亩数=总产量÷亩产量11. 植树问题:(1)、两头都栽:全长=株距×(棵数-1)(2)、只栽一头:全长=株距×棵数(3)、两头都不栽:全长=株距×(棵数+1)12. 鸡兔同笼: 假设是鸡,结果是兔,假设是兔,结果是鸡.大差 ÷ 小差13、分数和百分数应用题:(1)、找单位“1”。
单位“1”的数量已知,就是乘法。
列式为:单位“1”的数量×与问题相对应的份数。
(2)、如果单位“1”的数量未知,就是除法。
列式为:数量÷相对应的份数。
14、鸽巢问题:(1)、至少数=商+1(2)、至少数=颜色数+1(3)、至少数=颜色数×扩大倍数+1(4)、指定色=所有其它色的和+115、比例问题:(1)、正比例:一般情况下,题中有“照这样计算”、“按这样的 速度”等字眼。
小学数学应用题解答方法公式汇总(值得收藏)
⼩学数学应⽤题解答⽅法公式汇总(值得收藏)(⼀)整数和⼩数的应⽤01简单应⽤题(1)简单应⽤题:只含有⼀种基本数量关系,或⽤⼀步运算解答的应⽤题,通常叫做简单应⽤题。
(2)解题步骤:a .审题理解题意:了解应⽤题的内容,知道应⽤题的条件和问题。
读题时,不丢字不添字边读边思考,弄明⽩题中每句话的意思。
也可以复述条件和问题,帮助理解题意。
b.选择算法和列式计算:这是解答应⽤题的中⼼⼯作。
从题⽬中告诉什么,要求什么着⼿,逐步根据所给的条件和问题,联系四则运算的含义,分析数量关系,确定算法,进⾏解答并标明正确的单位名称。
c.检验:就是根据应⽤题的条件和问题进⾏检查看所列算式和计算过程是否正确,是否符合题意。
如果发现错误,马上改正。
02复合应⽤题(1)有两个或两个以上的基本数量关系组成的,⽤两步或两步以上运算解答的应⽤题,通常叫做复合应⽤题。
(2)含有三个已知条件的两步计算的应⽤题。
求⽐两个数的和多(少)⼏个数的应⽤题。
⽐较两数差与倍数关系的应⽤题。
(3)含有两个已知条件的两步计算的应⽤题。
已知两数相差多少(或倍数关系)与其中⼀个数,求两个数的和(或差)。
已知两数之和与其中⼀个数,求两个数相差多少(或倍数关系)。
(4)解答连乘连除应⽤题。
(5)解答三步计算的应⽤题。
(6)解答⼩数计算的应⽤题:⼩数计算的加法、减法、乘法和除法的应⽤题,他们的数量关系、结构、和解题⽅式都与正式应⽤题基本相同,只是在已知数或未知数中间含有⼩数。
答案:根据计算的结果,先⼝答,逐步过渡到笔答。
( 7 ) 解答加法应⽤题:a.求总数的应⽤题:已知甲数是多少,⼄数是多少,求甲⼄两数的和是多少。
b.求⽐⼀个数多⼏的数应⽤题:已知甲数是多少和⼄数⽐甲数多多少,求⼄数是多少。
(8 ) 解答减法应⽤题:a.求剩余的应⽤题:从已知数中去掉⼀部分,求剩下的部分。
b.求两个数相差的多少的应⽤题:已知甲⼄两数各是多少,求甲数⽐⼄数多多少,或⼄数⽐甲数少多少。
小学三年级数学应用题大全加答案解析
小学三年级数学应用题大全一.解答题(共50题,共268分)1.水果店进了500千克西瓜,上午卖出152千克,下午卖出315千克,还剩多少千克西瓜没有卖出?2.一件皮夹克的售价是605元,一条西裤的售价比皮夹克便宜168元。
这条西裤多少钱?3.学校、丽丽家和林林家在同一条路上。
丽丽家到学校有630米,林林家到学校有270米。
丽丽家到林林家有多远?4.阳阳用走路的方法测量卧室的宽度,他的步长大约5分米,阳阳走了6步,卧室的宽大约是几米?5.海洋馆第一天卖出456张门票,第二天上午卖出187张,下午卖出313张。
这两天一共卖出多少张门票?6.便民超市运来520千克水果,上午卖出242千克,下午卖出197千克,还剩多少千克?7.果园里有324棵梨树,268棵杏树,杏树和梨树相差几棵?8.一本《童话故事》书有600页,笑笑第一周看了135页,第二周看了145页,还剩多少页没看?9.王大爷种了28棵杨树,柳树的棵数是杨树的3倍,柳树比杨树多多少棵?10.学校食堂买来大米850千克,运了3车,还剩100千克.平均每车运多少千克?11.李大爷家今年养了520只母鸡,236只公鸡,已经卖了427只,还剩多少只鸡?12.今年小明的妈妈34岁,小明9岁,爷爷的年龄是小明的7倍。
爷爷比小明大多少岁?13.柠檬收了360千克,葡萄比柠檬少收50千克。
(1)葡萄收了多少千克?(2)柠檬和葡萄一共收了多少千克?14.顺意书店第一天卖了310本故事书,第二天上午卖了140本,那么第二天下午再卖多少本第二天卖的就和第一天同样多?15.四(1)班男生人数比女生人数的2倍少7人,女生有16人。
这个班共有学生多少人?16.商店运来900千克大米,上午卖出347千克,下午比上午多卖出98千克。
(1)下午卖出多少千克大米?(2)这天共卖出多少千克大米?(3)还剩多少千克大米没卖?17.一头牛的体重约是400千克,一头大象的体重约是一头牛体重的5倍,一头大象约重多少千克?合多少吨?18.爸爸的月收入是980元,上半月支出了358元,下半月支出了476元,还剩多少元?19.“六一”文艺演出14:30开始,16:00结束,演出进行了多长时间?20.小红有8颗黄珠子,红珠子的数量比黄珠子的6倍多5颗。
小学三年级数学应用题大全含答案解析
小学三年级数学应用题大全一.解答题(共50题,共267分)1.1条裤子78元,1双皮鞋的价钱是1条裤子的2倍,1件上衣的价钱是1双皮鞋的2倍,爸爸想买这3样东西,需要准备多少钱?2.在学校的一次体检量身高时,明明的身高为15分米,玲玲的身高是155厘米,他们哪一个高一些呢?3.一根1米长的彩带,先剪去35厘米,又剪去5分米,这根彩带还剩下多少厘米?4.妈妈买了6斤苹果,买的梨是苹果的5倍,妈妈买的水果一共多少斤?5.养殖场养鸡800只,养鸭289只。
养殖场养鸡和鸭一共多少只?鸡比鸭多多少只?6.小芳看一本238页的故事书,第一天看了54页,第二天看了38页,第三天从哪一页看起?7.1千克海水含盐40克,照这样计算,一吨海水含盐多少千克?8.超市上午运来535个鸡蛋,上午卖出376个,下午又运来212个,现在超市有多少个鸡蛋?9.小兔家有500个萝卜,上午吃了135个下午吃了265个,小兔家还剩多少个萝卜?10.小强的奶奶今年72岁,小强今年9岁,奶奶的年龄是小强的几倍?11.一辆自行车405元,一个电烤箱135元。
妈妈带了500元钱,买这两样东西够吗?如果够了,多多少元?如果不够,还差多少元?口答:买这两样东西();还差()元。
12.小莉走路上学,7:15从家出发,7:50到学校,她从家到学校用了多少时间?13.现在有微波炉258元,电压锅137元,电饭煲304元。
(1)现在电饭煲打折,212元就可以购买,打折后的电饭煲大约便宜了多少元?(2)如果按原价买这三种商品各一件,带600元够吗?14.有400箱苹果,每次运走72箱,6次能运完?15.某日新华菜场猪肉的价格是每千克26元.牛肉价格比猪肉价格的3倍多2元。
牛肉的价格是每千克多少元?16.一座桥限重12吨,一辆重2吨的卡车载着9000千克的货物能否安全通过?17.一种电视机的原价是1000元,现价是798元。
现在的价格比原来便宜多少元?18.会议室原有900人在开会,后有118人离开了,同时又来了338人,现在会议室里有多少人?19.今年暑假,小丽一家去旅游。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学应用题及解答方法大全超人资讯百家号06-0921:40小学数学除了简单的计算,到了小学高年级阶段,开始出现应用题。
应用题是把含有数量关系的实际问题用文字叙述出来所形成的题目。
下面是小编为大家整理的小学数学应用题大全。
1归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
这类应用题叫做归一问题。
【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。
例1、买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?例2、3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?例3、5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?2归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。
所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
【数量关系】1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。
例1、服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。
原来做791套衣服的布,现在可以做多少套?例2、小华每天读24页书,12天读完了《红岩》一书。
小明每天读36页书,几天可以读完《红岩》?例3、食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。
后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天?3 和差问题【含义】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。
【数量关系】大数=(和+差)÷ 2 小数=(和-差)÷ 2【解题思路和方法】简单的题目可以直接套用公式;复杂的题目变通后再用公式。
例1、甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?例2、长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。
例3、有甲乙丙三袋化肥,甲乙两袋共重32千克,乙丙两袋共重30千克,甲丙两袋共重22千克,求三袋化肥各重多少千克。
例4、甲乙两车原来共装苹果97筐,从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,两车原来各装苹果多少筐?4 和倍问题【含义】已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。
【数量关系】总和÷(几倍+1)=较小的数总和-较小的数=较大的数较小的数×几倍=较大的数【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。
例1、果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?例2、东西两个仓库共存粮480吨,东库存粮数是西库存粮数的1.4倍,求两库各存粮多少吨?例3、甲站原有车52辆,乙站原有车32辆,若每天从甲站开往乙站28辆,从乙站开往甲站24辆,几天后乙站车辆数是甲站的2倍?例4、甲乙丙三数之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三数各是多少?5 差倍问题【含义】已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。
【数量关系】两个数的差÷(几倍-1)=较小的数较小的数×几倍=较大的数例1、果园里桃树的棵数是杏树的3倍,而且桃树比杏树多124棵。
求杏树、桃树各多少棵?例2、爸爸比儿子大27岁,今年,爸爸的年龄是儿子年龄的4倍,求父子二人今年各是多少岁?例3、商场改革经营管理办法后,本月盈利比上月盈利的2倍还多12万元,又知本月盈利比上月盈利多30万元,求这两个月盈利各是多少万元?例4、粮库有94吨小麦和138吨玉米,如果每天运出小麦和玉米各是9吨,问几天后剩下的玉米是小麦的3倍?6 倍比问题【含义】有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。
【数量关系】总量÷一个数量=倍数另一个数量×倍数=另一总量【解题思路和方法】先求出倍数,再用倍比关系求出要求的数。
例1 100千克油菜籽可以榨油40千克,现在有油菜籽3700千克,可以榨油多少?例2 今年植树节这天,某小学300名师生共植树400棵,照这样计算,全县48000名师生共植树多少棵?例3 凤翔县今年苹果大丰收,田家庄一户人家4亩果园收入11111元,照这样计算,全乡800亩果园共收入多少元?全县16000亩果园共收入多少元?7 相遇问题【含义】两个运动的物体同时由两地出发相向而行,在途中相遇。
这类应用题叫做相遇问题。
【数量关系】相遇时间=总路程÷(甲速+乙速)总路程=(甲速+乙速)×相遇时间【解题思路和方法】简单的题目可直接利用公式,复杂的题目变通后再利用公式。
例1 南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?例2 小李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?例3 甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离。
8 追及问题【含义】两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。
这类应用题就叫做追及问题。
【数量关系】追及时间=追及路程÷(快速-慢速)追及路程=(快速-慢速)×追及时间例1 好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?例2 小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑。
小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米。
例3 我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击。
已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?例4 一辆客车从甲站开往乙站,每小时行48千米;一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离。
例5 兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米。
哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。
问他们家离学校有多远?例6 孙亮打算上课前5分钟到学校,他以每小时4千米的速度从家步行去学校,当他走了1千米时,发现手表慢了10分钟,因此立即跑步前进,到学校恰好准时上课。
后来算了一下,如果孙亮从家一开始就跑步,可比原来步行早9分钟到学校。
求孙亮跑步的速度。
9 植树问题【含义】按相等的距离植树,在距离、棵距、棵数这三个量之间,已知其中的两个量,要求第三个量,这类应用题叫做植树问题。
【数量关系】线形植树棵数=距离÷棵距+1环形植树棵数=距离÷棵距方形植树棵数=距离÷棵距-4三角形植树棵数=距离÷棵距-3 面积植树棵数=面积÷(棵距×行距)【解题思路和方法】先弄清楚植树问题的类型,然后可以利用公式。
例1 一条河堤136米,每隔2米栽一棵垂柳,头尾都栽,一共要栽多少棵垂柳?例2 一个圆形池塘周长为400米,在岸边每隔4米栽一棵白杨树,一共能栽多少棵白杨树?例3 一个正方形的运动场,每边长220米,每隔8米安装一个照明灯,一共可以安装多少个照明灯?例4 给一个面积为96平方米的住宅铺设地板砖,所用地板砖的长和宽分别是60厘米和40厘米,问至少需要多少块地板砖?例5 一座大桥长500米,给桥两边的电杆上安装路灯,若每隔50米有一个电杆,每个电杆上安装2盏路灯,一共可以安装多少盏路灯?10 年龄问题【含义】这类问题是根据题目的内容而得名,它的主要特点是两人的年龄差不变,但是,两人年龄之间的倍数关系随着年龄的增长在发生变化。
【数量关系】年龄问题往往与和差、和倍、差倍问题有着密切联系,尤其与差倍问题的解题思路是一致的,要紧紧抓住“年龄差不变”这个特点。
【解题思路和方法】可以利用“差倍问题”的解题思路和方法。
例1 爸爸今年35岁,亮亮今年5岁,今年爸爸的年龄是亮亮的几倍?明年呢?例2 母亲今年37岁,女儿今年7岁,几年后母亲的年龄是女儿的4倍?例3 3年前父子的年龄和是49岁,今年父亲的年龄是儿子年龄的4倍,父子今年各多少岁?例4 甲对乙说:“当我的岁数曾经是你现在的岁数时,你才4岁”。
乙对甲说:“当我的岁数将来是你现在的岁数时,你将61岁”。
求甲乙现在的岁数各是多少?11 行船问题【含义】行船问题也就是与航行有关的问题。
解答这类问题要弄清船速与水速,船速是船只本身航行的速度,也就是船只在静水中航行的速度;水速是水流的速度,船只顺水航行的速度是船速与水速之和;船只逆水航行的速度是船速与水速之差。
【数量关系】(顺水速度+逆水速度)÷2=船速(顺水速度-逆水速度)÷2=水速顺水速=船速×2-逆水速=逆水速+水速×2逆水速=船速×2-顺水速=顺水速-水速×2【解题思路和方法】大多数情况可以直接利用数量关系的公式。
例1 一只船顺水行320千米需用8小时,水流速度为每小时15千米,这只船逆水行这段路程需用几小时?例2 甲船逆水行360千米需18小时,返回原地需10小时;乙船逆水行同样一段距离需15小时,返回原地需多少时间?例3 一架飞机飞行在两个城市之间,飞机的速度是每小时576千米,风速为每小时24千米,飞机逆风飞行3小时到达,顺风飞回需要几小时?12 列车问题【含义】这是与列车行驶有关的一些问题,解答时要注意列车车身的长度。
【数量关系】火车过桥:过桥时间=(车长+桥长)÷车速火车追及:追及时间=(甲车长+乙车长+距离)÷(甲车速-乙车速)火车相遇:相遇时间=(甲车长+乙车长+距离)÷(甲车速+乙车速)例1 一座大桥长2400米,一列火车以每分钟900米的速度通过大桥,从车头开上桥到车尾离开桥共需要3分钟。